Sample records for brain-a primate study

  1. Evidence for Conversion of Methanol to Formaldehyde in Nonhuman Primate Brain

    PubMed Central

    Zhai, Rongwei; Zheng, Na; Rizak, Joshua; Hu, Xintian

    2016-01-01

    Many studies have reported that methanol toxicity to primates is mainly associated with its metabolites, formaldehyde (FA) and formic acid. While methanol metabolism and toxicology have been best studied in peripheral organs, little study has focused on the brain and no study has reported experimental evidence that demonstrates transformation of methanol into FA in the primate brain. In this study, three rhesus macaques were given a single intracerebroventricular injection of methanol to investigate whether a metabolic process of methanol to FA occurs in nonhuman primate brain. Levels of FA in cerebrospinal fluid (CSF) were then assessed at different time points. A significant increase of FA levels was found at the 18th hour following a methanol injection. Moreover, the FA level returned to a normal physiological level at the 30th hour after the injection. These findings provide direct evidence that methanol is oxidized to FA in nonhuman primate brain and that a portion of the FA generated is released out of the brain cells. This study suggests that FA is produced from methanol metabolic processes in the nonhuman primate brain and that FA may play a significant role in methanol neurotoxicology. PMID:27066393

  2. Primate Brain Anatomy: New Volumetric MRI Measurements for Neuroanatomical Studies.

    PubMed

    Navarrete, Ana F; Blezer, Erwin L A; Pagnotta, Murillo; de Viet, Elizabeth S M; Todorov, Orlin S; Lindenfors, Patrik; Laland, Kevin N; Reader, Simon M

    2018-06-12

    Since the publication of the primate brain volumetric dataset of Stephan and colleagues in the early 1980s, no major new comparative datasets covering multiple brain regions and a large number of primate species have become available. However, technological and other advances in the last two decades, particularly magnetic resonance imaging (MRI) and the creation of institutions devoted to the collection and preservation of rare brain specimens, provide opportunities to rectify this situation. Here, we present a new dataset including brain region volumetric measurements of 39 species, including 20 species not previously available in the literature, with measurements of 16 brain areas. These volumes were extracted from MRI of 46 brains of 38 species from the Netherlands Institute of Neuroscience Primate Brain Bank, scanned at high resolution with a 9.4-T scanner, plus a further 7 donated MRI of 4 primate species. Partial measurements were made on an additional 8 brains of 5 species. We make the dataset and MRI scans available online in the hope that they will be of value to researchers conducting comparative studies of primate evolution. © 2018 S. Karger AG, Basel.

  3. Estrogen regulation of microcephaly genes and evolution of brain sexual dimorphism in primates.

    PubMed

    Shi, Lei; Lin, Qiang; Su, Bing

    2015-06-30

    Sexual dimorphism in brain size is common among primates, including humans, apes and some Old World monkeys. In these species, the brain size of males is generally larger than that of females. Curiously, this dimorphism has persisted over the course of primate evolution and human origin, but there is no explanation for the underlying genetic controls that have maintained this disparity in brain size. In the present study, we tested the effect of the female hormone (estradiol) on seven genes known to be related to brain size in both humans and nonhuman primates, and we identified half estrogen responsive elements (half EREs) in the promoter regions of four genes (MCPH1, ASPM, CDK5RAP2 and WDR62). Likewise, at sequence level, it appears that these half EREs are generally conserved across primates. Later testing via a reporter gene assay and cell-based endogenous expression measurement revealed that estradiol could significantly suppress the expression of the four affected genes involved in brain size. More intriguingly, when the half EREs were deleted from the promoters, the suppression effect disappeared, suggesting that the half EREs mediate the regulation of estradiol on the brain size genes. We next replicated these experiments using promoter sequences from chimpanzees and rhesus macaques, and observed a similar suppressive effect of estradiol on gene expression, suggesting that this mechanism is conserved among primate species that exhibit brain size dimorphism. Brain size dimorphism among certain primates, including humans, is likely regulated by estrogen through its sex-dependent suppression of brain size genes during development.

  4. Characterizing Focused-Ultrasound Mediated Drug Delivery to the Heterogeneous Primate Brain In Vivo with Acoustic Monitoring

    NASA Astrophysics Data System (ADS)

    Wu, Shih-Ying; Sanchez, Carlos Sierra; Samiotaki, Gesthimani; Buch, Amanda; Ferrera, Vincent P.; Konofagou, Elisa E.

    2016-11-01

    Focused ultrasound with microbubbles has been used to noninvasively and selectively deliver pharmacological agents across the blood-brain barrier (BBB) for treating brain diseases. Acoustic cavitation monitoring could serve as an on-line tool to assess and control the treatment. While it demonstrated a strong correlation in small animals, its translation to primates remains in question due to the anatomically different and highly heterogeneous brain structures with gray and white matteras well as dense vasculature. In addition, the drug delivery efficiency and the BBB opening volume have never been shown to be predictable through cavitation monitoring in primates. This study aimed at determining how cavitation activity is correlated with the amount and concentration of gadolinium delivered through the BBB and its associated delivery efficiency as well as the BBB opening volume in non-human primates. Another important finding entails the effect of heterogeneous brain anatomy and vasculature of a primate brain, i.e., presence of large cerebral vessels, gray and white matter that will also affect the cavitation activity associated with variation of BBB opening in different tissue types, which is not typically observed in small animals. Both these new findings are critical in the primate brain and provide essential information for clinical applications.

  5. Characterizing Focused-Ultrasound Mediated Drug Delivery to the Heterogeneous Primate Brain In Vivo with Acoustic Monitoring

    PubMed Central

    Wu, Shih-Ying; Sanchez, Carlos Sierra; Samiotaki, Gesthimani; Buch, Amanda; Ferrera, Vincent P.; Konofagou, Elisa E.

    2016-01-01

    Focused ultrasound with microbubbles has been used to noninvasively and selectively deliver pharmacological agents across the blood-brain barrier (BBB) for treating brain diseases. Acoustic cavitation monitoring could serve as an on-line tool to assess and control the treatment. While it demonstrated a strong correlation in small animals, its translation to primates remains in question due to the anatomically different and highly heterogeneous brain structures with gray and white matteras well as dense vasculature. In addition, the drug delivery efficiency and the BBB opening volume have never been shown to be predictable through cavitation monitoring in primates. This study aimed at determining how cavitation activity is correlated with the amount and concentration of gadolinium delivered through the BBB and its associated delivery efficiency as well as the BBB opening volume in non-human primates. Another important finding entails the effect of heterogeneous brain anatomy and vasculature of a primate brain, i.e., presence of large cerebral vessels, gray and white matter that will also affect the cavitation activity associated with variation of BBB opening in different tissue types, which is not typically observed in small animals. Both these new findings are critical in the primate brain and provide essential information for clinical applications. PMID:27853267

  6. Endocranial morphology of Palaeocene Plesiadapis tricuspidens and evolution of the early primate brain.

    PubMed

    Orliac, Maeva J; Ladevèze, Sandrine; Gingerich, Philip D; Lebrun, Renaud; Smith, Thierry

    2014-04-22

    Expansion of the brain is a key feature of primate evolution. The fossil record, although incomplete, allows a partial reconstruction of changes in primate brain size and morphology through time. Palaeogene plesiadapoids, closest relatives of Euprimates (or crown-group primates), are crucial for understanding early evolution of the primate brain. However, brain morphology of this group remains poorly documented, and major questions remain regarding the initial phase of euprimate brain evolution. Micro-CT investigation of the endocranial morphology of Plesiadapis tricuspidens from the Late Palaeocene of Europe--the most complete plesiadapoid cranium known--shows that plesiadapoids retained a very small and simple brain. Plesiadapis has midbrain exposure, and minimal encephalization and neocorticalization, making it comparable with that of stem rodents and lagomorphs. However, Plesiadapis shares a domed neocortex and downwardly shifted olfactory-bulb axis with Euprimates. If accepted phylogenetic relationships are correct, then this implies that the euprimate brain underwent drastic reorganization during the Palaeocene, and some changes in brain structure preceded brain size increase and neocortex expansion during evolution of the primate brain.

  7. Behavioral and brain asymmetries in primates: a preliminary evaluation of two evolutionary hypotheses

    PubMed Central

    Hopkins, William D.; Misiura, Maria; Pope, Sarah M.; Latash, Elitaveta M.

    2015-01-01

    Contrary to many historical views, recent evidence suggest that species-level behavioral and brain asymmetries are evident in nonhuman species. Here, we briefly present evidence of behavioral, perceptual, cognitive, functional, and neuroanatomical asymmetries in nonhuman primates. In addition, we describe two historical accounts of the evolutionary origins of hemispheric specialization and present data from nonhuman primates that address these specific theories. Specifically, we first discuss the evidence of that genes play specific roles in determining left–right differences in anatomical and functional asymmetries in primates. We next consider and present data on the hypothesis that hemispheric specialization evolved as a by-product of increasing brain size relative to the size of the corpus callosum in different primate species. Lastly, we discuss some of the challenges in the study of hemispheric specialization in primates and offer some suggestions on how to advance the field. PMID:26426409

  8. Behavioral and brain asymmetries in primates: a preliminary evaluation of two evolutionary hypotheses.

    PubMed

    Hopkins, William D; Misiura, Maria; Pope, Sarah M; Latash, Elitaveta M

    2015-11-01

    Contrary to many historical views, recent evidence suggests that species-level behavioral and brain asymmetries are evident in nonhuman species. Here, we briefly present evidence of behavioral, perceptual, cognitive, functional, and neuroanatomical asymmetries in nonhuman primates. In addition, we describe two historical accounts of the evolutionary origins of hemispheric specialization and present data from nonhuman primates that address these specific theories. Specifically, we first discuss the evidence that genes play specific roles in determining left-right differences in anatomical and functional asymmetries in primates. We next consider and present data on the hypothesis that hemispheric specialization evolved as a by-product of increasing brain size relative to the surface area of the corpus callosum in different primate species. Last, we discuss some of the challenges in the study of hemispheric specialization in primates and offer some suggestions on how to advance the field. © 2015 New York Academy of Sciences.

  9. Communication and the primate brain: insights from neuroimaging studies in humans, chimpanzees and macaques.

    PubMed

    Wilson, Benjamin; Petkov, Christopher I

    2011-04-01

    Considerable knowledge is available on the neural substrates for speech and language from brain-imaging studies in humans, but until recently there was a lack of data for comparison from other animal species on the evolutionarily conserved brain regions that process species-specific communication signals. To obtain new insights into the relationship of the substrates for communication in primates, we compared the results from several neuroimaging studies in humans with those that have recently been obtained from macaque monkeys and chimpanzees. The recent work in humans challenges the longstanding notion of highly localized speech areas. As a result, the brain regions that have been identified in humans for speech and nonlinguistic voice processing show a striking general correspondence to how the brains of other primates analyze species-specific vocalizations or information in the voice, such as voice identity. The comparative neuroimaging work has begun to clarify evolutionary relationships in brain function, supporting the notion that the brain regions that process communication signals in the human brain arose from a precursor network of regions that is present in nonhuman primates and is used for processing species-specific vocalizations. We conclude by considering how the stage now seems to be set for comparative neurobiology to characterize the ancestral state of the network that evolved in humans to support language.

  10. Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates

    PubMed Central

    Street, Sally E.; Navarrete, Ana F.; Laland, Kevin N.

    2017-01-01

    Explanations for primate brain expansion and the evolution of human cognition and culture remain contentious despite extensive research. While multiple comparative analyses have investigated variation in brain size across primate species, very few have addressed why primates vary in how much they use social learning. Here, we evaluate the hypothesis that the enhanced reliance on socially transmitted behavior observed in some primates has coevolved with enlarged brains, complex sociality, and extended lifespans. Using recently developed phylogenetic comparative methods we show that, across primate species, a measure of social learning proclivity increases with absolute and relative brain volume, longevity (specifically reproductive lifespan), and social group size, correcting for research effort. We also confirm relationships of absolute and relative brain volume with longevity (both juvenile period and reproductive lifespan) and social group size, although longevity is generally the stronger predictor. Relationships between social learning, brain volume, and longevity remain when controlling for maternal investment and are therefore not simply explained as a by-product of the generally slower life history expected for larger brained species. Our findings suggest that both brain expansion and high reliance on culturally transmitted behavior coevolved with sociality and extended lifespan in primates. This coevolution is consistent with the hypothesis that the evolution of large brains, sociality, and long lifespans has promoted reliance on culture, with reliance on culture in turn driving further increases in brain volume, cognitive abilities, and lifespans in some primate lineages. PMID:28739950

  11. Social learning, culture and the 'socio-cultural brain' of human and non-human primates.

    PubMed

    Whiten, Andrew; van de Waal, Erica

    2017-11-01

    Noting important recent discoveries, we review primate social learning, traditions and culture, together with associated findings about primate brains. We survey our current knowledge of primate cultures in the wild, and complementary experimental diffusion studies testing species' capacity to sustain traditions. We relate this work to theories that seek to explain the enlarged brain size of primates as specializations for social intelligence, that have most recently extended to learning from others and the cultural transmission this permits. We discuss alternative theories and review a variety of recent findings that support cultural intelligence hypotheses for primate encephalization. At a more fine-grained neuroscientific level we focus on the underlying processes of social learning, especially emulation and imitation. Here, our own and others' recent research has established capacities for bodily imitation in both monkeys and apes, results that are consistent with a role for the mirror neuron system in social learning. We review important convergences between behavioural findings and recent non-invasive neuroscientific studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Scaling of cerebral blood perfusion in primates and marsupials.

    PubMed

    Seymour, Roger S; Angove, Sophie E; Snelling, Edward P; Cassey, Phillip

    2015-08-01

    The evolution of primates involved increasing body size, brain size and presumably cognitive ability. Cognition is related to neural activity, metabolic rate and rate of blood flow to the cerebral cortex. These parameters are difficult to quantify in living animals. This study shows that it is possible to determine the rate of cortical brain perfusion from the size of the internal carotid artery foramina in skulls of certain mammals, including haplorrhine primates and diprotodont marsupials. We quantify combined blood flow rate in both internal carotid arteries as a proxy of brain metabolism in 34 species of haplorrhine primates (0.116-145 kg body mass) and compare it to the same analysis for 19 species of diprotodont marsupials (0.014-46 kg). Brain volume is related to body mass by essentially the same exponent of 0.70 in both groups. Flow rate increases with haplorrhine brain volume to the 0.95 power, which is significantly higher than the exponent (0.75) expected for most organs according to 'Kleiber's Law'. By comparison, the exponent is 0.73 in marsupials. Thus, the brain perfusion rate increases with body size and brain size much faster in primates than in marsupials. The trajectory of cerebral perfusion in primates is set by the phylogenetically older groups (New and Old World monkeys, lesser apes) and the phylogenetically younger groups (great apes, including humans) fall near the line, with the highest perfusion. This may be associated with disproportionate increases in cortical surface area and mental capacity in the highly social, larger primates. © 2015. Published by The Company of Biologists Ltd.

  13. Birds have primate-like numbers of neurons in the forebrain

    PubMed Central

    Olkowicz, Seweryn; Kocourek, Martin; Lučan, Radek K.; Porteš, Michal; Fitch, W. Tecumseh; Herculano-Houzel, Suzana; Němec, Pavel

    2016-01-01

    Some birds achieve primate-like levels of cognition, even though their brains tend to be much smaller in absolute size. This poses a fundamental problem in comparative and computational neuroscience, because small brains are expected to have a lower information-processing capacity. Using the isotropic fractionator to determine numbers of neurons in specific brain regions, here we show that the brains of parrots and songbirds contain on average twice as many neurons as primate brains of the same mass, indicating that avian brains have higher neuron packing densities than mammalian brains. Additionally, corvids and parrots have much higher proportions of brain neurons located in the pallial telencephalon compared with primates or other mammals and birds. Thus, large-brained parrots and corvids have forebrain neuron counts equal to or greater than primates with much larger brains. We suggest that the large numbers of neurons concentrated in high densities in the telencephalon substantially contribute to the neural basis of avian intelligence. PMID:27298365

  14. Gorilla and Orangutan Brains Conform to the Primate Cellular Scaling Rules: Implications for Human Evolution

    PubMed Central

    Herculano-Houzel, Suzana; Kaas, Jon H.

    2011-01-01

    Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great apes that might have evolved bodies that are unusually large, on the basis of our recent finding that the cellular composition of the human brain matches that expected for a primate brain of its size, making the human brain a linearly scaled-up primate brain in its number of cells. To investigate whether the brain of great apes also conforms to the primate cellular scaling rules identified previously, we determine the numbers of neuronal and other cells that compose the orangutan and gorilla cerebella, use these numbers to calculate the size of the brain and of the cerebral cortex expected for these species, and show that these match the sizes described in the literature. Our results suggest that the brains of great apes also scale linearly in their numbers of neurons like other primate brains, including humans. The conformity of great apes and humans to the linear cellular scaling rules that apply to other primates that diverged earlier in primate evolution indicates that prehistoric Homo species as well as other hominins must have had brains that conformed to the same scaling rules, irrespective of their body size. We then used those scaling rules and published estimated brain volumes for various hominin species to predict the numbers of neurons that composed their brains. We predict that Homo heidelbergensis and Homo neanderthalensis had brains with approximately 80 billion neurons, within the range of variation found in modern Homo sapiens. We propose that while the cellular scaling rules that apply to the primate brain have remained stable in hominin evolution (since they apply to simians, great apes and modern humans alike), the Colobinae and Pongidae lineages favored marked increases in body size rather than brain size from the common ancestor with the Homo lineage, while the Homo lineage seems to have favored a large brain instead of a large body, possibly due to the metabolic limitations to having both. PMID:21228547

  15. Gorilla and orangutan brains conform to the primate cellular scaling rules: implications for human evolution.

    PubMed

    Herculano-Houzel, Suzana; Kaas, Jon H

    2011-01-01

    Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great apes that might have evolved bodies that are unusually large, on the basis of our recent finding that the cellular composition of the human brain matches that expected for a primate brain of its size, making the human brain a linearly scaled-up primate brain in its number of cells. To investigate whether the brain of great apes also conforms to the primate cellular scaling rules identified previously, we determine the numbers of neuronal and other cells that compose the orangutan and gorilla cerebella, use these numbers to calculate the size of the brain and of the cerebral cortex expected for these species, and show that these match the sizes described in the literature. Our results suggest that the brains of great apes also scale linearly in their numbers of neurons like other primate brains, including humans. The conformity of great apes and humans to the linear cellular scaling rules that apply to other primates that diverged earlier in primate evolution indicates that prehistoric Homo species as well as other hominins must have had brains that conformed to the same scaling rules, irrespective of their body size. We then used those scaling rules and published estimated brain volumes for various hominin species to predict the numbers of neurons that composed their brains. We predict that Homo heidelbergensis and Homo neanderthalensis had brains with approximately 80 billion neurons, within the range of variation found in modern Homo sapiens. We propose that while the cellular scaling rules that apply to the primate brain have remained stable in hominin evolution (since they apply to simians, great apes and modern humans alike), the Colobinae and Pongidae lineages favored marked increases in body size rather than brain size from the common ancestor with the Homo lineage, while the Homo lineage seems to have favored a large brain instead of a large body, possibly due to the metabolic limitations to having both. Copyright © 2011 S. Karger AG, Basel.

  16. Microcephaly genes evolved adaptively throughout the evolution of eutherian mammals

    PubMed Central

    2014-01-01

    Background Genes associated with the neurodevelopmental disorder microcephaly display a strong signature of adaptive evolution in primates. Comparative data suggest a link between selection on some of these loci and the evolution of primate brain size. Whether or not either positive selection or this phenotypic association are unique to primates is unclear, but recent studies in cetaceans suggest at least two microcephaly genes evolved adaptively in other large brained mammalian clades. Results Here we analyse the evolution of seven microcephaly loci, including three recently identified loci, across 33 eutherian mammals. We find extensive evidence for positive selection having acted on the majority of these loci not just in primates but also across non-primate mammals. Furthermore, the patterns of selection in major mammalian clades are not significantly different. Using phylogenetically corrected comparative analyses, we find that the evolution of two microcephaly loci, ASPM and CDK5RAP2, are correlated with neonatal brain size in Glires and Euungulata, the two most densely sampled non-primate clades. Conclusions Together with previous results, this suggests that ASPM and CDK5RAP2 may have had a consistent role in the evolution of brain size in mammals. Nevertheless, several limitations of currently available data and gene-phenotype tests are discussed, including sparse sampling across large evolutionary distances, averaging gene-wide rates of evolution, potential phenotypic variation and evolutionary reversals. We discuss the implications of our results for studies of the genetic basis of brain evolution, and explicit tests of gene-phenotype hypotheses. PMID:24898820

  17. Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla

    PubMed Central

    Liu, Feng; Garland, Marianne; Duan, Yunsuo; Stark, Raymond I.; Xu, Dongrong; Dong, Zhengchao; Bansal, Ravi; Peterson, Bradley S.; Kangarlu, Alayar

    2008-01-01

    Direct observational data on the development of the brains of human and nonhuman primates is on remarkably scant, and most of our understanding of primate brain development is extrapolated from findings in rodent models. Magnetic resonance imaging (MRI) is a promising tool for the noninvasive, longitudinal study of the developing primate brain. We devised a protocol to scan pregnant baboons serially at 3 T for up to 3 h per session. Seven baboons were scanned 1–6 times, beginning as early as 56 days post-conceptional age, and as late as 185 days (term ~185 days). Successful scanning of the fetal baboon required careful animal preparation and anesthesia, in addition to optimization of the scanning protocol. We successfully acquired maps of relaxation times (T1 and T2) and high-resolution anatomical images of the brains of fetal baboons at multiple time points during the course of gestation. These images demonstrated the convergence of gray and white matter contrast near term, and furthermore demonstrated that the loss of contrast at that age is a consequence of the continuous change in relaxation times during fetal brain development. These data furthermore demonstrate that maps of relaxation times have clear advantages over the relaxation time weighted images for the tracking of the changes in brain structure during fetal development. This protocol for in utero MRI of fetal baboon brains will help to advance the use of nonhuman primate models to study fetal brain development longitudinally. PMID:18155925

  18. Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and Homo floresiensis

    PubMed Central

    2010-01-01

    Background Brain size is a key adaptive trait. It is often assumed that increasing brain size was a general evolutionary trend in primates, yet recent fossil discoveries have documented brain size decreases in some lineages, raising the question of how general a trend there was for brains to increase in mass over evolutionary time. We present the first systematic phylogenetic analysis designed to answer this question. Results We performed ancestral state reconstructions of three traits (absolute brain mass, absolute body mass, relative brain mass) using 37 extant and 23 extinct primate species and three approaches to ancestral state reconstruction: parsimony, maximum likelihood and Bayesian Markov-chain Monte Carlo. Both absolute and relative brain mass generally increased over evolutionary time, but body mass did not. Nevertheless both absolute and relative brain mass decreased along several branches. Applying these results to the contentious case of Homo floresiensis, we find a number of scenarios under which the proposed evolution of Homo floresiensis' small brain appears to be consistent with patterns observed along other lineages, dependent on body mass and phylogenetic position. Conclusions Our results confirm that brain expansion began early in primate evolution and show that increases occurred in all major clades. Only in terms of an increase in absolute mass does the human lineage appear particularly striking, with both the rate of proportional change in mass and relative brain size having episodes of greater expansion elsewhere on the primate phylogeny. However, decreases in brain mass also occurred along branches in all major clades, and we conclude that, while selection has acted to enlarge primate brains, in some lineages this trend has been reversed. Further analyses of the phylogenetic position of Homo floresiensis and better body mass estimates are required to confirm the plausibility of the evolution of its small brain mass. We find that for our dataset the Bayesian analysis for ancestral state reconstruction is least affected by inclusion of fossil data suggesting that this approach might be preferable for future studies on other taxa with a poor fossil record. PMID:20105283

  19. Bayesian convolutional neural network based MRI brain extraction on nonhuman primates.

    PubMed

    Zhao, Gengyan; Liu, Fang; Oler, Jonathan A; Meyerand, Mary E; Kalin, Ned H; Birn, Rasmus M

    2018-07-15

    Brain extraction or skull stripping of magnetic resonance images (MRI) is an essential step in neuroimaging studies, the accuracy of which can severely affect subsequent image processing procedures. Current automatic brain extraction methods demonstrate good results on human brains, but are often far from satisfactory on nonhuman primates, which are a necessary part of neuroscience research. To overcome the challenges of brain extraction in nonhuman primates, we propose a fully-automated brain extraction pipeline combining deep Bayesian convolutional neural network (CNN) and fully connected three-dimensional (3D) conditional random field (CRF). The deep Bayesian CNN, Bayesian SegNet, is used as the core segmentation engine. As a probabilistic network, it is not only able to perform accurate high-resolution pixel-wise brain segmentation, but also capable of measuring the model uncertainty by Monte Carlo sampling with dropout in the testing stage. Then, fully connected 3D CRF is used to refine the probability result from Bayesian SegNet in the whole 3D context of the brain volume. The proposed method was evaluated with a manually brain-extracted dataset comprising T1w images of 100 nonhuman primates. Our method outperforms six popular publicly available brain extraction packages and three well-established deep learning based methods with a mean Dice coefficient of 0.985 and a mean average symmetric surface distance of 0.220 mm. A better performance against all the compared methods was verified by statistical tests (all p-values < 10 -4 , two-sided, Bonferroni corrected). The maximum uncertainty of the model on nonhuman primate brain extraction has a mean value of 0.116 across all the 100 subjects. The behavior of the uncertainty was also studied, which shows the uncertainty increases as the training set size decreases, the number of inconsistent labels in the training set increases, or the inconsistency between the training set and the testing set increases. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution.

