Getting signals into the brain: visual prosthetics through thalamic microstimulation.
Pezaris, John S; Eskandar, Emad N
2009-07-01
Common causes of blindness are diseases that affect the ocular structures, such as glaucoma, retinitis pigmentosa, and macular degeneration, rendering the eyes no longer sensitive to light. The visual pathway, however, as a predominantly central structure, is largely spared in these cases. It is thus widely thought that a device-based prosthetic approach to restoration of visual function will be effective and will enjoy similar success as cochlear implants have for restoration of auditory function. In this article the authors review the potential locations for stimulation electrode placement for visual prostheses, assessing the anatomical and functional advantages and disadvantages of each. Of particular interest to the neurosurgical community is placement of deep brain stimulating electrodes in thalamic structures that has shown substantial promise in an animal model. The theory of operation of visual prostheses is discussed, along with a review of the current state of knowledge. Finally, the visual prosthesis is proposed as a model for a general high-fidelity machine-brain interface.
TOPICAL REVIEW: Prosthetic interfaces with the visual system: biological issues
NASA Astrophysics Data System (ADS)
Cohen, Ethan D.
2007-06-01
The design of effective visual prostheses for the blind represents a challenge for biomedical engineers and neuroscientists. Significant progress has been made in the miniaturization and processing power of prosthesis electronics; however development lags in the design and construction of effective machine brain interfaces with visual system neurons. This review summarizes what has been learned about stimulating neurons in the human and primate retina, lateral geniculate nucleus and visual cortex. Each level of the visual system presents unique challenges for neural interface design. Blind patients with the retinal degenerative disease retinitis pigmentosa (RP) are a common population in clinical trials of visual prostheses. The visual performance abilities of normals and RP patients are compared. To generate pattern vision in blind patients, the visual prosthetic interface must effectively stimulate the retinotopically organized neurons in the central visual field to elicit patterned visual percepts. The development of more biologically compatible methods of stimulating visual system neurons is critical to the development of finer spatial percepts. Prosthesis electrode arrays need to adapt to different optimal stimulus locations, stimulus patterns, and patient disease states.
Artificial organs: recent progress in artificial hearing and vision.
Ifukube, Tohru
2009-01-01
Artificial sensory organs are a prosthetic means of sending visual or auditory information to the brain by electrical stimulation of the optic or auditory nerves to assist visually impaired or hearing-impaired people. However, clinical application of artificial sensory organs, except for cochlear implants, is still a trial-and-error process. This is because how and where the information transmitted to the brain is processed is still unknown, and also because changes in brain function (plasticity) remain unknown, even though brain plasticity plays an important role in meaningful interpretation of new sensory stimuli. This article discusses some basic unresolved issues and potential solutions in the development of artificial sensory organs such as cochlear implants, brainstem implants, artificial vision, and artificial retinas.
Viability of Controlling Prosthetic Hand Utilizing Electroencephalograph (EEG) Dataset Signal
NASA Astrophysics Data System (ADS)
Miskon, Azizi; A/L Thanakodi, Suresh; Raihan Mazlan, Mohd; Mohd Haziq Azhar, Satria; Nooraya Mohd Tawil, Siti
2016-11-01
This project presents the development of an artificial hand controlled by Electroencephalograph (EEG) signal datasets for the prosthetic application. The EEG signal datasets were used as to improvise the way to control the prosthetic hand compared to the Electromyograph (EMG). The EMG has disadvantages to a person, who has not used the muscle for a long time and also to person with degenerative issues due to age factor. Thus, the EEG datasets found to be an alternative for EMG. The datasets used in this work were taken from Brain Computer Interface (BCI) Project. The datasets were already classified for open, close and combined movement operations. It served the purpose as an input to control the prosthetic hand by using an Interface system between Microsoft Visual Studio and Arduino. The obtained results reveal the prosthetic hand to be more efficient and faster in response to the EEG datasets with an additional LiPo (Lithium Polymer) battery attached to the prosthetic. Some limitations were also identified in terms of the hand movements, weight of the prosthetic, and the suggestions to improve were concluded in this paper. Overall, the objective of this paper were achieved when the prosthetic hand found to be feasible in operation utilizing the EEG datasets.
Rothschild, Ryan Mark
2010-01-01
The main focus of this review is to provide a holistic amalgamated overview of the most recent human in vivo techniques for implementing brain-computer interfaces (BCIs), bidirectional interfaces, and neuroprosthetics. Neuroengineering is providing new methods for tackling current difficulties; however neuroprosthetics have been studied for decades. Recent progresses are permitting the design of better systems with higher accuracies, repeatability, and system robustness. Bidirectional interfaces integrate recording and the relaying of information from and to the brain for the development of BCIs. The concepts of non-invasive and invasive recording of brain activity are introduced. This includes classical and innovative techniques like electroencephalography and near-infrared spectroscopy. Then the problem of gliosis and solutions for (semi-) permanent implant biocompatibility such as innovative implant coatings, materials, and shapes are discussed. Implant power and the transmission of their data through implanted pulse generators and wireless telemetry are taken into account. How sensation can be relayed back to the brain to increase integration of the neuroengineered systems with the body by methods such as micro-stimulation and transcranial magnetic stimulation are then addressed. The neuroprosthetic section discusses some of the various types and how they operate. Visual prosthetics are discussed and the three types, dependant on implant location, are examined. Auditory prosthetics, being cochlear or cortical, are then addressed. Replacement hand and limb prosthetics are then considered. These are followed by sections concentrating on the control of wheelchairs, computers and robotics directly from brain activity as recorded by non-invasive and invasive techniques.
Feedforward control strategies of subjects with transradial amputation in planar reaching.
Metzger, Anthony J; Dromerick, Alexander W; Schabowsky, Christopher N; Holley, Rahsaan J; Monroe, Brian; Lum, Peter S
2010-01-01
The rate of upper-limb amputations is increasing, and the rejection rate of prosthetic devices remains high. People with upper-limb amputation do not fully incorporate prosthetic devices into their activities of daily living. By understanding the reaching behaviors of prosthesis users, researchers can alter prosthetic devices and develop training protocols to improve the acceptance of prosthetic limbs. By observing the reaching characteristics of the nondisabled arms of people with amputation, we can begin to understand how the brain alters its motor commands after amputation. We asked subjects to perform rapid reaching movements to two targets with and without visual feedback. Subjects performed the tasks with both their prosthetic and nondisabled arms. We calculated endpoint error, trajectory error, and variability and compared them with those of nondisabled control subjects. We found no significant abnormalities in the prosthetic limb. However, we found an abnormal leftward trajectory error (in right arms) in the nondisabled arm of prosthetic users in the vision condition. In the no-vision condition, the nondisabled arm displayed abnormal leftward endpoint errors and abnormally higher endpoint variability. In the vision condition, peak velocity was lower and movement duration was longer in both arms of subjects with amputation. These abnormalities may reflect the cortical reorganization associated with limb loss.
NASA Astrophysics Data System (ADS)
Merabet, Lotfi B.; Rizzo, Joseph F., III; Pascual-Leone, Alvaro; Fernandez, Eduardo
2007-03-01
Appropriate delivery of electrical stimulation to intact visual structures can evoke patterned sensations of light in individuals who have been blind for many years. This pivotal finding has lent credibility to the concept of restoring functional vision by artificial means. As numerous groups worldwide pursue human clinical testing with visual prosthetic devices, it is becoming increasingly clear that there remains a considerable gap between the challenges of prosthetic device development and the rehabilitative strategies needed to implement this new technology in patients. An important area of future work will be the development of appropriate pre- and post-implantation measures of performance and establishing candidate selection criteria in order to quantify technical advances, guide future device design and optimize therapeutic success. We propose that the selection of an 'ideal' candidate should also be considered within the context of the variable neuroplastic changes that follow vision loss. Specifically, an understanding of the adaptive and compensatory changes that occur within the brain could assist in guiding the development of post-implantation rehabilitative strategies and optimize behavioral outcomes.
Rothschild, Ryan Mark
2010-01-01
The main focus of this review is to provide a holistic amalgamated overview of the most recent human in vivo techniques for implementing brain–computer interfaces (BCIs), bidirectional interfaces, and neuroprosthetics. Neuroengineering is providing new methods for tackling current difficulties; however neuroprosthetics have been studied for decades. Recent progresses are permitting the design of better systems with higher accuracies, repeatability, and system robustness. Bidirectional interfaces integrate recording and the relaying of information from and to the brain for the development of BCIs. The concepts of non-invasive and invasive recording of brain activity are introduced. This includes classical and innovative techniques like electroencephalography and near-infrared spectroscopy. Then the problem of gliosis and solutions for (semi-) permanent implant biocompatibility such as innovative implant coatings, materials, and shapes are discussed. Implant power and the transmission of their data through implanted pulse generators and wireless telemetry are taken into account. How sensation can be relayed back to the brain to increase integration of the neuroengineered systems with the body by methods such as micro-stimulation and transcranial magnetic stimulation are then addressed. The neuroprosthetic section discusses some of the various types and how they operate. Visual prosthetics are discussed and the three types, dependant on implant location, are examined. Auditory prosthetics, being cochlear or cortical, are then addressed. Replacement hand and limb prosthetics are then considered. These are followed by sections concentrating on the control of wheelchairs, computers and robotics directly from brain activity as recorded by non-invasive and invasive techniques. PMID:21060801
Lewis, Philip M; Rosenfeld, Jeffrey V
2016-01-01
Rapid advances are occurring in neural engineering, bionics and the brain-computer interface. These milestones have been underpinned by staggering advances in micro-electronics, computing, and wireless technology in the last three decades. Several cortically-based visual prosthetic devices are currently being developed, but pioneering advances with early implants were achieved by Brindley followed by Dobelle in the 1960s and 1970s. We have reviewed these discoveries within the historical context of the medical uses of electricity including attempts to cure blindness, the discovery of the visual cortex, and opportunities for cortex stimulation experiments during neurosurgery. Further advances were made possible with improvements in electrode design, greater understanding of cortical electrophysiology and miniaturisation of electronic components. Human trials of a new generation of prototype cortical visual prostheses for the blind are imminent. This article is part of a Special Issue entitled Hold Item. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Rapid control and feedback rates enhance neuroprosthetic control
Shanechi, Maryam M.; Orsborn, Amy L.; Moorman, Helene G.; Gowda, Suraj; Dangi, Siddharth; Carmena, Jose M.
2017-01-01
Brain-machine interfaces (BMI) create novel sensorimotor pathways for action. Much as the sensorimotor apparatus shapes natural motor control, the BMI pathway characteristics may also influence neuroprosthetic control. Here, we explore the influence of control and feedback rates, where control rate indicates how often motor commands are sent from the brain to the prosthetic, and feedback rate indicates how often visual feedback of the prosthetic is provided to the subject. We developed a new BMI that allows arbitrarily fast control and feedback rates, and used it to dissociate the effects of each rate in two monkeys. Increasing the control rate significantly improved control even when feedback rate was unchanged. Increasing the feedback rate further facilitated control. We also show that our high-rate BMI significantly outperformed state-of-the-art methods due to higher control and feedback rates, combined with a different point process mathematical encoding model. Our BMI paradigm can dissect the contribution of different elements in the sensorimotor pathway, providing a unique tool for studying neuroprosthetic control mechanisms. PMID:28059065
Rapid control and feedback rates enhance neuroprosthetic control
NASA Astrophysics Data System (ADS)
Shanechi, Maryam M.; Orsborn, Amy L.; Moorman, Helene G.; Gowda, Suraj; Dangi, Siddharth; Carmena, Jose M.
2017-01-01
Brain-machine interfaces (BMI) create novel sensorimotor pathways for action. Much as the sensorimotor apparatus shapes natural motor control, the BMI pathway characteristics may also influence neuroprosthetic control. Here, we explore the influence of control and feedback rates, where control rate indicates how often motor commands are sent from the brain to the prosthetic, and feedback rate indicates how often visual feedback of the prosthetic is provided to the subject. We developed a new BMI that allows arbitrarily fast control and feedback rates, and used it to dissociate the effects of each rate in two monkeys. Increasing the control rate significantly improved control even when feedback rate was unchanged. Increasing the feedback rate further facilitated control. We also show that our high-rate BMI significantly outperformed state-of-the-art methods due to higher control and feedback rates, combined with a different point process mathematical encoding model. Our BMI paradigm can dissect the contribution of different elements in the sensorimotor pathway, providing a unique tool for studying neuroprosthetic control mechanisms.
Control of a visual keyboard using an electrocorticographic brain-computer interface.
Krusienski, Dean J; Shih, Jerry J
2011-05-01
Brain-computer interfaces (BCIs) are devices that enable severely disabled people to communicate and interact with their environments using their brain waves. Most studies investigating BCI in humans have used scalp EEG as the source of electrical signals and focused on motor control of prostheses or computer cursors on a screen. The authors hypothesize that the use of brain signals obtained directly from the cortical surface will more effectively control a communication/spelling task compared to scalp EEG. A total of 6 patients with medically intractable epilepsy were tested for the ability to control a visual keyboard using electrocorticographic (ECOG) signals. ECOG data collected during a P300 visual task paradigm were preprocessed and used to train a linear classifier to subsequently predict the intended target letters. The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in 5 of the 6 people tested. ECOG data from electrodes outside the language cortex contributed to the classifier and enabled participants to write words on a visual keyboard. This is a novel finding because previous invasive BCI research in humans used signals exclusively from the motor cortex to control a computer cursor or prosthetic device. These results demonstrate that ECOG signals from electrodes both overlying and outside the language cortex can reliably control a visual keyboard to generate language output without voice or limb movements.
Brain-machine interfaces: electrophysiological challenges and limitations.
Lega, Bradley C; Serruya, Mijail D; Zaghloul, Kareem A
2011-01-01
Brain-machine interfaces (BMI) seek to directly communicate with the human nervous system in order to diagnose and treat intrinsic neurological disorders. While the first generation of these devices has realized significant clinical successes, they often rely on gross electrical stimulation using empirically derived parameters through open-loop mechanisms of action that are not yet fully understood. Their limitations reflect the inherent challenge in developing the next generation of these devices. This review identifies lessons learned from the first generation of BMI devices (chiefly deep brain stimulation), identifying key problems for which the solutions will aid the development of the next generation of technologies. Our analysis examines four hypotheses for the mechanism by which brain stimulation alters surrounding neurophysiologic activity. We then focus on motor prosthetics, describing various approaches to overcoming the problems of decoding neural signals. We next turn to visual prosthetics, an area for which the challenges of signal coding to match neural architecture has been partially overcome. Finally, we close with a review of cortical stimulation, examining basic principles that will be incorporated into the design of future devices. Throughout the review, we relate the issues of each specific topic to the common thread of BMI research: translating new knowledge of network neuroscience into improved devices for neuromodulation.
Rehabilitation regimes based upon psychophysical studies of prosthetic vision
NASA Astrophysics Data System (ADS)
Chen, S. C.; Suaning, G. J.; Morley, J. W.; Lovell, N. H.
2009-06-01
Human trials of prototype visual prostheses have successfully elicited visual percepts (phosphenes) in the visual field of implant recipients blinded through retinitis pigmentosa and age-related macular degeneration. Researchers are progressing rapidly towards a device that utilizes individual phosphenes as the elementary building blocks to compose a visual scene. This form of prosthetic vision is expected, in the near term, to have low resolution, large inter-phosphene gaps, distorted spatial distribution of phosphenes, restricted field of view, an eccentrically located phosphene field and limited number of expressible luminance levels. In order to fully realize the potential of these devices, there needs to be a training and rehabilitation program which aims to assist the prosthesis recipients to understand what they are seeing, and also to adapt their viewing habits to optimize the performance of the device. Based on the literature of psychophysical studies in simulated and real prosthetic vision, this paper proposes a comprehensive, theoretical training regime for a prosthesis recipient: visual search, visual acuity, reading, face/object recognition, hand-eye coordination and navigation. The aim of these tasks is to train the recipients to conduct visual scanning, eccentric viewing and reading, discerning low-contrast visual information, and coordinating bodily actions for visual-guided tasks under prosthetic vision. These skills have been identified as playing an important role in making prosthetic vision functional for the daily activities of their recipients.
Toward more versatile and intuitive cortical brain-machine interfaces.
Andersen, Richard A; Kellis, Spencer; Klaes, Christian; Aflalo, Tyson
2014-09-22
Brain-machine interfaces have great potential for the development of neuroprosthetic applications to assist patients suffering from brain injury or neurodegenerative disease. One type of brain-machine interface is a cortical motor prosthetic, which is used to assist paralyzed subjects. Motor prosthetics to date have typically used the motor cortex as a source of neural signals for controlling external devices. The review will focus on several new topics in the arena of cortical prosthetics. These include using: recordings from cortical areas outside motor cortex; local field potentials as a source of recorded signals; somatosensory feedback for more dexterous control of robotics; and new decoding methods that work in concert to form an ecology of decode algorithms. These new advances promise to greatly accelerate the applicability and ease of operation of motor prosthetics. Copyright © 2014 Elsevier Ltd. All rights reserved.
Optimization of Visual Information Presentation for Visual Prosthesis.
Guo, Fei; Yang, Yuan; Gao, Yong
2018-01-01
Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis.
Optimization of Visual Information Presentation for Visual Prosthesis
Gao, Yong
2018-01-01
Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis. PMID:29731769
NASA Astrophysics Data System (ADS)
Cho, Alice; Ratliff, Charles; Sampath, Alapakkam; Weiland, James
2016-04-01
Objective. Here we investigate ganglion cell physiology in healthy and degenerating retina to test its influence on threshold to electrical stimulation. Approach. Age-related Macular Degeneration and Retinitis Pigmentosa cause blindness via outer retinal degeneration. Inner retinal pathways that transmit visual information to the central brain remain intact, so direct electrical stimulation from prosthetic devices offers the possibility for visual restoration. Since inner retinal physiology changes during degeneration, we characterize physiological properties and responses to electrical stimulation in retinal ganglion cells (RGCs) of both wild type mice and the rd10 mouse model of retinal degeneration. Main results. Our aggregate results support previous observations that elevated thresholds characterize diseased retinas. However, a physiology-driven classification scheme reveals distinct sub-populations of ganglion cells with thresholds either normal or strongly elevated compared to wild-type. When these populations are combined, only a weakly elevated threshold with large variance is observed. The cells with normal threshold are more depolarized at rest and exhibit periodic oscillations. Significance. During degeneration, physiological changes in RGCs affect the threshold stimulation currents required to evoke action potentials.
Toward more versatile and intuitive cortical brain machine interfaces
Andersen, Richard A.; Kellis, Spencer; Klaes, Christian; Aflalo, Tyson
2015-01-01
Brain machine interfaces have great potential in neuroprosthetic applications to assist patients with brain injury and neurodegenerative diseases. One type of BMI is a cortical motor prosthetic which is used to assist paralyzed subjects. Motor prosthetics to date have typically used the motor cortex as a source of neural signals for controlling external devices. The review will focus on several new topics in the arena of cortical prosthetics. These include using 1) recordings from cortical areas outside motor cortex; 2) local field potentials (LFPs) as a source of recorded signals; 3) somatosensory feedback for more dexterous control of robotics; and 4) new decoding methods that work in concert to form an ecology of decode algorithms. These new advances hold promise in greatly accelerating the applicability and ease of operation of motor prosthetics. PMID:25247368
NASA Astrophysics Data System (ADS)
Beyeler, Michael; Rokem, Ariel; Boynton, Geoffrey M.; Fine, Ione
2017-10-01
The ‘bionic eye’—so long a dream of the future—is finally becoming a reality with retinal prostheses available to patients in both the US and Europe. However, clinical experience with these implants has made it apparent that the visual information provided by these devices differs substantially from normal sight. Consequently, the ability of patients to learn to make use of this abnormal retinal input plays a critical role in whether or not some functional vision is successfully regained. The goal of the present review is to summarize the vast basic science literature on developmental and adult cortical plasticity with an emphasis on how this literature might relate to the field of prosthetic vision. We begin with describing the distortion and information loss likely to be experienced by visual prosthesis users. We then define cortical plasticity and perceptual learning, and describe what is known, and what is unknown, about visual plasticity across the hierarchy of brain regions involved in visual processing, and across different stages of life. We close by discussing what is known about brain plasticity in sight restoration patients and discuss biological mechanisms that might eventually be harnessed to improve visual learning in these patients.
Ethical issues in neuroprosthetics
NASA Astrophysics Data System (ADS)
Glannon, Walter
2016-04-01
Objective. Neuroprosthetics are artificial devices or systems designed to generate, restore or modulate a range of neurally mediated functions. These include sensorimotor, visual, auditory, cognitive affective and volitional functions that have been impaired or lost from congenital anomalies, traumatic brain injury, infection, amputation or neurodevelopmental and neurodegenerative disorders. Cochlear implants, visual prosthetics, deep brain stimulation, brain-computer interfaces, brain-to-brain interfaces and hippocampal prosthetics can bypass, replace or compensate for dysfunctional neural circuits, brain injury and limb loss. They can enable people with these conditions to gain or regain varying degrees of control of thought and behavior. These direct and indirect interventions in the brain raise general ethical questions about weighing the potential benefit of altering neural circuits against the potential harm from neurophysiological and psychological sequelae. Other ethical questions are more specific to the therapeutic goals of particular neuroprosthetics and the conditions for which they are indicated. These include informed consent, agency, autonomy (free will) and identity. Approach. This review is an analysis and discussion of these questions. It also includes consideration of social justice issues such as how to establish and implement fair selection criteria in providing access to neuroprosthetic research and balancing technological innovation with patients’ best interests. Main results. Neuroprosthetics can restore or improve motor and mental functions in bypassing areas of injury or modulating dysregulation in neural circuits. As enabling devices that integrate with these circuits, neuroprosthetics can restore varying degrees of autonomous agency for people affected by neurological and psychiatric disorders. They can also re-establish the connectedness and continuity of the psychological properties they had before injury or disease onset and thereby re-establish their identity. Neuroprosthetics can maximize benefit and minimize harm for people affected by damaged or dysfunctional brains and improve the quality of their lives. Significance. Provided that adequate protections are in place for research subjects and patients, the probable benefit of research into and therapeutic applications of neuroprosthetics outweighs the risk and therefore can be ethically justified. Depending on their neurogenerative potential, there may be an ethical obligation to conduct this research. Advances in neuroscience will generate new ethical and philosophical questions about people and their brains. These questions should shape the evolution and application of novel techniques to better understand and treat brain disorders.
Ethical issues in neuroprosthetics.
Glannon, Walter
2016-04-01
Neuroprosthetics are artificial devices or systems designed to generate, restore or modulate a range of neurally mediated functions. These include sensorimotor, visual, auditory, cognitive affective and volitional functions that have been impaired or lost from congenital anomalies, traumatic brain injury, infection, amputation or neurodevelopmental and neurodegenerative disorders. Cochlear implants, visual prosthetics, deep brain stimulation, brain-computer interfaces, brain-to-brain interfaces and hippocampal prosthetics can bypass, replace or compensate for dysfunctional neural circuits, brain injury and limb loss. They can enable people with these conditions to gain or regain varying degrees of control of thought and behavior. These direct and indirect interventions in the brain raise general ethical questions about weighing the potential benefit of altering neural circuits against the potential harm from neurophysiological and psychological sequelae. Other ethical questions are more specific to the therapeutic goals of particular neuroprosthetics and the conditions for which they are indicated. These include informed consent, agency, autonomy (free will) and identity. This review is an analysis and discussion of these questions. It also includes consideration of social justice issues such as how to establish and implement fair selection criteria in providing access to neuroprosthetic research and balancing technological innovation with patients' best interests. Neuroprosthetics can restore or improve motor and mental functions in bypassing areas of injury or modulating dysregulation in neural circuits. As enabling devices that integrate with these circuits, neuroprosthetics can restore varying degrees of autonomous agency for people affected by neurological and psychiatric disorders. They can also re-establish the connectedness and continuity of the psychological properties they had before injury or disease onset and thereby re-establish their identity. Neuroprosthetics can maximize benefit and minimize harm for people affected by damaged or dysfunctional brains and improve the quality of their lives. Provided that adequate protections are in place for research subjects and patients, the probable benefit of research into and therapeutic applications of neuroprosthetics outweighs the risk and therefore can be ethically justified. Depending on their neurogenerative potential, there may be an ethical obligation to conduct this research. Advances in neuroscience will generate new ethical and philosophical questions about people and their brains. These questions should shape the evolution and application of novel techniques to better understand and treat brain disorders.
Kobayashi, Takuma; Haruta, Makito; Sasagawa, Kiyotaka; Matsumata, Miho; Eizumi, Kawori; Kitsumoto, Chikara; Motoyama, Mayumi; Maezawa, Yasuyo; Ohta, Yasumi; Noda, Toshihiko; Tokuda, Takashi; Ishikawa, Yasuyuki; Ohta, Jun
2016-01-01
To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity, and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca2+ indicator. The device succeeded in activating cells locally by selective photostimulation, and the physiological Ca2+ dynamics of neural cells were visualized simultaneously by fluorescence imaging. PMID:26878910
NASA Astrophysics Data System (ADS)
Kobayashi, Takuma; Haruta, Makito; Sasagawa, Kiyotaka; Matsumata, Miho; Eizumi, Kawori; Kitsumoto, Chikara; Motoyama, Mayumi; Maezawa, Yasuyo; Ohta, Yasumi; Noda, Toshihiko; Tokuda, Takashi; Ishikawa, Yasuyuki; Ohta, Jun
2016-02-01
To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity, and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca2+ indicator. The device succeeded in activating cells locally by selective photostimulation, and the physiological Ca2+ dynamics of neural cells were visualized simultaneously by fluorescence imaging.
Beyeler, Michael; Rokem, Ariel; Boynton, Geoffrey M.; Fine, Ione
2018-01-01
The “bionic eye” – so long a dream of the future – is finally becoming a reality with retinal prostheses available to patients in both the US and Europe. However, clinical experience with these implants has made it apparent that the vision provided by these devices differs substantially from normal sight. Consequently, the ability to learn to make use of this abnormal retinal input plays a critical role in whether or not some functional vision is successfully regained. The goal of the present review is to summarize the vast basic science literature on developmental and adult cortical plasticity with an emphasis on how this literature might relate to the field of prosthetic vision. We begin with describing the distortion and information loss likely to be experienced by visual prosthesis users. We then define cortical plasticity and perceptual learning, and describe what is known, and what is unknown, about visual plasticity across the hierarchy of brain regions involved in visual processing, and across different stages of life. We close by discussing what is known about brain plasticity in sight restoration patients and discuss biological mechanisms that might eventually be harnessed to improve visual learning in these patients. PMID:28612755
Occlusion properties of prosthetic contact lenses for the treatment of amblyopia.
Collins, Randall S; McChesney, Megan E; McCluer, Craig A; Schatz, Martha P
2008-12-01
The efficacy of opaque contact lenses as occlusion therapy for amblyopia has been established in the literature. Prosthetic contact lenses use similar tints to improve cosmesis in scarred or deformed eyes and may be an alternative in occlusion therapy. To test this idea, we determined the degree of vision penalization elicited by prosthetic contact lenses and their effect on peripheral fusion. We tested 19 CIBA Vision DuraSoft 3 Prosthetic soft contact lenses with varying iris prints, underprints, and opaque pupil sizes in 10 volunteers with best-corrected Snellen distance visual acuity of 20/20 or better in each eye. Snellen visual acuity and peripheral fusion using the Worth 4-Dot test at near were measured on each subject wearing each of the 19 lenses. Results were analyzed with 3-factor analysis of variance. Mean visual acuity through the various lenses ranged from 20/79 to 20/620. Eight lenses allowed preservation of peripheral fusion in 50% or more of the subjects tested. Iris print pattern and opaque pupil size were significant factors in determining visual acuity (p < 0.05). Sufficient vision penalization can be achieved to make occlusion with prosthetic contact lenses a viable therapy for amblyopia. The degree of penalization can be varied and different iris print patterns and pupil sizes, using peripheral fusion, can be preserved with some lenses. Prosthetic contact lenses can be more cosmetically appealing and more tolerable than other amblyopia treatment modalities. These factors may improve compliance in occlusion therapy.
Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration
Lorach, Henri; Lei, Xin; Galambos, Ludwig; Kamins, Theodore; Mathieson, Keith; Dalal, Roopa; Huie, Philip; Harris, James; Palanker, Daniel
2015-01-01
Purpose Prosthetic restoration of partial sensory loss leads to interactions between artificial and natural inputs. Ideally, the rehabilitation should allow perceptual fusion of the two modalities. Here we studied the interactions between normal and prosthetic vision in a rodent model of local retinal degeneration. Methods Implantation of a photovoltaic array in the subretinal space of normally sighted rats induced local degeneration of the photoreceptors above the chip, and the inner retinal neurons in this area were electrically stimulated by the photovoltaic implant powered by near-infrared (NIR) light. We studied prosthetic and natural visually evoked potentials (VEP) in response to simultaneous stimulation by NIR and visible light patterns. Results We demonstrate that electrical and natural VEPs summed linearly in the visual cortex, and both responses decreased under brighter ambient light. Responses to visible light flashes increased over 3 orders of magnitude of contrast (flash/background), while for electrical stimulation the contrast range was limited to 1 order of magnitude. The maximum amplitude of the prosthetic VEP was three times lower than the maximum response to a visible flash over the same area on the retina. Conclusions Ambient light affects prosthetic responses, albeit much less than responses to visible stimuli. Prosthetic representation of contrast in the visual scene can be encoded, to a limited extent, by the appropriately calibrated stimulus intensity, which also depends on the ambient light conditions. Such calibration will be important for patients combining central prosthetic vision with natural peripheral sight, such as in age-related macular degeneration. PMID:26618643
Learning prosthetic vision: a virtual-reality study.
Chen, Spencer C; Hallum, Luke E; Lovell, Nigel H; Suaning, Gregg J
2005-09-01
Acceptance of prosthetic vision will be heavily dependent on the ability of recipients to form useful information from such vision. Training strategies to accelerate learning and maximize visual comprehension would need to be designed in the light of the factors affecting human learning under prosthetic vision. Some of these potential factors were examined in a visual acuity study using the Landolt C optotype under virtual-reality simulation of prosthetic vision. Fifteen normally sighted subjects were tested for 10-20 sessions. Potential learning factors were tested at p < 0.05 with regression models. Learning was most evident across-sessions, though 17% of sessions did express significant within-session trends. Learning was highly concentrated toward a critical range of optotype sizes, and subjects were less capable in identifying the closed optotype (a Landolt C with no gap, forming a closed annulus). Training for implant recipients should target these critical sizes and the closed optotype to extend the limit of visual comprehension. Although there was no evidence that image processing affected overall learning, subjects showed varying personal preferences.
75 FR 9480 - Qualification of Drivers; Exemption Applications; Vision
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-02
.... Buchanan, 56, has a prosthetic left eye due to a traumatic injury sustained in 1961. The best corrected... prosthetic right eye due to a traumatic injury sustained at age 12. The best corrected visual acuity in his..., has a prosthetic left eye due to a traumatic injury sustained during childhood. The best corrected...
NASA Astrophysics Data System (ADS)
Pohlmeyer, Eric A.; Fifer, Matthew; Rich, Matthew; Pino, Johnathan; Wester, Brock; Johannes, Matthew; Dohopolski, Chris; Helder, John; D'Angelo, Denise; Beaty, James; Bensmaia, Sliman; McLoughlin, Michael; Tenore, Francesco
2017-05-01
Brain-computer interface (BCI) research has progressed rapidly, with BCIs shifting from animal tests to human demonstrations of controlling computer cursors and even advanced prosthetic limbs, the latter having been the goal of the Revolutionizing Prosthetics (RP) program. These achievements now include direct electrical intracortical microstimulation (ICMS) of the brain to provide human BCI users feedback information from the sensors of prosthetic limbs. These successes raise the question of how well people would be able to use BCIs to interact with systems that are not based directly on the body (e.g., prosthetic arms), and how well BCI users could interpret ICMS information from such devices. If paralyzed individuals could use BCIs to effectively interact with such non-anthropomorphic systems, it would offer them numerous new opportunities to control novel assistive devices. Here we explore how well a participant with tetraplegia can detect infrared (IR) sources in the environment using a prosthetic arm mounted camera that encodes IR information via ICMS. We also investigate how well a BCI user could transition from controlling a BCI based on prosthetic arm movements to controlling a flight simulator, a system with different physical dynamics than the arm. In that test, the BCI participant used environmental information encoded via ICMS to identify which of several upcoming flight routes was the best option. For both tasks, the BCI user was able to quickly learn how to interpret the ICMSprovided information to achieve the task goals.
Marzullo, Timothy Charles; Lehmkuhle, Mark J; Gage, Gregory J; Kipke, Daryl R
2010-04-01
Closed-loop neural interface technology that combines neural ensemble decoding with simultaneous electrical microstimulation feedback is hypothesized to improve deep brain stimulation techniques, neuromotor prosthetic applications, and epilepsy treatment. Here we describe our iterative results in a rat model of a sensory and motor neurophysiological feedback control system. Three rats were chronically implanted with microelectrode arrays in both the motor and visual cortices. The rats were subsequently trained over a period of weeks to modulate their motor cortex ensemble unit activity upon delivery of intra-cortical microstimulation (ICMS) of the visual cortex in order to receive a food reward. Rats were given continuous feedback via visual cortex ICMS during the response periods that was representative of the motor cortex ensemble dynamics. Analysis revealed that the feedback provided the animals with indicators of the behavioral trials. At the hardware level, this preparation provides a tractable test model for improving the technology of closed-loop neural devices.
Solis, Michele
2017-01-01
Cell phone chimes, sticky notes, even the proverbial string around a finger-these timehonored external cues help guard against our inevitable memory lapses. But some internal help to the brain itself may be on the way in the form of what's being called memory prosthetics. Once considered to be on the fringes of neuroscience, the idea of adding hardware to the brain to help with memory has gathered steam. In 2014, the U.S. Defense Advanced Research Projects Agency (DARPA) made a US$30 million investment in memory prosthetic research as part of the Obama administration's Brain Research through Advancing Innovative Neurotechnologies initiative. In August 2016, Kernel, a startup based in Los Angeles, California, announced its goal to develop a clinical memory device for those debilitated by neurodegenerative disorders such as Alzheimer's disease.
Towards a real-time interface between a biomimetic model of sensorimotor cortex and a robotic arm
Dura-Bernal, Salvador; Chadderdon, George L; Neymotin, Samuel A; Francis, Joseph T; Lytton, William W
2015-01-01
Brain-machine interfaces can greatly improve the performance of prosthetics. Utilizing biomimetic neuronal modeling in brain machine interfaces (BMI) offers the possibility of providing naturalistic motor-control algorithms for control of a robotic limb. This will allow finer control of a robot, while also giving us new tools to better understand the brain’s use of electrical signals. However, the biomimetic approach presents challenges in integrating technologies across multiple hardware and software platforms, so that the different components can communicate in real-time. We present the first steps in an ongoing effort to integrate a biomimetic spiking neuronal model of motor learning with a robotic arm. The biomimetic model (BMM) was used to drive a simple kinematic two-joint virtual arm in a motor task requiring trial-and-error convergence on a single target. We utilized the output of this model in real time to drive mirroring motion of a Barrett Technology WAM robotic arm through a user datagram protocol (UDP) interface. The robotic arm sent back information on its joint positions, which was then used by a visualization tool on the remote computer to display a realistic 3D virtual model of the moving robotic arm in real time. This work paves the way towards a full closed-loop biomimetic brain-effector system that can be incorporated in a neural decoder for prosthetic control, to be used as a platform for developing biomimetic learning algorithms for controlling real-time devices. PMID:26709323
78 FR 48941 - Advisory Committee on Prosthetics and Special-Disabilities Programs, Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
...- art prosthetics and the associated rehabilitation research, development, and evaluation of such..., blindness or visual impairments, loss of extremities or loss of function, deafness or hearing impairment...
75 FR 65060 - Advisory Committee on Prosthetics and Special-Disabilities Programs; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-21
...-of-the- art prosthetics and the associated rehabilitation research, development, and evaluation of... injuries, blindness or visual impairments, loss of extremities or loss of function, deafness or hearing...
2007-03-01
Prosthetics to enable return to units without loss of capability Quantum...and will give us a big advantage in terms of unrestricted warfare. Figure 17 high-Productivity Computing System PRoSThETICS We have an exciting...program in prosthetics (Figure 18). It started with a monkey at Duke University. We put microelectronic implants into her brain, taught her
Neural-Network Control Of Prosthetic And Robotic Hands
NASA Technical Reports Server (NTRS)
Buckley, Theresa M.
1991-01-01
Electronic neural networks proposed for use in controlling robotic and prosthetic hands and exoskeletal or glovelike electromechanical devices aiding intact but nonfunctional hands. Specific to patient, who activates grasping motion by voice command, by mechanical switch, or by myoelectric impulse. Patient retains higher-level control, while lower-level control provided by neural network analogous to that of miniature brain. During training, patient teaches miniature brain to perform specialized, anthropomorphic movements unique to himself or herself.
77 FR 65609 - Advisory Committee on Prosthetics and Special-Disabilities Programs; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-29
... the Secretary of Veterans Affairs on VA's prosthetics programs designed to provide state-of-the- art... program administered by the Secretary to serve Veterans with spinal cord injuries, blindness or visual...
78 FR 69176 - Advisory Committee on Prosthetics and Special-Disabilities Programs; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... the Secretary of Veterans Affairs on VA's prosthetics programs designed to provide state-of-the- art... program administered by the Secretary to serve Veterans with spinal cord injuries, blindness or visual...
75 FR 24775 - Advisory Committee on Prosthetics and Special Disabilities Programs; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-05
... state-of-the- art prosthetics and the associated rehabilitation research, development, and evaluation of..., blindness or visual impairment, loss of extremities or loss of function, deafness or hearing impairment, and...
76 FR 21107 - Advisory Committee on Prosthetics and Special-Disabilities Programs; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-14
... the Secretary of Veterans Affairs on VA's prosthetics programs designed to provide state-of-the art... program administered by the Secretary to serve Veterans with spinal cord injuries, blindness or visual...
Li, Heng; Su, Xiaofan; Wang, Jing; Kan, Han; Han, Tingting; Zeng, Yajie; Chai, Xinyu
2018-01-01
Current retinal prostheses can only generate low-resolution visual percepts constituted of limited phosphenes which are elicited by an electrode array and with uncontrollable color and restricted grayscale. Under this visual perception, prosthetic recipients can just complete some simple visual tasks, but more complex tasks like face identification/object recognition are extremely difficult. Therefore, it is necessary to investigate and apply image processing strategies for optimizing the visual perception of the recipients. This study focuses on recognition of the object of interest employing simulated prosthetic vision. We used a saliency segmentation method based on a biologically plausible graph-based visual saliency model and a grabCut-based self-adaptive-iterative optimization framework to automatically extract foreground objects. Based on this, two image processing strategies, Addition of Separate Pixelization and Background Pixel Shrink, were further utilized to enhance the extracted foreground objects. i) The results showed by verification of psychophysical experiments that under simulated prosthetic vision, both strategies had marked advantages over Direct Pixelization in terms of recognition accuracy and efficiency. ii) We also found that recognition performance under two strategies was tied to the segmentation results and was affected positively by the paired-interrelated objects in the scene. The use of the saliency segmentation method and image processing strategies can automatically extract and enhance foreground objects, and significantly improve object recognition performance towards recipients implanted a high-density implant. Copyright © 2017 Elsevier B.V. All rights reserved.
Bryant, Karen J; Steinberg, Howard; McAnulty, Jonathan F
2003-07-01
Two dogs with osteoma or multilobulated tumor of bone of the skull were treated with large en bloc resections. The resections resulted in exposure of the brain above the horizon line of the remaining calvarium; in 1 dog, the removal of the dorsal orbital rims also exposed both orbits dorsally. Protection of the brain and exposed tissues and restoration of the cosmetic appearance of the skull were attempted by use of molded polymethylmethacrylate prosthetic reconstruction of the calvarium. The technique described involves cranioplasty by use of a preformed molded polymethylmethacrylate implant. Such prosthetic cranioplasty may benefit dogs undergoing radical excision of extensive tumors, and the usefulness and potential complications of its application are discussed.
DARPA challenge: developing new technologies for brain and spinal injuries
NASA Astrophysics Data System (ADS)
Macedonia, Christian; Zamisch, Monica; Judy, Jack; Ling, Geoffrey
2012-06-01
The repair of traumatic injuries to the central nervous system remains among the most challenging and exciting frontiers in medicine. In both traumatic brain injury and spinal cord injuries, the ultimate goals are to minimize damage and foster recovery. Numerous DARPA initiatives are in progress to meet these goals. The PREventing Violent Explosive Neurologic Trauma program focuses on the characterization of non-penetrating brain injuries resulting from explosive blast, devising predictive models and test platforms, and creating strategies for mitigation and treatment. To this end, animal models of blast induced brain injury are being established, including swine and non-human primates. Assessment of brain injury in blast injured humans will provide invaluable information on brain injury associated motor and cognitive dysfunctions. The Blast Gauge effort provided a device to measure warfighter's blast exposures which will contribute to diagnosing the level of brain injury. The program Cavitation as a Damage Mechanism for Traumatic Brain Injury from Explosive Blast developed mathematical models that predict stresses, strains, and cavitation induced from blast exposures, and is devising mitigation technologies to eliminate injuries resulting from cavitation. The Revolutionizing Prosthetics program is developing an avant-garde prosthetic arm that responds to direct neural control and provides sensory feedback through electrical stimulation. The Reliable Neural-Interface Technology effort will devise technologies to optimally extract information from the nervous system to control next generation prosthetic devices with high fidelity. The emerging knowledge and technologies arising from these DARPA programs will significantly improve the treatment of brain and spinal cord injured patients.
Eiber, Calvin D; Morley, John W; Lovell, Nigel H; Suaning, Gregg J
2014-01-01
We present a computational model of the optic pathway which has been adapted to simulate cortical responses to visual-prosthetic stimulation. This model reproduces the statistically observed distributions of spikes for cortical recordings of sham and maximum-intensity stimuli, while simultaneously generating cellular receptive fields consistent with those observed using traditional visual neuroscience methods. By inverting this model to generate candidate phosphenes which could generate the responses observed to novel stimulation strategies, we hope to aid the development of said strategies in-vivo before being deployed in clinical settings.
ARM-based visual processing system for prosthetic vision.
Matteucci, Paul B; Byrnes-Preston, Philip; Chen, Spencer C; Lovell, Nigel H; Suaning, Gregg J
2011-01-01
A growing number of prosthetic devices have been shown to provide visual perception to the profoundly blind through electrical neural stimulation. These first-generation devices offer promising outcomes to those affected by degenerative disorders such as retinitis pigmentosa. Although prosthetic approaches vary in their placement of the stimulating array (visual cortex, optic-nerve, epi-retinal surface, sub-retinal surface, supra-choroidal space, etc.), most of the solutions incorporate an externally-worn device to acquire and process video to provide the implant with instructions on how to deliver electrical stimulation to the patient, in order to elicit phosphenized vision. With the significant increase in availability and performance of low power-consumption smart phone and personal device processors, the authors investigated the use of a commercially available ARM (Advanced RISC Machine) device as an externally-worn processing unit for a prosthetic neural stimulator for the retina. A 400 MHz Samsung S3C2440A ARM920T single-board computer was programmed to extract 98 values from a 1.3 Megapixel OV9650 CMOS camera using impulse, regional averaging and Gaussian sampling algorithms. Power consumption and speed of video processing were compared to results obtained to similar reported devices. The results show that by using code optimization, the system is capable of driving a 98 channel implantable device for the restoration of visual percepts to the blind.
Zhang, G-Y; Yang, M; Liu, B; Huang, Z-C; Li, J; Chen, J-Y; Chen, H; Zhang, P-P; Liu, L-J; Wang, J; Teng, G-J
2016-01-28
Previous studies often report that early auditory deprivation or congenital deafness contributes to cross-modal reorganization in the auditory-deprived cortex, and this cross-modal reorganization limits clinical benefit from cochlear prosthetics. However, there are inconsistencies among study results on cortical reorganization in those subjects with long-term unilateral sensorineural hearing loss (USNHL). It is also unclear whether there exists a similar cross-modal plasticity of the auditory cortex for acquired monaural deafness and early or congenital deafness. To address this issue, we constructed the directional brain functional networks based on entropy connectivity of resting-state functional MRI and researched changes of the networks. Thirty-four long-term USNHL individuals and seventeen normally hearing individuals participated in the test, and all USNHL patients had acquired deafness. We found that certain brain regions of the sensorimotor and visual networks presented enhanced synchronous output entropy connectivity with the left primary auditory cortex in the left long-term USNHL individuals as compared with normally hearing individuals. Especially, the left USNHL showed more significant changes of entropy connectivity than the right USNHL. No significant plastic changes were observed in the right USNHL. Our results indicate that the left primary auditory cortex (non-auditory-deprived cortex) in patients with left USNHL has been reorganized by visual and sensorimotor modalities through cross-modal plasticity. Furthermore, the cross-modal reorganization also alters the directional brain functional networks. The auditory deprivation from the left or right side generates different influences on the human brain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Active tactile exploration using a brain-machine-brain interface.
O'Doherty, Joseph E; Lebedev, Mikhail A; Ifft, Peter J; Zhuang, Katie Z; Shokur, Solaiman; Bleuler, Hannes; Nicolelis, Miguel A L
2011-10-05
Brain-machine interfaces use neuronal activity recorded from the brain to establish direct communication with external actuators, such as prosthetic arms. It is hoped that brain-machine interfaces can be used to restore the normal sensorimotor functions of the limbs, but so far they have lacked tactile sensation. Here we report the operation of a brain-machine-brain interface (BMBI) that both controls the exploratory reaching movements of an actuator and allows signalling of artificial tactile feedback through intracortical microstimulation (ICMS) of the primary somatosensory cortex. Monkeys performed an active exploration task in which an actuator (a computer cursor or a virtual-reality arm) was moved using a BMBI that derived motor commands from neuronal ensemble activity recorded in the primary motor cortex. ICMS feedback occurred whenever the actuator touched virtual objects. Temporal patterns of ICMS encoded the artificial tactile properties of each object. Neuronal recordings and ICMS epochs were temporally multiplexed to avoid interference. Two monkeys operated this BMBI to search for and distinguish one of three visually identical objects, using the virtual-reality arm to identify the unique artificial texture associated with each. These results suggest that clinical motor neuroprostheses might benefit from the addition of ICMS feedback to generate artificial somatic perceptions associated with mechanical, robotic or even virtual prostheses.
Snyder, Michael E; Osher, Robert H; Wladecki, Trisha M; Perez, Mauricio A; Augsburger, James J; Corrêa, Zélia
2017-03-01
To present visual and functional results following implantation of iris prosthesis combined with cataract surgery in eyes with previous iridocyclectomy for iris melanoma or presumed iris melanoma. Retrospective noncomparative case series. Sixteen patients (16 eyes) with iris defects after iridocyclectomy for iris melanoma in 15 cases and iris adenoma in 1 case underwent prosthetic iris device implantation surgery. Prosthetic iris implantation was combined with phacoemulsification and intraocular lens (IOL) implantation. The visual acuity, subjective glare and photophobia reduction, anatomic outcome, and complications were reviewed. Best-corrected visual acuity was improved in 13 eyes (81.25%), remained stable in 2 eyes (12.25%), and decreased in 1 eye (6.25%). Photophobia and glare improved in every case except for 1 (93.75%). Notably, after surgery 12 patients (75.00%) reported no photophobia and 10 patients (62.50%) reported no glare. The median postoperative follow-up was 29.5 months, with a minimum of 5 months and a maximum of 189 months. All iris devices were in the correct position, and all eyes achieved the desired anatomic result. The IOL optic edges were covered in all areas by either residual iris or opaque portions of a prosthetic iris device. In patients who have undergone previous iridocyclectomy for presumed iris melanoma, combined cataract surgery and iris prosthesis placement, with or without iris reconstruction, can lead to visual improvement as well as reduction of both glare and photophobia. Copyright © 2016 Elsevier Inc. All rights reserved.
Fiber-array based optogenetic prosthetic system for stimulation therapy
NASA Astrophysics Data System (ADS)
Gu, Ling; Cote, Chris; Tejeda, Hector; Mohanty, Samarendra
2012-02-01
Recent advent of optogenetics has enabled activation of genetically-targeted neuronal cells using low intensity blue light with high temporal precision. Since blue light is attenuated rapidly due to scattering and absorption in neural tissue, optogenetic treatment of neurological disorders may require stimulation of specific cell types in multiple regions of the brain. Further, restoration of certain neural functions (vision, and auditory etc) requires accurate spatio-temporal stimulation patterns rather than just precise temporal stimulation. In order to activate multiple regions of the central nervous system in 3D, here, we report development of an optogenetic prosthetic comprising of array of fibers coupled to independently-controllable LEDs. This design avoids direct contact of LEDs with the brain tissue and thus does not require electrical and heat isolation, which can non-specifically stimulate and damage the local brain regions. The intensity, frequency, and duty cycle of light pulses from each fiber in the array was controlled independently using an inhouse developed LabView based program interfaced with a microcontroller driving the individual LEDs. While the temporal profile of the light pulses was controlled by varying the current driving the LED, the beam profile emanating from each fiber tip could be sculpted by microfabrication of the fiber tip. The fiber array was used to stimulate neurons, expressing channelrhodopsin-2, in different locations within the brain or retina. Control of neural activity in the mice cortex, using the fiber-array based prosthetic, is evaluated from recordings made with multi-electrode array (MEA). We also report construction of a μLED array based prosthetic for spatio-temporal stimulation of cortex.
Advances in upper extremity prosthetics.
Zlotolow, Dan A; Kozin, Scott H
2012-11-01
Until recently, upper extremity prostheses had changed little since World War II. In 2006, the Defense Advanced Research Projects Agency responded to an increasing number of military amputees with the Revolutionizing Prosthetics program. The program has yielded several breakthroughs both in the engineering of new prosthetic arms and in the control of those arms. Direct brain-wave control of a limb with 22° of freedom may be within reach. In the meantime, advances such as individually powered digits have opened the door to multifunctional full and partial hand prostheses. Restoring sensation to the prosthetic limb remains a major challenge to full integration of the limb into a patient's self-image. Copyright © 2012 Elsevier Inc. All rights reserved.
Innovations in prosthetic interfaces for the upper extremity.
Kung, Theodore A; Bueno, Reuben A; Alkhalefah, Ghadah K; Langhals, Nicholas B; Urbanchek, Melanie G; Cederna, Paul S
2013-12-01
Advancements in modern robotic technology have led to the development of highly sophisticated upper extremity prosthetic limbs. High-fidelity volitional control of these devices is dependent on the critical interface between the patient and the mechanical prosthesis. Recent innovations in prosthetic interfaces have focused on several control strategies. Targeted muscle reinnervation is currently the most immediately applicable prosthetic control strategy and is particularly indicated in proximal upper extremity amputations. Investigation into various brain interfaces has allowed acquisition of neuroelectric signals directly or indirectly from the central nervous system for prosthetic control. Peripheral nerve interfaces permit signal transduction from both motor and sensory nerves with a higher degree of selectivity. This article reviews the current developments in each of these interface systems and discusses the potential of these approaches to facilitate motor control and sensory feedback in upper extremity neuroprosthetic devices.
Does Seeing Ice Really Feel Cold? Visual-Thermal Interaction under an Illusory Body-Ownership
Kanaya, Shoko; Matsushima, Yuka; Yokosawa, Kazuhiko
2012-01-01
Although visual information seems to affect thermal perception (e.g. red color is associated with heat), previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI) wherein an individual feels that a prosthetic (rubber) hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one's own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed. PMID:23144814
Does seeing ice really feel cold? Visual-thermal interaction under an illusory body-ownership.
Kanaya, Shoko; Matsushima, Yuka; Yokosawa, Kazuhiko
2012-01-01
Although visual information seems to affect thermal perception (e.g. red color is associated with heat), previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI) wherein an individual feels that a prosthetic (rubber) hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one's own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed.
Goetz, Georges; Smith, Richard; Lei, Xin; Galambos, Ludwig; Kamins, Theodore; Mathieson, Keith; Sher, Alexander; Palanker, Daniel
2015-01-01
Purpose To evaluate the contrast sensitivity of a degenerate retina stimulated by a photovoltaic subretinal prosthesis, and assess the impact of low contrast sensitivity on transmission of visual information. Methods We measure ex vivo the full-field contrast sensitivity of healthy rat retina stimulated with white light, and the contrast sensitivity of degenerate rat retina stimulated with a subretinal prosthesis at frequencies exceeding flicker fusion (>20 Hz). Effects of eye movements on retinal ganglion cell (RGC) activity are simulated using a linear–nonlinear model of the retina. Results Retinal ganglion cells adapt to high frequency stimulation of constant intensity, and respond transiently to changes in illumination of the implant, exhibiting responses to ON-sets, OFF-sets, and both ON- and OFF-sets of light. The percentage of cells with an OFF response decreases with progression of the degeneration, indicating that OFF responses are likely mediated by photoreceptors. Prosthetic vision exhibits reduced contrast sensitivity and dynamic range, with 65% contrast changes required to elicit responses, as compared to the 3% (OFF) to 7% (ON) changes with visible light. The maximum number of action potentials elicited with prosthetic stimulation is at most half of its natural counterpart for the ON pathway. Our model predicts that for most visual scenes, contrast sensitivity of prosthetic vision is insufficient for triggering RGC activity by fixational eye movements. Conclusions Contrast sensitivity of prosthetic vision is 10 times lower than normal, and dynamic range is two times below natural. Low contrast sensitivity and lack of OFF responses hamper delivery of visual information via a subretinal prosthesis. PMID:26540657
NASA Astrophysics Data System (ADS)
Zapf, Marc Patrick H.; Boon, Mei-Ying; Lovell, Nigel H.; Suaning, Gregg J.
2016-04-01
Objective. The prospective efficacy of peripheral retinal prostheses for guiding orientation and mobility in the absence of residual vision, as compared to an implant for the central visual field (VF), was evaluated using simulated prosthetic vision (SPV). Approach. Sighted volunteers wearing a head-mounted display performed an obstacle circumvention task under SPV. Mobility and orientation performance with three layouts of prosthetic vision were compared: peripheral prosthetic vision of higher visual acuity (VA) but limited VF, of wider VF but limited VA, as well as centrally restricted prosthetic vision. Learning curves using these layouts were compared fitting an exponential model to the mobility and orientation measures. Main results. Using peripheral layouts, performance was superior to the central layout. Walking speed with both higher-acuity and wider-angle layouts was 5.6% higher, and mobility errors reduced by 46.4% and 48.6%, respectively, as compared to the central layout. The wider-angle layout yielded the least number of collisions, 63% less than the higher-acuity and 73% less than the central layout. Using peripheral layouts, the number of visual-scanning related head movements was 54.3% (higher-acuity) and 60.7% (wider-angle) lower, as compared to the central layout, and the ratio of time standing versus time walking was 51.9% and 61.5% lower, respectively. Learning curves did not differ between layouts, except for time standing versus time walking, where both peripheral layouts achieved significantly lower asymptotic values compared to the central layout. Significance. Beyond complementing residual vision for an improved performance, peripheral prosthetic vision can effectively guide mobility in the later stages of retinitis pigmentosa (RP) without residual vision. Further, the temporal dynamics of learning peripheral and central prosthetic vision are similar. Therefore, development of a peripheral retinal prosthesis and early implantation to alleviate VF constriction in RP should be considered to extend the target group and the time of benefit for potential retinal prosthesis implantees.
Illusory movement perception improves motor control for prosthetic hands
Marasco, Paul D.; Hebert, Jacqueline S.; Sensinger, Jon W.; Shell, Courtney E.; Schofield, Jonathon S.; Thumser, Zachary C.; Nataraj, Raviraj; Beckler, Dylan T.; Dawson, Michael R.; Blustein, Dan H.; Gill, Satinder; Mensh, Brett D.; Granja-Vazquez, Rafael; Newcomb, Madeline D.; Carey, Jason P.; Orzell, Beth M.
2018-01-01
To effortlessly complete an intentional movement, the brain needs feedback from the body regarding the movement’s progress. This largely non-conscious kinesthetic sense helps the brain to learn relationships between motor commands and outcomes to correct movement errors. Prosthetic systems for restoring function have predominantly focused on controlling motorized joint movement. Without the kinesthetic sense, however, these devices do not become intuitively controllable. Here we report a method for endowing human amputees with a kinesthetic perception of dexterous robotic hands. Vibrating the muscles used for prosthetic control via a neural-machine interface produced the illusory perception of complex grip movements. Within minutes, three amputees integrated this kinesthetic feedback and improved movement control. Combining intent, kinesthesia, and vision instilled participants with a sense of agency over the robotic movements. This feedback approach for closed-loop control opens a pathway to seamless integration of minds and machines. PMID:29540617
The role of vision processing in prosthetic vision.
Barnes, Nick; He, Xuming; McCarthy, Chris; Horne, Lachlan; Kim, Junae; Scott, Adele; Lieby, Paulette
2012-01-01
Prosthetic vision provides vision which is reduced in resolution and dynamic range compared to normal human vision. This comes about both due to residual damage to the visual system from the condition that caused vision loss, and due to limitations of current technology. However, even with limitations, prosthetic vision may still be able to support functional performance which is sufficient for tasks which are key to restoring independent living and quality of life. Here vision processing can play a key role, ensuring that information which is critical to the performance of key tasks is available within the capability of the available prosthetic vision. In this paper, we frame vision processing for prosthetic vision, highlight some key areas which present problems in terms of quality of life, and present examples where vision processing can help achieve better outcomes.
Sugeng, Lissa; Shernan, Stanton K; Weinert, Lynn; Shook, Doug; Raman, Jai; Jeevanandam, Valluvan; DuPont, Frank; Fox, John; Mor-Avi, Victor; Lang, Roberto M
2008-12-01
Recently, a novel real-time 3-dimensional (3D) matrix-array transesophageal echocardiographic (3D-MTEE) probe was found to be highly effective in the evaluation of native mitral valves (MVs) and other intracardiac structures, including the interatrial septum and left atrial appendage. However, the ability to visualize prosthetic valves using this transducer has not been evaluated. Moreover, the diagnostic accuracy of this new technology has never been validated against surgical findings. This study was designed to (1) assess the quality of 3D-MTEE images of prosthetic valves and (2) determine the potential value of 3D-MTEE imaging in the preoperative assessment of valvular pathology by comparing images with surgical findings. Eighty-seven patients undergoing clinically indicated transesophageal echocardiography were studied. In 40 patients, 3D-MTEE images of prosthetic MVs, aortic valves (AVs), and tricuspid valves (TVs) were scored for the quality of visualization. For both MVs and AVs, mechanical and bioprosthetic valves, the rings and leaflets were scored individually. In 47 additional patients, intraoperative 3D-MTEE diagnoses of MV pathology obtained before initiating cardiopulmonary bypass were compared with surgical findings. For the visualization of prosthetic MVs and annuloplasty rings, quality was superior compared with AV and TV prostheses. In addition, 3D-MTEE imaging had 96% agreement with surgical findings. Three-dimensional matrix-array transesophageal echocardiographic imaging provides superb imaging and accurate presurgical evaluation of native MV pathology and prostheses. However, the current technology is less accurate for the clinical assessment of AVs and TVs. Fast acquisition and immediate online display will make this the modality of choice for MV surgical planning and postsurgical follow-up.
Shimbo, Mai; Watanabe, Hiroyuki; Kimura, Shunsuke; Terada, Mai; Iino, Takako; Iino, Kenji; Ito, Hiroshi
2015-01-01
Real-time three-dimensional transesophageal echocardiography (RT3D-TEE) can provide unique visualization and better understanding of the relationship among cardiac structures. Here, we report the case of an 85-year-old woman with an obstructed mitral prosthetic valve diagnosed promptly by RT3D-TEE, which clearly showed a leaflet stuck in the closed position. The opening and closing angles of the valve leaflets measured by RT3D-TEE were compatible with those measured by fluoroscopy. Moreover, RT3D-TEE revealed, in the ring of the prosthetic valve, thrombi that were not visible on fluoroscopy. RT3D-TEE might be a valuable diagnostic technique for prosthetic mitral valve thrombosis. © 2014 Wiley Periodicals, Inc.
Image segmentation for enhancing symbol recognition in prosthetic vision.
Horne, Lachlan; Barnes, Nick; McCarthy, Chris; He, Xuming
2012-01-01
Current and near-term implantable prosthetic vision systems offer the potential to restore some visual function, but suffer from poor resolution and dynamic range of induced phosphenes. This can make it difficult for users of prosthetic vision systems to identify symbolic information (such as signs) except in controlled conditions. Using image segmentation techniques from computer vision, we show it is possible to improve the clarity of such symbolic information for users of prosthetic vision implants in uncontrolled conditions. We use image segmentation to automatically divide a natural image into regions, and using a fixation point controlled by the user, select a region to phosphenize. This technique improves the apparent contrast and clarity of symbolic information over traditional phosphenization approaches.
van Gorp, Maarten J; van der Graaf, Yolanda; de Mol, Bas A J M; Bakker, Chris J G; Witkamp, Theo D; Ramos, Lino M P; Mali, Willem P T M
2004-03-01
To assess the relationship between heart valve history and susceptibility artifacts at magnetic resonance (MR) imaging of the brain in patients with Björk-Shiley convexoconcave (BSCC) valves. MR images of the brain were obtained in 58 patients with prosthetic heart valves: 20 patients had BSCC valve replacements, and 38 had other types of heart valves. Two experienced neuroradiologists determined the presence or absence of susceptibility artifacts in a consensus reading. Artifacts were defined as characteristic black spots that were visible on T2*-weighted gradient-echo MR images. The statuses of the 20 explanted BSCC valves-specifically, whether they were intact or had an outlet strut fracture (OSF) or a single-leg fracture (SLF)-had been determined earlier. Number of artifacts seen at brain MR imaging was correlated with explanted valve status, and differences were analyzed with nonparametric statistical tests. Significantly more patients with BSCC valves (17 [85%] of 20 patients) than patients with other types of prosthetic valves (18 [47%] of 38 patients) had susceptibility artifacts at MR imaging (P =.005). BSCC valve OSFs were associated with a significantly higher number of artifacts than were intact BSCC valves (P =.01). No significant relationship between SLF and number of artifacts was observed. Susceptibility artifacts at brain MR imaging are not restricted to patients with BSCC valves. These artifacts can be seen on images obtained in patients with various other types of fractured and intact prosthetic heart valves. Copyright RSNA, 2004
Dynamic elasticity measurement for prosthetic socket design.
Kim, Yujin; Kim, Junghoon; Son, Hyeryon; Choi, Youngjin
2017-07-01
The paper proposes a novel apparatus to measure the dynamic elasticity of human limb in order to help the design and fabrication of the personalized prosthetic socket. To take measurements of the dynamic elasticity, the desired force generated as an exponential chirp signal in which the frequency increases and amplitude is maintained according to time progress is applied to human limb and then the skin deformation is recorded, ultimately, to obtain the frequency response of its elasticity. It is referred to as a Dynamic Elasticity Measurement Apparatus (DEMA) in the paper. It has three core components such as linear motor to provide the desired force, loadcell to implement the force feedback control, and potentiometer to record the skin deformation. After measuring the force/deformation and calculating the dynamic elasticity of the limb, it is visualized as 3D color map model of the limb so that the entire dynamic elasticity can be shown at a glance according to the locations and frequencies. For the visualization, the dynamic elasticities measured at specific locations and frequencies are embodied using the color map into 3D limb model acquired by using 3D scanner. To demonstrate the effectiveness, the visualized dynamic elasticities are suggested as outcome of the proposed system, although we do not have any opportunity to apply the proposed system to the amputees. Ultimately, it is expected that the proposed system can be utilized to design and fabricate the personalized prosthetic socket in order for releasing the wearing pain caused by the conventional prosthetic socket.
Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall.
Hampson, Robert E; Song, Dong; Robinson, Brian S; Fetterhoff, Dustin; Dakos, Alexander S; Roeder, Brent M; She, Xiwei; Wicks, Robert T; Witcher, Mark R; Couture, Daniel E; Laxton, Adrian W; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J; Whitlow, Christopher T; Marmarelis, Vasilis Z; Berger, Theodore W; Deadwyler, Sam A
2018-06-01
We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient's own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.
Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall
NASA Astrophysics Data System (ADS)
Hampson, Robert E.; Song, Dong; Robinson, Brian S.; Fetterhoff, Dustin; Dakos, Alexander S.; Roeder, Brent M.; She, Xiwei; Wicks, Robert T.; Witcher, Mark R.; Couture, Daniel E.; Laxton, Adrian W.; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J.; Whitlow, Christopher T.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.
2018-06-01
Objective. We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient’s own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. Approach. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. Main results. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. Significance. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.
Classification of Movement and Inhibition Using a Hybrid BCI.
Chmura, Jennifer; Rosing, Joshua; Collazos, Steven; Goodwin, Shikha J
2017-01-01
Brain-computer interfaces (BCIs) are an emerging technology that are capable of turning brain electrical activity into commands for an external device. Motor imagery (MI)-when a person imagines a motion without executing it-is widely employed in BCI devices for motor control because of the endogenous origin of its neural control mechanisms, and the similarity in brain activation to actual movements. Challenges with translating a MI-BCI into a practical device used outside laboratories include the extensive training required, often due to poor user engagement and visual feedback response delays; poor user flexibility/freedom to time the execution/inhibition of their movements, and to control the movement type (right arm vs. left leg) and characteristics (reaching vs. grabbing); and high false positive rates of motion control. Solutions to improve sensorimotor activation and user performance of MI-BCIs have been explored. Virtual reality (VR) motor-execution tasks have replaced simpler visual feedback (smiling faces, arrows) and have solved this problem to an extent. Hybrid BCIs (hBCIs) implementing an additional control signal to MI have improved user control capabilities to a limited extent. These hBCIs either fail to allow the patients to gain asynchronous control of their movements, or have a high false positive rate. We propose an immersive VR environment which provides visual feedback that is both engaging and immediate, but also uniquely engages a different cognitive process in the patient that generates event-related potentials (ERPs). These ERPs provide a key executive function for the users to execute/inhibit movements. Additionally, we propose signal processing strategies and machine learning algorithms to move BCIs toward developing long-term signal stability in patients with distinctive brain signals and capabilities to control motor signals. The hBCI itself and the VR environment we propose would help to move BCI technology outside laboratory environments for motor rehabilitation in hospitals, and potentially for controlling a prosthetic.
Classification of Movement and Inhibition Using a Hybrid BCI
Chmura, Jennifer; Rosing, Joshua; Collazos, Steven; Goodwin, Shikha J.
2017-01-01
Brain-computer interfaces (BCIs) are an emerging technology that are capable of turning brain electrical activity into commands for an external device. Motor imagery (MI)—when a person imagines a motion without executing it—is widely employed in BCI devices for motor control because of the endogenous origin of its neural control mechanisms, and the similarity in brain activation to actual movements. Challenges with translating a MI-BCI into a practical device used outside laboratories include the extensive training required, often due to poor user engagement and visual feedback response delays; poor user flexibility/freedom to time the execution/inhibition of their movements, and to control the movement type (right arm vs. left leg) and characteristics (reaching vs. grabbing); and high false positive rates of motion control. Solutions to improve sensorimotor activation and user performance of MI-BCIs have been explored. Virtual reality (VR) motor-execution tasks have replaced simpler visual feedback (smiling faces, arrows) and have solved this problem to an extent. Hybrid BCIs (hBCIs) implementing an additional control signal to MI have improved user control capabilities to a limited extent. These hBCIs either fail to allow the patients to gain asynchronous control of their movements, or have a high false positive rate. We propose an immersive VR environment which provides visual feedback that is both engaging and immediate, but also uniquely engages a different cognitive process in the patient that generates event-related potentials (ERPs). These ERPs provide a key executive function for the users to execute/inhibit movements. Additionally, we propose signal processing strategies and machine learning algorithms to move BCIs toward developing long-term signal stability in patients with distinctive brain signals and capabilities to control motor signals. The hBCI itself and the VR environment we propose would help to move BCI technology outside laboratory environments for motor rehabilitation in hospitals, and potentially for controlling a prosthetic. PMID:28860986
Illusory movement perception improves motor control for prosthetic hands.
Marasco, Paul D; Hebert, Jacqueline S; Sensinger, Jon W; Shell, Courtney E; Schofield, Jonathon S; Thumser, Zachary C; Nataraj, Raviraj; Beckler, Dylan T; Dawson, Michael R; Blustein, Dan H; Gill, Satinder; Mensh, Brett D; Granja-Vazquez, Rafael; Newcomb, Madeline D; Carey, Jason P; Orzell, Beth M
2018-03-14
To effortlessly complete an intentional movement, the brain needs feedback from the body regarding the movement's progress. This largely nonconscious kinesthetic sense helps the brain to learn relationships between motor commands and outcomes to correct movement errors. Prosthetic systems for restoring function have predominantly focused on controlling motorized joint movement. Without the kinesthetic sense, however, these devices do not become intuitively controllable. We report a method for endowing human amputees with a kinesthetic perception of dexterous robotic hands. Vibrating the muscles used for prosthetic control via a neural-machine interface produced the illusory perception of complex grip movements. Within minutes, three amputees integrated this kinesthetic feedback and improved movement control. Combining intent, kinesthesia, and vision instilled participants with a sense of agency over the robotic movements. This feedback approach for closed-loop control opens a pathway to seamless integration of minds and machines. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Cheng, Derrick L; Greenberg, Paul B; Borton, David A
2017-03-01
To date, reviews of retinal prostheses have focused primarily on devices undergoing human trials in the Western Hemisphere and fail to capture significant advances in materials and engineering research in countries such as Japan and Korea, as well as projects in early stages of development. To address these gaps, this systematic review examines worldwide advances in retinal prosthetic research, evaluates engineering characteristics and clinical progress of contemporary device initiatives, and identifies potential directions for future research in the field of retinal prosthetics. A literature search using PubMed, Google Scholar, and IEEExplore was conducted following the PRISMA Guidelines for Systematic Review. Inclusion criteria were peer-reviewed papers demonstrating progress in human or animal trials and papers discussing the prosthetic engineering design. For each initiative, a description of the device, its engineering considerations, and recent clinical results were provided. Ten prosthetic initiatives met our inclusion criteria and were organized by stimulation location. Of these initiatives, four have recently completed human trials, three are undergoing multi- or single-center human trials, and three are undergoing preclinical animal testing. Only the Argus II (FDA 2013, CE 2011) has obtained FDA approval for use in the United States; the Alpha-IMS (CE 2013) has achieved the highest visual acuity using a Landolt-C test to date and is the only device presently undergoing a multicenter clinical trial. Several distinct approaches to retinal stimulation have been successful in eliciting visual precepts in animals and/or humans. However, many clinical needs are still not met and engineering challenges must be addressed before a retinal prosthesis with the capability to fully and safely restore functional vision can be realized.
2017-01-01
Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This study explores using recorded deep brain local field potentials (LFPs) for robust movement decoding of Parkinson's disease (PD) and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP signal features were extracted by computing instantaneous power related to motor response in different neural frequency bands. An innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its forthcoming laterality. The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and probabilistic neural networks. The majority voting rule is used to fuse the decisions of the three base classifiers to generate the final decision of the ensemble classifier. The overall decoding performance reaches a level of agreement (kappa value) at about 0.729 ± 0.16 for decoding movement from the resting state and about 0.671 ± 0.14 for decoding left and right visually cued movements. PMID:29201041
Advances in neuroprosthetic learning and control.
Carmena, Jose M
2013-01-01
Significant progress has occurred in the field of brain-machine interfaces (BMI) since the first demonstrations with rodents, monkeys, and humans controlling different prosthetic devices directly with neural activity. This technology holds great potential to aid large numbers of people with neurological disorders. However, despite this initial enthusiasm and the plethora of available robotic technologies, existing neural interfaces cannot as yet master the control of prosthetic, paralyzed, or otherwise disabled limbs. Here I briefly discuss recent advances from our laboratory into the neural basis of BMIs that should lead to better prosthetic control and clinically viable solutions, as well as new insights into the neurobiology of action.
Electronic approaches to restoration of sight
NASA Astrophysics Data System (ADS)
Goetz, G. A.; Palanker, D. V.
2016-09-01
Retinal prostheses are a promising means for restoring sight to patients blinded by the gradual atrophy of photoreceptors due to retinal degeneration. They are designed to reintroduce information into the visual system by electrically stimulating surviving neurons in the retina. This review outlines the concepts and technologies behind two major approaches to retinal prosthetics: epiretinal and subretinal. We describe how the visual system responds to electrical stimulation. We highlight major differences between direct encoding of the retinal output with epiretinal stimulation, and network-mediated response with subretinal stimulation. We summarize results of pre-clinical evaluation of prosthetic visual functions in- and ex vivo, as well as the outcomes of current clinical trials of various retinal implants. We also briefly review alternative, non-electronic, approaches to restoration of sight to the blind, and conclude by suggesting some perspectives for future advancement in the field.
Electronic Approaches to Restoration of Sight
Goetz, G A; Palanker, D V
2016-01-01
Retinal prostheses are a promising means for restoring sight to patients blinded by the gradual atrophy of photoreceptors due to retinal degeneration. They are designed to reintroduce information into the visual system by electrically stimulating surviving neurons in the retina. This review outlines the concepts and technologies behind two major approaches to retinal prosthetics: epiretinal and subretinal. We describe how the visual system responds to electrical stimulation. We highlight major differences between direct encoding of the retinal output with epiretinal stimulation, and network-mediated response with subretinal stimulation. We summarize results of pre-clinical evaluation of prosthetic visual functions in- and ex-vivo, as well as the outcomes of current clinical trials of various retinal implants. We also briefly review alternative, non-electronic, approaches to restoration of sight to the blind, and conclude by suggesting some perspectives for future advancement in the field. PMID:27502748
Replicating Physiological Patterns of Activity with Prosthetic Stimulation
2008-07-01
from retinitis pigmentosa : Arch Ophthalmol, v. 122, p. 460-9. 8 Dacey, D. M., B. B. Peterson, F. R. Robinson, and P. D. Gamlin, 2003, Fireworks in...with DTL electrodes: a study in patients with retinitis pigmentosa , glaucoma, and homonymous visual field loss and normal subjects: Invest Ophthalmol...outcomes associated with retinal prosthetics. To accomplish this, we are investigating the mechanism(s) by which different types of retinal neurons
Simulated Prosthetic Vision: The Benefits of Computer-Based Object Recognition and Localization.
Macé, Marc J-M; Guivarch, Valérian; Denis, Grégoire; Jouffrais, Christophe
2015-07-01
Clinical trials with blind patients implanted with a visual neuroprosthesis showed that even the simplest tasks were difficult to perform with the limited vision restored with current implants. Simulated prosthetic vision (SPV) is a powerful tool to investigate the putative functions of the upcoming generations of visual neuroprostheses. Recent studies based on SPV showed that several generations of implants will be required before usable vision is restored. However, none of these studies relied on advanced image processing. High-level image processing could significantly reduce the amount of information required to perform visual tasks and help restore visuomotor behaviors, even with current low-resolution implants. In this study, we simulated a prosthetic vision device based on object localization in the scene. We evaluated the usability of this device for object recognition, localization, and reaching. We showed that a very low number of electrodes (e.g., nine) are sufficient to restore visually guided reaching movements with fair timing (10 s) and high accuracy. In addition, performance, both in terms of accuracy and speed, was comparable with 9 and 100 electrodes. Extraction of high level information (object recognition and localization) from video images could drastically enhance the usability of current visual neuroprosthesis. We suggest that this method-that is, localization of targets of interest in the scene-may restore various visuomotor behaviors. This method could prove functional on current low-resolution implants. The main limitation resides in the reliability of the vision algorithms, which are improving rapidly. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems.
Zumsteg, Zachary S; Kemere, Caleb; O'Driscoll, Stephen; Santhanam, Gopal; Ahmed, Rizwan E; Shenoy, Krishna V; Meng, Teresa H
2005-09-01
A new class of neural prosthetic systems aims to assist disabled patients by translating cortical neural activity into control signals for prosthetic devices. Based on the success of proof-of-concept systems in the laboratory, there is now considerable interest in increasing system performance and creating implantable electronics for use in clinical systems. A critical question that impacts system performance and the overall architecture of these systems is whether it is possible to identify the neural source of each action potential (spike sorting) in real-time and with low power. Low power is essential both for power supply considerations and heat dissipation in the brain. In this paper we report that state-of-the-art spike sorting algorithms are not only feasible using modern complementary metal oxide semiconductor very large scale integration processes, but may represent the best option for extracting large amounts of data in implantable neural prosthetic interfaces.
Facial identification in very low-resolution images simulating prosthetic vision.
Chang, M H; Kim, H S; Shin, J H; Park, K S
2012-08-01
Familiar facial identification is important to blind or visually impaired patients and can be achieved using a retinal prosthesis. Nevertheless, there are limitations in delivering the facial images with a resolution sufficient to distinguish facial features, such as eyes and nose, through multichannel electrode arrays used in current visual prostheses. This study verifies the feasibility of familiar facial identification under low-resolution prosthetic vision and proposes an edge-enhancement method to deliver more visual information that is of higher quality. We first generated a contrast-enhanced image and an edge image by applying the Sobel edge detector and blocked each of them by averaging. Then, we subtracted the blocked edge image from the blocked contrast-enhanced image and produced a pixelized image imitating an array of phosphenes. Before subtraction, every gray value of the edge images was weighted as 50% (mode 2), 75% (mode 3) and 100% (mode 4). In mode 1, the facial image was blocked and pixelized with no further processing. The most successful identification was achieved with mode 3 at every resolution in terms of identification index, which covers both accuracy and correct response time. We also found that the subjects recognized a distinctive face especially more accurately and faster than the other given facial images even under low-resolution prosthetic vision. Every subject could identify familiar faces even in very low-resolution images. And the proposed edge-enhancement method seemed to contribute to intermediate-stage visual prostheses.
34 CFR 369.4 - What definitions apply to these programs?
Code of Federal Regulations, 2010 CFR
2010-07-01
... training in the use of prosthetic and orthotic devices; (3) Recreational therapy; (4) Physical and..., communication, self-care, self-direction, interpersonal skills, work tolerance, or work skills) in terms of an... to obtaining or retaining employment; (9) Eyeglasses and visual services, including visual training...
Safety and Efficacy of the BrainPort V100 Device in Individuals Blinded by Traumatic Injury
2016-12-01
the functional performance of the BrainPort® V200 device, a non-surgical, FDA approved, sensory substitution system, in persons who are profoundly...The BrainPort V200 device is a wearable, non-surgical, FDA approved, prosthetic device intended for people who are profoundly blind. The BrainPort...BrainPort V200 electronic vision aid (described previously) has been developed under this research. FDA clearance to market the V200 in the US is expected
Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI.
Chen, Xiaogang; Zhao, Bing; Wang, Yijun; Xu, Shengpu; Gao, Xiaorong
2018-04-12
Although robot technology has been successfully used to empower people who suffer from motor disabilities to increase their interaction with their physical environment, it remains a challenge for individuals with severe motor impairment, who do not have the motor control ability to move robots or prosthetic devices by manual control. In this study, to mitigate this issue, a noninvasive brain-computer interface (BCI)-based robotic arm control system using gaze based steady-state visual evoked potential (SSVEP) was designed and implemented using a portable wireless electroencephalogram (EEG) system. A 15-target SSVEP-based BCI using a filter bank canonical correlation analysis (FBCCA) method allowed users to directly control the robotic arm without system calibration. The online results from 12 healthy subjects indicated that a command for the proposed brain-controlled robot system could be selected from 15 possible choices in 4[Formula: see text]s (i.e. 2[Formula: see text]s for visual stimulation and 2[Formula: see text]s for gaze shifting) with an average accuracy of 92.78%, resulting in a 15 commands/min transfer rate. Furthermore, all subjects (even naive users) were able to successfully complete the entire move-grasp-lift task without user training. These results demonstrated an SSVEP-based BCI could provide accurate and efficient high-level control of a robotic arm, showing the feasibility of a BCI-based robotic arm control system for hand-assistance.
Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.
Bosking, William H; Sun, Ping; Ozker, Muge; Pei, Xiaomei; Foster, Brett L; Beauchamp, Michael S; Yoshor, Daniel
2017-07-26
Electrically stimulating early visual cortex results in a visual percept known as a phosphene. Although phosphenes can be evoked by a wide range of electrode sizes and current amplitudes, they are invariably described as small. To better understand this observation, we electrically stimulated 93 electrodes implanted in the visual cortex of 13 human subjects who reported phosphene size while stimulation current was varied. Phosphene size increased as the stimulation current was initially raised above threshold, but then rapidly reached saturation. Phosphene size also depended on the location of the stimulated site, with size increasing with distance from the foveal representation. We developed a model relating phosphene size to the amount of activated cortex and its location within the retinotopic map. First, a sigmoidal curve was used to predict the amount of activated cortex at a given current. Second, the amount of active cortex was converted to degrees of visual angle by multiplying by the inverse cortical magnification factor for that retinotopic location. This simple model accurately predicted phosphene size for a broad range of stimulation currents and cortical locations. The unexpected saturation in phosphene sizes suggests that the functional architecture of cerebral cortex may impose fundamental restrictions on the spread of artificially evoked activity and this may be an important consideration in the design of cortical prosthetic devices. SIGNIFICANCE STATEMENT Understanding the neural basis for phosphenes, the visual percepts created by electrical stimulation of visual cortex, is fundamental to the development of a visual cortical prosthetic. Our experiments in human subjects implanted with electrodes over visual cortex show that it is the activity of a large population of cells spread out across several millimeters of tissue that supports the perception of a phosphene. In addition, we describe an important feature of the production of phosphenes by electrical stimulation: phosphene size saturates at a relatively low current level. This finding implies that, with current methods, visual prosthetics will have a limited dynamic range available to control the production of spatial forms and that more advanced stimulation methods may be required. Copyright © 2017 the authors 0270-6474/17/377188-10$15.00/0.
Control of an electrical prosthesis with an SSVEP-based BCI.
Müller-Putz, Gernot R; Pfurtscheller, Gert
2008-01-01
Brain-computer interfaces (BCIs) are systems that establish a direct connection between the human brain and a computer, thus providing an additional communication channel. They are used in a broad field of applications nowadays. One important issue is the control of neuroprosthetic devices for the restoration of the grasp function in spinal-cord-injured people. In this communication, an asynchronous (self-paced) four-class BCI based on steady-state visual evoked potentials (SSVEPs) was used to control a two-axes electrical hand prosthesis. During training, four healthy participants reached an online classification accuracy between 44% and 88%. Controlling the prosthetic hand asynchronously, the participants reached a performance of 75.5 to 217.5 s to copy a series of movements, whereas the fastest possible duration determined by the setup was 64 s. The number of false negative (FN) decisions varied from 0 to 10 (the maximal possible decisions were 34). It can be stated that the SSVEP-based BCI, operating in an asynchronous mode, is feasible for the control of neuroprosthetic devices with the flickering lights mounted on its surface.
Simplification of Visual Rendering in Simulated Prosthetic Vision Facilitates Navigation.
Vergnieux, Victor; Macé, Marc J-M; Jouffrais, Christophe
2017-09-01
Visual neuroprostheses are still limited and simulated prosthetic vision (SPV) is used to evaluate potential and forthcoming functionality of these implants. SPV has been used to evaluate the minimum requirement on visual neuroprosthetic characteristics to restore various functions such as reading, objects and face recognition, object grasping, etc. Some of these studies focused on obstacle avoidance but only a few investigated orientation or navigation abilities with prosthetic vision. The resolution of current arrays of electrodes is not sufficient to allow navigation tasks without additional processing of the visual input. In this study, we simulated a low resolution array (15 × 18 electrodes, similar to a forthcoming generation of arrays) and evaluated the navigation abilities restored when visual information was processed with various computer vision algorithms to enhance the visual rendering. Three main visual rendering strategies were compared to a control rendering in a wayfinding task within an unknown environment. The control rendering corresponded to a resizing of the original image onto the electrode array size, according to the average brightness of the pixels. In the first rendering strategy, vision distance was limited to 3, 6, or 9 m, respectively. In the second strategy, the rendering was not based on the brightness of the image pixels, but on the distance between the user and the elements in the field of view. In the last rendering strategy, only the edges of the environments were displayed, similar to a wireframe rendering. All the tested renderings, except the 3 m limitation of the viewing distance, improved navigation performance and decreased cognitive load. Interestingly, the distance-based and wireframe renderings also improved the cognitive mapping of the unknown environment. These results show that low resolution implants are usable for wayfinding if specific computer vision algorithms are used to select and display appropriate information regarding the environment. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wodlinger, B.; Downey, J. E.; Tyler-Kabara, E. C.; Schwartz, A. B.; Boninger, M. L.; Collinger, J. L.
2015-02-01
Objective. In a previous study we demonstrated continuous translation, orientation and one-dimensional grasping control of a prosthetic limb (seven degrees of freedom) by a human subject with tetraplegia using a brain-machine interface (BMI). The current study, in the same subject, immediately followed the previous work and expanded the scope of the control signal by also extracting hand-shape commands from the two 96-channel intracortical electrode arrays implanted in the subject’s left motor cortex. Approach. Four new control signals, dictating prosthetic hand shape, replaced the one-dimensional grasping in the previous study, allowing the subject to control the prosthetic limb with ten degrees of freedom (three-dimensional (3D) translation, 3D orientation, four-dimensional hand shaping) simultaneously. Main results. Robust neural tuning to hand shaping was found, leading to ten-dimensional (10D) performance well above chance levels in all tests. Neural unit preferred directions were broadly distributed through the 10D space, with the majority of units significantly tuned to all ten dimensions, instead of being restricted to isolated domains (e.g. translation, orientation or hand shape). The addition of hand shaping emphasized object-interaction behavior. A fundamental component of BMIs is the calibration used to associate neural activity to intended movement. We found that the presence of an object during calibration enhanced successful shaping of the prosthetic hand as it closed around the object during grasping. Significance. Our results show that individual motor cortical neurons encode many parameters of movement, that object interaction is an important factor when extracting these signals, and that high-dimensional operation of prosthetic devices can be achieved with simple decoding algorithms. ClinicalTrials.gov Identifier: NCT01364480.
A methodology for coupling a visual enhancement device to human visual attention
NASA Astrophysics Data System (ADS)
Todorovic, Aleksandar; Black, John A., Jr.; Panchanathan, Sethuraman
2009-02-01
The Human Variation Model views disability as simply "an extension of the natural physical, social, and cultural variability of mankind." Given this human variation, it can be difficult to distinguish between a prosthetic device such as a pair of glasses (which extends limited visual abilities into the "normal" range) and a visual enhancement device such as a pair of binoculars (which extends visual abilities beyond the "normal" range). Indeed, there is no inherent reason why the design of visual prosthetic devices should be limited to just providing "normal" vision. One obvious enhancement to human vision would be the ability to visually "zoom" in on objects that are of particular interest to the viewer. Indeed, it could be argued that humans already have a limited zoom capability, which is provided by their highresolution foveal vision. However, humans still find additional zooming useful, as evidenced by their purchases of binoculars equipped with mechanized zoom features. The fact that these zoom features are manually controlled raises two questions: (1) Could a visual enhancement device be developed to monitor attention and control visual zoom automatically? (2) If such a device were developed, would its use be experienced by users as a simple extension of their natural vision? This paper details the results of work with two research platforms called the Remote Visual Explorer (ReVEx) and the Interactive Visual Explorer (InVEx) that were developed specifically to answer these two questions.
Ownership of an artificial limb induced by electrical brain stimulation
Collins, Kelly L.; Cronin, Jeneva; Olson, Jared D.; Ehrsson, H. Henrik; Ojemann, Jeffrey G.
2017-01-01
Replacing the function of a missing or paralyzed limb with a prosthetic device that acts and feels like one’s own limb is a major goal in applied neuroscience. Recent studies in nonhuman primates have shown that motor control and sensory feedback can be achieved by connecting sensors in a robotic arm to electrodes implanted in the brain. However, it remains unknown whether electrical brain stimulation can be used to create a sense of ownership of an artificial limb. In this study on two human subjects, we show that ownership of an artificial hand can be induced via the electrical stimulation of the hand section of the somatosensory (SI) cortex in synchrony with touches applied to a rubber hand. Importantly, the illusion was not elicited when the electrical stimulation was delivered asynchronously or to a portion of the SI cortex representing a body part other than the hand, suggesting that multisensory integration according to basic spatial and temporal congruence rules is the underlying mechanism of the illusion. These findings show that the brain is capable of integrating “natural” visual input and direct cortical-somatosensory stimulation to create the multisensory perception that an artificial limb belongs to one’s own body. Thus, they serve as a proof of concept that electrical brain stimulation can be used to “bypass” the peripheral nervous system to induce multisensory illusions and ownership of artificial body parts, which has important implications for patients who lack peripheral sensory input due to spinal cord or nerve lesions. PMID:27994147
Rokohl, Alexander C; Koch, Konrad R; Adler, Werner; Trester, Marc; Trester, Wolfgang; Pine, Nicola S; Pine, Keith R; Heindl, Ludwig M
2018-06-01
To compare the concerns of experienced cryolite glass and (poly)methyl methacrylate (PMMA) prosthetic eye wearers. One hundred six experienced cryolite glass and 63 experienced PMMA prosthetic eye wearers completed an anonymous questionnaire regarding general and specific prosthetic eye concerns at least 2 years after natural eye loss. From these independent anophthalmic populations, we identified 34 case-control pairs matched for the known influencing demographic variables of gender, occupation, age, and time since natural eye loss. The levels of concern were significantly lower in the cryolite glass group than those in the PMMA group for the following: loss of balance (p < 0.001), phantom sight vision (p < 0.001), pain (p < 0.001), receiving good advice (p = 0.001), fullness of orbit (p = 0.001), size (p = 0.007), direction of gaze relative to the healthy fellow eye (p = 0.005), eye lid contour (p = 0.037), comfort of the prosthetic eye (p < 0.001), colour relative to the healthy fellow eye (p < 0.001), and retention of the prosthetic eye (p < 0.001). Concerns about watering, crusting, discharge, visual perception, appearance, movement of the prosthetic eye, and health of the remaining eye were not significantly different between both groups. The results of this study showed that many general and specific levels of concern were significantly lower for cryolite glass prosthetic eye wearers than for PMMA prosthetic eye wearers. The question of why there are significant differences and to what extent the material of the prosthesis (cryolite glass or PMMA) has an impact on various concerns remains unanswered and should be addressed in a prospective comparative multicentre trial.
Fukuta, Yuriko; Yildiz-Aktas, Isil Z; William Pasculle, A; Veldkamp, Peter J
2012-06-01
Legionella endocarditis is extremely uncommon, and embolic phenomena have never been reported. We report the first case of Legionella micdadei prosthetic valve endocarditis complicated by brain abscess. A 57-y-old immunocompromised woman with a history of mitral valve replacement developed confusion and left-sided weakness. Brain magnetic resonance imaging showed a 3-cm peripheral-enhancing mass. Transoesophageal echocardiography suggested a perivalvular abscess. Blood cultures and valve cultures were negative. She was diagnosed with 16S rRNA polymerase chain reaction and silver stain, and was discharged with levofloxacin after a redo mitral valve replacement. Twelve cases of Legionella endocarditis were reviewed. Only one case had a native valve, and her endocarditis occurred after pneumonia. All cases were cured. The duration of antibiotic therapy was variable. Legionella species should be considered in the differential diagnosis of culture-negative endocarditis in both immunocompetent and immunocompromised patients. Molecular techniques and silver impregnation stains are useful, especially when cultures using buffered charcoal-yeast extract agar are negative.
Van De Water, Thomas R
2012-11-01
This review presents some of the major historical events that advanced the body of knowledge of the anatomy of the inner ear and its sensory receptors as well as the biology of these receptors that underlies the sensory functions of hearing and balance. This knowledge base of the inner ear's structure/function has been an essential factor for the design and construction of prosthetic devices to aid patients with deficits in their senses of hearing and balance. Prosthetic devices are now available for severely hearing impaired and deaf patients to restore hearing and are known as cochlear implants and auditory brain stem implants. A prosthetic device for patients with balance disorders is being perfected and is in an animal model testing phase with another prosthetic device for controlling intractable dizziness in Meniere's patients currently being evaluated in clinical testing. None of this would have been possible without the pioneering studies and discoveries of the investigators mentioned in this review and with the work of many other talented investigators to numerous to be covered in this review. Copyright © 2012 Wiley Periodicals, Inc.
Power feasibility of implantable digital spike-sorting circuits for neural prosthetic systems.
Zumsteg, Zachary S; Ahmed, Rizwan E; Santhanam, Gopal; Shenoy, Krishna V; Meng, Teresa H
2004-01-01
A new class of neural prosthetic systems aims to assist disabled patients by translating cortical neural activity into control signals for prosthetic devices. Based on the success of proof-of-concept systems in the laboratory, there is now considerable interest in increasing system performance and creating implantable electronics for use in clinical systems. A critical question that impacts system performance and the overall architecture of these systems is whether it is possible to identify the neural source of each action potential (spike sorting) in real-time and with low power. Low power is essential both for power supply considerations and heat dissipation in the brain. In this paper we report that several state-of-the-art spike sorting algorithms implemented in modern CMOS VLSI processes are expected to be power realistic.
2014-01-01
Background Achieving independent upright posture has known to be one of the main goals in rehabilitation following lower limb amputation. The purpose of this study was to compare postural steadiness of below knee amputees with visual alterations while wearing three different prosthetic feet. Methods Ten male below-knee amputees were instructed to stand quietly on the Biodex® balance platform while wearing solid ankle cushion heel (SACH), single axis (SA) and energy storage and release (ESAR) prosthetic foot under different visual input conditions (eyes-opened and eyes-closed). The overall stability index (OSI), anterior- posterior stability index (APSI), and medial-lateral stability index (MLSI) were computed. Perceived balance assessment of each foot was evaluated using Activities-specific Balance Confidence (ABC) score. Results The findings highlights that SACH showed lowest overall stability index (indicating less body sway) during eyes-opened (OSI: SACH = 1.09, SA = 1.58, ESAR = 1.59) and SA showed lowest overall stability index during eyes-closed (OSI: SACH = 2.52, SA = 2.30, ESAR = 2.76) condition. However, overall stability indexes between foot types did not differ significantly during eyes-opened or eyes-closed (p = 0.651). There was a trend of instability which occurred more in medial-lateral compared to anterior-posterior direction for all foot types, with significant result in ESAR foot(eyes-opened: MLSI = 1.59, APSI = 0.65, p = 0.034; eyes-closed: MLSI = 2.76, APSI = 1.80, p = 0.017, respectively). When comparing between visual conditions, stability score was significantly higher during eyes-closed compared to eyes-opened situations for SACH and ESAR foot (eyes-closed vs opened; SACH OSI: 3.43 vs 1.71, p = 0.018 and MLSI: 3.43 vs 1.71, p = 0.018; ESAR OSI: 3.58 vs 1.86, p = 0.043 and APSI: 1.80 vs 0.65, p = 0.027). Conclusions The results of this study suggested postural steadiness in below-knee amputees was not affected by the types of prosthetic foot during quiet upright standing, but was significantly affected when visual cues was absent. PMID:24597518
75 FR 59793 - Qualification of Drivers; Exemption Applications; Vision
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-28
.... Joel W. Bryant Mr. Bryant, 53, has had a prosthetic right eye since 1990 due to a traumatic injury. The..., sustained traumatic injury to his left optic nerve at age 14. The best corrected visual acuity in his right... ruptured globe in his left eye due to a traumatic injury sustained in 2005. The best corrected visual...
77 FR 46793 - Qualification of Drivers; Exemption Applications; Vision
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-06
..., had an enucleation of his left eye due to a traumatic injury sustained as a child. The visual acuity.... Johnsonbaugh, 42, has a prosthetic left eye due to a traumatic injury sustained in 1992. The visual acuity in... had retinal scarring in his left eye due to a traumatic injury sustained as a child. The best...
77 FR 60008 - Qualification of Drivers; Exemption Applications; Vision
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
... in a CMV. Terry J. Edwards Mr. Edwards, 53, has a prosthetic right eye due to a traumatic injury... left eye due to a traumatic injury sustained at age 2. The best corrected visual acuity in his right... his right eye due to a traumatic injury sustained 10 years ago. The visual acuity in his right eye is...
75 FR 14656 - Qualification of Drivers; Exemption Applications; Vision
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
... traumatic injury sustained during childhood. The best corrected visual acuity in his right eye is 20/20... moving violations in a CMV. Lane L. Savoie Mr. Savoie, 57, has a prosthetic left eye due to a traumatic injury sustained in 1995. The best corrected visual acuity in his right eye is 20/20. Following an...
76 FR 55465 - Qualification of Drivers; Exemption Applications; Vision
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
... enucleation of his left eye due to a traumatic injury that he sustained in 1952. The best corrected visual... due to a traumatic injury that occurred in 1983. The best corrected visual acuity in his right eye is... Mr. Buckingham, 43, has a prosthetic left eye due to a traumatic injury that occurred more than 25...
77 FR 17109 - Qualification of Drivers; Exemption Applications; Vision
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-23
... W. Doran, Jr. Mr. Doran, 51, has had a macular scar in his left eye due to a traumatic injury... prosthetic left eye due to a traumatic injury sustained 20 years ago. The best corrected visual acuity in... traumatic injury sustained at age 23. The best corrected visual acuity in left eye is 20/20. Following an...
NASA Astrophysics Data System (ADS)
Li, Heng; Zeng, Yajie; Lu, Zhuofan; Cao, Xiaofei; Su, Xiaofan; Sui, Xiaohong; Wang, Jing; Chai, Xinyu
2018-04-01
Objective. Retinal prosthesis devices have shown great value in restoring some sight for individuals with profoundly impaired vision, but the visual acuity and visual field provided by prostheses greatly limit recipients’ visual experience. In this paper, we employ computer vision approaches to seek to expand the perceptible visual field in patients implanted potentially with a high-density retinal prosthesis while maintaining visual acuity as much as possible. Approach. We propose an optimized content-aware image retargeting method, by introducing salient object detection based on color and intensity-difference contrast, aiming to remap important information of a scene into a small visual field and preserve their original scale as much as possible. It may improve prosthetic recipients’ perceived visual field and aid in performing some visual tasks (e.g. object detection and object recognition). To verify our method, psychophysical experiments, detecting object number and recognizing objects, are conducted under simulated prosthetic vision. As control, we use three other image retargeting techniques, including Cropping, Scaling, and seam-assisted shrinkability. Main results. Results show that our method outperforms in preserving more key features and has significantly higher recognition accuracy in comparison with other three image retargeting methods under the condition of small visual field and low-resolution. Significance. The proposed method is beneficial to expand the perceived visual field of prosthesis recipients and improve their object detection and recognition performance. It suggests that our method may provide an effective option for image processing module in future high-density retinal implants.
Ozkan, Mehmet; Gürsoy, Ozan Mustafa; Astarcıoğlu, Mehmet Ali; Gündüz, Sabahattin; Cakal, Beytullah; Karakoyun, Süleyman; Kalçık, Macit; Kahveci, Gökhan; Duran, Nilüfer Ekşi; Yıldız, Mustafa; Cevik, Cihan
2013-10-01
Although 2-dimensional (2D) transesophageal echocardiography (TEE) is the gold standard for the diagnosis of prosthetic valve thrombosis, nonobstructive clots located on mitral valve rings can be missed. Real-time 3-dimensional (3D) TEE has incremental value in the visualization of mitral prosthesis. The aim of this study was to investigate the utility of real-time 3D TEE in the diagnosis of mitral prosthetic ring thrombosis. The clinical outcomes of these patients in relation to real-time 3D transesophageal echocardiographic findings were analyzed. Of 1,263 patients who underwent echocardiographic studies, 174 patients (37 men, 137 women) with mitral ring thrombosis detected by real-time 3D TEE constituted the main study population. Patients were followed prospectively on oral anticoagulation for 25 ± 7 months. Eighty-nine patients (51%) had thrombi that were missed on 2D TEE and depicted only on real-time 3D TEE. The remaining cases were partially visualized with 2D TEE but completely visualized with real-time 3D TEE. Thirty-seven patients (21%) had thromboembolism. The mean thickness of the ring thrombosis in patients with thromboembolism was greater than that in patients without thromboembolism (3.8 ± 0.9 vs 2.8 ± 0.7 mm, p <0.001). One hundred fifty-five patients (89%) underwent real-time 3D TEE during follow-up. There were no thrombi in 39 patients (25%); 45 (29%) had regression of thrombi, and there was no change in thrombus size in 68 patients (44%). Thrombus size increased in 3 patients (2%). Thrombosis was confirmed surgically and histopathologically in 12 patients (7%). In conclusion, real-time 3D TEE can detect prosthetic mitral ring thrombosis that could be missed on 2D TEE and cause thromboembolic events. Copyright © 2013 Elsevier Inc. All rights reserved.
Visual performance with changes in eccentricity in PROSE device: a case report.
Jagadeesh, Divya; Mahadevan, Rajeswari
2014-01-01
This case report describes the variations in visual performance of a subject with moderate keratoconus with changes in front surface eccentricities (FSEs) of PROSE (Prosthetic Replacement of Ocular Surface Ecosystem). PROSE device of 0.6 FSE provided maximum visual improvement and reduction in Higher Order Aberrations (HOAs) compared to 0, 0.3 and 0.8 FSEs in this clinical condition. Copyright © 2013 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-08
.... Rehabilitation Engineering and February 20, 2013 Courtyard DC/U.S. Prosthetics/Orthotics. Capitol. Brain Injury.... Career Development Award February 26-28, *VA Central Office. Program and Research Career 2013. Scientists...
IBMISPS (International Brain Mapping & Intraoperative Surgical Planning Symposium)
2005-12-01
they received the 2005 Excellence in R, D & E award for their contribution in the feild of prosthetics and brain imaging. Excellence in Educational...specific bipolar magnetic gradient pulses which measure the velocity vector components of motion. Presented here are the development of dynamic MR...movies of quantitative velocity vector components, 30 frames per second. The 3 velocity vector maps with tensor analysis produced maps of the
The FDA's role in medical device clinical studies of human subjects
NASA Astrophysics Data System (ADS)
Saviola, James
2005-03-01
This paper provides an overview of the United States Food and Drug Administration's (FDA) role as a regulatory agency in medical device clinical studies involving human subjects. The FDA's regulations and responsibilities are explained and the device application process discussed. The specific medical device regulatory authorities are described as they apply to the development and clinical study of retinal visual prosthetic devices. The FDA medical device regulations regarding clinical studies of human subjects are intended to safeguard the rights and safety of subjects. The data gathered in pre-approval clinical studies provide a basis of valid scientific evidence in order to demonstrate the safety and effectiveness of a medical device. The importance of a working understanding of applicable medical device regulations from the beginning of the device development project is emphasized particularly for novel, complex products such as implantable visual prosthetic devices.
Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task
NASA Astrophysics Data System (ADS)
Revechkis, Boris; Aflalo, Tyson NS; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A.
2014-12-01
Objective. To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. Approach. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like ‘Face in a Crowd’ task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the ‘Crowd’) using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a ‘Crowd Off’ condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Main results. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Significance. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet computers.
Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task.
Revechkis, Boris; Aflalo, Tyson N S; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A
2014-12-01
To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like 'Face in a Crowd' task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the 'Crowd') using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a 'Crowd Off' condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet computers.
Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats
NASA Astrophysics Data System (ADS)
Pardue, Machelle T.; Phillips, Michael J.; Yin, Hang; Fernandes, Alcides; Cheng, Yian; Chow, Alan Y.; Ball, Sherry L.
2005-03-01
Current retinal prosthetics are designed to stimulate existing neural circuits in diseased retinas to create a visual signal. However, implantation of retinal prosthetics may create a neurotrophic environment that also leads to improvements in visual function. Possible sources of increased neuroprotective effects on the retina may arise from electrical activity generated by the prosthetic, mechanical injury due to surgical implantation, and/or presence of a chronic foreign body. This study evaluates these three neuroprotective sources by implanting Royal College of Surgeons (RCS) rats, a model of retinitis pigmentosa, with a subretinal implant at an early stage of photoreceptor degeneration. Treatment groups included rats implanted with active and inactive devices, as well as sham-operated. These groups were compared to unoperated controls. Evaluation of retinal function throughout an 18 week post-implantation period demonstrated transient functional improvements in eyes implanted with an inactive device at 6, 12 and 14 weeks post-implantation. However, the number of photoreceptors located directly over or around the implant or sham incision was significantly increased in eyes implanted with an active or inactive device or sham-operated. These results indicate that in the RCS rat localized neuroprotection of photoreceptors from mechanical injury or a chronic foreign body may provide similar results to subretinal electrical stimulation at the current output evaluated here.
Stretchable silicon nanoribbon electronics for skin prosthesis.
Kim, Jaemin; Lee, Mincheol; Shim, Hyung Joon; Ghaffari, Roozbeh; Cho, Hye Rim; Son, Donghee; Jung, Yei Hwan; Soh, Min; Choi, Changsoon; Jung, Sungmook; Chu, Kon; Jeon, Daejong; Lee, Soon-Tae; Kim, Ji Hoon; Choi, Seung Hong; Hyeon, Taeghwan; Kim, Dae-Hyeong
2014-12-09
Sensory receptors in human skin transmit a wealth of tactile and thermal signals from external environments to the brain. Despite advances in our understanding of mechano- and thermosensation, replication of these unique sensory characteristics in artificial skin and prosthetics remains challenging. Recent efforts to develop smart prosthetics, which exploit rigid and/or semi-flexible pressure, strain and temperature sensors, provide promising routes for sensor-laden bionic systems, but with limited stretchability, detection range and spatio-temporal resolution. Here we demonstrate smart prosthetic skin instrumented with ultrathin, single crystalline silicon nanoribbon strain, pressure and temperature sensor arrays as well as associated humidity sensors, electroresistive heaters and stretchable multi-electrode arrays for nerve stimulation. This collection of stretchable sensors and actuators facilitate highly localized mechanical and thermal skin-like perception in response to external stimuli, thus providing unique opportunities for emerging classes of prostheses and peripheral nervous system interface technologies.
Ackland, David; Robinson, Dale; Lee, Peter Vee Sin; Dimitroulis, George
2018-05-11
Stock prosthetic temporomandibular joint replacements come in limited sizes, and do not always encompass the joint anatomy that presents clinically. The aims of this study were twofold. Firstly, to design a personalized prosthetic total joint replacement for the treatment of a patient's end-stage temporomandibular joint osteoarthritis, to implant the prosthesis into the patient, and assess clinical outcome 12-months post-operatively; and secondly, to evaluate the influence of changes in prosthetic condyle geometry on implant load response during mastication. A 48-year-old female patient with Grade-5 osteoarthritis to the left temporomandibular joint was recruited, and a prosthesis developed to match the native temporomandibular joint anatomy. The prosthesis was 3D printed, sterilized and implanted into the patient, and pain and function measured 12-months post-operatively. The prosthesis load response during a chewing-bite and maximum-force bite was evaluated using a personalized multi-body musculoskeletal model. Simulations were performed after perturbing condyle thickness, neck length and head sphericity. Increases in prosthetic condyle neck length malaligned the mandible and perturbed temporomandibular joint force. Changes in condylar component thickness greatly influenced fixation screw stress response, while a more eccentric condylar head increased prosthetic joint-contact loading. Post-operatively, the prosthetic temporomandibular joint surgery reduced patient pain from 7/10 to 1/10 on a visual analog scale, and increased intercisal opening distance from 22 mm to 38 mm. This study demonstrates effectiveness of a personalized prosthesis that may ultimately be adapted to treat a wide-range of end-stage temporomandibular joint conditions, and highlights sensitivity of prosthesis load response to changes in condylar geometry. Copyright © 2018 Elsevier Ltd. All rights reserved.
Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees.
Agashe, H A; Paek, A Y; Contreras-Vidal, J L
2016-01-01
Upper limb amputation results in a severe reduction in the quality of life of affected individuals due to their inability to easily perform activities of daily living. Brain-machine interfaces (BMIs) that translate grasping intent from the brain's neural activity into prosthetic control may increase the level of natural control currently available in myoelectric prostheses. Current BMI techniques demonstrate accurate arm position and single degree-of-freedom grasp control but are invasive and require daily recalibration. In this study we tested if transradial amputees (A1 and A2) could control grasp preshaping in a prosthetic device using a noninvasive electroencephalography (EEG)-based closed-loop BMI system. Participants attempted to grasp presented objects by controlling two grasping synergies, in 12 sessions performed over 5 weeks. Prior to closed-loop control, the first six sessions included a decoder calibration phase using action observation by the participants; thereafter, the decoder was fixed to examine neuroprosthetic performance in the absence of decoder recalibration. Ability of participants to control the prosthetic was measured by the success rate of grasping; ie, the percentage of trials within a session in which presented objects were successfully grasped. Participant A1 maintained a steady success rate (63±3%) across sessions (significantly above chance [41±5%] for 11 sessions). Participant A2, who was under the influence of pharmacological treatment for depression, hormone imbalance, pain management (for phantom pain as well as shoulder joint inflammation), and drug dependence, achieved a success rate of 32±2% across sessions (significantly above chance [27±5%] in only two sessions). EEG signal quality was stable across sessions, but the decoders created during the first six sessions showed variation, indicating EEG features relevant to decoding at a smaller timescale (100ms) may not be stable. Overall, our results show that (a) an EEG-based BMI for grasping is a feasible strategy for further investigation of prosthetic control by amputees, and (b) factors that may affect brain activity such as medication need further examination to improve accuracy and stability of BMI performance. © 2016 Elsevier B.V. All rights reserved.
Schiefer, Matthew; Tan, Daniel; Sidek, Steven M; Tyler, Dustin J
2016-02-01
Tactile feedback is critical to grip and object manipulation. Its absence results in reliance on visual and auditory cues. Our objective was to assess the effect of sensory feedback on task performance in individuals with limb loss. Stimulation of the peripheral nerves using implanted cuff electrodes provided two subjects with sensory feedback with intensity proportional to forces on the thumb, index, and middle fingers of their prosthetic hand during object manipulation. Both subjects perceived the sensation on their phantom hand at locations corresponding to the locations of the forces on the prosthetic hand. A bend sensor measured prosthetic hand span. Hand span modulated the intensity of sensory feedback perceived on the thenar eminence for subject 1 and the middle finger for subject 2. We performed three functional tests with the blindfolded subjects. First, the subject tried to determine whether or not a wooden block had been placed in his prosthetic hand. Second, the subject had to locate and remove magnetic blocks from a metal table. Third, the subject performed the Southampton Hand Assessment Procedure (SHAP). We also measured the subject's sense of embodiment with a survey and his self-confidence. Blindfolded performance with sensory feedback was similar to sighted performance in the wooden block and magnetic block tasks. Performance on the SHAP, a measure of hand mechanical function and control, was similar with and without sensory feedback. An embodiment survey showed an improved sense of integration of the prosthesis in self body image with sensory feedback. Sensory feedback by peripheral nerve stimulation improved object discrimination and manipulation, embodiment, and confidence. With both forms of feedback, the blindfolded subjects tended toward results obtained with visual feedback.
Proceedings, 13th Annual Conference on Manual Control
NASA Technical Reports Server (NTRS)
1977-01-01
Theoretical aspects of manual control theory are discussed. Specific topics covered include: tracking; performance, attention allocation, and mental load; surface vehicle control; monitoring behavior and supervisory control; manipulators and prosthetics; aerospace vehicle control; motion and visual cues; and displays and controls.
Pursuing prosthetic electronic skin
NASA Astrophysics Data System (ADS)
Chortos, Alex; Liu, Jia; Bao, Zhenan
2016-09-01
Skin plays an important role in mediating our interactions with the world. Recreating the properties of skin using electronic devices could have profound implications for prosthetics and medicine. The pursuit of artificial skin has inspired innovations in materials to imitate skin's unique characteristics, including mechanical durability and stretchability, biodegradability, and the ability to measure a diversity of complex sensations over large areas. New materials and fabrication strategies are being developed to make mechanically compliant and multifunctional skin-like electronics, and improve brain/machine interfaces that enable transmission of the skin's signals into the body. This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals.
Brain oscillatory signatures of motor tasks
Birbaumer, Niels
2015-01-01
Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral part of motor regulation. Changes in task-specific frequency power compared with rest were similar between motor tasks, and only significant differences in the time course and some narrow specific frequency bands were observed between motor tasks. We identified EEG features representing active and passive proprioception (with and without muscle contraction) and active intention and passive involvement (with and without voluntary effort) differentiating brain oscillations during motor tasks that could substantially support the design of novel motor BCI-based rehabilitation therapies. The BCI task induced significantly different brain activity compared with the other motor tasks, indicating neural processes unique to the use of body actuators control in a BCI context. PMID:25810484
Theeven, Patrick; Hemmen, Bea; Rings, Frans; Meys, Guido; Brink, Peter; Smeets, Rob; Seelen, Henk
2011-10-01
To assess the effects of using a microprocessor-controlled prosthetic knee joint on the functional performance of activities of daily living in persons with an above-knee leg amputation. To assess the effects of using a microprocessor-controlled prosthetic knee joint on the functional performance of activities of daily living in persons with an above-knee leg amputation. Randomised cross-over trial. Forty-one persons with unilateral above-knee or knee disarticulation limb loss, classified as Medicare Functional Classification Level-2 (MFCL-2). Participants were measured in 3 conditions, i.e. using a mechanically controlled knee joint and two types of microprocessor-controlled prosthetic knee joints. Functional performance level was assessed using a test in which participants performed 17 simulated activities of daily living (Assessment of Daily Activity Performance in Transfemoral amputees test). Performance time was measured and self-perceived level of difficulty was scored on a visual analogue scale for each activity. High levels of within-group variability in functional performance obscured detection of any effects of using a microprocessor-controlled prosthetic knee joint. Data analysis after stratification of the participants into 3 subgroups, i.e. participants with a "low", "intermediate" and "high" functional mobility level, showed that the two higher functional subgroups performed significantly faster using microprocessor-controlled prosthetic knee joints. MFCL-2 amputees constitute a heterogeneous patient group with large variation in functional performance levels. A substantial part of this group seems to benefit from using a microprocessor-controlled prosthetic knee joint when performing activities of daily living.
Gonzalez, Jose; Soma, Hirokazu; Sekine, Masashi; Yu, Wenwei
2012-06-09
Prosthetic hand users have to rely extensively on visual feedback, which seems to lead to a high conscious burden for the users, in order to manipulate their prosthetic devices. Indirect methods (electro-cutaneous, vibrotactile, auditory cues) have been used to convey information from the artificial limb to the amputee, but the usability and advantages of these feedback methods were explored mainly by looking at the performance results, not taking into account measurements of the user's mental effort, attention, and emotions. The main objective of this study was to explore the feasibility of using psycho-physiological measurements to assess cognitive effort when manipulating a robot hand with and without the usage of a sensory substitution system based on auditory feedback, and how these psycho-physiological recordings relate to temporal and grasping performance in a static setting. 10 male subjects (26+/-years old), participated in this study and were asked to come for 2 consecutive days. On the first day the experiment objective, tasks, and experiment setting was explained. Then, they completed a 30 minutes guided training. On the second day each subject was tested in 3 different modalities: Auditory Feedback only control (AF), Visual Feedback only control (VF), and Audiovisual Feedback control (AVF). For each modality they were asked to perform 10 trials. At the end of each test, the subject had to answer the NASA TLX questionnaire. Also, during the test the subject's EEG, ECG, electro-dermal activity (EDA), and respiration rate were measured. The results show that a higher mental effort is needed when the subjects rely only on their vision, and that this effort seems to be reduced when auditory feedback is added to the human-machine interaction (multimodal feedback). Furthermore, better temporal performance and better grasping performance was obtained in the audiovisual modality. The performance improvements when using auditory cues, along with vision (multimodal feedback), can be attributed to a reduced attentional demand during the task, which can be attributed to a visual "pop-out" or enhance effect. Also, the NASA TLX, the EEG's Alpha and Beta band, and the Heart Rate could be used to further evaluate sensory feedback systems in prosthetic applications.
Wireless communication links for brain-machine interface applications
NASA Astrophysics Data System (ADS)
Larson, L.
2016-05-01
Recent technological developments have given neuroscientists direct access to neural signals in real time, with the accompanying ability to decode the resulting information and control various prosthetic devices and gain insight into deeper aspects of cognition. These developments - along with deep brain stimulation for Parkinson's disease and the possible use of electro-stimulation for other maladies - leads to the conclusion that the widespread use electronic brain interface technology is a long term possibility. This talk will summarize the various technical challenges and approaches that have been developed to wirelessly communicate with the brain, including technology constraints, dc power limits, compression and data rate issues.
Ramsey, N F; Aarnoutse, E J; Vansteensel, M J
2014-01-01
Recent scientific achievements bring the concept of neural prosthetics for reinstating lost motor function closer to medical application. Current research involves severely paralyzed people under the age of 65, but implications for seniors with stroke or trauma-induced impairments are clearly on the horizon. Demographic changes will lead to a shortage of personnel to care for an increasing population of senior citizens, threatening maintenance of an acceptable level of care and urging ways for people to live longer at their home independent from personal assistance. This is particularly challenging when people suffer from disabilities such as partial paralysis after stroke or trauma, where daily personal assistance is required. For some of these people, neural prosthetics can reinstate some lost motor function and/or lost communication, thereby increasing independence and possibly quality of life. In this viewpoint article, we present the state of the art in decoding brain activity in the service of brain-computer interfacing. Although some noninvasive applications produce good results, we focus on brain implants that benefit from better quality brain signals. Fully implantable neural prostheses for home use are not available yet, but clinical trials are being prepared. More sophisticated systems are expected to follow in the years to come, with capabilities of interest for less severe paralysis. Eventually the combination of smart robotics and brain implants is expected to enable people to interact well enough with their environment to live an independent life in spite of motor disabilities. © 2014 S. Karger AG, Basel.
Therapeutic avenues for hereditary forms of retinal blindness.
Kannabiran, Chitra; Mariappan, Indumathi
2018-03-01
Hereditary retinal diseases, known as retinal degenerations or dystrophies, are a large group of inherited eye disorders resulting in irreversible visual loss and blindness. They develop due to mutations in one or more genes that lead to the death of the retinal photoreceptor cells. Till date, mutations in over 200 genes are known to be associated with all different forms of retinal disorders. The enormous genetic heterogeneity of this group of diseases has posedmany challenges in understanding the mechanisms of disease and in developing suitable therapies. Therapeutic avenues that are being investigated for these disorders include gene therapy to replace the defective gene, treatment with neurotrophic factors to stimulate the growth of photoreceptors, cell replacement therapy, and prosthetic devices that can capture light and transmit electrical signals through retinal neurons to the brain. Several of these are in process of human trials in patients, and have shown safety and efficacy of the treatment. A combination of approaches that involve both gene replacement and cell replacement may be required for optimum benefit.
Ozkan, Mehmet; Gündüz, Sabahattin; Yildiz, Mustafa; Duran, Nilüfer Eksi
2010-05-01
Prosthetic heart valve obstruction (PHVO) caused by pannus formation is an uncommon but serious complication. Although two-dimensional transesophageal echocardiography (2D-TEE) is the method of choice in the evaluation of PHVO, visualization of pannus is almost impossible with 2D-TEE. While demonstrating the precise aetiology of PHVO is essential for guiding the therapy, either thrombolysis for valve thrombosis or surgery for pannus formation, more sophisticated imaging techniques are needed in patients with suspected pannus formation. We present real-time 3D-TEE imaging in a patient with mechanical mitral PHVO, clearly demonstrating pannus overgrowth.
High-performance neuroprosthetic control by an individual with tetraplegia.
Collinger, Jennifer L; Wodlinger, Brian; Downey, John E; Wang, Wei; Tyler-Kabara, Elizabeth C; Weber, Douglas J; McMorland, Angus J C; Velliste, Meel; Boninger, Michael L; Schwartz, Andrew B
2013-02-16
Paralysis or amputation of an arm results in the loss of the ability to orient the hand and grasp, manipulate, and carry objects, functions that are essential for activities of daily living. Brain-machine interfaces could provide a solution to restoring many of these lost functions. We therefore tested whether an individual with tetraplegia could rapidly achieve neurological control of a high-performance prosthetic limb using this type of an interface. We implanted two 96-channel intracortical microelectrodes in the motor cortex of a 52-year-old individual with tetraplegia. Brain-machine-interface training was done for 13 weeks with the goal of controlling an anthropomorphic prosthetic limb with seven degrees of freedom (three-dimensional translation, three-dimensional orientation, one-dimensional grasping). The participant's ability to control the prosthetic limb was assessed with clinical measures of upper limb function. This study is registered with ClinicalTrials.gov, NCT01364480. The participant was able to move the prosthetic limb freely in the three-dimensional workspace on the second day of training. After 13 weeks, robust seven-dimensional movements were performed routinely. Mean success rate on target-based reaching tasks was 91·6% (SD 4·4) versus median chance level 6·2% (95% CI 2·0-15·3). Improvements were seen in completion time (decreased from a mean of 148 s [SD 60] to 112 s [6]) and path efficiency (increased from 0·30 [0·04] to 0·38 [0·02]). The participant was also able to use the prosthetic limb to do skilful and coordinated reach and grasp movements that resulted in clinically significant gains in tests of upper limb function. No adverse events were reported. With continued development of neuroprosthetic limbs, individuals with long-term paralysis could recover the natural and intuitive command signals for hand placement, orientation, and reaching, allowing them to perform activities of daily living. Defense Advanced Research Projects Agency, National Institutes of Health, Department of Veterans Affairs, and UPMC Rehabilitation Institute. Copyright © 2013 Elsevier Ltd. All rights reserved.
SSVEP-based BCI for manipulating three-dimensional contents and devices
NASA Astrophysics Data System (ADS)
Mun, Sungchul; Cho, Sungjin; Whang, Mincheol; Ju, Byeong-Kwon; Park, Min-Chul
2012-06-01
Brain Computer Interface (BCI) studies have been done to help people manipulate electronic devices in a 2D space but less has been done for a vigorous 3D environment. The purpose of this study was to investigate the possibility of applying Steady State Visual Evoked Potentials (SSVEPs) to a 3D LCD display. Eight subjects (4 females) ranging in age between 20 to 26 years old participated in the experiment. They performed simple navigation tasks on a simple 2D space and virtual environment with/without 3D flickers generated by a Flim-Type Patterned Retarder (FPR). The experiments were conducted in a counterbalanced order. The results showed that 3D stimuli enhanced BCI performance, but no significant effects were found due to the small number of subjects. Visual fatigue that might be evoked by 3D stimuli was negligible in this study. The proposed SSVEP BCI combined with 3D flickers can allow people to control home appliances and other equipment such as wheelchairs, prosthetics, and orthotics without encountering dangerous situations that may happen when using BCIs in real world. 3D stimuli-based SSVEP BCI would motivate people to use 3D displays and vitalize the 3D related industry due to its entertainment value and high performance.
Sensory feedback add-on for upper-limb prostheses.
Fallahian, Nader; Saeedi, Hassan; Mokhtarinia, Hamidreza; Tabatabai Ghomshe, Farhad
2017-06-01
Sensory feedback systems have been of great interest in upper-limb prosthetics. Despite tremendous research, there are no commercial modality-matched feedback systems. This article aims to introduce the first detachable and feedback add-on option that can be attached to in-use prostheses. A sensory feedback system was tested on a below-elbow myoelectric prosthesis. The aim was to have the amputee grasp fragile objects without crushing while other accidental feedback sources were blocked. A total of 8 successful trials (out of 10) showed that sensory feedback system decreased the amputee's visual dependency by improving awareness of his prosthesis. Sensory feedback system can be used either as post-fabrication (prosthetic add-on option) or para-fabrication (incorporated into prosthetic design). The use of these direct feedback systems can be explored with a current prosthesis before ordering new high-tech prosthesis. Clinical relevance This technical note introduces the first attach/detach-able sensory feedback system that can simply be added to in-use (myo)electric prosthesis, with no obligation to change prosthesis design or components.
Art Practice as Prosthetic Visuality
ERIC Educational Resources Information Center
Garoian, Charles R.
2010-01-01
In this lecture I explore and conceptualize the anomalous spaces of perception and memory in art practice and research where experimental and alternative discourses and pedagogies can emerge. I argue that the instabilities and slippages between what is visible and invisible, known and unknown, in these spaces enable insightful and multivalent ways…
NASA Astrophysics Data System (ADS)
Yang, Junyan; Martin, David
2003-03-01
Micromachined neural prosthetic devices facilitate the functional stimulation of and recording from the central nervous system (CNS). These devices have been fabricated to consist of silicon shanks that have gold or iridium sites along their surface. Our goal is to improve the biocompatibility and long-term performance of the neural prosthetic probes when they are implanted chronically in the brain. In our most recent efforts we have established that electrochemical polymerization can be used to deposit fuzzy coatings of conducting polymers specifically on the electrode sites. For neural prosthetic devices that are intended for long term implantation, we need to develop surfaces that provide intimate contact and promote efficient signal transport at the interface of the microelectrode array and brain tissue. We have developed methods to rapidly and reliably fabricate nanostructured conducting polymer coatings on the electrode probes using templated and surfactant-mediated techniques. Conducting polymer nanomushrooms and nanohairs of polypyrrole (PPy) were electrochemically polymerized onto the functional sites of neural probes by using either nanoporous block copolymers thin films, "track-etched" polycarbonate films or anodic aluminium oxide membranes as templates. Nanofibers of conducting polymers have also been successfully obtained by polymerizations in the presence of surfactants. The influence of current density, monomer concentration, surfactant concentration, and deposition charge on the thickness and morphology of the nanostructured conducting polymer coatings has been studied by optical, scanned probe, scanning electron and transmission electron microscopy. As compared with the normal nodular morphology of polypyrrole, the nanostructured morphologies grown from the neural electrode result in fuzzy coatings with extremely high surface area. The electrical properties of the polymer coatings were studied by Impedance Spectroscopy (IS) and Cyclic Voltammetry (CV). The significant drop in impedance in magnitude and phase angle is consistent with an increase of the surface area due to the roughened surface morphology.
Smartphones as image processing systems for prosthetic vision.
Zapf, Marc P; Matteucci, Paul B; Lovell, Nigel H; Suaning, Gregg J
2013-01-01
The feasibility of implants for prosthetic vision has been demonstrated by research and commercial organizations. In most devices, an essential forerunner to the internal stimulation circuit is an external electronics solution for capturing, processing and relaying image information as well as extracting useful features from the scene surrounding the patient. The capabilities and multitude of image processing algorithms that can be performed by the device in real-time plays a major part in the final quality of the prosthetic vision. It is therefore optimal to use powerful hardware yet to avoid bulky, straining solutions. Recent publications have reported of portable single-board computers fast enough for computationally intensive image processing. Following the rapid evolution of commercial, ultra-portable ARM (Advanced RISC machine) mobile devices, the authors investigated the feasibility of modern smartphones running complex face detection as external processing devices for vision implants. The role of dedicated graphics processors in speeding up computation was evaluated while performing a demanding noise reduction algorithm (image denoising). The time required for face detection was found to decrease by 95% from 2.5 year old to recent devices. In denoising, graphics acceleration played a major role, speeding up denoising by a factor of 18. These results demonstrate that the technology has matured sufficiently to be considered as a valid external electronics platform for visual prosthetic research.