    PubMed

    Smaers, J B; Soligo, C

    2013-05-22

    Comparative analyses of primate brain evolution have highlighted changes in size and internal organization as key factors underlying species diversity. It remains, however, unclear (i) how much variation in mosaic brain reorganization versus variation in relative brain size contributes to explaining the structural neural diversity observed across species, (ii) which mosaic changes contribute most to explaining diversity, and (iii) what the temporal origin, rates and processes are that underlie evolutionary shifts in mosaic reorganization for individual branches of the primate tree of life. We address these questions by combining novel comparative methods that allow assessing the temporal origin, rate and process of evolutionary changes on individual branches of the tree of life, with newly available data on volumes of key brain structures (prefrontal cortex, frontal motor areas and cerebrocerebellum) for a sample of 17 species (including humans). We identify patterns of mosaic change in brain evolution that mirror brain systems previously identified by electrophysiological and anatomical tract-tracing studies in non-human primates and functional connectivity MRI studies in humans. Across more than 40 Myr of anthropoid primate evolution, mosaic changes contribute more to explaining neural diversity than changes in relative brain size, and different mosaic patterns are differentially selected for when brains increase or decrease in size. We identify lineage-specific evolutionary specializations for all branches of the tree of life covered by our sample and demonstrate deep evolutionary roots for mosaic patterns associated with motor control and learning.

  1. Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution

    PubMed Central

    Smaers, J. B.; Soligo, C.

    2013-01-01

    Comparative analyses of primate brain evolution have highlighted changes in size and internal organization as key factors underlying species diversity. It remains, however, unclear (i) how much variation in mosaic brain reorganization versus variation in relative brain size contributes to explaining the structural neural diversity observed across species, (ii) which mosaic changes contribute most to explaining diversity, and (iii) what the temporal origin, rates and processes are that underlie evolutionary shifts in mosaic reorganization for individual branches of the primate tree of life. We address these questions by combining novel comparative methods that allow assessing the temporal origin, rate and process of evolutionary changes on individual branches of the tree of life, with newly available data on volumes of key brain structures (prefrontal cortex, frontal motor areas and cerebrocerebellum) for a sample of 17 species (including humans). We identify patterns of mosaic change in brain evolution that mirror brain systems previously identified by electrophysiological and anatomical tract-tracing studies in non-human primates and functional connectivity MRI studies in humans. Across more than 40 Myr of anthropoid primate evolution, mosaic changes contribute more to explaining neural diversity than changes in relative brain size, and different mosaic patterns are differentially selected for when brains increase or decrease in size. We identify lineage-specific evolutionary specializations for all branches of the tree of life covered by our sample and demonstrate deep evolutionary roots for mosaic patterns associated with motor control and learning. PMID:23536600

  2. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates

    PubMed Central

    Laramée, Marie-Eve; Boire, Denis

    2015-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals. PMID:25620914

  3. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates.

    PubMed

    Laramée, Marie-Eve; Boire, Denis

    2014-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.

  4. A simpler primate brain: the visual system of the marmoset monkey

    PubMed Central

    Solomon, Samuel G.; Rosa, Marcello G. P.

    2014-01-01

    Humans are diurnal primates with high visual acuity at the center of gaze. Although primates share many similarities in the organization of their visual centers with other mammals, and even other species of vertebrates, their visual pathways also show unique features, particularly with respect to the organization of the cerebral cortex. Therefore, in order to understand some aspects of human visual function, we need to study non-human primate brains. Which species is the most appropriate model? Macaque monkeys, the most widely used non-human primates, are not an optimal choice in many practical respects. For example, much of the macaque cerebral cortex is buried within sulci, and is therefore inaccessible to many imaging techniques, and the postnatal development and lifespan of macaques are prohibitively long for many studies of brain maturation, plasticity, and aging. In these and several other respects the marmoset, a small New World monkey, represents a more appropriate choice. Here we review the visual pathways of the marmoset, highlighting recent work that brings these advantages into focus, and identify where additional work needs to be done to link marmoset brain organization to that of macaques and humans. We will argue that the marmoset monkey provides a good subject for studies of a complex visual system, which will likely allow an important bridge linking experiments in animal models to humans. PMID:25152716

  5. A novel tetrode microdrive for simultaneous multi-neuron recording from different regions of primate brain.

    PubMed

    Santos, Lucas; Opris, Ioan; Fuqua, Joshua; Hampson, Robert E; Deadwyler, Sam A

    2012-04-15

    A unique custom-made tetrode microdrive for recording from large numbers of neurons in several areas of primate brain is described as a means for assessing simultaneous neural activity in cortical and subcortical structures in nonhuman primates (NHPs) performing behavioral tasks. The microdrive device utilizes tetrode technology with up to six ultra-thin microprobe guide tubes (0.1mm) that can be independently positioned, each containing reduced diameter tetrode and/or hexatrode microwires (0.02 mm) for recording and isolating single neuron activity. The microdrive device is mounted within the standard NHP cranial well and allows traversal of brain depths up to 40.0 mm. The advantages of this technology are demonstrated via simultaneously recorded large populations of neurons with tetrode type probes during task performance from a) primary motor cortex and deep brain structures (caudate-putamen and hippocampus) and b) multiple layers within the prefrontal cortex. The means to characterize interactions of well-isolated ensembles of neurons recorded simultaneously from different regions, as shown with this device, has not been previously available for application in primate brain. The device has extensive application to primate models for the detection and study of inoperative or maladaptive neural circuits related to human neurological disorders. Published by Elsevier B.V.

  6. Re-evaluating the link between brain size and behavioural ecology in primates.

    PubMed

    Powell, Lauren E; Isler, Karin; Barton, Robert A

    2017-10-25

    Comparative studies have identified a wide range of behavioural and ecological correlates of relative brain size, with results differing between taxonomic groups, and even within them. In primates for example, recent studies contradict one another over whether social or ecological factors are critical. A basic assumption of such studies is that with sufficiently large samples and appropriate analysis, robust correlations indicative of selection pressures on cognition will emerge. We carried out a comprehensive re-examination of correlates of primate brain size using two large comparative datasets and phylogenetic comparative methods. We found evidence in both datasets for associations between brain size and ecological variables (home range size, diet and activity period), but little evidence for an effect of social group size, a correlation which has previously formed the empirical basis of the Social Brain Hypothesis. However, reflecting divergent results in the literature, our results exhibited instability across datasets, even when they were matched for species composition and predictor variables. We identify several potential empirical and theoretical difficulties underlying this instability and suggest that these issues raise doubts about inferring cognitive selection pressures from behavioural correlates of brain size. © 2017 The Author(s).

  7. Molecular investigations of the brain of higher mammals using gyrencephalic carnivore ferrets.

    PubMed

    Kawasaki, Hiroshi

    2014-09-01

    The brains of mammals such as carnivores and primates contain developed structures not found in the brains of mice. Uncovering the physiological importance, developmental mechanisms and evolution of these structures using carnivores and primates would greatly contribute to our understanding of the human brain and its diseases. Although the anatomical and physiological properties of the brains of carnivores and primates have been intensively examined, molecular investigations are still limited. Recently, genetic techniques that can be applied to carnivores and primates have been explored, and molecules whose expression patterns correspond to these structures were reported. Furthermore, to investigate the functional importance of these molecules, rapid and efficient genetic manipulation methods were established by applying electroporation to gyrencephalic carnivore ferrets. In this article, I review recent advances in molecular investigations of the brains of carnivores and primates, mainly focusing on ferrets (Mustela putorius furo). Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  8. Evidence of a Conserved Molecular Response to Selection for Increased Brain Size in Primates

    PubMed Central

    Harrison, Peter W.; Caravas, Jason A.; Raghanti, Mary Ann; Phillips, Kimberley A.; Mundy, Nicholas I.

    2017-01-01

    The adaptive significance of human brain evolution has been frequently studied through comparisons with other primates. However, the evolution of increased brain size is not restricted to the human lineage but is a general characteristic of primate evolution. Whether or not these independent episodes of increased brain size share a common genetic basis is unclear. We sequenced and de novo assembled the transcriptome from the neocortical tissue of the most highly encephalized nonhuman primate, the tufted capuchin monkey (Cebus apella). Using this novel data set, we conducted a genome-wide analysis of orthologous brain-expressed protein coding genes to identify evidence of conserved gene–phenotype associations and species-specific adaptations during three independent episodes of brain size increase. We identify a greater number of genes associated with either total brain mass or relative brain size across these six species than show species-specific accelerated rates of evolution in individual large-brained lineages. We test the robustness of these associations in an expanded data set of 13 species, through permutation tests and by analyzing how genome-wide patterns of substitution co-vary with brain size. Many of the genes targeted by selection during brain expansion have glutamatergic functions or roles in cell cycle dynamics. We also identify accelerated evolution in a number of individual capuchin genes whose human orthologs are associated with human neuropsychiatric disorders. These findings demonstrate the value of phenotypically informed genome analyses, and suggest at least some aspects of human brain evolution have occurred through conserved gene–phenotype associations. Understanding these commonalities is essential for distinguishing human-specific selection events from general trends in brain evolution. PMID:28391320

  9. The social nature of primate cognition

    PubMed Central

    Barrett, Louise; Henzi, Peter

    2005-01-01

    The hypothesis that the enlarged brain size of the primates was selected for by social, rather than purely ecological, factors has been strongly influential in studies of primate cognition and behaviour over the past two decades. However, the Machiavellian intelligence hypothesis, also known as the social brain hypothesis, tends to emphasize certain traits and behaviours, like exploitation and deception, at the expense of others, such as tolerance and behavioural coordination, and therefore presents only one view of how social life may shape cognition. This review outlines work from other relevant disciplines, including evolutionary economics, cognitive science and neurophysiology, to illustrate how these can be used to build a more general theoretical framework, incorporating notions of embodied and distributed cognition, in which to situate questions concerning the evolution of primate social cognition. PMID:16191591

  10. How the Brain May Have Shaped Muscle Anatomy and Physiology: A Preliminary Study.

    PubMed

    Muchlinski, Magdalena N; Hemingway, Holden W; Pastor, Juan; Omstead, Kailey M; Burrows, Anne M

    2018-03-01

    Skeletal muscle fibers are often used to evaluate functional differences in locomotion. However, because there are energetic differences among muscle fiber cells, muscle fiber composition could be used to address evolutionary questions about energetics. Skeletal muscle is composed of two main types of fibers: Type I and II. The difference between the two can be reduced to how these muscle cells use oxygen and glucose. Type I fibers convert glucose to ATP using oxygen, while Type II fibers rely primarily on anaerobic metabolic processes. The expensive tissue hypothesis (ETH) proposes that the energetic demands imposed on the body by the brain result in a reduction in other expensive tissues (e.g., gastrointestinal tract). The original ETH dismisses the energetic demands of skeletal muscle, despite skeletal muscle being (1) an expensive tissue when active and (2) in direct competition for glucose with the brain. Based on these observations we hypothesize that larger brained primates will have relatively less muscle mass and a decrease in Type I fibers. As part of a larger study to test this hypothesis, we present data from 10 species of primates. We collected body mass, muscle mass, and biopsied four muscles from each specimen for histological procedures. We collected endocranial volumes from the literature. Using immunohistochemistry, a muscle fiber composition profile was created for each species sampled. Results show that larger brained primates have less muscle and fewer Type I fibers than primates with smaller brains. Results clarify the relationship between muscle mass and brain mass and illustrate how muscle mass could be used to address energetic questions. Anat Rec, 301:528-537, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  11. Brain/MINDS: brain-mapping project in Japan

    PubMed Central

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-01-01

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas. PMID:25823872

  12. The coevolution of innovation and technical intelligence in primates

    PubMed Central

    Street, Sally E.; Whalen, Andrew; Laland, Kevin N.

    2016-01-01

    In birds and primates, the frequency of behavioural innovation has been shown to covary with absolute and relative brain size, leading to the suggestion that large brains allow animals to innovate, and/or that selection for innovativeness, together with social learning, may have driven brain enlargement. We examined the relationship between primate brain size and both technical (i.e. tool using) and non-technical innovation, deploying a combination of phylogenetically informed regression and exploratory causal graph analyses. Regression analyses revealed that absolute and relative brain size correlated positively with technical innovation, and exhibited consistently weaker, but still positive, relationships with non-technical innovation. These findings mirror similar results in birds. Our exploratory causal graph analyses suggested that technical innovation shares strong direct relationships with brain size, body size, social learning rate and social group size, whereas non-technical innovation did not exhibit a direct relationship with brain size. Nonetheless, non-technical innovation was linked to brain size indirectly via diet and life-history variables. Our findings support ‘technical intelligence’ hypotheses in linking technical innovation to encephalization in the restricted set of primate lineages where technical innovation has been reported. Our findings also provide support for a broad co-evolving complex of brain, behaviour, life-history, social and dietary variables, providing secondary support for social and ecological intelligence hypotheses. The ability to gain access to difficult-to-extract, but potentially nutrient-rich, resources through tool use may have conferred on some primates adaptive advantages, leading to selection for brain circuitry that underlies technical proficiency. PMID:26926276

  13. The coevolution of innovation and technical intelligence in primates.

    PubMed

    Navarrete, Ana F; Reader, Simon M; Street, Sally E; Whalen, Andrew; Laland, Kevin N

    2016-03-19

    In birds and primates, the frequency of behavioural innovation has been shown to covary with absolute and relative brain size, leading to the suggestion that large brains allow animals to innovate, and/or that selection for innovativeness, together with social learning, may have driven brain enlargement. We examined the relationship between primate brain size and both technical (i.e. tool using) and non-technical innovation, deploying a combination of phylogenetically informed regression and exploratory causal graph analyses. Regression analyses revealed that absolute and relative brain size correlated positively with technical innovation, and exhibited consistently weaker, but still positive, relationships with non-technical innovation. These findings mirror similar results in birds. Our exploratory causal graph analyses suggested that technical innovation shares strong direct relationships with brain size, body size, social learning rate and social group size, whereas non-technical innovation did not exhibit a direct relationship with brain size. Nonetheless, non-technical innovation was linked to brain size indirectly via diet and life-history variables. Our findings support 'technical intelligence' hypotheses in linking technical innovation to encephalization in the restricted set of primate lineages where technical innovation has been reported. Our findings also provide support for a broad co-evolving complex of brain, behaviour, life-history, social and dietary variables, providing secondary support for social and ecological intelligence hypotheses. The ability to gain access to difficult-to-extract, but potentially nutrient-rich, resources through tool use may have conferred on some primates adaptive advantages, leading to selection for brain circuitry that underlies technical proficiency. © 2016 The Author(s).

  14. LOGISMOS-B for primates: primate cortical surface reconstruction and thickness measurement

    NASA Astrophysics Data System (ADS)

    Oguz, Ipek; Styner, Martin; Sanchez, Mar; Shi, Yundi; Sonka, Milan

    2015-03-01

    Cortical thickness and surface area are important morphological measures with implications for many psychiatric and neurological conditions. Automated segmentation and reconstruction of the cortical surface from 3D MRI scans is challenging due to the variable anatomy of the cortex and its highly complex geometry. While many methods exist for this task in the context of the human brain, these methods are typically not readily applicable to the primate brain. We propose an innovative approach based on our recently proposed human cortical reconstruction algorithm, LOGISMOS-B, and the Laplace-based thickness measurement method. Quantitative evaluation of our approach was performed based on a dataset of T1- and T2-weighted MRI scans from 12-month-old macaques where labeling by our anatomical experts was used as independent standard. In this dataset, LOGISMOS-B has an average signed surface error of 0.01 +/- 0.03mm and an unsigned surface error of 0.42 +/- 0.03mm over the whole brain. Excluding the rather problematic temporal pole region further improves unsigned surface distance to 0.34 +/- 0.03mm. This high level of accuracy reached by our algorithm even in this challenging developmental dataset illustrates its robustness and its potential for primate brain studies.

  15. High-resolution imaging of the large non-human primate brain using microPET: a feasibility study

    NASA Astrophysics Data System (ADS)

    Naidoo-Variawa, S.; Hey-Cunningham, A. J.; Lehnert, W.; Kench, P. L.; Kassiou, M.; Banati, R.; Meikle, S. R.

    2007-11-01

    The neuroanatomy and physiology of the baboon brain closely resembles that of the human brain and is well suited for evaluating promising new radioligands in non-human primates by PET and SPECT prior to their use in humans. These studies are commonly performed on clinical scanners with 5 mm spatial resolution at best, resulting in sub-optimal images for quantitative analysis. This study assessed the feasibility of using a microPET animal scanner to image the brains of large non-human primates, i.e. papio hamadryas (baboon) at high resolution. Factors affecting image accuracy, including scatter, attenuation and spatial resolution, were measured under conditions approximating a baboon brain and using different reconstruction strategies. Scatter fraction measured 32% at the centre of a 10 cm diameter phantom. Scatter correction increased image contrast by up to 21% but reduced the signal-to-noise ratio. Volume resolution was superior and more uniform using maximum a posteriori (MAP) reconstructed images (3.2-3.6 mm3 FWHM from centre to 4 cm offset) compared to both 3D ordered subsets expectation maximization (OSEM) (5.6-8.3 mm3) and 3D reprojection (3DRP) (5.9-9.1 mm3). A pilot 18F-2-fluoro-2-deoxy-d-glucose ([18F]FDG) scan was performed on a healthy female adult baboon. The pilot study demonstrated the ability to adequately resolve cortical and sub-cortical grey matter structures in the baboon brain and improved contrast when images were corrected for attenuation and scatter and reconstructed by MAP. We conclude that high resolution imaging of the baboon brain with microPET is feasible with appropriate choices of reconstruction strategy and corrections for degrading physical effects. Further work to develop suitable correction algorithms for high-resolution large primate imaging is warranted.

  16. Safety of real-time convection-enhanced delivery of liposomes to primate brain: a long-term retrospective.

    PubMed

    Krauze, Michal T; Vandenberg, Scott R; Yamashita, Yoji; Saito, Ryuta; Forsayeth, John; Noble, Charles; Park, John; Bankiewicz, Krystof S

    2008-04-01

    Convection-enhanced delivery (CED) is gaining popularity in direct brain infusions. Our group has pioneered the use of liposomes loaded with the MRI contrast reagent as a means to track and quantitate CED in the primate brain through real-time MRI. When co-infused with therapeutic nanoparticles, these tracking liposomes provide us with unprecedented precision in the management of infusions into discrete brain regions. In order to translate real-time CED into clinical application, several important parameters must be defined. In this study, we have analyzed all our cumulative animal data to answer a number of questions as to whether real-time CED in primates depends on concentration of infusate, is reproducible, allows prediction of distribution in a given anatomic structure, and whether it has long term pathological consequences. Our retrospective analysis indicates that real-time CED is highly predictable; repeated procedures yielded identical results, and no long-term brain pathologies were found. We conclude that introduction of our technique to clinical application would enhance accuracy and patient safety when compared to current non-monitored delivery trials.

  17. Evolution of Osteocrin as an activity-regulated factor in the primate brain

    PubMed Central

    Ataman, Bulent; Boulting, Gabriella L.; Harmin, David A.; Yang, Marty G.; Baker-Salisbury, Mollie; Yap, Ee-Lynn; Malik, Athar N.; Mei, Kevin; Rubin, Alex A.; Spiegel, Ivo; Durresi, Ershela; Sharma, Nikhil; Hu, Linda S.; Pletikos, Mihovil; Griffith, Eric C.; Partlow, Jennifer N.; Stevens, Christine R.; Adli, Mazhar; Chahrour, Maria; Sestan, Nenad; Walsh, Christopher A.; Berezovskii, Vladimir K.; Livingstone, Margaret S.; Greenberg, Michael E.

    2017-01-01

    Sensory stimuli drive the maturation and function of the mammalian nervous system in part through the activation of gene expression networks that regulate synapse development and plasticity. These networks have primarily been studied in mice, and it is not known whether there are species- or clade-specific activity-regulated genes that control features of brain development and function. Here we use transcriptional profiling of human fetal brain cultures to identify an activity-dependent secreted factor, Osteocrin (OSTN), that is induced by membrane depolarization of human but not mouse neurons. We find that OSTN has been repurposed in primates through the evolutionary acquisition of DNA regulatory elements that bind the activity-regulated transcription factor MEF2. In addition, we demonstrate that OSTN is expressed in primate neocortex and restricts activity-dependent dendritic growth in human neurons. These findings suggest that, in response to sensory input, OSTN regulates features of neuronal structure and function that are unique to primates. PMID:27830782

  18. Nonhuman Primate Optogenetics: Recent Advances and Future Directions

    PubMed Central

    Acker, Leah

    2017-01-01

    Optogenetics is the use of genetically coded, light-gated ion channels or pumps (opsins) for millisecond resolution control of neural activity. By targeting opsin expression to specific cell types and neuronal pathways, optogenetics can expand our understanding of the neural basis of normal and pathological behavior. To maximize the potential of optogenetics to study human cognition and behavior, optogenetics should be applied to the study of nonhuman primates (NHPs). The homology between NHPs and humans makes these animals the best experimental model for understanding human brain function and dysfunction. Moreover, for genetic tools to have translational promise, their use must be demonstrated effectively in large, wild-type animals such as Rhesus macaques. Here, we review recent advances in primate optogenetics. We highlight the technical hurdles that have been cleared, challenges that remain, and summarize how optogenetic experiments are expanding our understanding of primate brain function. PMID:29118219

  19. Cortical Folding of the Primate Brain: An Interdisciplinary Examination of the Genetic Architecture, Modularity, and Evolvability of a Significant Neurological Trait in Pedigreed Baboons (Genus Papio)

    PubMed Central

    Atkinson, Elizabeth G.; Rogers, Jeffrey; Mahaney, Michael C.; Cox, Laura A.; Cheverud, James M.

    2015-01-01

    Folding of the primate brain cortex allows for improved neural processing power by increasing cortical surface area for the allocation of neurons. The arrangement of folds (sulci) and ridges (gyri) across the cerebral cortex is thought to reflect the underlying neural network. Gyrification, an adaptive trait with a unique evolutionary history, is affected by genetic factors different from those affecting brain volume. Using a large pedigreed population of ∼1000 Papio baboons, we address critical questions about the genetic architecture of primate brain folding, the interplay between genetics, brain anatomy, development, patterns of cortical–cortical connectivity, and gyrification’s potential for future evolution. Through Mantel testing and cluster analyses, we find that the baboon cortex is quite evolvable, with high integration between the genotype and phenotype. We further find significantly similar partitioning of variation between cortical development, anatomy, and connectivity, supporting the predictions of tension-based models for sulcal development. We identify a significant, moderate degree of genetic control over variation in sulcal length, with gyrus-shape features being more susceptible to environmental effects. Finally, through QTL mapping, we identify novel chromosomal regions affecting variation in brain folding. The most significant QTL contain compelling candidate genes, including gene clusters associated with Williams and Down syndromes. The QTL distribution suggests a complex genetic architecture for gyrification with both polygeny and pleiotropy. Our results provide a solid preliminary characterization of the genetic basis of primate brain folding, a unique and biomedically relevant phenotype with significant implications in primate brain evolution. PMID:25873632

  20. The evolution of the complex sensory and motor systems of the human brain.

    PubMed

    Kaas, Jon H

    2008-03-18

    Inferences about how the complex sensory and motor systems of the human brain evolved are based on the results of comparative studies of brain organization across a range of mammalian species, and evidence from the endocasts of fossil skulls of key extinct species. The endocasts of the skulls of early mammals indicate that they had small brains with little neocortex. Evidence from comparative studies of cortical organization from small-brained mammals of the six major branches of mammalian evolution supports the conclusion that the small neocortex of early mammals was divided into roughly 20-25 cortical areas, including primary and secondary sensory fields. In early primates, vision was the dominant sense, and cortical areas associated with vision in temporal and occipital cortex underwent a significant expansion. Comparative studies indicate that early primates had 10 or more visual areas, and somatosensory areas with expanded representations of the forepaw. Posterior parietal cortex was also expanded, with a caudal half dominated by visual inputs, and a rostral half dominated by somatosensory inputs with outputs to an array of seven or more motor and visuomotor areas of the frontal lobe. Somatosensory areas and posterior parietal cortex became further differentiated in early anthropoid primates. As larger brains evolved in early apes and in our hominin ancestors, the number of cortical areas increased to reach an estimated 200 or so in present day humans, and hemispheric specializations emerged. The large human brain grew primarily by increasing neuron number rather than increasing average neuron size.

  1. Accelerated recruitment of new brain development genes into the human genome.

    PubMed

    Zhang, Yong E; Landback, Patrick; Vibranovski, Maria D; Long, Manyuan

    2011-10-01

    How the human brain evolved has attracted tremendous interests for decades. Motivated by case studies of primate-specific genes implicated in brain function, we examined whether or not the young genes, those emerging genome-wide in the lineages specific to the primates or rodents, showed distinct spatial and temporal patterns of transcription compared to old genes, which had existed before primate and rodent split. We found consistent patterns across different sources of expression data: there is a significantly larger proportion of young genes expressed in the fetal or infant brain of humans than in mouse, and more young genes in humans have expression biased toward early developing brains than old genes. Most of these young genes are expressed in the evolutionarily newest part of human brain, the neocortex. Remarkably, we also identified a number of human-specific genes which are expressed in the prefrontal cortex, which is implicated in complex cognitive behaviors. The young genes upregulated in the early developing human brain play diverse functional roles, with a significant enrichment of transcription factors. Genes originating from different mechanisms show a similar expression bias in the developing brain. Moreover, we found that the young genes upregulated in early brain development showed rapid protein evolution compared to old genes also expressed in the fetal brain. Strikingly, genes expressed in the neocortex arose soon after its morphological origin. These four lines of evidence suggest that positive selection for brain function may have contributed to the origination of young genes expressed in the developing brain. These data demonstrate a striking recruitment of new genes into the early development of the human brain.

  2. Comparative analysis of A-to-I editing in human and non-human primate brains reveals conserved patterns and context-dependent regulation of RNA editing.

    PubMed

    O'Neil, Richard T; Wang, Xiaojing; Morabito, Michael V; Emeson, Ronald B

    2017-04-06

    A-to-I RNA editing is an important process for generating molecular diversity in the brain through modification of transcripts encoding several proteins important for neuronal signaling. We investigated the relationships between the extent of editing at multiple substrate transcripts (5HT2C, MGLUR4, CADPS, GLUR2, GLUR4, and GABRA3) in brain tissue obtained from adult humans and rhesus macaques. Several patterns emerged from these studies revealing conservation of editing across primate species. Additionally, variability in the human population allows us to make novel inferences about the co-regulation of editing at different editing sites and even across different brain regions.

  3. Manipulation complexity in primates coevolved with brain size and terrestriality

    PubMed Central

    Heldstab, Sandra A.; Kosonen, Zaida K.; Koski, Sonja E.; Burkart, Judith M.; van Schaik, Carel P.; Isler, Karin

    2016-01-01

    Humans occupy by far the most complex foraging niche of all mammals, built around sophisticated technology, and at the same time exhibit unusually large brains. To examine the evolutionary processes underlying these features, we investigated how manipulation complexity is related to brain size, cognitive test performance, terrestriality, and diet quality in a sample of 36 non-human primate species. We categorized manipulation bouts in food-related contexts into unimanual and bimanual actions, and asynchronous or synchronous hand and finger use, and established levels of manipulative complexity using Guttman scaling. Manipulation categories followed a cumulative ranking. They were particularly high in species that use cognitively challenging food acquisition techniques, such as extractive foraging and tool use. Manipulation complexity was also consistently positively correlated with brain size and cognitive test performance. Terrestriality had a positive effect on this relationship, but diet quality did not affect it. Unlike a previous study on carnivores, we found that, among primates, brain size and complex manipulations to acquire food underwent correlated evolution, which may have been influenced by terrestriality. Accordingly, our results support the idea of an evolutionary feedback loop between manipulation complexity and cognition in the human lineage, which may have been enhanced by increasingly terrestrial habits. PMID:27075921

  4. Real-time MR imaging of adeno-associated viral vector delivery to the primate brain

    PubMed Central

    Fiandaca, Massimo S.; Varenika, Vanja; Eberling, Jamie; McKnight, Tracy; Bringas, John; Pivirotto, Phillip; Beyer, Janine; Hadaczek, Piotr; Bowers, William; Park, John; Federoff, Howard; Forsayeth, John; Bankiewicz, Krystof S.

    2009-01-01

    We are developing a method for real-time magnetic resonance imaging (MRI) visualization of convection-enhanced delivery (CED) of adeno-associated viral vectors (AAV) to the primate brain. By including gadolinium-loaded liposomes (GDL) with AAV, we can track the convective movement of viral particles by continuous monitoring of distribution of surrogate GDL. In order to validate this approach, we infused two AAV (AAV1-GFP and AAV2-hAADC) into three different regions of non-human primate brain (corona radiata, putamen, and thalamus). The procedure was tolerated well by all three animals in the study. The distribution of GFP determined by immunohistochemistry in both brain regions correlated closely with distribution of GDL determined by MRI. Co-distribution was weaker with AAV2-hAADC, although in vivo PET scanning with FMT for AADC activity correlated well with immunohistochemistry of AADC. Although this is a relatively small study, it appears that AAV1 correlates better with MRI-monitored delivery than does AAV2. It seems likely that the difference in distribution may be due to differences in tissue specificity of the two serotypes. PMID:19095069

  5. Marmoset monkeys evaluate third-party reciprocity.

    PubMed

    Kawai, Nobuyuki; Yasue, Miyuki; Banno, Taku; Ichinohe, Noritaka

    2014-05-01

    Many non-human primates have been observed to reciprocate and to understand reciprocity in one-to-one social exchanges. A recent study demonstrated that capuchin monkeys are sensitive to both third-party reciprocity and violation of reciprocity; however, whether this sensitivity is a function of general intelligence, evidenced by their larger brain size relative to other primates, remains unclear. We hypothesized that highly pro-social primates, even with a relatively smaller brain, would be sensitive to others' reciprocity. Here, we show that common marmosets discriminated between human actors who reciprocated in social exchanges with others and those who did not. Monkeys accepted rewards less frequently from non-reciprocators than they did from reciprocators when the non-reciprocators had retained all food items, but they accepted rewards from both actors equally when they had observed reciprocal exchange between the actors. These results suggest that mechanisms to detect unfair reciprocity in third-party social exchanges do not require domain-general higher cognitive ability based on proportionally larger brains, but rather emerge from the cooperative and pro-social tendencies of species, and thereby suggest this ability evolved in multiple primate lineages. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Central Nervous System Control of Voice and Swallowing

    PubMed Central

    Ludlow, Christy L.

    2015-01-01

    This review of the central nervous control systems for voice and swallowing has suggested that the traditional concepts of a separation between cortical and limbic and brain stem control should be refined and more integrative. For voice production, a separation of the non-human vocalization system from the human learned voice production system has been posited based primarily on studies of non-human primates. However, recent humans studies of emotionally based vocalizations and human volitional voice production has shown more integration between these two systems than previously proposed. Recent human studies have shown that reflexive vocalization as well as learned voice production not involving speech, involve a common integrative system. On the other hand, recent studies of non-human primates have provided evidence of some cortical activity during vocalization and cortical changes with training during vocal behavior. For swallowing, evidence from the macaque and functional brain imaging in humans indicates that the control for the pharyngeal phase of swallowing is not primarily under brain stem mechanisms as previously proposed. Studies suggest that the initiation and patterning of swallowing for the pharyngeal phase is also under active cortical control for both spontaneous as well as volitional swallowing in awake humans and non-human primates. PMID:26241238

  7. The evolution of the complex sensory and motor systems of the human brain

    PubMed Central

    Kaas, Jon H.

    2008-01-01

    Inferences about how the complex sensory and motor systems of the human brain evolved are based on the results of comparative studies of brain organization across a range of mammalian species, and evidence from the endocasts of fossil skulls of key extinct species. The endocasts of the skulls of early mammals indicate that they had small brains with little neocortex. Evidence from comparative studies of cortical organization from small-brained mammals of the six major branches of mammalian evolution supports the conclusion that the small neocortex of early mammals was divided into roughly 20–25 cortical areas, including primary and secondary sensory fields. In early primates, vision was the dominant sense, and cortical areas associated with vision in temporal and occipital cortex underwent a significant expansion. Comparative studies indicate that early primates had 10 or more visual areas, and somatosensory areas with expanded representations of the forepaw. Posterior parietal cortex was also expanded, with a caudal half dominated by visual inputs, and a rostral half dominated by somatosensory inputs with outputs to an array of seven or more motor and visuomotor areas of the frontal lobe. Somatosensory areas and posterior parietal cortex became further differentiated in early anthropoid primates. As larger brains evolved in early apes and in our hominin ancestors, the number of cortical areas increased to reach an estimated 200 or so in present day humans, and hemispheric specializations emerged. The large human brain grew primarily by increasing neuron number rather than increasing average neuron size. PMID:18331903

  8. The evolution of neocortex in primates

    PubMed Central

    Kaas, Jon H.

    2013-01-01

    We can learn about the evolution of neocortex in primates through comparative studies of cortical organization in primates and those mammals that are the closest living relatives of primates, in conjunction with brain features revealed by the skull endocasts of fossil archaic primates. Such studies suggest that early primates had acquired a number of features of neocortex that now distinguish modern primates. Most notably, early primates had an array of new visual areas, and those visual areas widely shared with other mammals had been modified. Posterior parietal cortex was greatly expanded with sensorimotor modules for reaching, grasping, and personal defense. Motor cortex had become more specialized for hand use, and the functions of primary motor cortex were enhanced by the addition and development of premotor and cingulate motor areas. Cortical architecture became more varied, and cortical neuron populations became denser overall than in nonprimate ancestors. Primary visual cortex had the densest population of neurons, and this became more pronounced in the anthropoid radiation. Within the primate clade, considerable variability in cortical size, numbers of areas, and architecture evolved. PMID:22230624

  9. The evolution of neocortex in primates.

    PubMed

    Kaas, Jon H

    2012-01-01

    We can learn about the evolution of neocortex in primates through comparative studies of cortical organization in primates and those mammals that are the closest living relatives of primates, in conjunction with brain features revealed by the skull endocasts of fossil archaic primates. Such studies suggest that early primates had acquired a number of features of neocortex that now distinguish modern primates. Most notably, early primates had an array of new visual areas, and those visual areas widely shared with other mammals had been modified. Posterior parietal cortex was greatly expanded with sensorimotor modules for reaching, grasping, and personal defense. Motor cortex had become more specialized for hand use, and the functions of primary motor cortex were enhanced by the addition and development of premotor and cingulate motor areas. Cortical architecture became more varied, and cortical neuron populations became denser overall than in nonprimate ancestors. Primary visual cortex had the densest population of neurons, and this became more pronounced in the anthropoid radiation. Within the primate clade, considerable variability in cortical size, numbers of areas, and architecture evolved. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The missing link: evolution of the primate cerebellum.

    PubMed

    MacLeod, Carol

    2012-01-01

    The cerebellum has too often been seen as the "little brain," subservient to the "big brain," the cerebrum. That is changing, as neuroimaging uncovers the cerebellum as the "missing link" in the neurological underpinnings of many cognitive domains. Connections between the neocortex and the cerebellum are now more precisely defined, with functionally localized areas of cerebellar cortex understood for cognitive tasks in humans. Comparative volumetric studies of the primate cerebellum have isolated some elements of circuitry, and our field is moving toward a better integration with the neurosciences in a systematic comparative framework. The next decade may show great advances, as relatively noninvasive techniques of neuroimaging have the potential to build a comparative model of the evolution of primate neurocircuitry. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Biological satellite scientific devices

    NASA Astrophysics Data System (ADS)

    Perepech, B. L.; Rumiantsev, V. P.; Galkin, V. M.; Shakhvorostov, S. V.; Rvachev, S. S.

    1991-02-01

    The paper describes the NA SBS 9 systems developed for the ninth Cosmos-2044 biological test mission. The NA SBS 9 life support systems designed for monkeys and rats follow standard design of BIOS-Vivarium and BIOS-Primate units. The main features of NA SBS 9 include the use of a recently developed HF physiological data recorder Skat-3; the incorporation into BIOS-Primate of two units intended for biorhythmic studies (the BBI-Zh system for studying beetles and the VITALOG developed by NASA for studies on monkeys); and a new version of BIOS-Primate system incorporating a capacitance-link and an inductance-link temperature transmitters and a brain tissue oxygen tension control channel.

  12. Nicotine Blocks Brain Estrogen Synthase (Aromatase): In Vivo Positron Emission Tomography Studies in Female Baboons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biegon, A.; Biegon, A.; Kim, S.-W.

    Cigarette smoking and nicotine have complex effects on human physiology and behavior, including some effects similar to those elicited by inhibition of aromatase, the last enzyme in estrogen biosynthesis. We report the first in vivo primate study to determine whether there is a direct effect of nicotine administration on brain aromatase. Brain aromatase availability was examined with positron emission tomography and the selective aromatase inhibitor [{sup 11}C]vorozole in six baboons before and after exposure to IV nicotine at .015 and .03 mg/kg. Nicotine administration produced significant, dose-dependent reductions in [{sup 11}C]vorozole binding. The amygdala and preoptic area showed the largestmore » reductions. Plasma levels of nicotine and its major metabolite cotinine were similar to those found in cigarette smokers. Nicotine interacts in vivo with primate brain aromatase in regions involved in mood, aggression, and sexual behavior.« less

  13. Comparative psychology and the great apes - Their competence in learning, language, and numbers

    NASA Technical Reports Server (NTRS)

    Rumbaugh, Duane M.

    1990-01-01

    An overview of comparative studies conducted for the past three decades is presented. These studies have led to the establishment of the Language Research Center that provides facilities for research into questions of primate behavior and cognition. Several experiments conducted among chimpanzees are discussed and comparative analyses with the lesser apes, monkeys, and humans are offered. Among the primates, brain complexity varies widely and the evidence is strong that encephalization and enhanced brain complexity facilitate the learning of concepts, the transfer of learning to an advantage, and mediational and observational learning.

  14. Avian visual behavior and the organization of the telencephalon.

    PubMed

    Shimizu, Toru; Patton, Tadd B; Husband, Scott A

    2010-01-01

    Birds have excellent visual abilities that are comparable or superior to those of primates, but how the bird brain solves complex visual problems is poorly understood. More specifically, we lack knowledge about how such superb abilities are used in nature and how the brain, especially the telencephalon, is organized to process visual information. Here we review the results of several studies that examine the organization of the avian telencephalon and the relevance of visual abilities to avian social and reproductive behavior. Video playback and photographic stimuli show that birds can detect and evaluate subtle differences in local facial features of potential mates in a fashion similar to that of primates. These techniques have also revealed that birds do not attend well to global configural changes in the face, suggesting a fundamental difference between birds and primates in face perception. The telencephalon plays a major role in the visual and visuo-cognitive abilities of birds and primates, and anatomical data suggest that these animals may share similar organizational characteristics in the visual telencephalon. As is true in the primate cerebral cortex, different visual features are processed separately in the avian telencephalon where separate channels are organized in the anterior-posterior axis roughly parallel to the major laminae. Furthermore, the efferent projections from the primary visual telencephalon form an extensive column-like continuum involving the dorsolateral pallium and the lateral basal ganglia. Such a column-like organization may exist not only for vision, but for other sensory modalities and even for a continuum that links sensory and limbic areas of the avian brain. Behavioral and neural studies must be integrated in order to understand how birds have developed their amazing visual systems through 150 million years of evolution. 2010 S. Karger AG, Basel.

  15. Avian Visual Behavior and the Organization of the Telencephalon

    PubMed Central

    Shimizu, Toru; Patton, Tadd B.; Husband, Scott A.

    2010-01-01

    Birds have excellent visual abilities that are comparable or superior to those of primates, but how the bird brain solves complex visual problems is poorly understood. More specifically, we lack knowledge about how such superb abilities are used in nature and how the brain, especially the telencephalon, is organized to process visual information. Here we review the results of several studies that examine the organization of the avian telencephalon and the relevance of visual abilities to avian social and reproductive behavior. Video playback and photographic stimuli show that birds can detect and evaluate subtle differences in local facial features of potential mates in a fashion similar to that of primates. These techniques have also revealed that birds do not attend well to global configural changes in the face, suggesting a fundamental difference between birds and primates in face perception. The telencephalon plays a major role in the visual and visuo-cognitive abilities of birds and primates, and anatomical data suggest that these animals may share similar organizational characteristics in the visual telencephalon. As is true in the primate cerebral cortex, different visual features are processed separately in the avian telencephalon where separate channels are organized in the anterior-posterior axis roughly parallel to the major laminae. Furthermore, the efferent projections from the primary visual telencephalon form an extensive column-like continuum involving the dorsolateral pallium and the lateral basal ganglia. Such a column-like organization may exist not only for vision, but for other sensory modalities and even for a continuum that links sensory and limbic areas of the avian brain. Behavioral and neural studies must be integrated in order to understand how birds have developed their amazing visual systems through 150 million years of evolution. PMID:20733296

  16. Accelerated Evolution of the ASPM Gene Controlling Brain Size Begins Prior to Human Brain Expansion

    PubMed Central

    Solomon, Gregory; Gersch, William; Yoon, Young-Ho; Collura, Randall; Ruvolo, Maryellen; Barrett, J. Carl; Woods, C. Geoffrey; Walsh, Christopher A

    2004-01-01

    Primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes) consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size. PMID:15045028

  17. Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.

    PubMed

    Kriegeskorte, Nikolaus

    2015-11-24

    Recent advances in neural network modeling have enabled major strides in computer vision and other artificial intelligence applications. Human-level visual recognition abilities are coming within reach of artificial systems. Artificial neural networks are inspired by the brain, and their computations could be implemented in biological neurons. Convolutional feedforward networks, which now dominate computer vision, take further inspiration from the architecture of the primate visual hierarchy. However, the current models are designed with engineering goals, not to model brain computations. Nevertheless, initial studies comparing internal representations between these models and primate brains find surprisingly similar representational spaces. With human-level performance no longer out of reach, we are entering an exciting new era, in which we will be able to build biologically faithful feedforward and recurrent computational models of how biological brains perform high-level feats of intelligence, including vision.

  18. Ontogenetic ritualization of primate gesture as a case study in dyadic brain modeling.

    PubMed

    Gasser, Brad; Cartmill, Erica A; Arbib, Michael A

    2014-01-01

    This paper introduces dyadic brain modeling - the simultaneous, computational modeling of the brains of two interacting agents - to explore ways in which our understanding of macaque brain circuitry can ground new models of brain mechanisms involved in ape interaction. Specifically, we assess a range of data on gestural communication of great apes as the basis for developing an account of the interactions of two primates engaged in ontogenetic ritualization, a proposed learning mechanism through which a functional action may become a communicative gesture over repeated interactions between two individuals (the 'dyad'). The integration of behavioral, neural, and computational data in dyadic (or, more generally, social) brain modeling has broad application to comparative and evolutionary questions, particularly for the evolutionary origins of cognition and language in the human lineage. We relate this work to the neuroinformatics challenges of integrating and sharing data to support collaboration between primatologists, neuroscientists and modelers that will help speed the emergence of what may be called comparative neuro-primatology.

  19. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function.

    PubMed

    Niu, Ao-lei; Wang, Yin-qiu; Zhang, Hui; Liao, Cheng-hong; Wang, Jin-kai; Zhang, Rui; Che, Jun; Su, Bing

    2011-10-12

    Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV) sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. RHOXF2 is a fast-evolving homeobox gene in primates. The rapid evolution and copy number changes of RHOXF2 had been driven by Darwinian positive selection acting on the male reproductive system and possibly also on the central nervous system, which sheds light on understanding the role of homeobox genes in adaptive evolution.

  20. Differential cadherin expression in the developing postnatal telencephalon of a New World monkey.

    PubMed

    Matsunaga, Eiji; Nambu, Sanae; Oka, Mariko; Iriki, Atsushi

    2013-12-01

    Cadherins are cell adhesion molecules widely expressed in the nervous system, where they play various roles in neural patterning, nuclei formation, axon guidance, and synapse formation and function. Although many published articles have reported on cadherin expression in rodents and ferrets, there are limited data on their expression in primate brains. In this study, in situ hybridization analysis was performed for 10 cadherins [nine classic cadherins (Cdh4, -6, -7, -8, -9, -10, -11, -12, and -20) and T-cadherin (Cdh13)] in the developing postnatal telencephalon of the common marmoset (Callithrix jacchus). Each cadherin showed broad expression in the cerebral cortex, basal ganglia, amygdala, and hippocampus, as previously shown in the rodent brain. However, detailed expression patterns differed between rodents and marmosets. In contrast to rodents, cadherin expression was reduced overall and localized to restricted areas of the brain during the developmental process, suggesting that cadherins are more crucially involved in developmental or maturation processes rather than in neural functioning. These results also highlight the possibility that restricted/less redundant cadherin expression allows primate brains to generate functional diversity among neurons, allowing morphological and functional differences between rodents and primates. Copyright © 2013 Wiley Periodicals, Inc.

  1. MRI-Guided Delivery of Viral Vectors.

    PubMed

    Salegio, Ernesto A; Bringas, John; Bankiewicz, Krystof S

    2016-01-01

    Gene therapy has emerged as a potential avenue of treatment for many neurological disorders. Technological advances in imaging techniques allow for the monitoring of real-time infusions into the brain of rodents, nonhuman primates, and humans. Here, we discuss the use of magnetic resonance imaging (MRI) as a tool in the delivery of adeno-associated viral (AAV) particles into brain of nonhuman primates.

  2. Evidence of Tau Hyperphosphorylation and Dystrophic Microglia in the Common Marmoset.

    PubMed

    Rodriguez-Callejas, Juan D; Fuchs, Eberhard; Perez-Cruz, Claudia

    2016-01-01

    Common marmosets ( Callithrix jacchus ) have recently gained popularity in biomedical research as models of aging research. Basically, they confer advantages from other non-human primates due to their shorter lifespan with onset of appearance of aging at 8 years. Old marmosets present some markers linked to neurodegeneration in the brain such as amyloid beta (Aβ) 1-42 and Aβ 1-40 . However, there are no studies exploring other cellular markers associated with neurodegenerative diseases in this non-human primate. Using immunohistochemistry, we analyzed brains of male adolescent, adult, old, and aged marmosets. We observed accumulation of Aβ 1-40 and Aβ 1-42 in the cortex of aged subjects. Tau hyperphosphorylation was already detected in the brain of adolescent animals and increased with aging in a more fibrillary form. Microglia activation was also observed in the aging process, while a dystrophic phenotype accumulates in aged subjects. Interestingly, dystrophic microglia contained hyperphosphorylated tau, but active microglia did not. These results support previous findings regarding microglia dysfunctionality in aging and neurodegenerative diseases as Alzheimer's disease. Further studies should explore the functional consequences of these findings to position this non-human primate as animal model of aging and neurodegeneration.