Ninu, Andrei; Dosen, Strahinja; Muceli, Silvia; Rattay, Frank; Dietl, Hans; Farina, Dario
2014-09-01
In closed-loop control of grasping by hand prostheses, the feedback information sent to the user is usually the actual controlled variable, i.e., the grasp force. Although this choice is intuitive and logical, the force production is only the last step in the process of grasping. Therefore, this study evaluated the performance in controlling grasp strength using a hand prosthesis operated through a complete grasping sequence while varying the feedback variables (e.g., closing velocity, grasping force), which were provided to the user visually or through vibrotactile stimulation. The experiments were conducted on 13 volunteers who controlled the Otto Bock Sensor Hand Speed prosthesis. Results showed that vibrotactile patterns were able to replace the visual feedback. Interestingly, the experiments demonstrated that direct force feedback was not essential for the control of grasping force. The subjects were indeed able to control the grip strength, predictively, by estimating the grasping force from the prosthesis velocity of closing. Therefore, grasping without explicit force feedback is not completely blind, contrary to what is usually assumed. In our study we analyzed grasping with a specific prosthetic device, but the outcomes are also applicable for other devices, with one or more degrees-of-freedom. The necessary condition is that the electromyography (EMG) signal directly and proportionally controls the velocity/grasp force of the hand, which is a common approach among EMG controlled prosthetic devices. The results provide important indications on the design of closed-loop EMG controlled prosthetic systems.
2012-01-01
Background Prosthetic hand users have to rely extensively on visual feedback, which seems to lead to a high conscious burden for the users, in order to manipulate their prosthetic devices. Indirect methods (electro-cutaneous, vibrotactile, auditory cues) have been used to convey information from the artificial limb to the amputee, but the usability and advantages of these feedback methods were explored mainly by looking at the performance results, not taking into account measurements of the user’s mental effort, attention, and emotions. The main objective of this study was to explore the feasibility of using psycho-physiological measurements to assess cognitive effort when manipulating a robot hand with and without the usage of a sensory substitution system based on auditory feedback, and how these psycho-physiological recordings relate to temporal and grasping performance in a static setting. Methods 10 male subjects (26+/-years old), participated in this study and were asked to come for 2 consecutive days. On the first day the experiment objective, tasks, and experiment setting was explained. Then, they completed a 30 minutes guided training. On the second day each subject was tested in 3 different modalities: Auditory Feedback only control (AF), Visual Feedback only control (VF), and Audiovisual Feedback control (AVF). For each modality they were asked to perform 10 trials. At the end of each test, the subject had to answer the NASA TLX questionnaire. Also, during the test the subject’s EEG, ECG, electro-dermal activity (EDA), and respiration rate were measured. Results The results show that a higher mental effort is needed when the subjects rely only on their vision, and that this effort seems to be reduced when auditory feedback is added to the human-machine interaction (multimodal feedback). Furthermore, better temporal performance and better grasping performance was obtained in the audiovisual modality. Conclusions The performance improvements when using auditory cues, along with vision (multimodal feedback), can be attributed to a reduced attentional demand during the task, which can be attributed to a visual “pop-out” or enhance effect. Also, the NASA TLX, the EEG’s Alpha and Beta band, and the Heart Rate could be used to further evaluate sensory feedback systems in prosthetic applications. PMID:22682425
O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C
2016-11-09
Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.
75 FR 1835 - Qualification of Drivers; Exemption Applications; Vision
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-13
.... John E. Cain Mr. Cain, 59, has a retinal detachment in his left eye due to a traumatic injury sustained... CMV. Curtis J. Crowston Mr. Crowston, 44, has a prosthetic left eye due to a traumatic injury... to a traumatic injury sustained during childhood. The best corrected visual acuity in his left eye is...
Prosthetic EMG control enhancement through the application of man-machine principles
NASA Technical Reports Server (NTRS)
Simcox, W. A.
1977-01-01
An area in medicine that appears suitable to man-machine principles is rehabilitation research, particularly when the motor aspects of the body are involved. If one considers the limb, whether functional or not, as the machine, the brain as the controller and the neuromuscular system as the man-machine interface, the human body is reduced to a man-machine system that can benefit from the principles behind such systems. The area of rehabilitation that this paper deals with is that of an arm amputee and his prosthetic device. Reducing this area to its man-machine basics, the problem becomes one of attaining natural multiaxis prosthetic control using Electromyographic activity (EMG) as the means of communication between man and prothesis. In order to use EMG as the communication channel it must be amplified and processed to yield a high information signal suitable for control. The most common processing scheme employed is termed Mean Value Processing. This technique for extracting the useful EMG signal consists of a differential to single ended conversion to the surface activity followed by a rectification and smoothing.
O’Connell, Caitlin; Ho, Leon C.; Murphy, Matthew C.; Conner, Ian P.; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C.
2016-01-01
Human visual performance has been observed to exhibit superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine if the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI (DKI), respectively in 15 healthy individuals at 3 Tesla. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In DKI, the brain regions mapping to the lower visual field exhibited higher mean kurtosis but not fractional anisotropy or mean diffusivity when compared to the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing. PMID:27631541
A training platform for many-dimensional prosthetic devices using a virtual reality environment
Putrino, David; Wong, Yan T.; Weiss, Adam; Pesaran, Bijan
2014-01-01
Brain machine interfaces (BMIs) have the potential to assist in the rehabilitation of millions of patients worldwide. Despite recent advancements in BMI technology for the restoration of lost motor function, a training environment to restore full control of the anatomical segments of an upper limb extremity has not yet been presented. Here, we develop a virtual upper limb prosthesis with 27 independent dimensions, the anatomical dimensions of the human arm and hand, and deploy the virtual prosthesis as an avatar in a virtual reality environment (VRE) that can be controlled in real-time. The prosthesis avatar accepts kinematic control inputs that can be captured from movements of the arm and hand as well as neural control inputs derived from processed neural signals. We characterize the system performance under kinematic control using a commercially available motion capture system. We also present the performance under kinematic control achieved by two non-human primates (Macaca Mulatta) trained to use the prosthetic avatar to perform reaching and grasping tasks. This is the first virtual prosthetic device that is capable of emulating all the anatomical movements of a healthy upper limb in real-time. Since the system accepts both neural and kinematic inputs for a variety of many-dimensional skeletons, we propose it provides a customizable training platform for the acquisition of many-dimensional neural prosthetic control. PMID:24726625
Markovitz, Craig D.; Tang, Tien T.; Edge, David P.; Lim, Hubert H.
2012-01-01
The brain is a densely interconnected network that relies on populations of neurons within and across multiple nuclei to code for features leading to perception and action. However, the neurophysiology field is still dominated by the characterization of individual neurons, rather than simultaneous recordings across multiple regions, without consistent spatial reconstruction of their locations for comparisons across studies. There are sophisticated histological and imaging techniques for performing brain reconstructions. However, what is needed is a method that is relatively easy and inexpensive to implement in a typical neurophysiology lab and provides consistent identification of electrode locations to make it widely used for pooling data across studies and research groups. This paper presents our initial development of such an approach for reconstructing electrode tracks and site locations within the guinea pig inferior colliculus (IC) to identify its functional organization for frequency coding relevant for a new auditory midbrain implant (AMI). Encouragingly, the spatial error associated with different individuals reconstructing electrode tracks for the same midbrain was less than 65 μm, corresponding to an error of ~1.5% relative to the entire IC structure (~4–5 mm diameter sphere). Furthermore, the reconstructed frequency laminae of the IC were consistently aligned across three sampled midbrains, demonstrating the ability to use our method to combine location data across animals. Hopefully, through further improvements in our reconstruction method, it can be used as a standard protocol across neurophysiology labs to characterize neural data not only within the IC but also within other brain regions to help bridge the gap between cellular activity and network function. Clinically, correlating function with location within and across multiple brain regions can guide optimal placement of electrodes for the growing field of neural prosthetics. PMID:22754502
Vestibular ablation and a semicircular canal prosthesis affect postural stability during head turns
Thompson, Lara A.; Haburcakova, Csilla; Lewis, Richard F.
2016-01-01
In our study, we examined postural stability during head turns for two rhesus monkeys: one, single animal study contrasted normal and mild bilateral vestibular ablation and a second animal study contrasted severe bilateral vestibular ablation with and without prosthetic stimulation. The monkeys freely stood, unrestrained on a balance platform and made voluntary head turns between visual targets. To quantify each animals’ posture, motions of the head and trunk, as well as torque about the body’s center-of-mass, were measured. In the mildly ablated animal, we observed less foretrunk sway in comparison to the normal state. When the canal prosthesis provided electric stimulation to the severely ablated animal, it showed a decrease in trunk sway during head turns. Because the rhesus monkey with severe bilateral vestibular loss exhibited a decrease in trunk sway when receiving vestibular prosthetic stimulation, we propose that the prosthetic electrical stimulation partially restored head velocity information. Our results provide an indication that a semicircular canal prosthesis may be an effective way to improve postural stability in patients with severe peripheral vestibular dysfunction. PMID:27405997
McMullen, David P.; Hotson, Guy; Katyal, Kapil D.; Wester, Brock A.; Fifer, Matthew S.; McGee, Timothy G.; Harris, Andrew; Johannes, Matthew S.; Vogelstein, R. Jacob; Ravitz, Alan D.; Anderson, William S.; Thakor, Nitish V.; Crone, Nathan E.
2014-01-01
To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p < 0.05). After BMI-based initiation, the MPL completed the entire task 100% (one object) and 70% (three objects) of the time. The MPL took approximately 12.2 seconds for task completion after system improvements implemented for the second subject. Our hybrid-BMI design prevented all but one baseline false positive from initiating the system. The novel approach demonstrated in this proof-of-principle study, using hybrid input, supervisory control, and intelligent robotics, addresses limitations of current BMIs. PMID:24760914
McMullen, David P; Hotson, Guy; Katyal, Kapil D; Wester, Brock A; Fifer, Matthew S; McGee, Timothy G; Harris, Andrew; Johannes, Matthew S; Vogelstein, R Jacob; Ravitz, Alan D; Anderson, William S; Thakor, Nitish V; Crone, Nathan E
2014-07-01
To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p < 0.05). After BMI-based initiation, the MPL completed the entire task 100% (one object) and 70% (three objects) of the time. The MPL took approximately 12.2 s for task completion after system improvements implemented for the second subject. Our hybrid-BMI design prevented all but one baseline false positive from initiating the system. The novel approach demonstrated in this proof-of-principle study, using hybrid input, supervisory control, and intelligent robotics, addresses limitations of current BMIs.
Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis.
Chader, Gerald J; Weiland, James; Humayun, Mark S
2009-01-01
Hundreds of thousands around the world have poor vision or no vision at all due to inherited retinal degenerations (RDs) like retinitis pigmentosa (RP). Similarly, millions suffer from vision loss due to age-related macular degeneration (AMD). In both of these allied diseases, the primary target for pathology is the retinal photoreceptor cells that dysfunction and die. Secondary neurons though are relatively spared. To replace photoreceptor cell function, an electronic prosthetic device can be used such that retinal secondary neurons receive a signal that simulates an external visual image. The composite device has a miniature video camera mounted on the patient's eyeglasses, which captures images and passes them to a microprocessor that converts the data to an electronic signal. This signal, in turn, is transmitted to an array of electrodes placed on the retinal surface, which transmits the patterned signal to the remaining viable secondary neurons. These neurons (ganglion, bipolar cells, etc.) begin processing the signal and pass it down the optic nerve to the brain for final integration into a visual image. Many groups in different countries have different versions of the device, including brain implants and retinal implants, the latter having epiretinal or subretinal placement. The device furthest along in development is an epiretinal implant sponsored by Second Sight Medical Products (SSMP). Their first-generation device had 16 electrodes with human testing in a Phase 1 clinical trial beginning in 2002. The second-generation device has 60+ electrodes and is currently in Phase 2/3 clinical trial. Increased numbers of electrodes are planned for future versions of the device. Testing of the device's efficacy is a challenge since patients admitted into the trial have little or no vision. Thus, methods must be developed that accurately and reproducibly record small improvements in visual function after implantation. Standard tests such as visual acuity, visual field, electroretinography, or even contrast sensitivity may not adequately capture some aspects of improvement that relate to a better quality of life (QOL). Because of this, some tests are now relying more on "real-world functional capacity" that better assesses possible improvement in aspects of everyday living. Thus, a new battery of tests have been suggested that include (1) standard psychophysical testing, (2) performance in tasks that are used in real-life situations such as object discrimination, mobility, etc., and (3) well-crafted questionnaires that assess the patient's own feelings as to the usefulness of the device. In the Phase 1 trial of the SSMP 16-electrode device, six subjects with severe RP were implanted with ongoing, continuing testing since then. First, it was evident that even limited sight restoration is a slow, learning process that takes months for improvement to become evident. However, light perception was restored in all six patients. Moreover, all subjects ultimately saw discrete phosphenes and could perform simple visual spatial and motion tasks. As mentioned above, a Phase 2/3 trial is now ongoing with a 60+ device. A 250+ device is on the drawing board, and one with over 1000 electrodes is being planned. Each has the possibility of significantly improving a patient's vision and QOL, being smaller and safer in design and lasting for the lifetime of the patient. From theoretical modeling, it is estimated that a device with approximately 1000 electrodes could give good functional vision, i.e., face recognition and reading ability. This could be a reality within 5-10 years from now. In summary, no treatments are currently available for severely affected patients with RP and dry AMD. An electrical prosthetic device appears to offer hope in replacing the function of degenerating or dead photoreceptor neurons. Devices with new, sophisticated designs and increasing numbers of electrodes could allow for long-term restoration of functional sight in patients with improvement in object recognition, mobility, independent living, and general QOL.
Functional vision in children with perinatal brain damage.
Alimović, Sonja; Jurić, Nikolina; Bošnjak, Vlatka Mejaški
2014-09-01
Many authors have discussed the effects of visual stimulations on visual functions, but there is no research about the effects on using vision in everyday activities (i.e. functional vision). Children with perinatal brain damage can develop cerebral visual impairment with preserved visual functions (e.g. visual acuity, contrast sensitivity) but poor functional vision. Our aim was to discuss the importance of assessing and stimulating functional vision in children with perinatal brain damage. We assessed visual functions (grating visual acuity, contrast sensitivity) and functional vision (the ability of maintaining visual attention and using vision in communication) in 99 children with perinatal brain damage and visual impairment. All children were assessed before and after the visual stimulation program. Our first assessment results showed that children with perinatal brain damage had significantly more problems in functional vision than in basic visual functions. During the visual stimulation program both variables of functional vision and contrast sensitivity improved significantly, while grating acuity improved only in 2.7% of children. We also found that improvement of visual attention significantly correlated to improvement on all other functions describing vision. Therefore, functional vision assessment, especially assessment of visual attention is indispensable in early monitoring of child with perinatal brain damage.
Developing Implantable Neuroprosthetics: a New Model in Pig
Yin, Ming; Aceros, Juan; Agha, Naubahar; Minxha, Juri; Komar, Jacob; Patterson, William; Bull, Christopher; Nurmikko, Arto
2014-01-01
A new model has been established in the domestic pig for neural prosthetic device development and testing. To this end, we report on a complete neural prosthetic developmental system using a wireless sensor as the implant, a pig as the animal model, and a novel data acquisition paradigm for actuator control. A new type of stereotactic frame with clinically-inspired fixations pins that place the pig brain in standard surgical plane was developed and tested with success during the implantation of the microsystem. The microsystem implanted was an ultralow power (12.5mW) 16-channel intracortical/epicranial device transmitting broadband (40kS/s) data over a wireless infrared telemetric link. Pigs were implanted and neural data was collected over a period of 5 weeks, clearly showing single unit spiking activity. PMID:22254977
Developing implantable neuroprosthetics: a new model in pig.
Borton, David; Yin, Ming; Aceros, Juan; Agha, Naubahar; Minxha, Juri; Komar, Jacob; Patterson, William; Bull, Christopher; Nurmikko, Arto
2011-01-01
A new model has been established in the domestic pig for neural prosthetic device development and testing. To this end, we report on a complete neural prosthetic developmental system using a wireless sensor as the implant, a pig as the animal model, and a novel data acquisition paradigm for actuator control. A new type of stereotactic frame with clinically-inspired fixations pins that place the pig brain in standard surgical plane was developed and tested with success during the implantation of the microsystem. The microsystem implanted was an ultra-low power (12.5 mW) 16-channel intracortical/epicranial device transmitting broadband (40 kS/s) data over a wireless infrared telemetric link. Pigs were implanted and neural data was collected over a period of 5 weeks, clearly showing single unit spiking activity.
77 FR 27847 - Qualification of Drivers; Exemption Applications; Vision
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-11
... vision in his right eye due to a traumatic injury sustained at age 14. The best corrected visual acuity... CMV. John C. Smith Mr. Smith, 54, has a prosthetic right eye due to a traumatic injury sustained in... CMV. John F. Lynch Mr. Lynch, 35, has complete loss of vision in his left eye due to a traumatic...
Yang, Yan-Li; Deng, Hong-Xia; Xing, Gui-Yang; Xia, Xiao-Luan; Li, Hai-Fang
2015-02-01
It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.
Visual processing in the central bee brain.
Paulk, Angelique C; Dacks, Andrew M; Phillips-Portillo, James; Fellous, Jean-Marc; Gronenberg, Wulfila
2009-08-12
Visual scenes comprise enormous amounts of information from which nervous systems extract behaviorally relevant cues. In most model systems, little is known about the transformation of visual information as it occurs along visual pathways. We examined how visual information is transformed physiologically as it is communicated from the eye to higher-order brain centers using bumblebees, which are known for their visual capabilities. We recorded intracellularly in vivo from 30 neurons in the central bumblebee brain (the lateral protocerebrum) and compared these neurons to 132 neurons from more distal areas along the visual pathway, namely the medulla and the lobula. In these three brain regions (medulla, lobula, and central brain), we examined correlations between the neurons' branching patterns and their responses primarily to color, but also to motion stimuli. Visual neurons projecting to the anterior central brain were generally color sensitive, while neurons projecting to the posterior central brain were predominantly motion sensitive. The temporal response properties differed significantly between these areas, with an increase in spike time precision across trials and a decrease in average reliable spiking as visual information processing progressed from the periphery to the central brain. These data suggest that neurons along the visual pathway to the central brain not only are segregated with regard to the physical features of the stimuli (e.g., color and motion), but also differ in the way they encode stimuli, possibly to allow for efficient parallel processing to occur.
Wagner, Martin G; Hatt, Charles R; Dunkerley, David A P; Bodart, Lindsay E; Raval, Amish N; Speidel, Michael A
2018-04-16
Transcatheter aortic valve replacement (TAVR) is a minimally invasive procedure in which a prosthetic heart valve is placed and expanded within a defective aortic valve. The device placement is commonly performed using two-dimensional (2D) fluoroscopic imaging. Within this work, we propose a novel technique to track the motion and deformation of the prosthetic valve in three dimensions based on biplane fluoroscopic image sequences. The tracking approach uses a parameterized point cloud model of the valve stent which can undergo rigid three-dimensional (3D) transformation and different modes of expansion. Rigid elements of the model are individually rotated and translated in three dimensions to approximate the motions of the stent. Tracking is performed using an iterative 2D-3D registration procedure which estimates the model parameters by minimizing the mean-squared image values at the positions of the forward-projected model points. Additionally, an initialization technique is proposed, which locates clusters of salient features to determine the initial position and orientation of the model. The proposed algorithms were evaluated based on simulations using a digital 4D CT phantom as well as experimentally acquired images of a prosthetic valve inside a chest phantom with anatomical background features. The target registration error was 0.12 ± 0.04 mm in the simulations and 0.64 ± 0.09 mm in the experimental data. The proposed algorithm could be used to generate 3D visualization of the prosthetic valve from two projections. In combination with soft-tissue sensitive-imaging techniques like transesophageal echocardiography, this technique could enable 3D image guidance during TAVR procedures. © 2018 American Association of Physicists in Medicine.
ELsyad, Moustafa Abdou
2012-01-01
This report aimed to compare prosthetic aspects and patient satisfaction during a 3-year randomized clinical trial of bar- and implant-retained mandibular overdentures attached with either resilient liners or clips. Thirty edentulous male patients (mean age: 62.5 years) received two implants in the anterior mandible after being allocated into two equal groups (according to attachment type received) using balanced randomization. After 3 months, implants were connected with resilient bars. New maxillary complete dentures were then constructed, and mandibular overdentures were retained to the bars with either clips (group I) or silicone resilient liners (group II). Subjects indicated satisfaction with their prostheses using a questionnaire and visual analog scale. Patient satisfaction and prosthetic complications were recorded for both attachments at 6 months and 1 and 3 years after overdenture insertion. Comfort and stability with the maxillary denture and ease of hygiene procedures were rated higher in group II, while ease of handling the dentures was rated higher in group I. No significant differences in other parameters of patient satisfaction between groups were noted after 3 years. The mean number of prosthetic adjustments and repairs in group I (11.9) was significantly higher (P = .00) compared to that in group II (4.8). The most common complication in group I was clip wear, while separation of the resilient liner from the denture base was the most common problem in group II. Hyperplasia under the bar and flabby ridge in the maxilla occurred significantly more often in group I compared to group II. Resilient liner-retained mandibular overdentures had comparable patient satisfaction, less prosthetic maintenance and costs, and less soft tissue complications when compared to clip-retained ones after 3 years.
Retinal Prosthetics, Optogenetics, and Chemical Photoswitches
2015-01-01
Three technologies have emerged as therapies to restore light sensing to profoundly blind patients suffering from late-stage retinal degenerations: (1) retinal prosthetics, (2) optogenetics, and (3) chemical photoswitches. Prosthetics are the most mature and the only approach in clinical practice. Prosthetic implants require complex surgical intervention and provide only limited visual resolution but can potentially restore navigational ability to many blind patients. Optogenetics uses viral delivery of type 1 opsin genes from prokaryotes or eukaryote algae to restore light responses in survivor neurons. Targeting and expression remain major problems, but are potentially soluble. Importantly, optogenetics could provide the ultimate in high-resolution vision due to the long persistence of gene expression achieved in animal models. Nevertheless, optogenetics remains challenging to implement in human eyes with large volumes, complex disease progression, and physical barriers to viral penetration. Now, a new generation of photochromic ligands or chemical photoswitches (azobenzene-quaternary ammonium derivatives) can be injected into a degenerated mouse eye and, in minutes to hours, activate light responses in neurons. These photoswitches offer the potential for rapidly and reversibly screening the vision restoration expected in an individual patient. Chemical photoswitch variants that persist in the cell membrane could make them a simple therapy of choice, with resolution and sensitivity equivalent to optogenetics approaches. A major complexity in treating retinal degenerations is retinal remodeling: pathologic network rewiring, molecular reprogramming, and cell death that compromise signaling in the surviving retina. Remodeling forces a choice between upstream and downstream targeting, each engaging different benefits and defects. Prosthetics and optogenetics can be implemented in either mode, but the use of chemical photoswitches is currently limited to downstream implementations. Even so, given the high density of human foveal ganglion cells, the ultimate chemical photoswitch treatment could deliver cost-effective, high-resolution vision for the blind. PMID:25089879
Design of a high-resolution optoelectronic retinal prosthesis.
Palanker, Daniel; Vankov, Alexander; Huie, Phil; Baccus, Stephen
2005-03-01
It has been demonstrated that electrical stimulation of the retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. However, current retinal implants provide very low resolution (just a few electrodes), whereas at least several thousand pixels would be required for functional restoration of sight. This paper presents the design of an optoelectronic retinal prosthetic system with a stimulating pixel density of up to 2500 pix mm(-2) (corresponding geometrically to a maximum visual acuity of 20/80). Requirements on proximity of neural cells to the stimulation electrodes are described as a function of the desired resolution. Two basic geometries of sub-retinal implants providing required proximity are presented: perforated membranes and protruding electrode arrays. To provide for natural eye scanning of the scene, rather than scanning with a head-mounted camera, the system operates similar to 'virtual reality' devices. An image from a video camera is projected by a goggle-mounted collimated infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. The goggles are transparent to visible light, thus allowing for the simultaneous use of remaining natural vision along with prosthetic stimulation. Optical delivery of visual information to the implant allows for real-time image processing adjustable to retinal architecture, as well as flexible control of image processing algorithms and stimulation parameters.
Design of a high-resolution optoelectronic retinal prosthesis
NASA Astrophysics Data System (ADS)
Palanker, Daniel; Vankov, Alexander; Huie, Phil; Baccus, Stephen
2005-03-01
It has been demonstrated that electrical stimulation of the retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. However, current retinal implants provide very low resolution (just a few electrodes), whereas at least several thousand pixels would be required for functional restoration of sight. This paper presents the design of an optoelectronic retinal prosthetic system with a stimulating pixel density of up to 2500 pix mm-2 (corresponding geometrically to a maximum visual acuity of 20/80). Requirements on proximity of neural cells to the stimulation electrodes are described as a function of the desired resolution. Two basic geometries of sub-retinal implants providing required proximity are presented: perforated membranes and protruding electrode arrays. To provide for natural eye scanning of the scene, rather than scanning with a head-mounted camera, the system operates similar to 'virtual reality' devices. An image from a video camera is projected by a goggle-mounted collimated infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. The goggles are transparent to visible light, thus allowing for the simultaneous use of remaining natural vision along with prosthetic stimulation. Optical delivery of visual information to the implant allows for real-time image processing adjustable to retinal architecture, as well as flexible control of image processing algorithms and stimulation parameters.
Impact of routine cerebral CT angiography on treatment decisions in infective endocarditis.
Meshaal, Marwa Sayed; Kassem, Hussein Heshmat; Samir, Ahmad; Zakaria, Ayman; Baghdady, Yasser; Rizk, Hussein Hassan
2015-01-01
Infective endocarditis (IE) is commonly complicated by cerebral embolization and hemorrhage secondary to intracranial mycotic aneurysms (ICMAs). These complications are associated with poor outcome and may require diagnostic and therapeutic plans to be modified. However, routine screening by brain CT and CT angiography (CTA) is not standard practice. We aimed to study the impact of routine cerebral CTA on treatment decisions for patients with IE. From July 2007 to December 2012, we prospectively recruited 81 consecutive patients with definite left-sided IE according to modified Duke's criteria. All patients had routine brain CTA conducted within one week of admission. All patients with ICMA underwent four-vessel conventional angiography. Invasive treatment was performed for ruptured aneurysms, aneurysms ≥ 5 mm, and persistent aneurysms despite appropriate therapy. Surgical clipping was performed for leaking aneurysms if not amenable to intervention. The mean age was 30.43 ± 8.8 years and 60.5% were males. Staph aureus was the most common organism (32.3%). Among the patients, 37% had underlying rheumatic heart disease, 26% had prosthetic valves, 23.5% developed IE on top of a structurally normal heart and 8.6% had underlying congenital heart disease. Brain CT/CTA revealed that 51 patients had evidence of cerebral embolization, of them 17 were clinically silent. Twenty-six patients (32%) had ICMA, of whom 15 were clinically silent. Among the patients with ICMAs, 11 underwent endovascular treatment and 2 underwent neurovascular surgery. The brain CTA findings prompted different treatment choices in 21 patients (25.6%). The choices were aneurysm treatment before cardiac surgery rather than at follow-up, valve replacement by biological valve instead of mechanical valve, and withholding anticoagulation in patients with prosthetic valve endocarditis for fear of aneurysm rupture. Routine brain CT/CTA resulted in changes in the treatment plan in a significant proportion of patients with IE, even those without clinically evident neurological disease. Routine brain CT/CTA may be indicated in all hospitalized patients with IE.
Gupta, Rahul; Ashe, James
2009-06-01
Brain-machine interfaces (BMIs) hold a lot of promise for restoring some level of motor function to patients with neuronal disease or injury. Current BMI approaches fall into two broad categories--those that decode discrete properties of limb movement (such as movement direction and movement intent) and those that decode continuous variables (such as position and velocity). However, to enable the prosthetic devices to be useful for common everyday tasks, precise control of the forces applied by the end-point of the prosthesis (e.g., the hand) is also essential. Here, we used linear regression and Kalman filter methods to show that neural activity recorded from the motor cortex of the monkey during movements in a force field can be used to decode the end-point forces applied by the subject successfully and with high fidelity. Furthermore, the models exhibit some generalization to novel task conditions. We also demonstrate how the simultaneous prediction of kinematics and kinetics can be easily achieved using the same framework, without any degradation in decoding quality. Our results represent a useful extension of the current BMI technology, making dynamic control of a prosthetic device a distinct possibility in the near future.
Wang, Jing; Li, Heng; Fu, Weizhen; Chen, Yao; Li, Liming; Lyu, Qing; Han, Tingting; Chai, Xinyu
2016-01-01
Retinal prostheses have the potential to restore partial vision. Object recognition in scenes of daily life is one of the essential tasks for implant wearers. Still limited by the low-resolution visual percepts provided by retinal prostheses, it is important to investigate and apply image processing methods to convey more useful visual information to the wearers. We proposed two image processing strategies based on Itti's visual saliency map, region of interest (ROI) extraction, and image segmentation. Itti's saliency model generated a saliency map from the original image, in which salient regions were grouped into ROI by the fuzzy c-means clustering. Then Grabcut generated a proto-object from the ROI labeled image which was recombined with background and enhanced in two ways--8-4 separated pixelization (8-4 SP) and background edge extraction (BEE). Results showed that both 8-4 SP and BEE had significantly higher recognition accuracy in comparison with direct pixelization (DP). Each saliency-based image processing strategy was subject to the performance of image segmentation. Under good and perfect segmentation conditions, BEE and 8-4 SP obtained noticeably higher recognition accuracy than DP, and under bad segmentation condition, only BEE boosted the performance. The application of saliency-based image processing strategies was verified to be beneficial to object recognition in daily scenes under simulated prosthetic vision. They are hoped to help the development of the image processing module for future retinal prostheses, and thus provide more benefit for the patients. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Photovoltaic restoration of sight with high visual acuity
Lorach, Henri; Goetz, Georges; Smith, Richard; Lei, Xin; Mandel, Yossi; Kamins, Theodore; Mathieson, Keith; Huie, Philip; Harris, James; Sher, Alexander; Palanker, Daniel
2015-01-01
Patients with retinal degeneration lose sight due to gradual demise of photoreceptors. Electrical stimulation of the surviving retinal neurons provides an alternative route for delivery of visual information. We demonstrate that subretinal arrays with 70 μm photovoltaic pixels provide highly localized stimulation, with electrical and visual receptive fields of comparable sizes in rat retinal ganglion cells. Similarly to normal vision, retinal response to prosthetic stimulation exhibits flicker fusion at high frequencies, adaptation to static images and non-linear spatial summation. In rats with retinal degeneration, these photovoltaic arrays provide spatial resolution of 64 ± 11 μm, corresponding to half of the normal visual acuity in pigmented rats. Ease of implantation of these wireless and modular arrays, combined with their high resolution opens the door to functional restoration of sight. PMID:25915832
Cerebral venous hypertension and blindness: a reversible complication.
Cuadra, Salvador A; Padberg, Frank T; Turbin, Roger E; Farkas, Jeffrey; Frohman, Larry P
2005-10-01
A 57-year-old woman developed blindness during treatment for sarcoidosis-induced end-stage renal disease. An initial renal transplantation failed, and hemoaccess was maintained with multiple central catheters and upper extremity prosthetic arteriovenous grafts. A successful second transplantation eliminated her need for hemodialysis, but a right brachial to internal jugular graft remained patent. Progressive visual loss 2 years after transplantation prompted ophthalmic evaluation which initially revealed unilateral left optic nerve edema and visual loss, ultimately worsening over several months to no light perception in the left eye, 20/60 vision in the right eye, and bilateral papilledema. Arteriography demonstrated cerebral venous hypertension attributed to the functioning hemoaccess graft. Permanent graft occlusion normalized the papilledema, and visual field defects in the right eye and visual acuity returned to 20/20 in the right eye.
A massively asynchronous, parallel brain.
Zeki, Semir
2015-05-19
Whether the visual brain uses a parallel or a serial, hierarchical, strategy to process visual signals, the end result appears to be that different attributes of the visual scene are perceived asynchronously--with colour leading form (orientation) by 40 ms and direction of motion by about 80 ms. Whatever the neural root of this asynchrony, it creates a problem that has not been properly addressed, namely how visual attributes that are perceived asynchronously over brief time windows after stimulus onset are bound together in the longer term to give us a unified experience of the visual world, in which all attributes are apparently seen in perfect registration. In this review, I suggest that there is no central neural clock in the (visual) brain that synchronizes the activity of different processing systems. More likely, activity in each of the parallel processing-perceptual systems of the visual brain is reset independently, making of the brain a massively asynchronous organ, just like the new generation of more efficient computers promise to be. Given the asynchronous operations of the brain, it is likely that the results of activities in the different processing-perceptual systems are not bound by physiological interactions between cells in the specialized visual areas, but post-perceptually, outside the visual brain.
Object discrimination using optimized multi-frequency auditory cross-modal haptic feedback.
Gibson, Alison; Artemiadis, Panagiotis
2014-01-01
As the field of brain-machine interfaces and neuro-prosthetics continues to grow, there is a high need for sensor and actuation mechanisms that can provide haptic feedback to the user. Current technologies employ expensive, invasive and often inefficient force feedback methods, resulting in an unrealistic solution for individuals who rely on these devices. This paper responds through the development, integration and analysis of a novel feedback architecture where haptic information during the neural control of a prosthetic hand is perceived through multi-frequency auditory signals. Through representing force magnitude with volume and force location with frequency, the feedback architecture can translate the haptic experiences of a robotic end effector into the alternative sensory modality of sound. Previous research with the proposed cross-modal feedback method confirmed its learnability, so the current work aimed to investigate which frequency map (i.e. frequency-specific locations on the hand) is optimal in helping users distinguish between hand-held objects and tasks associated with them. After short use with the cross-modal feedback during the electromyographic (EMG) control of a prosthetic hand, testing results show that users are able to use audial feedback alone to discriminate between everyday objects. While users showed adaptation to three different frequency maps, the simplest map containing only two frequencies was found to be the most useful in discriminating between objects. This outcome provides support for the feasibility and practicality of the cross-modal feedback method during the neural control of prosthetics.
NASA Astrophysics Data System (ADS)
Zapf, Marc Patrick H.; Boon, Mei-Ying; Matteucci, Paul B.; Lovell, Nigel H.; Suaning, Gregg J.
2015-06-01
Objective. The prospective efficacy of a future peripheral retinal prosthesis complementing residual vision to raise mobility performance in non-end stage retinitis pigmentosa (RP) was evaluated using simulated prosthetic vision (SPV). Approach. Normally sighted volunteers were fitted with a wide-angle head-mounted display and carried out mobility tasks in photorealistic virtual pedestrian scenarios. Circumvention of low-lying obstacles, path following, and navigating around static and moving pedestrians were performed either with central simulated residual vision of 10° alone or enhanced by assistive SPV in the lower and lateral peripheral visual field (VF). Three layouts of assistive vision corresponding to hypothetical electrode array layouts were compared, emphasizing higher visual acuity, a wider visual angle, or eccentricity-dependent acuity across an intermediate angle. Movement speed, task time, distance walked and collisions with the environment were analysed as performance measures. Main results. Circumvention of low-lying obstacles was improved with all tested configurations of assistive SPV. Higher-acuity assistive vision allowed for greatest improvement in walking speeds—14% above that of plain residual vision, while only wide-angle and eccentricity-dependent vision significantly reduced the number of collisions—both by 21%. Navigating around pedestrians, there were significant reductions in collisions with static pedestrians by 33% and task time by 7.7% with the higher-acuity layout. Following a path, higher-acuity assistive vision increased walking speed by 9%, and decreased collisions with stationary cars by 18%. Significance. The ability of assistive peripheral prosthetic vision to improve mobility performance in persons with constricted VFs has been demonstrated. In a prospective peripheral visual prosthesis, electrode array designs need to be carefully tailored to the scope of tasks in which a device aims to assist. We posit that maximum benefit might come from application alongside existing visual aids, to further raise life quality of persons living through the prolonged early stages of RP.
Torcato, Leonardo Bueno; Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Santiago Júnior, Joel Ferreira; de Faria Almeida, Daniel Augusto
2015-11-01
Clinicians should consider parafunctional occlusal load when planning treatment. Prosthetic connections can reduce the stress distribution on an implant-supported prosthesis. The purpose of this 3-dimensional finite element study was to assess the influence of parafunctional loading and prosthetic connections on stress distribution. Computer-aided design software was used to construct 3 models. Each model was composed of a bone and an implant (external hexagon, internal hexagon, or Morse taper) with a crown. Finite element analysis software was used to generate the finite element mesh and establish the loading and boundary conditions. A normal force (200-N axial load and 100-N oblique load) and parafunctional force (1000-N axial and 500-N oblique load) were applied. Results were visualized as the maximum principal stress. Three-way analysis of variance and Tukey test were performed, and the percentage of contribution of each variable to the stress concentration was calculated from sum-of squares-analysis. Stress was concentrated around the implant at the cortical bone, and models with the external hexagonal implant showed the highest stresses (P<.001). Oblique loads produced high tensile stress concentrations on the site opposite the load direction. Internal connection implants presented the most favorable biomechanical situation, whereas the least favorable situation was the biomechanical behavior of external connection implants. Parafunctional loading increased the magnitude of stress by 3 to 4 times. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Alcala, Yvonne; Olivecrona, Henrik; Olivecrona, Lotta; Noz, Marilyn E.; Maguire, Gerald Q., Jr.; Zeleznik, Michael P.; Sollerman, Christer
2005-04-01
The purpose of this study was to extend previous work to detect migration of total wrist arthroplasty non-invasively, and with greater accuracy. Two human cadaverous arms, each with a cemented total wrist implant, were used in this study. In one of the arms, 1 mm tantalum balls were implanted, six in the carpal bones and five in the radius. Five CT scans of each arm were acquired, changing the position of the arm each time to mimic different positions patients might take on repeated examinations. Registration of CT volume data sets was performed using an extensively validated, 3D semi-automatic volume fusion tool in which co-homologous point pairs (landmarks) are chosen on each volume to be registered. Three sets of ten cases each were obtained by placing landmarks on 1) bone only (using only arm one), 2) tantalum implants only, and 3) bone and tantalum implants (both using only arm two). The accuracy of the match was assessed visually in 2D and 3D, and numerically by calculating the distance difference between the actual position of the transformed landmarks and their ideal position (i.e., the reference landmark positions). All cases were matched visually within one width of cortical bone and numerically within one half CT voxel (0.32 mm, p = 0.05). This method matched only the bone/arm and not the prosthetic component per se, thus making it possible to detect prosthetic movement and wear. This method was clinically used for one patient with pain. Loosening of the carpal prosthetic component was accurately detected and this was confirmed at surgery.
Cressey, Anna; Jacobs, Deborah S; Remington, Crystal; Carrasquillo, Karen G
2018-06-01
To demonstrate clearing of chronic corneal opacities and improvement of visual acuity with the use of BostonSight prosthetic replacement of the ocular surface ecosystem (PROSE) treatment in ocular surface disease. We undertook retrospective analysis of the medical records of a series of patients who underwent PROSE treatment from August 2006 to December 2014. Patients were referred for ocular surface disease of various etiologies. Primary inclusion criterion was corneal opacity that improved with PROSE treatment. Patients were excluded if topical steroids or adjuvant therapy used once PROSE treatment was initiated. Underlying disease, prior treatment, clinical presentation, and clinical course were extracted from the medical record. Four patients are included in this series. There were three females and one male; median age at time of treatment initiation was 30 years (range = 0.5-58 years). Median duration of PROSE treatment at time of retrospective analysis was 3.5 years (range = 1-8 years). Two cases had corneal opacification in the context of neurotrophic keratopathy: a unilateral case due to presumed herpes simplex keratitis and a bilateral case due to congenital corneal anesthesia associated with familial dysautonomia. One case had corneal opacity from exposure related to seventh nerve palsy, and one had corneal opacification associated with recurrent surface breakdown, neurotrophic keratopathy, and limbal stem deficiency of uncertain etiology. After consistent wear of prosthetic devices used in PROSE treatment for support of the ocular surface, visual acuity improved and clearing of the opacities was observed, without use of topical steroids or adjuvant therapy. These cases demonstrate clearing of chronic corneal opacity with PROSE treatment for ocular surface disease. This clearing can occur with no adjuvant therapy, suggesting that restoration of ocular surface function and integrity allows for corneal remodeling.
Guo, Bing-bing; Zheng, Xiao-lin; Lu, Zhen-gang; Wang, Xing; Yin, Zheng-qin; Hou, Wen-sheng; Meng, Ming
2015-01-01
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only “see” pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern. PMID:26692860
Ueda, Tomohiro; Teshima, Hideki; Fukunaga, Shuji; Aoyagi, Shigeaki; Tanaka, Hiroyuki
2013-01-01
This study was performed to evaluate the diagnostic role of electrocardiographically gated multidetector-row computed tomography (MDCT) for prosthetic valve obstruction (PVO) in the aortic position. Between 2002 and 2006, 9 patients were diagnosed with PVO of an aortic bileaflet mechanical valve based on echocardiographic and cineradiographic criteria. These 9 patients were examined using MDCT before replacement of the mechanical valve, and intraoperative findings were compared to morphologic periprosthetic abnormalities observed on MDCT. CT attenuation (Hounsfield units; HU) of the periprosthetic abnormalities was measured to investigate the underlying cause of the PVO. MDCT showed subprosthetic masses extending beyond the prosthetic ring into the orifice of the valve. At reoperation, presence of subprosthetic pannus was confirmed in all of the 9 patients, but no periprosthetic thrombus was found. The mean CT attenuation of the subprosthetic pannus was 170 HU, and it was significantly greater than that obtained from the interventricular septum (108 HU; P<0.0001). MDCT can be used to clearly visualize subprosthetic pannus causing PVO and the mean CT attenuation of subprosthetic pannus is significantly higher than that of the interventricular septum on MDCT.
NASA Astrophysics Data System (ADS)
Hajj-Hassan, Mohamad; Gonzalez, Timothy; Ghafer-Zadeh, Ebrahim; Chodavarapu, Vamsy; Musallam, Sam; Andrews, Mark
2009-02-01
Neural microelectrodes are an important component of neural prosthetic systems which assist paralyzed patients by allowing them to operate computers or robots using their neural activity. These microelectrodes are also used in clinical settings to localize the locus of seizure initiation in epilepsy or to stimulate sub-cortical structures in patients with Parkinson's disease. In neural prosthetic systems, implanted microelectrodes record the electrical potential generated by specific thoughts and relay the signals to algorithms trained to interpret these thoughts. In this paper, we describe novel elongated multi-site neural electrodes that can record electrical signals and specific neural biomarkers and that can reach depths greater than 8mm in the sulcus of non-human primates (monkeys). We hypothesize that additional signals recorded by the multimodal probes will increase the information yield when compared to standard probes that record just electropotentials. We describe integration of optical biochemical sensors with neural microelectrodes. The sensors are made using sol-gel derived xerogel thin films that encapsulate specific biomarker responsive luminophores in their nanostructured pores. The desired neural biomarkers are O2, pH, K+, and Na+ ions. As a prototype, we demonstrate direct-write patterning to create oxygen-responsive xerogel waveguide structures on the neural microelectrodes. The recording of neural biomarkers along with electrical activity could help the development of intelligent and more userfriendly neural prosthesis/brain machine interfaces as well as aid in providing answers to complex brain diseases and disorders.
A massively asynchronous, parallel brain
Zeki, Semir
2015-01-01
Whether the visual brain uses a parallel or a serial, hierarchical, strategy to process visual signals, the end result appears to be that different attributes of the visual scene are perceived asynchronously—with colour leading form (orientation) by 40 ms and direction of motion by about 80 ms. Whatever the neural root of this asynchrony, it creates a problem that has not been properly addressed, namely how visual attributes that are perceived asynchronously over brief time windows after stimulus onset are bound together in the longer term to give us a unified experience of the visual world, in which all attributes are apparently seen in perfect registration. In this review, I suggest that there is no central neural clock in the (visual) brain that synchronizes the activity of different processing systems. More likely, activity in each of the parallel processing-perceptual systems of the visual brain is reset independently, making of the brain a massively asynchronous organ, just like the new generation of more efficient computers promise to be. Given the asynchronous operations of the brain, it is likely that the results of activities in the different processing-perceptual systems are not bound by physiological interactions between cells in the specialized visual areas, but post-perceptually, outside the visual brain. PMID:25823871
How cortical neurons help us see: visual recognition in the human brain
Blumberg, Julie; Kreiman, Gabriel
2010-01-01
Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us understand the computations performed by visual cortex. PMID:20811161
The contribution of single case studies to the neuroscience of vision.
Zihl, Josef; Heywood, Charles A
2016-03-01
Visual neuroscience is concerned with the neurobiological foundations of visual perception, that is, the morphological, physiological, and functional organization of the visual brain and its co-operative partners. One important approach for understanding the functional organization of the visual brain is the study of visual perception from the pathological perspective. The study of patients with focal injury to the visual brain allows conclusions about the representation of visual perceptual functions in the framework of association and dissociation of functions. Selective disorders have been reported for more "elementary" visual capabilities, for example, color and movement vision, but also for visuo-cognitive capacities, such as visual agnosia or the visual field of attention. Because these visual disorders occur rather seldom as selective and specific dysfunctions, single cases have always played, and still play, a significant role in gaining insights into the functional organization of the visual brain. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Visual function at 11 years of age in preterm-born children with and without fetal brain sparing.
Kok, Joke H; Prick, Liesbeth; Merckel, Elly; Everhard, Yolande; Verkerk, Gijs J Q; Scherjon, Sicco A
2007-06-01
We have demonstrated earlier an accelerated maturation of the visual evoked potential in the first year of life in preterm infants with antenatal brain sparing. We have now assessed visual functioning at 11 years of age in the same cohort and compared the groups with and without brain sparing. One hundred sixteen survivors included in a study on the outcome of preterm infants born at <33 weeks' gestation with and without fetal brain sparing and admitted to the NICU were followed extensively. Ninety-eight infants (85%) were again assessed at 11 years of age. Data were available for fetal Doppler measurements indicating brain sparing, neonatal cerebral ultrasound scanning, and developmental outcome in the first 5 years. Mean birth weight was 1303 g; mean gestational age was 29.8 weeks. The infants were divided into 2 groups with and without brain sparing. Visual functioning was estimated by measuring visual acuity, visual fields, eye position, and binocular function and by visual motor tests. Six percent of the children were found to have a visual acuity of <0.8, 12% had strabismus, and 14% to 46% showed abnormal results on the visual motor tests. No statistical differences were found between the 2 groups. However, children with severe cerebral ultrasound diagnoses in the neonatal period were found to have significantly more abnormalities on visual functioning and lower scores on visual motor tests than children without these morbidities. Children with fetal brain sparing do not demonstrate a different development of their visual functioning at late school age. However, an abnormal cerebral ultrasound in the neonatal period is associated with impaired visual function in later life.
A sLORETA study for gaze-independent BCI speller.
Xingwei An; Jinwen Wei; Shuang Liu; Dong Ming
2017-07-01
EEG-based BCI (brain-computer-interface) speller, especially gaze-independent BCI speller, has become a hot topic in recent years. It provides direct spelling device by non-muscular method for people with severe motor impairments and with limited gaze movement. Brain needs to conduct both stimuli-driven and stimuli-related attention in fast presented BCI paradigms for such BCI speller applications. Few researchers studied the mechanism of brain response to such fast presented BCI applications. In this study, we compared the distribution of brain activation in visual, auditory, and audio-visual combined stimuli paradigms using sLORETA (standardized low-resolution brain electromagnetic tomography). Between groups comparisons showed the importance of visual and auditory stimuli in audio-visual combined paradigm. They both contribute to the activation of brain regions, with visual stimuli being the predominate stimuli. Visual stimuli related brain region was mainly located at parietal and occipital lobe, whereas response in frontal-temporal lobes might be caused by auditory stimuli. These regions played an important role in audio-visual bimodal paradigms. These new findings are important for future study of ERP speller as well as the mechanism of fast presented stimuli.
Fromherz, Peter
2006-12-01
We consider the direct electrical interfacing of semiconductor chips with individual nerve cells and brain tissue. At first, the structure of the cell-chip contact is studied. Then we characterize the electrical coupling of ion channels--the electrical elements of nerve cells--with transistors and capacitors in silicon chips. On that basis it is possible to implement signal transmission between microelectronics and the microionics of nerve cells in both directions. Simple hybrid neuroelectronic systems are assembled with neuron pairs and with small neuronal networks. Finally, the interfacing with capacitors and transistors is extended to brain tissue cultured on silicon chips. The application of highly integrated silicon chips allows an imaging of neuronal activity with high spatiotemporal resolution. The goal of the work is an integration of neuronal network dynamics with digital electronics on a microscopic level with respect to experiments in brain research, medical prosthetics, and information technology.
Induced sensorimotor brain plasticity controls pain in phantom limb patients
Yanagisawa, Takufumi; Fukuma, Ryohei; Seymour, Ben; Hosomi, Koichi; Kishima, Haruhiko; Shimizu, Takeshi; Yokoi, Hiroshi; Hirata, Masayuki; Yoshimine, Toshiki; Kamitani, Yukiyasu; Saitoh, Youichi
2016-01-01
The cause of pain in a phantom limb after partial or complete deafferentation is an important problem. A popular but increasingly controversial theory is that it results from maladaptive reorganization of the sensorimotor cortex, suggesting that experimental induction of further reorganization should affect the pain, especially if it results in functional restoration. Here we use a brain–machine interface (BMI) based on real-time magnetoencephalography signals to reconstruct affected hand movements with a robotic hand. BMI training induces significant plasticity in the sensorimotor cortex, manifested as improved discriminability of movement information and enhanced prosthetic control. Contrary to our expectation that functional restoration would reduce pain, the BMI training with the phantom hand intensifies the pain. In contrast, BMI training designed to dissociate the prosthetic and phantom hands actually reduces pain. These results reveal a functional relevance between sensorimotor cortical plasticity and pain, and may provide a novel treatment with BMI neurofeedback. PMID:27807349
Cerebral hemorrhage in infective endocarditis caused by Actinobacillus actinomycetemcomitans.
Lin, Gen-Min; Chu, Kai-Min; Juan, Chun-Jung; Chang, Feng-Yee
2007-11-01
Cerebral hemorrhage occurs rarely in endocarditis caused by Actinobacillus actinomycetemcomitans. A 51-year-old man with a prosthetic mitral valve, who had been prophylactically treated (7 years) with warfarin, presented with intermittent fever. On admission, a Levine grade II/VI systolic cardiac murmur was detected. A transthoracic echocardiogram was negative for valve vegetation. Cefepime (1 g every 8 hours) was administered intravenously. On day 4, culturing of Gram-negative bacilli from blood and a transesophageal echocardiogram revealed a small oscillating filament attached to lateral mitral prosthetic ring on the atrial side. Ceftriaxone (2 g once daily) was started. Gait instability and left-side weakness developed abruptly 2 weeks later; brain magnetic resonance imaging revealed a hematoma over the right parietal-occipital lobe. Ceftriaxone was adjusted to 2 g every 12 hours. Actinobacillus actinomycetemcomitans was identified 3 weeks later. Recovery was achieved, with significant interval improvement and resolution of the cerebral lesions evident on CT.
NASA Technical Reports Server (NTRS)
Mann, R. W.
1974-01-01
Design and development of a prosthetic device fitted to an above elbow amputee is reported that derives control information from the human to modulate power to an actuator to drive the substitute limb. In turn, the artificial limb generates sensory information feedback to the human nervous system and brain. This synergetic unity feeds efferent or motor control information from the human to the machine, and the machine responds, delivering afferent or sensory information back to the man.
Unusual infections due to Listeria monocytogenes in the Southern California Desert.
Cone, Lawrence A; Somero, Michael S; Qureshi, Farsana J; Kerkar, Shuba; Byrd, Richard G; Hirschberg, Joel M; Gauto, Anibal R
2008-11-01
During the past 22 years, 14 patients have been hospitalized with infection due to Listeria monocytogenes at the Eisenhower Medical Center, a regional 300-bed hospital in the desert southwest of Southern California. A large number of patients are retired, elderly, and have underlying and often systemic disease. Blood agar and routine media were inoculated with liquid from a sterile site such as blood, cerebrospinal fluid, or joint fluid and observed daily for growth. Appropriate biochemical studies were used to speciate the organism. While bacteremia and meningitis constitute 75% of infections in most studies, they made up only 36% of patients in the current study. Listeriosis occurred mostly in patients with infected aortic aneurysms and brain abscesses, and in prosthetic joint infections. While mortality is generally stated to be around 45% in patients with listeriosis, it was 35% in this study. However, there were no deaths in five patients with bacteremia or meningitis inferring that organ involvement poses a greater hazard for survival. Listeriosis usually presents as a bacteremia or meningitis due to a food-borne invasive infection. In the desert of Southern California most cases are seen in older patients with underlying disease and present with infected aortic aneurysms, prosthetic joints, and brain abscesses. They represent a greater threat to survival due to organ involvement.
McClure, J T; Browning, R T; Vantrease, C M; Bittle, S T
1994-01-01
Previous research suggests that traumatic brain injury (TBI) results in impairment of iconic memory abilities.We would like to acknowledge the contribution of Jeffrey D. Vantrease, who wrote the software program for the Iconic Memory procedure and measurement. This raises serious implications for brain injury rehabilitation. Most cognitive rehabilitation programs do not include iconic memory training. Instead it is common for cognitive rehabilitation programs to focus on attention and concentration skills, memory skills, and visual scanning skills.This study compared the iconic memory skills of brain-injury survivors and control subjects who all reached criterion levels of visual scanning skills. This involved previous training for the brain-injury survivors using popular visual scanning programs that allowed them to visually scan with response time and accuracy within normal limits. Control subjects required only minimal training to reach normal limits criteria. This comparison allows for the dissociation of visual scanning skills and iconic memory skills.The results are discussed in terms of their implications for cognitive rehabilitation and the relationship between visual scanning training and iconic memory skills.
Novel design of electrical sensing interface for prosthetic limbs using optical micro cavities
NASA Astrophysics Data System (ADS)
Ali, Amir R.; Kamel, Mohamed A.
2018-04-01
This paper uses optical whispering galley modes (WGM) cavities to construct a new electrical sensing interface between prosthetic limb and the brain. The sensing element will detect the action potential signal in the neural membrane and the prosthetic limb will be actuated accordingly. The element is a WGM dielectric polymeric cavity. WGM based optical cavities can achieve very high values of sensitivity and quality factor; thus, any minute perturbations in the morphology of the cavity can be captured and measured. The action potential signal will produce an applied external electric field on the dielectric cavity causing it to deform due to the electrostriction effect. The resulting deformation will cause WGM shifts in the transmission spectrum of the cavity. Thus, the action potential or the applied electric field can be measured using these shifts. In this paper the action potential signal will be simulated through the use of a function generator and two metal electrodes. The sensing element will be situated between these electrodes to detect the electrical signal passing through. The achieved sensitivity is 27.5 pm/V in measuring the simulated action potential signal; and 0.32 pm/V.m-1 in measuring the applied electric field due to the passage of the simulated signal.
Boudjemaa, Rym; Steenkeste, Karine; Jacqueline, Cédric; Briandet, Romain; Caillon, Jocelyne; Boutoille, David; Le Mabecque, Virginie; Tattevin, Pierre; Fontaine-Aupart, Marie-Pierre; Revest, Matthieu
2018-06-12
To evaluate the significant role played by biofilms during prosthetic vascular material infections (PVMIs). We developed an in vivo mouse model of Staphylococcus aureus PVMI allowing its direct observation by confocal microscopy to describe: (i) the structure of biofilms developed on Dacron® vascular material; (ii) the localization and effect of antibiotics on these biostructures; and (iii) the interaction between bacteria and host tissues and cells during PVMI. In this model we demonstrated that the biofilm structures are correlated to the activity of antibiotics. Furthermore, live S. aureus bacteria were visualized inside the macrophages present at the biofilm sites, which is significant as antibiotics do not penetrate these immune cells. This intracellular situation may explain the limited effect of antibiotics and also why PVMIs can relapse after antibiotic therapy.
Hominoid visual brain structure volumes and the position of the lunate sulcus.
de Sousa, Alexandra A; Sherwood, Chet C; Mohlberg, Hartmut; Amunts, Katrin; Schleicher, Axel; MacLeod, Carol E; Hof, Patrick R; Frahm, Heiko; Zilles, Karl
2010-04-01
It has been argued that changes in the relative sizes of visual system structures predated an increase in brain size and provide evidence of brain reorganization in hominins. However, data about the volume and anatomical limits of visual brain structures in the extant taxa phylogenetically closest to humans-the apes-remain scarce, thus complicating tests of hypotheses about evolutionary changes. Here, we analyze new volumetric data for the primary visual cortex and the lateral geniculate nucleus to determine whether or not the human brain departs from allometrically-expected patterns of brain organization. Primary visual cortex volumes were compared to lunate sulcus position in apes to investigate whether or not inferences about brain reorganization made from fossil hominin endocasts are reliable in this context. In contrast to previous studies, in which all species were relatively poorly sampled, the current study attempted to evaluate the degree of intraspecific variability by including numerous hominoid individuals (particularly Pan troglodytes and Homo sapiens). In addition, we present and compare volumetric data from three new hominoid species-Pan paniscus, Pongo pygmaeus, and Symphalangus syndactylus. These new data demonstrate that hominoid visual brain structure volumes vary more than previously appreciated. In addition, humans have relatively reduced primary visual cortex and lateral geniculate nucleus volumes as compared to allometric predictions from other hominoids. These results suggest that inferences about the position of the lunate sulcus on fossil endocasts may provide information about brain organization. Copyright 2010 Elsevier Ltd. All rights reserved.
Chan, Kevin C.; Fan, Shu-Juan; Chan, Russell W.; Cheng, Joe S.; Zhou, Iris Y.; Wu, Ed X.
2014-01-01
The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn2+ administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn2+ injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn2+ transfer but not intra- or inter-hemispheric monosynaptic Mn2+ transport after Mn2+ injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies. PMID:24394694
Advanced Prosthetic Gait Training Tool
2015-12-01
motion capture sequences was provided by MPL to CCAD and OGAL. CCAD’s work focused on imposing these sequences on the SantosTM digital human avatar ...manipulating the avatar image. These manipulations are accomplished in the context of reinforcing what is the more ideal position and relating...focus on the visual environment by asking users to manipulate a static image of the Santos avatar to represent their perception of what they observe
Sutherland, R D; Guynes, W A; Nichols, C T; Martinez, H E
1982-01-01
Excessive cage strut wear allowing ball-poppet embolization caused the sudden death of a 47 year old lady in whom a DeBakey-Surgitool aortic prosthesis had been implanted nine years earlier. Patients with this type of prosthesis should have periodic valvular cine fluoroscopy with image intensification to allow visualization of significant strut wear or fracture, and appropriate prosthetic valve replacement.
Arens-Arad, Tamar; Farah, Nairouz; Ben-Yaish, Shai; Zlotnik, Alex; Zalevsky, Zeev; Mandel, Yossi
2016-10-12
Novel technologies are constantly under development for vision restoration in blind patients. Many of these emerging technologies are based on the projection of high intensity light patterns at specific wavelengths, raising the need for the development of specialized projection systems. Here we present and characterize a novel projection system that meets the requirements for artificial retinal stimulation in rats and enables the recording of cortical responses. The system is based on a customized miniature Digital Mirror Device (DMD) for pattern projection, in both visible (525 nm) and NIR (915 nm) wavelengths, and a lens periscope for relaying the pattern directly onto the animal's retina. Thorough system characterization and the investigation of the effect of various parameters on obtained image quality were performed using ZEMAX. Simulation results revealed that images with an MTF higher than 0.8 were obtained with little effect of the vertex distance. Increased image quality was obtained at an optimal pupil diameter and smaller field of view. Visual cortex activity data was recorded simultaneously with pattern projection, further highlighting the importance of the system for prosthetic vision studies. This novel head mounted projection system may prove to be a vital tool in studying natural and artificial vision in behaving animals.
Arens-Arad, Tamar; Farah, Nairouz; Ben-Yaish, Shai; Zlotnik, Alex; Zalevsky, Zeev; Mandel, Yossi
2016-01-01
Novel technologies are constantly under development for vision restoration in blind patients. Many of these emerging technologies are based on the projection of high intensity light patterns at specific wavelengths, raising the need for the development of specialized projection systems. Here we present and characterize a novel projection system that meets the requirements for artificial retinal stimulation in rats and enables the recording of cortical responses. The system is based on a customized miniature Digital Mirror Device (DMD) for pattern projection, in both visible (525 nm) and NIR (915 nm) wavelengths, and a lens periscope for relaying the pattern directly onto the animal’s retina. Thorough system characterization and the investigation of the effect of various parameters on obtained image quality were performed using ZEMAX. Simulation results revealed that images with an MTF higher than 0.8 were obtained with little effect of the vertex distance. Increased image quality was obtained at an optimal pupil diameter and smaller field of view. Visual cortex activity data was recorded simultaneously with pattern projection, further highlighting the importance of the system for prosthetic vision studies. This novel head mounted projection system may prove to be a vital tool in studying natural and artificial vision in behaving animals. PMID:27731346
NASA Astrophysics Data System (ADS)
Arens-Arad, Tamar; Farah, Nairouz; Ben-Yaish, Shai; Zlotnik, Alex; Zalevsky, Zeev; Mandel, Yossi
2016-10-01
Novel technologies are constantly under development for vision restoration in blind patients. Many of these emerging technologies are based on the projection of high intensity light patterns at specific wavelengths, raising the need for the development of specialized projection systems. Here we present and characterize a novel projection system that meets the requirements for artificial retinal stimulation in rats and enables the recording of cortical responses. The system is based on a customized miniature Digital Mirror Device (DMD) for pattern projection, in both visible (525 nm) and NIR (915 nm) wavelengths, and a lens periscope for relaying the pattern directly onto the animal’s retina. Thorough system characterization and the investigation of the effect of various parameters on obtained image quality were performed using ZEMAX. Simulation results revealed that images with an MTF higher than 0.8 were obtained with little effect of the vertex distance. Increased image quality was obtained at an optimal pupil diameter and smaller field of view. Visual cortex activity data was recorded simultaneously with pattern projection, further highlighting the importance of the system for prosthetic vision studies. This novel head mounted projection system may prove to be a vital tool in studying natural and artificial vision in behaving animals.
Ross, Deborah A.; Puñal, Vanessa M.; Agashe, Shruti; Dweck, Isaac; Mueller, Jerel; Grill, Warren M.; Wilson, Blake S.
2016-01-01
Understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5–80 μA, 100–300 Hz, n = 172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals' judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site compared with the reference frequency used in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site's response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency-tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated, and to provide a greater range of evoked percepts. SIGNIFICANCE STATEMENT Patients with hearing loss stemming from causes that interrupt the auditory pathway after the cochlea need a brain prosthetic to restore hearing. Recently, prosthetic stimulation in the human inferior colliculus (IC) was evaluated in a clinical trial. Thus far, speech understanding was limited for the subjects and this limitation is thought to be partly due to challenges in harnessing the sound frequency representation in the IC. Here, we tested the effects of IC stimulation in monkeys trained to report the sound frequencies they heard. Our results indicate that the IC can be used to introduce a range of frequency percepts and suggest that placement of a greater number of electrode contacts may improve the effectiveness of such implants. PMID:27147659
Classifying prosthetic use via accelerometry in persons with transtibial amputations.
Redfield, Morgan T; Cagle, John C; Hafner, Brian J; Sanders, Joan E
2013-01-01
Knowledge of how persons with amputation use their prostheses and how this use changes over time may facilitate effective rehabilitation practices and enhance understanding of prosthesis functionality. Perpetual monitoring and classification of prosthesis use may also increase the health and quality of life for prosthetic users. Existing monitoring and classification systems are often limited in that they require the subject to manipulate the sensor (e.g., attach, remove, or reset a sensor), record data over relatively short time periods, and/or classify a limited number of activities and body postures of interest. In this study, a commercially available three-axis accelerometer (ActiLife ActiGraph GT3X+) was used to characterize the activities and body postures of individuals with transtibial amputation. Accelerometers were mounted on prosthetic pylons of 10 persons with transtibial amputation as they performed a preset routine of actions. Accelerometer data was postprocessed using a binary decision tree to identify when the prosthesis was being worn and to classify periods of use as movement (i.e., leg motion such as walking or stair climbing), standing (i.e., standing upright with limited leg motion), or sitting (i.e., seated with limited leg motion). Classifications were compared to visual observation by study researchers. The classifier achieved a mean +/- standard deviation accuracy of 96.6% +/- 3.0%.