  3. Evidence of Tau Hyperphosphorylation and Dystrophic Microglia in the Common Marmoset

    PubMed Central

    Rodriguez-Callejas, Juan D.; Fuchs, Eberhard; Perez-Cruz, Claudia

    2016-01-01

    Common marmosets (Callithrix jacchus) have recently gained popularity in biomedical research as models of aging research. Basically, they confer advantages from other non-human primates due to their shorter lifespan with onset of appearance of aging at 8 years. Old marmosets present some markers linked to neurodegeneration in the brain such as amyloid beta (Aβ)1-42 and Aβ1-40. However, there are no studies exploring other cellular markers associated with neurodegenerative diseases in this non-human primate. Using immunohistochemistry, we analyzed brains of male adolescent, adult, old, and aged marmosets. We observed accumulation of Aβ1-40 and Aβ1-42 in the cortex of aged subjects. Tau hyperphosphorylation was already detected in the brain of adolescent animals and increased with aging in a more fibrillary form. Microglia activation was also observed in the aging process, while a dystrophic phenotype accumulates in aged subjects. Interestingly, dystrophic microglia contained hyperphosphorylated tau, but active microglia did not. These results support previous findings regarding microglia dysfunctionality in aging and neurodegenerative diseases as Alzheimer’s disease. Further studies should explore the functional consequences of these findings to position this non-human primate as animal model of aging and neurodegeneration. PMID:28066237

  4. Subarachnoid Hemorrhage Severely Impairs Brain Parenchymal Cerebrospinal Fluid Circulation in Nonhuman Primate.

    PubMed

    Goulay, Romain; Flament, Julien; Gauberti, Maxime; Naveau, Michael; Pasquet, Nolwenn; Gakuba, Clement; Emery, Evelyne; Hantraye, Philippe; Vivien, Denis; Aron-Badin, Romina; Gaberel, Thomas

    2017-08-01

    Subarachnoid hemorrhage (SAH) is a devastating form of stroke with neurological outcomes dependent on the occurrence of delayed cerebral ischemia. It has been shown in rodents that some of the mechanisms leading to delayed cerebral ischemia are related to a decreased circulation of the cerebrospinal fluid (CSF) within the brain parenchyma. Here, we evaluated the cerebral circulation of the CSF in a nonhuman primate in physiological condition and after SAH. We first evaluated in physiological condition the circulation of the brain CSF in Macaca facicularis , using magnetic resonance imaging of the temporal DOTA-Gd distribution after its injection into the CSF. Then, animals were subjected to a minimally invasive SAH before an MRI evaluation of the impact of SAH on the brain parenchymal CSF circulation. We first demonstrate that the CSF actively penetrates the brain parenchyma. Two hours after injection, almost the entire brain is labeled by DOTA-Gd. We also show that our model of SAH in nonhuman primate displays the characteristics of SAH in humans and leads to a dramatic impairment of the brain parenchymal circulation of the CSF. The CSF actively penetrates within the brain parenchyma in the gyrencephalic brain, as described for the glymphatic system in rodent. This parenchymal CSF circulation is severely impaired by SAH. © 2017 American Heart Association, Inc.

  5. Investigation of brain science and neurological/psychiatric disorders using genetically modified non-human primates.

    PubMed

    Okano, Hideyuki; Kishi, Noriyuki

    2018-06-01

    Although mice have been the most frequently used experimental animals in many research fields due to well-established gene manipulation techniques, recent evidence has revealed that rodent models do not always recapitulate pathophysiology of human neurological and psychiatric diseases due to the differences between humans and rodents. The recent developments in gene manipulation of non-human primate have been attracting much attention in the biomedical research field, because non-human primates have more applicable brain structure and function than rodents. In this review, we summarize recent progress on genetically-modified non-human primates including transgenic and knockout animals using genome editing technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Evolutionary Glycomics: Characterization of Milk Oligosaccharides in Primates

    PubMed Central

    Tao, Nannan; Wu, Shuai; Kim, Jaehan; An, Hyun Joo; Hinde, Katie; Power, Michael L.; Gagneux, Pascal; German, J. Bruce; Lebrilla, Carlito B.

    2011-01-01

    Free oligosaccharides are abundant components of mammalian milk and have primary roles as prebiotic compounds, in immune defense, and in brain development. Mass spectrometry-based technique is applied to profile milk oligosaccharides from apes (chimpanzee, gorilla, and siamang), new world monkeys (golden lion tamarin and common marmoset), and an old world monkey (rhesus). The purpose of this study was to evaluate the patterns of primate milk oligosaccharide composition from a phylogenetic perspective in order to assess the extent to which the compositions of hMOs derives from ancestral, primate patterns as opposed to more recent evolutionary events. Milk oligosaccharides were quantitated by nanoflow liquid chromatography on chip-based devices. The relative abundances of fucosylated and sialylated milk oligosaccharides in primates were also determined. For a systematic and comprehensive study of evolutionary patterns of milk oligosaccharides, cluster analysis of primate milk was performed using the chromatographic profile. In general, the oligosaccharides in primate milk, including humans, are more complex and exhibit greater diversity compared to the ones in non-primate milk. A detailed comparison of the oligosaccharides across evolution revealed non-sequential developmental pattern, i.e. that primate milk oligosaccharides do not necessarily cluster according to the primate phylogeny. This report represents the first comprehensive and quantitative effort to profile and elucidate the structures of free milk oligosaccharides so that they can be related to glycan function in different primates. PMID:21214271

  7. SYNAPTOSOMAL LACTATE DEHYDROGENASE ISOENZYME COMPOSITION IS SHIFTED TOWARD AEROBIC FORMS IN PRIMATE BRAIN EVOLUTION

    PubMed Central

    Duka, Tetyana; Anderson, Sarah M.; Collins, Zachary; Raghanti, Mary Ann; Ely, John J.; Hof, Patrick R.; Wildman, Derek E.; Goodman, Morris; Grossman, Lawrence I.; Sherwood, Chet C.

    2014-01-01

    With the evolution of a relatively large brain size in haplorhine primates (i.e., tarsiers, monkeys, apes and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in the synaptosomal fraction from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoforms, LDHB, among haplorhines as compared to strepsirrhines (i.e., lorises and lemurs), while in total homogenate of neocortex and striatum there was no significant difference in the LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, displaying an especially remarkable elevation in the ratio of LDH-B to LDH-A in humans. The phylogenetic variation in LDH-B to LDH-A ratio was correlated with species typical brain mass, but not encephalization quotient. A significant LDHB increase in the sub-neuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement. PMID:24686273

  8. Midsagittal Brain Variation among Non-Human Primates: Insights into Evolutionary Expansion of the Human Precuneus.

    PubMed

    Pereira-Pedro, Ana Sofia; Rilling, James K; Chen, Xu; Preuss, Todd M; Bruner, Emiliano

    2017-01-01

    The precuneus is a major element of the superior parietal lobule, positioned on the medial side of the hemisphere and reaching the dorsal surface of the brain. It is a crucial functional region for visuospatial integration, visual imagery, and body coordination. Previously, we argued that the precuneus expanded in recent human evolution, based on a combination of paleontological, comparative, and intraspecific evidence from fossil and modern human endocasts as well as from human and chimpanzee brains. The longitudinal proportions of this region are a major source of anatomical variation among adult humans and, being much larger in Homo sapiens, is the main characteristic differentiating human midsagittal brain morphology from that of our closest living primate relative, the chimpanzee. In the current shape analysis, we examine precuneus variation in non-human primates through landmark-based models, to evaluate the general pattern of variability in non-human primates, and to test whether precuneus proportions are influenced by allometric effects of brain size. Results show that precuneus proportions do not covary with brain size, and that the main difference between monkeys and apes involves a vertical expansion of the frontal and occipital regions in apes. Such differences might reflect differences in brain proportions or differences in cranial architecture. In this sample, precuneus variation is apparently not influenced by phylogenetic or allometric factors, but does vary consistently within species, at least in chimpanzees and macaques. This result further supports the hypothesis that precuneus expansion in modern humans is not merely a consequence of increasing brain size or of allometric scaling, but rather represents a species-specific morphological change in our lineage. © 2017 S. Karger AG, Basel.

  9. The behavioral genetics of nonhuman primates: Status and prospects.

    PubMed

    Rogers, Jeffrey

    2018-01-01

    The complexity and diversity of primate behavior have long attracted the attention of ethologists, psychologists, behavioral ecologists, and neuroscientists. Recent studies have advanced our understanding of the nature of genetic influences on differences in behavior among individuals within species. A number of analyses have focused on the genetic analysis of behavioral reactions to specific experimental tests, providing estimates of the degree of genetic control over reactivity, and beginning to identify the genes involved. Substantial progress is also being made in identifying genetic factors that influence the structure and function of the primate brain. Most of the published studies on these topics have examined either cercopithecines or chimpanzees, though a few studies have addressed these questions in other primate species. One potentially important line of research is beginning to identify the epigenetic processes that influence primate behavior, thus revealing specific cellular and molecular mechanisms by which environmental experiences can influence gene expression or gene function relevant to behavior. This review summarizes many of these studies of non-human primate behavioral genetics. The primary focus is on analyses that address the nature of the genes and genetic processes that affect differences in behavior among individuals within non-human primate species. Analyses of between species differences and potential avenues for future research are also discussed. © 2018 American Association of Physical Anthropologists.

  10. The corpus callosum in primates: processing speed of axons and the evolution of hemispheric asymmetry

    PubMed Central

    Phillips, Kimberley A.; Stimpson, Cheryl D.; Smaers, Jeroen B.; Raghanti, Mary Ann; Jacobs, Bob; Popratiloff, Anastas; Hof, Patrick R.; Sherwood, Chet C.

    2015-01-01

    Interhemispheric communication may be constrained as brain size increases because of transmission delays in action potentials over the length of axons. Although one might expect larger brains to have progressively thicker axons to compensate, spatial packing is a limiting factor. Axon size distributions within the primate corpus callosum (CC) may provide insights into how these demands affect conduction velocity. We used electron microscopy to explore phylogenetic variation in myelinated axon density and diameter of the CC from 14 different anthropoid primate species, including humans. The majority of axons were less than 1 µm in diameter across all species, indicating that conduction velocity for most interhemispheric communication is relatively constant regardless of brain size. The largest axons within the upper 95th percentile scaled with a progressively higher exponent than the median axons towards the posterior region of the CC. While brain mass among the primates in our analysis varied by 97-fold, estimates of the fastest cross-brain conduction times, as conveyed by axons at the 95th percentile, varied within a relatively narrow range between 3 and 9 ms across species, whereas cross-brain conduction times for the median axon diameters differed more substantially between 11 and 38 ms. Nonetheless, for both size classes of axons, an increase in diameter does not entirely compensate for the delay in interhemispheric transmission time that accompanies larger brain size. Such biophysical constraints on the processing speed of axons conveyed by the CC may play an important role in the evolution of hemispheric asymmetry. PMID:26511047

  11. Cellular scaling rules for the brain of afrotherians

    PubMed Central

    Neves, Kleber; Ferreira, Fernanda M.; Tovar-Moll, Fernanda; Gravett, Nadine; Bennett, Nigel C.; Kaswera, Consolate; Gilissen, Emmanuel; Manger, Paul R.; Herculano-Houzel, Suzana

    2014-01-01

    Quantitative analysis of the cellular composition of rodent, primate and eulipotyphlan brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in evolution in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of afrotherians, believed to be the first clade to radiate from the common eutherian ancestor. We find that afrotherians share non-neuronal scaling rules with rodents, primates and eulipotyphlans, as well as the coordinated scaling of numbers of neurons in the cerebral cortex and cerebellum. Afrotherians share with rodents and eulipotyphlans, but not with primates, the scaling of number of neurons in the cortex and in the cerebellum as a function of the number of neurons in the rest of the brain. Afrotheria also share with rodents and eulipotyphlans the neuronal scaling rules that apply to the cerebral cortex. Afrotherians share with rodents, but not with eulipotyphlans nor primates, the neuronal scaling rules that apply to the cerebellum. Importantly, the scaling of the folding index of the cerebral cortex with the number of neurons in the cerebral cortex is not shared by either afrotherians, rodents, or primates. The sharing of some neuronal scaling rules between afrotherians and rodents, and of some additional features with eulipotyphlans and primates, raise the interesting possibility that these shared characteristics applied to the common eutherian ancestor. In turn, the clade-specific characteristics that relate to the distribution of neurons along the surface of the cerebral cortex and to its degree of gyrification suggest that these characteristics compose an evolutionarily plastic suite of features that may have defined and distinguished mammalian groups in evolution. PMID:24596544

  12. Dental development in Megaladapis edwardsi (Primates, Lemuriformes): implications for understanding life history variation in subfossil lemurs.

    PubMed

    Schwartz, Gary T; Mahoney, Patrick; Godfrey, Laurie R; Cuozzo, Frank P; Jungers, William L; Randria, Gisèle F N

    2005-12-01

    Teeth grow incrementally and preserve within them a record of that incremental growth in the form of microscopic growth lines. Studying dental development in extinct and extant primates, and its relationship to adult brain and body size as well as other life history and ecological parameters (e.g., diet, somatic growth rates, gestation length, age at weaning), holds the potential to yield unparalleled insights into the life history profiles of fossil primates. Here, we address the absolute pace of dental development in Megaladapis edwardsi, a giant extinct lemur of Madagascar. By examining the microstructure of the first and developing second molars in a juvenile individual, we establish a chronology of molar crown development for this specimen (M1 CFT = 1.04 years; M2 CFT = 1.42 years) and determine its age at death (1.39 years). Microstructural data on prenatal M1 crown formation time allow us to calculate a minimum gestation length of 0.54 years for this species. Postnatal crown and root formation data allow us to estimate its age at M1 emergence (approximately 0.9 years) and to establish a minimum age for M2 emergence (>1.39 years). Finally, using reconstructions or estimates (drawn elsewhere) of adult body mass, brain size, and diet in Megaladapis, as well as the eruption sequence of its permanent teeth, we explore the efficacy of these variables in predicting the absolute pace of dental development in this fossil species. We test competing explanations of variation in crown formation timing across the order Primates. Brain size is the best single predictor of crown formation time in primates, but other variables help to explain the variation.

  13. The INIA19 Template and NeuroMaps Atlas for Primate Brain Image Parcellation and Spatial Normalization

    PubMed Central

    Rohlfing, Torsten; Kroenke, Christopher D.; Sullivan, Edith V.; Dubach, Mark F.; Bowden, Douglas M.; Grant, Kathleen A.; Pfefferbaum, Adolf

    2012-01-01

    The INIA19 is a new, high-quality template for imaging-based studies of non-human primate brains, created from high-resolution, T1-weighted magnetic resonance (MR) images of 19 rhesus macaque (Macaca mulatta) animals. Combined with the comprehensive cortical and sub-cortical label map of the NeuroMaps atlas, the INIA19 is equally suitable for studies requiring both spatial normalization and atlas label propagation. Population-averaged template images are provided for both the brain and the whole head, to allow alignment of the atlas with both skull-stripped and unstripped data, and thus to facilitate its use for skull stripping of new images. This article describes the construction of the template using freely available software tools, as well as the template itself, which is being made available to the scientific community (http://nitrc.org/projects/inia19/). PMID:23230398

  14. Virtual endocasts of Eocene Paramys (Paramyinae): oldest endocranial record for Rodentia and early brain evolution in Euarchontoglires.

    PubMed

    Bertrand, Ornella C; Amador-Mughal, Farrah; Silcox, Mary T

    2016-01-27

    Understanding the pattern of brain evolution in early rodents is central to reconstructing the ancestral condition for Glires, and for other members of Euarchontoglires including Primates. We describe the oldest virtual endocasts known for fossil rodents, which pertain to Paramys copei (Early Eocene) and Paramys delicatus (Middle Eocene). Both specimens of Paramys have larger olfactory bulbs and smaller paraflocculi relative to total endocranial volume than later occurring rodents, which may be primitive traits for Rodentia. The encephalization quotients (EQs) of Pa. copei and Pa. delicatus are higher than that of later occurring (Oligocene) Ischyromys typus, which contradicts the hypothesis that EQ increases through time in all mammalian orders. However, both species of Paramys have a lower relative neocortical surface area than later rodents, suggesting neocorticalization occurred through time in this Order, although to a lesser degree than in Primates. Paramys has a higher EQ but a lower neocortical ratio than any stem primate. This result contrasts with the idea that primates were always exceptional in their degree of overall encephalization and shows that relative brain size and neocortical surface area do not necessarily covary through time. As such, these data contradict assumptions made about the pattern of brain evolution in Euarchontoglires. © 2016 The Author(s).

  15. Virtual endocasts of Eocene Paramys (Paramyinae): oldest endocranial record for Rodentia and early brain evolution in Euarchontoglires

    PubMed Central

    Amador-Mughal, Farrah

    2016-01-01

    Understanding the pattern of brain evolution in early rodents is central to reconstructing the ancestral condition for Glires, and for other members of Euarchontoglires including Primates. We describe the oldest virtual endocasts known for fossil rodents, which pertain to Paramys copei (Early Eocene) and Paramys delicatus (Middle Eocene). Both specimens of Paramys have larger olfactory bulbs and smaller paraflocculi relative to total endocranial volume than later occurring rodents, which may be primitive traits for Rodentia. The encephalization quotients (EQs) of Pa. copei and Pa. delicatus are higher than that of later occurring (Oligocene) Ischyromys typus, which contradicts the hypothesis that EQ increases through time in all mammalian orders. However, both species of Paramys have a lower relative neocortical surface area than later rodents, suggesting neocorticalization occurred through time in this Order, although to a lesser degree than in Primates. Paramys has a higher EQ but a lower neocortical ratio than any stem primate. This result contrasts with the idea that primates were always exceptional in their degree of overall encephalization and shows that relative brain size and neocortical surface area do not necessarily covary through time. As such, these data contradict assumptions made about the pattern of brain evolution in Euarchontoglires. PMID:26817776

  16. ASPM and the Evolution of Cerebral Cortical Size in a Community of New World Monkeys

    PubMed Central

    Villanea, Fernando A.; Perry, George H.; Gutiérrez-Espeleta, Gustavo A.; Dominy, Nathaniel J.

    2012-01-01

    The ASPM (abnormal spindle-like microcephaly associated) gene has been proposed as a major determinant of cerebral cortical size among primates, including humans. Yet the specific functions of ASPM and its connection to human intelligence remain controversial. This debate is limited in part by a taxonomic focus on Old World monkeys and apes. Here we expand the comparative context of ASPM sequence analyses with a study of New World monkeys, a radiation of primates in which enlarged brain size has evolved in parallel in spider monkeys (genus Ateles) and capuchins (genus Cebus). The primate community of Costa Rica is perhaps a model system because it allows for independent pairwise comparisons of smaller- and larger-brained species within two taxonomic families. Accordingly, we analyzed the complete sequence of exon 18 of ASPM in Ateles geoffroyi, Alouatta palliata, Cebus capucinus, and Saimiri oerstedii. As the analysis of multiple species in a genus improves phylogenetic reconstruction, we also analyzed eleven published sequences from other New World monkeys. Our exon-wide, lineage-specific analysis of eleven genera and the ratio of rates of nonsynonymous to synonymous substitutions (dN/dS) on ASPM revealed no detectable evidence for positive selection in the lineages leading to Ateles or Cebus, as indicated by dN/dS ratios of <1.0 (0.6502 and 0.4268, respectively). Our results suggest that a multitude of interacting genes have driven the evolution of larger brains among primates, with different genes involved in this process in different encephalized lineages, or at least with evidence for positive selection not readily apparent for the same genes in all lineages. The primate community of Costa Rica may serve as a model system for future studies that aim to elucidate the molecular mechanisms underlying cognitive capacity and cortical size. PMID:23028686

  17. Elevated gene expression levels distinguish human from non-human primate brains

    PubMed Central

    Cáceres, Mario; Lachuer, Joel; Zapala, Matthew A.; Redmond, John C.; Kudo, Lili; Geschwind, Daniel H.; Lockhart, David J.; Preuss, Todd M.; Barlow, Carrolee

    2003-01-01

    Little is known about how the human brain differs from that of our closest relatives. To investigate the genetic basis of human specializations in brain organization and cognition, we compared gene expression profiles for the cerebral cortex of humans, chimpanzees, and rhesus macaques by using several independent techniques. We identified 169 genes that exhibited expression differences between human and chimpanzee cortex, and 91 were ascribed to the human lineage by using macaques as an outgroup. Surprisingly, most differences between the brains of humans and non-human primates involved up-regulation, with ≈90% of the genes being more highly expressed in humans. By contrast, in the comparison of human and chimpanzee heart and liver, the numbers of up- and down-regulated genes were nearly identical. Our results indicate that the human brain displays a distinctive pattern of gene expression relative to non-human primates, with higher expression levels for many genes belonging to a wide variety of functional classes. The increased expression of these genes could provide the basis for extensive modifications of cerebral physiology and function in humans and suggests that the human brain is characterized by elevated levels of neuronal activity. PMID:14557539

  18. Selective targeting of a TNFR decoy receptor pharmaceutical to the primate brain as a receptor-specific IgG fusion protein.

    PubMed

    Boado, Ruben J; Hui, Eric Ka-Wai; Lu, Jeff Zhiqiang; Zhou, Qing-Hui; Pardridge, William M

    2010-03-01

    Decoy receptors, such as the human tumor necrosis factor receptor (TNFR), are potential new therapies for brain disorders. However, decoy receptors are large molecule drugs that are not transported across the blood-brain barrier (BBB). To enable BBB transport of a TNFR decoy receptor, the human TNFR-II extracellular domain was re-engineered as a fusion protein with a chimeric monoclonal antibody (MAb) against the human insulin receptor (HIR). The HIRMAb acts as a molecular Trojan horse to ferry the TNFR therapeutic decoy receptor across the BBB. The HIRMAb-TNFR fusion protein was expressed in stably transfected CHO cells, and was analyzed with electrophoresis, Western blotting, size exclusion chromatography, and binding assays for the HIR and TNFalpha. The HIRMAb-TNFR fusion protein was radio-labeled by trititation, in parallel with the radio-iodination of recombinant TNFR:Fc fusion protein, and the proteins were co-injected in the adult Rhesus monkey. The TNFR:Fc fusion protein did not cross the primate BBB in vivo, but the uptake of the HIRMAb-TNFR fusion protein was high and 3% of the injected dose was taken up by the primate brain. The TNFR was selectively targeted to brain, relative to peripheral organs, following fusion to the HIRMAb. This study demonstrates that decoy receptors may be re-engineered as IgG fusion proteins with a BBB molecular Trojan horse that selectively targets the brain, and enables penetration of the BBB in vivo. IgG-decoy receptor fusion proteins represent a new class of human neurotherapeutics. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Locomotion and basicranial anatomy in primates and marsupials.

    PubMed

    Villamil, Catalina I

    2017-10-01

    There is ongoing debate in paleoanthropology about whether and how the anatomy of the cranium, and especially the cranial base, is evolving in response to locomotor and postural changes. However, the majority of studies focus on two-dimensional data, which fails to capture the complexity of cranial anatomy. This study tests whether three-dimensional cranial base anatomy is linked to locomotion or to other factors in primates (n = 473) and marsupials (n = 231). Results indicate that although there is a small effect of locomotion on cranial base anatomy in primates, this is not the case in marsupials. Instead, facial anatomy likely drives variation in cranial base anatomy in both primates and marsupials, with additional roles for body size and brain size. Although some changes to foramen magnum position and orientation are phylogenetically useful among the hominoids, they do not necessarily reflect locomotion or positional behavior. The interplay between locomotion, posture, and facial anatomy in primates requires further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Brain shape convergence in the adaptive radiation of New World monkeys

    PubMed Central

    Aristide, Leandro; dos Reis, Sergio Furtado; Machado, Alessandra C.; Lima, Inaya; Lopes, Ricardo T.; Perez, S. Ivan

    2016-01-01

    Primates constitute one of the most diverse mammalian clades, and a notable feature of their diversification is the evolution of brain morphology. However, the evolutionary processes and ecological factors behind these changes are largely unknown. In this work, we investigate brain shape diversification of New World monkeys during their adaptive radiation in relation to different ecological dimensions. Our results reveal that brain diversification in this clade can be explained by invoking a model of adaptive peak shifts to unique and shared optima, defined by a multidimensional ecological niche hypothesis. Particularly, we show that the evolution of convergent brain phenotypes may be related to ecological factors associated with group size (e.g., social complexity). Together, our results highlight the complexity of brain evolution and the ecological significance of brain shape changes during the evolutionary diversification of a primate clade. PMID:26858427

  1. Comparative analyses of the neuron numbers and volumes of the amygdaloid complex in old and new world primates.

    PubMed

    Carlo, C N; Stefanacci, L; Semendeferi, K; Stevens, C F

    2010-04-15

    The amygdaloid complex (AC), a key component of the limbic system, is a brain region critical for the detection and interpretation of emotionally salient information. Therefore, changes in its structure and function are likely to provide correlates of mood and emotion disorders, diseases that afflict a large portion of the human population. Previous gross comparisons of the AC in control and diseased individuals have, however, mainly failed to discover these expected correlations with diseases. We have characterized AC nuclei in different nonhuman primate species to establish a baseline for more refined comparisons between the normal and the diseased amygdala. AC nuclei volume and neuron number in 19 subdivisions are reported from 13 Old and New World primate brains, spanning five primate species, and compared with corresponding data from humans. Analysis of the four largest AC nuclei revealed that volume and neuron number of one component, the central nucleus, has a negative allometric relationship with total amygdala volume and neuron number, which is in contrast with the isometric relationship found in the other AC nuclei (for both neuron number and volume). Neuron density decreases across all four nuclei according to a single power law with an exponent of about minus one-half. Because we have included quantitative comparisons with great apes and humans, our conclusions apply to human brains, and our scaling laws can potentially be used to study the anatomical correlates of the amygdala in disorders involving pathological emotion processing. (c) 2009 Wiley-Liss, Inc.

  2. Being fat and smart: A comparative analysis of the fat-brain trade-off in mammals.

    PubMed

    Heldstab, Sandra A; van Schaik, Carel P; Isler, Karin

    2016-11-01

    Humans stand out among non-aquatic mammals by having both an extremely large brain and a relatively large amount of body fat. To understand the evolution of this human peculiarity we report a phylogenetic comparative study of 120 mammalian species, including 30 primates, using seasonal variation in adult body mass as a proxy of the tendency to store fat. Species that rely on storing fat to survive lean periods are expected to be less active because of higher costs of locomotion and have increased predation risk due to reduced agility. Because a fat-storage strategy reduces the net cognitive benefit of a large brain without reducing its cost, such species should be less likely to evolve a larger brain than non-fat-storing species. We therefore predict that the two strategies to buffer food shortages (storing body fat and cognitive flexibility) are compensatory, and therefore predict negative co-evolution between relative brain size and seasonal variation in body mass. This trade-off is expected to be stronger in predominantly arboreal species than in more terrestrial ones, as the cost of transporting additional adipose depots is higher for climbing than for horizontal locomotion. We did, indeed, find a significant negative correlation between brain size and coefficient of variation (CV) in body mass in both sexes for the subsample of arboreal species, both in all mammals and within primates. In predominantly terrestrial species, in contrast, this correlation was not significant. We therefore suggest that the adoption of habitually terrestrial locomotor habits, accompanied by a reduced reliance on climbing, has allowed for a primate of our body size the unique human combination of unusually large brains and unusually large adipose depots. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Attenuation correction for the large non-human primate brain imaging using microPET.

    PubMed

    Naidoo-Variawa, S; Lehnert, W; Kassiou, M; Banati, R; Meikle, S R

    2010-04-21

    Assessment of the biodistribution and pharmacokinetics of radiopharmaceuticals in vivo is often performed on animal models of human disease prior to their use in humans. The baboon brain is physiologically and neuro-anatomically similar to the human brain and is therefore a suitable model for evaluating novel CNS radioligands. We previously demonstrated the feasibility of performing baboon brain imaging on a dedicated small animal PET scanner provided that the data are accurately corrected for degrading physical effects such as photon attenuation in the body. In this study, we investigated factors affecting the accuracy and reliability of alternative attenuation correction strategies when imaging the brain of a large non-human primate (papio hamadryas) using the microPET Focus 220 animal scanner. For measured attenuation correction, the best bias versus noise performance was achieved using a (57)Co transmission point source with a 4% energy window. The optimal energy window for a (68)Ge transmission source operating in singles acquisition mode was 20%, independent of the source strength, providing bias-noise performance almost as good as for (57)Co. For both transmission sources, doubling the acquisition time had minimal impact on the bias-noise trade-off for corrected emission images, despite observable improvements in reconstructed attenuation values. In a [(18)F]FDG brain scan of a female baboon, both measured attenuation correction strategies achieved good results and similar SNR, while segmented attenuation correction (based on uncorrected emission images) resulted in appreciable regional bias in deep grey matter structures and the skull. We conclude that measured attenuation correction using a single pass (57)Co (4% energy window) or (68)Ge (20% window) transmission scan achieves an excellent trade-off between bias and propagation of noise when imaging the large non-human primate brain with a microPET scanner.

  4. Attenuation correction for the large non-human primate brain imaging using microPET

    NASA Astrophysics Data System (ADS)

    Naidoo-Variawa, S.; Lehnert, W.; Kassiou, M.; Banati, R.; Meikle, S. R.

    2010-04-01

    Assessment of the biodistribution and pharmacokinetics of radiopharmaceuticals in vivo is often performed on animal models of human disease prior to their use in humans. The baboon brain is physiologically and neuro-anatomically similar to the human brain and is therefore a suitable model for evaluating novel CNS radioligands. We previously demonstrated the feasibility of performing baboon brain imaging on a dedicated small animal PET scanner provided that the data are accurately corrected for degrading physical effects such as photon attenuation in the body. In this study, we investigated factors affecting the accuracy and reliability of alternative attenuation correction strategies when imaging the brain of a large non-human primate (papio hamadryas) using the microPET Focus 220 animal scanner. For measured attenuation correction, the best bias versus noise performance was achieved using a 57Co transmission point source with a 4% energy window. The optimal energy window for a 68Ge transmission source operating in singles acquisition mode was 20%, independent of the source strength, providing bias-noise performance almost as good as for 57Co. For both transmission sources, doubling the acquisition time had minimal impact on the bias-noise trade-off for corrected emission images, despite observable improvements in reconstructed attenuation values. In a [18F]FDG brain scan of a female baboon, both measured attenuation correction strategies achieved good results and similar SNR, while segmented attenuation correction (based on uncorrected emission images) resulted in appreciable regional bias in deep grey matter structures and the skull. We conclude that measured attenuation correction using a single pass 57Co (4% energy window) or 68Ge (20% window) transmission scan achieves an excellent trade-off between bias and propagation of noise when imaging the large non-human primate brain with a microPET scanner.

  5. Parallel Processing Strategies of the Primate Visual System

    PubMed Central

    Nassi, Jonathan J.; Callaway, Edward M.

    2009-01-01

    Preface Incoming sensory information is sent to the brain along modality-specific channels corresponding to the five senses. Each of these channels further parses the incoming signals into parallel streams to provide a compact, efficient input to the brain. Ultimately, these parallel input signals must be elaborated upon and integrated within the cortex to provide a unified and coherent percept. Recent studies in the primate visual cortex have greatly contributed to our understanding of how this goal is accomplished. Multiple strategies including retinal tiling, hierarchical and parallel processing and modularity, defined spatially and by cell type-specific connectivity, are all used by the visual system to recover the rich detail of our visual surroundings. PMID:19352403

  6. High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates.

    PubMed

    Seiriki, Kaoru; Kasai, Atsushi; Hashimoto, Takeshi; Schulze, Wiebke; Niu, Misaki; Yamaguchi, Shun; Nakazawa, Takanobu; Inoue, Ken-Ichi; Uezono, Shiori; Takada, Masahiko; Naka, Yuichiro; Igarashi, Hisato; Tanuma, Masato; Waschek, James A; Ago, Yukio; Tanaka, Kenji F; Hayata-Takano, Atsuko; Nagayasu, Kazuki; Shintani, Norihito; Hashimoto, Ryota; Kunii, Yasuto; Hino, Mizuki; Matsumoto, Junya; Yabe, Hirooki; Nagai, Takeharu; Fujita, Katsumasa; Matsuda, Toshio; Takuma, Kazuhiro; Baba, Akemichi; Hashimoto, Hitoshi

    2017-06-21

    Subcellular resolution imaging of the whole brain and subsequent image analysis are prerequisites for understanding anatomical and functional brain networks. Here, we have developed a very high-speed serial-sectioning imaging system named FAST (block-face serial microscopy tomography), which acquires high-resolution images of a whole mouse brain in a speed range comparable to that of light-sheet fluorescence microscopy. FAST enables complete visualization of the brain at a resolution sufficient to resolve all cells and their subcellular structures. FAST renders unbiased quantitative group comparisons of normal and disease model brain cells for the whole brain at a high spatial resolution. Furthermore, FAST is highly scalable to non-human primate brains and human postmortem brain tissues, and can visualize neuronal projections in a whole adult marmoset brain. Thus, FAST provides new opportunities for global approaches that will allow for a better understanding of brain systems in multiple animal models and in human diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Inactivation of Primate Prefrontal Cortex Impairs Auditory and Audiovisual Working Memory.

    PubMed

    Plakke, Bethany; Hwang, Jaewon; Romanski, Lizabeth M

    2015-07-01

    The prefrontal cortex is associated with cognitive functions that include planning, reasoning, decision-making, working memory, and communication. Neurophysiology and neuropsychology studies have established that dorsolateral prefrontal cortex is essential in spatial working memory while the ventral frontal lobe processes language and communication signals. Single-unit recordings in nonhuman primates has shown that ventral prefrontal (VLPFC) neurons integrate face and vocal information and are active during audiovisual working memory. However, whether VLPFC is essential in remembering face and voice information is unknown. We therefore trained nonhuman primates in an audiovisual working memory paradigm using naturalistic face-vocalization movies as memoranda. We inactivated VLPFC, with reversible cortical cooling, and examined performance when faces, vocalizations or both faces and vocalization had to be remembered. We found that VLPFC inactivation impaired subjects' performance in audiovisual and auditory-alone versions of the task. In contrast, VLPFC inactivation did not disrupt visual working memory. Our studies demonstrate the importance of VLPFC in auditory and audiovisual working memory for social stimuli but suggest a different role for VLPFC in unimodal visual processing. The ventral frontal lobe, or inferior frontal gyrus, plays an important role in audiovisual communication in the human brain. Studies with nonhuman primates have found that neurons within ventral prefrontal cortex (VLPFC) encode both faces and vocalizations and that VLPFC is active when animals need to remember these social stimuli. In the present study, we temporarily inactivated VLPFC by cooling the cortex while nonhuman primates performed a working memory task. This impaired the ability of subjects to remember a face and vocalization pair or just the vocalization alone. Our work highlights the importance of the primate VLPFC in the processing of faces and vocalizations in a manner that is similar to the inferior frontal gyrus in the human brain. Copyright © 2015 the authors 0270-6474/15/359666-10$15.00/0.

  8. Long-chain n-3 PUFAs from fish oil enhance resting state brain glucose utilization and reduce anxiety in an adult nonhuman primate, the grey mouse lemur

    PubMed Central

    Pifferi, Fabien; Dorieux, Olène; Castellano, Christian-Alexandre; Croteau, Etienne; Masson, Marie; Guillermier, Martine; Van Camp, Nadja; Guesnet, Philippe; Alessandri, Jean-Marc; Cunnane, Stephen; Dhenain, Marc; Aujard, Fabienne

    2015-01-01

    Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months’ supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze.jlr Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety. PMID:26063461

  9. The effects of alcohol on the nonhuman primate brain: a network science approach to neuroimaging.

    PubMed

    Telesford, Qawi K; Laurienti, Paul J; Friedman, David P; Kraft, Robert A; Daunais, James B

    2013-11-01

    Animal studies have long been an important tool for basic research as they offer a degree of control often lacking in clinical studies. Of particular value is the use of nonhuman primates (NHPs) for neuroimaging studies. Currently, studies have been published using functional magnetic resonance imaging (fMRI) to understand the default-mode network in the NHP brain. Network science provides an alternative approach to neuroimaging allowing for evaluation of whole-brain connectivity. In this study, we used network science to build NHP brain networks from fMRI data to understand the basic functional organization of the NHP brain. We also explored how the brain network is affected following an acute ethanol (EtOH) pharmacological challenge. Baseline resting-state fMRI was acquired in an adult male rhesus macaque (n = 1) and a cohort of vervet monkeys (n = 10). A follow-up scan was conducted in the rhesus macaque to assess network variability and to assess the effects of an acute EtOH challenge on the brain network. The most connected regions in the resting-state networks were similar across species and matched regions identified as the default-mode network in previous NHP fMRI studies. Under an acute EtOH challenge, the functional organization of the brain was significantly impacted. Network science offers a great opportunity to understand the brain as a complex system and how pharmacological conditions can affect the system globally. These models are sensitive to changes in the brain and may prove to be a valuable tool in long-term studies on alcohol exposure. Copyright © 2013 by the Research Society on Alcoholism.

  10. Distribution and morphology of cholinergic, putative catecholaminergic and serotonergic neurons in the brain of the Egyptian rousette flying fox, Rousettus aegyptiacus.

    PubMed

    Maseko, Busisiwe C; Bourne, James A; Manger, Paul R

    2007-11-01

    Over the past decade much controversy has surrounded the hypothesis that the megachiroptera, or megabats, share unique neural characteristics with the primates. These observations, which include similarities in visual pathways, have suggested that the megabats are more closely related to the primates than to the other group of the Chiropteran order, the microbats, and suggests a diphyletic origin of the Chiroptera. To contribute data relevant to this debate, we used immunohistochemical techniques to reveal the architecture of the neuromodulatory systems of the Egyptian rousette (Rousettus aegypticus), an echolocating megabat. Our findings revealed many similarities in the nuclear parcellation of the cholinergic, putative catecholaminergic and serotonergic systems with that seen in other mammals including the microbat. However, there were 11 discrete nuclei forming part of these systems in the brain of the megabat studied that were not evident in an earlier study of a microbat. The occurrence of these nuclei align the megabat studied more closely with primates than any other mammalian group and clearly distinguishes them from the microbat, which aligns with the insectivores. The neural systems investigated are not related to such Chiropteran specializations as echolocation, flight, vision or olfaction. If neural characteristics are considered strong indicators of phylogenetic relationships, then the data of the current study strongly supports the diphyletic origin of Chiroptera and aligns the megabat most closely with primates in agreement with studies of other neural characters.

  11. Dietary quality and encephalization in platyrrhine primates.

    PubMed

    Allen, Kari L; Kay, Richard F

    2012-02-22

    The high energetic costs of building and maintaining large brains are thought to constrain encephalization. The 'expensive-tissue hypothesis' (ETH) proposes that primates (especially humans) overcame this constraint through reduction of another metabolically expensive tissue, the gastrointestinal tract. Small guts characterize animals specializing on easily digestible diets. Thus, the hypothesis may be tested via the relationship between brain size and diet quality. Platyrrhine primates present an interesting test case, as they are more variably encephalized than other extant primate clades (excluding Hominoidea). We find a high degree of phylogenetic signal in the data for diet quality, endocranial volume and body size. Controlling for phylogenetic effects, we find no significant correlation between relative diet quality and relative endocranial volume. Thus, diet quality fails to account for differences in platyrrhine encephalization. One taxon, in particular, Brachyteles, violates predictions made by ETH in having a large brain and low-quality diet. Dietary reconstructions of stem platyrrhines further indicate that a relatively high-quality diet was probably in place prior to increases in encephalization. Therefore, it is unlikely that a shift in diet quality was a primary constraint release for encephalization in platyrrhines and, by extrapolation, humans.

  12. Eye-blink behaviors in 71 species of primates.

    PubMed

    Tada, Hideoki; Omori, Yasuko; Hirokawa, Kumi; Ohira, Hideki; Tomonaga, Masaki

    2013-01-01

    The present study was performed to investigate the associations between eye-blink behaviors and various other factors in primates. We video-recorded 141 individuals across 71 primate species and analyzed the blink rate, blink duration, and "isolated" blink ratio (i.e., blinks without eye or head movement) in relation to activity rhythms, habitat types, group size, and body size factors. The results showed close relationships between three types of eye-blink measures and body size factors. All of these measures increased as a function of body weight. In addition, diurnal primates showed more blinks than nocturnal species even after controlling for body size factors. The most important findings were the relationships between eye-blink behaviors and social factors, e.g., group size. Among diurnal primates, only the blink rate was significantly correlated even after controlling for body size factors. The blink rate increased as the group size increased. Enlargement of the neocortex is strongly correlated with group size in primate species and considered strong evidence for the social brain hypothesis. Our results suggest that spontaneous eye-blinks have acquired a role in social communication, similar to grooming, to adapt to complex social living during primate evolution.

  13. Eye-Blink Behaviors in 71 Species of Primates

    PubMed Central

    Tada, Hideoki; Omori, Yasuko; Hirokawa, Kumi; Ohira, Hideki; Tomonaga, Masaki

    2013-01-01

    The present study was performed to investigate the associations between eye-blink behaviors and various other factors in primates. We video-recorded 141 individuals across 71 primate species and analyzed the blink rate, blink duration, and “isolated” blink ratio (i.e., blinks without eye or head movement) in relation to activity rhythms, habitat types, group size, and body size factors. The results showed close relationships between three types of eye-blink measures and body size factors. All of these measures increased as a function of body weight. In addition, diurnal primates showed more blinks than nocturnal species even after controlling for body size factors. The most important findings were the relationships between eye-blink behaviors and social factors, e.g., group size. Among diurnal primates, only the blink rate was significantly correlated even after controlling for body size factors. The blink rate increased as the group size increased. Enlargement of the neocortex is strongly correlated with group size in primate species and considered strong evidence for the social brain hypothesis. Our results suggest that spontaneous eye-blinks have acquired a role in social communication, similar to grooming, to adapt to complex social living during primate evolution. PMID:23741522

  14. Nonhuman Primate Models of Alzheimer-Like Cerebral Proteopathy

    PubMed Central

    Heuer, Eric; Rosen, Rebecca F.; Cintron, Amarallys; Walker, Lary C.

    2012-01-01

    Nonhuman primates are useful for the study of age-associated changes in the brain and behavior in a model that is biologically proximal to humans. The Aβ and tau proteins, two key players in the pathogenesis of Alzheimer’s disease (AD), are highly homologous among primates. With age, all nonhuman primates analyzed to date develop senile (Aβ) plaques and cerebral β-amyloid angiopathy. In contrast, significant tauopathy is unusual in simians, and only humans manifest the profound tauopathy, neuronal degeneration and cognitive impairment that characterize Alzheimer’s disease. Primates thus are somewhat paradoxical models of AD-like pathology; on the one hand, they are excellent models of normal aging and naturally occurring Aβ lesions, and they can be useful for testing diagnostic and therapeutic agents targeting aggregated forms of Aβ. On the other hand, the resistance of monkeys and apes to tauopathy and AD-related neurodegeneration, in the presence of substantial cerebral Aβ deposition, suggests that a comparative analysis of human and nonhuman primates could yield informative clues to the uniquely human predisposition to Alzheimer’s disease. PMID:22288403

  15. Brain Management During Trauma

    NASA Astrophysics Data System (ADS)

    Shatsky, Stanley A.

    1984-01-01

    The Neurosurgeon faces a dilemma, that is, how to treat and reconstruct the injured skull and brain with limited knowledge as to how the injury occurred. In an attempt to understand such injuries, our group assembled a series of acceleration sleds to experimentally reproduce these injuries in primates and high frame rate flash x-ray cine system to radiographically study their time course.

  16. 'What' and 'where' in the human brain.

    PubMed

    Ungerleider, L G; Haxby, J V

    1994-04-01

    Multiple visual areas in the cortex of nonhuman primates are organized into two hierarchically organized and functionally specialized processing pathways, a 'ventral stream' for object vision and a 'dorsal stream' for spatial vision. Recent findings from positron emission tomography activation studies have localized these pathways within the human brain, yielding insights into cortical hierarchies, specialization of function, and attentional mechanisms.

  17. Age-dependent α-synuclein aggregation in the Microcebus murinus lemur primate

    PubMed Central

    Canron, Marie-Hélène; Perret, Martine; Vital, Anne; Bézard, Erwan; Dehay, Benjamin

    2012-01-01

    Since age-dependent deposition of Aβ-amyloid has been reported in the Microcebus murinus, we posited that this animal could as well be a model of age-related synucleinopathy. We characterized the distribution of Aβ-amyloid, α-synuclein and two of its modified forms in the brain of Microcebus murinus aged from 1.5 to 10 years. Intracytoplasmic α-synuclein aggregates were observed only in aged animals in different brain regions, which were also phospho-Ser129 and nitrated α-synuclein immunoreactive. Age-dependent α-synuclein aggregation occurs spontaneously in mouse lemur primates. Microcebus murinus may provide a model to study age-associated α-synucleinopathy and for testing putative therapeutic interventions for both Alzheimer's and Parkinson's diseases. PMID:23205271

  18. Structural and functional maturation of the developing primate brain.

    PubMed

    Levitt, Pat

    2003-10-01

    Descriptive studies have established that the developmental events responsible for the assembly of neural systems and circuitry are conserved across mammalian species. However, primates are unique regarding the time during which histogenesis occurs and the extended postnatal period during which myelination of pathways and circuitry formation occur and are then subsequently modified, particularly in the cerebral cortex. As in lower mammals, the framework for subcortical-cortical connectivity in primates is established before midgestation and already begins to remodel before birth. Association systems, responsible for modulating intracortical circuits that integrate information across functional domains, also form before birth, but their growth and reorganization extend into puberty. There are substantial differences across species in the patterns of development of specific neurochemical systems. The complexity is even greater when considering that the development of any particular cellular component may differ among cortical areas in the same primate species. Developmental and behavioral neurobiologists, psychologists, and pediatricians are challenged with understanding how functional maturation relates to the evolving anatomical organization of the human brain during childhood, and moreover, how genetic and environmental perturbations affect the adaptive changes exhibited by neural circuits in response to developmental disruption.

  19. Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors.

    PubMed

    Reillo, Isabel; Borrell, Víctor

    2012-09-01

    Expansion and folding of the cerebral cortex are landmark features of mammalian brain evolution. This is recapitulated during embryonic development, and specialized progenitor cell populations known as intermediate radial glia cells (IRGCs) are believed to play central roles. Because developmental mechanisms involved in cortical expansion and folding are likely conserved across phylogeny, it is crucial to identify features specific for gyrencephaly from those unique to primate brain development. Here, we studied multiple features of cortical development in ferret, a gyrencephalic carnivore, in comparison with primates. Analyzing the combinatorial expression of transcription factors, cytoskeletal proteins, and cell cycle parameters, we identified a combination of traits that distinguish in ferret similar germinal layers as in primates. Transcription factor analysis indicated that inner subventricular zone (ISVZ) and outer subventricular zone (OSVZ) may contain an identical mixture of progenitor cell subpopulations in ferret. However, we found that these layers emerge at different time points, differ in IRGC abundance, and progenitors have different cell cycle kinetics and self-renewal dynamics. Thus, ISVZ and OSVZ are likely distinguished by genetic differences regulating progenitor cell behavior and dynamics. Our findings demonstrate that some, but not all, features of primate cortical development are shared by the ferret, suggesting a conserved role in the evolutionary emergence of gyrencephaly.

  20. Prenatal exposure to bisphenol A impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates

    PubMed Central

    Elsworth, John D.; Jentsch, J. David; VandeVoort, Catherine A.; Roth, Robert H.; Redmond, D. Eugene; Leranth, Csaba

    2013-01-01

    Prevalent use of bisphenol-A (BPA) in the manufacture of resins, plastics and paper products has led to frequent exposure of most people to this endocrine disruptor. Some rodent studies have suggested that BPA can exert detrimental effects on brain development. However as rodent models cannot be relied on to predict consequences of human exposure to BPA during development, it is important to investigate the effects of BPA on non-human primate brain development. Previous research suggests that BPA preferentially targets dopamine neurons in ventral mesencephalon and glutamatergic neurons in hippocampus, so the present work examined the susceptibility of these systems to low dose BPA exposure at the fetal and juvenile stages of development in non-human primates. Exposure of pregnant rhesus monkeys to relatively low levels of BPA during the final 2 months of gestation, induced abnormalities in fetal ventral mesencephalon and hippocampus. Specifically, light microscopy revealed a decrease in tyrosine hydroxylase-expressing (dopamine) neurons in the midbrain of BPA-exposed fetuses and electron microscopy identified a reduction in spine synapses in the CA1 region of hippocampus. In contrast, administration of BPA to juvenile vervet monkeys (14–18 months of age) was without effect on these indices, or on dopamine and serotonin concentrations in striatum and prefrontal cortex, or on performance of a cognitive task that tests working memory capacity. These data indicate that BPA exerts an age-dependent detrimental impact on primate brain development, at blood levels within the range measured in humans having only environmental contact with BPA. PMID:23337607

  1. The evolution of self-control

    PubMed Central

    MacLean, Evan L.; Hare, Brian; Nunn, Charles L.; Addessi, Elsa; Amici, Federica; Anderson, Rindy C.; Aureli, Filippo; Baker, Joseph M.; Bania, Amanda E.; Barnard, Allison M.; Boogert, Neeltje J.; Brannon, Elizabeth M.; Bray, Emily E.; Bray, Joel; Brent, Lauren J. N.; Burkart, Judith M.; Call, Josep; Cantlon, Jessica F.; Cheke, Lucy G.; Clayton, Nicola S.; Delgado, Mikel M.; DiVincenti, Louis J.; Fujita, Kazuo; Herrmann, Esther; Hiramatsu, Chihiro; Jacobs, Lucia F.; Jordan, Kerry E.; Laude, Jennifer R.; Leimgruber, Kristin L.; Messer, Emily J. E.; de A. Moura, Antonio C.; Ostojić, Ljerka; Picard, Alejandra; Platt, Michael L.; Plotnik, Joshua M.; Range, Friederike; Reader, Simon M.; Reddy, Rachna B.; Sandel, Aaron A.; Santos, Laurie R.; Schumann, Katrin; Seed, Amanda M.; Sewall, Kendra B.; Shaw, Rachael C.; Slocombe, Katie E.; Su, Yanjie; Takimoto, Ayaka; Tan, Jingzhi; Tao, Ruoting; van Schaik, Carel P.; Virányi, Zsófia; Visalberghi, Elisabetta; Wade, Jordan C.; Watanabe, Arii; Widness, Jane; Young, Julie K.; Zentall, Thomas R.; Zhao, Yini

    2014-01-01

    Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution. PMID:24753565

  2. PET Studies in Nonhuman Primate Models of Cocaine Abuse: Translational Research Related to Vulnerability and Neuroadaptations

    PubMed Central

    Gould, Robert W.; Duke, Angela N.; Nader, Michael A.