Classifying Prosthetic Use via Accelerometry in Persons with Trans-Tibial Amputations
Redfield, Morgan T.; Cagle, John C.; Hafner, Brian J.; Sanders, Joan E.
2014-01-01
Knowledge of how persons with amputation use their prostheses and how this use changes over time may facilitate effective rehabilitation practices and enhance understanding of prosthesis functionality. Perpetual monitoring and classification of prosthesis use may also increase the health and quality of life for prosthetic users. Existing monitoring and classification systems are often limited in that they require the subject to manipulate the sensor (e.g., attach, remove, or reset a sensor), record data over relatively short time periods, and/or classify a limited number of activities and body postures of interest. In this study, a commercially-available three-axis accelerometer (ActiLife ActiGraph GT3X+) was used to characterize the activities and body postures of individuals with trans-tibial amputation. Accelerometers were mounted on prosthetic pylons of ten persons with trans-tibial amputation as they performed a preset routine of actions. Accelerometer data was post-processed using a Binary Decision Tree to identify when the prosthesis was being worn and to classify periods of use as movement (i.e., leg motion like walking or stair climbing), standing (i.e., standing upright with limited leg motion), or sitting (i.e., seated with limited leg motion). Classifications were compared to visual observation by study researchers. The classifier achieved a mean accuracy of 96.6% (SD=3.0%). PMID:24458961
Implementing a new curriculum for computer-assisted restorations in prosthetic dentistry.
Schweyen, R; Beuer, F; Bochskanl, M; Hey, J
2018-05-01
Computer-aided design/computer-aided manufacturing (CAD/CAM) of fixed prosthetic restorations has gained popularity in the last decade. However, this field of dentistry has not been integrated in the dental curriculum at most universities. According to the method of Kern, a curriculum was designed and established on a voluntary basis in the prosthetic education of a German dental school. The success of the implementation was measured by evaluation carried out by the participants on a visual analogue scale. Furthermore, the clinical performance of the fabricated restorations was evaluated. Ninety-four percent of all students participated in the CAD/CAM curriculum indicating considerable interest. Nearly half of all students used the acquired knowledge to design crowns for their patients. All restorations fabricated by participants of the new CAD/CAM programme showed good clinical performance. By phasing-in the CAD/CAM training programme, independent CAD/CAM-based fabrication of all-ceramic crowns increased student's self-confidence in tooth preparation. A tendency was found that students using CAD/CAM technology prepared more teeth than their fellow students who did not use CAD/CAM technology. Further studies are required to investigate the influence of independent CAD/CAM-based single-crown fabrication on the quality of the preparation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Hessburg, Philip C.
2011-06-01
Once again Journal of Neural Engineering is devoting an issue to the field of visual neuro-prosthetics. These papers were presented at the Sixth Biennial Research Congress of The Eye and the ChipA 13 DVD set of all presentations at The Eye and the Chip 2010 is available from Carolyn Barth PhD, Detroit Institute of Ophthalmology, 15415 E Jefferson, Grosse Pointe Park MI 48230, USA, 313.824.4710, clbarth@dioeyes.org, held in Detroit in September 2010. In the last decade this field has metamorphosed from 'in all probability a foolish and impractical dream' to a device approved for implantation in Europe and pending approval in the United States, and from a handful of serious efforts to several dozen on every continent save for Antartica. A recent comprehensive volume, Visual Prosthetics [1], edited by Gislin Dagnelie of Johns Hopkins University School of Medicine, focuses closely on this subject and is a tremendous addition to the literature. In his preface Dr Dagnelie notes as follows. 'In the year 2000, the Detroit Institute of Ophthalmology had the inspiration to foster a new collaboration among visual prosthesis researchers, clinicians, and workers in low vision rehabilitation by creating and sponsoring a series of biennial meetings called 'The Eye and the Chip'. Successful beyond expectations, these meetings have become the premier gathering place for researchers from all parts of the world and from very different backgrounds. Invited speakers are scientists who are advancing the field, yet the scale and atmosphere allow all researchers, patients, and the media to come and be updated about progress over the past two years. More perhaps than at other scientific meetings, where investigators tend to gather within disciplines, participants at The Eye and the Chip are challenged to be open-minded, learn about and critique each other's work, and return home with fresh ideas for interdisciplinary approaches. The interdisciplinary character of this book reflects that same spirit.' A letter to us from our co-organizer of The Eye and the Chip, Joseph Rizzo MD, Harvard Medical School, furthers the point that the Research Congress Model is productive. This model is based on a belief that collegiality enhances collaboration and that collaboration accelerates progress. 'At the time of our first The Eye and the Chip meeting, now many years ago, the field of visual prosthetics was still in its infancy. The research community generally held a very skeptical attitude about the possible use of a bio-electronic implant to restore vision, despite the great success of cochlear implants. Over the last two decades our field has matured dramatically, and now there is widespread optimism about the potential for visual implants to help patients who are blind. 'The marked improvement in our status as a field is the result of excellent research from a large critical mass of scientists from throughout the world. It is the general opinion of researchers in our field that The Eye and the Chip meeting has provided the most vibrant source of scientific exchange for our field. The reasons for the success of this meeting relate to the fact that the meeting is devoted to a single topic, it is all-inclusive (anyone who is performing credible research in the field is invited to participate) and it provides a very substantial amount of time for open group discussions. These attributes expand the length of the meeting, which I understand increases the cost of the meeting, but the benefits have been remarkable for our field. Simply stated, The Eye and the Chip meeting provides the best venue for scientific and academic exchange in the world for the field of visual prosthetics.' And, furthermore, following a rather spirited discussion on the end points to be used in evaluating these devices on the third and final day of The Eye and the Chip last September, the Food and Drug Administration (FDA), under the leadership of the US National Eye Institute (NEI), held a fine one-day Congress, 'End Points' in Washington in early May. We, as leaders of The Eye and the Chip, are hopeful that the FDA will continue its meeting in the off-years between The Eye and the Chip research congresses. The field is now so important that an annual meeting exclusively devoted to the subject, especially if Journal of Neural Engineering continues to cover this important work, will not be excessive. References [1] Dagnelie G (ed) 2011 Visual Prosthetics (New York: Springer)
Allen Brain Atlas-Driven Visualizations: a web-based gene expression energy visualization tool.
Zaldivar, Andrew; Krichmar, Jeffrey L
2014-01-01
The Allen Brain Atlas-Driven Visualizations (ABADV) is a publicly accessible web-based tool created to retrieve and visualize expression energy data from the Allen Brain Atlas (ABA) across multiple genes and brain structures. Though the ABA offers their own search engine and software for researchers to view their growing collection of online public data sets, including extensive gene expression and neuroanatomical data from human and mouse brain, many of their tools limit the amount of genes and brain structures researchers can view at once. To complement their work, ABADV generates multiple pie charts, bar charts and heat maps of expression energy values for any given set of genes and brain structures. Such a suite of free and easy-to-understand visualizations allows for easy comparison of gene expression across multiple brain areas. In addition, each visualization links back to the ABA so researchers may view a summary of the experimental detail. ABADV is currently supported on modern web browsers and is compatible with expression energy data from the Allen Mouse Brain Atlas in situ hybridization data. By creating this web application, researchers can immediately obtain and survey numerous amounts of expression energy data from the ABA, which they can then use to supplement their work or perform meta-analysis. In the future, we hope to enable ABADV across multiple data resources.
A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface
Su, Yi; Routhu, Sudhamayee; Moon, Kee S.; Lee, Sung Q.; Youm, WooSub; Ozturk, Yusuf
2016-01-01
All neural information systems (NIS) rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR) by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI) using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI) to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP) oscillation and stimulate the target area at the same time. PMID:27669264
Insinuating electronics in the brain.
Hughes, Mark A
2016-08-01
There is an expanding interface between electronic engineering and neurosurgery. Rapid advances in microelectronics and materials science, driven largely by consumer demand, are inspiring and accelerating development of a new generation of diagnostic, therapeutic, and prosthetic devices for implantation in the nervous system. This paper reviews some of the basic science underpinning their development and outlines some opportunities and challenges for their use in neurosurgery. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.
A New Animal Model for Developing a Somatosensory Neural Interface for Prosthetic Limbs
2008-02-12
interface for neuroprosthetic limbs . PI: Douglas J. Weber, Ph.D. University of Pittsburgh 1 10/15/2007 Scientific progress and accomplishments. We...information to the brain. A new animal model for developing a somatosensory neural interface for neuroprosthetic limbs . PI: Douglas J. Weber, Ph.D...A new animal model for developing a somatosensory neural interface for neuroprosthetic limbs . PI: Douglas J. Weber, Ph.D. University of Pittsburgh
Probing the functional impact of sub-retinal prosthesis
Roux, Sébastien; Matonti, Frédéric; Dupont, Florent; Hoffart, Louis; Takerkart, Sylvain; Picaud, Serge; Pham, Pascale; Chavane, Frédéric
2016-01-01
Retinal prostheses are promising tools for recovering visual functions in blind patients but, unfortunately, with still poor gains in visual acuity. Improving their resolution is thus a key challenge that warrants understanding its origin through appropriate animal models. Here, we provide a systematic comparison between visual and prosthetic activations of the rat primary visual cortex (V1). We established a precise V1 mapping as a functional benchmark to demonstrate that sub-retinal implants activate V1 at the appropriate position, scalable to a wide range of visual luminance, but with an aspect-ratio and an extent much larger than expected. Such distorted activation profile can be accounted for by the existence of two sources of diffusion, passive diffusion and activation of ganglion cells’ axons en passant. Reverse-engineered electrical pulses based on impedance spectroscopy is the only solution we tested that decreases the extent and aspect-ratio, providing a promising solution for clinical applications. DOI: http://dx.doi.org/10.7554/eLife.12687.001 PMID:27549126
Interface Prostheses With Classifier-Feedback-Based User Training.
Fang, Yinfeng; Zhou, Dalin; Li, Kairu; Liu, Honghai
2017-11-01
It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.
NASA Astrophysics Data System (ADS)
Chestek, Cynthia A.; Gilja, Vikash; Blabe, Christine H.; Foster, Brett L.; Shenoy, Krishna V.; Parvizi, Josef; Henderson, Jaimie M.
2013-04-01
Objective. Brain-machine interface systems translate recorded neural signals into command signals for assistive technology. In individuals with upper limb amputation or cervical spinal cord injury, the restoration of a useful hand grasp could significantly improve daily function. We sought to determine if electrocorticographic (ECoG) signals contain sufficient information to select among multiple hand postures for a prosthetic hand, orthotic, or functional electrical stimulation system.Approach. We recorded ECoG signals from subdural macro- and microelectrodes implanted in motor areas of three participants who were undergoing inpatient monitoring for diagnosis and treatment of intractable epilepsy. Participants performed five distinct isometric hand postures, as well as four distinct finger movements. Several control experiments were attempted in order to remove sensory information from the classification results. Online experiments were performed with two participants. Main results. Classification rates were 68%, 84% and 81% for correct identification of 5 isometric hand postures offline. Using 3 potential controls for removing sensory signals, error rates were approximately doubled on average (2.1×). A similar increase in errors (2.6×) was noted when the participant was asked to make simultaneous wrist movements along with the hand postures. In online experiments, fist versus rest was successfully classified on 97% of trials; the classification output drove a prosthetic hand. Online classification performance for a larger number of hand postures remained above chance, but substantially below offline performance. In addition, the long integration windows used would preclude the use of decoded signals for control of a BCI system. Significance. These results suggest that ECoG is a plausible source of command signals for prosthetic grasp selection. Overall, avenues remain for improvement through better electrode designs and placement, better participant training, and characterization of non-stationarities such that ECoG could be a viable signal source for grasp control for amputees or individuals with paralysis.
Dynamic functional brain networks involved in simple visual discrimination learning.
Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis
2014-10-01
Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. Copyright © 2014 Elsevier Inc. All rights reserved.
Harasawa, Masamitsu; Shioiri, Satoshi
2011-04-01
The effect of the visual hemifield to which spatial attention was oriented on the activities of the posterior parietal and occipital visual cortices was examined using functional near-infrared spectroscopy in order to investigate the neural substrates of voluntary visuospatial attention. Our brain imaging data support the theory put forth in a previous psychophysical study, namely, the attentional resources for the left and right visual hemifields are distinct. Increasing the attentional load asymmetrically increased the brain activity. Increase in attentional load produced a greater increase in brain activity in the case of the left visual hemifield than in the case of the right visual hemifield. This asymmetry was observed in all the examined brain areas, including the right and left occipital and parietal cortices. These results suggest the existence of asymmetrical inhibitory interactions between the hemispheres and the presence of an extensive inhibitory network. Copyright © 2011 Elsevier Inc. All rights reserved.
Park, Hyojin; Kayser, Christoph; Thut, Gregor; Gross, Joachim
2016-01-01
During continuous speech, lip movements provide visual temporal signals that facilitate speech processing. Here, using MEG we directly investigated how these visual signals interact with rhythmic brain activity in participants listening to and seeing the speaker. First, we investigated coherence between oscillatory brain activity and speaker’s lip movements and demonstrated significant entrainment in visual cortex. We then used partial coherence to remove contributions of the coherent auditory speech signal from the lip-brain coherence. Comparing this synchronization between different attention conditions revealed that attending visual speech enhances the coherence between activity in visual cortex and the speaker’s lips. Further, we identified a significant partial coherence between left motor cortex and lip movements and this partial coherence directly predicted comprehension accuracy. Our results emphasize the importance of visually entrained and attention-modulated rhythmic brain activity for the enhancement of audiovisual speech processing. DOI: http://dx.doi.org/10.7554/eLife.14521.001 PMID:27146891
BrainBrowser: distributed, web-based neurological data visualization.
Sherif, Tarek; Kassis, Nicolas; Rousseau, Marc-Étienne; Adalat, Reza; Evans, Alan C
2014-01-01
Recent years have seen massive, distributed datasets become the norm in neuroimaging research, and the methodologies used to analyze them have, in response, become more collaborative and exploratory. Tools and infrastructure are continuously being developed and deployed to facilitate research in this context: grid computation platforms to process the data, distributed data stores to house and share them, high-speed networks to move them around and collaborative, often web-based, platforms to provide access to and sometimes manage the entire system. BrainBrowser is a lightweight, high-performance JavaScript visualization library built to provide easy-to-use, powerful, on-demand visualization of remote datasets in this new research environment. BrainBrowser leverages modern web technologies, such as WebGL, HTML5 and Web Workers, to visualize 3D surface and volumetric neuroimaging data in any modern web browser without requiring any browser plugins. It is thus trivial to integrate BrainBrowser into any web-based platform. BrainBrowser is simple enough to produce a basic web-based visualization in a few lines of code, while at the same time being robust enough to create full-featured visualization applications. BrainBrowser can dynamically load the data required for a given visualization, so no network bandwidth needs to be waisted on data that will not be used. BrainBrowser's integration into the standardized web platform also allows users to consider using 3D data visualization in novel ways, such as for data distribution, data sharing and dynamic online publications. BrainBrowser is already being used in two major online platforms, CBRAIN and LORIS, and has been used to make the 1TB MACACC dataset openly accessible.
BrainBrowser: distributed, web-based neurological data visualization
Sherif, Tarek; Kassis, Nicolas; Rousseau, Marc-Étienne; Adalat, Reza; Evans, Alan C.
2015-01-01
Recent years have seen massive, distributed datasets become the norm in neuroimaging research, and the methodologies used to analyze them have, in response, become more collaborative and exploratory. Tools and infrastructure are continuously being developed and deployed to facilitate research in this context: grid computation platforms to process the data, distributed data stores to house and share them, high-speed networks to move them around and collaborative, often web-based, platforms to provide access to and sometimes manage the entire system. BrainBrowser is a lightweight, high-performance JavaScript visualization library built to provide easy-to-use, powerful, on-demand visualization of remote datasets in this new research environment. BrainBrowser leverages modern web technologies, such as WebGL, HTML5 and Web Workers, to visualize 3D surface and volumetric neuroimaging data in any modern web browser without requiring any browser plugins. It is thus trivial to integrate BrainBrowser into any web-based platform. BrainBrowser is simple enough to produce a basic web-based visualization in a few lines of code, while at the same time being robust enough to create full-featured visualization applications. BrainBrowser can dynamically load the data required for a given visualization, so no network bandwidth needs to be waisted on data that will not be used. BrainBrowser's integration into the standardized web platform also allows users to consider using 3D data visualization in novel ways, such as for data distribution, data sharing and dynamic online publications. BrainBrowser is already being used in two major online platforms, CBRAIN and LORIS, and has been used to make the 1TB MACACC dataset openly accessible. PMID:25628562
Margolin, Edward; Gujar, Sachin K; Trobe, Jonathan D
2007-12-01
A 16-year-old boy who was briefly asystolic and hypotensive after a motor vehicle accident complained of abnormal vision after recovering consciousness. Visual acuity was normal, but visual fields were severely constricted without clear hemianopic features. The ophthalmic examination was otherwise normal. Brain MRI performed 11 days after the accident showed no pertinent abnormalities. At 6 months after the event, brain MRI demonstrated brain volume loss in the primary visual cortex and no other abnormalities. One year later, visual fields remained severely constricted; neurologic examination, including formal neuropsychometric testing, was normal. This case emphasizes the fact that hypoxic-ischemic encephalopathy (HIE) may cause enduring damage limited to primary visual cortex and that the MRI abnormalities may be subtle. These phenomena should be recognized in the management of patients with HIE.
Visual BOLD Response in Late Blind Subjects with Argus II Retinal Prosthesis
Castaldi, E.; Cicchini, G. M.; Cinelli, L.; Rizzo, S.; Morrone, M. C.
2016-01-01
Retinal prosthesis technologies require that the visual system downstream of the retinal circuitry be capable of transmitting and elaborating visual signals. We studied the capability of plastic remodeling in late blind subjects implanted with the Argus II Retinal Prosthesis with psychophysics and functional MRI (fMRI). After surgery, six out of seven retinitis pigmentosa (RP) blind subjects were able to detect high-contrast stimuli using the prosthetic implant. However, direction discrimination to contrast modulated stimuli remained at chance level in all of them. No subject showed any improvement of contrast sensitivity in either eye when not using the Argus II. Before the implant, the Blood Oxygenation Level Dependent (BOLD) activity in V1 and the lateral geniculate nucleus (LGN) was very weak or absent. Surprisingly, after prolonged use of Argus II, BOLD responses to visual input were enhanced. This is, to our knowledge, the first study tracking the neural changes of visual areas in patients after retinal implant, revealing a capacity to respond to restored visual input even after years of deprivation. PMID:27780207
Dimitroulis, George; Austin, Stephen; Sin Lee, Peter Vee; Ackland, David
2018-05-16
The aim of this study is to present the preliminary clinical data on the OMX Temporomandibular Joint (TMJ) Prosthetic total joint replacement system. A prospective, cohort, clinical study was undertaken of consecutive adult patients with Category 5 end-stage joint disease who were implanted with the OMX TMJ prosthesis between May 2015 and April 2017. A total of 50 devices were implanted in 38 patients, with 12 patients receiving bilateral prosthetic joints. There were 31 females and 7 males in this cohort, who ranged in age from 20 to 66 years, with a mean of 43.8 years (±14.0 years). Ten of the 50 prosthetic joints (20%) were fully customized, while the remaining were patient matched using virtual planning software. Based on a mean follow-up period of 15.3 months (range 12-24 months) following the TMJ total joint replacement, preliminary results suggest the OMX TMJ prosthesis has made a positive impact on clinical outcomes, with a mean 74.4% reduction in joint pain levels and significant improvements (p < 0.05) in jaw function as measured by the visual analogue scales for mouth opening (30.8%), diet (77.1%), and function (59.2%). No device failures were reported during the study period. This study suggests that the print-on-demand OMX TMJ prosthesis, designed for rapid delivery of both patient-matched and fully customize devices, represents a safe, reliable and versatile implantable joint replacement system for the treatment of category 5 end-stage TMJ disease. Copyright © 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Visual and somatic sensory feedback of brain activity for intuitive surgical robot manipulation.
Miura, Satoshi; Matsumoto, Yuya; Kobayashi, Yo; Kawamura, Kazuya; Nakashima, Yasutaka; Fujie, Masakatsu G
2015-01-01
This paper presents a method to evaluate the hand-eye coordination of the master-slave surgical robot by measuring the activation of the intraparietal sulcus in users brain activity during controlling virtual manipulation. The objective is to examine the changes in activity of the intraparietal sulcus when the user's visual or somatic feedback is passed through or intercepted. The hypothesis is that the intraparietal sulcus activates significantly when both the visual and somatic sense pass feedback, but deactivates when either visual or somatic is intercepted. The brain activity of three subjects was measured by the functional near-infrared spectroscopic-topography brain imaging while they used a hand controller to move a virtual arm of a surgical simulator. The experiment was performed several times with three conditions: (i) the user controlled the virtual arm naturally under both visual and somatic feedback passed, (ii) the user moved with closed eyes under only somatic feedback passed, (iii) the user only gazed at the screen under only visual feedback passed. Brain activity showed significantly better control of the virtual arm naturally (p<;0.05) when compared with moving with closed eyes or only gazing among all participants. In conclusion, the brain can activate according to visual and somatic sensory feedback agreement.
Researchers Find Essential Brain Circuit in Visual Development
... Release Monday, August 26, 2013 Researchers find essential brain circuit in visual development NIH-funded study could ... shows the connections from the eyes to the brain in a mouse. The right image shows the ...
Cloherty, Shaun L; Hietanen, Markus A; Suaning, Gregg J; Ibbotson, Michael R
2010-01-01
We performed optical intrinsic signal imaging of cat primary visual cortex (Area 17 and 18) while delivering bipolar electrical stimulation to the retina by way of a supra-choroidal electrode array. Using a general linear model (GLM) analysis we identified statistically significant (p < 0.01) activation in a localized region of cortex following supra-threshold electrical stimulation at a single retinal locus. (1) demonstrate that intrinsic signal imaging combined with linear model analysis provides a powerful tool for assessing cortical responses to prosthetic stimulation, and (2) confirm that supra-choroidal electrical stimulation can achieve localized activation of the cortex consistent with focal activation of the retina.
[Are Visual Field Defects Reversible? - Visual Rehabilitation with Brains].
Sabel, B A
2017-02-01
Visual field defects are considered irreversible because the retina and optic nerve do not regenerate. Nevertheless, there is some potential for recovery of the visual fields. This can be accomplished by the brain, which analyses and interprets visual information and is able to amplify residual signals through neuroplasticity. Neuroplasticity refers to the ability of the brain to change its own functional architecture by modulating synaptic efficacy. This is actually the neurobiological basis of normal learning. Plasticity is maintained throughout life and can be induced by repetitively stimulating (training) brain circuits. The question now arises as to how plasticity can be utilised to activate residual vision for the treatment of visual field loss. Just as in neurorehabilitation, visual field defects can be modulated by post-lesion plasticity to improve vision in glaucoma, diabetic retinopathy or optic neuropathy. Because almost all patients have some residual vision, the goal is to strengthen residual capacities by enhancing synaptic efficacy. New treatment paradigms have been tested in clinical studies, including vision restoration training and non-invasive alternating current stimulation. While vision training is a behavioural task to selectively stimulate "relative defects" with daily vision exercises for the duration of 6 months, treatment with alternating current stimulation (30 min. daily for 10 days) activates and synchronises the entire retina and brain. Though full restoration of vision is not possible, such treatments improve vision, both subjectively and objectively. This includes visual field enlargements, improved acuity and reaction time, improved orientation and vision related quality of life. About 70 % of the patients respond to the therapies and there are no serious adverse events. Physiological studies of the effect of alternating current stimulation using EEG and fMRI reveal massive local and global changes in the brain. These include local activation of the visual cortex and global reorganisation of neuronal brain networks. Because modulation of neuroplasticity can strengthen residual vision, the brain deserves a better reputation in ophthalmology for its role in visual rehabilitation. For patients, there is now more light at the end of the tunnel, because vision loss in some areas of the visual field defect is indeed reversible. Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Yeom, Hong Gi; Sic Kim, June; Chung, Chun Kee
2013-04-01
Objective. Studies on the non-invasive brain-machine interface that controls prosthetic devices via movement intentions are at their very early stages. Here, we aimed to estimate three-dimensional arm movements using magnetoencephalography (MEG) signals with high accuracy. Approach. Whole-head MEG signals were acquired during three-dimensional reaching movements (center-out paradigm). For movement decoding, we selected 68 MEG channels in motor-related areas, which were band-pass filtered using four subfrequency bands (0.5-8, 9-22, 25-40 and 57-97 Hz). After the filtering, the signals were resampled, and 11 data points preceding the current data point were used as features for estimating velocity. Multiple linear regressions were used to estimate movement velocities. Movement trajectories were calculated by integrating estimated velocities. We evaluated our results by calculating correlation coefficients (r) between real and estimated velocities. Main results. Movement velocities could be estimated from the low-frequency MEG signals (0.5-8 Hz) with significant and considerably high accuracy (p <0.001, mean r > 0.7). We also showed that preceding (60-140 ms) MEG signals are important to estimate current movement velocities and the intervals of brain signals of 200-300 ms are sufficient for movement estimation. Significance. These results imply that disabled people will be able to control prosthetic devices without surgery in the near future.
Tonet, Oliver; Marinelli, Martina; Citi, Luca; Rossini, Paolo Maria; Rossini, Luca; Megali, Giuseppe; Dario, Paolo
2008-01-15
Interaction with machines is mediated by human-machine interfaces (HMIs). Brain-machine interfaces (BMIs) are a particular class of HMIs and have so far been studied as a communication means for people who have little or no voluntary control of muscle activity. In this context, low-performing interfaces can be considered as prosthetic applications. On the other hand, for able-bodied users, a BMI would only be practical if conceived as an augmenting interface. In this paper, a method is introduced for pointing out effective combinations of interfaces and devices for creating real-world applications. First, devices for domotics, rehabilitation and assistive robotics, and their requirements, in terms of throughput and latency, are described. Second, HMIs are classified and their performance described, still in terms of throughput and latency. Then device requirements are matched with performance of available interfaces. Simple rehabilitation and domotics devices can be easily controlled by means of BMI technology. Prosthetic hands and wheelchairs are suitable applications but do not attain optimal interactivity. Regarding humanoid robotics, the head and the trunk can be controlled by means of BMIs, while other parts require too much throughput. Robotic arms, which have been controlled by means of cortical invasive interfaces in animal studies, could be the next frontier for non-invasive BMIs. Combining smart controllers with BMIs could improve interactivity and boost BMI applications.
Enhanced visualization of MR angiogram with modified MIP and 3D image fusion
NASA Astrophysics Data System (ADS)
Kim, JongHyo; Yeon, Kyoung M.; Han, Man Chung; Lee, Dong Hyuk; Cho, Han I.
1997-05-01
We have developed a 3D image processing and display technique that include image resampling, modification of MIP, volume rendering, and fusion of MIP image with volumetric rendered image. This technique facilitates the visualization of the 3D spatial relationship between vasculature and surrounding organs by overlapping the MIP image on the volumetric rendered image of the organ. We applied this technique to a MR brain image data to produce an MRI angiogram that is overlapped with 3D volume rendered image of brain. MIP technique was used to visualize the vasculature of brain, and volume rendering was used to visualize the other structures of brain. The two images are fused after adjustment of contrast and brightness levels of each image in such a way that both the vasculature and brain structure are well visualized either by selecting the maximum value of each image or by assigning different color table to each image. The resultant image with this technique visualizes both the brain structure and vasculature simultaneously, allowing the physicians to inspect their relationship more easily. The presented technique will be useful for surgical planning for neurosurgery.
Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks
NASA Astrophysics Data System (ADS)
Meng, Jianjun; Zhang, Shuying; Bekyo, Angeliki; Olsoe, Jaron; Baxter, Bryan; He, Bin
2016-12-01
Brain-computer interface (BCI) technologies aim to provide a bridge between the human brain and external devices. Prior research using non-invasive BCI to control virtual objects, such as computer cursors and virtual helicopters, and real-world objects, such as wheelchairs and quadcopters, has demonstrated the promise of BCI technologies. However, controlling a robotic arm to complete reach-and-grasp tasks efficiently using non-invasive BCI has yet to be shown. In this study, we found that a group of 13 human subjects could willingly modulate brain activity to control a robotic arm with high accuracy for performing tasks requiring multiple degrees of freedom by combination of two sequential low dimensional controls. Subjects were able to effectively control reaching of the robotic arm through modulation of their brain rhythms within the span of only a few training sessions and maintained the ability to control the robotic arm over multiple months. Our results demonstrate the viability of human operation of prosthetic limbs using non-invasive BCI technology.
Baars, B J
1999-07-01
A common confound between consciousness and attention makes it difficult to think clearly about recent advances in the understanding of the visual brain. Visual consciousness involves phenomenal experience of the visual world, but visual attention is more plausibly treated as a function that selects and maintains the selection of potential conscious contents, often unconsciously. In the same sense, eye movements select conscious visual events, which are not the same as conscious visual experience. According to common sense, visual experience is consciousness, and selective processes are labeled as attention. The distinction is reflected in very different behavioral measures and in very different brain anatomy and physiology. Visual consciousness tends to be associated with the "what" stream of visual feature neurons in the ventral temporal lobe. In contrast, attentional selection and maintenance are mediated by other brain regions, ranging from superior colliculi to thalamus, prefrontal cortex, and anterior cingulate. The author applied the common-sense distinction between attention and consciousness to the theoretical positions of M. I. Posner (1992, 1994) and D. LaBerge (1997, 1998) to show how it helps to clarify the evidence. He concluded that clarity of thought is served by calling a thing by its proper name.
Anderson, Andrew James; Bruni, Elia; Lopopolo, Alessandro; Poesio, Massimo; Baroni, Marco
2015-10-15
Embodiment theory predicts that mental imagery of object words recruits neural circuits involved in object perception. The degree of visual imagery present in routine thought and how it is encoded in the brain is largely unknown. We test whether fMRI activity patterns elicited by participants reading objects' names include embodied visual-object representations, and whether we can decode the representations using novel computational image-based semantic models. We first apply the image models in conjunction with text-based semantic models to test predictions of visual-specificity of semantic representations in different brain regions. Representational similarity analysis confirms that fMRI structure within ventral-temporal and lateral-occipital regions correlates most strongly with the image models and conversely text models correlate better with posterior-parietal/lateral-temporal/inferior-frontal regions. We use an unsupervised decoding algorithm that exploits commonalities in representational similarity structure found within both image model and brain data sets to classify embodied visual representations with high accuracy (8/10) and then extend it to exploit model combinations to robustly decode different brain regions in parallel. By capturing latent visual-semantic structure our models provide a route into analyzing neural representations derived from past perceptual experience rather than stimulus-driven brain activity. Our results also verify the benefit of combining multimodal data to model human-like semantic representations. Copyright © 2015 Elsevier Inc. All rights reserved.
Schaffalitzky, Elisabeth; NiMhurchadha, Sinead; Gallagher, Pamela; Hofkamp, Susan; MacLachlan, Malcolm; Wegener, Stephen T
2009-06-01
The matching of prosthetic devices to the needs of the individual is a challenge for providers and patients. The aims of this study are to explore the values and preferences that prosthetic users have of their prosthetic devices; to investigate users' perceptions of alternative prosthetic options and to demonstrate a novel method for exploring the values and preferences of prosthetic users. This study describes four case studies of upper limb and lower limb high tech and conventional prosthetic users. Participants were interviewed using the repertory grid technique (RGT), a qualitative technique to explore individual values and preferences regarding specific choices and events. The participants generated distinctive patterns of personal constructs and ratings regarding prosthetic use and different prosthetic options available. The RGT produced a unique profile of preferences regarding prosthetic technologies for each participant. User choice is an important factor when matching prosthetic technology to the user. The consumer's values regarding different prosthetic options are likely to be a critical factor in prosthetic acceptance and ultimate quality of life. The RGT offers a structured method of exploring these attitudes and values without imposing researcher or practitioner bias and identifies personalized dimensions for providers and users to evaluate the individuals' preferences in prosthetic technology.
Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude
2016-01-01
The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108
Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude
2016-06-10
The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.
Disentangling How the Brain is “Wired” in Cortical/Cerebral Visual Impairment (CVI)
Merabet, Lotfi B.; Mayer, D. Luisa; Bauer, Corinna M.; Wright, Darick; Kran, Barry S.
2017-01-01
Cortical/cerebral visual impairment (CVI) results from perinatal injury to visual processing structures and pathways of the brain and is the most common cause of severe visual impairment/blindness in children in developed countries. Children with CVI display a wide range of visual deficits including decreased visual acuity, impaired visual field function, as well as impairments in higher order visual processing and attention. Together, these visual impairments can dramatically impact upon a child’s development and well-being. Given the complex neurological underpinnings of this condition, CVI is often undiagnosed by eye care practitioners. Furthermore, the neurophysiological basis of CVI in relation to observed visual processing deficits remains poorly understood. Here, we present some of the challenges associated with the clinical assessment and management of individuals with CVI. We discuss how advances in brain imaging are likely to help uncover the underlying neurophysiology of this condition. In particular, we demonstrate how structural and functional neuroimaging approaches can help gain insight into abnormalities of white matter connectivity and cortical activation patterns respectively. Establishing a connection between how changes within the brain relate to visual impairments in CVI will be important for developing effective rehabilitative and education strategies for individuals living with this condition. PMID:28941531
Disentangling How the Brain is "Wired" in Cortical (Cerebral) Visual Impairment.
Merabet, Lotfi B; Mayer, D Luisa; Bauer, Corinna M; Wright, Darick; Kran, Barry S
2017-05-01
Cortical (cerebral) visual impairment (CVI) results from perinatal injury to visual processing structures and pathways of the brain and is the most common cause of severe visual impairment or blindness in children in developed countries. Children with CVI display a wide range of visual deficits including decreased visual acuity, impaired visual field function, as well as impairments in higher-order visual processing and attention. Together, these visual impairments can dramatically influence a child's development and well-being. Given the complex neurologic underpinnings of this condition, CVI is often undiagnosed by eye care practitioners. Furthermore, the neurophysiological basis of CVI in relation to observed visual processing deficits remains poorly understood. Here, we present some of the challenges associated with the clinical assessment and management of individuals with CVI. We discuss how advances in brain imaging are likely to help uncover the underlying neurophysiology of this condition. In particular, we demonstrate how structural and functional neuroimaging approaches can help gain insight into abnormalities of white matter connectivity and cortical activation patterns, respectively. Establishing a connection between how changes within the brain relate to visual impairments in CVI will be important for developing effective rehabilitative and education strategies for individuals living with this condition. Copyright © 2017 Elsevier Inc. All rights reserved.
Wavefront-Guided Scleral Lens Prosthetic Device for Keratoconus
Sabesan, Ramkumar; Johns, Lynette; Tomashevskaya, Olga; Jacobs, Deborah S.; Rosenthal, Perry; Yoon, Geunyoung
2016-01-01
Purpose To investigate the feasibility of correcting ocular higher order aberrations (HOA) in keratoconus (KC) using wavefront-guided optics in a scleral lens prosthetic device (SLPD). Methods Six advanced keratoconus patients (11 eyes) were fitted with a SLPD with conventional spherical optics. A custom-made Shack-Hartmann wavefront sensor was used to measure aberrations through a dilated pupil wearing the SLPD. The position of SLPD, i.e. horizontal and vertical decentration relative to the pupil and rotation were measured and incorporated into the design of the wavefront-guided optics for the customized SLPD. A submicron-precision lathe created the designed irregular profile on the front surface of the device. The residual aberrations of the same eyes wearing the SLPD with wavefront-guided optics were subsequently measured. Visual performance with natural mesopic pupil was compared between SLPDs having conventional spherical and wavefront-guided optics by measuring best-corrected high-contrast visual acuity and contrast sensitivity. Results Root-mean-square of HOA(RMS) in the 11 eyes wearing conventional SLPD with spherical optics was 1.17±0.57μm for a 6 mm pupil. HOA were effectively corrected by the customized SLPD with wavefront-guided optics and RMS was reduced 3.1 times on average to 0.37±0.19μm for the same pupil. This correction resulted in significant improvement of 1.9 lines in mean visual acuity (p<0.05). Contrast sensitivity was also significantly improved by a factor of 2.4, 1.8 and 1.4 on average for 4, 8 and 12 cycles/degree, respectively (p<0.05 for all frequencies). Although the residual aberration was comparable to that of normal eyes, the average visual acuity in logMAR with the customized SLPD was 0.21, substantially worse than normal acuity. Conclusions The customized SLPD with wavefront-guided optics corrected the HOA of advanced KC patients to normal levels and improved their vision significantly. PMID:23478630
Kavcic, Voyko; Triplett, Regina L.; Das, Anasuya; Martin, Tim; Huxlin, Krystel R.
2015-01-01
Partial cortical blindness is a visual deficit caused by unilateral damage to the primary visual cortex, a condition previously considered beyond hopes of rehabilitation. However, recent data demonstrate that patients may recover both simple and global motion discrimination following intensive training in their blind field. The present experiments characterized motion-induced neural activity of cortically blind (CB) subjects prior to the onset of visual rehabilitation. This was done to provide information about visual processing capabilities available to mediate training-induced visual improvements. Visual Evoked Potentials (VEPs) were recorded from two experimental groups consisting of 9 CB subjects and 9 age-matched, visually-intact controls. VEPs were collected following lateralized stimulus presentation to each of the 4 visual field quadrants. VEP waveforms were examined for both stimulus-onset (SO) and motion-onset (MO) related components in postero-lateral electrodes. While stimulus presentation to intact regions of the visual field elicited normal SO-P1, SO-N1, SO-P2 and MO-N2 amplitudes and latencies in contralateral brain regions of CB subjects, these components were not observed contralateral to stimulus presentation in blind quadrants of the visual field. In damaged brain hemispheres, SO-VEPs were only recorded following stimulus presentation to intact visual field quadrants, via inter-hemispheric transfer. MO-VEPs were only recorded from damaged left brain hemispheres, possibly reflecting a native left/right asymmetry in inter-hemispheric connections. The present findings suggest that damaged brain hemispheres contain areas capable of responding to visual stimulation. However, in the absence of training or rehabilitation, these areas only generate detectable VEPs in response to stimulation of the intact hemifield of vision. PMID:25575450
Processing speed in recurrent visual networks correlates with general intelligence.
Jolij, Jacob; Huisman, Danielle; Scholte, Steven; Hamel, Ronald; Kemner, Chantal; Lamme, Victor A F
2007-01-08
Studies on the neural basis of general fluid intelligence strongly suggest that a smarter brain processes information faster. Different brain areas, however, are interconnected by both feedforward and feedback projections. Whether both types of connections or only one of the two types are faster in smarter brains remains unclear. Here we show, by measuring visual evoked potentials during a texture discrimination task, that general fluid intelligence shows a strong correlation with processing speed in recurrent visual networks, while there is no correlation with speed of feedforward connections. The hypothesis that a smarter brain runs faster may need to be refined: a smarter brain's feedback connections run faster.
Graphene-Based Interfaces Do Not Alter Target Nerve Cells.
Fabbro, Alessandra; Scaini, Denis; León, Verónica; Vázquez, Ester; Cellot, Giada; Privitera, Giulia; Lombardi, Lucia; Torrisi, Felice; Tomarchio, Flavia; Bonaccorso, Francesco; Bosi, Susanna; Ferrari, Andrea C; Ballerini, Laura; Prato, Maurizio
2016-01-26
Neural-interfaces rely on the ability of electrodes to transduce stimuli into electrical patterns delivered to the brain. In addition to sensitivity to the stimuli, stability in the operating conditions and efficient charge transfer to neurons, the electrodes should not alter the physiological properties of the target tissue. Graphene is emerging as a promising material for neuro-interfacing applications, given its outstanding physico-chemical properties. Here, we use graphene-based substrates (GBSs) to interface neuronal growth. We test our GBSs on brain cell cultures by measuring functional and synaptic integrity of the emerging neuronal networks. We show that GBSs are permissive interfaces, even when uncoated by cell adhesion layers, retaining unaltered neuronal signaling properties, thus being suitable for carbon-based neural prosthetic devices.
Visual analytics of brain networks.
Li, Kaiming; Guo, Lei; Faraco, Carlos; Zhu, Dajiang; Chen, Hanbo; Yuan, Yixuan; Lv, Jinglei; Deng, Fan; Jiang, Xi; Zhang, Tuo; Hu, Xintao; Zhang, Degang; Miller, L Stephen; Liu, Tianming
2012-05-15
Identification of regions of interest (ROIs) is a fundamental issue in brain network construction and analysis. Recent studies demonstrate that multimodal neuroimaging approaches and joint analysis strategies are crucial for accurate, reliable and individualized identification of brain ROIs. In this paper, we present a novel approach of visual analytics and its open-source software for ROI definition and brain network construction. By combining neuroscience knowledge and computational intelligence capabilities, visual analytics can generate accurate, reliable and individualized ROIs for brain networks via joint modeling of multimodal neuroimaging data and an intuitive and real-time visual analytics interface. Furthermore, it can be used as a functional ROI optimization and prediction solution when fMRI data is unavailable or inadequate. We have applied this approach to an operation span working memory fMRI/DTI dataset, a schizophrenia DTI/resting state fMRI (R-fMRI) dataset, and a mild cognitive impairment DTI/R-fMRI dataset, in order to demonstrate the effectiveness of visual analytics. Our experimental results are encouraging. Copyright © 2012 Elsevier Inc. All rights reserved.
Late leaflet fracture and embolization of a Duromedics mitral prosthesis.
Sudo, K; Sasagawa, N; Ide, H; Nunokawa, M; Fujiki, T; Tonari, K
2000-08-01
A case of leaflet fracture and embolization of a mitral prosthetic valve is described. A 54-year-old man had received mitral valve replacement with an Edwards-Duromedics 29M prosthetic valve, at 10 years ago. Emergency mitral valve replacement was performed because the patient had severe congestive left heart failure with severe acute mitral regurgitation caused by a fracture in one of the mitral valve leaflets. The leaflet, which was fractured into 2 pieces, was removed from the right common iliac artery at 3 months after valve replacement. Visual inspection revealed that the leaflet contained a midline fracture. The fracture originated within a cavitary erosion pit near the major radius of the leaflet. The patient recovered from acute renal failure, requiring hemodialysis for 80 days, and is currently without complaints. We have used a Duromedics mitral valve in 11 patients, from April 1987 to April 1988. No subsequent valve failure has occurred. The diagnosis, treatment and cause of a mechanical valve fracture are discussed.
Akhtar, Aadeel; Choi, Kyung Yun; Fatina, Michael; Cornman, Jesse; Wu, Edward; Sombeck, Joseph; Yim, Chris; Slade, Patrick; Lee, Jason; Moore, Jack; Gonzales, Daniel; Wu, Alvin; Anderson, Garrett; Rotter, David; Shin, Cliff; Bretl, Timothy
2017-01-01
In this paper, we describe the design and implementation of a low-cost, open-source prosthetic hand that enables both motor control and sensory feedback for people with transradial amputations. We integrate electromyographic pattern recognition for motor control along with contact reflexes and sensory substitution to provide feedback to the user. Compliant joints allow for robustness to impacts. The entire hand can be built for around $550. This low cost makes research and development of sensorimotor prosthetic hands more accessible to researchers worldwide, while also being affordable for people with amputations in developing nations. We evaluate the sensorimotor capabilites of our hand with a subject with a transradial amputation. We show that using contact reflexes and sensory substitution, when compared to standard myoelectric prostheses that lack these features, improves grasping of delicate objects like an eggshell and a cup of water both with and without visual feedback. Our hand is easily integrated into standard sockets, facilitating long-term testing of sensorimotor capabilities. PMID:28261008
MR safety and compatibility of a noninvasively expandable total-joint endoprosthesis.
Ogg, Robert J; McDaniel, C Brian; Wallace, Donald; Pitot, Pierre; Neel, Michael D; Kaste, Sue C
2005-09-01
A noninvasively expandable total-joint endoprosthesis is now available for pediatric patients; the prosthesis can be lengthened by external application of a magnetic field. We investigated the risks of unintentional heating or lengthening of the prosthesis during MR imaging and evaluated the effect of the device on the diagnostic efficacy of MR imaging of surrounding tissues. We performed MR imaging at 1.5 T by using standard pulse sequences and pulse sequences with high-gradient and high-radiofrequency duty cycle. MR imaging caused no measurable change in prosthesis length, and the temperature of the prosthesis increased by less than 1 degrees C during repeated 14-min exposures. Despite significant signal loss and image distortion around the prosthetic joint, clinically useful images were obtained as close as 12 cm from the ends of the prosthetic stems, measured toward the body of the device. Thus, the prosthesis can be safely exposed to MR imaging pulse sequences at 1.5 T, and the visualization of some tissue surrounding the device is clinically useful.
[Effects of shortened mandibular dental arch on human brain activity during chewing: an fMRI study].
Shoi, Kazuhito
2014-03-01
According to the shortened dental arch concept, missing molars should not always be restored with prosthetic treatment. A shortened dental arch with missing molars is associated with a decrease in masticatory function. However, it is not known whether a shortened dental arch influences brain activity during chewing. This study aimed to clarify the effect of posterior arch length of mandibular bilateral distal extension removable partial dentures (RPDs) on brain activity during chewing. Eleven subjects with bilaterally missing mandibular molars (mean age, 66.1 years) participated in the study. RPDs with full dental arch and shortened dental arch were fabricated and brain activity during gum chewing under each dental condition was measured using functional magnetic resonance imaging. Brain activation during gum chewing with the full dental arch was observed in the middle frontal gyrus, primary sensorimotor cortex extending to the premotor cortex, supplementary motor area, putamen, insula and cerebellum. However, activation of the middle frontal gyrus was not observed during gum chewing with the shortened dental arch. The results of this study suggest that human brain activity during chewing in the middle frontal gyrus may be associated with chewing in the presence of the molar region.
... optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when it becomes suddenly ... may include: Color vision testing MRI of the brain , including special images of the optic nerve Visual acuity testing Visual field testing Examination of the ...
The Rhetoric of Disfigurement in First World War Britain
Biernoff, Suzannah
2011-01-01
Summary During the First World War, the horror of facial mutilation was evoked in journalism, poems, memoirs and fiction; but in Britain it was almost never represented visually outside the professional contexts of clinical medicine and medical history. This article asks why, and offers an account of British visual culture in which visual anxiety and aversion are of central importance. By comparing the rhetoric of disfigurement to the parallel treatment of amputees, an asymmetrical picture emerges in which the ‘worst loss of all’—the loss of one's face—is perceived as a loss of humanity. The only hope was surgery or, if that failed, prosthetic repair: innovations that were often wildly exaggerated in the popular press. Francis Derwent Wood was one of several sculptors whose technical skill and artistic ‘wizardry’ played a part in the improvised reconstruction of identity and humanity.
Image analysis for microelectronic retinal prosthesis.
Hallum, L E; Cloherty, S L; Lovell, N H
2008-01-01
By way of extracellular, stimulating electrodes, a microelectronic retinal prosthesis aims to render discrete, luminous spots-so-called phosphenes-in the visual field, thereby providing a phosphene image (PI) as a rudimentary remediation of profound blindness. As part thereof, a digital camera, or some other photosensitive array, captures frames, frames are analyzed, and phosphenes are actuated accordingly by way of modulated charge injections. Here, we present a method that allows the assessment of image analysis schemes for integration with a prosthetic device, that is, the means of converting the captured image (high resolution) to modulated charge injections (low resolution). We use the mutual-information function to quantify the amount of information conveyed to the PI observer (device implantee), while accounting for the statistics of visual stimuli. We demonstrate an effective scheme involving overlapping, Gaussian kernels, and discuss extensions of the method to account for shortterm visual memory in observers, and their perceptual errors of omission and commission.
Visual brain plasticity induced by central and peripheral visual field loss.
Sanda, Nicolae; Cerliani, Leonardo; Authié, Colas N; Sabbah, Norman; Sahel, José-Alain; Habas, Christophe; Safran, Avinoam B; Thiebaut de Schotten, Michel
2018-06-23
Disorders that specifically affect central and peripheral vision constitute invaluable models to study how the human brain adapts to visual deafferentation. We explored cortical changes after the loss of central or peripheral vision. Cortical thickness (CoTks) and resting-state cortical entropy (rs-CoEn), as a surrogate for neural and synaptic complexity, were extracted in 12 Stargardt macular dystrophy, 12 retinitis pigmentosa (tunnel vision stage), and 14 normally sighted subjects. When compared to controls, both groups with visual loss exhibited decreased CoTks in dorsal area V3d. Peripheral visual field loss also showed a specific CoTks decrease in early visual cortex and ventral area V4, while central visual field loss in dorsal area V3A. Only central visual field loss exhibited increased CoEn in LO-2 area and FG1. Current results revealed biomarkers of brain plasticity within the dorsal and the ventral visual streams following central and peripheral visual field defects.
Kahn, Itamar; Wig, Gagan S.; Schacter, Daniel L.
2012-01-01
Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes. PMID:21968568
Stevens, W Dale; Kahn, Itamar; Wig, Gagan S; Schacter, Daniel L
2012-08-01
Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes.
Visual artistic creativity and the brain.
Heilman, Kenneth M; Acosta, Lealani Mae
2013-01-01
Creativity is the development of a new or novel understanding--insight that leads to the expression of orderly relationships (e.g., finding and revealing the thread that unites). Visual artistic creativity plays an important role in the quality of human lives, and the goal of this chapter is to describe some of the brain mechanisms that may be important in visual artistic creativity. The initial major means of learning how the brain mediates any activity is to understand the anatomy and physiology that may support these processes. A further understanding of specific cognitive activities and behaviors may be gained by studying patients who have diseases of the brain and how these diseases influence these functions. Physiological recording such as electroencephalography and brain imaging techniques such as PET and fMRI have also allowed us to gain a better understanding of the brain mechanisms important in visual creativity. In this chapter, we discuss anatomic and physiological studies, as well as neuropsychological studies of healthy artists and patients with neurological disease that have helped us gain some insight into the brain mechanisms that mediate artistic creativity. © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Lee, Hyangsook
2013-01-01
The purpose of the study was to compare 2D and 3D visual presentation styles, both still frame and animation, on subjects' brain activity measured by the amplitude of EEG alpha wave and on their recall to see if alpha power and recall differ significantly by depth and movement of visual presentation style and by spatial intelligence. In addition,…
Art, Illusion and the Visual System.
ERIC Educational Resources Information Center
Livingstone, Margaret S.
1988-01-01
Describes the three part system of human vision. Explores the anatomical arrangement of the vision system from the eyes to the brain. Traces the path of various visual signals to their interpretations by the brain. Discusses human visual perception and its implications in art and design. (CW)
The “Visual Shock” of Francis Bacon: an essay in neuroesthetics
Zeki, Semir; Ishizu, Tomohiro
2013-01-01
In this paper we discuss the work of Francis Bacon in the context of his declared aim of giving a “visual shock.”We explore what this means in terms of brain activity and what insights into the brain's visual perceptive system his work gives. We do so especially with reference to the representation of faces and bodies in the human visual brain. We discuss the evidence that shows that both these categories of stimuli have a very privileged status in visual perception, compared to the perception of other stimuli, including man-made artifacts such as houses, chairs, and cars. We show that viewing stimuli that depart significantly from a normal representation of faces and bodies entails a significant difference in the pattern of brain activation. We argue that Bacon succeeded in delivering his “visual shock” because he subverted the normal neural representation of faces and bodies, without at the same time subverting the representation of man-made artifacts. PMID:24339812
The "Visual Shock" of Francis Bacon: an essay in neuroesthetics.
Zeki, Semir; Ishizu, Tomohiro
2013-01-01
In this paper we discuss the work of Francis Bacon in the context of his declared aim of giving a "visual shock."We explore what this means in terms of brain activity and what insights into the brain's visual perceptive system his work gives. We do so especially with reference to the representation of faces and bodies in the human visual brain. We discuss the evidence that shows that both these categories of stimuli have a very privileged status in visual perception, compared to the perception of other stimuli, including man-made artifacts such as houses, chairs, and cars. We show that viewing stimuli that depart significantly from a normal representation of faces and bodies entails a significant difference in the pattern of brain activation. We argue that Bacon succeeded in delivering his "visual shock" because he subverted the normal neural representation of faces and bodies, without at the same time subverting the representation of man-made artifacts.
Anthropomorphic cardiac ultrasound phantom.
Smith, S W; Rinaldi, J E
1989-10-01
A new phantom is described which simulates the human cardiac anatomy for applications in ultrasound imaging, ultrasound Doppler, and color-flow Doppler imaging. The phantom consists of a polymer left ventricle which includes a prosthetic mitral and aortic valve and is connected to a mock circulatory loop. Aerated tap water serves as a blood simulating fluid and ultrasound contrast medium within the circulatory loop. The left ventricle is housed in a Lexan ultrasound visualization chamber which includes ultrasound viewing ports and acoustic absorbers. A piston pump connected to the visualization chamber by a single port pumps degassed water within the chamber which in turn pumps the left ventricle. Real-time ultrasound images and Doppler studies measure flow patterns through the valves and within the left ventricle.
Visualizing anatomical evidences on atrioventricular conduction system for TAVI.
Kawashima, Tomokazu; Sato, Fumi
2014-06-01
Visualizing the anatomy of the atrioventricular (AV) conduction axis substantiates that there is remarkable inter-individual variation at the macro- and microscopic levels, and that the atrioventricular bundle and left bundle branch are located more anteriorly, distally, and cranially and much closer to the aortic root complex than previously thought. The AV conduction system may therefore be compromised during implantation of a transcatheter aortic valve prosthesis, which may account for the relatively high incidence of new cardiac conduction abnormalities when conventional prosthetic valves are used. The design of the newer JenaValve® may afford advantages over more conventional valves by avoiding the high-risk implantation area and the potential for coronary ostia obstruction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Changes of Visual Pathway and Brain Connectivity in Glaucoma: A Systematic Review
Nuzzi, Raffaele; Dallorto, Laura; Rolle, Teresa
2018-01-01
Background: Glaucoma is a leading cause of irreversible blindness worldwide. The increasing interest in the involvement of the cortical visual pathway in glaucomatous patients is due to the implications in recent therapies, such as neuroprotection and neuroregeneration. Objective: In this review, we outline the current understanding of brain structural, functional, and metabolic changes detected with the modern techniques of neuroimaging in glaucomatous subjects. Methods: We screened MEDLINE, EMBASE, CINAHL, CENTRAL, LILACS, Trip Database, and NICE for original contributions published until 31 October 2017. Studies with at least six patients affected by any type of glaucoma were considered. We included studies using the following neuroimaging techniques: functional Magnetic Resonance Imaging (fMRI), resting-state fMRI (rs-fMRI), magnetic resonance spectroscopy (MRS), voxel- based Morphometry (VBM), surface-based Morphometry (SBM), diffusion tensor MRI (DTI). Results: Over a total of 1,901 studies, 56 case series with a total of 2,381 patients were included. Evidence of neurodegenerative process in glaucomatous patients was found both within and beyond the visual system. Structural alterations in visual cortex (mainly reduced cortex thickness and volume) have been demonstrated with SBM and VBM; these changes were not limited to primary visual cortex but also involved association visual areas. Other brain regions, associated with visual function, demonstrated a certain grade of increased or decreased gray matter volume. Functional and metabolic abnormalities resulted within primary visual cortex in all studies with fMRI and MRS. Studies with rs-fMRI found disrupted connectivity between the primary and higher visual cortex and between visual cortex and associative visual areas in the task-free state of glaucomatous patients. Conclusions: This review contributes to the better understanding of brain abnormalities in glaucoma. It may stimulate further speculation about brain plasticity at a later age and therapeutic strategies, such as the prevention of cortical degeneration in patients with glaucoma. Structural, functional, and metabolic neuroimaging methods provided evidence of changes throughout the visual pathway in glaucomatous patients. Other brain areas, not directly involved in the processing of visual information, also showed alterations. PMID:29896087
Zeki, Semir
2016-10-01
Results from a variety of sources, some many years old, lead ineluctably to a re-appraisal of the twin strategies of hierarchical and parallel processing used by the brain to construct an image of the visual world. Contrary to common supposition, there are at least three 'feed-forward' anatomical hierarchies that reach the primary visual cortex (V1) and the specialized visual areas outside it, in parallel. These anatomical hierarchies do not conform to the temporal order with which visual signals reach the specialized visual areas through V1. Furthermore, neither the anatomical hierarchies nor the temporal order of activation through V1 predict the perceptual hierarchies. The latter shows that we see (and become aware of) different visual attributes at different times, with colour leading form (orientation) and directional visual motion, even though signals from fast-moving, high-contrast stimuli are among the earliest to reach the visual cortex (of area V5). Parallel processing, on the other hand, is much more ubiquitous than commonly supposed but is subject to a barely noticed but fundamental aspect of brain operations, namely that different parallel systems operate asynchronously with respect to each other and reach perceptual endpoints at different times. This re-assessment leads to the conclusion that the visual brain is constituted of multiple, parallel and asynchronously operating task- and stimulus-dependent hierarchies (STDH); which of these parallel anatomical hierarchies have temporal and perceptual precedence at any given moment is stimulus and task related, and dependent on the visual brain's ability to undertake multiple operations asynchronously. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Rosemann, Stephanie; Thiel, Christiane M
2018-07-15
Hearing loss is associated with difficulties in understanding speech, especially under adverse listening conditions. In these situations, seeing the speaker improves speech intelligibility in hearing-impaired participants. On the neuronal level, previous research has shown cross-modal plastic reorganization in the auditory cortex following hearing loss leading to altered processing of auditory, visual and audio-visual information. However, how reduced auditory input effects audio-visual speech perception in hearing-impaired subjects is largely unknown. We here investigated the impact of mild to moderate age-related hearing loss on processing audio-visual speech using functional magnetic resonance imaging. Normal-hearing and hearing-impaired participants performed two audio-visual speech integration tasks: a sentence detection task inside the scanner and the McGurk illusion outside the scanner. Both tasks consisted of congruent and incongruent audio-visual conditions, as well as auditory-only and visual-only conditions. We found a significantly stronger McGurk illusion in the hearing-impaired participants, which indicates stronger audio-visual integration. Neurally, hearing loss was associated with an increased recruitment of frontal brain areas when processing incongruent audio-visual, auditory and also visual speech stimuli, which may reflect the increased effort to perform the task. Hearing loss modulated both the audio-visual integration strength measured with the McGurk illusion and brain activation in frontal areas in the sentence task, showing stronger integration and higher brain activation with increasing hearing loss. Incongruent compared to congruent audio-visual speech revealed an opposite brain activation pattern in left ventral postcentral gyrus in both groups, with higher activation in hearing-impaired participants in the incongruent condition. Our results indicate that already mild to moderate hearing loss impacts audio-visual speech processing accompanied by changes in brain activation particularly involving frontal areas. These changes are modulated by the extent of hearing loss. Copyright © 2018 Elsevier Inc. All rights reserved.
Retinal ganglion cell maps in the brain: implications for visual processing.
Dhande, Onkar S; Huberman, Andrew D
2014-02-01
Everything the brain knows about the content of the visual world is built from the spiking activity of retinal ganglion cells (RGCs). As the output neurons of the eye, RGCs include ∼20 different subtypes, each responding best to a specific feature in the visual scene. Here we discuss recent advances in identifying where different RGC subtypes route visual information in the brain, including which targets they connect to and how their organization within those targets influences visual processing. We also highlight examples where causal links have been established between specific RGC subtypes, their maps of central connections and defined aspects of light-mediated behavior and we suggest the use of techniques that stand to extend these sorts of analyses to circuits underlying visual perception. Copyright © 2013. Published by Elsevier Ltd.
Visual agnosia and focal brain injury.
Martinaud, O
Visual agnosia encompasses all disorders of visual recognition within a selective visual modality not due to an impairment of elementary visual processing or other cognitive deficit. Based on a sequential dichotomy between the perceptual and memory systems, two different categories of visual object agnosia are usually considered: 'apperceptive agnosia' and 'associative agnosia'. Impaired visual recognition within a single category of stimuli is also reported in: (i) visual object agnosia of the ventral pathway, such as prosopagnosia (for faces), pure alexia (for words), or topographagnosia (for landmarks); (ii) visual spatial agnosia of the dorsal pathway, such as cerebral akinetopsia (for movement), or orientation agnosia (for the placement of objects in space). Focal brain injuries provide a unique opportunity to better understand regional brain function, particularly with the use of effective statistical approaches such as voxel-based lesion-symptom mapping (VLSM). The aim of the present work was twofold: (i) to review the various agnosia categories according to the traditional visual dual-pathway model; and (ii) to better assess the anatomical network underlying visual recognition through lesion-mapping studies correlating neuroanatomical and clinical outcomes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Electroretinography and Visual Evoked Potentials in Childhood Brain Tumor Survivors.
Pietilä, Sari; Lenko, Hanna L; Oja, Sakari; Koivisto, Anna-Maija; Pietilä, Timo; Mäkipernaa, Anne
2016-07-01
This population-based cross-sectional study evaluates the clinical value of electroretinography and visual evoked potentials in childhood brain tumor survivors. A flash electroretinography and a checkerboard reversal pattern visual evoked potential (or alternatively a flash visual evoked potential) were done for 51 survivors (age 3.8-28.7 years) after a mean follow-up time of 7.6 (1.5-15.1) years. Abnormal electroretinography was obtained in 1 case, bilaterally delayed abnormal visual evoked potentials in 22/51 (43%) cases. Nine of 25 patients with infratentorial tumor location, and altogether 12 out of 31 (39%) patients who did not have tumors involving the visual pathways, had abnormal visual evoked potentials. Abnormal electroretinographies are rarely observed, but abnormal visual evoked potentials are common even without evident anatomic lesions in the visual pathway. Bilateral changes suggest a general and possibly multifactorial toxic/adverse effect on the visual pathway. Electroretinography and visual evoked potential may have clinical and scientific value while evaluating long-term effects of childhood brain tumors and tumor treatment. © The Author(s) 2016.
Redundant information encoding in primary motor cortex during natural and prosthetic motor control.
So, Kelvin; Ganguly, Karunesh; Jimenez, Jessica; Gastpar, Michael C; Carmena, Jose M
2012-06-01
Redundant encoding of information facilitates reliable distributed information processing. To explore this hypothesis in the motor system, we applied concepts from information theory to quantify the redundancy of movement-related information encoded in the macaque primary motor cortex (M1) during natural and neuroprosthetic control. Two macaque monkeys were trained to perform a delay center-out reaching task controlling a computer cursor under natural arm movement (manual control, 'MC'), and using a brain-machine interface (BMI) via volitional control of neural ensemble activity (brain control, 'BC'). During MC, we found neurons in contralateral M1 to contain higher and more redundant information about target direction than ipsilateral M1 neurons, consistent with the laterality of movement control. During BC, we found that the M1 neurons directly incorporated into the BMI ('direct' neurons) contained the highest and most redundant target information compared to neurons that were not incorporated into the BMI ('indirect' neurons). This effect was even more significant when comparing to M1 neurons of the opposite hemisphere. Interestingly, when we retrained the BMI to use ipsilateral M1 activity, we found that these neurons were more redundant and contained higher information than contralateral M1 neurons, even though ensembles from this hemisphere were previously less redundant during natural arm movement. These results indicate that ensembles most associated to movement contain highest redundancy and information encoding, which suggests a role for redundancy in proficient natural and prosthetic motor control.
Visual Aspects of Written Composition.