    2013-01-01

    The current review highlights the utility of positron emission tomography (PET) imaging to study the neurobiological substrates underlying vulnerability to cocaine addiction and subsequent adaptations following chronic cocaine self-administration in nonhuman primate models of cocaine abuse. Environmental (e.g., social rank) and sex-specific influences on dopaminergic function and sensitivity to the reinforcing effects of cocaine are discussed. Cocaine-related cognitive deficits have been hypothesized to contribute to high rates of relapse and are described in nonhuman primate models. Lastly, the long-term consequences of cocaine on neurobiology are discussed. PET imaging and longitudinal, within-subject behavioral studies in nonhuman primates have provided a strong framework for designing pharmacological and behavioral treatment strategies to aid drug-dependent treatment seekers. Non-invasive PET imaging will allow for individualized treatment strategies. Recent advances in radiochemistry of novel PET ligands and other imaging modalities can further advance our understanding of stimulant use on the brain. PMID:23458573

  3. A neuronal morphologic type unique to humans and great apes

    PubMed Central

    Nimchinsky, Esther A.; Gilissen, Emmanuel; Allman, John M.; Perl, Daniel P.; Erwin, Joseph M.; Hof, Patrick R.

    1999-01-01

    We report the existence and distribution of an unusual type of projection neuron, a large, spindle-shaped cell, in layer Vb of the anterior cingulate cortex of pongids and hominids. These spindle cells were not observed in any other primate species or any other mammalian taxa, and their volume was correlated with brain volume residuals, a measure of encephalization in higher primates. These observations are of particular interest when considering primate neocortical evolution, as they reveal possible adaptive changes and functional modifications over the last 15–20 million years in the anterior cingulate cortex, a region that plays a major role in the regulation of many aspects of autonomic function and of certain cognitive processes. That in humans these unique neurons have been shown previously to be severely affected in the degenerative process of Alzheimer’s disease suggests that some of the differential neuronal susceptibility that occurs in the human brain in the course of age-related dementing illnesses may have appeared only recently during primate evolution. PMID:10220455

  4. Long-chain n-3 PUFAs from fish oil enhance resting state brain glucose utilization and reduce anxiety in an adult nonhuman primate, the grey mouse lemur.

    PubMed

    Pifferi, Fabien; Dorieux, Olène; Castellano, Christian-Alexandre; Croteau, Etienne; Masson, Marie; Guillermier, Martine; Van Camp, Nadja; Guesnet, Philippe; Alessandri, Jean-Marc; Cunnane, Stephen; Dhenain, Marc; Aujard, Fabienne

    2015-08-01

    Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months' supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze. Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  5. Divergent lactate dehydrogenase isoenzyme profile in cellular compartments of primate forebrain structures.

    PubMed

    Duka, Tetyana; Collins, Zachary; Anderson, Sarah M; Raghanti, Mary Ann; Ely, John J; Hof, Patrick R; Wildman, Derek E; Goodman, Morris; Grossman, Lawrence I; Sherwood, Chet C

    2017-07-01

    The compartmentalization and association of lactate dehydrogenase (LDH) with specific cellular structures (e.g., synaptosomal, sarcoplasmic or mitochondrial) may play an important role in brain energy metabolism. Our previous research revealed that LDH in the synaptosomal fraction shifts toward the aerobic isoforms (LDH-B) among the large-brained haplorhine primates compared to strepsirrhines. Here, we further analyzed the subcellular localization of LDH in primate forebrain structures using quantitative Western blotting and ELISA. We show that, in cytosolic and mitochondrial subfractions, LDH-B expression level was relatively elevated and LDH-A declined in haplorhines compared to strepsirrhines. LDH-B expression in mitochondrial fractions of the neocortex was preferentially increased, showing a particularly significant rise in the ratio of LDH-B to LDH-A in chimpanzees and humans. We also found a significant correlation between the protein levels of LDH-B in mitochondrial fractions from haplorhine neocortex and the synaptosomal LDH-B that suggests LDH isoforms shift from a predominance of A-subunits toward B-subunits as part of a system that spatially buffers dynamic energy requirements of brain cells. Our results indicate that there is differential subcellular compartmentalization of LDH isoenzymes that evolved among different primate lineages to meet the energy requirements in neocortical and striatal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Detection of Optogenetic Stimulation in Somatosensory Cortex by Non-Human Primates - Towards Artificial Tactile Sensation

    PubMed Central

    Brush, Benjamin; Borton, David; Wagner, Fabien; Agha, Naubahar; Sheinberg, David L.; Nurmikko, Arto V.

    2014-01-01

    Neuroprosthesis research aims to enable communication between the brain and external assistive devices while restoring lost functionality such as occurs from stroke, spinal cord injury or neurodegenerative diseases. In future closed-loop sensorimotor prostheses, one approach is to use neuromodulation as direct stimulus to the brain to compensate for a lost sensory function and help the brain to integrate relevant information for commanding external devices via, e.g. movement intention. Current neuromodulation techniques rely mainly of electrical stimulation. Here we focus specifically on the question of eliciting a biomimetically relevant sense of touch by direct stimulus of the somatosensory cortex by introducing optogenetic techniques as an alternative to electrical stimulation. We demonstrate that light activated opsins can be introduced to target neurons in the somatosensory cortex of non-human primates and be optically activated to create a reliably detected sensation which the animal learns to interpret as a tactile sensation localized within the hand. The accomplishment highlighted here shows how optical stimulation of a relatively small group of mostly excitatory somatosensory neurons in the nonhuman primate brain is sufficient for eliciting a useful sensation from data acquired by simultaneous electrophysiology and from behavioral metrics. In this first report to date on optically neuromodulated behavior in the somatosensory cortex of nonhuman primates we do not yet dissect the details of the sensation the animals exerience or contrast it to those evoked by electrical stimulation, issues of considerable future interest. PMID:25541938

  7. Maternal-fetal unit interactions and eutherian neocortical development and evolution

    PubMed Central

    Montiel, Juan F.; Kaune, Heidy; Maliqueo, Manuel

    2013-01-01

    The conserved brain design that primates inherited from early mammals differs from the variable adult brain size and species-specific brain dominances observed across mammals. This variability relies on the emergence of specialized cerebral cortical regions and sub-compartments, triggering an increase in brain size, areal interconnectivity and histological complexity that ultimately lies on the activation of developmental programs. Structural placental features are not well correlated with brain enlargement; however, several endocrine pathways could be tuned with the activation of neuronal progenitors in the proliferative neocortical compartments. In this article, we reviewed some mechanisms of eutherians maternal–fetal unit interactions associated with brain development and evolution. We propose a hypothesis of brain evolution where proliferative compartments in primates become activated by “non-classical” endocrine placental signals participating in different steps of corticogenesis. Changes in the inner placental structure, along with placenta endocrine stimuli over the cortical proliferative activity would allow mammalian brain enlargement with a concomitant shorter gestation span, as an evolutionary strategy to escape from parent-offspring conflict. PMID:23882189

  8. A conserved pattern of differential expansion of cortical areas in simian primates.

    PubMed

    Chaplin, Tristan A; Yu, Hsin-Hao; Soares, Juliana G M; Gattass, Ricardo; Rosa, Marcello G P

    2013-09-18

    The layout of areas in the cerebral cortex of different primates is quite similar, despite significant variations in brain size. However, it is clear that larger brains are not simply scaled up versions of smaller brains: some regions of the cortex are disproportionately large in larger species. It is currently debated whether these expanded areas arise through natural selection pressures for increased cognitive capacity or as a result of the application of a common developmental sequence on different scales. Here, we used computational methods to map and quantify the expansion of the cortex in simian primates of different sizes to investigate whether there is any common pattern of cortical expansion. Surface models of the marmoset, capuchin, and macaque monkey cortex were registered using the software package CARET and the spherical landmark vector difference algorithm. The registration was constrained by the location of identified homologous cortical areas. When comparing marmosets with both capuchins and macaques, we found a high degree of expansion in the temporal parietal junction, the ventrolateral prefrontal cortex, and the dorsal anterior cingulate cortex, all of which are high-level association areas typically involved in complex cognitive and behavioral functions. These expanded maps correlated well with previously published macaque to human registrations, suggesting that there is a general pattern of primate cortical scaling.

  9. Noncoding origins of anthropoid traits and a new null model of transposon functionalization

    PubMed Central

    del Rosario, Ricardo C.H.; Rayan, Nirmala Arul

    2014-01-01

    Little is known about novel genetic elements that drove the emergence of anthropoid primates. We exploited the sequencing of the marmoset genome to identify 23,849 anthropoid-specific constrained (ASC) regions and confirmed their robust functional signatures. Of the ASC base pairs, 99.7% were noncoding, suggesting that novel anthropoid functional elements were overwhelmingly cis-regulatory. ASCs were highly enriched in loci associated with fetal brain development, motor coordination, neurotransmission, and vision, thus providing a large set of candidate elements for exploring the molecular basis of hallmark primate traits. We validated ASC192 as a primate-specific enhancer in proliferative zones of the developing brain. Unexpectedly, transposable elements (TEs) contributed to >56% of ASCs, and almost all TE families showed functional potential similar to that of nonrepetitive DNA. Three L1PA repeat-derived ASCs displayed coherent eye-enhancer function, thus demonstrating that the “gene-battery” model of TE functionalization applies to enhancers in vivo. Our study provides fundamental insights into genome evolution and the origins of anthropoid phenotypes and supports an elegantly simple new null model of TE exaptation. PMID:25043600

  10. Idiothetic input into object-place configuration as the contribution to memory of the monkey and human hippocampus: a review.

    PubMed

    Gaffan, D

    1998-11-01

    Memory for object-place configurations appears to be a common function of the hippocampus in the human and monkey brain. The nature of the spatial information which enters into these object-configural memories in the primate, and the location of the memories themselves, have remained obscure, however. In the rat, much evidence indicates that the hippocampus processes idiothetic spatial information, an estimate of the animal's current environmental location derived from path integration. I propose that in primates the hippocampus provides idiothetic information about the environmental location of body parts, and that the main function of this information in the primate brain is to become configured with object-identity information provided by temporal lobe cortex outside the hippocampus.

  11. Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution

    PubMed Central

    Fonseca-Azevedo, Karina; Herculano-Houzel, Suzana

    2012-01-01

    Despite a general trend for larger mammals to have larger brains, humans are the primates with the largest brain and number of neurons, but not the largest body mass. Why are great apes, the largest primates, not also those endowed with the largest brains? Recently, we showed that the energetic cost of the brain is a linear function of its numbers of neurons. Here we show that metabolic limitations that result from the number of hours available for feeding and the low caloric yield of raw foods impose a tradeoff between body size and number of brain neurons, which explains the small brain size of great apes compared with their large body size. This limitation was probably overcome in Homo erectus with the shift to a cooked diet. Absent the requirement to spend most available hours of the day feeding, the combination of newly freed time and a large number of brain neurons affordable on a cooked diet may thus have been a major positive driving force to the rapid increased in brain size in human evolution. PMID:23090991

  12. Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution.

    PubMed

    Fonseca-Azevedo, Karina; Herculano-Houzel, Suzana

    2012-11-06

    Despite a general trend for larger mammals to have larger brains, humans are the primates with the largest brain and number of neurons, but not the largest body mass. Why are great apes, the largest primates, not also those endowed with the largest brains? Recently, we showed that the energetic cost of the brain is a linear function of its numbers of neurons. Here we show that metabolic limitations that result from the number of hours available for feeding and the low caloric yield of raw foods impose a tradeoff between body size and number of brain neurons, which explains the small brain size of great apes compared with their large body size. This limitation was probably overcome in Homo erectus with the shift to a cooked diet. Absent the requirement to spend most available hours of the day feeding, the combination of newly freed time and a large number of brain neurons affordable on a cooked diet may thus have been a major positive driving force to the rapid increased in brain size in human evolution.

  13. The ontogeny of great ape gesture - not a simple story. Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by Michael A. Arbib

    NASA Astrophysics Data System (ADS)

    Liebal, Katja

    2016-03-01

    Although there is an increasing number of studies investigating gestural communication in primates other than humans in both natural and captive settings [1], very little is known about how they acquire their gestures. Different mechanisms have been proposed, including genetic transmission [2], social learning [3], or ontogenetic ritualization [4]. This latter mechanism is central to Arbib's paper [5], because he uses dyadic brain modeling - that is ;modeling the brains of two creatures as they interact with each other, so that the action of one affects the perception of the other and so the cycle of interactions continues, with both brains changing in the process; - to explain how gestures might emerge in ontogeny from previously non-communicative behaviors over the course of repeated and increasingly abbreviated and thus ritualized interactions. The aim of my comment is to discuss the current evidence from primate gesture research with regard the different mechanisms proposed for gesture acquisition and how this might confirm or challenge Arbib's approach.

  14. Death of the (traveling) salesman: primates do not show clear evidence of multi-step route planning.

    PubMed

    Janson, Charles

    2014-05-01

    Several comparative studies have linked larger brain size to a fruit-eating diet in primates and other animals. The general explanation for this correlation is that fruit is a complex resource base, consisting of many discrete patches of many species, each with distinct nutritional traits, the production of which changes predictably both within and between seasons. Using this information to devise optimal spatial foraging strategies is among the most difficult problems to solve in all of mathematics, a version of the famous Traveling Salesman Problem. Several authors have suggested that primates might use their large brains and complex cognition to plan foraging strategies that approximate optimal solutions to this problem. Three empirical studies have examined how captive primates move when confronted with the simplest version of the problem: a spatial array of equally valuable goals. These studies have all concluded that the subjects remember many food source locations and show very efficient travel paths; some authors also inferred that the subjects may plan their movements based on considering combinations of three or more future goals at a time. This analysis re-examines critically the claims of planned movement sequences from the evidence presented. The efficiency of observed travel paths is largely consistent with use of the simplest of foraging rules, such as visiting the nearest unused "known" resource. Detailed movement sequences by test subjects are most consistent with a rule that mentally sums spatial information from all unused resources in a given trial into a single "gravity" measure that guides movements to one destination at a time. © 2013 Wiley Periodicals, Inc.

  15. A six-year longitudinal PET study of (+)-[11C]DTBZ binding to the VMAT2 in monkey brain.

    PubMed

    Kilbourn, Michael R; Koeppe, Robert A

    2017-12-01

    The longitudinal reproducibility of in vivo binding potential measures for [ 11 C]dihydrotetrabenazine ([ 11 C]DTBZ) binding to the vesicular monoamine transporter 2 (VMAT2) site in primate brain was examined using a unique dataset of repeated control PET imaging studies. Forty-one dynamic [ 11 C]DTBZ PET studies were completed in a single rhesus monkey. Imaging equipment (microPET P4), personnel, radiotracer characteristics (injected mass amounts, molar activity) and image data analysis (BP ND-Logan ) were consistent throughout the entire sequence of PET studies. Same day reproducibility of BP ND-Logan estimates of specific binding was very good (-3% and -7% changes) for two control-control sessions. Over the full 74 months, the average BP ND-Logan value for [ 11 C]DTBZ-PET studies was 4.19±0.52, for a variance of 12%. No age-dependent change in binding potentials was observed over the six-year period. If the technical variables associated with PET scanner are consistently maintained, including PET scanner, imaging procedures and radiotracer preparation, in vivo biochemistry can be reproducibly measured in the primate brain over a multi-year period of time. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Artifact correction in diffusion MRI of non-human primate brains on a clinical 3T scanner.

    PubMed

    Zhang, Xiaodong; Kirsch, John E; Zhong, Xiaodong

    2016-02-01

    Smearing artifacts were observed and investigated in diffusion tensor imaging (DTI) studies of macaque monkeys on a clinical whole-body 3T scanner. Four adult macaques were utilized to evaluate DTI artifacts. DTI images were acquired with a single-shot echo-planar imaging (EPI) sequence using a parallel imaging technique. The smearing artifacts observed on the diffusion-weighted images and fractional anisotropy maps were caused by the incomplete fat suppression due to the irregular macaque frontal skull geometry and anatomy. The artifact can be reduced substantially using a novel three-dimensional (3D) shimming procedure. The smearing artifacts observed on diffusion weighted images and fractional anisotropy (FA) maps of macaque brains can be reduced substantially using a robust 3D shimming approach. The DTI protocol combined with the shimming procedure could be a robust approach to examine brain connectivity and white matter integrity of non-human primates using a conventional clinical setting. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Towards a comprehensive atlas of cortical connections in a primate brain: Mapping tracer injection studies of the common marmoset into a reference digital template.

    PubMed

    Majka, Piotr; Chaplin, Tristan A; Yu, Hsin-Hao; Tolpygo, Alexander; Mitra, Partha P; Wójcik, Daniel K; Rosa, Marcello G P

    2016-08-01

    The marmoset is an emerging animal model for large-scale attempts to understand primate brain connectivity, but achieving this aim requires the development and validation of procedures for normalization and integration of results from many neuroanatomical experiments. Here we describe a computational pipeline for coregistration of retrograde tracing data on connections of cortical areas into a 3D marmoset brain template, generated from Nissl-stained sections. The procedure results in a series of spatial transformations that are applied to the coordinates of labeled neurons in the different cases, bringing them into common stereotaxic space. We applied this procedure to 17 injections, placed in the frontal lobe of nine marmosets as part of earlier studies. Visualizations of cortical patterns of connections revealed by these injections are supplied as Supplementary Materials. Comparison between the results of the automated and human-based processing of these cases reveals that the centers of injection sites can be reconstructed, on average, to within 0.6 mm of coordinates estimated by an experienced neuroanatomist. Moreover, cell counts obtained in different areas by the automated approach are highly correlated (r = 0.83) with those obtained by an expert, who examined in detail histological sections for each individual. The present procedure enables comparison and visualization of large datasets, which in turn opens the way for integration and analysis of results from many animals. Its versatility, including applicability to archival materials, may reduce the number of additional experiments required to produce the first detailed cortical connectome of a primate brain. J. Comp. Neurol. 524:2161-2181, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  18. Dopamine Innervation in the Thalamus: Monkey versus Rat

    PubMed Central

    García-Cabezas, Miguel Ángel; Martínez-Sánchez, Patricia; Sánchez-González, Miguel Ángel; Garzón, Miguel

    2009-01-01

    We recently identified the thalamic dopaminergic system in the human and macaque monkey brains, and, based on earlier reports on the paucity of dopamine in the rat thalamus, hypothesized that this dopaminergic system was particularly developed in primates. Here we test this hypothesis using immunohistochemistry against the dopamine transporter (DAT) in adult macaque and rat brains. The extent and density of DAT-immunoreactive (-ir) axons were remarkably greater in the macaque dorsal thalamus, where the mediodorsal association nucleus and the ventral motor nuclei held the densest immunolabeling. In contrast, sparse DAT immunolabeling was present in the rat dorsal thalamus; it was mainly located in the mediodorsal, paraventricular, ventral medial, and ventral lateral nuclei. The reticular nucleus, zona incerta, and lateral habenular nucleus held numerous DAT-ir axons in both species. Ultrastructural analysis in the macaque mediodorsal nucleus revealed that thalamic interneurons are a main postsynaptic target of DAT-ir axons; this suggests that the marked expansion of the dopamine innervation in the primate in comparison to the rodent thalamus may be related to the presence of a sizable interneuron population in primates. We remark that it is important to be aware of brain species differences when using animal models of human brain disease. PMID:18550594

  19. Health Benefits of Animal Research: Medical and Behavioral Benefits from Primate Research.

    ERIC Educational Resources Information Center

    King, Frederick A.; Yarbrough, Cathy J.

    1985-01-01

    Presents a sampling of the contributions of primate research to human health and welfare through discussions of: atherosclerosis; aging; endocrine and seasonality influences on reproductive behavior; emotional expression; communication; infectious diseases (viruses, polio, acquired immune deficiency syndrome-AIDS; and others); cancer; the brain;…

  20. Primate Phencyclidine Model of Schizophrenia: Sex-Specific Effects on Cognition, Brain Derived Neurotrophic Factor, Spine Synapses, and Dopamine Turnover in Prefrontal Cortex

    PubMed Central

    Groman, Stephanie M.; Jentsch, James D.; Leranth, Csaba; Redmond, D. Eugene; Kim, Jung D.; Diano, Sabrina; Roth, Robert H.

    2015-01-01

    Background: Cognitive deficits are a core symptom of schizophrenia, yet they remain particularly resistant to treatment. The model provided by repeatedly exposing adult nonhuman primates to phencyclidine has generated important insights into the neurobiology of these deficits, but it remains possible that administration of this psychotomimetic agent during the pre-adult period, when the dorsolateral prefrontal cortex in human and nonhuman primates is still undergoing significant maturation, may provide a greater understanding of schizophrenia-related cognitive deficits. Methods: The effects of repeated phencyclidine treatment on spine synapse number, dopamine turnover and BDNF expression in dorsolateral prefrontal cortex, and working memory accuracy were examined in pre-adult monkeys. Results: One week following phencyclidine treatment, juvenile and adolescent male monkeys demonstrated a greater loss of spine synapses in dorsolateral prefrontal cortex than adult male monkeys. Further studies indicated that in juvenile males, a cognitive deficit existed at 4 weeks following phencyclidine treatment, and this impairment was associated with decreased dopamine turnover, decreased brain derived neurotrophic factor messenger RNA, and a loss of dendritic spine synapses in dorsolateral prefrontal cortex. In contrast, female juvenile monkeys displayed no cognitive deficit at 4 weeks after phencyclidine treatment and no alteration in dopamine turnover or brain derived neurotrophic factor messenger RNA or spine synapse number in dorsolateral prefrontal cortex. In the combined group of male and female juvenile monkeys, significant linear correlations were detected between dopamine turnover, spine synapse number, and cognitive performance. Conclusions: As the incidence of schizophrenia is greater in males than females, these findings support the validity of the juvenile primate phencyclidine model and highlight its potential usefulness in understanding the deficits in dorsolateral prefrontal cortex in schizophrenia and developing novel treatments for the cognitive deficits associated with schizophrenia. PMID:25522392

  1. Life history, cognition and the evolution of complex foraging niches.

    PubMed

    Schuppli, Caroline; Graber, Sereina M; Isler, Karin; van Schaik, Carel P

    2016-03-01

    Animal species that live in complex foraging niches have, in general, improved access to energy-rich and seasonally stable food sources. Because human food procurement is uniquely complex, we ask here which conditions may have allowed species to evolve into such complex foraging niches, and also how niche complexity is related to relative brain size. To do so, we divided niche complexity into a knowledge-learning and a motor-learning dimension. Using a sample of 78 primate and 65 carnivoran species, we found that two life-history features are consistently correlated with complex niches: slow, conservative development or provisioning of offspring over extended periods of time. Both act to buffer low energy yields during periods of learning, and may thus act as limiting factors for the evolution of complex niches. Our results further showed that the knowledge and motor dimensions of niche complexity were correlated with pace of development in primates only, and with the length of provisioning in only carnivorans. Accordingly, in primates, but not carnivorans, living in a complex foraging niche requires enhanced cognitive abilities, i.e., a large brain. The patterns in these two groups of mammals show that selection favors evolution into complex niches (in either the knowledge or motor dimension) in species that either develop more slowly or provision their young for an extended period of time. These findings help to explain how humans constructed by far the most complex niche: our ancestors managed to combine slow development (as in other primates) with systematic provisioning of immatures and even adults (as in carnivorans). This study also provides strong support for the importance of ecological factors in brain size evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Postmortem changes in the neuroanatomical characteristics of the primate brain: the hippocampal formation

    PubMed Central

    Lavenex, Pierre; Lavenex, Pamela Banta; Bennett, Jeffrey L.; Amaral, David G.