ERIC Educational Resources Information Center
Autrey, Ken
While attempting to refine and redefine the composing process, rhetoric teachers have overlooked research showing how the brain's visual and verbal components interrelate. Recognition of the brain's visual potential can mean more than the use of media with the written word--it also has implications for the writing process itself. For example,…
Amicuzi, Ileana; Stortini, Massimo; Petrarca, Maurizio; Di Giulio, Paola; Di Rosa, Giuseppe; Fariello, Giuseppe; Longo, Daniela; Cannatà, Vittorio; Genovese, Elisabetta; Castelli, Enrico
2006-10-01
We report the case of a 4.6-year-old girl born pre-term with early bilateral occipital damage. It was revealed that the child had non-severely impaired basic visual abilities and ocular motility, a selective perceptual deficit of figure-ground segregation, impaired visual recognition and abnormal navigating through space. Even if the child's visual functioning was not optimal, this was the expression of adaptive anatomic and functional brain modifications that occurred following the early lesion. Anatomic brain structure was studied with anatomic MRI and Diffusor Tensor Imaging (DTI)-MRI. This behavioral study may provide an important contribution to understanding the impact of an early lesion of the visual system on the development of visual functions and on the immature brain's potential for reorganisation related to when the damage occurred.
Toschi, Nicola; Kim, Jieun; Sclocco, Roberta; Duggento, Andrea; Barbieri, Riccardo; Kuo, Braden; Napadow, Vitaly
2017-01-01
The brain networks supporting nausea not yet understood. We previously found that while visual stimulation activated primary (V1) and extrastriate visual cortices (MT+/V5, coding for visual motion), increasing nausea was associated with increasing sustained activation in several brain areas, with significant co-activation for anterior insula (aIns) and mid-cingulate (MCC) cortices. Here, we hypothesized that motion sickness also alters functional connectivity between visual motion and previously identified nausea-processing brain regions. Subjects prone to motion sickness and controls completed a motion sickness provocation task during fMRI/ECG acquisition. We studied changes in connectivity between visual processing areas activated by the stimulus (MT+/V5, V1), right aIns and MCC when comparing rest (BASELINE) to peak nausea state (NAUSEA). Compared to BASELINE, NAUSEA reduced connectivity between right and left V1 and increased connectivity between right MT+/V5 and aIns and between left MT+/V5 and MCC. Additionally, the change in MT+/V5 to insula connectivity was significantly associated with a change in sympathovagal balance, assessed by heart rate variability analysis. No state-related connectivity changes were noted for the control group. Increased connectivity between a visual motion processing region and nausea/salience brain regions may reflect increased transfer of visual/vestibular mismatch information to brain regions supporting nausea perception and autonomic processing. We conclude that vection-induced nausea increases connectivity between nausea-processing regions and those activated by the nauseogenic stimulus. This enhanced low-frequency coupling may support continual, slowly evolving nausea perception and shifts toward sympathetic dominance. Disengaging this coupling may be a target for biobehavioral interventions aimed at reducing motion sickness severity. Copyright © 2016 Elsevier B.V. All rights reserved.
Arneodo, Ezequiel M; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B
2012-01-01
Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform.
Restoring the sense of touch with a prosthetic hand through a brain interface.
Tabot, Gregg A; Dammann, John F; Berg, Joshua A; Tenore, Francesco V; Boback, Jessica L; Vogelstein, R Jacob; Bensmaia, Sliman J
2013-11-05
Our ability to manipulate objects dexterously relies fundamentally on sensory signals originating from the hand. To restore motor function with upper-limb neuroprostheses requires that somatosensory feedback be provided to the tetraplegic patient or amputee. Given the complexity of state-of-the-art prosthetic limbs and, thus, the huge state space they can traverse, it is desirable to minimize the need for the patient to learn associations between events impinging on the limb and arbitrary sensations. Accordingly, we have developed approaches to intuitively convey sensory information that is critical for object manipulation--information about contact location, pressure, and timing--through intracortical microstimulation of primary somatosensory cortex. In experiments with nonhuman primates, we show that we can elicit percepts that are projected to a localized patch of skin and that track the pressure exerted on the skin. In a real-time application, we demonstrate that animals can perform a tactile discrimination task equally well whether mechanical stimuli are delivered to their native fingers or to a prosthetic one. Finally, we propose that the timing of contact events can be signaled through phasic intracortical microstimulation at the onset and offset of object contact that mimics the ubiquitous on and off responses observed in primary somatosensory cortex to complement slowly varying pressure-related feedback. We anticipate that the proposed biomimetic feedback will considerably increase the dexterity and embodiment of upper-limb neuroprostheses and will constitute an important step in restoring touch to individuals who have lost it.
21 CFR 870.3945 - Prosthetic heart valve sizer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...
21 CFR 870.3945 - Prosthetic heart valve sizer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...
21 CFR 870.3945 - Prosthetic heart valve sizer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...
21 CFR 870.3945 - Prosthetic heart valve sizer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...
21 CFR 870.3945 - Prosthetic heart valve sizer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Prosthetic heart valve sizer. 870.3945 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3945 Prosthetic heart valve sizer. (a) Identification. A prosthetic heart valve sizer is a device used to measure the size of the...
Is orbital volume associated with eyeball and visual cortex volume in humans?
Pearce, Eiluned; Bridge, Holly
2013-01-01
In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (n = 88) and brain and visual cortex (n = 99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes and (iii) different visual cortical areas, independently of overall brain volume. In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices.
Is orbital volume associated with eyeball and visual cortex volume in humans?
Pearce, Eiluned; Bridge, Holly
2013-01-01
Background In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. Aim To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Subjects & Methods Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (N=88), and brain and visual cortex (N=99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. Results A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes, (iii) different visual cortical areas, independently of overall brain volume. Conclusion In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices. PMID:23879766
Lobsien, D; Ettrich, B; Sotiriou, K; Classen, J; Then Bergh, F; Hoffmann, K-T
2014-01-01
Functional correlates of microstructural damage of the brain affected by MS are incompletely understood. The purpose of this study was to evaluate correlations of visual-evoked potentials with microstructural brain changes as determined by DTI in patients with demyelinating central nervous disease. Sixty-one patients with clinically isolated syndrome or MS were prospectively recruited. The mean P100 visual-evoked potential latencies of the right and left eyes of each patient were calculated and used for the analysis. For DTI acquisition, a single-shot echo-planar imaging pulse sequence with 80 diffusion directions was performed at 3T. Fractional anisotropy, radial diffusivity, and axial diffusivity were calculated and correlated with mean P100 visual-evoked potentials by tract-based spatial statistics. Significant negative correlations between mean P100 visual-evoked potentials and fractional anisotropy and significant positive correlations between mean P100 visual-evoked potentials and radial diffusivity were found widespread over the whole brain. The highest significance was found in the optic radiation, frontoparietal white matter, and corpus callosum. Significant positive correlations between mean P100 visual-evoked potentials and axial diffusivity were less widespread, notably sparing the optic radiation. Microstructural changes of the whole brain correlated significantly with mean P100 visual-evoked potentials. The distribution of the correlations showed clear differences among axial diffusivity, fractional anisotropy, and radial diffusivity, notably in the optic radiation. This finding suggests a stronger correlation of mean P100 visual-evoked potentials to demyelination than to axonal damage. © 2014 by American Journal of Neuroradiology.
Individual differences in solving arithmetic word problems
2013-01-01
Background With the present functional magnetic resonance imaging (fMRI) study at 3 T, we investigated the neural correlates of visualization and verbalization during arithmetic word problem solving. In the domain of arithmetic, visualization might mean to visualize numbers and (intermediate) results while calculating, and verbalization might mean that numbers and (intermediate) results are verbally repeated during calculation. If the brain areas involved in number processing are domain-specific as assumed, that is, that the left angular gyrus (AG) shows an affinity to the verbal domain, and that the left and right intraparietal sulcus (IPS) shows an affinity to the visual domain, the activation of these areas should show a dependency on an individual’s cognitive style. Methods 36 healthy young adults participated in the fMRI study. The participants habitual use of visualization and verbalization during solving arithmetic word problems was assessed with a short self-report assessment. During the fMRI measurement, arithmetic word problems that had to be solved by the participants were presented in an event-related design. Results We found that visualizers showed greater brain activation in brain areas involved in visual processing, and that verbalizers showed greater brain activation within the left angular gyrus. Conclusions Our results indicate that cognitive styles or preferences play an important role in understanding brain activation. Our results confirm, that strong visualizers use mental imagery more strongly than weak visualizers during calculation. Moreover, our results suggest that the left AG shows a specific affinity to the verbal domain and subserves number processing in a modality-specific way. PMID:23883107
[Sensory loss and brain reorganization].
Fortin, Madeleine; Voss, Patrice; Lassonde, Maryse; Lepore, Franco
2007-11-01
It is without a doubt that humans are first and foremost visual beings. Even though the other sensory modalities provide us with valuable information, it is vision that generally offers the most reliable and detailed information concerning our immediate surroundings. It is therefore not surprising that nearly a third of the human brain processes, in one way or another, visual information. But what happens when the visual information no longer reaches these brain regions responsible for processing it? Indeed numerous medical conditions such as congenital glaucoma, retinis pigmentosa and retinal detachment, to name a few, can disrupt the visual system and lead to blindness. So, do the brain areas responsible for processing visual stimuli simply shut down and become non-functional? Do they become dead weight and simply stop contributing to cognitive and sensory processes? Current data suggests that this is not the case. Quite the contrary, it would seem that congenitally blind individuals benefit from the recruitment of these areas by other sensory modalities to carry out non-visual tasks. In fact, our laboratory has been studying blindness and its consequences on both the brain and behaviour for many years now. We have shown that blind individuals demonstrate exceptional hearing abilities. This finding holds true for stimuli originating from both near and far space. It also holds true, under certain circumstances, for those who lost their sight later in life, beyond a period generally believed to limit the brain changes following the loss of sight. In the case of the early blind, we have shown their ability to localize sounds is strongly correlated with activity in the occipital cortex (the location of the visual processing), demonstrating that these areas are functionally engaged by the task. Therefore it would seem that the plastic nature of the human brain allows them to make new use of the cerebral areas normally dedicated to visual processing.
Platz, Thomas; Schüttauf, Johannes; Aschenbach, Julia; Mengdehl, Christine; Lotze, Martin
2016-01-01
The study sought to alter visual spatial attention in young healthy subjects by a neuronavigated inhibitory rTMS protocol (cTBS-600) to right brain areas thought to be involved in visual attentional processes, i.e. the temporoparietal junction (TPJ) and the posterior middle frontal gyrus (pMFG), and to test the reversibility of effects by an additional consecutive cTBS to the homologue left brain cortical areas. Healthy subjects showed a leftward bias of the egocentric perspective for both visual-perceptive and visual-exploratory tasks specifically for items presented in the left hemifield. cTBS to the right TPJ, and less systematically to the right pMFG reduced this bias for visuo-spatial and exploratory visuo-motor behaviour. Further, a consecutive cTBS to the left TPJ changed the bias again towards the left for a visual-perceptive task. The evidence supports the notion of an involvement of the right TPJ (and pMFG) in spatial visual attention. The observations further indicate that inhibitory non-invasive brain stimulation (cTBS) to the left TPJ has a potential for reversing a rightward bias of spatial attention when the right TPJ is dysfunctional. Accordingly, the findings could have implications for therapeutic rTMS development for right brain damaged patients with visual neglect.
MRIVIEW: An interactive computational tool for investigation of brain structure and function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranken, D.; George, J.
MRIVIEW is a software system which uses image processing and visualization to provide neuroscience researchers with an integrated environment for combining functional and anatomical information. Key features of the software include semi-automated segmentation of volumetric head data and an interactive coordinate reconciliation method which utilizes surface visualization. The current system is a precursor to a computational brain atlas. We describe features this atlas will incorporate, including methods under development for visualizing brain functional data obtained from several different research modalities.
Disruption of functional networks in dyslexia: A whole-brain, data-driven analysis of connectivity
Finn, Emily S.; Shen, Xilin; Holahan, John M.; Scheinost, Dustin; Lacadie, Cheryl; Papademetris, Xenophon; Shaywitz, Sally E.; Shaywitz, Bennett A.; Constable, R. Todd
2013-01-01
Background Functional connectivity analyses of fMRI data are a powerful tool for characterizing brain networks and how they are disrupted in neural disorders. However, many such analyses examine only one or a small number of a priori seed regions. Studies that consider the whole brain frequently rely on anatomic atlases to define network nodes, which may result in mixing distinct activation timecourses within a single node. Here, we improve upon previous methods by using a data-driven brain parcellation to compare connectivity profiles of dyslexic (DYS) versus non-impaired (NI) readers in the first whole-brain functional connectivity analysis of dyslexia. Methods Whole-brain connectivity was assessed in children (n = 75; 43 NI, 32 DYS) and adult (n = 104; 64 NI, 40 DYS) readers. Results Compared to NI readers, DYS readers showed divergent connectivity within the visual pathway and between visual association areas and prefrontal attention areas; increased right-hemisphere connectivity; reduced connectivity in the visual word-form area (part of the left fusiform gyrus specialized for printed words); and persistent connectivity to anterior language regions around the inferior frontal gyrus. Conclusions Together, findings suggest that NI readers are better able to integrate visual information and modulate their attention to visual stimuli, allowing them to recognize words based on their visual properties, while DYS readers recruit altered reading circuits and rely on laborious phonology-based “sounding out” strategies into adulthood. These results deepen our understanding of the neural basis of dyslexia and highlight the importance of synchrony between diverse brain regions for successful reading. PMID:24124929
Neuro-Prosthetic Implants With Adjustable Electrode Arrays
NASA Technical Reports Server (NTRS)
Whitacre, Jay; DelCastillo, Linda Y.; Mojarradi, Mohammad; Johnson, Travis; West, William; Andersen, Richard
2006-01-01
Brushlike arrays of electrodes packaged with application-specific integrated circuits (ASICs) are undergoing development for use as electronic implants especially as neuro-prosthetic devices that might be implanted in brains to detect weak electrical signals generated by neurons. These implants partly resemble the ones reported in Integrated Electrode Arrays for Neuro-Prosthetic Implants (NPO-21198), NASA Tech Briefs, Vol. 27, No. 2 (February 2003), page 48. The basic idea underlying both the present and previously reported implants is that the electrodes would pick up signals from neurons and the ASICs would amplify and otherwise preprocess the signals for monitoring by external equipment. The figure presents a simplified and partly schematic view of an implant according to the present concept. Whereas the electrodes in an implant according to the previously reported concept would be microscopic wires, the electrodes according to the present concept are in the form of microscopic needles. An even more important difference would be that, unlike the previously reported concept, the present concept calls for the inclusion of microelectromechanical actuators for adjusting the depth of penetration of the electrodes into brain tissue. The prototype implant now under construction includes an array of 100 electrodes and corresponding array of electrode contact pads formed on opposite faces of a plate fabricated by techniques that are established in the art of microelectromechanical systems (MEMS). A mixed-signal ASIC under construction at the time of reporting the information for this article will include 100 analog amplifier channels (one amplifier per electrode). On one face of the mixed-signal ASIC there will be a solder-bump/micro-pad array that will have the same pitch as that of the electrode array, and that will be used to make the electrical and mechanical connections between the electrode array and the ASIC. Once the electrode array and the ASIC are soldered together, the remaining empty space between them will be filled with a biocompatible epoxy, the remaining exposed portions of the ASIC will be covered with micromachined plates for protection against corrosive bodily fluids, and then the ASIC and its covering micromachined plates will be coated with parylene
2017-09-01
AWARD NUMBER: W81XWH-16-1-0569 TITLE: A Prosthetic Foot Emulator to Optimize Prescription of Prosthetic Feet in Veterans and Service Members...Headquarters Services , Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302...GRANT NUMBER A Prosthetic Foot Emulator to Optimize Prescription of Prosthetic Feet in Veterans and Service Members with Leg Amputations 5c
Østlie, Kristin; Lesjø, Ingrid Marie; Franklin, Rosemary Joy; Garfelt, Beate; Skjeldal, Ola Hunsbeth; Magnus, Per
2012-11-01
To describe patterns of prosthesis wear and perceived prosthetic usefulness in adult acquired upper-limb amputees (ULAs). To describe prosthetic skills in activities of daily life (ADL) and the actual use of prostheses in the performance of ADL tasks. To estimate the influence of prosthetic skills on actual prosthesis use and the influence of background factors on prosthetic skills and actual prosthesis use. Cross-sectional study analysing population-based questionnaire data (n = 224) and data from interviews and clinical testing in a referred/convenience sample of prosthesis-wearing ULAs (n = 50). Effects were analysed using linear regression. 80.8% wore prostheses. 90.3% reported their most worn prosthesis as useful. Prosthetic usefulness profiles varied with prosthetic type. Despite demonstrating good prosthetic skills, the amputees reported actual prosthesis use in only about half of the ADL tasks performed in everyday life. In unilateral amputees, increased actual use was associated with sufficient prosthetic training and with the use of myoelectric vs cosmetic prostheses, regardless of amputation level. Prosthetic skills did not affect actual prosthesis use. No background factors showed significant effect on prosthetic skills. Most major ULAs wear prostheses. Individualised prosthetic training and fitting of myoelectric rather than passive prostheses may increase actual prosthesis use in ADL.
Hierarchical organization of brain functional networks during visual tasks.
Zhuo, Zhao; Cai, Shi-Min; Fu, Zhong-Qian; Zhang, Jie
2011-09-01
The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In particular, we compare the modular structure of the functional network from EEG channels with that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain functional networks correspond well to those from the anatomical structures over different levels of hierarchy. Most importantly, we find that the consistency between the modular structures of the functional network and the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices during the visual task, which implies that the strong modularity in these areas forms the functional basis for the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time series in the same anatomical group is much stronger than that of EEG time series from different anatomical groups during the task and that the hierarchical organization of functional brain network may be a consequence of functional segmentation of the brain cortex.
Rothia mucilaginosa Prosthetic Device Infections: a Case of Prosthetic Valve Endocarditis
Tokarczyk, Mindy J.; Jungkind, Donald; DeSimone, Joseph A.
2013-01-01
Rothia mucilaginosa is increasingly recognized as an emerging opportunistic pathogen associated with prosthetic device infections. Infective endocarditis is one of the most common clinical presentations. We report a case of R. mucilaginosa prosthetic valve endocarditis and review the literature of prosthetic device infections caused by this organism. PMID:23467598
Statistical Signal Processing and the Motor Cortex
Brockwell, A.E.; Kass, R.E.; Schwartz, A.B.
2011-01-01
Over the past few decades, developments in technology have significantly improved the ability to measure activity in the brain. This has spurred a great deal of research into brain function and its relation to external stimuli, and has important implications in medicine and other fields. As a result of improved understanding of brain function, it is now possible to build devices that provide direct interfaces between the brain and the external world. We describe some of the current understanding of function of the motor cortex region. We then discuss a typical likelihood-based state-space model and filtering based approach to address the problems associated with building a motor cortical-controlled cursor or robotic prosthetic device. As a variation on previous work using this approach, we introduce the idea of using Markov chain Monte Carlo methods for parameter estimation in this context. By doing this instead of performing maximum likelihood estimation, it is possible to expand the range of possible models that can be explored, at a cost in terms of computational load. We demonstrate results obtained applying this methodology to experimental data gathered from a monkey. PMID:21765538
Alpha-Band Rhythms in Visual Task Performance: Phase-Locking by Rhythmic Sensory Stimulation
de Graaf, Tom A.; Gross, Joachim; Paterson, Gavin; Rusch, Tessa; Sack, Alexander T.; Thut, Gregor
2013-01-01
Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8–12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles. PMID:23555873
Visual Learning Alters the Spontaneous Activity of the Resting Human Brain: An fNIRS Study
Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan
2014-01-01
Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning. PMID:25243168
Visual learning alters the spontaneous activity of the resting human brain: an fNIRS study.
Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan
2014-01-01
Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning.
Asano, Kohei; Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Thyreau, Benjamin; Asano, Michiko; Takeuchi, Hikaru; Kawashima, Ryuta
2014-08-08
Humans perceive textual and nontextual information in visual perception, and both depend on language. In childhood education, students exhibit diverse perceptual abilities, such that some students process textual information better and some process nontextual information better. These predispositions involve many factors, including cognitive ability and learning preference. However, the relationship between verbal and nonverbal cognitive abilities and brain activation during visual perception has not yet been examined in children. We used functional magnetic resonance imaging to examine the relationship between nonverbal and verbal cognitive abilities and brain activation during nontextual visual perception in large numbers of children. A significant positive correlation was found between nonverbal cognitive abilities and brain activation in the right temporoparietal junction, which is thought to be related to attention reorienting. This significant positive correlation existed only in boys. These findings suggested that male brain activation differed from female brain activation, and that this depended on individual cognitive processes, even if there was no gender difference in behavioral performance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mori, Toshio; Kai, Shoichi
2003-05-01
We present the first observation of stochastic resonance (SR) in the human brain's visual processing area. The novel experimental protocol is to stimulate the right eye with a sub-threshold periodic optical signal and the left eye with a noisy one. The stimuli bypass sensory organs and are mixed in the visual cortex. With many noise sources present in the brain, higher brain functions, e.g. perception and cognition, may exploit SR.
Visual cortical areas of the mouse: comparison of parcellation and network structure with primates
Laramée, Marie-Eve; Boire, Denis
2015-01-01
Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals. PMID:25620914
Visual cortical areas of the mouse: comparison of parcellation and network structure with primates.
Laramée, Marie-Eve; Boire, Denis
2014-01-01
Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.
Visual brain activity patterns classification with simultaneous EEG-fMRI: A multimodal approach.
Ahmad, Rana Fayyaz; Malik, Aamir Saeed; Kamel, Nidal; Reza, Faruque; Amin, Hafeez Ullah; Hussain, Muhammad
2017-01-01
Classification of the visual information from the brain activity data is a challenging task. Many studies reported in the literature are based on the brain activity patterns using either fMRI or EEG/MEG only. EEG and fMRI considered as two complementary neuroimaging modalities in terms of their temporal and spatial resolution to map the brain activity. For getting a high spatial and temporal resolution of the brain at the same time, simultaneous EEG-fMRI seems to be fruitful. In this article, we propose a new method based on simultaneous EEG-fMRI data and machine learning approach to classify the visual brain activity patterns. We acquired EEG-fMRI data simultaneously on the ten healthy human participants by showing them visual stimuli. Data fusion approach is used to merge EEG and fMRI data. Machine learning classifier is used for the classification purposes. Results showed that superior classification performance has been achieved with simultaneous EEG-fMRI data as compared to the EEG and fMRI data standalone. This shows that multimodal approach improved the classification accuracy results as compared with other approaches reported in the literature. The proposed simultaneous EEG-fMRI approach for classifying the brain activity patterns can be helpful to predict or fully decode the brain activity patterns.
Split brain: divided perception but undivided consciousness.
Pinto, Yair; Neville, David A; Otten, Marte; Corballis, Paul M; Lamme, Victor A F; de Haan, Edward H F; Foschi, Nicoletta; Fabri, Mara
2017-05-01
In extensive studies with two split-brain patients we replicate the standard finding that stimuli cannot be compared across visual half-fields, indicating that each hemisphere processes information independently of the other. Yet, crucially, we show that the canonical textbook findings that a split-brain patient can only respond to stimuli in the left visual half-field with the left hand, and to stimuli in the right visual half-field with the right hand and verbally, are not universally true. Across a wide variety of tasks, split-brain patients with a complete and radiologically confirmed transection of the corpus callosum showed full awareness of presence, and well above chance-level recognition of location, orientation and identity of stimuli throughout the entire visual field, irrespective of response type (left hand, right hand, or verbally). Crucially, we used confidence ratings to assess conscious awareness. This revealed that also on high confidence trials, indicative of conscious perception, response type did not affect performance. These findings suggest that severing the cortical connections between hemispheres splits visual perception, but does not create two independent conscious perceivers within one brain. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zapf, Marc P; Matteucci, Paul B; Lovell, Nigel H; Zheng, Steven; Suaning, Gregg J
2014-01-01
Simulated prosthetic vision (SPV) in normally sighted subjects is an established way of investigating the prospective efficacy of visual prosthesis designs in visually guided tasks such as mobility. To perform meaningful SPV mobility studies in computer-based environments, a credible representation of both the virtual scene to navigate and the experienced artificial vision has to be established. It is therefore prudent to make optimal use of existing hardware and software solutions when establishing a testing framework. The authors aimed at improving the realism and immersion of SPV by integrating state-of-the-art yet low-cost consumer technology. The feasibility of body motion tracking to control movement in photo-realistic virtual environments was evaluated in a pilot study. Five subjects were recruited and performed an obstacle avoidance and wayfinding task using either keyboard and mouse, gamepad or Kinect motion tracking. Walking speed and collisions were analyzed as basic measures for task performance. Kinect motion tracking resulted in lower performance as compared to classical input methods, yet results were more uniform across vision conditions. The chosen framework was successfully applied in a basic virtual task and is suited to realistically simulate real-world scenes under SPV in mobility research. Classical input peripherals remain a feasible and effective way of controlling the virtual movement. Motion tracking, despite its limitations and early state of implementation, is intuitive and can eliminate between-subject differences due to familiarity to established input methods.
Toward high-resolution optoelectronic retinal prosthesis
NASA Astrophysics Data System (ADS)
Palanker, Daniel; Huie, Philip; Vankov, Alexander; Asher, Alon; Baccus, Steven
2005-04-01
It has been already demonstrated that electrical stimulation of retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. Current retinal implants provide very low resolution (just a few electrodes), while several thousand pixels are required for functional restoration of sight. We present a design of the optoelectronic retinal prosthetic system that can activate a retinal stimulating array with pixel density up to 2,500 pix/mm2 (geometrically corresponding to a visual acuity of 20/80), and allows for natural eye scanning rather than scanning with a head-mounted camera. The system operates similarly to "virtual reality" imaging devices used in military and medical applications. An image from a video camera is projected by a goggle-mounted infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. Such a system provides a broad field of vision by allowing for natural eye scanning. The goggles are transparent to visible light, thus allowing for simultaneous utilization of remaining natural vision along with prosthetic stimulation. Optical control of the implant allows for simple adjustment of image processing algorithms and for learning. A major prerequisite for high resolution stimulation is the proximity of neural cells to the stimulation sites. This can be achieved with sub-retinal implants constructed in a manner that directs migration of retinal cells to target areas. Two basic implant geometries are described: perforated membranes and protruding electrode arrays. Possibility of the tactile neural stimulation is also examined.
Structural brain alterations in primary open angle glaucoma: a 3T MRI study
Wang, Jieqiong; Li, Ting; Sabel, Bernhard A.; Chen, Zhiqiang; Wen, Hongwei; Li, Jianhong; Xie, Xiaobin; Yang, Diya; Chen, Weiwei; Wang, Ningli; Xian, Junfang; He, Huiguang
2016-01-01
Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/2), amygdala and hippocampus. While VBA showed no significant differences in the gray matter volumes of patients, SBA revealed significantly reduced cortical thickness in the right frontal pole and ROI-based analysis volume shrinkage in LGN bilaterally, right V1 and left amygdala. Structural abnormalities were correlated with clinical parameters in a subset of the patients revealing that the left LGN volume was negatively correlated with bilateral cup-to-disk ratio (CDR), the right LGN volume was positively correlated with the mean deviation of the right visual hemifield, and the right V1 cortical thickness was negatively correlated with the right CDR in glaucoma. These results demonstrate that POAG affects both vision-related structures and non-visual cortical regions. Moreover, alterations of the brain visual structures reflect the clinical severity of glaucoma. PMID:26743811
Factors Related to Impaired Visual Orienting Behavior in Children with Intellectual Disabilities
ERIC Educational Resources Information Center
Boot, F. H.; Pel, J .J. M.; Evenhuis, H. M.; van der Steen, J.
2012-01-01
It is generally assumed that children with intellectual disabilities (ID) have an increased risk of impaired visual information processing due to brain damage or brain development disorder. So far little evidence has been presented to support this assumption. Abnormal visual orienting behavior is a sensitive tool to evaluate impaired visual…
1984-08-20
neuropsychological data on the apraxias and the visual agnosias imply that motor and visual memories can be separately spared or destroyed after brain...agraphia Imagery dissociations 53 and (vice versa), and visual object agnosia without apraxia (and vice versa). We next asked him to *draw the letters in
Tande, Aaron J; Palraj, Bharath Raj; Osmon, Douglas R; Berbari, Elie F; Baddour, Larry M; Lohse, Christine M; Steckelberg, James M; Wilson, Walter R; Sohail, M Rizwan
2016-02-01
Staphylococcus aureus bacteremia is a life-threatening condition that may lead to metastatic infection, including prosthetic joint infection. To assess clinical factors associated with hematogenous prosthetic joint infection, we retrospectively reviewed all patients with a joint arthroplasty in place at the time of a first episode of S. aureus bacteremia over a 5-year period at our institution. Patients with postsurgical prosthetic joint infection without hematogenous prosthetic joint infection were excluded. There were 85 patients (143 arthroplasties) with either no prosthetic joint infection (n = 50; 58.8%) or hematogenous prosthetic joint infection in at least one arthroplasty (n = 35; 41.2%). The odds of hematogenous prosthetic joint infection was significantly increased among patients with community-acquired S. aureus bacteremia (odds ratio [OR] 18.07; 95% confidence interval [CI] 2.64-infinity; P = .001), as compared with nosocomial S. aureus bacteremia, in which there were no patients with hematogenous prosthetic joint infection. After adjusting for S. aureus bacteremia classification, the presence of ≥3 joint arthroplasties in place was associated with a nearly ninefold increased odds of hematogenous prosthetic joint infection as compared with those with 1-2 joint arthroplasties in place (OR 8.55; 95% CI 1.44-95.71; P = .012). All but one joint with prosthetic joint infection demonstrated at least one clinical feature suggestive of infection. There were 4 additional S. aureus prosthetic joint infections diagnosed during a median of 3.4 years of follow-up post hospitalization for S. aureus bacteremia. Prosthetic joint infection is frequent in patients with existing arthroplasties and concomitant S. aureus bacteremia, particularly with community-acquired S. aureus bacteremia and multiple prostheses. In contrast, occult S. aureus prosthetic joint infection without clinical features suggestive of prosthetic joint infection at the time of S. aureus bacteremia is rare. Copyright © 2016 Elsevier Inc. All rights reserved.
Visual Navigation in Nocturnal Insects.
Warrant, Eric; Dacke, Marie
2016-05-01
Despite their tiny eyes and brains, nocturnal insects have evolved a remarkable capacity to visually navigate at night. Whereas some use moonlight or the stars as celestial compass cues to maintain a straight-line course, others use visual landmarks to navigate to and from their nest. These impressive abilities rely on highly sensitive compound eyes and specialized visual processing strategies in the brain. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.
Cicmil, Nela; Bridge, Holly; Parker, Andrew J.; Woolrich, Mark W.; Krug, Kristine
2014-01-01
Magnetoencephalography (MEG) allows the physiological recording of human brain activity at high temporal resolution. However, spatial localization of the source of the MEG signal is an ill-posed problem as the signal alone cannot constrain a unique solution and additional prior assumptions must be enforced. An adequate source reconstruction method for investigating the human visual system should place the sources of early visual activity in known locations in the occipital cortex. We localized sources of retinotopic MEG signals from the human brain with contrasting reconstruction approaches (minimum norm, multiple sparse priors, and beamformer) and compared these to the visual retinotopic map obtained with fMRI in the same individuals. When reconstructing brain responses to visual stimuli that differed by angular position, we found reliable localization to the appropriate retinotopic visual field quadrant by a minimum norm approach and by beamforming. Retinotopic map eccentricity in accordance with the fMRI map could not consistently be localized using an annular stimulus with any reconstruction method, but confining eccentricity stimuli to one visual field quadrant resulted in significant improvement with the minimum norm. These results inform the application of source analysis approaches for future MEG studies of the visual system, and indicate some current limits on localization accuracy of MEG signals. PMID:24904268
Stimulation of functional vision in children with perinatal brain damage.
Alimović, Sonja; Mejaski-Bosnjak, Vlatka
2011-01-01
Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual stimulation on development of functional vision at early age of life. We initially assessed 30 children with perinatal brain damage up to 3 years of age, who were reffered to our pediatric low vision cabinet in "Little house" from child neurologists, ophthalmologists Type and degree of visual impairment was determined according to functional vision assessment of each child. On the bases of those assessments different kind of visual stimulations were carried out with children who have been identified to have a certain visual impairment. Through visual stimulation program some of the children were stimulated with light stimulus, some with different materials under the ultraviolet (UV) light, and some with bright color and high contrast materials. Children were also involved in program of early stimulation of overall sensory motor development. Goals and methods of therapy were determined individually, based on observation of child's possibilities and need. After one year of program, reassessment was done. Results for visual functions and functional vision were compared to evaluate the improvement of the vision development. These results have shown that there was significant improvement in functional vision, especially in visual attention and visual communication.
Brain correlates of automatic visual change detection.
Cléry, H; Andersson, F; Fonlupt, P; Gomot, M
2013-07-15
A number of studies support the presence of visual automatic detection of change, but little is known about the brain generators involved in such processing and about the modulation of brain activity according to the salience of the stimulus. The study presented here was designed to locate the brain activity elicited by unattended visual deviant and novel stimuli using fMRI. Seventeen adult participants were presented with a passive visual oddball sequence while performing a concurrent visual task. Variations in BOLD signal were observed in the modality-specific sensory cortex, but also in non-specific areas involved in preattentional processing of changing events. A degree-of-deviance effect was observed, since novel stimuli elicited more activity in the sensory occipital regions and at the medial frontal site than small changes. These findings could be compared to those obtained in the auditory modality and might suggest a "general" change detection process operating in several sensory modalities. Copyright © 2013 Elsevier Inc. All rights reserved.
Spectral properties of the temporal evolution of brain network structure.
Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying
2015-12-01
The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.
Spectral properties of the temporal evolution of brain network structure
NASA Astrophysics Data System (ADS)
Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying
2015-12-01
The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.
Paci, Anna Maria; Lattanzi, Fabio; Cabani, Enrico; Conti, Umberto; De Tommasi, Salvatore Mario
2007-04-01
Non-obstructive prosthetic valve thrombosis is a rare and underestimated complication in patients with left-sided mechanical heart valves. Systemic embolisation, mainly involving the cerebral circulation, often represents the first clinical manifestation. We report a case of multiple, successive embolizations in the coronary and cerebral circulation, presenting with an acute myocardial infarction and stroke in a patient with latent, non-obstructive thrombosis of a mechanical bileaflet aortic valve. Because of scheduled urological surgery, chronic vitamin K antagonist treatment had previously been discontinued and replaced with low-molecular-weight heparin, at inadequate dosage. Following coronary arteriography, brain computed tomography scan and transoesophageal echocardiography, thrombolysis was performed successfully. This case emphasises the utility of performing transoesophageal echocardiography routinely in the presence of ischaemic signs in patients with mechanical heart valves. In patients requiring discontinuation of oral anticoagulant therapy, accurate management and continuous monitoring of alternative medications are needed in order to avoid severe thromboembolic complications.
Brain signal complexity rises with repetition suppression in visual learning.
Lafontaine, Marc Philippe; Lacourse, Karine; Lina, Jean-Marc; McIntosh, Anthony R; Gosselin, Frédéric; Théoret, Hugo; Lippé, Sarah
2016-06-21
Neuronal activity associated with visual processing of an unfamiliar face gradually diminishes when it is viewed repeatedly. This process, known as repetition suppression (RS), is involved in the acquisition of familiarity. Current models suggest that RS results from interactions between visual information processing areas located in the occipito-temporal cortex and higher order areas, such as the dorsolateral prefrontal cortex (DLPFC). Brain signal complexity, which reflects information dynamics of cortical networks, has been shown to increase as unfamiliar faces become familiar. However, the complementarity of RS and increases in brain signal complexity have yet to be demonstrated within the same measurements. We hypothesized that RS and brain signal complexity increase occur simultaneously during learning of unfamiliar faces. Further, we expected alteration of DLPFC function by transcranial direct current stimulation (tDCS) to modulate RS and brain signal complexity over the occipito-temporal cortex. Participants underwent three tDCS conditions in random order: right anodal/left cathodal, right cathodal/left anodal and sham. Following tDCS, participants learned unfamiliar faces, while an electroencephalogram (EEG) was recorded. Results revealed RS over occipito-temporal electrode sites during learning, reflected by a decrease in signal energy, a measure of amplitude. Simultaneously, as signal energy decreased, brain signal complexity, as estimated with multiscale entropy (MSE), increased. In addition, prefrontal tDCS modulated brain signal complexity over the right occipito-temporal cortex during the first presentation of faces. These results suggest that although RS may reflect a brain mechanism essential to learning, complementary processes reflected by increases in brain signal complexity, may be instrumental in the acquisition of novel visual information. Such processes likely involve long-range coordinated activity between prefrontal and lower order visual areas. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Noise-Induced Entrainment and Stochastic Resonance in Human Brain Waves
NASA Astrophysics Data System (ADS)
Mori, Toshio; Kai, Shoichi
2002-05-01
We present the first observation of stochastic resonance (SR) in the human brain's visual processing area. The novel experimental protocol is to stimulate the right eye with a subthreshold periodic optical signal and the left eye with a noisy one. The stimuli bypass sensory organs and are mixed in the visual cortex. With many noise sources present in the brain, higher brain functions, e.g., perception and cognition, may exploit SR.
Same-session functional assessment of rat retina and brain with manganese-enhanced MRI
Bissig, David; Berkowitz, Bruce A.
2013-01-01
Manganese-enhanced MRI (MEMRI) is a powerful non-invasive approach for objectively measuring either retina or binocular visual brain activity in vivo. In this study, we investigated the sensitivity of MEMRI to monocular stimulation using a new protocol for providing within-subject functional comparisons in the retina and brain in the same scanning session. Adult Sprague Dawley or Long–Evans rats had one eye covered with an opaque patch. After intraperitoneal Mn2+ administration on the following day, rats underwent visual stimulation for 8 h. Animals were then anesthetized, and the brain and each eye examined by MEMRI. Function was assessed through pairwise comparisons of the patched (dark-adapted) versus unpatched (light-exposed) eyes, and of differentially-stimulated brain structures – the dorsal lateral geniculate nucleus, superior colliculus, and visual cortical regions – contralateral to the patched versus unpatched eye. As expected, Mn2+ uptake was greater in the outer retina of dark-adapted, relative to light-exposed, eyes (P<0.05). Contralateral to the unpatched eye, significantly more Mn2+ uptake was found throughout the visual brain regions than in the corresponding structures contralateral to the patched eye (P<0.05). Notably, this regional pattern of activity corresponded well to previous work with monocular stimulation. No stimulation-dependent differences in Mn2+ uptake were observed in negative control brain regions (P>0.05). Post-hoc assessment of functional data by animal age and strain revealed no significant effects. These results demonstrate, for the first time, the acquisition of functional MRI data from the eye and visual brain regions in a single scanning session. PMID:21749922
Eye movement-invariant representations in the human visual system.
Nishimoto, Shinji; Huth, Alexander G; Bilenko, Natalia Y; Gallant, Jack L
2017-01-01
During natural vision, humans make frequent eye movements but perceive a stable visual world. It is therefore likely that the human visual system contains representations of the visual world that are invariant to eye movements. Here we present an experiment designed to identify visual areas that might contain eye-movement-invariant representations. We used functional MRI to record brain activity from four human subjects who watched natural movies. In one condition subjects were required to fixate steadily, and in the other they were allowed to freely make voluntary eye movements. The movies used in each condition were identical. We reasoned that the brain activity recorded in a visual area that is invariant to eye movement should be similar under fixation and free viewing conditions. In contrast, activity in a visual area that is sensitive to eye movement should differ between fixation and free viewing. We therefore measured the similarity of brain activity across repeated presentations of the same movie within the fixation condition, and separately between the fixation and free viewing conditions. The ratio of these measures was used to determine which brain areas are most likely to contain eye movement-invariant representations. We found that voxels located in early visual areas are strongly affected by eye movements, while voxels in ventral temporal areas are only weakly affected by eye movements. These results suggest that the ventral temporal visual areas contain a stable representation of the visual world that is invariant to eye movements made during natural vision.
Jorge, João; Figueiredo, Patrícia; Gruetter, Rolf; van der Zwaag, Wietske
2018-06-01
External stimuli and tasks often elicit negative BOLD responses in various brain regions, and growing experimental evidence supports that these phenomena are functionally meaningful. In this work, the high sensitivity available at 7T was explored to map and characterize both positive (PBRs) and negative BOLD responses (NBRs) to visual checkerboard stimulation, occurring in various brain regions within and beyond the visual cortex. Recently-proposed accelerated fMRI techniques were employed for data acquisition, and procedures for exclusion of large draining vein contributions, together with ICA-assisted denoising, were included in the analysis to improve response estimation. Besides the visual cortex, significant PBRs were found in the lateral geniculate nucleus and superior colliculus, as well as the pre-central sulcus; in these regions, response durations increased monotonically with stimulus duration, in tight covariation with the visual PBR duration. Significant NBRs were found in the visual cortex, auditory cortex, default-mode network (DMN) and superior parietal lobule; NBR durations also tended to increase with stimulus duration, but were significantly less sustained than the visual PBR, especially for the DMN and superior parietal lobule. Responses in visual and auditory cortex were further studied for checkerboard contrast dependence, and their amplitudes were found to increase monotonically with contrast, linearly correlated with the visual PBR amplitude. Overall, these findings suggest the presence of dynamic neuronal interactions across multiple brain regions, sensitive to stimulus intensity and duration, and demonstrate the richness of information obtainable when jointly mapping positive and negative BOLD responses at a whole-brain scale, with ultra-high field fMRI. © 2018 Wiley Periodicals, Inc.
Tracing Trajectories of Audio-Visual Learning in the Infant Brain
ERIC Educational Resources Information Center
Kersey, Alyssa J.; Emberson, Lauren L.
2017-01-01
Although infants begin learning about their environment before they are born, little is known about how the infant brain changes during learning. Here, we take the initial steps in documenting how the neural responses in the brain change as infants learn to associate audio and visual stimuli. Using functional near-infrared spectroscopy (fNRIS) to…
Maddock, Richard J; Buonocore, Michael H; Lavoie, Shawn P; Copeland, Linda E; Kile, Shawn J; Richards, Anne L; Ryan, John M
2006-11-22
Proton magnetic resonance spectroscopy ((1)H-MRS) studies showing increased lactate during neural activation support a broader role for lactate in brain energy metabolism than was traditionally recognized. Proton MRS measures of brain lactate responses have been used to study regional brain metabolism in clinical populations. This study examined whether variations in blood glucose influence the lactate response to visual stimulation in the visual cortex. Six subjects were scanned twice, receiving either saline or 21% glucose intravenously. Using (1)H-MRS at 1.5 Tesla with a long echo time (TE=288 ms), the lactate doublet was visible at 1.32 ppm in the visual cortex of all subjects. Lactate increased significantly from resting to visual stimulation. Hyperglycemia had no effect on this increase. The order of the slice-selective gradients for defining the spectroscopy voxel had a pronounced effect on the extent of contamination by signal originating outside the voxel. The results of this preliminary study demonstrate a method for observing a consistent activity-stimulated increase in brain lactate at 1.5 T and show that variations in blood glucose across the normal range have little effect on this response.
VanMeerten, Nicolaas J; Dubke, Rachel E; Stanwyck, John J; Kang, Seung Suk; Sponheim, Scott R
2016-01-01
People with schizophrenia show deficits in processing visual stimuli but neural abnormalities underlying the deficits are unclear and it is unknown whether such functional brain abnormalities are present in other severe mental disorders or in individuals who carry genetic liability for schizophrenia. To better characterize brain responses underlying visual search deficits and test their specificity to schizophrenia we gathered behavioral and electrophysiological responses during visual search (i.e., Span of Apprehension [SOA] task) from 38 people with schizophrenia, 31 people with bipolar disorder, 58 biological relatives of people with schizophrenia, 37 biological relatives of people with bipolar disorder, and 65 non-psychiatric control participants. Through subtracting neural responses associated with purely sensory aspects of the stimuli we found that people with schizophrenia exhibited reduced early posterior task-related neural responses (i.e., Span Endogenous Negativity [SEN]) while other groups showed normative responses. People with schizophrenia exhibited longer reaction times than controls during visual search but nearly identical accuracy. Those individuals with schizophrenia who had larger SENs performed more efficiently (i.e., shorter reaction times) on the SOA task suggesting that modulation of early visual cortical responses facilitated their visual search. People with schizophrenia also exhibited a diminished P300 response compared to other groups. Unaffected first-degree relatives of people with bipolar disorder and schizophrenia showed an amplified N1 response over posterior brain regions in comparison to other groups. Diminished early posterior brain responses are associated with impaired visual search in schizophrenia and appear to be specifically associated with the neuropathology of schizophrenia. Published by Elsevier B.V.
Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.
Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo
2013-02-16
We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.
Effect of visual feedback on brain activation during motor tasks: an FMRI study.
Noble, Jeremy W; Eng, Janice J; Boyd, Lara A
2013-07-01
This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.
ERIC Educational Resources Information Center
Pan, Yufeng; Zhou, Yanqiong; Guo, Chao; Gong, Haiyun; Gong, Zhefeng; Liu, Li
2009-01-01
The central complex is a prominent structure in the "Drosophila" brain. Visual learning experiments in the flight simulator, with flies with genetically altered brains, revealed that two groups of horizontal neurons in one of its substructures, the fan-shaped body, were required for "Drosophila" visual pattern memory. However,…
Hänel, Claudia; Pieperhoff, Peter; Hentschel, Bernd; Amunts, Katrin; Kuhlen, Torsten
2014-01-01
The visualization of the progression of brain tissue loss in neurodegenerative diseases like corticobasal syndrome (CBS) can provide not only information about the localization and distribution of the volume loss, but also helps to understand the course and the causes of this neurodegenerative disorder. The visualization of such medical imaging data is often based on 2D sections, because they show both internal and external structures in one image. Spatial information, however, is lost. 3D visualization of imaging data is capable to solve this problem, but it faces the difficulty that more internally located structures may be occluded by structures near the surface. Here, we present an application with two designs for the 3D visualization of the human brain to address these challenges. In the first design, brain anatomy is displayed semi-transparently; it is supplemented by an anatomical section and cortical areas for spatial orientation, and the volumetric data of volume loss. The second design is guided by the principle of importance-driven volume rendering: A direct line-of-sight to the relevant structures in the deeper parts of the brain is provided by cutting out a frustum-like piece of brain tissue. The application was developed to run in both, standard desktop environments and in immersive virtual reality environments with stereoscopic viewing for improving the depth perception. We conclude, that the presented application facilitates the perception of the extent of brain degeneration with respect to its localization and affected regions. PMID:24847243
Disruption of functional networks in dyslexia: a whole-brain, data-driven analysis of connectivity.
Finn, Emily S; Shen, Xilin; Holahan, John M; Scheinost, Dustin; Lacadie, Cheryl; Papademetris, Xenophon; Shaywitz, Sally E; Shaywitz, Bennett A; Constable, R Todd
2014-09-01
Functional connectivity analyses of functional magnetic resonance imaging data are a powerful tool for characterizing brain networks and how they are disrupted in neural disorders. However, many such analyses examine only one or a small number of a priori seed regions. Studies that consider the whole brain frequently rely on anatomic atlases to define network nodes, which might result in mixing distinct activation time-courses within a single node. Here, we improve upon previous methods by using a data-driven brain parcellation to compare connectivity profiles of dyslexic (DYS) versus non-impaired (NI) readers in the first whole-brain functional connectivity analysis of dyslexia. Whole-brain connectivity was assessed in children (n = 75; 43 NI, 32 DYS) and adult (n = 104; 64 NI, 40 DYS) readers. Compared to NI readers, DYS readers showed divergent connectivity within the visual pathway and between visual association areas and prefrontal attention areas; increased right-hemisphere connectivity; reduced connectivity in the visual word-form area (part of the left fusiform gyrus specialized for printed words); and persistent connectivity to anterior language regions around the inferior frontal gyrus. Together, findings suggest that NI readers are better able to integrate visual information and modulate their attention to visual stimuli, allowing them to recognize words on the basis of their visual properties, whereas DYS readers recruit altered reading circuits and rely on laborious phonology-based "sounding out" strategies into adulthood. These results deepen our understanding of the neural basis of dyslexia and highlight the importance of synchrony between diverse brain regions for successful reading. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.
BrainNet Viewer: a network visualization tool for human brain connectomics.
Xia, Mingrui; Wang, Jinhui; He, Yong
2013-01-01
The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/).
A system verification platform for high-density epiretinal prostheses.
Chen, Kuanfu; Lo, Yi-Kai; Yang, Zhi; Weiland, James D; Humayun, Mark S; Liu, Wentai
2013-06-01
Retinal prostheses have restored light perception to people worldwide who have poor or no vision as a consequence of retinal degeneration. To advance the quality of visual stimulation for retinal implant recipients, a higher number of stimulation channels is expected in the next generation retinal prostheses, which poses a great challenge to system design and verification. This paper presents a system verification platform dedicated to the development of retinal prostheses. The system includes primary processing, dual-band power and data telemetry, a high-density stimulator array, and two methods for output verification. End-to-end system validation and individual functional block characterization can be achieved with this platform through visual inspection and software analysis. Custom-built software running on the computers also provides a good way for testing new features before they are realized by the ICs. Real-time visual feedbacks through the video displays make it easy to monitor and debug the system. The characterization of the wireless telemetry and the demonstration of the visual display are reported in this paper using a 256-channel retinal prosthetic IC as an example.
[Case of brain infarction in the anterior choroidal artery territory with homonymous scotomas].
Nakae, Yoshiharu; Higashiyama, Yuichi; Kuroiwa, Yoshiyuki
2009-08-01
We report a case of brain infarction in the anterior choroidal artery territory accompanied homonymous scotomas. A 59-year-old man with diabetes mellitus felt weakness in his left upper and lower extremities. He was admitted to our hospital with mild hemiparesis on his left side. He noticed a small black spot in the left inferior portion of his visual field; however, this disappeared within one minute. He had no visual defects as assessed by a confrontation test, but a Goldmann visual field test revealed that there were homonymous scotomas in the left inferior portion of the visual field. Brain MRI showed hyperintense signals on diffusion-weighted images in the territory of the right anterior choroidal artery. He was diagnosed as having a brain infarction. The anterior choroidal artery penetrates the lateral geniculate nucleus from the front, and branches of the artery usually supply the medial and lateral parts of the lateral geniculate nucleus. Occlusion of these branches causes the loss of the upper and lower homonymous sectors in the visual field. The present case exhibited homonymous scotomas. We assumed that our patient's homonymous scotomas were a variant form of wedge-shaped visual field deficits often seen in anterior choroidal artery syndrome. On the basis the experience gained in this case, we consider that patients with brain infarction in the anterior choroidal artery territory should undergo ophthalmological examination, even when no visual defects are detected by a confrontation test.
NASA Astrophysics Data System (ADS)
Hramov, Alexander; Musatov, Vyacheslav Yu.; Runnova, Anastasija E.; Efremova, Tatiana Yu.; Koronovskii, Alexey A.; Pisarchik, Alexander N.
2018-04-01
In the paper we propose an approach based on artificial neural networks for recognition of different human brain states associated with distinct visual stimulus. Based on the developed numerical technique and the analysis of obtained experimental multichannel EEG data, we optimize the spatiotemporal representation of multichannel EEG to provide close to 97% accuracy in recognition of the EEG brain states during visual perception. Different interpretations of an ambiguous image produce different oscillatory patterns in the human EEG with similar features for every interpretation. Since these features are inherent to all subjects, a single artificial network can classify with high quality the associated brain states of other subjects.
Addition of visual noise boosts evoked potential-based brain-computer interface.
Xie, Jun; Xu, Guanghua; Wang, Jing; Zhang, Sicong; Zhang, Feng; Li, Yeping; Han, Chengcheng; Li, Lili
2014-05-14
Although noise has a proven beneficial role in brain functions, there have not been any attempts on the dedication of stochastic resonance effect in neural engineering applications, especially in researches of brain-computer interfaces (BCIs). In our study, a steady-state motion visual evoked potential (SSMVEP)-based BCI with periodic visual stimulation plus moderate spatiotemporal noise can achieve better offline and online performance due to enhancement of periodic components in brain responses, which was accompanied by suppression of high harmonics. Offline results behaved with a bell-shaped resonance-like functionality and 7-36% online performance improvements can be achieved when identical visual noise was adopted for different stimulation frequencies. Using neural encoding modeling, these phenomena can be explained as noise-induced input-output synchronization in human sensory systems which commonly possess a low-pass property. Our work demonstrated that noise could boost BCIs in addressing human needs.
Implanted Miniaturized Antenna for Brain Computer Interface Applications: Analysis and Design
Zhao, Yujuan; Rennaker, Robert L.; Hutchens, Chris; Ibrahim, Tamer S.
2014-01-01
Implantable Brain Computer Interfaces (BCIs) are designed to provide real-time control signals for prosthetic devices, study brain function, and/or restore sensory information lost as a result of injury or disease. Using Radio Frequency (RF) to wirelessly power a BCI could widely extend the number of applications and increase chronic in-vivo viability. However, due to the limited size and the electromagnetic loss of human brain tissues, implanted miniaturized antennas suffer low radiation efficiency. This work presents simulations, analysis and designs of implanted antennas for a wireless implantable RF-powered brain computer interface application. The results show that thin (on the order of 100 micrometers thickness) biocompatible insulating layers can significantly impact the antenna performance. The proper selection of the dielectric properties of the biocompatible insulating layers and the implantation position inside human brain tissues can facilitate efficient RF power reception by the implanted antenna. While the results show that the effects of the human head shape on implanted antenna performance is somewhat negligible, the constitutive properties of the brain tissues surrounding the implanted antenna can significantly impact the electrical characteristics (input impedance, and operational frequency) of the implanted antenna. Three miniaturized antenna designs are simulated and demonstrate that maximum RF power of up to 1.8 milli-Watts can be received at 2 GHz when the antenna implanted around the dura, without violating the Specific Absorption Rate (SAR) limits. PMID:25079941
The consequence of spatial visual processing dysfunction caused by traumatic brain injury (TBI).
Padula, William V; Capo-Aponte, Jose E; Padula, William V; Singman, Eric L; Jenness, Jonathan
2017-01-01
A bi-modal visual processing model is supported by research to affect dysfunction following a traumatic brain injury (TBI). TBI causes dysfunction of visual processing affecting binocularity, spatial orientation, posture and balance. Research demonstrates that prescription of prisms influence the plasticity between spatial visual processing and motor-sensory systems improving visual processing and reducing symptoms following a TBI. The rationale demonstrates that visual processing underlies the functional aspects of binocularity, balance and posture. The bi-modal visual process maintains plasticity for efficiency. Compromise causes Post Trauma Vision Syndrome (PTVS) and Visual Midline Shift Syndrome (VMSS). Rehabilitation through use of lenses, prisms and sectoral occlusion has inter-professional implications in rehabilitation affecting the plasticity of the bi-modal visual process, thereby improving binocularity, spatial orientation, posture and balance Main outcomes: This review provides an opportunity to create a new perspective of the consequences of TBI on visual processing and the symptoms that are often caused by trauma. It also serves to provide a perspective of visual processing dysfunction that has potential for developing new approaches of rehabilitation. Understanding vision as a bi-modal process facilitates a new perspective of visual processing and the potentials for rehabilitation following a concussion, brain injury or other neurological events.
Harness, B Z; Bental, E; Carmon, A
1976-03-01
Cognition and performance of patients with localized and diffuse brain damage was evaluated through the application of objective perceptual testing. A series of visual perceptual and verbal tests, memory tests, as well as reaction time tasks were administered to the patients by logic programming equipment. In order to avoid a bias due to communicative disorders, all responses were motor, and achievement was scored in terms of correct identification and latencies of response. Previously established norms based on a large sample of non-brain-damaged hospitalized patients served to standardize the performance of the brain-damaged patient since preliminary results showed that age and educational level constitute an important variable affecting performance of the control group. The achievement of brain-damaged patients, corrected for these factors, was impaired significantly in all tests with respect to both recognition and speed of performance. Lateralized effects of brain damage were not significantly demonstrated. However, when the performance was analyzed with respect to the locus of visual input, it was found that patients with right hemispheric lesions showed impairment mainly on perception of figurative material, and that this deficit was more apparent in the left visual field. Conversely, patients with left hemispheric lesions tended to show impairment on perception of visually presented verbal material when the input was delivered to the right visual field.
NASA Astrophysics Data System (ADS)
Rizzo, Joseph F., III; Ayton, Lauren N.
2014-04-01
Recent advances in the field of visual prostheses, as showcased in this special feature of Journal of Neural Engineering , have led to promising results from clinical trials of a number of devices. However, as noted by these groups there are many challenges involved in assessing vision of people with profound vision loss. As such, it is important that there is consistency in the methodology and reporting standards for clinical trials of visual prostheses and, indeed, the broader vision restoration research field. Two visual prosthesis research groups, the Boston Retinal Implant Project (BRIP) and Bionic Vision Australia (BVA), have agreed to work cooperatively to establish a multi-national Joint Task Force. The aim of this Task Force will be to develop a consensus statement to guide the methods used to conduct and report psychophysical and clinical results of humans who receive visual prosthetic devices. The overarching goal is to ensure maximum benefit to the implant recipients, not only in the outcomes of the visual prosthesis itself, but also in enabling them to obtain accurate information about this research with ease. The aspiration to develop a Joint Task Force was first promulgated at the inaugural 'The Eye and the Chip' meeting in September 2000. This meeting was established to promote the development of the visual prosthetic field by applying the principles of inclusiveness, openness, and collegiality among the growing body of researchers in this field. These same principles underlie the intent of this Joint Task Force to enhance the quality of psychophysical research within our community. Despite prior efforts, a critical mass of interested parties could not congeal. Renewed interest for developing joint guidelines has developed recently because of a growing awareness of the challenges of obtaining reliable measurements of visual function in patients who are severely visually impaired (in whom testing is inherently noisy), and of the importance of comparing outcomes amongst the many research teams that have entered this field, all of which are using different devices implanted at various locations within the visual system and different methods of assessing efficacy. Researchers at the BRIP and BVA believe that use of common methods for testing and for reporting results would benefit all scientists and clinicians in the field, the agencies that regulate human testing, corporations that are invested in the success of this field, and, most importantly, potential patients. The Task Force will be formed with the intent of developing substantive recommendations to provide a measure of consistency and quality control within the field. The guidelines will offer recommendations for the assessment of the: (1) baseline (pre-implant) visual status of potential patients (including specification of the disease diagnosis and impact on visual functioning) and (2) post-operative visual function. The guidelines will be available to the public, research groups and companies. Any groups that choose to adopt the recommendations would be encouraged to include a formal statement of compliance in their presentations and publications. The Task Force will develop these guidelines with the understanding that the ability to perform experiments in the suggested manner might be limited by the particular engineering design and functionality of different prosthesis devices. It is not the intent of the Task Force to write strict test protocols for all parties to follow, but instead to work cooperatively as a research field to develop guidelines about the types of tests that should be implemented, and how they could be reported in a similar format between groups. The opportunity to participate on the Task Force is open to all researchers, clinicians and other specialists who work in the fields of sensory prostheses (both visual and cochlear implants), molecular therapy, stem cells, optogenetics or other fields that share a similar goal of restoring vision to the blind. Decisions about the guidelines will be made democratically, with precautions to prevent any one group or company from having a more dominant voice than any other. One or more smaller working groups may be established to delve more deeply into specific issues, like the ethics of testing or governance structure, and to develop specific wording for recommendations that would be voted on by the entire Task Force group. Ultimately, the various recommendations, once approved democratically, will serve as the consensus document for the Multi-National Joint Task Force. The full list of members of the Task Force and the rules of governance will be published to promote transparency. The Joint Task force will post its guidelines with all signatories on a dedicated page within the website of the Henry Ford Department of Ophthalmology (Detroit). This site was chosen in recognition of the consistent support that Phillip Hessburg MD and the Board of Directors of the Detroit Institute of Ophthalmology, which has recently merged with the Henry Ford Department of Ophthalmology, have so generously and selflessly provided to our field over the past 14 years. This website will also contain a list of all human psychophysical testing that has been performed in the visual prosthetic field, with designations for those studies that were performed in accordance with the guidelines of the Multi-National Task Force, which will assume responsibility for the accuracy of the material. For those who wish to join this Task Force or have further questions, Dr Rizzo and Dr Ayton can be contacted at the email addresses listed above. The founding members of the Task Force anticipate that this digital resource will prove valuable to anyone who has interest in learning more about the achievements in our field, especially our prospective patients, to whom we dedicate our work.
Image and emotion: from outcomes to brain behavior.
Nanda, Upali; Zhu, Xi; Jansen, Ben H
2012-01-01
A systematic review of neuroscience articles on the emotional states of fear, anxiety, and pain to understand how emotional response is linked to the visual characteristics of an image at the level of brain behavior. A number of outcome studies link exposure to visual images (with nature content) to improvements in stress, anxiety, and pain perception. However, an understanding of the underlying perceptual mechanisms has been lacking. In this article, neuroscience studies that use visual images to induce fear, anxiety, or pain are reviewed to gain an understanding of how the brain processes visual images in this context and to explore whether this processing can be linked to specific visual characteristics. The amygdala was identified as one of the key regions of the brain involved in the processing of fear, anxiety, and pain (induced by visual images). Other key areas included the thalamus, insula, and hippocampus. Characteristics of visual images such as the emotional dimension (valence/arousal), subject matter (familiarity, ambiguity, novelty, realism, and facial expressions), and form (sharp and curved contours) were identified as key factors influencing emotional processing. The broad structural properties of an image and overall content were found to have a more pivotal role in the emotional response than the specific details of an image. Insights on specific visual properties were translated to recommendations for what should be incorporated-and avoided-in healthcare environments.
Real-time simulation and visualization of volumetric brain deformation for image-guided neurosurgery
NASA Astrophysics Data System (ADS)
Ferrant, Matthieu; Nabavi, Arya; Macq, Benoit M. M.; Kikinis, Ron; Warfield, Simon K.
2001-05-01
During neurosurgery, the challenge for the neurosurgeon is to remove as much as possible of a tumor without destroying healthy tissue. This can be difficult because healthy and diseased tissue can have the same visual appearance. To this aim, and because the surgeon cannot see underneath the brain surface, image-guided neurosurgery systems are being increasingly used. However, during surgery, deformation of the brain occurs (due to brain shift and tumor resection), therefore causing errors in the surgical planning with respect to preoperative imaging. In our previous work, we developed software for capturing the deformation of the brain during neurosurgery. The software also allows preoperative data to be updated according to the intraoperative imaging so as to reflect the shape changes of the brain during surgery. Our goal in this paper was to rapidly visualize and characterize this deformation over the course of surgery with appropriate tools. Therefore, we developed tools allowing the doctor to visualize (in 2D and 3D) deformations, as well as the stress tensors characterizing the deformation along with the updated preoperative and intraoperative imaging during the course of surgery. Such tools significantly add to the value of intraoperative imaging and hence could improve surgical outcomes.
Oh, Seok-Kyun; Kim, Gwang-Won; Yang, Jong-Chul; Kim, Seok-Kwun; Kang, Heoung-Keun
2012-01-01
Objective This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. Materials and Methods A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. Results The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Conclusion Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males. PMID:22563262
Langen, Carolyn D; White, Tonya; Ikram, M Arfan; Vernooij, Meike W; Niessen, Wiro J
2015-01-01
Structural and functional brain connectivity are increasingly used to identify and analyze group differences in studies of brain disease. This study presents methods to analyze uni- and bi-modal brain connectivity and evaluate their ability to identify differences. Novel visualizations of significantly different connections comparing multiple metrics are presented. On the global level, "bi-modal comparison plots" show the distribution of uni- and bi-modal group differences and the relationship between structure and function. Differences between brain lobes are visualized using "worm plots". Group differences in connections are examined with an existing visualization, the "connectogram". These visualizations were evaluated in two proof-of-concept studies: (1) middle-aged versus elderly subjects; and (2) patients with schizophrenia versus controls. Each included two measures derived from diffusion weighted images and two from functional magnetic resonance images. The structural measures were minimum cost path between two anatomical regions according to the "Statistical Analysis of Minimum cost path based Structural Connectivity" method and the average fractional anisotropy along the fiber. The functional measures were Pearson's correlation and partial correlation of mean regional time series. The relationship between structure and function was similar in both studies. Uni-modal group differences varied greatly between connectivity types. Group differences were identified in both studies globally, within brain lobes and between regions. In the aging study, minimum cost path was highly effective in identifying group differences on all levels; fractional anisotropy and mean correlation showed smaller differences on the brain lobe and regional levels. In the schizophrenia study, minimum cost path and fractional anisotropy showed differences on the global level and within brain lobes; mean correlation showed small differences on the lobe level. Only fractional anisotropy and mean correlation showed regional differences. The presented visualizations were helpful in comparing and evaluating connectivity measures on multiple levels in both studies.
Factors Associated with Prosthetic Looseness in Lower Limb Amputees.
Phonghanyudh, Thong; Sutpasanon, Taweesak; Hathaiareerug, Chanasak; Devakula, M L Buddhibongsa; Kumnerddee, Wipoo
2015-12-01
To determine the factors associated with prosthetic looseness in lower limb amputees in Sisaket province. The present was a cross-sectional descriptive study. Subjects were lower limb amputees who previously obtained prostheses and required prosthetic replacements at the mobile prosthetic laboratory unit under the Prostheses Foundation of H.R.H. the Princess Mother at Khun Han Hospital, Sisaket province, in February 2013. Data including participant characteristics, prosthetic looseness data, and various variables were collected by direct semi-structured interview. Energy expenditures in physical activities were measured using the Thai version of the short format international physical activity questionnaire. Data between participants with and without prosthetic looseness were compared to determine prosthetic loosening associated factors. Among 101 participants enrolled, 33 (32.7%) had prosthetic looseness with average onset of 1.76 ± 1.67 years. Diabetes mellitus was the only significant factor associated with prosthetic looseness from both univariate and multivariate analyses (HR = 7.05, p = 0.002 and HR = 5.93, p = 0.007 respectively). Among the lower limb amputees in Sisaket province, diabetes mellitus was the only factor associated with prosthetic looseness. Therefore, diabetic screening should be supplemented in lower limb amputee assessment protocol. In addition, we recommend that amputees with diabetes mellitus should receive prosthesis check out at approximately
Threshold concepts in prosthetics.
Hill, Sophie
2017-12-01
Curriculum documents identify key concepts within learning prosthetics. Threshold concepts provide an alternative way of viewing the curriculum, focussing on the ways of thinking and practicing within prosthetics. Threshold concepts can be described as an opening to a different way of viewing a concept. This article forms part of a larger study exploring what students and staff experience as difficult in learning about prosthetics. To explore possible threshold concepts within prosthetics. Qualitative, interpretative phenomenological analysis. Data from 18 students and 8 staff at two universities with undergraduate prosthetics and orthotics programmes were generated through interviews and questionnaires. The data were analysed using an interpretative phenomenological analysis approach. Three possible threshold concepts arose from the data: 'how we walk', 'learning to talk' and 'considering the person'. Three potential threshold concepts in prosthetics are suggested with possible implications for prosthetics education. These possible threshold concepts involve changes in both conceptual and ontological knowledge, integrating into the persona of the individual. This integration occurs through the development of memories associated with procedural concepts that combine with disciplinary concepts. Considering the prosthetics curriculum through the lens of threshold concepts enables a focus on how students learn to become prosthetists. Clinical relevance This study provides new insights into how prosthetists learn. This has implications for curriculum design in prosthetics education.
ERIC Educational Resources Information Center
Harasawa, Masamitsu; Shioiri, Satoshi
2011-01-01
The effect of the visual hemifield to which spatial attention was oriented on the activities of the posterior parietal and occipital visual cortices was examined using functional near-infrared spectroscopy in order to investigate the neural substrates of voluntary visuospatial attention. Our brain imaging data support the theory put forth in a…
Ey-Chmielewska, H
1998-01-01
The author presents an attempt of using ultrasonographic technique in diagnosis, planning and observation of treatment results of temporo-mandibular joint pain dysfunctions. Temporo-mandibular joint pain dysfunctions are interchangeably also called temporo-mandibular joint functional disorders. The assessment of pain symptoms in temporo-mandibular joint dysfunctions pain symptoms is principally based on a subjective estimation by the examining practitioner. There is no univocal definition of the disease or a simple index evidencing important symptoms in decision making. Additionally X-ray technique examinations, being hitherto used, in early stages of the disorder do not allow to diagnose it, and are also burdensome to a patient. The aim of this study was to confirm visibility of anatomical elements of the temporo-mandibular joint in an ultrasound examination, assess the mobility of the articular disc before, during and after prosthetic treatment with and without the use of ultrasound technique, and to determine the period of time necessary to obtain a therapeutic effect. The study material consisted of 180 patients, 128 women and 52 men, aged 20 to 60 years, treated by applying prostheses because of temporo-mandibular joint pain dysfunction, in the Department of Prosthetic Dentistry of the Pomeranian Medical Academy. The patients were divided into 2 groups, control and study group. The control group consisted of 90 patients, 63 women and 27 men. In this group prosthetic treatment planning and observation of results was based on a subjective estimation of the practitioner. The study group here comprised 90 patients, 65 women and 25 men, aged 26 to 60 years. In this group prosthetic treatment planning and observation of treatment results were carried on with the use of ultrasound technique. Data from both groups concerning history, results of examinations carried out by ultrasound technique, and the assessment of ultrasound examination were noted on standard examination records used in the Department of Prosthetic Dentistry. For the need of this study an own ultrasound technique was elaborated which allowed for analyzing the ultrasound image in a static situation and during functioning. The ultrasound examination was accomplished with the use of Acuson 128 XP apparatus, linear probe 7.5 MHz. In both groups prosthetic treatment was carried out using different prosthetic methods such as: splints, occlusal adjustment on fixed prosthetic restorations in therapeutical occulus et height in abnormal occlusion. In the study group the therapeutical occulus height was determined under the control of ultrasound technique. Statistical analysis of the obtained results was performed with the use of chi-square test and chi-square test with Yates correction. On the basis of the accomplished study it has been determined that the ultrasound technique makes it possible to visualize morphological elements and facilitates functional observation of the temporo-mandibular joint, articular disc, mandibular condyle and lateral pterygoid muscle in a degree which allows for planning the treatment and the observation of results (Tab. 1-6). The use of ultrasound technique in determining spatial position of the mandible in temporo-mandibular joint permitted to objectively estimate examination results in the study group. A small number of publications on the use of ultrasound technique in functional examination of the temporo-mandibular joint accessible in foreign literature and general reference on the subject in Polish literature do not allow for an objective comparison of obtained study results.
Kim, Heejung; Hahm, Jarang; Lee, Hyekyoung; Kang, Eunjoo; Kang, Hyejin; Lee, Dong Soo
2015-05-01
The human brain naturally integrates audiovisual information to improve speech perception. However, in noisy environments, understanding speech is difficult and may require much effort. Although the brain network is supposed to be engaged in speech perception, it is unclear how speech-related brain regions are connected during natural bimodal audiovisual or unimodal speech perception with counterpart irrelevant noise. To investigate the topological changes of speech-related brain networks at all possible thresholds, we used a persistent homological framework through hierarchical clustering, such as single linkage distance, to analyze the connected component of the functional network during speech perception using functional magnetic resonance imaging. For speech perception, bimodal (audio-visual speech cue) or unimodal speech cues with counterpart irrelevant noise (auditory white-noise or visual gum-chewing) were delivered to 15 subjects. In terms of positive relationship, similar connected components were observed in bimodal and unimodal speech conditions during filtration. However, during speech perception by congruent audiovisual stimuli, the tighter couplings of left anterior temporal gyrus-anterior insula component and right premotor-visual components were observed than auditory or visual speech cue conditions, respectively. Interestingly, visual speech is perceived under white noise by tight negative coupling in the left inferior frontal region-right anterior cingulate, left anterior insula, and bilateral visual regions, including right middle temporal gyrus, right fusiform components. In conclusion, the speech brain network is tightly positively or negatively connected, and can reflect efficient or effortful processes during natural audiovisual integration or lip-reading, respectively, in speech perception.
Temporal and spatial localization of prediction-error signals in the visual brain.
Johnston, Patrick; Robinson, Jonathan; Kokkinakis, Athanasios; Ridgeway, Samuel; Simpson, Michael; Johnson, Sam; Kaufman, Jordy; Young, Andrew W
2017-04-01
It has been suggested that the brain pre-empts changes in the environment through generating predictions, although real-time electrophysiological evidence of prediction violations in the domain of visual perception remain elusive. In a series of experiments we showed participants sequences of images that followed a predictable implied sequence or whose final image violated the implied sequence. Through careful design we were able to use the same final image transitions across predictable and unpredictable conditions, ensuring that any differences in neural responses were due only to preceding context and not to the images themselves. EEG and MEG recordings showed that early (N170) and mid-latency (N300) visual evoked potentials were robustly modulated by images that violated the implied sequence across a range of types of image change (expression deformations, rigid-rotations and visual field location). This modulation occurred irrespective of stimulus object category. Although the stimuli were static images, MEG source reconstruction of the early latency signal (N/M170) localized expectancy violation signals to brain areas associated with motion perception. Our findings suggest that the N/M170 can index mismatches between predicted and actual visual inputs in a system that predicts trajectories based on ongoing context. More generally we suggest that the N/M170 may reflect a "family" of brain signals generated across widespread regions of the visual brain indexing the resolution of top-down influences and incoming sensory data. This has important implications for understanding the N/M170 and investigating how the brain represents context to generate perceptual predictions. Copyright © 2017 Elsevier B.V. All rights reserved.
Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo
2016-01-01
Summary Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded functional magnetic resonance imaging (fMRI) neurofeedback, termed “DecNef” [9], we tested whether associative learning of color and orientation can be created in early visual areas. During three days' training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive “red” significantly more frequently than “green” in an achromatic vertical grating. This effect was also observed 3 to 5 months after the training. These results suggest that long-term associative learning of the two different visual features such as color and orientation was created most likely in early visual areas. This newly extended technique that induces associative learning is called “A(ssociative)-DecNef” and may be used as an important tool for understanding and modifying brain functions, since associations are fundamental and ubiquitous functions in the brain. PMID:27374335
Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo
2016-07-25
Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded fMRI neurofeedback termed "DecNef" [9], we tested whether associative learning of orientation and color can be created in early visual areas. During 3 days of training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive "red" significantly more frequently than "green" in an achromatic vertical grating. This effect was also observed 3-5 months after the training. These results suggest that long-term associative learning of two different visual features such as orientation and color was created, most likely in early visual areas. This newly extended technique that induces associative learning is called "A-DecNef," and it may be used as an important tool for understanding and modifying brain functions because associations are fundamental and ubiquitous functions in the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neural organization and visual processing in the anterior optic tubercle of the honeybee brain.
Mota, Theo; Yamagata, Nobuhiro; Giurfa, Martin; Gronenberg, Wulfila; Sandoz, Jean-Christophe
2011-08-10
The honeybee Apis mellifera represents a valuable model for studying the neural segregation and integration of visual information. Vision in honeybees has been extensively studied at the behavioral level and, to a lesser degree, at the physiological level using intracellular electrophysiological recordings of single neurons. However, our knowledge of visual processing in honeybees is still limited by the lack of functional studies of visual processing at the circuit level. Here we contribute to filling this gap by providing a neuroanatomical and neurophysiological characterization at the circuit level of a practically unstudied visual area of the bee brain, the anterior optic tubercle (AOTu). First, we analyzed the internal organization and neuronal connections of the AOTu. Second, we established a novel protocol for performing optophysiological recordings of visual circuit activity in the honeybee brain and studied the responses of AOTu interneurons during stimulation of distinct eye regions. Our neuroanatomical data show an intricate compartmentalization and connectivity of the AOTu, revealing a dorsoventral segregation of the visual input to the AOTu. Light stimuli presented in different parts of the visual field (dorsal, lateral, or ventral) induce distinct patterns of activation in AOTu output interneurons, retaining to some extent the dorsoventral input segregation revealed by our neuroanatomical data. In particular, activity patterns evoked by dorsal and ventral eye stimulation are clearly segregated into distinct AOTu subunits. Our results therefore suggest an involvement of the AOTu in the processing of dorsoventrally segregated visual information in the honeybee brain.
Advanced upper limb prosthetic devices: implications for upper limb prosthetic rehabilitation.
Resnik, Linda; Meucci, Marissa R; Lieberman-Klinger, Shana; Fantini, Christopher; Kelty, Debra L; Disla, Roxanne; Sasson, Nicole
2012-04-01
The number of catastrophic injuries caused by improvised explosive devices in the Afghanistan and Iraq Wars has increased public, legislative, and research attention to upper limb amputation. The Department of Veterans Affairs (VA) has partnered with the Defense Advanced Research Projects Agency and DEKA Integrated Solutions to optimize the function of an advanced prosthetic arm system that will enable greater independence and function. In this special communication, we examine current practices in prosthetic rehabilitation including trends in adoption and use of prosthetic devices, financial considerations, and the role of rehabilitation team members in light of our experiences with a prototype advanced upper limb prosthesis during a VA study to optimize the device. We discuss key challenges in the adoption of advanced prosthetic technology and make recommendations for service provision and use of advanced upper limb prosthetics. Rates of prosthetic rejection are high among upper limb amputees. However, these rates may be reduced with sufficient training by a highly specialized, multidisciplinary team of clinicians, and a focus on patient education and empowerment throughout the rehabilitation process. There are significant challenges emerging that are unique to implementing the use of advanced upper limb prosthetic technology, and a lack of evidence to establish clinical guidelines regarding prosthetic prescription and treatment. Finally, we make recommendations for future research to aid in the identification of best practices and development of policy decisions regarding insurance coverage of prosthetic rehabilitation. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
AB0 blood types: impact on development of prosthetic mechanical valve thrombosis
Astarcıoğlu, Mehmet Ali; Kalçık, Macit; Yesin, Mahmut; Gürsoy, Mustafa Ozan; Şen, Taner; Karakoyun, Süleyman; Gündüz, Sabahattin; Özkan, Mehmet
2016-01-01
Objective: The non-O alleles of the ABO genotype have been associated with an increased risk of thrombosis. We aimed to assess the association between blood group status and prosthetic valve thrombosis. Methods: The association between AB0 blood group status and prosthetic valve thrombosis was assessed in this retrospective study. Transesophageal echocardiography was performed in 149 patients with a diagnosis of prosthetic valve thrombosis and in 192 control subjects. Results: Non-0 blood group type (p<0.001), presence of NYHA class III-IV status (p<0.001), and central nervous system (p<0.001) and non-central nervous system (p<0.001) emboli were significantly more prevalent in prosthetic valve thrombosis patients than in the control subjects. The incidence of ineffective anticoagulation was higher in patients with prosthetic valve thrombosis than in controls (p<0.001), as was the presence of moderate to severe left atrial spontaneous echo contrast (p<0.001). The non-0 blood prosthetic valve thrombosis subgroup had a higher incidence of obstructive thrombi and central nervous system thrombotic events than having 0 blood prosthetic valve thrombosis subgroup. Non-0 blood group, ineffective anticoagulation, left atrial spontaneous echo contrast, and a poor NYHA functional capacity were identified to be the predictors of prosthetic valve thrombosis. Conclusion: Our data demonstrate that patients with non-0 compared with 0 blood groups have higher incidence of prosthetic valve thrombosis and central nervous system embolism and similar rates of non-central nervous system embolism at presentation compared with 0 blood group type. Thus, non-O blood group may be a risk factor that may be prone to the development of prosthetic valve thrombosis in patients with prosthetic heart valves. PMID:27488753
Morgenroth, David C.; Segal, Ava D.; Zelik, Karl E.; Czerniecki, Joseph M.; Klute, Glenn K.; Adamczyk, Peter G.; Orendurff, Michael S.; Hahn, Michael E.; Collins, Steven H.; Kuo, Art D.
2011-01-01
Lower extremity amputation not only limits mobility, but also increases the risk of knee osteoarthritis of the intact limb. Dynamic walking models of non-amputees suggest that pushing-off from the trailing limb can reduce collision forces on the leading limb. These collision forces may determine the peak knee external adduction moment (EAM), which has been linked to the development of knee OA in the general population. We therefore hypothesized that greater prosthetic push-off would lead to reduced loading and knee EAM of the intact limb in unilateral transtibial amputees. Seven unilateral transtibial amputees were studied during gait under three prosthetic foot conditions that were intended to vary push-off. Prosthetic foot-ankle push-off work, intact limb knee EAM and ground reaction impulses for both limbs during step-to-step transition were measured. Overall, trailing limb prosthetic push-off work was negatively correlated with leading intact limb 1st peak knee EAM (slope = −0.72 +/− 0.22; p=0.011). Prosthetic push-off work and 1st peak intact knee EAM varied significantly with foot type. The prosthetic foot condition with the least push-off demonstrated the largest knee EAM, which was reduced by 26% with the prosthetic foot producing the most push-off. Trailing prosthetic limb push-off impulse was negatively correlated with leading intact limb loading impulse (slope = −0.34 +/− 0.14; p=.001), which may help explain how prosthetic limb push-off can affect intact limb loading. Prosthetic feet that perform more prosthetic push-off appear to be associated with a reduction in 1st peak intact knee EAM, and their use could potentially reduce the risk and burden of knee osteoarthritis in this population. PMID:21803584
Morgenroth, David C; Segal, Ava D; Zelik, Karl E; Czerniecki, Joseph M; Klute, Glenn K; Adamczyk, Peter G; Orendurff, Michael S; Hahn, Michael E; Collins, Steven H; Kuo, Art D
2011-10-01
Lower extremity amputation not only limits mobility, but also increases the risk of knee osteoarthritis of the intact limb. Dynamic walking models of non-amputees suggest that pushing-off from the trailing limb can reduce collision forces on the leading limb. These collision forces may determine the peak knee external adduction moment (EAM), which has been linked to the development of knee OA in the general population. We therefore hypothesized that greater prosthetic push-off would lead to reduced loading and knee EAM of the intact limb in unilateral transtibial amputees. Seven unilateral transtibial amputees were studied during gait under three prosthetic foot conditions that were intended to vary push-off. Prosthetic foot-ankle push-off work, intact limb knee EAM and ground reaction impulses for both limbs during step-to-step transition were measured. Overall, trailing limb prosthetic push-off work was negatively correlated with leading intact limb 1st peak knee EAM (slope=-.72±.22; p=.011). Prosthetic push-off work and 1st peak intact knee EAM varied significantly with foot type. The prosthetic foot condition with the least push-off demonstrated the largest knee EAM, which was reduced by 26% with the prosthetic foot producing the most push-off. Trailing prosthetic limb push-off impulse was negatively correlated with leading intact limb loading impulse (slope=-.34±.14; p=.001), which may help explain how prosthetic limb push-off can affect intact limb loading. Prosthetic feet that perform more prosthetic push-off appear to be associated with a reduction in 1st peak intact knee EAM, and their use could potentially reduce the risk and burden of knee osteoarthritis in this population. Published by Elsevier B.V.
Möller, Saffran; Hagberg, Kerstin; Samulesson, Kersti; Ramstrand, Nerrolyn
2018-04-01
To measure self-efficacy in a group of individuals who have undergone a lower-limb amputation and investigate the relationship between self-efficacy and prosthetic-specific outcomes including prosthetic use, mobility, amputation-related problems and global health. A second purpose was to examine if differences exist in outcomes based upon the type of prosthetic knee unit being used. Cross-sectional study using the General Self-Efficacy (GSE) Scale and the Questionnaire for Persons with a Transfemoral Amputation (Q-TFA). Forty-two individuals participated in the study. Twenty-three used a non-microprocessor-controlled prosthetic knee joint (non-MPK) and 19 used a microprocessor-controlled prosthetic knee joint (MPK). The study sample had quite high GSE scores (32/40). GSE scores were significantly correlated to the Q-TFA prosthetic use, mobility and problem scores. High GSE scores were related to higher levels of prosthetic use, mobility, global scores and negatively related to problem score. No significant difference was observed between individuals using a non-MPK versus MPK joints. Individuals with high self-efficacy used their prosthesis to a higher degree and high self-efficacy was related to higher level of mobility, global scores and fewer problems related to the amputation in individuals who have undergone a lower-limb amputation and were using a non-MPK or MPK knee. Implications for rehabilitation Perceived self-efficacy has has been shown to be related to quality of life, prosthetic mobility and capability as well as social activities in daily life. Prosthetic rehabilitation is primary focusing on physical improvement rather than psychological interventions. More attention should be directed towards the relationship between self-efficacy and prosthetic related outcomes during prosthetic rehabilitation after a lower-limb amputation.
Phantom limbs: pain, embodiment, and scientific advances in integrative therapies.
Lenggenhager, Bigna; Arnold, Carolyn A; Giummarra, Melita J
2014-03-01
Research over the past two decades has begun to identify some of the key mechanisms underlying phantom limb pain and sensations; however, this continues to be a clinically challenging condition to manage. Treatment of phantom pain, like all chronic pain conditions, demands a holistic approach that takes into consideration peripheral, spinal, and central neuroplastic mechanisms. In this review, we focus on nonpharmacological treatments tailored to reverse the maladaptive neuroplasticity associated with phantom pain. Recent scientific advances emerging from interdisciplinary research between neuroscience, virtual reality, robotics, and prosthetics show the greatest promise for alternative embodiment and maintaining the integrity of the multifaceted representation of the body in the brain. Importantly, these advances have been found to prevent and reduce phantom limb pain. In particular, therapies that involve sensory and/or motor retraining, most naturally through the use of integrative prosthetic devices, as well as peripheral (e.g., transcutaneous electrical nerve stimulation) or central (e.g., transcranial magnetic stimulation or deep brain stimulation) stimulation techniques, have been found to both restore the neural representation of the missing limb and to reduce the intensity of phantom pain. While the evidence for the efficacy of these therapies is mounting, but well-controlled and large-scale studies are still needed. WIREs Cogn Sci 2014, 5:221-231. doi: 10.1002/wcs.1277 CONFLICT OF INTEREST: The authors have no financial or other relationship that might lead to a conflict of interest. For further resources related to this article, please visit the WIREs website. © 2014 John Wiley & Sons, Ltd.
Visual field impairment captures disease burden in multiple sclerosis.
Ortiz-Perez, Santiago; Andorra, Magí; Sanchez-Dalmau, Bernardo; Torres-Torres, Rubén; Calbet, David; Lampert, Erika J; Alba-Arbalat, Salut; Guerrero-Zamora, Ana M; Zubizarreta, Irati; Sola-Valls, Nuria; Llufriu, Sara; Sepúlveda, María; Saiz, Albert; Villoslada, Pablo; Martinez-Lapiscina, Elena H
2016-04-01
Monitoring disease burden is an unmeet need in multiple sclerosis (MS). Identifying patients at high risk of disability progression will be useful for improving clinical-therapeutic decisions in clinical routine. To evaluate the role of visual field testing in non-optic neuritis eyes (non-ON eyes) as a biomarker of disability progression in MS. In 109 patients of the MS-VisualPath cohort, we evaluated the association between visual field abnormalities and global and cognitive disability markers and brain and retinal imaging markers of neuroaxonal injury using linear regression models adjusted for sex, age, disease duration and use of disease-modifying therapies. We evaluated the risk of disability progression associated to have baseline impaired visual field after 3 years of follow-up. Sixty-two percent of patients showed visual field defects in non-ON eyes. Visual field mean deviation was statistically associated with global disability; brain (normalized brain parenchymal, gray matter volume and lesion load) and retinal (peripapillary retinal nerve fiber layer thickness and macular ganglion cell complex thickness) markers of neuroaxonal damage. Patients with impaired visual field had statistically significative greater disability, lower normalized brain parenchymal volume and higher lesion volume than patients with normal visual field testing. MS patients with baseline impaired VF tripled the risk of disability progression during follow-up [OR = 3.35; 95 % CI (1.10-10.19); p = 0.033]. The association of visual field impairment with greater disability and neuroaxonal injury and higher risk of disability progression suggest that VF could be used to monitor MS disease burden.
Arneodo, Ezequiel M.; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B.
2012-01-01
Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform. PMID:22761555
Fifer, Matthew S.; Johannes, Matthew S.; Katyal, Kapil D.; Para, Matthew P.; Armiger, Robert; Anderson, William S.; Thakor, Nitish V.; Wester, Brock A.; Crone, Nathan E.
2016-01-01
Objective We used native sensorimotor representations of fingers in a brain-machine interface to achieve immediate online control of individual prosthetic fingers. Approach Using high gamma responses recorded with a high-density ECoG array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: 1) if any finger was moving, and, if so, 2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory (JHU/APL) Modular Prosthetic Limb (MPL). Main Results The balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control. Significance Our results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time. PMID:26863276
7 degree-of-freedom neuroprosthetic control by an individual with tetraplegia
Collinger, Jennifer L; Wodlinger, Brian; Downey, John E; Wang, Wei; Tyler-Kabara, Elizabeth C; Weber, Douglas J; McMorland, Angus JC; Velliste, Meel; Boninger, Michael L; Schwartz, Andrew B
2013-01-01
SUMMARY Background We use our arms to transport and orient the hand which is used to grasp and manipulate objects. Upper limb paralysis or amputation limits a person’s ability to interact with their environment to accomplish activities of daily living. Brain-machine interfaces (BMIs) may provide a solution to restoring much of this function. Methods Two 96-channel intracortical microelectrodes were implanted in the motor cortex of an individual with tetraplegia. Thirteen weeks of BMI training were conducted with the goal of controlling an anthropomorphic prosthetic limb with 7 degrees-of-freedom (3D translation, 3D orientation, 1D grasping). Clinical measures of upper-limb function were used to assess the participant’s ability to use the prosthetic limb. Findings The participant demonstrated the ability to move the device freely in the three-dimensional (3D) workspace on the second day of training. After 13 weeks, robust 7 degree-of-freedom movements were performed routinely. Over time, performance on target-based reaching tasks improved in terms of success rate, completion time, and path efficiency. The participant was also able to use the prosthetic limb to perform skillful and coordinated reach and grasp movements that resulted in clinically significant gains in tests of upper-limb function. Interpretation This study demonstrates that a person with chronic tetraplegia can perform consistent, natural, and complex movements with an anthropomorphic robotic arm to regain clinically significant function. Funding Defense Advanced Research Projects Agency, National Institutes of Health, Department of Veterans Affairs, and UPMC Rehabilitation Institute PMID:23253623
NASA Astrophysics Data System (ADS)
Hotson, Guy; McMullen, David P.; Fifer, Matthew S.; Johannes, Matthew S.; Katyal, Kapil D.; Para, Matthew P.; Armiger, Robert; Anderson, William S.; Thakor, Nitish V.; Wester, Brock A.; Crone, Nathan E.
2016-04-01
Objective. We used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic fingers. Approach. Using high gamma responses recorded with a high-density electrocorticography (ECoG) array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: (1) if any finger was moving, and, if so, (2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory modular prosthetic limb. Main results. The balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control. Significance. Our results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time.
Balconi, Michela; Vanutelli, Maria Elide
2016-01-01
The present research explored the effect of cross-modal integration of emotional cues (auditory and visual (AV)) compared with only visual (V) emotional cues in observing interspecies interactions. The brain activity was monitored when subjects processed AV and V situations, which represented an emotional (positive or negative), interspecies (human-animal) interaction. Congruence (emotionally congruous or incongruous visual and auditory patterns) was also modulated. electroencephalography brain oscillations (from delta to beta) were analyzed and the cortical source localization (by standardized Low Resolution Brain Electromagnetic Tomography) was applied to the data. Frequency band (mainly low-frequency delta and theta) showed a significant brain activity increasing in response to negative compared to positive interactions within the right hemisphere. Moreover, differences were found based on stimulation type, with an increased effect for AV compared with V. Finally, delta band supported a lateralized right dorsolateral prefrontal cortex (DLPFC) activity in response to negative and incongruous interspecies interactions, mainly for AV. The contribution of cross-modality, congruence (incongruous patterns), and lateralization (right DLPFC) in response to interspecies emotional interactions was discussed at light of a "negative lateralized effect."
[Quantitative evaluation of visual gnosis in children with focal brain lesions].
Pencheva, S; Zaprianova, L
1983-01-01
Bearing in mind the opinion of many authors on a great plasticity and interchangeability of the brain cortical functional systems in children the authors have carried out an experiment with 40 children with focal damages of the brain hemispheres, in 20 of whom the right, and in the other 20 the left hemisphere was affected. Use was made of the method of visual gnosis quantitative assessment in the modification of Pencheva and Mavlov (1975). In the children with the focal damages, more or less marked disturbances of the visual gnosis were revealed, however, no statistically significant relationship between the disturbances and the brain side were disclosed. The agnostic disorders were equally frequent in the children of both groups.
Relieving the attentional blink in the amblyopic brain with video games.
Li, Roger W; Ngo, Charlie V; Levi, Dennis M
2015-02-26
Video game play induces a generalized recovery of a range of spatial visual functions in the amblyopic brain. Here we ask whether video game play also alters temporal processing in the amblyopic brain. When visual targets are presented in rapid succession, correct identification of the first target (T1) can interfere with identification of the second (T2). This is known as the "attentional blink". We measured the attentional blink in each eye of adults with amblyopia before and after 40 hours of active video game play, using a rapid serial visual presentation technique. After videogame play, we observed a ~40% reduction in the attentional blink (identifying T2 200 ms after T1) seen through the amblyopic eye and this improvement in performance transferred substantially to the untrained fellow sound eye. Our experiments show that the enhanced performance cannot be simply explained by eye patching alone, or to improved visual acuity, but is specific to videogame experience. Thus, videogame training might have important therapeutic applications for amblyopia and other visual brain disorders.
Functional divisions for visual processing in the central brain of flying Drosophila
Weir, Peter T.; Dickinson, Michael H.
2015-01-01
Although anatomy is often the first step in assigning functions to neural structures, it is not always clear whether architecturally distinct regions of the brain correspond to operational units. Whereas neuroarchitecture remains relatively static, functional connectivity may change almost instantaneously according to behavioral context. We imaged panneuronal responses to visual stimuli in a highly conserved central brain region in the fruit fly, Drosophila, during flight. In one substructure, the fan-shaped body, automated analysis revealed three layers that were unresponsive in quiescent flies but became responsive to visual stimuli when the animal was flying. The responses of these regions to a broad suite of visual stimuli suggest that they are involved in the regulation of flight heading. To identify the cell types that underlie these responses, we imaged activity in sets of genetically defined neurons with arborizations in the targeted layers. The responses of this collection during flight also segregated into three sets, confirming the existence of three layers, and they collectively accounted for the panneuronal activity. Our results provide an atlas of flight-gated visual responses in a central brain circuit. PMID:26324910
Functional divisions for visual processing in the central brain of flying Drosophila.
Weir, Peter T; Dickinson, Michael H
2015-10-06
Although anatomy is often the first step in assigning functions to neural structures, it is not always clear whether architecturally distinct regions of the brain correspond to operational units. Whereas neuroarchitecture remains relatively static, functional connectivity may change almost instantaneously according to behavioral context. We imaged panneuronal responses to visual stimuli in a highly conserved central brain region in the fruit fly, Drosophila, during flight. In one substructure, the fan-shaped body, automated analysis revealed three layers that were unresponsive in quiescent flies but became responsive to visual stimuli when the animal was flying. The responses of these regions to a broad suite of visual stimuli suggest that they are involved in the regulation of flight heading. To identify the cell types that underlie these responses, we imaged activity in sets of genetically defined neurons with arborizations in the targeted layers. The responses of this collection during flight also segregated into three sets, confirming the existence of three layers, and they collectively accounted for the panneuronal activity. Our results provide an atlas of flight-gated visual responses in a central brain circuit.
Brain-computer interface on the basis of EEG system Encephalan
NASA Astrophysics Data System (ADS)
Maksimenko, Vladimir; Badarin, Artem; Nedaivozov, Vladimir; Kirsanov, Daniil; Hramov, Alexander
2018-04-01
We have proposed brain-computer interface (BCI) for the estimation of the brain response on the presented visual tasks. Proposed BCI is based on the EEG recorder Encephalan-EEGR-19/26 (Medicom MTD, Russia) supplemented by a special home-made developed acquisition software. BCI is tested during experimental session while subject is perceiving the bistable visual stimuli and classifying them according to the interpretation. We have subjected the participant to the different external conditions and observed the significant decrease in the response, associated with the perceiving the bistable visual stimuli, during the presence of distraction. Based on the obtained results we have proposed possibility to use of BCI for estimation of the human alertness during solving the tasks required substantial visual attention.
Current Status of Research on Providing Sight to the Blind by Electrical Stimulation of the Brain
ERIC Educational Resources Information Center
Dobelle, William H.
1977-01-01
Described is a prosthesis that connects a television camera and associated circuitry to the visual centers of the brain to restore a limited amount of visual sensation to totally blind persons. (Author/MH)
ERIC Educational Resources Information Center
Miller, Julie Ann
1978-01-01
The functional architecture of the primary visual cortex has been explored by monitoring the responses of individual brain cells to visual stimuli. A combination of anatomical and physiological techniques reveals groups of functionally related cells, juxtaposed and superimposed, in a sometimes complex, but presumably efficient, structure. (BB)
Common and distinct brain networks underlying verbal and visual creativity.
Zhu, Wenfeng; Chen, Qunlin; Xia, Lingxiang; Beaty, Roger E; Yang, Wenjing; Tian, Fang; Sun, Jiangzhou; Cao, Guikang; Zhang, Qinglin; Chen, Xu; Qiu, Jiang
2017-04-01
Creativity is imperative to the progression of human civilization, prosperity, and well-being. Past creative researches tends to emphasize the default mode network (DMN) or the frontoparietal network (FPN) somewhat exclusively. However, little is known about how these networks interact to contribute to creativity and whether common or distinct brain networks are responsible for visual and verbal creativity. Here, we use functional connectivity analysis of resting-state functional magnetic resonance imaging data to investigate visual and verbal creativity-related regions and networks in 282 healthy subjects. We found that functional connectivity within the bilateral superior parietal cortex of the FPN was negatively associated with visual and verbal creativity. The strength of connectivity between the DMN and FPN was positively related to both creative domains. Visual creativity was negatively correlated with functional connectivity within the precuneus of the pDMN and right middle frontal gyrus of the FPN, and verbal creativity was negatively correlated with functional connectivity within the medial prefrontal cortex of the aDMN. Critically, the FPN mediated the relationship between the aDMN and verbal creativity, and it also mediated the relationship between the pDMN and visual creativity. Taken together, decreased within-network connectivity of the FPN and DMN may allow for flexible between-network coupling in the highly creative brain. These findings provide indirect evidence for the cooperative role of the default and executive control networks in creativity, extending past research by revealing common and distinct brain systems underlying verbal and visual creative cognition. Hum Brain Mapp 38:2094-2111, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Cao, Wujing; Yu, Hongliu; Zhao, Weiliang; Li, Jin; Wei, Xiaodong
2018-01-01
Prosthetic knee is the most important component of lower limb prosthesis. Speed adaptive for prosthetic knee during swing flexion is the key method to realize physiological gait. This study aims to discuss the target of physiological gait, propose a speed adaptive control method during swing flexion and research the damping adjustment law of intelligent hydraulic prosthetic knee. According to the physiological gait trials of healthy people, the control target during swing flexion is defined. A new prosthetic knee with fuzzy logical control during swing flexion is designed to realize the damping adjustment automatically. The function simulation and evaluation system of intelligent knee prosthesis is provided. Speed adaptive control test of the intelligent prosthetic knee in different velocities are researched. The maximum swing flexion of the knee angle is set between sixty degree and seventy degree as the target of physiological gait. Preliminary experimental results demonstrate that the prosthetic knee with fuzzy logical control is able to realize physiological gait under different speeds. The faster the walking, the bigger the valve closure percentage of the hydraulic prosthetic knee. The proposed fuzzy logical control strategy and intelligent hydraulic prosthetic knee are effective for the amputee to achieve physiological gait.
Beck, Owen N; Taboga, Paolo; Grabowski, Alena M
2017-04-01
Inspired by the springlike action of biological legs, running-specific prostheses are designed to enable athletes with lower-limb amputations to run. However, manufacturer's recommendations for prosthetic stiffness and height may not optimize running performance. Therefore, we investigated the effects of using different prosthetic configurations on the metabolic cost and biomechanics of running. Five athletes with bilateral transtibial amputations each performed 15 trials on a force-measuring treadmill at 2.5 or 3.0 m/s. Athletes ran using each of 3 different prosthetic models (Freedom Innovations Catapult FX6, Össur Flex-Run, and Ottobock 1E90 Sprinter) with 5 combinations of stiffness categories (manufacturer's recommended and ± 1) and heights (International Paralympic Committee's maximum competition height and ± 2 cm) while we measured metabolic rates and ground reaction forces. Overall, prosthetic stiffness [fixed effect (β) = 0.036; P = 0.008] but not height ( P ≥ 0.089) affected the net metabolic cost of transport; less stiff prostheses reduced metabolic cost. While controlling for prosthetic stiffness (in kilonewtons per meter), using the Flex-Run (β = -0.139; P = 0.044) and 1E90 Sprinter prostheses (β = -0.176; P = 0.009) reduced net metabolic costs by 4.3-4.9% compared with using the Catapult prostheses. The metabolic cost of running improved when athletes used prosthetic configurations that decreased peak horizontal braking ground reaction forces (β = 2.786; P = 0.001), stride frequencies (β = 0.911; P < 0.001), and leg stiffness values (β = 0.053; P = 0.009). Remarkably, athletes did not maintain overall leg stiffness across prosthetic stiffness conditions. Rather, the in-series prosthetic stiffness governed overall leg stiffness. The metabolic cost of running in athletes with bilateral transtibial amputations is influenced by prosthetic model and stiffness but not height. NEW & NOTEWORTHY We measured the metabolic rates and biomechanics of five athletes with bilateral transtibial amputations while running with different prosthetic configurations. The metabolic cost of running for these athletes is minimized by using an optimal prosthetic model and reducing prosthetic stiffness. The metabolic cost of running was independent of prosthetic height, suggesting that longer legs are not advantageous for distance running. Moreover, the in-series prosthetic stiffness governs the leg stiffness of athletes with bilateral leg amputations.
ERIC Educational Resources Information Center
Jacobson, Lena; Rydberg, Agneta; Eliasson, Ann-Christin; Kits, Annika; Flodmark, Olof
2010-01-01
Aim: To relate visual field function to brain morphology in children with unilateral cerebral palsy (CP). Method: Visual field function was assessed using the confrontation technique and Goldmann perimetry in 29 children (15 males, 14 females; age range 7-17y, median age 11y) with unilateral CP classified at Gross Motor Function Classification…
Treating amblyopia in adults with prosthetic occluding contact lenses.
Garcia-Romo, Esperanza; Perez-Rico, Consuelo; Roldán-Díaz, Isabel; Arévalo-Serrano, Juan; Blanco, Román
2018-05-01
To investigate the feasibility, effectiveness and acceptability of using prosthetic occluding contact lenses (OCLs) to treat moderate amblyopia in adults and of the role of the multifocal visual evoked potential (mfVEP) as a predictor of postamblyopic therapy. A comparative, prospective, interventional, case series pilot study with amblyopic adults (mean age: 40 years, range 20-50 years) allocated into two intervention groups: eye patching and OCL. The primary outcome variable was logarithm of the minimum angle of resolution (logMAR) best-corrected visual acuity (BCVA), and secondary outcomes were mfVEP amplitude and latency and patients' health-related quality of life National Eye Institute Visual Function Questionnaire (NEI VFQ-25). Significant improvements in pre- to postamblyopic therapy BCVA were seen at 1.5 months in the OCL group [0.29 logMAR, 95% confidence interval (CI): 0.10-0.47 versus 0.11 logMAR, 95% CI: 0.02-0.19; p < 0.001] and eye patching group (0.29 logMAR, 95% CI: 0.17-0.40 versus 0.18 logMAR, 95% CI: 0.12-0.23; p < 0.01). Post-treatment BCVA was inversely related to age (R: 0.009, 95% CI: -0.02 to -0.001; p = 0.04) and the presence of strabismus (R: -0.3, 95% CI: -0.434 to -0.17; p = 0.001). No significant changes in the number and size of the abnormal mfVEP amplitude and latency defects were observed after occlusion. The NEI VFQ-25 composite score showed significant improvement in the OCL users at 12 months compared to eye patching. Significant vision improvement can be achieved, making occlusion with OCLs an effective and more acceptable therapy for adults with amblyopia. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Federal regulation of vision enhancement devices for normal and abnormal vision
NASA Astrophysics Data System (ADS)
Drum, Bruce
2006-09-01
The Food and Drug Administration (FDA) evaluates the safety and effectiveness of medical devices and biological products as well as food and drugs. The FDA defines a device as a product that is intended, by physical means, to diagnose, treat, or prevent disease, or to affect the structure or function of the body. All vision enhancement devices fulfill this definition because they are intended to affect a function (vision) of the body. In practice, however, FDA historically has drawn a distinction between devices that are intended to enhance low vision as opposed to normal vision. Most low vision aids are therapeutic devices intended to compensate for visual impairment, and are actively regulated according to their level of risk to the patient. The risk level is usually low (e.g. Class I, exempt from 510(k) submission requirements for magnifiers that do not touch the eye), but can be as high as Class III (requiring a clinical trial and Premarket Approval (PMA) application) for certain implanted and prosthetic devices (e.g. intraocular telescopes and prosthetic retinal implants). In contrast, the FDA usually does not actively enforce its regulations for devices that are intended to enhance normal vision, are low risk, and do not have a medical intended use. However, if an implanted or prosthetic device were developed for enhancing normal vision, the FDA would likely decide to regulate it actively, because its intended use would entail a substantial medical risk to the user. Companies developing such devices should contact the FDA at an early stage to clarify their regulatory status.
The riddle of style changes in the visual arts after interference with the right brain.
Blanke, Olaf; Pasqualini, Isabella
2011-01-01
We here analyze the paintings and films of several visual artists, who suffered from a well-defined neuropsychological deficit, visuo-spatial hemineglect, following vascular stroke to the right brain. In our analysis we focus in particular on the oeuvre of Lovis Corinth and Luchino Visconti as both major artists continued to be highly productive over many years after their right brain damage. We analyzed their post-stroke paintings and films, indicate several aspects that differ from their pre-stroke work (omissions, use of color, perseveration, deformation), and propose-although both artists come from different times, countries, genres, and styles-that their post-stroke oeuvre reveals important similarities in style. We argue that these changes may be associated with visuo-spatial hemineglect and the right brain. We discuss future avenues of how the neuropsychological investigation of visual artists with and without neglect may allow us to investigate the relationship between brain and art.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
... wheelchairs. Prosthetic devices are included in the definition of ``medical and other health services'' in section 1861(s)(8) of the Act. Prosthetic devices are defined as devices (other than dental) which replace... examples of prosthetic devices include cardiac pacemakers, cochlear implants, electrical continence aids...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-27
... wheelchairs. Prosthetic devices are included in the definition of ``medical and other health services'' under section 1861(s)(8) of the Act. Prosthetic devices are defined in this section of the Act as ``devices... insertion of an intraocular lens.'' Other examples of prosthetic devices include cardiac pacemakers...
Massive cortical reorganization in sighted Braille readers.
Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin
2016-03-15
The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills.
Predictions penetrate perception: Converging insights from brain, behaviour and disorder
O’Callaghan, Claire; Kveraga, Kestutis; Shine, James M; Adams, Reginald B.; Bar, Moshe
2018-01-01
It is argued that during ongoing visual perception, the brain is generating top-down predictions to facilitate, guide and constrain the processing of incoming sensory input. Here we demonstrate that these predictions are drawn from a diverse range of cognitive processes, in order to generate the richest and most informative prediction signals. This is consistent with a central role for cognitive penetrability in visual perception. We review behavioural and mechanistic evidence that indicate a wide spectrum of domains—including object recognition, contextual associations, cognitive biases and affective state—that can directly influence visual perception. We combine these insights from the healthy brain with novel observations from neuropsychiatric disorders involving visual hallucinations, which highlight the consequences of imbalance between top-down signals and incoming sensory information. Together, these lines of evidence converge to indicate that predictive penetration, be it cognitive, social or emotional, should be considered a fundamental framework that supports visual perception. PMID:27222169
These experiments sought to establish a dose-effect relationship between the concentration of perchloroethylene (PCE) in brain tissue and concurrent changes in visual function. A physiologically-based pharmacokinetic (PBPK) model was implemented to predict concentrations of PCE ...
Ranjan, Manish; Boutet, Alexandre; Xu, David S; Lozano, Christopher S; Kumar, Rajeev; Fasano, Alfonso; Kucharczyk, Walter; Lozano, Andres M
2018-05-30
The visualization of the subthalamic nucleus (STN) on magnetic resonance imaging (MRI) is variable. Studies of the contribution of patient-related factors and intrinsic brain volumetrics to STN visualization have not been reported previously. To assess the visualization of the STN during deep brain stimulation (DBS) surgery in a clinical setting. Eighty-two patients undergoing pre-operative MRI to plan for STN DBS for Parkinson disease were retrospectively studied. The visualization of the STN and its borders was assessed and scored by 3 independent observers using a 4-point ordinal scale (from 0 = not seen to 3 = excellent visualization). This measure was then correlated with the patients' clinical information and brain volumes. The mean STN visualization scores were 1.68 and 1.63 for the right and left STN, respectively, with a good interobserver reliability (intraclass correlation coefficient: 0.744). Older age and decreased white matter volume were negatively correlated with STN visualization (p < 0.05). STN visualization is only fair to good on routine MRI with good concordance of interindividual rating. Advancing age and decreased white matter are associated with poor visualization of the STN. Knowledge about factors contributing to poor visualization of the STN could alert a surgeon to modify the imaging strategy to optimize surgical targeting. © 2018 S. Karger AG, Basel.
Saccadic Corollary Discharge Underlies Stable Visual Perception
Berman, Rebecca A.; Joiner, Wilsaan M.; Wurtz, Robert H.
2016-01-01
Saccadic eye movements direct the high-resolution foveae of our retinas toward objects of interest. With each saccade, the image jumps on the retina, causing a discontinuity in visual input. Our visual perception, however, remains stable. Philosophers and scientists over centuries have proposed that visual stability depends upon an internal neuronal signal that is a copy of the neuronal signal driving the eye movement, now referred to as a corollary discharge (CD) or efference copy. In the old world monkey, such a CD circuit for saccades has been identified extending from superior colliculus through MD thalamus to frontal cortex, but there is little evidence that this circuit actually contributes to visual perception. We tested the influence of this CD circuit on visual perception by first training macaque monkeys to report their perceived eye direction, and then reversibly inactivating the CD as it passes through the thalamus. We found that the monkey's perception changed; during CD inactivation, there was a difference between where the monkey perceived its eyes to be directed and where they were actually directed. Perception and saccade were decoupled. We established that the perceived eye direction at the end of the saccade was not derived from proprioceptive input from eye muscles, and was not altered by contextual visual information. We conclude that the CD provides internal information contributing to the brain's creation of perceived visual stability. More specifically, the CD might provide the internal saccade vector used to unite separate retinal images into a stable visual scene. SIGNIFICANCE STATEMENT Visual stability is one of the most remarkable aspects of human vision. The eyes move rapidly several times per second, displacing the retinal image each time. The brain compensates for this disruption, keeping our visual perception stable. A major hypothesis explaining this stability invokes a signal within the brain, a corollary discharge, that informs visual regions of the brain when and where the eyes are about to move. Such a corollary discharge circuit for eye movements has been identified in macaque monkey. We now show that selectively inactivating this brain circuit alters the monkey's visual perception. We conclude that this corollary discharge provides a critical signal that can be used to unite jumping retinal images into a consistent visual scene. PMID:26740647
Xie, Jun; Xu, Guanghua; Luo, Ailing; Li, Min; Zhang, Sicong; Han, Chengcheng; Yan, Wenqiang
2017-08-14
As a spatial selective attention-based brain-computer interface (BCI) paradigm, steady-state visual evoked potential (SSVEP) BCI has the advantages of high information transfer rate, high tolerance to artifacts, and robust performance across users. However, its benefits come at the cost of mental load and fatigue occurring in the concentration on the visual stimuli. Noise, as a ubiquitous random perturbation with the power of randomness, may be exploited by the human visual system to enhance higher-level brain functions. In this study, a novel steady-state motion visual evoked potential (SSMVEP, i.e., one kind of SSVEP)-based BCI paradigm with spatiotemporal visual noise was used to investigate the influence of noise on the compensation of mental load and fatigue deterioration during prolonged attention tasks. Changes in α , θ , θ + α powers, θ / α ratio, and electroencephalography (EEG) properties of amplitude, signal-to-noise ratio (SNR), and online accuracy, were used to evaluate mental load and fatigue. We showed that presenting a moderate visual noise to participants could reliably alleviate the mental load and fatigue during online operation of visual BCI that places demands on the attentional processes. This demonstrated that noise could provide a superior solution to the implementation of visual attention controlling-based BCI applications.
Li, Wenjing; Li, Jianhong; Wang, Zhenchang; Li, Yong; Liu, Zhaohui; Yan, Fei; Xian, Junfang; He, Huiguang
2015-01-01
Previous studies have shown brain reorganizations after early deprivation of auditory sensory. However, changes of grey matter connectivity have not been investigated in prelingually deaf adolescents yet. In the present study, we aimed to investigate changes of grey matter connectivity within and between auditory, language and visual systems in prelingually deaf adolescents. We recruited 16 prelingually deaf adolescents and 16 age-and gender-matched normal controls, and extracted the grey matter volume as the structural characteristic from 14 regions of interest involved in auditory, language or visual processing to investigate the changes of grey matter connectivity within and between auditory, language and visual systems. Sparse inverse covariance estimation (SICE) was utilized to construct grey matter connectivity between these brain regions. The results show that prelingually deaf adolescents present weaker grey matter connectivity within auditory and visual systems, and connectivity between language and visual systems declined. Notably, significantly increased brain connectivity was found between auditory and visual systems in prelingually deaf adolescents. Our results indicate "cross-modal" plasticity after deprivation of the auditory input in prelingually deaf adolescents, especially between auditory and visual systems. Besides, auditory deprivation and visual deficits might affect the connectivity pattern within language and visual systems in prelingually deaf adolescents.
Dysbindin modulates brain function during visual processing in children.
Mechelli, A; Viding, E; Kumar, A; Pettersson-Yeo, W; Fusar-Poli, P; Tognin, S; O'Donovan, M C; McGuire, P
2010-01-01
Schizophrenia is a neurodevelopmental disorder, and risk genes are thought to act through disruption of brain development. Several genetic studies have identified dystrobrevin binding protein 1 (DTNBP1, also known as dysbindin) as a potential susceptibility gene for schizophrenia, but its impact on brain function is poorly understood. It has been proposed that DTNBP1 may be associated with differences in visual processing. To test this, we examined the impact on visual processing in 61 healthy children aged 10-12 years of a genetic variant in DTNBP1 (rs2619538) that was common to all schizophrenia associated haplotypes in an earlier UK-Irish study. We tested the hypothesis that carriers of the risk allele would show altered occipital cortical function relative to noncarriers. Functional Magnetic Resonance Imaging (fMRI) was used to measure brain responses during a visual matching task. The data were analysed using statistical parametric mapping and statistical inferences were made at p<0.05 (corrected for multiple comparisons). Relative to noncarriers, carriers of the risk allele had greater activation in the lingual, fusiform gyrus and inferior occipital gyri. In these regions DTNBP1 genotype accounted for 19%, 20% and 14% of the inter-individual variance, respectively. Our results suggest that that genetic variation in DTNBP1 is associated with differences in the function of brain areas that mediate visual processing, and that these effects are evident in young children. These findings are consistent with the notion that the DTNBP1 gene influences brain development and can thereby modulate vulnerability to schizophrenia.
NASA Astrophysics Data System (ADS)
Nasaruddin, N. H.; Yusoff, A. N.; Kaur, S.
2014-11-01
The objective of this multiple-subjects functional magnetic resonance imaging (fMRI) study was to identify the common brain areas that are activated when viewing black-and-white checkerboard pattern stimuli of various shapes, pattern and size and to investigate specific brain areas that are involved in processing static and moving visual stimuli. Sixteen participants viewed the moving (expanding ring, rotating wedge, flipping hour glass and bowtie and arc quadrant) and static (full checkerboard) stimuli during an fMRI scan. All stimuli have black-and-white checkerboard pattern. Statistical parametric mapping (SPM) was used in generating brain activation. Differential analyses were implemented to separately search for areas involved in processing static and moving stimuli. In general, the stimuli of various shapes, pattern and size activated multiple brain areas mostly in the left hemisphere. The activation in the right middle temporal gyrus (MTG) was found to be significantly higher in processing moving visual stimuli as compared to static stimulus. In contrast, the activation in the left calcarine sulcus and left lingual gyrus were significantly higher for static stimulus as compared to moving stimuli. Visual stimulation of various shapes, pattern and size used in this study indicated left lateralization of activation. The involvement of the right MTG in processing moving visual information was evident from differential analysis, while the left calcarine sulcus and left lingual gyrus are the areas that are involved in the processing of static visual stimulus.
A noninvasive brain computer interface using visually-induced near-infrared spectroscopy responses.
Chen, Cheng-Hsuan; Ho, Ming-Shan; Shyu, Kuo-Kai; Hsu, Kou-Cheng; Wang, Kuo-Wei; Lee, Po-Lei
2014-09-19
Visually-induced near-infrared spectroscopy (NIRS) response was utilized to design a brain computer interface (BCI) system. Four circular checkerboards driven by distinct flickering sequences were displayed on a LCD screen as visual stimuli to induce subjects' NIRS responses. Each flickering sequence was a concatenated sequence of alternative flickering segments and resting segments. The flickering segment was designed with fixed duration of 3s whereas the resting segment was chosen randomly within 15-20s to create the mutual independencies among different flickering sequences. Six subjects were recruited in this study and subjects were requested to gaze at the four visual stimuli one-after-one in a random order. Since visual responses in human brain are time-locked to the onsets of visual stimuli and the flicker sequences of distinct visual stimuli were designed mutually independent, the NIRS responses induced by user's gazed targets can be discerned from non-gazed targets by applying a simple averaging process. The accuracies for the six subjects were higher than 90% after 10 or more epochs being averaged. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Contini, Erika W; Wardle, Susan G; Carlson, Thomas A
2017-10-01
Visual object recognition is a complex, dynamic process. Multivariate pattern analysis methods, such as decoding, have begun to reveal how the brain processes complex visual information. Recently, temporal decoding methods for EEG and MEG have offered the potential to evaluate the temporal dynamics of object recognition. Here we review the contribution of M/EEG time-series decoding methods to understanding visual object recognition in the human brain. Consistent with the current understanding of the visual processing hierarchy, low-level visual features dominate decodable object representations early in the time-course, with more abstract representations related to object category emerging later. A key finding is that the time-course of object processing is highly dynamic and rapidly evolving, with limited temporal generalisation of decodable information. Several studies have examined the emergence of object category structure, and we consider to what degree category decoding can be explained by sensitivity to low-level visual features. Finally, we evaluate recent work attempting to link human behaviour to the neural time-course of object processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Disturbed temporal dynamics of brain synchronization in vision loss.
Bola, Michał; Gall, Carolin; Sabel, Bernhard A
2015-06-01
Damage along the visual pathway prevents bottom-up visual input from reaching further processing stages and consequently leads to loss of vision. But perception is not a simple bottom-up process - rather it emerges from activity of widespread cortical networks which coordinate visual processing in space and time. Here we set out to study how vision loss affects activity of brain visual networks and how networks' activity is related to perception. Specifically, we focused on studying temporal patterns of brain activity. To this end, resting-state eyes-closed EEG was recorded from partially blind patients suffering from chronic retina and/or optic-nerve damage (n = 19) and healthy controls (n = 13). Amplitude (power) of oscillatory activity and phase locking value (PLV) were used as measures of local and distant synchronization, respectively. Synchronization time series were created for the low- (7-9 Hz) and high-alpha band (11-13 Hz) and analyzed with three measures of temporal patterns: (i) length of synchronized-/desynchronized-periods, (ii) Higuchi Fractal Dimension (HFD), and (iii) Detrended Fluctuation Analysis (DFA). We revealed that patients exhibit less complex, more random and noise-like temporal dynamics of high-alpha band activity. More random temporal patterns were associated with worse performance in static (r = -.54, p = .017) and kinetic perimetry (r = .47, p = .041). We conclude that disturbed temporal patterns of neural synchronization in vision loss patients indicate disrupted communication within brain visual networks caused by prolonged deafferentation. We propose that because the state of brain networks is essential for normal perception, impaired brain synchronization in patients with vision loss might aggravate the functional consequences of reduced visual input. Copyright © 2015 Elsevier Ltd. All rights reserved.
A simpler primate brain: the visual system of the marmoset monkey
Solomon, Samuel G.; Rosa, Marcello G. P.
2014-01-01
Humans are diurnal primates with high visual acuity at the center of gaze. Although primates share many similarities in the organization of their visual centers with other mammals, and even other species of vertebrates, their visual pathways also show unique features, particularly with respect to the organization of the cerebral cortex. Therefore, in order to understand some aspects of human visual function, we need to study non-human primate brains. Which species is the most appropriate model? Macaque monkeys, the most widely used non-human primates, are not an optimal choice in many practical respects. For example, much of the macaque cerebral cortex is buried within sulci, and is therefore inaccessible to many imaging techniques, and the postnatal development and lifespan of macaques are prohibitively long for many studies of brain maturation, plasticity, and aging. In these and several other respects the marmoset, a small New World monkey, represents a more appropriate choice. Here we review the visual pathways of the marmoset, highlighting recent work that brings these advantages into focus, and identify where additional work needs to be done to link marmoset brain organization to that of macaques and humans. We will argue that the marmoset monkey provides a good subject for studies of a complex visual system, which will likely allow an important bridge linking experiments in animal models to humans. PMID:25152716
Assessing visual requirements for social context-dependent activation of the songbird song system
Hara, Erina; Kubikova, Lubica; Hessler, Neal A.; Jarvis, Erich D.
2008-01-01
Social context has been shown to have a profound influence on brain activation in a wide range of vertebrate species. Best studied in songbirds, when males sing undirected song, the level of neural activity and expression of immediate early genes (IEGs) in several song nuclei is dramatically higher or lower than when they sing directed song to other birds, particularly females. This differential social context-dependent activation is independent of auditory input and is not simply dependent on the motor act of singing. These findings suggested that the critical sensory modality driving social context-dependent differences in the brain could be visual cues. Here, we tested this hypothesis by examining IEG activation in song nuclei in hemispheres to which visual input was normal or blocked. We found that covering one eye blocked visually induced IEG expression throughout both contralateral visual pathways of the brain, and reduced activation of the contralateral ventral tegmental area, a non-visual midbrain motivation-related area affected by social context. However, blocking visual input had no effect on the social context-dependent activation of the contralateral song nuclei during female-directed singing. Our findings suggest that individual sensory modalities are not direct driving forces for the social context differences in song nuclei during singing. Rather, these social context differences in brain activation appear to depend more on the general sense that another individual is present. PMID:18826930
Extracting an evaluative feedback from the brain for adaptation of motor neuroprosthetic decoders.
Mahmoudi, Babak; Principe, Jose C; Sanchez, Justin C
2010-01-01
The design of Brain-Machine Interface (BMI) neural decoders that have robust performance in changing environments encountered in daily life activity is a challenging problem. One solution to this problem is the design of neural decoders that are able to assist and adapt to the user by participating in their perception-action-reward cycle (PARC). Using inspiration both from artificial intelligence and neurobiology reinforcement learning theories, we have designed a novel decoding architecture that enables a symbiotic relationship between the user and an Intelligent Assistant (IA). By tapping into the motor and reward centers in the brain, the IA adapts the process of decoding neural motor commands into prosthetic actions based on the user's goals. The focus of this paper is on extraction of goal information directly from the brain and making it accessible to the IA as an evaluative feedback for adaptation. We have recorded the neural activity of the Nucleus Accumbens in behaving rats during a reaching task. The peri-event time histograms demonstrate a rich representation of the reward prediction in this subcortical structure that can be modeled on a single trial basis as a scalar evaluative feedback with high precision.
Dores, A R; Almeida, I; Barbosa, F; Castelo-Branco, M; Monteiro, L; Reis, M; de Sousa, L; Caldas, A Castro
2013-01-01
Examining changes in brain activation linked with emotion-inducing stimuli is essential to the study of emotions. Due to the ecological potential of techniques such as virtual reality (VR), inspection of whether brain activation in response to emotional stimuli can be modulated by the three-dimensional (3D) properties of the images is important. The current study sought to test whether the activation of brain areas involved in the emotional processing of scenarios of different valences can be modulated by 3D. Therefore, the focus was made on the interaction effect between emotion-inducing stimuli of different emotional valences (pleasant, unpleasant and neutral valences) and visualization types (2D, 3D). However, main effects were also analyzed. The effect of emotional valence and visualization types and their interaction were analyzed through a 3 × 2 repeated measures ANOVA. Post-hoc t-tests were performed under a ROI-analysis approach. The results show increased brain activation for the 3D affective-inducing stimuli in comparison with the same stimuli in 2D scenarios, mostly in cortical and subcortical regions that are related to emotional processing, in addition to visual processing regions. This study has the potential of clarify brain mechanisms involved in the processing of emotional stimuli (scenarios' valence) and their interaction with three-dimensionality.
Verma, Suzanne; Gonzalez, Marianela; Schow, Sterling R; Triplett, R Gilbert
This technical protocol outlines the use of computer-assisted image-guided technology for the preoperative planning and intraoperative procedures involved in implant-retained facial prosthetic treatment. A contributing factor for a successful prosthetic restoration is accurate preoperative planning to identify prosthetically driven implant locations that maximize bone contact and enhance cosmetic outcomes. Navigational systems virtually transfer precise digital planning into the operative field for placing implants to support prosthetic restorations. In this protocol, there is no need to construct a physical, and sometimes inaccurate, surgical guide. The report addresses treatment workflow, radiologic data specifications, and special considerations in data acquisition, virtual preoperative planning, and intraoperative navigation for the prosthetic reconstruction of unilateral, bilateral, and midface defects. Utilization of this protocol for the planning and surgical placement of craniofacial bone-anchored implants allows positioning of implants to be prosthetically driven, accurate, precise, and efficient, and leads to a more predictable treatment outcome.
Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks
Ruiz-Rizzo, Adriana L.; Neitzel, Julia; Müller, Hermann J.; Sorg, Christian; Finke, Kathrin
2018-01-01
Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's “theory of visual attention” (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention parameters that are assumed to constitute relatively stable traits correspond distinctly to the functional connectivity both within and between particular functional networks. This implies that individual differences in basic attention functions are represented by differences in the coherence of slowly fluctuating brain activity. PMID:29662444
Ruiz-Rizzo, Adriana L; Neitzel, Julia; Müller, Hermann J; Sorg, Christian; Finke, Kathrin
2018-01-01
Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's "theory of visual attention" (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention parameters that are assumed to constitute relatively stable traits correspond distinctly to the functional connectivity both within and between particular functional networks. This implies that individual differences in basic attention functions are represented by differences in the coherence of slowly fluctuating brain activity.
ERIC Educational Resources Information Center
Reinke, Karen; Fernandes, Myra; Schwindt, Graeme; O'Craven, Kathleen; Grady, Cheryl L.
2008-01-01
The functional specificity of the brain region known as the Visual Word Form Area (VWFA) was examined using fMRI. We explored whether this area serves a general role in processing symbolic stimuli, rather than being selective for the processing of words. Brain activity was measured during a visual 1-back task to English words, meaningful symbols…
21 CFR 895.101 - Prosthetic hair fibers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Prosthetic hair fibers. 895.101 Section 895.101 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES BANNED DEVICES Listing of Banned Devices § 895.101 Prosthetic hair fibers. Prosthetic hair fibers are devices intended for implantation...