    2009-01-01

    Comparative studies of the structural organization of the brain are fundamental to our understanding of human brain function. However, whereas brains of experimental animals are fixed by perfusion of a fixative through the vasculature, human or ape brains are fixed by immersion after varying postmortem intervals. Although differential treatments might affect the fundamental characteristics of the tissue, this question has not been evaluated empirically in primate brains. Monkey brains were either perfused, or acquired after varying postmortem intervals before immersion-fixation in 4% paraformaldehyde. We found that the fixation method affected the neuroanatomical characteristics of the monkey hippocampal formation. Soma size was smaller in Nissl-stained, immersion-fixed tissue, although overall brain volume was larger, as compared to perfusion-fixed tissue. Non-phosphorylated high-molecular-weight neurofilament immunoreactivity was lower in CA3 pyramidal neurons, dentate mossy cells and the entorhinal cortex, whereas it was higher in the mossy fiber pathway in immersion-fixed tissue. Serotonin-immunoreactive fibers were well-stained in perfused tissue but were undetectable in immersion-fixed tissue. Although regional immunoreactivity patterns for calcium-binding proteins were not affected, intracellular staining degraded with increasing postmortem intervals. Somatostatin-immunoreactive clusters of large axonal varicosities, previously reported only in humans, were observed in immersion-fixed monkey tissue. In addition, calretinin-immunoreactive multipolar neurons, previously observed only in rodents, were found in the rostral dentate gyrus in both perfused and immersion-fixed brains. In conclusion, comparative studies of the brain must evaluate the effects of fixation on the staining pattern of each marker in every structure of interest before drawing conclusions about species differences. PMID:18972553

  3. Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation.

    PubMed

    Lavenex, Pierre; Lavenex, Pamela Banta; Bennett, Jeffrey L; Amaral, David G

    2009-01-01

    Comparative studies of the structural organization of the brain are fundamental to our understanding of human brain function. However, whereas brains of experimental animals are fixed by perfusion of a fixative through the vasculature, human or ape brains are fixed by immersion after varying postmortem intervals. Although differential treatments might affect the fundamental characteristics of the tissue, this question has not been evaluated empirically in primate brains. Monkey brains were either perfused or acquired after varying postmortem intervals before immersion-fixation in 4% paraformaldehyde. We found that the fixation method affected the neuroanatomical characteristics of the monkey hippocampal formation. Soma size was smaller in Nissl-stained, immersion-fixed tissue, although overall brain volume was larger as compared to perfusion-fixed tissue. Nonphosphorylated high-molecular-weight neurofilament immunoreactivity was lower in CA3 pyramidal neurons, dentate mossy cells, and the entorhinal cortex, whereas it was higher in the mossy fiber pathway in immersion-fixed tissue. Serotonin-immunoreactive fibers were well stained in perfused tissue but were undetectable in immersion-fixed tissue. Although regional immunoreactivity patterns for calcium-binding proteins were not affected, intracellular staining degraded with increasing postmortem intervals. Somatostatin-immunoreactive clusters of large axonal varicosities, previously reported only in humans, were observed in immersion-fixed monkey tissue. In addition, calretinin-immunoreactive multipolar neurons, previously observed only in rodents, were found in the rostral dentate gyrus in both perfused and immersion-fixed brains. In conclusion, comparative studies of the brain must evaluate the effects of fixation on the staining pattern of each marker in every structure of interest before drawing conclusions about species differences.

  4. Embracing covariation in brain evolution: Large brains, extended development, and flexible primate social systems

    PubMed Central

    Charvet, Christine J.; Finlay, Barbara L.

    2012-01-01

    Brain size, body size, developmental length, life span, costs of raising offspring, behavioral complexity, and social structures are correlated in mammals due to intrinsic life-history requirements. Dissecting variation and direction of causation in this web of relationships often draw attention away from the factors that correlate with basic life parameters. We consider the “social brain hypothesis,” which postulates that overall brain and the isocortex are selectively enlarged to confer social abilities in primates, as an example of this enterprise and pitfalls. We consider patterns of brain scaling, modularity, flexibility of brain organization, the “leverage,” and direction of selection on proposed dimensions. We conclude that the evidence supporting selective changes in isocortex or brain size for the isolated ability to manage social relationships is poor. Strong covariation in size and developmental duration coupled with flexible brains allow organisms to adapt in variable social and ecological environments across the life span and in evolution. PMID:22230623

  5. Knowledge-Guided Robust MRI Brain Extraction for Diverse Large-Scale Neuroimaging Studies on Humans and Non-Human Primates

    PubMed Central

    Wang, Yaping; Nie, Jingxin; Yap, Pew-Thian; Li, Gang; Shi, Feng; Geng, Xiujuan; Guo, Lei; Shen, Dinggang

    2014-01-01

    Accurate and robust brain extraction is a critical step in most neuroimaging analysis pipelines. In particular, for the large-scale multi-site neuroimaging studies involving a significant number of subjects with diverse age and diagnostic groups, accurate and robust extraction of the brain automatically and consistently is highly desirable. In this paper, we introduce population-specific probability maps to guide the brain extraction of diverse subject groups, including both healthy and diseased adult human populations, both developing and aging human populations, as well as non-human primates. Specifically, the proposed method combines an atlas-based approach, for coarse skull-stripping, with a deformable-surface-based approach that is guided by local intensity information and population-specific prior information learned from a set of real brain images for more localized refinement. Comprehensive quantitative evaluations were performed on the diverse large-scale populations of ADNI dataset with over 800 subjects (55∼90 years of age, multi-site, various diagnosis groups), OASIS dataset with over 400 subjects (18∼96 years of age, wide age range, various diagnosis groups), and NIH pediatrics dataset with 150 subjects (5∼18 years of age, multi-site, wide age range as a complementary age group to the adult dataset). The results demonstrate that our method consistently yields the best overall results across almost the entire human life span, with only a single set of parameters. To demonstrate its capability to work on non-human primates, the proposed method is further evaluated using a rhesus macaque dataset with 20 subjects. Quantitative comparisons with popularly used state-of-the-art methods, including BET, Two-pass BET, BET-B, BSE, HWA, ROBEX and AFNI, demonstrate that the proposed method performs favorably with superior performance on all testing datasets, indicating its robustness and effectiveness. PMID:24489639

  6. Immunohistochemical localization of oxytocin receptors in human brain.

    PubMed

    Boccia, M L; Petrusz, P; Suzuki, K; Marson, L; Pedersen, C A

    2013-12-03

    The neuropeptide oxytocin (OT) regulates rodent, primate and human social behaviors and stress responses. OT binding studies employing (125)I-d(CH2)5-[Tyr(Me)2,Thr4,Tyr-NH2(9)] ornithine vasotocin ((125)I-OTA), has been used to locate and quantify OT receptors (OTRs) in numerous areas of the rat brain. This ligand has also been applied to locating OTRs in the human brain. The results of the latter studies, however, have been brought into question because of subsequent evidence that (125)I-OTA is much less selective for OTR vs. vasopressin receptors in the primate brain. Previously we used a monoclonal antibody directed toward a region of the human OTR to demonstrate selective immunostaining of cell bodies and fibers in the preoptic-anterior hypothalamic area and ventral septum of a cynomolgus monkey (Boccia et al., 2001). The present study employed the same monoclonal antibody to study the location of OTRs in tissue blocks containing cortical, limbic and brainstem areas dissected from fixed adult, human female brains. OTRs were visualized in discrete cell bodies and/or fibers in the central and basolateral regions of the amygdala, medial preoptic area (MPOA), anterior and ventromedial hypothalamus, olfactory nucleus, vertical limb of the diagonal band, ventrolateral septum, anterior cingulate and hypoglossal and solitary nuclei. OTR staining was not observed in the hippocampus (including CA2 and CA3), parietal cortex, raphe nucleus, nucleus ambiguus or pons. These results suggest that there are some similarities, but also important differences, in the locations of OTRs in human and rodent brains. Immunohistochemistry (IHC) utilizing a monoclonal antibody provides specific localization of OTRs in the human brain and thereby provides opportunity to further study OTR in human development and psychiatric conditions. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Circadian rhythms in Macaca mulatta monkeys during Bion 11 flight

    NASA Technical Reports Server (NTRS)

    Alpatov, A. M.; Hoban-Higgins, T. M.; Klimovitsky, V. Y.; Tumurova, E. G.; Fuller, C. A.

    2000-01-01

    Circadian rhythms of primate brain temperature, head and ankle skin temperature, motor activity, and heart rate were studied during spaceflight and on the ground. In space, the circadian rhythms of all the parameters were synchronized with diurnal Zeitgebers. However, in space the brain temperature rhythm showed a significantly more delayed phase angle, which may be ascribed to an increase of the endogenous circadian period.

  8. A Primate lncRNA Mediates Notch Signaling During Neuronal Development by Sequestering miRNA

    PubMed Central

    Rani, Neha; Nowakowski, Tomasz J; Zhou, Hongjun; Godshalk, Sirie E.; Lisi, Véronique; Kriegstein, Arnold R.; Kosik, Kenneth S.

    2016-01-01

    Summary Long non-coding RNAs (lncRNAs) are a diverse and poorly conserved category of transcripts that have expanded greatly in primates, particularly in the brain. We identified a lncRNA, which has acquired 16 microRNA response elements for miR-143-3p in the Catarrhini branch of primates. This lncRNA termed LncND (neuro-development) is expressed in neural progenitor cells and then declines in neurons. Binding and release of miR-143-3p, by LncND, controls the expression of Notch receptors. LncND expression is enriched in radial glia cells (RGCs) in the ventricular and subventricular zones of developing human brain. Down-regulation in neuroblastoma cells reduced cell proliferation and induced neuronal differentiation, an effect phenocopied by miR-143-3p over-expression. Gain-of-function of LncND in developing mouse cortex led to an expansion of PAX6+ RGCs. These findings support role for LncND in miRNA-mediated regulation of Notch signaling within the neural progenitor pool in primates that may have contributed to the expansion of cerebral cortex. PMID:27263970

  9. Cellular Scaling Rules for Primate Spinal Cords

    PubMed Central

    Burish, Mark J.; Peebles, J. Klint; Baldwin, Mary K.; Tavares, Luciano; Kaas, Jon H.; Herculano-Houzel, Suzana

    2010-01-01

    The spinal cord can be considered a major sensorimotor interface between the body and the brain. How does the spinal cord scale with body and brain mass, and how are its numbers of neurons related to the number of neurons in the brain across species of different body and brain sizes? Here we determine the cellular composition of the spinal cord in eight primate species and find that its number of neurons varies as a linear function of cord length, and accompanies body mass raised to an exponent close to 1/3. This relationship suggests that the extension, mass and number of neurons that compose the spinal cord are related to body length, rather than to body mass or surface. Moreover, we show that although brain mass increases linearly with cord mass, the number of neurons in the brain increases with the number of neurons in the spinal cord raised to the power of 1.7. This faster addition of neurons to the brain than to the spinal cord is consistent with current views on how larger brains add complexity to the processing of environmental and somatic information. PMID:20926855

  10. Corticalization of motor control in humans is a consequence of brain scaling in primate evolution.

    PubMed

    Herculano-Houzel, Suzana; Kaas, Jon H; de Oliveira-Souza, Ricardo

    2016-02-15

    Control over spinal and brainstem somatomotor neurons is exerted by two sets of descending fibers, corticospinal/pyramidal and extrapyramidal. Although in nonhuman primates the effect of bilateral pyramidal lesions is mostly limited to an impairment of the independent use of digits in skilled manual actions, similar injuries in humans result in the locked-in syndrome, a state of mutism and quadriplegia in which communication can be established only by residual vertical eye movements. This behavioral contrast makes humans appear to be outliers compared with other primates because of our almost total dependence on the corticospinal/pyramidal system for the effectuation of movement. Here we propose, instead, that an increasing preponderance of the corticospinal/pyramidal system over motor control is an expected consequence of increasing brain size in primates because of the faster scaling of the number of neurons in the primary motor cortex over the brainstem and spinal cord motor neuron pools, explaining the apparent uniqueness of the corticalization of motor control in humans. © 2015 Wiley Periodicals, Inc.

  11. On folivory, competition, and intelligence: generalisms, overgeneralizations, and models of primate evolution.

    PubMed

    Sayers, Ken

    2013-04-01

    Considerations of primate behavioral evolution often proceed by assuming the ecological and competitive milieus of particular taxa via their relative exploitation of gross food types, such as fruits versus leaves. Although this "fruit/leaf dichotomy" has been repeatedly criticized, it continues to be implicitly invoked in discussions of primate socioecology and female social relationships and is explicitly invoked in models of brain evolution. An expanding literature suggests that such views have severely limited our knowledge of the social and ecological complexities of primate folivory. This paper examines the behavior of primate folivore-frugivores, with particular emphasis on gray langurs (traditionally, Semnopithecus entellus) within the broader context of evolutionary ecology. Although possessing morphological characteristics that have been associated with folivory and constrained activity patterns, gray langurs are known for remarkable plasticity in ecology and behavior. Their diets are generally quite broad and can be discussed in relation to Liem's Paradox, the odd coupling of anatomical feeding specializations with a generalist foraging strategy. Gray langurs, not coincidentally, inhabit arguably the widest range of habitats for a nonhuman primate, including high elevations in the Himalayas. They provide an excellent focal point for examining the assumptions and predictions of behavioral, socioecological, and cognitive evolutionary models. Contrary to the classical descriptions of the primate folivore, Himalayan and other gray langurs-and, in actuality, many leaf-eating primates-range widely, engage in resource competition (both of which have previously been noted for primate folivores), and solve ecological problems rivaling those of more frugivorous primates (which has rarely been argued for primate folivores). It is maintained that questions of primate folivore adaptation, temperate primate adaptation, and primate evolution more generally cannot be answered by the frequent approach of broad characterizations, categorization models, crude variables, weakly correlative evidence, and subjective definitions. As a corollary, many current avenues of study are inadequate for explaining primate adaptation. A true understanding of primate ecology can only be achieved through the use of mainstream evolutionary ecology and thorough linkage of both proximate and ultimate mechanisms.

  12. Model for the computation of self-motion in biological systems

    NASA Technical Reports Server (NTRS)

    Perrone, John A.

    1992-01-01

    A technique is presented by which direction- and speed-tuned cells, such as those commonly found in the middle temporal region of the primate brain, can be utilized to analyze the patterns of retinal image motion that are generated during observer movement through the environment. The developed model determines heading by finding the peak response in a population of detectors or neurons each tuned to a particular heading direction. It is suggested that a complex interaction of multiple cell networks is required for the solution of the self-motion problem in the primate brain.

  13. Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex

    PubMed Central

    Mars, Rogier B.; Sallet, Jérôme; Neubert, Franz-Xaver; Rushworth, Matthew F. S.

    2013-01-01

    The human ability to infer the thoughts and beliefs of others, often referred to as “theory of mind,” as well as the predisposition to even consider others, are associated with activity in the temporoparietal junction (TPJ) area. Unlike the case of most human brain areas, we have little sense of whether or how TPJ is related to brain areas in other nonhuman primates. It is not possible to address this question by looking for similar task-related activations in nonhuman primates because there is no evidence that nonhuman primates engage in theory-of-mind tasks in the same manner as humans. Here, instead, we explore the relationship by searching for areas in the macaque brain that interact with other macaque brain regions in the same manner as human TPJ interacts with other human brain regions. In other words, we look for brain regions with similar positions within a distributed neural circuit in the two species. We exploited the fact that human TPJ has a unique functional connectivity profile with cortical areas with known homologs in the macaque. For each voxel in the macaque temporal and parietal cortex we evaluated the similarity of its functional connectivity profile to that of human TPJ. We found that areas in the middle part of the superior temporal cortex, often associated with the processing of faces and other social stimuli, have the most similar connectivity profile. These results suggest that macaque face processing areas and human mentalizing areas might have a similar precursor. PMID:23754406

  14. Evaluation of [11C]metergoline as a PET radiotracer for 5HTR in nonhuman primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooker, J.M.; Hooker, J.M.; Kim, S.W.

    2010-04-20

    Metergoline, a serotonin receptor antagonist, was labeled with carbon-11 in order to evaluate its pharmacokinetics and distribution in non-human primates using positron emission tomography. [{sup 11}C]Metergoline had moderate brain uptake and exhibited heterogeneous specific binding, which was blocked by pretreatment with metergoline and altanserin throughout the cortex. Non-specific binding and insensitivity to changes in synaptic serotonin limit its potential as a PET radiotracer. However, the characterization of [{sup 11}C]metergoline pharmacokinetics and binding in the brain and peripheral organs using PET improves our understanding of metergoline drug pharmacology.

  15. Plasma Amyloid Is Associated with White Matter and Subcortical Alterations and Is Modulated by Age and Seasonal Rhythms in Mouse Lemur Primates.

    PubMed

    Gary, Charlotte; Hérard, Anne-Sophie; Hanss, Zoé; Dhenain, Marc

    2018-01-01

    Accumulation of amyloid-β (Aβ) peptides in the brain is a critical early event in the pathogenesis of Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. There is increasing interest in measuring levels of plasma Aβ since this could help in diagnosis of brain pathology. However, the value of plasma Aβ in such a diagnosis is still controversial and factors modulating its levels are still poorly understood. The mouse lemur ( Microcebus murinus ) is a primate model of cerebral aging which can also present with amyloid plaques and whose Aβ is highly homologous to humans'. In an attempt to characterize this primate model and to evaluate the potential of plasma Aβ as a biomarker for brain alterations, we measured plasma Aβ 40 concentration in 21 animals aged from 5 to 9.5 years. We observed an age-related increase in plasma Aβ 40 levels. We then evaluated the relationships between plasma Aβ 40 levels and cerebral atrophy in these mouse lemurs. Voxel-based analysis of cerebral MR images (adjusted for the age/sex/brain size of the animals), showed that low Aβ 40 levels are associated with atrophy of several white matter and subcortical brain regions. These results suggest that low Aβ 40 levels in middle-aged/old animals are associated with brain deterioration. One special feature of mouse lemurs is that their metabolic and physiological parameters follow seasonal changes strictly controlled by illumination. We evaluated seasonal-related variations of plasma Aβ 40 levels and found a strong effect, with higher plasma Aβ 40 concentrations in winter conditions compared to summer. This question of seasonal modulation of Aβ plasma levels should be addressed in clinical studies. We also focused on the amplitude of the difference between plasma Aβ 40 levels during the two seasons and found that this amplitude increases with age. Possible mechanisms leading to these seasonal changes are discussed.

  16. Mapping Dopamine Function in Primates Using Pharmacologic Magnetic Resonance Imaging

    PubMed Central

    Sanchez-Pernaute, Rosario; Brownell, Anna-Liisa; Chen, Yin-Ching Iris; Isacson, Ole

    2008-01-01

    Dopamine (DA) receptors play a central role in such diverse pathologies as Parkinson's disease, schizophrenia, and drug abuse. We used an amphetamine challenge combined with pharmacologic magnetic resonance imaging (phMRI) to map DA-associated circuitry in nonhuman primates with high sensitivity and spatial resolution. Seven control cynomolgous monkeys and 10 MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated parkinsonian primates were studied longitudinally using both positron emission tomography (PET) and phMRI. Amphetamine challenge (2.5 mg/kg, i.v.) in control monkeys increased relative cerebral blood volume (rCBV) in a number of brain regions not described previously, such as parafascicular thalamus, precentral gyrus, and dentate nucleus of the cerebellum. With the high spatial resolution, we were also able to readily identify changes in rCBV in the anterior cingulate, substantia nigra, ventral tegmental area, caudate (tail and head), putamen, and nucleus accumbens. Amphetamine induced decreases in rCBV in occipital and posterior parietal cortices. Parkinsonian primates had a prominent loss of response to amphetamine, with relative sparing of the nucleus accumbens and parafascicular thalamus. There was a significant correlation between rCBV loss in the substantia nigra and both PET imaging of dopamine transporters and behavioral measures. Monkeys with partial lesions as defined by 2β-carbomethoxy-3β-(4-fluorophenyl) tropane binding to dopamine transporters showed recruitment of premotor and motor cortex after amphetamine stimulus similar to what has been noted in Parkinson's patients during motor tasks. These data indicate that phMRI is a powerful tool for assessment of dynamic changes associated with normal and dysfunctional DA brain circuitry in primates. PMID:15509742

  17. Quantifying seasonal fallback on invertebrates, pith, and bromeliad leaves by white-faced capuchin monkeys (Cebus capucinus) in a tropical dry forest.

    PubMed

    Mosdossy, Krisztina N; Melin, Amanda D; Fedigan, Linda M

    2015-09-01

    Fallback foods (FBFs) are hypothesized to shape the ecology, morphology, and behavior of primates, including hominins. Identifying FBFs is therefore critical for revealing past and present foraging adaptations. Recent research suggests invertebrates act as seasonal FBFs for many primate species and human populations. Yet, studies measuring the consumption of invertebrates relative to ecological variation are widely lacking. We address this gap by examining food abundance and entomophagy by primates in a seasonal forest. We study foraging behavior of white-faced capuchins (Cebus capucinus)-a species renowned for its intelligence and propensity for extractive foraging-along with the abundance of invertebrates, dietary ripe fruits, pith, and bromeliads. Consumption events and processing time are recorded during focal animal samples. We determine abundance of vegetative foods through phenological and density records. Invertebrates are collected in malaise, pan, and terrestrial traps; caterpillar abundance is inferred from frass traps. Invertebrates are abundant throughout the year and capuchins consume invertebrates-including caterpillars-frequently when fruit is abundant. However, capuchins spend significantly more time processing protected invertebrates when fruit and caterpillars are low in abundance. Invertebrate foraging patterns are not uniform. Caterpillar consumption is consistent with a preferred strategy, whereas capuchins appear to fallback on invertebrates requiring high handling time. Capuchins are convergent with hominins in possessing large brains and high levels of sensorimotor intelligence, thus our research has broad implications for primate evolution, including factors shaping cognitive innovations, brain size, and the role of entomophagy in the human diet. © 2015 Wiley Periodicals, Inc.

  18. Neurobiological roots of language in primate audition: common computational properties.

    PubMed

    Bornkessel-Schlesewsky, Ina; Schlesewsky, Matthias; Small, Steven L; Rauschecker, Josef P

    2015-03-01

    Here, we present a new perspective on an old question: how does the neurobiology of human language relate to brain systems in nonhuman primates? We argue that higher-order language combinatorics, including sentence and discourse processing, can be situated in a unified, cross-species dorsal-ventral streams architecture for higher auditory processing, and that the functions of the dorsal and ventral streams in higher-order language processing can be grounded in their respective computational properties in primate audition. This view challenges an assumption, common in the cognitive sciences, that a nonhuman primate model forms an inherently inadequate basis for modeling higher-level language functions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Pharmacokinetic analysis and drug delivery efficiency of the focused ultrasound-induced blood-brain barrier opening in non-human primates

    PubMed Central

    Samiotaki, Gesthimani; Karakatsani, Maria Eleni; Buch, Amanda; Papadopoulos, Stephanos; Wu, Shih Ying; Jambawalikar, Sachin; Konofagou, Elisa E.