Code of Federal Regulations, 2010 CFR
2010-07-01
... of the expenses of repairs to prosthetic appliances and similar devices furnished without prior... Payment or reimbursement of the expenses of repairs to prosthetic appliances and similar devices furnished without prior authorization. The expenses of repairs to prosthetic appliances, or similar appliances...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-04
....Prosthetic devices are included in the definition of ``medical and other health services'' under section 1861(s)(8) of the Act. Prosthetic devices are defined in this section of the Act as ``devices (other than... intraocular lens.'' Other examples of prosthetic devices include cardiac pacemakers, cochlear implants...
Mikami, Yukio; Fukuhara, Kouki; Kawae, Toshihiro; Kimura, Hiroaki; Ochi, Mitsuo
2015-12-01
The aim of this case study was to verify the efficacy and safety of anti-gravity treadmill training for prosthetic rehabilitation following below-knee amputation. The patient underwent left below-knee amputation as a result of diabetic foot gangrene. Since his physical strength and vitality had declined during the perioperative period, anti-gravity treadmill training was introduced for his outpatient prosthetic rehabilitation. Stable prosthetic gait exercise could be carried out under guidance on the anti-gravity treadmill, quickly resulting in improved gait. Furthermore, the patient's self-efficacy and exercise tolerance were elevated after the period of anti-gravity treadmill training. At the final evaluation following 6 weeks of rehabilitation with the anti-gravity treadmill, he had acquired prosthetic gait with the assistance of a T-cane. The anti-gravity treadmill was found to be a useful instrument for prosthetic rehabilitation following below-knee amputation. Anti-gravity treadmill training has the potential to support the prosthetic rehabilitation of below-knee amputees, especially for patients whose physical strength and vitality are decreased. © The International Society for Prosthetics and Orthotics 2014.
Lim, Seung-Lark; Padmala, Srikanth; Pessoa, Luiz
2009-01-01
If the amygdala is involved in shaping perceptual experience when affectively significant visual items are encountered, responses in this structure should be correlated with both visual cortex responses and behavioral reports. Here, we investigated how affective significance shapes visual perception during an attentional blink paradigm combined with aversive conditioning. Behaviorally, following aversive learning, affectively significant scenes (CS+) were better detected than neutral (CS−) ones. In terms of mean brain responses, both amygdala and visual cortical responses were stronger during CS+ relative to CS− trials. Increased brain responses in these regions were associated with improved behavioral performance across participants and followed a mediation-like pattern. Importantly, the mediation pattern was observed in a trial-by-trial analysis, revealing that the specific pattern of trial-by-trial variability in brain responses was closely related to single-trial behavioral performance. Furthermore, the influence of the amygdala on visual cortical responses was consistent with a mediation, although partial, via frontal brain regions. Our results thus suggest that affective significance potentially determines the fate of a visual item during competitive interactions by enhancing sensory processing through both direct and indirect paths. In so doing, the amygdala helps separate the significant from the mundane. PMID:19805383
Perceived object stability depends on multisensory estimates of gravity.
Barnett-Cowan, Michael; Fleming, Roland W; Singh, Manish; Bülthoff, Heinrich H
2011-04-27
How does the brain estimate object stability? Objects fall over when the gravity-projected centre-of-mass lies outside the point or area of support. To estimate an object's stability visually, the brain must integrate information across the shape and compare its orientation to gravity. When observers lie on their sides, gravity is perceived as tilted toward body orientation, consistent with a representation of gravity derived from multisensory information. We exploited this to test whether vestibular and kinesthetic information affect this visual task or whether the brain estimates object stability solely from visual information. In three body orientations, participants viewed images of objects close to a table edge. We measured the critical angle at which each object appeared equally likely to fall over or right itself. Perceived gravity was measured using the subjective visual vertical. The results show that the perceived critical angle was significantly biased in the same direction as the subjective visual vertical (i.e., towards the multisensory estimate of gravity). Our results rule out a general explanation that the brain depends solely on visual heuristics and assumptions about object stability. Instead, they suggest that multisensory estimates of gravity govern the perceived stability of objects, resulting in objects appearing more stable than they are when the head is tilted in the same direction in which they fall.
Opposite brain laterality in analogous auditory and visual tests.
Oltedal, Leif; Hugdahl, Kenneth
2017-11-01
Laterality for language processing can be assessed by auditory and visual tasks. Typically, a right ear/right visual half-field (VHF) advantage is observed, reflecting left-hemispheric lateralization for language. Historically, auditory tasks have shown more consistent and reliable results when compared to VHF tasks. While few studies have compared analogous tasks applied to both sensory modalities for the same participants, one such study by Voyer and Boudreau [(2003). Cross-modal correlation of auditory and visual language laterality tasks: a serendipitous finding. Brain Cogn, 53(2), 393-397] found opposite laterality for visual and auditory language tasks. We adapted an experimental paradigm based on a dichotic listening and VHF approach, and applied the combined language paradigm in two separate experiments, including fMRI in the second experiment to measure brain activation in addition to behavioural data. The first experiment showed a right-ear advantage for the auditory task, but a left half-field advantage for the visual task. The second experiment, confirmed the findings, with opposite laterality effects for the visual and auditory tasks. In conclusion, we replicate the finding by Voyer and Boudreau (2003) and support their interpretation that these visual and auditory language tasks measure different cognitive processes.
Agyei, Seth B.; van der Weel, F. R. (Ruud); van der Meer, Audrey L. H.
2016-01-01
During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioral and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioral data when studying the neural correlates of prospective control. PMID:26903908
Mâaref, Khaled; Martinet, Noël; Grumillier, Constance; Ghannouchi, Slaheddine; André, Jean Marie; Paysant, Jean
2010-06-01
To analyze the spatiotemporal parameters in the terminal swing phase of the prosthetic limb in unilateral transfemoral amputees (TFAs) compared with a group of asymptomatic subjects, and to identify a latency period (LP) in the TFA between the full extension of the prosthetic knee and the initial ground contact of the ipsilateral foot. To study the correlation between the LP and the duration of the swing phase. To evaluate the influence of the type of knee, the time since amputation, and the amputation level on the latency period. Three-dimensional gait analysis with an optoelectronic device. Gait analysis laboratory of a re-education and functional rehabilitation service. TFA (n=29) and able-bodied (n=15) subjects. Not applicable. Spatiotemporal and kinematics gait parameters. The swing phase and the LP of the prosthetic limb, associated with a consequently longer single-limb stance phase in the intact limb, were significantly longer than those measured in the intact limbs of these subjects, as well as those measured on both lower limbs of the able-bodied subjects (P<.05). There is a positive correlation (P<.05; r(2)=.58 between the LP and the swing phase on the TFA's prosthetic side. The LP measured in the prosthetic limb of TFA with a swing-phase control prosthetic knee is significantly greater than in those using the microprocessor-controlled prosthetic knee (P<.05). Of negligible duration in able-bodied subjects and in the intact limb of TFA, the LP is significantly greater in the prosthetic limb. It can explain the lengthened swing phase on the prosthetic side of those subjects. The use of a microprocessor-controlled prosthetic knee allows the LP to be reduced. This LP appears to be necessary to insure the stability of the prosthetic knee. We suggest calling this time "confidence time." Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Charboneau, Evonne J.; Dietrich, Mary S.; Park, Sohee; Cao, Aize; Watkins, Tristan J; Blackford, Jennifer U; Benningfield, Margaret M.; Martin, Peter R.; Buchowski, Maciej S.; Cowan, Ronald L.
2013-01-01
Craving is a major motivator underlying drug use and relapse but the neural correlates of cannabis craving are not well understood. This study sought to determine whether visual cannabis cues increase cannabis craving and whether cue-induced craving is associated with regional brain activation in cannabis-dependent individuals. Cannabis craving was assessed in 16 cannabis-dependent adult volunteers while they viewed cannabis cues during a functional MRI (fMRI) scan. The Marijuana Craving Questionnaire was administered immediately before and after each of three cannabis cue-exposure fMRI runs. FMRI blood-oxygenation-level-dependent (BOLD) signal intensity was determined in regions activated by cannabis cues to examine the relationship of regional brain activation to cannabis craving. Craving scores increased significantly following exposure to visual cannabis cues. Visual cues activated multiple brain regions, including inferior orbital frontal cortex, posterior cingulate gyrus, parahippocampal gyrus, hippocampus, amygdala, superior temporal pole, and occipital cortex. Craving scores at baseline and at the end of all three runs were significantly correlated with brain activation during the first fMRI run only, in the limbic system (including amygdala and hippocampus) and paralimbic system (superior temporal pole), and visual regions (occipital cortex). Cannabis cues increased craving in cannabis-dependent individuals and this increase was associated with activation in the limbic, paralimbic, and visual systems during the first fMRI run, but not subsequent fMRI runs. These results suggest that these regions may mediate visually cued aspects of drug craving. This study provides preliminary evidence for the neural basis of cue-induced cannabis craving and suggests possible neural targets for interventions targeted at treating cannabis dependence. PMID:24035535
Murphy, Matthew C; Conner, Ian P; Teng, Cindy Y; Lawrence, Jesse D; Safiullah, Zaid; Wang, Bo; Bilonick, Richard A; Kim, Seong-Gi; Wollstein, Gadi; Schuman, Joel S; Chan, Kevin C
2016-08-11
Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease.
Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma
Murphy, Matthew C.; Conner, Ian P.; Teng, Cindy Y.; Lawrence, Jesse D.; Safiullah, Zaid; Wang, Bo; Bilonick, Richard A.; Kim, Seong-Gi; Wollstein, Gadi; Schuman, Joel S.; Chan, Kevin C.
2016-01-01
Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease. PMID:27510406
Does bimodal stimulus presentation increase ERP components usable in BCIs?
NASA Astrophysics Data System (ADS)
Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Blankertz, Benjamin; Werkhoven, Peter J.
2012-08-01
Event-related potential (ERP)-based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. Typically, visual stimuli are used. Tactile stimuli have recently been suggested as a gaze-independent alternative. Bimodal stimuli could evoke additional brain activity due to multisensory integration which may be of use in BCIs. We investigated the effect of visual-tactile stimulus presentation on the chain of ERP components, BCI performance (classification accuracies and bitrates) and participants’ task performance (counting of targets). Ten participants were instructed to navigate a visual display by attending (spatially) to targets in sequences of either visual, tactile or visual-tactile stimuli. We observe that attending to visual-tactile (compared to either visual or tactile) stimuli results in an enhanced early ERP component (N1). This bimodal N1 may enhance BCI performance, as suggested by a nonsignificant positive trend in offline classification accuracies. A late ERP component (P300) is reduced when attending to visual-tactile compared to visual stimuli, which is consistent with the nonsignificant negative trend of participants’ task performance. We discuss these findings in the light of affected spatial attention at high-level compared to low-level stimulus processing. Furthermore, we evaluate bimodal BCIs from a practical perspective and for future applications.
Advanced Prosthetic Gait Training Tool
2014-10-01
AWARD NUMBER: W81XWH-10-1-0870 TITLE: Advanced Prosthetic Gait Training Tool...October 2014 2. REPORT TYPE Annual Report 3. DATES COVERED 20 Sep 2013 to 19 Sep 2014 4. TITLE AND SUBTITLE Advanced Prosthetic Gait Training...produce a computer-based Advanced Prosthetic Gait Training Tool to aid in the training of clinicians at military treatment facilities providing care
Prosthetic Consideration in Implant-supported Prosthesis: A Review of Literature
Gowd, Manga Snigdha; Shankar, Thatapudi; Ranjan, Rajeev; Singh, Arpita
2017-01-01
Modern dentistry has changed tremendously with implant therapy. For the successful implant therapy, making a proper treatment plan considering both surgical and prosthetic part in mind is the key of success. Often practitioners tend to create a treatment plan overlooking the basic principles of prosthetic part. This present review has discussed various prosthetic consideration of implant-supported prosthesis. A step-by-step detailed prosthetic option with their indications has been discussed to help all dental implant practitioners in making of an optimal treatment plan for each case. PMID:28713760
Post-Activation Brain Warming: A 1-H MRS Thermometry Study
Rango, Mario; Bonifati, Cristiana; Bresolin, Nereo
2015-01-01
Purpose Temperature plays a fundamental role for the proper functioning of the brain. However, there are only fragmentary data on brain temperature (Tbr) and its regulation under different physiological conditions. Methods We studied Tbr in the visual cortex of 20 normal subjects serially with a wide temporal window under different states including rest, activation and recovery by a visual stimulation-Magnetic Resonance Spectroscopy Thermometry combined approach. We also studied Tbr in a control region, the centrum semiovale, under the same conditions. Results Visual cortex mean baseline Tbr was higher than mean body temperature (37.38 vs 36.60, P<0.001). During activation Tbr remained unchanged at first and then showed a small decrease (-0.20 C°) around the baseline value. After the end of activation Tbr increased consistently (+0.60 C°) and then returned to baseline values after some minutes. Centrum semiovale Tbr remained unchanged through rest, visual stimulation and recovery. Conclusion These findings have several implications, among them that neuronal firing itself is not a major source of heat release in the brain and that there is an aftermath of brain activation that lasts minutes before returning to baseline conditions. PMID:26011731
Multiscale neural connectivity during human sensory processing in the brain
NASA Astrophysics Data System (ADS)
Maksimenko, Vladimir A.; Runnova, Anastasia E.; Frolov, Nikita S.; Makarov, Vladimir V.; Nedaivozov, Vladimir; Koronovskii, Alexey A.; Pisarchik, Alexander; Hramov, Alexander E.
2018-05-01
Stimulus-related brain activity is considered using wavelet-based analysis of neural interactions between occipital and parietal brain areas in alpha (8-12 Hz) and beta (15-30 Hz) frequency bands. We show that human sensory processing related to the visual stimuli perception induces brain response resulted in different ways of parieto-occipital interactions in these bands. In the alpha frequency band the parieto-occipital neuronal network is characterized by homogeneous increase of the interaction between all interconnected areas both within occipital and parietal lobes and between them. In the beta frequency band the occipital lobe starts to play a leading role in the dynamics of the occipital-parietal network: The perception of visual stimuli excites the visual center in the occipital area and then, due to the increase of parieto-occipital interactions, such excitation is transferred to the parietal area, where the attentional center takes place. In the case when stimuli are characterized by a high degree of ambiguity, we find greater increase of the interaction between interconnected areas in the parietal lobe due to the increase of human attention. Based on revealed mechanisms, we describe the complex response of the parieto-occipital brain neuronal network during the perception and primary processing of the visual stimuli. The results can serve as an essential complement to the existing theory of neural aspects of visual stimuli processing.
Griffis, Joseph C.; Elkhetali, Abdurahman S.; Burge, Wesley K.; Chen, Richard H.; Bowman, Anthony D.; Szaflarski, Jerzy P.; Visscher, Kristina M.
2016-01-01
Psychophysical and neurobiological evidence suggests that central and peripheral vision are specialized for different functions. This specialization of function might be expected to lead to differences in the large-scale functional interactions of early cortical areas that represent central and peripheral visual space. Here, we characterize differences in whole-brain functional connectivity among sectors in primary visual cortex (V1) corresponding to central, near-peripheral, and far-peripheral vision during resting fixation. Importantly, our analyses reveal that eccentricity sectors in V1 have different functional connectivity with non-visual areas associated with large-scale brain networks. Regions associated with the fronto-parietal control network are most strongly connected with central sectors of V1, regions associated with the cingulo-opercular control network are most strongly connected with near-peripheral sectors of V1, and regions associated with the default mode and auditory networks are most strongly connected with far-peripheral sectors of V1. Additional analyses suggest that similar patterns are present during eyes-closed rest. These results suggest that different types of visual information may be prioritized by large-scale brain networks with distinct functional profiles, and provide insights into how the small-scale functional specialization within early visual regions such as V1 relates to the large-scale organization of functionally distinct whole-brain networks. PMID:27554527
Prolonged fasting impairs neural reactivity to visual stimulation.
Kohn, N; Wassenberg, A; Toygar, T; Kellermann, T; Weidenfeld, C; Berthold-Losleben, M; Chechko, N; Orfanos, S; Vocke, S; Laoutidis, Z G; Schneider, F; Karges, W; Habel, U
2016-01-01
Previous literature has shown that hypoglycemia influences the intensity of the BOLD signal. A similar but smaller effect may also be elicited by low normal blood glucose levels in healthy individuals. This may not only confound the BOLD signal measured in fMRI, but also more generally interact with cognitive processing, and thus indirectly influence fMRI results. Here we show in a placebo-controlled, crossover, double-blind study on 40 healthy subjects, that overnight fasting and low normal levels of glucose contrasted to an activated, elevated glucose condition have an impact on brain activation during basal visual stimulation. Additionally, functional connectivity of the visual cortex shows a strengthened association with higher-order attention-related brain areas in an elevated blood glucose condition compared to the fasting condition. In a fasting state visual brain areas show stronger coupling to the inferior temporal gyrus. Results demonstrate that prolonged overnight fasting leads to a diminished BOLD signal in higher-order occipital processing areas when compared to an elevated blood glucose condition. Additionally, functional connectivity patterns underscore the modulatory influence of fasting on visual brain networks. Patterns of brain activation and functional connectivity associated with a broad range of attentional processes are affected by maturation and aging and associated with psychiatric disease and intoxication. Thus, we conclude that prolonged fasting may decrease fMRI design sensitivity in any task involving attentional processes when fasting status or blood glucose is not controlled.
Nurmikko, Arto V.; Donoghue, John P.; Hochberg, Leigh R.; Patterson, William R.; Song, Yoon-Kyu; Bull, Christopher W.; Borton, David A.; Laiwalla, Farah; Park, Sunmee; Ming, Yin; Aceros, Juan
2011-01-01
Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature’s amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic “brain-interfaces” within the body, a point of special emphasis of this paper. PMID:21654935
[Visual perception and its disorders].
Ruf-Bächtiger, L
1989-11-21
It's the brain and not the eye that decides what is perceived. In spite of this fact, quite a lot is known about the functioning of the eye and the first sections of the optic tract, but little about the actual process of perception. Examination of visual perception and its malfunctions relies therefore on certain hypotheses. Proceeding from the model of functional brain systems, variant functional domains of visual perception can be distinguished. Among the more important of these domains are: digit span, visual discrimination and figure-ground discrimination. Evaluation of these functional domains allows us to understand those children with disorders of visual perception better and to develop more effective treatment methods.
de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares
2018-01-01
This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named “Get Coins,” through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user. PMID:29849549
Leite, Harlei Miguel de Arruda; de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares
2018-01-01
This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named "Get Coins," through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user.
Image Statistics and the Representation of Material Properties in the Visual Cortex
Baumgartner, Elisabeth; Gegenfurtner, Karl R.
2016-01-01
We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images. PMID:27582714
Image Statistics and the Representation of Material Properties in the Visual Cortex.
Baumgartner, Elisabeth; Gegenfurtner, Karl R
2016-01-01
We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images.
Thaler, Lore; Goodale, Melvyn A.
2011-01-01
Neuropsychological evidence suggests that different brain areas may be involved in movements that are directed at visual targets (e.g., pointing or reaching), and movements that are based on allocentric visual information (e.g., drawing or copying). Here we used fMRI to investigate the neural correlates of these two types of movements in healthy volunteers. Subjects (n = 14) performed right hand movements in either a target-directed task (moving a cursor to a target dot) or an allocentric task (moving a cursor to reproduce the distance and direction between two distal target dots) with or without visual feedback about their hand movement. Movements were monitored with an MR compatible touch panel. A whole brain analysis revealed that movements in allocentric conditions led to an increase in activity in the fundus of the left intra-parietal sulcus (IPS), in posterior IPS, in bilateral dorsal premotor cortex (PMd), and in the lateral occipital complex (LOC). Visual feedback in both target-directed and allocentric conditions led to an increase in activity in area MT+, superior parietal–occipital cortex (SPOC), and posterior IPS (all bilateral). In addition, we found that visual feedback affected brain activity differently in target-directed as compared to allocentric conditions, particularly in the pre-supplementary motor area, PMd, IPS, and parieto-occipital cortex. Our results, in combination with previous findings, suggest that the LOC is essential for allocentric visual coding and that SPOC is involved in visual feedback control. The differences in brain activity between target-directed and allocentric visual feedback conditions may be related to behavioral differences in visual feedback control. Our results advance the understanding of the visual coordinate frame used by the LOC. In addition, because of the nature of the allocentric task, our results have relevance for the understanding of neural substrates of magnitude estimation and vector coding of movements. PMID:21941474
Neuronal ensemble control of prosthetic devices by a human with tetraplegia
NASA Astrophysics Data System (ADS)
Hochberg, Leigh R.; Serruya, Mijail D.; Friehs, Gerhard M.; Mukand, Jon A.; Saleh, Maryam; Caplan, Abraham H.; Branner, Almut; Chen, David; Penn, Richard D.; Donoghue, John P.
2006-07-01
Neuromotor prostheses (NMPs) aim to replace or restore lost motor functions in paralysed humans by routeing movement-related signals from the brain, around damaged parts of the nervous system, to external effectors. To translate preclinical results from intact animals to a clinically useful NMP, movement signals must persist in cortex after spinal cord injury and be engaged by movement intent when sensory inputs and limb movement are long absent. Furthermore, NMPs would require that intention-driven neuronal activity be converted into a control signal that enables useful tasks. Here we show initial results for a tetraplegic human (MN) using a pilot NMP. Neuronal ensemble activity recorded through a 96-microelectrode array implanted in primary motor cortex demonstrated that intended hand motion modulates cortical spiking patterns three years after spinal cord injury. Decoders were created, providing a `neural cursor' with which MN opened simulated e-mail and operated devices such as a television, even while conversing. Furthermore, MN used neural control to open and close a prosthetic hand, and perform rudimentary actions with a multi-jointed robotic arm. These early results suggest that NMPs based upon intracortical neuronal ensemble spiking activity could provide a valuable new neurotechnology to restore independence for humans with paralysis.
Papafaklis, M I; Ligthart, J M R; Vaina, S; Witsenburg, M; Bogers, A J J C; Serruys, P W
2005-01-01
In this case report, we present the use of intracardiac echocardiography (ICE) for guiding the cardiac catheterization and subsequent hemodynamic investigation in an unusual patient case with multiple congenital abnormalities (bicuspid aortic valve, left cervical aortic arch, two aortic coarctations) and two aortic valve replacement operations in the past. The ICE catheter (AcuNav) permitted us to accurately and safely puncture the interatrial septum and place the Swan-Ganz catheter in the left ventricle; additionally, visualization of the aortic coarctation in the ascending aorta was also achieved.
Aladmawi, Mohamed A; Pragliola, Claudio; Vriz, Olga; Galzerano, Domenico
2017-04-01
Obstruction of a mechanical aortic valve by pannus formation at the subvalvular level is a major long-term complication of aortic valve replacement (AVR). In fact, pannus is sometime difficult to differentiate from patient-prosthesis mismatch or valve thrombosis. In most cases cine-angiography and echocardiography, either transthoracic or transesophageal, cannot correctly visualize the complication when the leaflets show a normal mobility. Recent technological refinements made this difficult diagnosis possible by ECG-gated computed tomography (CT) scan which shows adequate images in 90% of the cases and can differentiate pannus from fresh and organized thrombus.
Mohd Hawari, Nurhanisah; Jawaid, Mohammad; Md Tahir, Paridah; Azmeer, Raja Ahmad
2017-11-01
The aim of this case study was to explore patient satisfaction with the quality of prosthetic leg sockets intended for persons with lower limb amputations. A qualitative study based on in-depth interviews, preceded by a questionnaire session, was carried out with patients from the Rehabilitation Center and Hospital in Malaysia. Twelve out-patient and in-patient amputees with lower limb amputations, specifically below-knee amputations, were chosen randomly. The analysis of patients' narratives aimed to identify the functional and esthetic characteristics of currently used prosthetic leg sockets and any problems related to them. The obtained results indicated that out of the 12 participants, 41.7% and 25% were satisfied and somewhat satisfied with their current prosthetic sockets. Durability and comfort were rated by the participants as the most important characteristics of prosthetic sockets, with 83.3%. As regards the esthetic appearance of the socket, 66.7% of the respondents considered that the most important feature was the material from which the socket was fabricated. Thus, we conclude that current satisfaction levels with the quality of prosthetic sockets among amputees in Malaysia are suitable, prosthesis being preferred by many amputees. The results can be used to direct future research on cosmesis and functionality of prosthetic socket design. Implications for Rehabilitation Case study will help participants to get cost effective prosthetic leg socket. Develop prosthetic leg socket comfortable as comparative to existing one. Help Malaysian government to make policy to develop local prosthetic leg socket at affordable price.
Undergraduate prosthetics and orthotics teaching methods: A baseline for international comparison.
Aminian, Gholamreza; O'Toole, John M; Mehraban, Afsoon Hassani
2015-08-01
Education of Prosthetics and Orthotics is a relatively recent professional program. While there has been some work on various teaching methods and strategies in international medical education, limited publication exists within prosthetics and orthotics. To identify the teaching and learning methods that are used in Bachelor-level prosthetics and orthotics programs that are given highest priority by expert prosthetics and orthotics instructors from regions enjoying a range of economic development. Mixed method. The study partly documented by this article utilized a mixed method approach (qualitative and quantitative methods) within which each phase provided data for other phases. It began with analysis of prosthetics and orthotics curricula documents, which was followed by a broad survey of instructors in this field and then a modified Delphi process. The expert instructors who participated in this study gave high priority to student-centered, small group methods that encourage critical thinking and may lead to lifelong learning. Instructors from more developed nations placed higher priority on student's independent acquisition of prosthetics and orthotics knowledge, particularly in clinical training. Application of student-centered approaches to prosthetics and orthotics programs may be preferred by many experts, but there appeared to be regional differences in the priority given to different teaching methods. The results of this study identify the methods of teaching that are preferred by expert prosthetics and orthotics instructors from a variety of regions. This treatment of current instructional techniques may inform instructor choice of teaching methods that impact the quality of education and improve the professional skills of students. © The International Society for Prosthetics and Orthotics 2014.
ERIC Educational Resources Information Center
Weber-Fox, Christine; Hart, Laura J.; Spruill, John E., III
2006-01-01
This study examined how school-aged children process different grammatical categories. Event-related brain potentials elicited by words in visually presented sentences were analyzed according to seven grammatical categories with naturally varying characteristics of linguistic functions, semantic features, and quantitative attributes of length and…
Two Dream Machines: Television and the Human Brain.
ERIC Educational Resources Information Center
Deming, Caren J.
Research into brain physiology and dream psychology have helped to illuminate the biological purposes and processes of dreaming. Physical and functional characteristics shared by dreaming and television include the perception of visual and auditory images, operation in a binary mode, and the encoding of visual information. Research is needed in…
Lahnakoski, Juha M; Salmi, Juha; Jääskeläinen, Iiro P; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko
2012-01-01
Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments.
Lahnakoski, Juha M.; Salmi, Juha; Jääskeläinen, Iiro P.; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko
2012-01-01
Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments. PMID:22496909
Eichelbaum, Sebastian; Dannhauer, Moritz; Hlawitschka, Mario; Brooks, Dana; Knösche, Thomas R.; Scheuermann, Gerik
2014-01-01
Electrical activity of neuronal populations is a crucial aspect of brain activity. This activity is not measured directly but recorded as electrical potential changes using head surface electrodes (electroencephalogram - EEG). Head surface electrodes can also be deployed to inject electrical currents in order to modulate brain activity (transcranial electric stimulation techniques) for therapeutic and neuroscientific purposes. In electroencephalography and noninvasive electric brain stimulation, electrical fields mediate between electrical signal sources and regions of interest (ROI). These fields can be very complicated in structure, and are influenced in a complex way by the conductivity profile of the human head. Visualization techniques play a central role to grasp the nature of those fields because such techniques allow for an effective conveyance of complex data and enable quick qualitative and quantitative assessments. The examination of volume conduction effects of particular head model parameterizations (e.g., skull thickness and layering), of brain anomalies (e.g., holes in the skull, tumors), location and extent of active brain areas (e.g., high concentrations of current densities) and around current injecting electrodes can be investigated using visualization. Here, we evaluate a number of widely used visualization techniques, based on either the potential distribution or on the current-flow. In particular, we focus on the extractability of quantitative and qualitative information from the obtained images, their effective integration of anatomical context information, and their interaction. We present illustrative examples from clinically and neuroscientifically relevant cases and discuss the pros and cons of the various visualization techniques. PMID:24821532
Rizzo, G; Capponi, A; Pietrolucci, M E; Capece, A; Aiello, E; Mammarella, S; Arduini, D
2011-08-01
To describe a novel algorithm, based on the new display technology 'OmniView', developed to visualize diagnostic sagittal and coronal planes of the fetal brain from volumes obtained by three-dimensional (3D) ultrasonography. We developed an algorithm to image standard neurosonographic planes by drawing dissecting lines through the axial transventricular view of 3D volume datasets acquired transabdominally. The algorithm was tested on 106 normal fetuses at 18-24 weeks of gestation and the visualization rates of brain diagnostic planes were evaluated by two independent reviewers. The algorithm was also applied to nine cases with proven brain defects. The two reviewers, using the algorithm on normal fetuses, found satisfactory images with visualization rates ranging between 71.7% and 96.2% for sagittal planes and between 76.4% and 90.6% for coronal planes. The agreement rate between the two reviewers, as expressed by Cohen's kappa coefficient, was > 0.93 for sagittal planes and > 0.89 for coronal planes. All nine abnormal volumes were identified by a single observer from among a series including normal brains, and eight of these nine cases were diagnosed correctly. This novel algorithm can be used to visualize standard sagittal and coronal planes in the fetal brain. This approach may simplify the examination of the fetal brain and reduce dependency of success on operator skill. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.
High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates.
Seiriki, Kaoru; Kasai, Atsushi; Hashimoto, Takeshi; Schulze, Wiebke; Niu, Misaki; Yamaguchi, Shun; Nakazawa, Takanobu; Inoue, Ken-Ichi; Uezono, Shiori; Takada, Masahiko; Naka, Yuichiro; Igarashi, Hisato; Tanuma, Masato; Waschek, James A; Ago, Yukio; Tanaka, Kenji F; Hayata-Takano, Atsuko; Nagayasu, Kazuki; Shintani, Norihito; Hashimoto, Ryota; Kunii, Yasuto; Hino, Mizuki; Matsumoto, Junya; Yabe, Hirooki; Nagai, Takeharu; Fujita, Katsumasa; Matsuda, Toshio; Takuma, Kazuhiro; Baba, Akemichi; Hashimoto, Hitoshi
2017-06-21
Subcellular resolution imaging of the whole brain and subsequent image analysis are prerequisites for understanding anatomical and functional brain networks. Here, we have developed a very high-speed serial-sectioning imaging system named FAST (block-face serial microscopy tomography), which acquires high-resolution images of a whole mouse brain in a speed range comparable to that of light-sheet fluorescence microscopy. FAST enables complete visualization of the brain at a resolution sufficient to resolve all cells and their subcellular structures. FAST renders unbiased quantitative group comparisons of normal and disease model brain cells for the whole brain at a high spatial resolution. Furthermore, FAST is highly scalable to non-human primate brains and human postmortem brain tissues, and can visualize neuronal projections in a whole adult marmoset brain. Thus, FAST provides new opportunities for global approaches that will allow for a better understanding of brain systems in multiple animal models and in human diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
2012-01-01
Background A flexed neck posture leads to non-specific activation of the brain. Sensory evoked cerebral potentials and focal brain blood flow have been used to evaluate the activation of the sensory cortex. We investigated the effects of a flexed neck posture on the cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in the related sensory cortices. Methods Twelve healthy young adults received right visual hemi-field, binaural auditory and left median nerve stimuli while sitting with the neck in a resting and flexed (20° flexion) position. Sensory evoked potentials were recorded from the right occipital region, Cz in accordance with the international 10–20 system, and 2 cm posterior from C4, during visual, auditory and somatosensory stimulations. The oxidative-hemoglobin concentration was measured in the respective sensory cortex using near-infrared spectroscopy. Results Latencies of the late component of all sensory evoked potentials significantly shortened, and the amplitude of auditory evoked potentials increased when the neck was in a flexed position. Oxidative-hemoglobin concentrations in the left and right visual cortices were higher during visual stimulation in the flexed neck position. The left visual cortex is responsible for receiving the visual information. In addition, oxidative-hemoglobin concentrations in the bilateral auditory cortex during auditory stimulation, and in the right somatosensory cortex during somatosensory stimulation, were higher in the flexed neck position. Conclusions Visual, auditory and somatosensory pathways were activated by neck flexion. The sensory cortices were selectively activated, reflecting the modalities in sensory projection to the cerebral cortex and inter-hemispheric connections. PMID:23199306
Lee, Vincent K.; Nau, Amy C.; Laymon, Charles; Chan, Kevin C.; Rosario, Bedda L.; Fisher, Chris
2014-01-01
Purpose: Neuronal reorganization after blindness is of critical interest because it has implications for the rational prescription of artificial vision devices. The purpose of this study was to distinguish the microstructural differences between perinatally blind (PB), acquired blind (AB), and normally sighted controls (SCs) and relate these differences to performance on functional tasks using a sensory substitution device (BrainPort). Methods: We enrolled 52 subjects (PB n = 11; AB n = 35; SC n = 6). All subjects spent 15 h undergoing BrainPort device training. Outcomes of light perception, motion, direction, temporal resolution, grating, and acuity were tested at baseline and after training. Twenty-six of the subjects were scanned with a three Tesla MRI scanner for diffusion tensor imaging (DTI), and with a positron emission tomography (PET) scanner for mapping regional brain glucose consumption during sensory substitution function. Non-parametric models were used to analyze fractional anisotropy (FA; a DTI measure of microstructural integrity) of the brain via region-of-interest (ROI) analysis and tract-based spatial statistics (TBSS). Results: At baseline, all subjects performed all tasks at chance level. After training, light perception, time resolution, location and grating acuity tasks improved significantly for all subject groups. ROI and TBSS analyses of FA maps show areas of statistically significant differences (p ≤ 0.025) in the bilateral optic radiations and some visual association connections between all three groups. No relationship was found between FA and functional performance with the BrainPort. Discussion: All subjects showed performance improvements using the BrainPort irrespective of nature and duration of blindness. Definite brain areas with significant microstructural integrity changes exist among PB, AB, and NC, and these variations are most pronounced in the visual pathways. However, the use of sensory substitution devices is feasible irrespective of microstructural integrity of the primary visual pathways between the eye and the brain. Therefore, tongue based devices devices may be usable for a broad array of non-sighted patients. PMID:24860473
Seo, Y; Jeong, B; Kim, J-W; Choi, J
2010-01-01
The various changes of sexuality, including decreased sexual desire and erectile dysfunction, are also accompanied with aging. To understand the effect of aging on sexuality, we explored the relationship between age and the visual erotic stimulation-related brain response in sexually active male subjects. Twelve healthy, heterosexual male subjects (age 22-47 years) were recorded the functional magnetic resonance imaging (fMRI) signals of their brain activation elicited by passive viewing erotic (ERO), happy-faced (HA) couple, food and nature pictures. Mixed effect analysis and correlation analysis were performed to investigate the relationship between the age and the change of brain activity elicited by erotic stimuli. Our results showed age was positively correlated with the activation of right occipital fusiform gyrus and amygdala, and negatively correlated with the activation of right insula and inferior frontal gyrus. These findings suggest age might be related with functional decline in brain regions being involved in both interoceptive sensation and prefrontal modulation while it is related with the incremental activity of the brain region for early processing of visual emotional stimuli in sexually healthy men.
EXiO-A Brain-Controlled Lower Limb Exoskeleton for Rhesus Macaques.
Vouga, Tristan; Zhuang, Katie Z; Olivier, Jeremy; Lebedev, Mikhail A; Nicolelis, Miguel A L; Bouri, Mohamed; Bleuler, Hannes
2017-02-01
Recent advances in the field of brain-machine interfaces (BMIs) have demonstrated enormous potential to shape the future of rehabilitation and prosthetic devices. Here, a lower-limb exoskeleton controlled by the intracortical activity of an awake behaving rhesus macaque is presented as a proof-of-concept for a locomotorBMI. A detailed description of the mechanical device, including its innovative features and first experimental results, is provided. During operation, BMI-decoded position and velocity are directly mapped onto the bipedal exoskeleton's motions, which then move the monkey's legs as the monkey remains physicallypassive. To meet the unique requirements of such an application, the exoskeleton's features include: high output torque with backdrivable actuation, size adjustability, and safe user-robot interface. In addition, a novel rope transmission is introduced and implemented. To test the performance of the exoskeleton, a mechanical assessment was conducted, which yielded quantifiable results for transparency, efficiency, stiffness, and tracking performance. Usage under both brain control and automated actuation demonstrates the device's capability to fulfill the demanding needs of this application. These results lay the groundwork for further advancement in BMI-controlled devices for primates including humans.
Maze learning by a hybrid brain-computer system
NASA Astrophysics Data System (ADS)
Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan
2016-09-01
The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation.
Maze learning by a hybrid brain-computer system.
Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan
2016-09-13
The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation.
Maze learning by a hybrid brain-computer system
Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan
2016-01-01
The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation. PMID:27619326
NASA Astrophysics Data System (ADS)
Fink, Wolfgang; You, Cindy X.; Tarbell, Mark A.
2010-01-01
It is difficult to predict exactly what blind subjects with camera-driven visual prostheses (e.g., retinal implants) can perceive. Thus, it is prudent to offer them a wide variety of image processing filters and the capability to engage these filters repeatedly in any user-defined order to enhance their visual perception. To attain true portability, we employ a commercial off-the-shelf battery-powered general purpose Linux microprocessor platform to create the microcomputer-based artificial vision support system (μAVS2) for real-time image processing. Truly standalone, μAVS2 is smaller than a deck of playing cards, lightweight, fast, and equipped with USB, RS-232 and Ethernet interfaces. Image processing filters on μAVS2 operate in a user-defined linear sequential-loop fashion, resulting in vastly reduced memory and CPU requirements during execution. μAVS2 imports raw video frames from a USB or IP camera, performs image processing, and issues the processed data over an outbound Internet TCP/IP or RS-232 connection to the visual prosthesis system. Hence, μAVS2 affords users of current and future visual prostheses independent mobility and the capability to customize the visual perception generated. Additionally, μAVS2 can easily be reconfigured for other prosthetic systems. Testing of μAVS2 with actual retinal implant carriers is envisioned in the near future.
Fink, Wolfgang; You, Cindy X; Tarbell, Mark A
2010-01-01
It is difficult to predict exactly what blind subjects with camera-driven visual prostheses (e.g., retinal implants) can perceive. Thus, it is prudent to offer them a wide variety of image processing filters and the capability to engage these filters repeatedly in any user-defined order to enhance their visual perception. To attain true portability, we employ a commercial off-the-shelf battery-powered general purpose Linux microprocessor platform to create the microcomputer-based artificial vision support system (microAVS(2)) for real-time image processing. Truly standalone, microAVS(2) is smaller than a deck of playing cards, lightweight, fast, and equipped with USB, RS-232 and Ethernet interfaces. Image processing filters on microAVS(2) operate in a user-defined linear sequential-loop fashion, resulting in vastly reduced memory and CPU requirements during execution. MiccroAVS(2) imports raw video frames from a USB or IP camera, performs image processing, and issues the processed data over an outbound Internet TCP/IP or RS-232 connection to the visual prosthesis system. Hence, microAVS(2) affords users of current and future visual prostheses independent mobility and the capability to customize the visual perception generated. Additionally, microAVS(2) can easily be reconfigured for other prosthetic systems. Testing of microAVS(2) with actual retinal implant carriers is envisioned in the near future.
Design and Evaluation of a Prosthetic Knee Joint Using the Geared Five-Bar Mechanism.
Sun, Yuanxi; Ge, Wenjie; Zheng, Jia; Dong, Dianbiao
2015-11-01
This paper presents the mechanical design, dynamics analysis and ankle trajectory analysis of a prosthetic knee joint using the geared five-bar mechanism. Compared with traditional four-bar or six-bar mechanisms, the geared five-bar mechanism is better at performing diverse movements and is easy to control. This prosthetic knee joint with the geared five-bar mechanism is capable of fine-tuning its relative instantaneous center of rotation and ankle trajectory. The centrode of this prosthetic knee joint, which is mechanically optimized according to the centrode of human knee joint, is better in the bionic performance than that of a prosthetic knee joint using the four-bar mechanism. Additionally, the stability control of this prosthetic knee joint during the swing and stance phase is achieved by a motor. By adjusting the gear ratio of this prosthetic knee joint, the ankle trajectories of both unilateral and bilateral amputees show less deviations from expected than that of the four-bar knee joint.
Pinch-force-magnification mechanism of low degree of freedom EMG prosthetic hand for children.
Ye, Hesong; Sakoda, Shintaro; Jiang, Yinlai; Morishita, Soichiro; Yokoi, Hiroshi
2015-01-01
EMG prosthetic hands are being extensively studied for the disabled who need them not only for cosmesis but also for the functions to help them with basic daily activities. However, most EMG prosthetic hands are developed for adults. Since the early use of prosthetic hands is important for the children to accept and adapt to them, we are developing low degrees of freedom (DoF) prosthetic hand that is suitable for children. Due to the limited size of a child's hand, the servo motor which drives the MP joint are small-sized and low-power. Hence, a pinch-force-magnification mechanism is required to improve the pinch force of the EMG prosthetic hand. In this paper we designed a wire-driven mechanism which can magnify pinch force by increasing the length of the MP joint's moment arm. Pinch force measurement experiment validated that the pinch force of the prosthetic hand with the mechanism is more than twice of that of the hand with direct drive.
Sedki, Imad; Fisher, Keren
2015-06-01
Microprocessor-controlled prosthetic knees have gained increasing popularity over the last decade. Research supports their provision to address specific problems or to achieve certain rehabilitation goals. However, there are yet no agreed protocols or prescribing criteria to assist clinicians in the identification and appropriate selection of suitable users. The aim is to reach professionals' agreement on specific prescribing guidelines for microprocessor-controlled prosthetic knees. The study involved multidisciplinary teams from the Inter Regional Prosthetic Audit Group, representing nine Prosthetic Rehabilitation Centres in the South East England region. We used the Delphi technique with a total of three rounds to reach professionals' agreement. The prescribing guidelines were agreed and will be reviewed and updated depending on new research evidence and technical advances. This project is highly useful for professionals in a clinic setting to aid in appropriate patient selection and to justify the cost of prescribing microprocessor-controlled prosthetic knees. © The International Society for Prosthetics and Orthotics 2014.
Deep learning-based artificial vision for grasp classification in myoelectric hands.
Ghazaei, Ghazal; Alameer, Ali; Degenaar, Patrick; Morgan, Graham; Nazarpour, Kianoush
2017-06-01
Computer vision-based assistive technology solutions can revolutionise the quality of care for people with sensorimotor disorders. The goal of this work was to enable trans-radial amputees to use a simple, yet efficient, computer vision system to grasp and move common household objects with a two-channel myoelectric prosthetic hand. We developed a deep learning-based artificial vision system to augment the grasp functionality of a commercial prosthesis. Our main conceptual novelty is that we classify objects with regards to the grasp pattern without explicitly identifying them or measuring their dimensions. A convolutional neural network (CNN) structure was trained with images of over 500 graspable objects. For each object, 72 images, at [Formula: see text] intervals, were available. Objects were categorised into four grasp classes, namely: pinch, tripod, palmar wrist neutral and palmar wrist pronated. The CNN setting was first tuned and tested offline and then in realtime with objects or object views that were not included in the training set. The classification accuracy in the offline tests reached [Formula: see text] for the seen and [Formula: see text] for the novel objects; reflecting the generalisability of grasp classification. We then implemented the proposed framework in realtime on a standard laptop computer and achieved an overall score of [Formula: see text] in classifying a set of novel as well as seen but randomly-rotated objects. Finally, the system was tested with two trans-radial amputee volunteers controlling an i-limb Ultra TM prosthetic hand and a motion control TM prosthetic wrist; augmented with a webcam. After training, subjects successfully picked up and moved the target objects with an overall success of up to [Formula: see text]. In addition, we show that with training, subjects' performance improved in terms of time required to accomplish a block of 24 trials despite a decreasing level of visual feedback. The proposed design constitutes a substantial conceptual improvement for the control of multi-functional prosthetic hands. We show for the first time that deep-learning based computer vision systems can enhance the grip functionality of myoelectric hands considerably.
Deep learning-based artificial vision for grasp classification in myoelectric hands
NASA Astrophysics Data System (ADS)
Ghazaei, Ghazal; Alameer, Ali; Degenaar, Patrick; Morgan, Graham; Nazarpour, Kianoush
2017-06-01
Objective. Computer vision-based assistive technology solutions can revolutionise the quality of care for people with sensorimotor disorders. The goal of this work was to enable trans-radial amputees to use a simple, yet efficient, computer vision system to grasp and move common household objects with a two-channel myoelectric prosthetic hand. Approach. We developed a deep learning-based artificial vision system to augment the grasp functionality of a commercial prosthesis. Our main conceptual novelty is that we classify objects with regards to the grasp pattern without explicitly identifying them or measuring their dimensions. A convolutional neural network (CNN) structure was trained with images of over 500 graspable objects. For each object, 72 images, at {{5}\\circ} intervals, were available. Objects were categorised into four grasp classes, namely: pinch, tripod, palmar wrist neutral and palmar wrist pronated. The CNN setting was first tuned and tested offline and then in realtime with objects or object views that were not included in the training set. Main results. The classification accuracy in the offline tests reached 85 % for the seen and 75 % for the novel objects; reflecting the generalisability of grasp classification. We then implemented the proposed framework in realtime on a standard laptop computer and achieved an overall score of 84 % in classifying a set of novel as well as seen but randomly-rotated objects. Finally, the system was tested with two trans-radial amputee volunteers controlling an i-limb UltraTM prosthetic hand and a motion controlTM prosthetic wrist; augmented with a webcam. After training, subjects successfully picked up and moved the target objects with an overall success of up to 88 % . In addition, we show that with training, subjects’ performance improved in terms of time required to accomplish a block of 24 trials despite a decreasing level of visual feedback. Significance. The proposed design constitutes a substantial conceptual improvement for the control of multi-functional prosthetic hands. We show for the first time that deep-learning based computer vision systems can enhance the grip functionality of myoelectric hands considerably.
Elsyad, Moustafa Abdou
2016-07-01
This study aimed to evaluate patient satisfaction and prosthetic aspects during a 5-year prospective clinical study of mini dental implants (MDIs) retaining mandibular overdentures. This observational prospective clinical study was conducted on a group of completely edentulous patients (n = 28) with retention problems of conventional mandibular dentures. All patients received new maxillary and mandibular conventional dentures. A total of 112 MDIs (four per patient) were inserted using the flapless surgical approach and immediately loaded by the new mandibular dentures (overdentures). Patients indicated satisfaction with their prosthesis using a questionnaire and a visual analogue scale (VAS). Patient satisfaction and prosthetic complications were recorded 6 months (T6 m ), 1 (T1), 3 (T3), and 5 (T5) years after overdenture insertion. The patient satisfaction with eating (hard/soft) food (P < 0.001), talking (P < 0.001), appearance (P = 0.001), comfort (P < 0.001), healing process (P = 0.013), socialization (P < 0.001), stability/retention of mandibular dentures (P = 0.001), ease of oral hygiene (P = 0.008), and ease of handling the dentures (P < 0.001) increased significantly with time. After 5 years, the most common complication was wear/damage of O/rings (n = 235), O/ring replacement (n = 125), maxillary denture relining times (n = 13), worn teeth (n = 10), overdentures relines (n = 10), detachment of the metal housings (n = 9), and fracture of mandibular overdentures (n = 8). Mucositis, soreness, and decubitis ulcer under overdenture occurred most often at T6 m and decreased significantly with time (P = 0.002, 0.005, and 0.024, respectively). Within the limitations of this clinical study, patient satisfaction with mini-implant retained mandibular overdentures increased significantly with time. However, this treatment required a considerable amount of prosthetic maintenance and repair after 5 years of service. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review.
Belter, Joseph T; Segil, Jacob L; Dollar, Aaron M; Weir, Richard F
2013-01-01
In this article, we set forth a detailed analysis of the mechanical characteristics of anthropomorphic prosthetic hands. We report on an empirical study concerning the performance of several commercially available myoelectric prosthetic hands, including the Vincent, iLimb, iLimb Pulse, Bebionic, Bebionic v2, and Michelangelo hands. We investigated the finger design and kinematics, mechanical joint coupling, and actuation methods of these commercial prosthetic hands. The empirical findings are supplemented with a compilation of published data on both commercial and prototype research prosthetic hands. We discuss numerous mechanical design parameters by referencing examples in the literature. Crucial design trade-offs are highlighted, including number of actuators and hand complexity, hand weight, and grasp force. Finally, we offer a set of rules of thumb regarding the mechanical design of anthropomorphic prosthetic hands.
Neural codes of seeing architectural styles
Choo, Heeyoung; Nasar, Jack L.; Nikrahei, Bardia; Walther, Dirk B.
2017-01-01
Images of iconic buildings, such as the CN Tower, instantly transport us to specific places, such as Toronto. Despite the substantial impact of architectural design on people’s visual experience of built environments, we know little about its neural representation in the human brain. In the present study, we have found patterns of neural activity associated with specific architectural styles in several high-level visual brain regions, but not in primary visual cortex (V1). This finding suggests that the neural correlates of the visual perception of architectural styles stem from style-specific complex visual structure beyond the simple features computed in V1. Surprisingly, the network of brain regions representing architectural styles included the fusiform face area (FFA) in addition to several scene-selective regions. Hierarchical clustering of error patterns further revealed that the FFA participated to a much larger extent in the neural encoding of architectural styles than entry-level scene categories. We conclude that the FFA is involved in fine-grained neural encoding of scenes at a subordinate-level, in our case, architectural styles of buildings. This study for the first time shows how the human visual system encodes visual aspects of architecture, one of the predominant and longest-lasting artefacts of human culture. PMID:28071765
Neural codes of seeing architectural styles.
Choo, Heeyoung; Nasar, Jack L; Nikrahei, Bardia; Walther, Dirk B
2017-01-10
Images of iconic buildings, such as the CN Tower, instantly transport us to specific places, such as Toronto. Despite the substantial impact of architectural design on people's visual experience of built environments, we know little about its neural representation in the human brain. In the present study, we have found patterns of neural activity associated with specific architectural styles in several high-level visual brain regions, but not in primary visual cortex (V1). This finding suggests that the neural correlates of the visual perception of architectural styles stem from style-specific complex visual structure beyond the simple features computed in V1. Surprisingly, the network of brain regions representing architectural styles included the fusiform face area (FFA) in addition to several scene-selective regions. Hierarchical clustering of error patterns further revealed that the FFA participated to a much larger extent in the neural encoding of architectural styles than entry-level scene categories. We conclude that the FFA is involved in fine-grained neural encoding of scenes at a subordinate-level, in our case, architectural styles of buildings. This study for the first time shows how the human visual system encodes visual aspects of architecture, one of the predominant and longest-lasting artefacts of human culture.
Toward Model Building for Visual Aesthetic Perception
Lughofer, Edwin; Zeng, Xianyi
2017-01-01
Several models of visual aesthetic perception have been proposed in recent years. Such models have drawn on investigations into the neural underpinnings of visual aesthetics, utilizing neurophysiological techniques and brain imaging techniques including functional magnetic resonance imaging, magnetoencephalography, and electroencephalography. The neural mechanisms underlying the aesthetic perception of the visual arts have been explained from the perspectives of neuropsychology, brain and cognitive science, informatics, and statistics. Although corresponding models have been constructed, the majority of these models contain elements that are difficult to be simulated or quantified using simple mathematical functions. In this review, we discuss the hypotheses, conceptions, and structures of six typical models for human aesthetic appreciation in the visual domain: the neuropsychological, information processing, mirror, quartet, and two hierarchical feed-forward layered models. Additionally, the neural foundation of aesthetic perception, appreciation, or judgement for each model is summarized. The development of a unified framework for the neurobiological mechanisms underlying the aesthetic perception of visual art and the validation of this framework via mathematical simulation is an interesting challenge in neuroaesthetics research. This review aims to provide information regarding the most promising proposals for bridging the gap between visual information processing and brain activity involved in aesthetic appreciation. PMID:29270194
[Associative Learning between Orientation and Color in Early Visual Areas].
Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo
2017-08-01
Associative learning is an essential neural phenomenon where the contingency of different items increases after training. Although associative learning has been found to occur in many brain regions, there is no clear evidence that associative learning of visual features occurs in early visual areas. Here, we developed an associative decoded functional magnetic resonance imaging (fMRI) neurofeedback (A-DecNef) to determine whether associative learning of color and orientation can be induced in early visual areas. During the three days' training, A-DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was simultaneously, physically presented to participants. Consequently, participants' perception of "red" was significantly more frequently than that of "green" in an achromatic vertical grating. This effect was also observed 3 to 5 months after training. These results suggest that long-term associative learning of two different visual features such as color and orientation, was induced most likely in early visual areas. This newly extended technique that induces associative learning may be used as an important tool for understanding and modifying brain function, since associations are fundamental and ubiquitous with respect to brain function.
Cho, Hwi-Young; Kim, Kitae; Lee, Byounghee; Jung, Jinhwa
2015-03-01
[Purpose] This study investigated a brain wave and visual perception changes in stroke subjects using neurofeedback (NFB) training. [Subjects] Twenty-seven stroke subjects were randomly allocated to the NFB (n = 13) group and the control group (n=14). [Methods] Two expert therapists provided the NFB and CON groups with traditional rehabilitation therapy in 30 thirst-minute sessions over the course of 6 weeks. NFB training was provided only to the NFB group. The CON group received traditional rehabilitation therapy only. Before and after the 6-week intervention, a brain wave test and motor free visual perception test (MVPT) were performed. [Results] Both groups showed significant differences in their relative beta wave values and attention concentration quotients. Moreover, the NFB group showed a significant difference in MVPT visual discrimination, form constancy, visual memory, visual closure, spatial relation, raw score, and processing time. [Conclusion] This study demonstrated that NFB training is more effective for increasing concentration and visual perception changes than traditional rehabilitation. In further studies, detailed and diverse investigations should be performed considering the number and characteristics of subjects, and the NFB training period.
Visual attention: Linking prefrontal sources to neuronal and behavioral correlates.
Clark, Kelsey; Squire, Ryan Fox; Merrikhi, Yaser; Noudoost, Behrad
2015-09-01
Attention is a means of flexibly selecting and enhancing a subset of sensory input based on the current behavioral goals. Numerous signatures of attention have been identified throughout the brain, and now experimenters are seeking to determine which of these signatures are causally related to the behavioral benefits of attention, and the source of these modulations within the brain. Here, we review the neural signatures of attention throughout the brain, their theoretical benefits for visual processing, and their experimental correlations with behavioral performance. We discuss the importance of measuring cue benefits as a way to distinguish between impairments on an attention task, which may instead be visual or motor impairments, and true attentional deficits. We examine evidence for various areas proposed as sources of attentional modulation within the brain, with a focus on the prefrontal cortex. Lastly, we look at studies that aim to link sources of attention to its neuronal signatures elsewhere in the brain. Copyright © 2015. Published by Elsevier Ltd.
Colour processing in complex environments: insights from the visual system of bees
Dyer, Adrian G.; Paulk, Angelique C.; Reser, David H.
2011-01-01
Colour vision enables animals to detect and discriminate differences in chromatic cues independent of brightness. How the bee visual system manages this task is of interest for understanding information processing in miniaturized systems, as well as the relationship between bee pollinators and flowering plants. Bees can quickly discriminate dissimilar colours, but can also slowly learn to discriminate very similar colours, raising the question as to how the visual system can support this, or whether it is simply a learning and memory operation. We discuss the detailed neuroanatomical layout of the brain, identify probable brain areas for colour processing, and suggest that there may be multiple systems in the bee brain that mediate either coarse or fine colour discrimination ability in a manner dependent upon individual experience. These multiple colour pathways have been identified along both functional and anatomical lines in the bee brain, providing us with some insights into how the brain may operate to support complex colour discrimination behaviours. PMID:21147796
The Riddle of Style Changes in the Visual Arts after Interference with the Right Brain
Blanke, Olaf; Pasqualini, Isabella
2011-01-01
We here analyze the paintings and films of several visual artists, who suffered from a well-defined neuropsychological deficit, visuo-spatial hemineglect, following vascular stroke to the right brain. In our analysis we focus in particular on the oeuvre of Lovis Corinth and Luchino Visconti as both major artists continued to be highly productive over many years after their right brain damage. We analyzed their post-stroke paintings and films, indicate several aspects that differ from their pre-stroke work (omissions, use of color, perseveration, deformation), and propose–although both artists come from different times, countries, genres, and styles–that their post-stroke oeuvre reveals important similarities in style. We argue that these changes may be associated with visuo-spatial hemineglect and the right brain. We discuss future avenues of how the neuropsychological investigation of visual artists with and without neglect may allow us to investigate the relationship between brain and art. PMID:22232586
Additive Manufacturing of Biomaterials, Tissues, and Organs.
Zadpoor, Amir A; Malda, Jos
2017-01-01
The introduction of additive manufacturing (AM), often referred to as three-dimensional (3D) printing, has initiated what some believe to be a manufacturing revolution, and has expedited the development of the field of biofabrication. Moreover, recent advances in AM have facilitated further development of patient-specific healthcare solutions. Customization of many healthcare products and services, such as implants, drug delivery devices, medical instruments, prosthetics, and in vitro models, would have been extremely challenging-if not impossible-without AM technologies. The current special issue of the Annals of Biomedical Engineering presents the latest trends in application of AM techniques to healthcare-related areas of research. As a prelude to this special issue, we review here the most important areas of biomedical research and clinical practice that have benefited from recent developments in additive manufacturing techniques. This editorial, therefore, aims to sketch the research landscape within which the other contributions of the special issue can be better understood and positioned. In what follows, we briefly review the application of additive manufacturing techniques in studies addressing biomaterials, (re)generation of tissues and organs, disease models, drug delivery systems, implants, medical instruments, prosthetics, orthotics, and AM objects used for medical visualization and communication.
Abstract and proportional myoelectric control for multi-fingered hand prostheses.
Pistohl, Tobias; Cipriani, Christian; Jackson, Andrew; Nazarpour, Kianoush
2013-12-01
Powered hand prostheses with many degrees of freedom are moving from research into the market for prosthetics. In order to make use of the prostheses' full functionality, it is essential to study efficient ways of high dimensional myoelectric control. Human subjects can rapidly learn to employ electromyographic (EMG) activity of several hand and arm muscles to control the position of a cursor on a computer screen, even if the muscle-cursor map contradicts directions in which the muscles would act naturally. But can a similar control scheme be translated into real-time operation of a dexterous robotic hand? We found that despite different degrees of freedom in the effector output, the learning process for controlling a robotic hand was surprisingly similar to that for a virtual two-dimensional cursor. Control signals were derived from the EMG in two different ways, with a linear and a Bayesian filter, to test how stable user intentions could be conveyed through them. Our analysis indicates that without visual feedback, control accuracy benefits from filters that reject high EMG amplitudes. In summary, we conclude that findings on myoelectric control principles, studied in abstract, virtual tasks can be transferred to real-life prosthetic applications.
Nurmikko, Arto V; Donoghue, John P; Hochberg, Leigh R; Patterson, William R; Song, Yoon-Kyu; Bull, Christopher W; Borton, David A; Laiwalla, Farah; Park, Sunmee; Ming, Yin; Aceros, Juan
2010-01-01
Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature's amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic "brain-interfaces" within the body, a point of special emphasis of this paper.
Epicenters of dynamic connectivity in the adaptation of the ventral visual system.
Prčkovska, Vesna; Huijbers, Willem; Schultz, Aaron; Ortiz-Teran, Laura; Peña-Gomez, Cleofe; Villoslada, Pablo; Johnson, Keith; Sperling, Reisa; Sepulcre, Jorge
2017-04-01
Neuronal responses adapt to familiar and repeated sensory stimuli. Enhanced synchrony across wide brain systems has been postulated as a potential mechanism for this adaptation phenomenon. Here, we used recently developed graph theory methods to investigate hidden connectivity features of dynamic synchrony changes during a visual repetition paradigm. Particularly, we focused on strength connectivity changes occurring at local and distant brain neighborhoods. We found that connectivity reorganization in visual modal cortex-such as local suppressed connectivity in primary visual areas and distant suppressed connectivity in fusiform areas-is accompanied by enhanced local and distant connectivity in higher cognitive processing areas in multimodal and association cortex. Moreover, we found a shift of the dynamic functional connections from primary-visual-fusiform to primary-multimodal/association cortex. These findings suggest that repetition-suppression is made possible by reorganization of functional connectivity that enables communication between low- and high-order areas. Hum Brain Mapp 38:1965-1976, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Massive cortical reorganization in sighted Braille readers
Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin
2016-01-01
The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills. DOI: http://dx.doi.org/10.7554/eLife.10762.001 PMID:26976813
Visual attention modulates brain activation to angry voices.
Mothes-Lasch, Martin; Mentzel, Hans-Joachim; Miltner, Wolfgang H R; Straube, Thomas
2011-06-29
In accordance with influential models proposing prioritized processing of threat, previous studies have shown automatic brain responses to angry prosody in the amygdala and the auditory cortex under auditory distraction conditions. However, it is unknown whether the automatic processing of angry prosody is also observed during cross-modal distraction. The current fMRI study investigated brain responses to angry versus neutral prosodic stimuli during visual distraction. During scanning, participants were exposed to angry or neutral prosodic stimuli while visual symbols were displayed simultaneously. By means of task requirements, participants either attended to the voices or to the visual stimuli. While the auditory task revealed pronounced activation in the auditory cortex and amygdala to angry versus neutral prosody, this effect was absent during the visual task. Thus, our results show a limitation of the automaticity of the activation of the amygdala and auditory cortex to angry prosody. The activation of these areas to threat-related voices depends on modality-specific attention.
Wu, Ming; Nern, Aljoscha; Williamson, W Ryan; Morimoto, Mai M; Reiser, Michael B; Card, Gwyneth M; Rubin, Gerald M
2016-01-01
Visual projection neurons (VPNs) provide an anatomical connection between early visual processing and higher brain regions. Here we characterize lobula columnar (LC) cells, a class of Drosophila VPNs that project to distinct central brain structures called optic glomeruli. We anatomically describe 22 different LC types and show that, for several types, optogenetic activation in freely moving flies evokes specific behaviors. The activation phenotypes of two LC types closely resemble natural avoidance behaviors triggered by a visual loom. In vivo two-photon calcium imaging reveals that these LC types respond to looming stimuli, while another type does not, but instead responds to the motion of a small object. Activation of LC neurons on only one side of the brain can result in attractive or aversive turning behaviors depending on the cell type. Our results indicate that LC neurons convey information on the presence and location of visual features relevant for specific behaviors. DOI: http://dx.doi.org/10.7554/eLife.21022.001 PMID:28029094
NeuroLines: A Subway Map Metaphor for Visualizing Nanoscale Neuronal Connectivity.
Al-Awami, Ali K; Beyer, Johanna; Strobelt, Hendrik; Kasthuri, Narayanan; Lichtman, Jeff W; Pfister, Hanspeter; Hadwiger, Markus
2014-12-01
We present NeuroLines, a novel visualization technique designed for scalable detailed analysis of neuronal connectivity at the nanoscale level. The topology of 3D brain tissue data is abstracted into a multi-scale, relative distance-preserving subway map visualization that allows domain scientists to conduct an interactive analysis of neurons and their connectivity. Nanoscale connectomics aims at reverse-engineering the wiring of the brain. Reconstructing and analyzing the detailed connectivity of neurons and neurites (axons, dendrites) will be crucial for understanding the brain and its development and diseases. However, the enormous scale and complexity of nanoscale neuronal connectivity pose big challenges to existing visualization techniques in terms of scalability. NeuroLines offers a scalable visualization framework that can interactively render thousands of neurites, and that supports the detailed analysis of neuronal structures and their connectivity. We describe and analyze the design of NeuroLines based on two real-world use-cases of our collaborators in developmental neuroscience, and investigate its scalability to large-scale neuronal connectivity data.
Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses.
Sperdin, Holger F; Spierer, Lucas; Becker, Robert; Michel, Christoph M; Landis, Theodor
2015-04-01
Subliminal perception is strongly associated to the processing of meaningful or emotional information and has mostly been studied using visual masking. In this study, we used high density 256-channel EEG coupled with an liquid crystal display (LCD) tachistoscope to characterize the spatio-temporal dynamics of the brain response to visual checkerboard stimuli (Experiment 1) or blank stimuli (Experiment 2) presented without a mask for 1 ms (visible), 500 µs (partially visible), and 250 µs (subliminal) by applying time-wise, assumption-free nonparametric randomization statistics on the strength and on the topography of high-density scalp-recorded electric field. Stimulus visibility was assessed in a third separate behavioral experiment. Results revealed that unmasked checkerboards presented subliminally for 250 µs evoked weak but detectable visual evoked potential (VEP) responses. When the checkerboards were replaced by blank stimuli, there was no evidence for the presence of an evoked response anymore. Furthermore, the checkerboard VEPs were modulated topographically between 243 and 296 ms post-stimulus onset as a function of stimulus duration, indicative of the engagement of distinct configuration of active brain networks. A distributed electrical source analysis localized this modulation within the right superior parietal lobule near the precuneus. These results show the presence of a brain response to submillisecond unmasked subliminal visual stimuli independently of their emotional saliency or meaningfulness and opens an avenue for new investigations of subliminal stimulation without using visual masking. © 2014 Wiley Periodicals, Inc.
Imitation and matching of meaningless gestures: distinct involvement from motor and visual imagery.
Lesourd, Mathieu; Navarro, Jordan; Baumard, Josselin; Jarry, Christophe; Le Gall, Didier; Osiurak, François
2017-05-01
The aim of the present study was to understand the underlying cognitive processes of imitation and matching of meaningless gestures. Neuropsychological evidence obtained in brain damaged patients, has shown that distinct cognitive processes supported imitation and matching of meaningless gestures. Left-brain damaged (LBD) patients failed to imitate while right-brain damaged (RBD) patients failed to match meaningless gestures. Moreover, other studies with brain damaged patients showed that LBD patients were impaired in motor imagery while RBD patients were impaired in visual imagery. Thus, we hypothesize that imitation of meaningless gestures might rely on motor imagery, whereas matching of meaningless gestures might be based on visual imagery. In a first experiment, using a correlational design, we demonstrated that posture imitation relies on motor imagery but not on visual imagery (Experiment 1a) and that posture matching relies on visual imagery but not on motor imagery (Experiment 1b). In a second experiment, by manipulating directly the body posture of the participants, we demonstrated that such manipulation evokes a difference only in imitation task but not in matching task. In conclusion, the present study provides direct evidence that the way we imitate or we have to compare postures depends on motor imagery or visual imagery, respectively. Our results are discussed in the light of recent findings about underlying mechanisms of meaningful and meaningless gestures.
Microprocessor prosthetic knees.
Berry, Dale
2006-02-01
This article traces the development of microprocessor prosthetic knees from early research in the 1970s to the present. Read about how microprocessor knees work, functional options, patient selection, and the future of this prosthetic.
Fujisawa, Junya; Touyama, Hideaki; Hirose, Michitaka
2008-01-01
In this paper, alpha band modulation during visual spatial attention without visual stimuli was focused. Visual spatial attention has been expected to provide a new channel of non-invasive independent brain computer interface (BCI), but little work has been done on the new interfacing method. The flickering stimuli used in previous work cause a decline of independency and have difficulties in a practical use. Therefore we investigated whether visual spatial attention could be detected without such stimuli. Further, the common spatial patterns (CSP) were for the first time applied to the brain states during visual spatial attention. The performance evaluation was based on three brain states of left, right and center direction attention. The 30-channel scalp electroencephalographic (EEG) signals over occipital cortex were recorded for five subjects. Without CSP, the analyses made 66.44 (range 55.42 to 72.27) % of average classification performance in discriminating left and right attention classes. With CSP, the averaged classification accuracy was 75.39 (range 63.75 to 86.13) %. It is suggested that CSP is useful in the context of visual spatial attention, and the alpha band modulation during visual spatial attention without flickering stimuli has the possibility of a new channel for independent BCI as well as motor imagery.
High-intensity erotic visual stimuli de-activate the primary visual cortex in women.
Huynh, Hieu K; Beers, Caroline; Willemsen, Antoon; Lont, Erna; Laan, Ellen; Dierckx, Rudi; Jansen, Monique; Sand, Michael; Weijmar Schultz, Willibrord; Holstege, Gert
2012-06-01
The primary visual cortex, Brodmann's area (BA 17), plays a vital role in basic survival mechanisms in humans. In most neuro-imaging studies in which the volunteers have to watch pictures or movies, the primary visual cortex is similarly activated independent of the content of the pictures or movies. However, in case the volunteers perform demanding non-visual tasks, the primary visual cortex becomes de-activated, although the amount of incoming visual sensory information is the same. Do low- and high-intensity erotic movies, compared to neutral movies, produce similar de-activation of the primary visual cortex? Brain activation/de-activation was studied by Positron Emission Tomography scanning of the brains of 12 healthy heterosexual premenopausal women, aged 18-47, who watched neutral, low- and high-intensity erotic film segments. We measured differences in regional cerebral blood flow (rCBF) in the primary visual cortex during watching neutral, low-intensity erotic, and high-intensity erotic film segments. Watching high-intensity erotic, but not low-intensity erotic movies, compared to neutral movies resulted in strong de-activation of the primary (BA 17) and adjoining parts of the secondary visual cortex. The strong de-activation during watching high-intensity erotic film might represent compensation for the increased blood supply in the brain regions involved in sexual arousal, also because high-intensity erotic movies do not require precise scanning of the visual field, because the impact is clear to the observer. © 2012 International Society for Sexual Medicine.
Nanowire arrays restore vision in blind mice.
Tang, Jing; Qin, Nan; Chong, Yan; Diao, Yupu; Yiliguma; Wang, Zhexuan; Xue, Tian; Jiang, Min; Zhang, Jiayi; Zheng, Gengfeng
2018-03-06
The restoration of light response with complex spatiotemporal features in retinal degenerative diseases towards retinal prosthesis has proven to be a considerable challenge over the past decades. Herein, inspired by the structure and function of photoreceptors in retinas, we develop artificial photoreceptors based on gold nanoparticle-decorated titania nanowire arrays, for restoration of visual responses in the blind mice with degenerated photoreceptors. Green, blue and near UV light responses in the retinal ganglion cells (RGCs) are restored with a spatial resolution better than 100 µm. ON responses in RGCs are blocked by glutamatergic antagonists, suggesting functional preservation of the remaining retinal circuits. Moreover, neurons in the primary visual cortex respond to light after subretinal implant of nanowire arrays. Improvement in pupillary light reflex suggests the behavioral recovery of light sensitivity. Our study will shed light on the development of a new generation of optoelectronic toolkits for subretinal prosthetic devices.
Server-based Approach to Web Visualization of Integrated Three-dimensional Brain Imaging Data
Poliakov, Andrew V.; Albright, Evan; Hinshaw, Kevin P.; Corina, David P.; Ojemann, George; Martin, Richard F.; Brinkley, James F.
2005-01-01
The authors describe a client-server approach to three-dimensional (3-D) visualization of neuroimaging data, which enables researchers to visualize, manipulate, and analyze large brain imaging datasets over the Internet. All computationally intensive tasks are done by a graphics server that loads and processes image volumes and 3-D models, renders 3-D scenes, and sends the renderings back to the client. The authors discuss the system architecture and implementation and give several examples of client applications that allow visualization and analysis of integrated language map data from single and multiple patients. PMID:15561787
Raschke, Silvia U; Orendurff, Michael S; Mattie, Johanne L; Kenyon, David E A; Jones, O Yvette; Moe, David; Winder, Lorne; Wong, Angie S; Moreno-Hernández, Ana; Highsmith, M Jason; J Sanderson, David; Kobayashi, Toshiki
2015-01-02
Providing appropriate prosthetic feet to those with limb loss is a complex and subjective process influenced by professional judgment and payer guidelines. This study used a small load cell (Europa™) at the base of the socket to measure the sagittal moments during walking with three objective categories of prosthetic feet in eleven individuals with transtibial limb loss with MFCL K2, K3 and K4 functional levels. Forefoot stiffness and hysteresis characteristics defined the three foot categories: Stiff, Intermediate, and Compliant. Prosthetic feet were randomly assigned and blinded from participants and investigators. After laboratory testing, participants completed one week community wear tests followed by a modified prosthetics evaluation questionnaire to determine if a specific category of prosthetic feet was preferred. The Compliant category of prosthetic feet was preferred by the participants (P=0.025) over the Stiff and Intermediate prosthetic feet, and the Compliant and Intermediate feet had 15% lower maximum sagittal moments during walking in the laboratory (P=0.0011) compared to the Stiff feet. The activity level of the participants did not change significantly with any of the wear tests in the community, suggesting that each foot was evaluated over a similar number of steps, but did not inherently increase activity. This is the first randomized double blind study in which prosthetic users have expressed a preference for a specific biomechanical characteristic of prosthetic feet: those with lower peak sagittal moments were preferred, and specifically preferred on slopes, stairs, uneven terrain, and during turns and maneuvering during real world use. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cost analysis of debridement and retention for management of prosthetic joint infection.
Peel, T N; Dowsey, M M; Buising, K L; Liew, D; Choong, P F M
2013-02-01
Prosthetic joint infection remains one of the most devastating complications of arthroplasty. Debridement and retention of the prosthesis is an attractive management option in carefully selected patients. Despite this, there are no data investigating the cost of this management modality for prosthetic joint infections. The aim of this case-control study was to calculate the cost associated with debridement and retention for management of prosthetic joint infection compared with primary joint replacement surgery without prosthetic joint infection. From 1 January 2008 to 30 June 2010, there were 21 prosthetic joint infections matched to 42 control patients. Controls were matched to cases according to the arthroplasty site, age and sex. Cases had a greater number of unplanned readmissions (100% vs. 7.1%; p <0.001), more additional surgery (3.3 vs. 0.07; p <0.001) and longer total bed days (31.6 vs. 7.9 days; p <0.001). In addition they had more inpatient, outpatient and emergency department visits (p <0.001, respectively). For patients with prosthetic joint infection the total cost, including index operation and costs of management of the prosthetic joint infection, was 3.1 times the cost of primary arthoplasty; the mean cost for cases was Australian dollars (AUD) $69,414 (±29,869) compared with $22,085 (±8147) (p <0.001). The demand for arthroplasty continues to grow and with that, the number of prosthetic joint infections will also increase, placing significant burden on the health system. Our study adds significantly to the growing body of evidence highlighting the substantial costs associated with prosthetic joint infection. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.
Visual perception and imagery: a new molecular hypothesis.
Bókkon, I
2009-05-01
Here, we put forward a redox molecular hypothesis about the natural biophysical substrate of visual perception and visual imagery. This hypothesis is based on the redox and bioluminescent processes of neuronal cells in retinotopically organized cytochrome oxidase-rich visual areas. Our hypothesis is in line with the functional roles of reactive oxygen and nitrogen species in living cells that are not part of haphazard process, but rather a very strict mechanism used in signaling pathways. We point out that there is a direct relationship between neuronal activity and the biophoton emission process in the brain. Electrical and biochemical processes in the brain represent sensory information from the external world. During encoding or retrieval of information, electrical signals of neurons can be converted into synchronized biophoton signals by bioluminescent radical and non-radical processes. Therefore, information in the brain appears not only as an electrical (chemical) signal but also as a regulated biophoton (weak optical) signal inside neurons. During visual perception, the topological distribution of photon stimuli on the retina is represented by electrical neuronal activity in retinotopically organized visual areas. These retinotopic electrical signals in visual neurons can be converted into synchronized biophoton signals by radical and non-radical processes in retinotopically organized mitochondria-rich areas. As a result, regulated bioluminescent biophotons can create intrinsic pictures (depictive representation) in retinotopically organized cytochrome oxidase-rich visual areas during visual imagery and visual perception. The long-term visual memory is interpreted as epigenetic information regulated by free radicals and redox processes. This hypothesis does not claim to solve the secret of consciousness, but proposes that the evolution of higher levels of complexity made the intrinsic picture representation of the external visual world possible by regulated redox and bioluminescent reactions in the visual system during visual perception and visual imagery.
NASA Astrophysics Data System (ADS)
Hatt, Charles R.; Wagner, Martin; Raval, Amish N.; Speidel, Michael A.
2016-03-01
Transcatheter aortic valve replacement (TAVR) requires navigation and deployment of a prosthetic valve within the aortic annulus under fluoroscopic guidance. To support improved device visualization in this procedure, this study investigates the feasibility of frame-by-frame 3D reconstruction of a moving and expanding prosthetic valve structure from simultaneous bi-plane x-ray views. In the proposed method, a dynamic 3D model of the valve is used in a 2D/3D registration framework to obtain a reconstruction of the valve. For each frame, valve model parameters describing position, orientation, expansion state, and deformation are iteratively adjusted until forward projections of the model match both bi-plane views. Simulated bi-plane imaging of a valve at different signal-difference-to-noise ratio (SDNR) levels was performed to test the approach. 20 image sequences with 50 frames of valve deployment were simulated at each SDNR. The simulation achieved a target registration error (TRE) of the estimated valve model of 0.93 +/- 2.6 mm (mean +/- S.D.) for the lowest SDNR of 2. For higher SDNRs (5 to 50) a TRE of 0.04 mm +/- 0.23 mm was achieved. A tabletop phantom study was then conducted using a TAVR valve. The dynamic 3D model was constructed from high resolution CT scans and a simple expansion model. TRE was 1.22 +/- 0.35 mm for expansion states varying from undeployed to fully deployed, and for moderate amounts of inter-frame motion. Results indicate that it is feasible to use bi-plane imaging to recover the 3D structure of deformable catheter devices.
Hatt, Charles R; Wagner, Martin; Raval, Amish N; Speidel, Michael A
2016-01-01
Transcatheter aortic valve replacement (TAVR) requires navigation and deployment of a prosthetic valve within the aortic annulus under fluoroscopic guidance. To support improved device visualization in this procedure, this study investigates the feasibility of frame-by-frame 3D reconstruction of a moving and expanding prosthetic valve structure from simultaneous bi-plane x-ray views. In the proposed method, a dynamic 3D model of the valve is used in a 2D/3D registration framework to obtain a reconstruction of the valve. For each frame, valve model parameters describing position, orientation, expansion state, and deformation are iteratively adjusted until forward projections of the model match both bi-plane views. Simulated bi-plane imaging of a valve at different signal-difference-to-noise ratio (SDNR) levels was performed to test the approach. 20 image sequences with 50 frames of valve deployment were simulated at each SDNR. The simulation achieved a target registration error (TRE) of the estimated valve model of 0.93 ± 2.6 mm (mean ± S.D.) for the lowest SDNR of 2. For higher SDNRs (5 to 50) a TRE of 0.04 mm ± 0.23 mm was achieved. A tabletop phantom study was then conducted using a TAVR valve. The dynamic 3D model was constructed from high resolution CT scans and a simple expansion model. TRE was 1.22 ± 0.35 mm for expansion states varying from undeployed to fully deployed, and for moderate amounts of inter-frame motion. Results indicate that it is feasible to use bi-plane imaging to recover the 3D structure of deformable catheter devices.
The Persian version of satisfaction assessment module of Orthotics and Prosthetics Users' Survey.
Hadadi, Mohammad; Ghoseiri, Kamiar; Fardipour, Shima; Kashani, Reza Vahab; Asadi, Farnoosh; Asghari, Azizeh
2016-01-01
Orthotics and Prosthetics User's Survey (OPUS) was developed to measure patient satisfaction in Prosthetic and Orthotic (P&O) field. To translate the satisfaction assessment module of OPUS (OPUS-SM) into Persian language (Persian OPUS-SM) and investigate its psychometric properties. For cross-cultural adaptation of the OPUS-SM, the guideline suggested by the World Health Organization was recruited. A sample of 116 Persian-speaking people who received P&O devices and services, participated in this study. During the first session, participants filled out the Persian OPUS-SM and the Visual Analog Scale (VAS) regarding their satisfaction from delivered devices and services. Drawing from the above sample of 116 participants, 41 participants retook the Persian OPUS-SM 5-7 days after their first time. The results of the first and second administration sessions were analyzed to assess internal consistency, test-retest reliability, item-subscale correlation, minimal detectable change, floor and ceiling effects, criterion validity, and dimensionality of the Persian OPUS-SM. The Cronbach's alphas of the Persian OPUS-SM were 0.71 and 0.89 for device and service satisfaction subscales, respectively. The intraclass correlation coefficients were 0.76 and 0.90 for device and service satisfaction subscales, respectively. The SEM and MDC for device satisfaction were 6.21 and ±17.21, respectively. The SEM and MDC for service satisfaction were 2.25 and ±6.22, respectively. There was a strong correlation between VAS and satisfaction subscales of the Persian OPUS-SM. Dimensionality assessment revealed that Persian OPUS-SM is a unidimensional measure. The adapted and translated Persian OPUS-SM is a reliable and validated measure. Copyright © 2016 Elsevier Inc. All rights reserved.
Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis
NASA Astrophysics Data System (ADS)
Markovic, Marko; Dosen, Strahinja; Popovic, Dejan; Graimann, Bernhard; Farina, Dario
2015-12-01
Objective. Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristics and proprioception. Here, we demonstrate how sensor fusion that combines artificial vision and proprioceptive information with the high-level processing characteristics of biological systems can be effectively used in transradial prosthesis control. Approach. We developed a novel context- and user-aware prosthesis (CASP) controller integrating computer vision and inertial sensing with myoelectric activity in order to achieve semi-autonomous and reactive control of a prosthetic hand. The presented method semi-automatically provides simultaneous and proportional control of multiple degrees-of-freedom (DOFs), thus decreasing overall physical effort while retaining full user control. The system was compared against the major commercial state-of-the art myoelectric control system in ten able-bodied and one amputee subject. All subjects used transradial prosthesis with an active wrist to grasp objects typically associated with activities of daily living. Main results. The CASP significantly outperformed the myoelectric interface when controlling all of the prosthesis DOF. However, when tested with less complex prosthetic system (smaller number of DOF), the CASP was slower but resulted with reaching motions that contained less compensatory movements. Another important finding is that the CASP system required minimal user adaptation and training. Significance. The CASP constitutes a substantial improvement for the control of multi-DOF prostheses. The application of the CASP will have a significant impact when translated to real-life scenarious, particularly with respect to improving the usability and acceptance of highly complex systems (e.g., full prosthetic arms) by amputees.
Gaze Compensation as a Technique for Improving Hand–Eye Coordination in Prosthetic Vision
Titchener, Samuel A.; Shivdasani, Mohit N.; Fallon, James B.; Petoe, Matthew A.
2018-01-01
Purpose Shifting the region-of-interest within the input image to compensate for gaze shifts (“gaze compensation”) may improve hand–eye coordination in visual prostheses that incorporate an external camera. The present study investigated the effects of eye movement on hand-eye coordination under simulated prosthetic vision (SPV), and measured the coordination benefits of gaze compensation. Methods Seven healthy-sighted subjects performed a target localization-pointing task under SPV. Three conditions were tested, modeling: retinally stabilized phosphenes (uncompensated); gaze compensation; and no phosphene movement (center-fixed). The error in pointing was quantified for each condition. Results Gaze compensation yielded a significantly smaller pointing error than the uncompensated condition for six of seven subjects, and a similar or smaller pointing error than the center-fixed condition for all subjects (two-way ANOVA, P < 0.05). Pointing error eccentricity and gaze eccentricity were moderately correlated in the uncompensated condition (azimuth: R2 = 0.47; elevation: R2 = 0.51) but not in the gaze-compensated condition (azimuth: R2 = 0.01; elevation: R2 = 0.00). Increased variability in gaze at the time of pointing was correlated with greater reduction in pointing error in the center-fixed condition compared with the uncompensated condition (R2 = 0.64). Conclusions Eccentric eye position impedes hand–eye coordination in SPV. While limiting eye eccentricity in uncompensated viewing can reduce errors, gaze compensation is effective in improving coordination for subjects unable to maintain fixation. Translational Relevance The results highlight the present necessity for suppressing eye movement and support the use of gaze compensation to improve hand–eye coordination and localization performance in prosthetic vision. PMID:29321945
Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
Markovic, Marko; Dosen, Strahinja; Popovic, Dejan; Graimann, Bernhard; Farina, Dario
2015-12-01
Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristics and proprioception. Here, we demonstrate how sensor fusion that combines artificial vision and proprioceptive information with the high-level processing characteristics of biological systems can be effectively used in transradial prosthesis control. We developed a novel context- and user-aware prosthesis (CASP) controller integrating computer vision and inertial sensing with myoelectric activity in order to achieve semi-autonomous and reactive control of a prosthetic hand. The presented method semi-automatically provides simultaneous and proportional control of multiple degrees-of-freedom (DOFs), thus decreasing overall physical effort while retaining full user control. The system was compared against the major commercial state-of-the art myoelectric control system in ten able-bodied and one amputee subject. All subjects used transradial prosthesis with an active wrist to grasp objects typically associated with activities of daily living. The CASP significantly outperformed the myoelectric interface when controlling all of the prosthesis DOF. However, when tested with less complex prosthetic system (smaller number of DOF), the CASP was slower but resulted with reaching motions that contained less compensatory movements. Another important finding is that the CASP system required minimal user adaptation and training. The CASP constitutes a substantial improvement for the control of multi-DOF prostheses. The application of the CASP will have a significant impact when translated to real-life scenarious, particularly with respect to improving the usability and acceptance of highly complex systems (e.g., full prosthetic arms) by amputees.
The Effects of Brain Damage on Visual Functioning in Children.
ERIC Educational Resources Information Center
Alexander, P. K.
1990-01-01
The review of research concluded that, although brain damage affects visual functioning, the prognosis for good functional vision after remedial intervention is better than previously thought. Although electrodiagnostic testing was found to be valuable, use of a combination of tests is recommended to obtain the most complete picture of brain…
Windows on the brain: the emerging role of atlases and databases in neuroscience
NASA Technical Reports Server (NTRS)
Van Essen, David C.; VanEssen, D. C. (Principal Investigator)
2002-01-01
Brain atlases and associated databases have great potential as gateways for navigating, accessing, and visualizing a wide range of neuroscientific data. Recent progress towards realizing this potential includes the establishment of probabilistic atlases, surface-based atlases and associated databases, combined with improvements in visualization capabilities and internet access.
A computational method for comparing the behavior and possible failure of prosthetic implants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, C.; Hollerbach, K.; Perfect, S.
1995-05-01
Prosthetic joint implants currently in use exhibit high Realistic computer modeling of prosthetic implants provides an opportunity for orthopedic biomechanics researchers and physicians to understand possible in vivo failure modes, without having to resort to lengthy and costly clinical trials. The research presented here is part of a larger effort to develop realistic models of implanted joint prostheses. The example used here is the thumb carpo-metacarpal (cmc) joint. The work, however, can be applied to any other human joints for which prosthetic implants have been designed. Preliminary results of prosthetic joint loading, without surrounding human tissue (i.e., simulating conditions undermore » which the prosthetic joint has not yet been implanted into the human joint), are presented, based on a three-dimensional, nonlinear finite element analysis of three different joint implant designs.« less
Jin, H; Yuan, L; Li, C; Kan, Y; Hao, R; Yang, J
2014-03-01
The purpose of this study was to systematically review and perform a meta-analysis of published data regarding the diagnostic performance of positron emission tomography (PET) or PET/computed tomography (PET/CT) in prosthetic infection after arthroplasty. A comprehensive computer literature search of studies published through May 31, 2012 regarding PET or PET/CT in patients suspicious of prosthetic infection was performed in PubMed/MEDLINE, Embase and Scopus databases. Pooled sensitivity and specificity of PET or PET/CT in patients suspicious of prosthetic infection on a per prosthesis-based analysis were calculated. The area under the receiver-operating characteristic (ROC) curve was calculated to measure the accuracy of PET or PET/CT in patients with suspicious of prosthetic infection. Fourteen studies comprising 838 prosthesis with suspicious of prosthetic infection after arthroplasty were included in this meta-analysis. The pooled sensitivity of PET or PET/CT in detecting prosthetic infection was 86% (95% confidence interval [CI] 82-90%) on a per prosthesis-based analysis. The pooled specificity of PET or PET/CT in detecting prosthetic infection was 86% (95% CI 83-89%) on a per prosthesis-based analysis. The area under the ROC curve was 0.93 on a per prosthesis-based analysis. In patients suspicious of prosthetic infection, FDG PET or PET/CT demonstrated high sensitivity and specificity. FDG PET or PET/CT are accurate methods in this setting. Nevertheless, possible sources of false positive results and influcing factors should kept in mind.
Jolij, Jacob; Scholte, H Steven; van Gaal, Simon; Hodgson, Timothy L; Lamme, Victor A F
2011-12-01
Humans largely guide their behavior by their visual representation of the world. Recent studies have shown that visual information can trigger behavior within 150 msec, suggesting that visually guided responses to external events, in fact, precede conscious awareness of those events. However, is such a view correct? By using a texture discrimination task, we show that the brain relies on long-latency visual processing in order to guide perceptual decisions. Decreasing stimulus saliency leads to selective changes in long-latency visually evoked potential components reflecting scene segmentation. These latency changes are accompanied by almost equal changes in simple RTs and points of subjective simultaneity. Furthermore, we find a strong correlation between individual RTs and the latencies of scene segmentation related components in the visually evoked potentials, showing that the processes underlying these late brain potentials are critical in triggering a response. However, using the same texture stimuli in an antisaccade task, we found that reflexive, but erroneous, prosaccades, but not antisaccades, can be triggered by earlier visual processes. In other words: The brain can act quickly, but decides late. Differences between our study and earlier findings suggesting that action precedes conscious awareness can be explained by assuming that task demands determine whether a fast and unconscious, or a slower and conscious, representation is used to initiate a visually guided response.
2014-10-01
Award Number: W81XWH-10-1-0744 TITLE: Development of Subischial Prosthetic Sockets with Vacuum...REPORT TYPE Annual 3. DATES COVERED 15 Sep 2013 – 14 Sep 2014 4. TITLE AND SUBTITLE Development of Subischial Prosthetic Sockets with Vacuum...to develop a highly flexible sub-ischial prosthetic socket with assisted-vacuum suspension for highly active persons with transfemoral amputation. The
Comparison of prosthetic feet prescribed to active individuals using ISO standards.
Mason, Zachary D; Pearlman, Jon; Cooper, Rory A; Laferrier, Justin Z
2011-12-01
Little research has been done on the robustness of prosthetic feet prescribed to military personnel, and manufacturers are not required to test their products prior to sale. This is problematic because the prosthetic feet used by active individuals are subjected to loading conditions not seen in normal gait. To evaluate whether commercially available heavy-duty prosthetic feet intended for use by military personnel meet ISO 10328 standards. Bench testing of heavy-duty prosthetic feet using ISO 10328 standards. Prosthetic feet from three different manufacturers were tested according to ISO 10328 standards, using a testing frame fitted with axial load and displacement transducers. Pass/fail information was recorded as well as the stiffness and creep of each foot before and after cyclic testing. All feet passed the ISO 10328 standards at the highest loading level, and some significant differences were found within a given model of prosthesis when comparing stiffness and creep before and after cyclic testing. This study demonstrated that manufacturers of heavy-duty prosthetic feet adhere to the voluntary ISO 10328 standards. However, these standards may be insufficient because the tests simulate only idealized gait. Further development of the standards may be necessary to reproduce the circumstances that occur during extreme usage to ensure that prosthetic feet do not fail.
Creating Physical 3D Stereolithograph Models of Brain and Skull
Kelley, Daniel J.; Farhoud, Mohammed; Meyerand, M. Elizabeth; Nelson, David L.; Ramirez, Lincoln F.; Dempsey, Robert J.; Wolf, Alan J.; Alexander, Andrew L.; Davidson, Richard J.
2007-01-01
The human brain and skull are three dimensional (3D) anatomical structures with complex surfaces. However, medical images are often two dimensional (2D) and provide incomplete visualization of structural morphology. To overcome this loss in dimension, we developed and validated a freely available, semi-automated pathway to build 3D virtual reality (VR) and hand-held, stereolithograph models. To evaluate whether surface visualization in 3D was more informative than in 2D, undergraduate students (n = 50) used the Gillespie scale to rate 3D VR and physical models of both a living patient-volunteer's brain and the skull of Phineas Gage, a historically famous railroad worker whose misfortune with a projectile tamping iron provided the first evidence of a structure-function relationship in brain. Using our processing pathway, we successfully fabricated human brain and skull replicas and validated that the stereolithograph model preserved the scale of the VR model. Based on the Gillespie ratings, students indicated that the biological utility and quality of visual information at the surface of VR and stereolithograph models were greater than the 2D images from which they were derived. The method we developed is useful to create VR and stereolithograph 3D models from medical images and can be used to model hard or soft tissue in living or preserved specimens. Compared to 2D images, VR and stereolithograph models provide an extra dimension that enhances both the quality of visual information and utility of surface visualization in neuroscience and medicine. PMID:17971879
Brain systems for visual perspective taking and action perception.
Mazzarella, Elisabetta; Ramsey, Richard; Conson, Massimiliano; Hamilton, Antonia
2013-01-01
Taking another person's viewpoint and making sense of their actions are key processes that guide social behavior. Previous neuroimaging investigations have largely studied these processes separately. The current study used functional magnetic resonance imaging to examine how the brain incorporates another person's viewpoint and actions into visual perspective judgments. Participants made a left-right judgment about the location of a target object from their own (egocentric) or an actor's visual perspective (altercentric). Actor location varied around a table and the actor was either reaching or not reaching for the target object. Analyses examined brain regions engaged in the egocentric and altercentric tasks, brain regions where response magnitude tracked the orientation of the actor in the scene and brain regions sensitive to the action performed by the actor. The blood oxygen level-dependent (BOLD) response in dorsomedial prefrontal cortex (dmPFC) was sensitive to actor orientation in the altercentric task, whereas the response in right inferior frontal gyrus (IFG) was sensitive to actor orientation in the egocentric task. Thus, dmPFC and right IFG may play distinct but complementary roles in visual perspective taking (VPT). Observation of a reaching actor compared to a non-reaching actor yielded activation in lateral occipitotemporal cortex, regardless of task, showing that these regions are sensitive to body posture independent of social context. By considering how an observed actor's location and action influence the neural bases of visual perspective judgments, the current study supports the view that multiple neurocognitive "routes" operate during VPT.
McClay, Wilbert A; Yadav, Nancy; Ozbek, Yusuf; Haas, Andy; Attias, Hagaii T; Nagarajan, Srikantan S
2015-09-30
Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI) for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG) brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user's intent for specific keyboard strikes or mouse button presses. The BCI's data analytics OPEN ACCESS Brain. Sci. 2015, 5 420 of a subject's MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse.
Brain activity during driving with distraction: an immersive fMRI study
Schweizer, Tom A.; Kan, Karen; Hung, Yuwen; Tam, Fred; Naglie, Gary; Graham, Simon J.
2013-01-01
Introduction: Non-invasive measurements of brain activity have an important role to play in understanding driving ability. The current study aimed to identify the neural underpinnings of human driving behavior by visualizing the areas of the brain involved in driving under different levels of demand, such as driving while distracted or making left turns at busy intersections. Materials and Methods: To capture brain activity during driving, we placed a driving simulator with a fully functional steering wheel and pedals in a 3.0 Tesla functional magnetic resonance imaging (fMRI) system. To identify the brain areas involved while performing different real-world driving maneuvers, participants completed tasks ranging from simple (right turns) to more complex (left turns at busy intersections). To assess the effects of driving while distracted, participants were asked to perform an auditory task while driving analogous to speaking on a hands-free device and driving. Results: A widely distributed brain network was identified, especially when making left turns at busy intersections compared to more simple driving tasks. During distracted driving, brain activation shifted dramatically from the posterior, visual and spatial areas to the prefrontal cortex. Conclusions: Our findings suggest that the distracted brain sacrificed areas in the posterior brain important for visual attention and alertness to recruit enough brain resources to perform a secondary, cognitive task. The present findings offer important new insights into the scientific understanding of the neuro-cognitive mechanisms of driving behavior and lay down an important foundation for future clinical research. PMID:23450757
Circuit For Control Of Electromechanical Prosthetic Hand
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1995-01-01
Proposed circuit for control of electromechanical prosthetic hand derives electrical control signals from shoulder movements. Updated, electronic version of prosthesis, that includes two hooklike fingers actuated via cables from shoulder harness. Circuit built around favored shoulder harness, provides more dexterous movement, without incurring complexity of computer-controlled "bionic" or hydraulically actuated devices. Additional harness and potentiometer connected to similar control circuit mounted on other shoulder. Used to control stepping motor rotating hand about prosthetic wrist to one of number of angles consistent with number of digital outputs. Finger-control signals developed by circuit connected to first shoulder harness transmitted to prosthetic hand via sliprings at prosthetic wrist joint.
Chemical Probes for Visualizing Intact Animal and Human Brain Tissue.
Lai, Hei Ming; Ng, Wai-Lung; Gentleman, Steve M; Wu, Wutian
2017-06-22
Newly developed tissue clearing techniques can be used to render intact tissues transparent. When combined with fluorescent labeling technologies and optical sectioning microscopy, this allows visualization of fine structure in three dimensions. Gene-transfection techniques have proved very useful in visualizing cellular structures in animal models, but they are not applicable to human brain tissue. Here, we discuss the characteristics of an ideal chemical fluorescent probe for use in brain and other cleared tissues, and offer a comprehensive overview of currently available chemical probes. We describe their working principles and compare their performance with the goal of simplifying probe selection for neuropathologists and stimulating probe development by chemists. We propose several approaches for the development of innovative chemical labeling methods which, when combined with tissue clearing, have the potential to revolutionize how we study the structure and function of the human brain. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adaptation, perceptual learning, and plasticity of brain functions.
Horton, Jonathan C; Fahle, Manfred; Mulder, Theo; Trauzettel-Klosinski, Susanne
2017-03-01
The capacity for functional restitution after brain damage is quite different in the sensory and motor systems. This series of presentations highlights the potential for adaptation, plasticity, and perceptual learning from an interdisciplinary perspective. The chances for restitution in the primary visual cortex are limited. Some patterns of visual field loss and recovery after stroke are common, whereas others are impossible, which can be explained by the arrangement and plasticity of the cortical map. On the other hand, compensatory mechanisms are effective, can occur spontaneously, and can be enhanced by training. In contrast to the human visual system, the motor system is highly flexible. This is based on special relationships between perception and action and between cognition and action. In addition, the healthy adult brain can learn new functions, e.g. increasing resolution above the retinal one. The significance of these studies for rehabilitation after brain damage will be discussed.
Allen Brain Atlas-Driven Visualizations: A Web-Based Gene Expression Energy Visualization Tool
2014-05-21
purposes notwithstanding any copyright anno - tation thereon. The views and conclusions contained herein are those of the authors and should not be...Brain Res. Brain Res. Rev. 28, 309–369. doi: 10.1016/S0165-0173(98)00019-8 Bostock, M., Ogievetsky, V., and Heer, J . (2011). D³ data-driven documents...omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210. doi: 10.1093/nar/30.1.207 Eppig, J . T., Blake
3D Data Mapping and Real-Time Experiment Control and Visualization in Brain Slices.
Navarro, Marco A; Hibbard, Jaime V K; Miller, Michael E; Nivin, Tyler W; Milescu, Lorin S
2015-10-20
Here, we propose two basic concepts that can streamline electrophysiology and imaging experiments in brain slices and enhance data collection and analysis. The first idea is to interface the experiment with a software environment that provides a 3D scene viewer in which the experimental rig, the brain slice, and the recorded data are represented to scale. Within the 3D scene viewer, the user can visualize a live image of the sample and 3D renderings of the recording electrodes with real-time position feedback. Furthermore, the user can control the instruments and visualize their status in real time. The second idea is to integrate multiple types of experimental data into a spatial and temporal map of the brain slice. These data may include low-magnification maps of the entire brain slice, for spatial context, or any other type of high-resolution structural and functional image, together with time-resolved electrical and optical signals. The entire data collection can be visualized within the 3D scene viewer. These concepts can be applied to any other type of experiment in which high-resolution data are recorded within a larger sample at different spatial and temporal coordinates. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Wang, Yinghua; Yan, Jiaqing; Wen, Jianbin; Yu, Tao; Li, Xiaoli
2016-01-01
Before epilepsy surgeries, intracranial electroencephalography (iEEG) is often employed in function mapping and epileptogenic foci localization. Although the implanted electrodes provide crucial information for epileptogenic zone resection, a convenient clinical tool for electrode position registration and Brain Function Mapping (BFM) visualization is still lacking. In this study, we developed a BFM Tool, which facilitates electrode position registration and BFM visualization, with an application to epilepsy surgeries. The BFM Tool mainly utilizes electrode location registration and function mapping based on pre-defined brain models from other software. In addition, the electrode node and mapping properties, such as the node size/color, edge color/thickness, mapping method, can be adjusted easily using the setting panel. Moreover, users may manually import/export location and connectivity data to generate figures for further application. The role of this software is demonstrated by a clinical study of language area localization. The BFM Tool helps clinical doctors and researchers visualize implanted electrodes and brain functions in an easy, quick and flexible manner. Our tool provides convenient electrode registration, easy brain function visualization, and has good performance. It is clinical-oriented and is easy to deploy and use. The BFM tool is suitable for epilepsy and other clinical iEEG applications.
Wang, Yinghua; Yan, Jiaqing; Wen, Jianbin; Yu, Tao; Li, Xiaoli
2016-01-01
Objects: Before epilepsy surgeries, intracranial electroencephalography (iEEG) is often employed in function mapping and epileptogenic foci localization. Although the implanted electrodes provide crucial information for epileptogenic zone resection, a convenient clinical tool for electrode position registration and Brain Function Mapping (BFM) visualization is still lacking. In this study, we developed a BFM Tool, which facilitates electrode position registration and BFM visualization, with an application to epilepsy surgeries. Methods: The BFM Tool mainly utilizes electrode location registration and function mapping based on pre-defined brain models from other software. In addition, the electrode node and mapping properties, such as the node size/color, edge color/thickness, mapping method, can be adjusted easily using the setting panel. Moreover, users may manually import/export location and connectivity data to generate figures for further application. The role of this software is demonstrated by a clinical study of language area localization. Results: The BFM Tool helps clinical doctors and researchers visualize implanted electrodes and brain functions in an easy, quick and flexible manner. Conclusions: Our tool provides convenient electrode registration, easy brain function visualization, and has good performance. It is clinical-oriented and is easy to deploy and use. The BFM tool is suitable for epilepsy and other clinical iEEG applications. PMID:27199729
Teng, Santani
2017-01-01
In natural environments, visual and auditory stimulation elicit responses across a large set of brain regions in a fraction of a second, yielding representations of the multimodal scene and its properties. The rapid and complex neural dynamics underlying visual and auditory information processing pose major challenges to human cognitive neuroscience. Brain signals measured non-invasively are inherently noisy, the format of neural representations is unknown, and transformations between representations are complex and often nonlinear. Further, no single non-invasive brain measurement technique provides a spatio-temporally integrated view. In this opinion piece, we argue that progress can be made by a concerted effort based on three pillars of recent methodological development: (i) sensitive analysis techniques such as decoding and cross-classification, (ii) complex computational modelling using models such as deep neural networks, and (iii) integration across imaging methods (magnetoencephalography/electroencephalography, functional magnetic resonance imaging) and models, e.g. using representational similarity analysis. We showcase two recent efforts that have been undertaken in this spirit and provide novel results about visual and auditory scene analysis. Finally, we discuss the limits of this perspective and sketch a concrete roadmap for future research. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044019
Tsotsos, John K.
2017-01-01
Much has been written about how the biological brain might represent and process visual information, and how this might inspire and inform machine vision systems. Indeed, tremendous progress has been made, and especially during the last decade in the latter area. However, a key question seems too often, if not mostly, be ignored. This question is simply: do proposed solutions scale with the reality of the brain's resources? This scaling question applies equally to brain and to machine solutions. A number of papers have examined the inherent computational difficulty of visual information processing using theoretical and empirical methods. The main goal of this activity had three components: to understand the deep nature of the computational problem of visual information processing; to discover how well the computational difficulty of vision matches to the fixed resources of biological seeing systems; and, to abstract from the matching exercise the key principles that lead to the observed characteristics of biological visual performance. This set of components was termed complexity level analysis in Tsotsos (1987) and was proposed as an important complement to Marr's three levels of analysis. This paper revisits that work with the advantage that decades of hindsight can provide. PMID:28848458
Cichy, Radoslaw Martin; Teng, Santani
2017-02-19
In natural environments, visual and auditory stimulation elicit responses across a large set of brain regions in a fraction of a second, yielding representations of the multimodal scene and its properties. The rapid and complex neural dynamics underlying visual and auditory information processing pose major challenges to human cognitive neuroscience. Brain signals measured non-invasively are inherently noisy, the format of neural representations is unknown, and transformations between representations are complex and often nonlinear. Further, no single non-invasive brain measurement technique provides a spatio-temporally integrated view. In this opinion piece, we argue that progress can be made by a concerted effort based on three pillars of recent methodological development: (i) sensitive analysis techniques such as decoding and cross-classification, (ii) complex computational modelling using models such as deep neural networks, and (iii) integration across imaging methods (magnetoencephalography/electroencephalography, functional magnetic resonance imaging) and models, e.g. using representational similarity analysis. We showcase two recent efforts that have been undertaken in this spirit and provide novel results about visual and auditory scene analysis. Finally, we discuss the limits of this perspective and sketch a concrete roadmap for future research.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.
Tsotsos, John K
2017-01-01
Much has been written about how the biological brain might represent and process visual information, and how this might inspire and inform machine vision systems. Indeed, tremendous progress has been made, and especially during the last decade in the latter area. However, a key question seems too often, if not mostly, be ignored. This question is simply: do proposed solutions scale with the reality of the brain's resources? This scaling question applies equally to brain and to machine solutions. A number of papers have examined the inherent computational difficulty of visual information processing using theoretical and empirical methods. The main goal of this activity had three components: to understand the deep nature of the computational problem of visual information processing; to discover how well the computational difficulty of vision matches to the fixed resources of biological seeing systems; and, to abstract from the matching exercise the key principles that lead to the observed characteristics of biological visual performance. This set of components was termed complexity level analysis in Tsotsos (1987) and was proposed as an important complement to Marr's three levels of analysis. This paper revisits that work with the advantage that decades of hindsight can provide.
Groppe, David M; Bickel, Stephan; Dykstra, Andrew R; Wang, Xiuyuan; Mégevand, Pierre; Mercier, Manuel R; Lado, Fred A; Mehta, Ashesh D; Honey, Christopher J
2017-04-01
Intracranial electrical recordings (iEEG) and brain stimulation (iEBS) are invaluable human neuroscience methodologies. However, the value of such data is often unrealized as many laboratories lack tools for localizing electrodes relative to anatomy. To remedy this, we have developed a MATLAB toolbox for intracranial electrode localization and visualization, iELVis. NEW METHOD: iELVis uses existing tools (BioImage Suite, FSL, and FreeSurfer) for preimplant magnetic resonance imaging (MRI) segmentation, neuroimaging coregistration, and manual identification of electrodes in postimplant neuroimaging. Subsequently, iELVis implements methods for correcting electrode locations for postimplant brain shift with millimeter-scale accuracy and provides interactive visualization on 3D surfaces or in 2D slices with optional functional neuroimaging overlays. iELVis also localizes electrodes relative to FreeSurfer-based atlases and can combine data across subjects via the FreeSurfer average brain. It takes 30-60min of user time and 12-24h of computer time to localize and visualize electrodes from one brain. We demonstrate iELVis's functionality by showing that three methods for mapping primary hand somatosensory cortex (iEEG, iEBS, and functional MRI) provide highly concordant results. COMPARISON WITH EXISTING METHODS: iELVis is the first public software for electrode localization that corrects for brain shift, maps electrodes to an average brain, and supports neuroimaging overlays. Moreover, its interactive visualizations are powerful and its tutorial material is extensive. iELVis promises to speed the progress and enhance the robustness of intracranial electrode research. The software and extensive tutorial materials are freely available as part of the EpiSurg software project: https://github.com/episurg/episurg. Copyright © 2017 Elsevier B.V. All rights reserved.
Large-scale functional brain network changes in taxi drivers: evidence from resting-state fMRI.
Wang, Lubin; Liu, Qiang; Shen, Hui; Li, Hong; Hu, Dewen
2015-03-01
Driving a car in the environment is a complex behavior that involves cognitive processing of visual information to generate the proper motor outputs and action controls. Previous neuroimaging studies have used virtual simulation to identify the brain areas that are associated with various driving-related tasks. Few studies, however, have focused on the specific patterns of functional organization in the driver's brain. The aim of this study was to assess differences in the resting-state networks (RSNs) of the brains of drivers and nondrivers. Forty healthy subjects (20 licensed taxi drivers, 20 nondrivers) underwent an 8-min resting-state functional MRI acquisition. Using independent component analysis, three sensory (primary and extrastriate visual, sensorimotor) RSNs and four cognitive (anterior and posterior default mode, left and right frontoparietal) RSNs were retrieved from the data. We then examined the group differences in the intrinsic brain activity of each RSN and in the functional network connectivity (FNC) between the RSNs. We found that the drivers had reduced intrinsic brain activity in the visual RSNs and reduced FNC between the sensory RSNs compared with the nondrivers. The major finding of this study, however, was that the FNC between the cognitive and sensory RSNs became more positively or less negatively correlated in the drivers relative to that in the nondrivers. Notably, the strength of the FNC between the left frontoparietal and primary visual RSNs was positively correlated with the number of taxi-driving years. Our findings may provide new insight into how the brain supports driving behavior. © 2014 Wiley Periodicals, Inc.
Brain Modulyzer: Interactive Visual Analysis of Functional Brain Connectivity
Murugesan, Sugeerth; Bouchard, Kristopher; Brown, Jesse A.; ...
2016-05-09
Here, we present Brain Modulyzer, an interactive visual exploration tool for functional magnetic resonance imaging (fMRI) brain scans, aimed at analyzing the correlation between different brain regions when resting or when performing mental tasks. Brain Modulyzer combines multiple coordinated views—such as heat maps, node link diagrams, and anatomical views—using brushing and linking to provide an anatomical context for brain connectivity data. Integrating methods from graph theory and analysis, e.g., community detection and derived graph measures, makes it possible to explore the modular and hierarchical organization of functional brain networks. Providing immediate feedback by displaying analysis results instantaneously while changing parametersmore » gives neuroscientists a powerful means to comprehend complex brain structure more effectively and efficiently and supports forming hypotheses that can then be validated via statistical analysis. In order to demonstrate the utility of our tool, we also present two case studies—exploring progressive supranuclear palsy, as well as memory encoding and retrieval« less
Brain Modulyzer: Interactive Visual Analysis of Functional Brain Connectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murugesan, Sugeerth; Bouchard, Kristopher; Brown, Jesse A.
Here, we present Brain Modulyzer, an interactive visual exploration tool for functional magnetic resonance imaging (fMRI) brain scans, aimed at analyzing the correlation between different brain regions when resting or when performing mental tasks. Brain Modulyzer combines multiple coordinated views—such as heat maps, node link diagrams, and anatomical views—using brushing and linking to provide an anatomical context for brain connectivity data. Integrating methods from graph theory and analysis, e.g., community detection and derived graph measures, makes it possible to explore the modular and hierarchical organization of functional brain networks. Providing immediate feedback by displaying analysis results instantaneously while changing parametersmore » gives neuroscientists a powerful means to comprehend complex brain structure more effectively and efficiently and supports forming hypotheses that can then be validated via statistical analysis. In order to demonstrate the utility of our tool, we also present two case studies—exploring progressive supranuclear palsy, as well as memory encoding and retrieval« less
Pan, Alan; Kumar, Rajesh; Macey, Paul M; Fonarow, Gregg C; Harper, Ronald M; Woo, Mary A
2013-02-01
Heart failure (HF) patients exhibit depression and executive function impairments that contribute to HF mortality. Using specialized magnetic resonance imaging (MRI) analysis procedures, brain changes appear in areas regulating these functions (mammillary bodies, hippocampi, and frontal cortex). However, specialized MRI procedures are not part of standard clinical assessment for HF (which is usually a visual evaluation), and it is unclear whether visual MRI examination can detect changes in these structures. Using brain MRI, we visually examined the mammillary bodies and frontal cortex for global and hippocampi for global and regional tissue changes in 17 HF and 50 control subjects. Significantly global changes emerged in the right mammillary body (HF 1.18 ± 1.13 vs control 0.52 ± 0.74; P = .024), right hippocampus (HF 1.53 ± 0.94 vs control 0.80 ± 0.86; P = .005), and left frontal cortex (HF 1.76 ± 1.03 vs control 1.24 ± 0.77; P = .034). Comparison of the visual method with specialized MRI techniques corroborates right hippocampal and left frontal cortical, but not mammillary body, tissue changes. Visual examination of brain MRI can detect damage in HF in areas regulating depression and executive function, including the right hippocampus and left frontal cortex. Visual MRI assessment in HF may facilitate evaluation of injury to these structures and the assessment of the impact of potential treatments for this damage. Copyright © 2013 Elsevier Inc. All rights reserved.
Lee, Junghee; Cohen, Mark S; Engel, Stephen A; Glahn, David; Nuechterlein, Keith H; Wynn, Jonathan K; Green, Michael F
2010-07-01
Visual masking paradigms assess the early part of visual information processing, which may reflect vulnerability measures for schizophrenia. We examined the neural substrates of visual backward performance in unaffected sibling of schizophrenia patients using functional magnetic resonance imaging (fMRI). Twenty-one unaffected siblings of schizophrenia patients and 19 healthy controls performed a backward masking task and three functional localizer tasks to identify three visual processing regions of interest (ROI): lateral occipital complex (LO), the motion-sensitive area, and retinotopic areas. In the masking task, we systematically manipulated stimulus onset asynchronies (SOAs). We analyzed fMRI data in two complementary ways: 1) an ROI approach for three visual areas, and 2) a whole-brain analysis. The groups did not differ in behavioral performance. For ROI analysis, both groups increased activation as SOAs increased in LO. Groups did not differ in activation levels of the three ROIs. For whole-brain analysis, controls increased activation as a function of SOAs, compared with siblings in several regions (i.e., anterior cingulate cortex, posterior cingulate cortex, inferior prefrontal cortex, inferior parietal lobule). The study found: 1) area LO showed sensitivity to the masking effect in both groups; 2) siblings did not differ from controls in activation of LO; and 3) groups differed significantly in several brain regions outside visual processing areas that have been related to attentional or re-entrant processes. These findings suggest that LO dysfunction may be a disease indicator rather than a risk indicator for schizophrenia. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Periprosthetic joint infection: are patients with multiple prosthetic joints at risk?
Jafari, S Mehdi; Casper, David S; Restrepo, Camilo; Zmistowski, Benjamin; Parvizi, Javad; Sharkey, Peter F
2012-06-01
Patients who present with a periprosthetic joint infection in a single joint may have multiple prosthetic joints. The risk of these patients developing a subsequent infection in another prosthetic joint is unknown. Our purposes were (1) to identify the risk of developing a subsequent infection in another prosthetic joint and (2) to describe the time span and organism profile to the second prosthetic infection. We retrospectively identified 55 patients with periprosthetic joint infection who had another prosthetic joint in place at the time of presentation. Of the 55 patients, 11 (20%) developed a periprosthetic joint infection in a second joint. The type of organism was the same as the first infection in 4 (36%) of 11 patients. The time to developing a second infection averaged 2.0 years (range, 0-6.9 years). Copyright © 2012 Elsevier Inc. All rights reserved.
Review of Prosthetic Joint Infection from Listeria monocytogenes.
Bader, Gilbert; Al-Tarawneh, Mohammed; Myers, James
2016-12-01
Prosthetic joint infection from Listeria monocytogenes is rare. We decided to shed light on this illness and review the reported cases to better understand its characteristics. We conducted a comprehensive review of the English literature using PubMed. We also included one case that we had managed. We found 25 cases of prosthetic joint infection from L. monocytogenes reported individually and a retrospective study of 43 cases of joint and bone listerial infection, including 34 with prosthetic joint infection, conducted in France. We have described their clinical and para-clinical features and tried to elaborate on the pathophysiology, treatment, and prevention. Prosthetic joint infection from L. monocytogenes is mainly late. Systemic inflammation may be absent. Although rare, it must be suspected in patients at high risk for both prosthetic joint and listerial infections. In addition, those patients must be instructed on appropriate preventive measures.
Borton, David A.; Song, Yoon-Kyu; Patterson, William R.; Bull, Christopher W.; Park, Sunmee; Laiwalla, Farah; Donoghue, John P.; Nurmikko, Arto V.
2013-01-01
A multitude of neuroengineering challenges exist today in creating practical, chronic multichannel neural recording systems for primate research and human clinical application. Specifically, a) the persistent wired connections limit patient mobility from the recording system, b) the transfer of high bandwidth signals to external (even distant) electronics normally forces premature data reduction, and c) the chronic susceptibility to infection due to the percutaneous nature of the implants all severely hinder the success of neural prosthetic systems. Here we detail one approach to overcome these limitations: an entirely implantable, wirelessly communicating, integrated neural recording microsystem, dubbed the Brain Implantable Chip (BIC). PMID:19964128
fMRI of Parents of Children with Asperger Syndrome: A Pilot Study
ERIC Educational Resources Information Center
Baron-Cohen, Simon; Ring, Howard; Chitnis, Xavier; Wheelwright, Sally; Gregory, Lloyd, Williams, Steve; Brammer, Mick; Bullmore, Ed
2006-01-01
Background: People with autism or Asperger Syndrome (AS) show altered patterns of brain activity during visual search and emotion recognition tasks. Autism and AS are genetic conditions and parents may show the "broader autism phenotype." Aims: (1) To test if parents of children with AS show atypical brain activity during a visual search…
Characterizing the Mechanical Properties of Running-Specific Prostheses
Beck, Owen N.; Taboga, Paolo; Grabowski, Alena M.
2016-01-01
The mechanical stiffness of running-specific prostheses likely affects the functional abilities of athletes with leg amputations. However, each prosthetic manufacturer recommends prostheses based on subjective stiffness categories rather than performance based metrics. The actual mechanical stiffness values of running-specific prostheses (i.e. kN/m) are unknown. Consequently, we sought to characterize and disseminate the stiffness values of running-specific prostheses so that researchers, clinicians, and athletes can objectively evaluate prosthetic function. We characterized the stiffness values of 55 running-specific prostheses across various models, stiffness categories, and heights using forces and angles representative of those measured from athletes with transtibial amputations during running. Characterizing prosthetic force-displacement profiles with a 2nd degree polynomial explained 4.4% more of the variance than a linear function (p<0.001). The prosthetic stiffness values of manufacturer recommended stiffness categories varied between prosthetic models (p<0.001). Also, prosthetic stiffness was 10% to 39% less at angles typical of running 3 m/s and 6 m/s (10°-25°) compared to neutral (0°) (p<0.001). Furthermore, prosthetic stiffness was inversely related to height in J-shaped (p<0.001), but not C-shaped, prostheses. Running-specific prostheses should be tested under the demands of the respective activity in order to derive relevant characterizations of stiffness and function. In all, our results indicate that when athletes with leg amputations alter prosthetic model, height, and/or sagittal plane alignment, their prosthetic stiffness profiles also change; therefore variations in comfort, performance, etc. may be indirectly due to altered stiffness. PMID:27973573
Pasquina, Paul F; Evangelista, Melissa; Carvalho, A J; Lockhart, Joseph; Griffin, Sarah; Nanos, George; McKay, Patricia; Hansen, Morten; Ipsen, Derek; Vandersea, James; Butkus, Josef; Miller, Matthew; Murphy, Ian; Hankin, David
2015-04-15
Advanced motorized prosthetic devices are currently controlled by EMG signals generated by residual muscles and recorded by surface electrodes on the skin. These surface recordings are often inconsistent and unreliable, leading to high prosthetic abandonment rates for individuals with upper limb amputation. Surface electrodes are limited because of poor skin contact, socket rotation, residual limb sweating, and their ability to only record signals from superficial muscles, whose function frequently does not relate to the intended prosthetic function. More sophisticated prosthetic devices require a stable and reliable interface between the user and robotic hand to improve upper limb prosthetic function. Implantable Myoelectric Sensors (IMES(®)) are small electrodes intended to detect and wirelessly transmit EMG signals to an electromechanical prosthetic hand via an electro-magnetic coil built into the prosthetic socket. This system is designed to simultaneously capture EMG signals from multiple residual limb muscles, allowing the natural control of multiple degrees of freedom simultaneously. We report the status of the first FDA-approved clinical trial of the IMES(®) System. This study is currently in progress, limiting reporting to only preliminary results. Our first subject has reported the ability to accomplish a greater variety and complexity of tasks in his everyday life compared to what could be achieved with his previous myoelectric prosthesis. The interim results of this study indicate the feasibility of utilizing IMES(®) technology to reliably sense and wirelessly transmit EMG signals from residual muscles to intuitively control a three degree-of-freedom prosthetic arm. Copyright © 2014 Elsevier B.V. All rights reserved.
Takesaki, Natsumi; Kikuchi, Mitsuru; Yoshimura, Yuko; Hiraishi, Hirotoshi; Hasegawa, Chiaki; Kaneda, Reizo; Nakatani, Hideo; Takahashi, Tetsuya; Mottron, Laurent; Minabe, Yoshio
2016-01-01
Some individuals with autism spectrum (AS) perform better on visual reasoning tasks than would be predicted by their general cognitive performance. In individuals with AS, mechanisms in the brain’s visual area that underlie visual processing play a more prominent role in visual reasoning tasks than they do in normal individuals. In addition, increased connectivity with the visual area is thought to be one of the neural bases of autistic visual cognitive abilities. However, the contribution of such brain connectivity to visual cognitive abilities is not well understood, particularly in children. In this study, we investigated how functional connectivity between the visual areas and higher-order regions, which is reflected by alpha, beta and gamma band oscillations, contributes to the performance of visual reasoning tasks in typically developing (TD) (n = 18) children and AS children (n = 18). Brain activity was measured using a custom child-sized magneto-encephalograph. Imaginary coherence analysis was used as a proxy to estimate the functional connectivity between the occipital and other areas of the brain. Stronger connectivity from the occipital area, as evidenced by higher imaginary coherence in the gamma band, was associated with higher performance in the AS children only. We observed no significant correlation between the alpha or beta bands imaginary coherence and performance in the both groups. Alpha and beta bands reflect top-down pathways, while gamma band oscillations reflect a bottom-up influence. Therefore, our results suggest that visual reasoning in AS children is at least partially based on an enhanced reliance on visual perception and increased bottom-up connectivity from the visual areas. PMID:27631982
Visual short term memory related brain activity predicts mathematical abilities.
Boulet-Craig, Aubrée; Robaey, Philippe; Lacourse, Karine; Jerbi, Karim; Oswald, Victor; Krajinovic, Maja; Laverdière, Caroline; Sinnett, Daniel; Jolicoeur, Pierre; Lippé, Sarah
2017-07-01
Previous research suggests visual short-term memory (VSTM) capacity and mathematical abilities are significantly related. Moreover, both processes activate similar brain regions within the parietal cortex, in particular, the intraparietal sulcus; however, it is still unclear whether the neuronal underpinnings of VSTM directly correlate with mathematical operation and reasoning abilities. The main objective was to investigate the association between parieto-occipital brain activity during the retention period of a VSTM task and performance in mathematics. The authors measured mathematical abilities and VSTM capacity as well as brain activity during memory maintenance using magnetoencephalography (MEG) in 19 healthy adult participants. Event-related magnetic fields (ERFs) were computed on the MEG data. Linear regressions were used to estimate the strength of the relation between VSTM related brain activity and mathematical abilities. The amplitude of parieto-occipital cerebral activity during the retention of visual information was related to performance in 2 standardized mathematical tasks: mathematical reasoning and calculation fluency. The findings show that brain activity during retention period of a VSTM task is associated with mathematical abilities. Contributions of VSTM processes to numerical cognition should be considered in cognitive interventions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Brain activation-based sexual orientation in female-to-male transsexuals.
Kim, T-H; Kim, G-W; Kim, S-K; Jeong, G-W
2016-01-01
This study was performed to identify the sexual orientation in association with brain activation pattern in response to visual erotic stimuli in female-to-male (FtM) transsexuals by using functional magnetic resonance imaging (fMRI). Eleven FtM transsexuals who have had sex-reassignment surgery to alter their natal bodies with the gender-identity disorder were participated. Brain activation for sexual orientation was induced by visual stimuli with female and male erotic nude pictures compared with emotionally-neutral pictures. During viewing the erotic female pictures, the brain areas dominantly activated consist of the superior frontal gyrus, supplementary motor area, anterior/median cingulate gyri and hypothalamus, whereas during viewing male pictures, the brain areas with predominant activities were the middle frontal gyrus, precentral gyrus, middle temporal gyrus, fusiform gyrus, angular gyrus, precuneus, superior/middle occipital gyri, cerebellar cortex and vermis. These findings demonstrate that the brain activation patterns induced by viewing male or female erotic pictures show some correlation to the sexual orientation opposite to the genetic sex in FtM transsexuals. This study would be helpful to understand the neural mechanism associated with visual sexual arousal in patients with gender disorder.
Zhang, Ying; Whitfield-Gabrieli, Susan; Christodoulou, Joanna A.; Gabrieli, John D. E.
2013-01-01
Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow’s direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading. PMID:23825653
Axonal Conduction Delays, Brain State, and Corticogeniculate Communication
2017-01-01
Thalamocortical conduction times are short, but layer 6 corticothalamic axons display an enormous range of conduction times, some exceeding 40–50 ms. Here, we investigate (1) how axonal conduction times of corticogeniculate (CG) neurons are related to the visual information conveyed to the thalamus, and (2) how alert versus nonalert awake brain states affect visual processing across the spectrum of CG conduction times. In awake female Dutch-Belted rabbits, we found 58% of CG neurons to be visually responsive, and 42% to be unresponsive. All responsive CG neurons had simple, orientation-selective receptive fields, and generated sustained responses to stationary stimuli. CG axonal conduction times were strongly related to modulated firing rates (F1 values) generated by drifting grating stimuli, and their associated interspike interval distributions, suggesting a continuum of visual responsiveness spanning the spectrum of axonal conduction times. CG conduction times were also significantly related to visual response latency, contrast sensitivity (C-50 values), directional selectivity, and optimal stimulus velocity. Increasing alertness did not cause visually unresponsive CG neurons to become responsive and did not change the response linearity (F1/F0 ratios) of visually responsive CG neurons. However, for visually responsive CG neurons, increased alertness nearly doubled the modulated response amplitude to optimal visual stimulation (F1 values), significantly shortened response latency, and dramatically increased response reliability. These effects of alertness were uniform across the broad spectrum of CG axonal conduction times. SIGNIFICANCE STATEMENT Corticothalamic neurons of layer 6 send a dense feedback projection to thalamic nuclei that provide input to sensory neocortex. While sensory information reaches the cortex after brief thalamocortical axonal delays, corticothalamic axons can exhibit conduction delays of <2 ms to 40–50 ms. Here, in the corticogeniculate visual system of awake rabbits, we investigate the functional significance of this axonal diversity, and the effects of shifting alert/nonalert brain states on corticogeniculate processing. We show that axonal conduction times are strongly related to multiple visual response properties, suggesting a continuum of visual responsiveness spanning the spectrum of corticogeniculate axonal conduction times. We also show that transitions between awake brain states powerfully affect corticogeniculate processing, in some ways more strongly than in layer 4. PMID:28559382