    2016-01-01

    Purpose Focused Ultrasound (FUS) in conjunction with systemically administered microbubbles has been shown to open the Blood-Brain Barrier (BBB) locally, non-invasively and reversibly in rodents and non-human primates (NHP), suggesting the immense potential of this technique. The objective of this study entailed the investigation of the physiologic changes in the brain following the FUS-induced BBB opening and their relationship with the underlying anatomy. Materials and Methods Pharmacokinetic analysis was implemented in NHP’s that received FUS at various acoustic pressures. Relaxivity mapping enabled the robust quantitative detection of the BBB opening as well as gray and white matter segmentation. Drug delivery efficiency was measured for pre-clinical validation of the technique. Results Based on our results, the opening volume and the amount of the gadolinium delivered were found mostly contained in the grey matter, while FUS-induced permeability and drug concentration varied depending upon the underlying brain inhomogeneity, and increased with the acoustic pressure. Conclusions Overall, apart from the in vivo protocols for BBB analysis developed here, this study also suggests the important role that FUS can have in efficient drug delivery via localized and transient BBB opening. PMID:27916657

  20. A dedicated network for social interaction processing in the primate brain.

    PubMed

    Sliwa, J; Freiwald, W A

    2017-05-19

    Primate cognition requires interaction processing. Interactions can reveal otherwise hidden properties of intentional agents, such as thoughts and feelings, and of inanimate objects, such as mass and material. Where and how interaction analyses are implemented in the brain is unknown. Using whole-brain functional magnetic resonance imaging in macaque monkeys, we discovered a network centered in the medial and ventrolateral prefrontal cortex that is exclusively engaged in social interaction analysis. Exclusivity of specialization was found for no other function anywhere in the brain. Two additional networks, a parieto-premotor and a temporal one, exhibited both social and physical interaction preference, which, in the temporal lobe, mapped onto a fine-grain pattern of object, body, and face selectivity. Extent and location of a dedicated system for social interaction analysis suggest that this function is an evolutionary forerunner of human mind-reading capabilities. Copyright © 2017, American Association for the Advancement of Science.

  1. Noncoding origins of anthropoid traits and a new null model of transposon functionalization.

    PubMed

    del Rosario, Ricardo C H; Rayan, Nirmala Arul; Prabhakar, Shyam

    2014-09-01

    Little is known about novel genetic elements that drove the emergence of anthropoid primates. We exploited the sequencing of the marmoset genome to identify 23,849 anthropoid-specific constrained (ASC) regions and confirmed their robust functional signatures. Of the ASC base pairs, 99.7% were noncoding, suggesting that novel anthropoid functional elements were overwhelmingly cis-regulatory. ASCs were highly enriched in loci associated with fetal brain development, motor coordination, neurotransmission, and vision, thus providing a large set of candidate elements for exploring the molecular basis of hallmark primate traits. We validated ASC192 as a primate-specific enhancer in proliferative zones of the developing brain. Unexpectedly, transposable elements (TEs) contributed to >56% of ASCs, and almost all TE families showed functional potential similar to that of nonrepetitive DNA. Three L1PA repeat-derived ASCs displayed coherent eye-enhancer function, thus demonstrating that the "gene-battery" model of TE functionalization applies to enhancers in vivo. Our study provides fundamental insights into genome evolution and the origins of anthropoid phenotypes and supports an elegantly simple new null model of TE exaptation. © 2014 del Rosario et al.; Published by Cold Spring Harbor Laboratory Press.

  2. A multi-site array for combined local electrochemistry and electrophysiology in the non-human primate brain.

    PubMed

    Disney, Anita A; McKinney, Collin; Grissom, Larry; Lu, Xuekun; Reynolds, John H

    2015-11-30

    Currently, the primary technique employed in circuit-level study of the brain is electrophysiology, recording local field or action potentials (LFPs or APs). However most communication between neurons is chemical and the relationship between electrical activity within neurons and chemical signaling between them is not well understood in vivo, particularly for molecules that signal at least in part by non-synaptic transmission. We describe a multi-contact array and accompanying head stage circuit that together enable concurrent electrophysiological and electrochemical recording. The array is small (<200 μm) and can be assembled into a device of arbitrary length. It is therefore well-suited for use in all major in vivo model systems in neuroscience, including non-human primates where the large brain and need for daily insertion and removal of recording devices places particularly strict demands on design. We present a protocol for array fabrication. We then show that a device built in the manner described can record LFPs and perform enzyme-based amperometric detection of choline in the awake macaque monkey. Comparison with existing methods Existing methods allow single mode (electrophysiology or electrochemistry) recording. This system is designed for concurrent, dual-mode recording. It is also the only system designed explicitly to meet the challenges of recording in non-human primates. Our system offers the possibility for conducting in vivo studies in a range of species that examine the relationship between the electrical activity of neurons and their chemical environment, with exquisite spatial and temporal precision. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. A multi-site array for combined local electrochemistry and electrophysiology in the non-human primate brain

    PubMed Central

    Disney, Anita A; McKinney, Collin; Grissom, Larry; Lu, Xuekun; Reynolds, John H

    2015-01-01

    Background Currently, the primary technique employed in circuit-level study of the brain is electrophysiology, recording local field or action potentials (LFPs or APs). However most communication between neurons is chemical and the relationship between electrical activity within neurons and chemical signaling between them is not well understood in vivo, particularly for molecules that signal at least in part by non-synaptic transmission. New Method We describe a multi-contact array and accompanying head stage circuit that together enable concurrent electrophysiological and electrochemical recording. The array is small (<200μm) and can be assembled into a device of arbitrary length. It is therefore well-suited for use in all major in vivo model systems in neuroscience, including non-human primates where the large brain and need for daily insertion and removal of recording devices places particularly strict demands on design. Results We present a protocol for array fabrication. We then show that a device built in the manner described can record LFPs and perform enzyme-based amperometric detection of choline in the awake macaque monkey. Comparison with existing methods Existing methods allow single mode (electrophysiology or electrochemistry) recording. This system is designed for concurrent, dual-mode recording. It is also the only system designed explicitly to meet the challenges of recording in non-human primates. Conclusions Our system offers the possibility for conducting in vivo studies in a range of species that examine the relationship between the electrical activity of neurons and their chemical environment, with exquisite spatial and temporal precision. PMID:26226654

  4. On folivory, competition, and intelligence: generalism, overgeneralizations, and models of primate evolution

    PubMed Central

    Sayers, Ken

    2013-01-01

    Considerations of primate behavioral evolution often proceed by assuming the ecological and competitive milieus of particular taxa via their relative exploitation of gross food types, such as fruits versus leaves. Although this “fruit/leaf dichotomy” has been repeatedly criticized, it continues to be implicitly invoked in discussions of primate socioecology and female social relationships, and explicitly invoked in models of brain evolution. An expanding literature suggests that such views have severely limited our knowledge of the social and ecological complexities of primate folivory. This paper examines the behavior of primate folivore-frugivores, with particular emphasis on gray langurs (traditionally, Semnopithecus entellus) within the broader context of evolutionary ecology. Although possessing morphological characters that have been associated with folivory and constrained activity patterns, gray langurs are known for remarkable plasticity in ecology and behavior. Their diets are generally quite broad and can be discussed in relation to “Liem’s paradox,” the odd coupling of anatomical feeding specializations with a generalist foraging strategy. Gray langurs, not coincidentally, inhabit arguably the widest range of habitats for a nonhuman primate, including high elevations in the Himalayas. They provide an excellent focal point for examining the assumptions and predictions of behavioral, socioecological, and cognitive evolutionary models. Contrary to the classical descriptions of the primate folivore, Himalayan and other gray langurs—and, in actuality, many leaf eating primates—range widely and engage in resource competition (both of which have previously been noted for primate folivores) as well as solve ecological problems rivaling those of more frugivorous primates (which has rarely been argued for primate folivores). It is maintained that questions of primate folivore adaptation, temperate primate adaptation, and primate evolution more generally cannot be answered by the frequent approach of broad characterizations, categorization models, crude variables, weakly correlative evidence, and subjective definitions. As a corollary, many current avenues of study are inadequate for explaining primate adaptation. A true understanding of primate ecology can only be achieved through the utilization of mainstream evolutionary ecology, and thorough linkage of both proximate and ultimate mechanisms. PMID:23263563

  5. Computing Arm Movements with a Monkey Brainet.

    PubMed

    Ramakrishnan, Arjun; Ifft, Peter J; Pais-Vieira, Miguel; Byun, Yoon Woo; Zhuang, Katie Z; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2015-07-09

    Traditionally, brain-machine interfaces (BMIs) extract motor commands from a single brain to control the movements of artificial devices. Here, we introduce a Brainet that utilizes very-large-scale brain activity (VLSBA) from two (B2) or three (B3) nonhuman primates to engage in a common motor behaviour. A B2 generated 2D movements of an avatar arm where each monkey contributed equally to X and Y coordinates; or one monkey fully controlled the X-coordinate and the other controlled the Y-coordinate. A B3 produced arm movements in 3D space, while each monkey generated movements in 2D subspaces (X-Y, Y-Z, or X-Z). With long-term training we observed increased coordination of behavior, increased correlations in neuronal activity between different brains, and modifications to neuronal representation of the motor plan. Overall, performance of the Brainet improved owing to collective monkey behaviour. These results suggest that primate brains can be integrated into a Brainet, which self-adapts to achieve a common motor goal.

  6. Computing Arm Movements with a Monkey Brainet

    PubMed Central

    Ramakrishnan, Arjun; Ifft, Peter J.; Pais-Vieira, Miguel; Woo Byun, Yoon; Zhuang, Katie Z.; Lebedev, Mikhail A.; Nicolelis, Miguel A.L.

    2015-01-01

    Traditionally, brain-machine interfaces (BMIs) extract motor commands from a single brain to control the movements of artificial devices. Here, we introduce a Brainet that utilizes very-large-scale brain activity (VLSBA) from two (B2) or three (B3) nonhuman primates to engage in a common motor behaviour. A B2 generated 2D movements of an avatar arm where each monkey contributed equally to X and Y coordinates; or one monkey fully controlled the X-coordinate and the other controlled the Y-coordinate. A B3 produced arm movements in 3D space, while each monkey generated movements in 2D subspaces (X-Y, Y-Z, or X-Z). With long-term training we observed increased coordination of behavior, increased correlations in neuronal activity between different brains, and modifications to neuronal representation of the motor plan. Overall, performance of the Brainet improved owing to collective monkey behaviour. These results suggest that primate brains can be integrated into a Brainet, which self-adapts to achieve a common motor goal. PMID:26158523

  7. Brain size growth in wild and captive chimpanzees (Pan troglodytes).

    PubMed

    Cofran, Zachary

    2018-05-24

    Despite many studies of chimpanzee brain size growth, intraspecific variation is under-explored. Brain size data from chimpanzees of the Taï Forest and the Yerkes Primate Research Center enable a unique glimpse into brain growth variation as age at death is known for individuals, allowing cross-sectional growth curves to be estimated. Because Taï chimpanzees are from the wild but Yerkes apes are captive, potential environmental effects on neural development can also be explored. Previous research has revealed differences in growth and health between wild and captive primates, but such habitat effects have yet to be investigated for brain growth. Here, I use an iterative curve fitting procedure to estimate brain growth and regression parameters for each population, statistically comparing growth models using bootstrapped confidence intervals. Yerkes and Taï brain sizes overlap at all ages, although the sole Taï newborn is at the low end of captive neonatal variation. Growth rate and duration are statistically indistinguishable between the two populations. Resampling the Yerkes sample to match the Taï sample size and age group composition shows that ontogenetic variation in the two groups are remarkably similar despite the latter's limited size. Best fit growth curves for each sample indicate cessation of brain size growth at around 2 years, earlier than has previously been reported. The overall similarity between wild and captive chimpanzees points to the canalization of brain growth in this species. © 2018 Wiley Periodicals, Inc.

  8. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons

    PubMed Central

    Kazu, Rodrigo S.; Maldonado, José; Mota, Bruno; Manger, Paul R.; Herculano-Houzel, Suzana

    2014-01-01

    Quantitative analysis of the cellular composition of rodent, primate, insectivore, and afrotherian brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of artiodactyls, a group within the order Cetartiodactyla, believed to be a relatively recent radiation from the common Eutherian ancestor. We find that artiodactyls share non-neuronal scaling rules with all groups analyzed previously. Artiodactyls share with afrotherians and rodents, but not with primates, the neuronal scaling rules that apply to the cerebral cortex and cerebellum. The neuronal scaling rules that apply to the remaining brain areas are, however, distinct in artiodactyls. Importantly, we show that the folding index of the cerebral cortex scales with the number of neurons in the cerebral cortex in distinct fashions across artiodactyls, afrotherians, rodents, and primates, such that the artiodactyl cerebral cortex is more convoluted than primate cortices of similar numbers of neurons. Our findings suggest that the scaling rules found to be shared across modern afrotherians, glires, and artiodactyls applied to the common Eutherian ancestor, such as the relationship between the mass of the cerebral cortex as a whole and its number of neurons. In turn, the distribution of neurons along the surface of the cerebral cortex, which is related to its degree of gyrification, appears to be a clade-specific characteristic. If the neuronal scaling rules for artiodactyls extend to all cetartiodactyls, we predict that the large cerebral cortex of cetaceans will still have fewer neurons than the human cerebral cortex. PMID:25429261

  9. Dimorphism in the Size and Shape of the Birth Canal Across Anthropoid Primates.

    PubMed

    Moffett, Elizabeth A

    2017-05-01

    It has long been noted that the human female birth canal is well adapted to giving birth to large-brained neonates. However, several species of nonhuman primates give birth to large-headed neonates compared to the maternal birth canal. The presence of such large cephalopelvic proportions in nonhuman primates presents the question of whether dimorphism in the birth canals of these other species is related to obstetric demand, as such dimorphism is presumed to be in humans. In this study, the hypothesis that either the presence or magnitude of dimorphism in the birth canal is related to large cephalopelvic proportions among anthropoid primates is directly tested. This study shows that birth canal dimorphism is common among anthropoids regardless of cephalopelvic proportions, but taxa with large cephalopelvic proportions have a higher magnitude of dimorphism than those that give birth to relatively small-headed neonates. Furthermore, humans have exceptionally high levels of dimorphism that cannot be explained based on our large cephalopelvic proportions alone. Anat Rec, 300:870-889, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Hope for a new neurology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nottebohm, F.

    1985-01-01

    This book contains 13 chapters. Some of the chapter titles are: Mechanisms of Change after Brain Lesions; Neurogenesis and Plasticity of the Olfatory Sensory Neurons; Neuronal Replacement in Adulthood; and DNA Synthesis and Cell Division in the Adult Primate Brain.

  11. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing

    PubMed Central

    Rauschecker, Josef P; Scott, Sophie K

    2010-01-01

    Speech and language are considered uniquely human abilities: animals have communication systems, but they do not match human linguistic skills in terms of recursive structure and combinatorial power. Yet, in evolution, spoken language must have emerged from neural mechanisms at least partially available in animals. In this paper, we will demonstrate how our understanding of speech perception, one important facet of language, has profited from findings and theory in nonhuman primate studies. Chief among these are physiological and anatomical studies showing that primate auditory cortex, across species, shows patterns of hierarchical structure, topographic mapping and streams of functional processing. We will identify roles for different cortical areas in the perceptual processing of speech and review functional imaging work in humans that bears on our understanding of how the brain decodes and monitors speech. A new model connects structures in the temporal, frontal and parietal lobes linking speech perception and production. PMID:19471271

  12. A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface

    PubMed Central

    Su, Yi; Routhu, Sudhamayee; Moon, Kee S.; Lee, Sung Q.; Youm, WooSub; Ozturk, Yusuf

    2016-01-01

    All neural information systems (NIS) rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR) by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI) using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI) to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP) oscillation and stimulate the target area at the same time. PMID:27669264

  13. Acute amaurotic epilepsy caused by lead poisoning in non-human primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zook, B.C.; Sauer, R.M.; Garner, F.M.

    1972-09-15

    Lead poisoning was diagnosed in all of 14 simian primates that died of acute amaurotic epilepsy at the National Zoological Park. Two primates from the Antwerp Zoo included in the original description of acute amaurotic epilepsy were also retrospectively found to have lead poisoning. Diagnosis was based on history, clinical signs, histologic brain lesions, available source of lead, acid-fast intranuclear inclusion bodies in renal and hepatic cells, and excess lead in liver specimens. It was concluded that acute amaurotic epilepsy should be considered a clinical syndrome of lead intoxication.

  14. Primates, computation, and the path to language. Reply to comments on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain"

    NASA Astrophysics Data System (ADS)

    Arbib, Michael A.

    2016-03-01

    The target article [6], henceforth TA, had as its main title Towards a Computational Comparative Neuroprimatology. This unpacks into three claims: Comparative Primatology: If one wishes to understand the behavior of any one primate species (whether monkey, ape or human - TA did not discuss, e.g., lemurs but that study could well be of interest), one will gain new insight by comparing behaviors across species, sharpening one's analysis of one class of behaviors by analyzing similarities and differences between two or more species.

  15. Spectral fingerprints of large-scale neuronal interactions.

    PubMed

    Siegel, Markus; Donner, Tobias H; Engel, Andreas K

    2012-01-11

    Cognition results from interactions among functionally specialized but widely distributed brain regions; however, neuroscience has so far largely focused on characterizing the function of individual brain regions and neurons therein. Here we discuss recent studies that have instead investigated the interactions between brain regions during cognitive processes by assessing correlations between neuronal oscillations in different regions of the primate cerebral cortex. These studies have opened a new window onto the large-scale circuit mechanisms underlying sensorimotor decision-making and top-down attention. We propose that frequency-specific neuronal correlations in large-scale cortical networks may be 'fingerprints' of canonical neuronal computations underlying cognitive processes.

  16. Convergent evolution of complex brains and high intelligence

    PubMed Central

    Roth, Gerhard

    2015-01-01

    Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. PMID:26554042

  17. Perinatal Asphyxia in a Nonhuman Primate Model

    PubMed Central

    Misbe, Elizabeth N. Jacobson; Richards, Todd L.; McPherson, Ronald J.; Burbacher, Thomas M.; Juul, Sandra E.

    2011-01-01

    Perinatal asphyxia is a leading cause of brain injury in neonates, occurring in 2–4 per 1,000 live births, and there are limited treatment options. Because of their similarity to humans, nonhuman primates are ideal for performing preclinical tests of safety and efficacy for neurotherapeutic interventions. We previously developed a primate model of acute perinatal asphyxia using 12–15 min of umbilical cord occlusion. Continuing this research, we have increased cord occlusion time from 15 to 18 min and extended neurodevelopmental follow-up to 9 months. The purpose of this report is to evaluate the increase in morbidity associated with 18 min of asphyxia by comparing indices obtained from colony controls, nonasphyxiated controls and asphyxiated animals. Pigtail macaques were delivered by hysterotomy after 0, 15 or 18 min of cord occlusion, then resuscitated. Over the ensuing 9 months, for each biochemical and physiologic parameters, behavioral and developmental evaluations, and structural and spectroscopic MRI were recorded. At birth, all asphyxiated animals required resuscitation with positive pressure ventilation and exhibited biochemical and clinical characteristics diagnostic of hypoxic-ischemic encephalopathy, including metabolic acidosis and attenuated brain activity. Compared with controls, asphyxiated animals developed long-term physical and cognitive deficits. This preliminary report characterizes the acute and chronic consequences of perinatal asphyxia in a nonhuman primate model, and describes diagnostic imaging tools for quantifying correlates of neonatal brain injury as well as neurodevelopmental tests for evaluating early motor and cognitive outcomes. PMID:21659720

  18. Perinatal asphyxia in a nonhuman primate model.

    PubMed

    Jacobson Misbe, Elizabeth N; Richards, Todd L; McPherson, Ronald J; Burbacher, Thomas M; Juul, Sandra E

    2011-01-01

    Perinatal asphyxia is a leading cause of brain injury in neonates, occurring in 2-4 per 1,000 live births, and there are limited treatment options. Because of their similarity to humans, nonhuman primates are ideal for performing preclinical tests of safety and efficacy for neurotherapeutic interventions. We previously developed a primate model of acute perinatal asphyxia using 12-15 min of umbilical cord occlusion. Continuing this research, we have increased cord occlusion time from 15 to 18 min and extended neurodevelopmental follow-up to 9 months. The purpose of this report is to evaluate the increase in morbidity associated with 18 min of asphyxia by comparing indices obtained from colony controls, nonasphyxiated controls and asphyxiated animals. Pigtail macaques were delivered by hysterotomy after 0, 15 or 18 min of cord occlusion, then resuscitated. Over the ensuing 9 months, for each biochemical and physiologic parameters, behavioral and developmental evaluations, and structural and spectroscopic MRI were recorded. At birth, all asphyxiated animals required resuscitation with positive pressure ventilation and exhibited biochemical and clinical characteristics diagnostic of hypoxic-ischemic encephalopathy, including metabolic acidosis and attenuated brain activity. Compared with controls, asphyxiated animals developed long-term physical and cognitive deficits. This preliminary report characterizes the acute and chronic consequences of perinatal asphyxia in a nonhuman primate model, and describes diagnostic imaging tools for quantifying correlates of neonatal brain injury as well as neurodevelopmental tests for evaluating early motor and cognitive outcomes. Copyright © 2011 S. Karger AG, Basel.

  19. Mediodorsal thalamus and cognition in non-human primates

    PubMed Central

    Baxter, Mark G.

    2013-01-01

    Several recent studies in non-human primates have provided new insights into the role of the medial thalamus in different aspects of cognitive function. The mediodorsal nucleus of the thalamus (MD), by virtue of its connectivity with the frontal cortex, has been implicated in an array of cognitive functions. Rather than serving as an engine or relay for the prefrontal cortex, this area seems to be more specifically involved in regulating plasticity and flexibility of prefrontal-dependent cognitive functions. Focal damage to MD may also exacerbate the effects of damage to other subcortical relays. Thus, a wide range of distributed circuits and cognitive functions may be disrupted from focal damage within the medial thalamus (for example as a consequence of stroke or brain injury). Conversely, this region may make an interesting target for neuromodulation of cognitive function via deep brain stimulation or related methods, in conditions associated with dysfunction of these neural circuits. PMID:23964206

  20. Mediodorsal thalamus and cognition in non-human primates.

    PubMed

    Baxter, Mark G

    2013-01-01

    Several recent studies in non-human primates have provided new insights into the role of the medial thalamus in different aspects of cognitive function. The mediodorsal nucleus of the thalamus (MD), by virtue of its connectivity with the frontal cortex, has been implicated in an array of cognitive functions. Rather than serving as an engine or relay for the prefrontal cortex, this area seems to be more specifically involved in regulating plasticity and flexibility of prefrontal-dependent cognitive functions. Focal damage to MD may also exacerbate the effects of damage to other subcortical relays. Thus, a wide range of distributed circuits and cognitive functions may be disrupted from focal damage within the medial thalamus (for example as a consequence of stroke or brain injury). Conversely, this region may make an interesting target for neuromodulation of cognitive function via deep brain stimulation or related methods, in conditions associated with dysfunction of these neural circuits.

  1. Social modulation of cognition: Lessons from rhesus macaques relevant to education.

    PubMed

    Monfardini, Elisabetta; Reynaud, Amélie J; Prado, Jérôme; Meunier, Martine

    2017-11-01

    Any animal, human or non-human, lives in a world where there are others like itself. Individuals' behaviors are thus inevitably influenced by others, and cognition is no exception. Long acknowledged in psychology, social modulations of cognition have been neglected in cognitive neuroscience. Yet, infusing this classic topic in psychology with brain science methodologies could yield valuable educational insights. In recent studies, we used a non-human primate model, the rhesus macaque, to identify social influences representing ancient biases rooted in evolution, and neuroimaging to shed light on underlying mechanisms. The behavioral and neural data garnered in humans and macaques are summarized, with a focus on two findings relevant to human education. First, peers' mistakes stand out as exceptional professors and seem to have devoted areas and neurons in the primates' brain. Second, peers' mere presence suffices to enhance performance in well-learned tasks, possibly by boosting activity in the brain network involved in the task at hand. These findings could be translated into concrete pedagogical interventions in the classroom. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Why are there so many explanations for primate brain evolution?

    PubMed Central

    2017-01-01

    The question as to why primates have evolved unusually large brains has received much attention, with many alternative proposals all supported by evidence. We review the main hypotheses, the assumptions they make and the evidence for and against them. Taking as our starting point the fact that every hypothesis has sound empirical evidence to support it, we argue that the hypotheses are best interpreted in terms of a framework of evolutionary causes (selection factors), consequences (evolutionary windows of opportunity) and constraints (usually physiological limitations requiring resolution if large brains are to evolve). Explanations for brain evolution in birds and mammals generally, and primates in particular, have to be seen against the backdrop of the challenges involved with the evolution of coordinated, cohesive, bonded social groups that require novel social behaviours for their resolution, together with the specialized cognition and neural substrates that underpin this. A crucial, but frequently overlooked, issue is that fact that the evolution of large brains required energetic, physiological and time budget constraints to be overcome. In some cases, this was reflected in the evolution of ‘smart foraging’ and technical intelligence, but in many cases required the evolution of behavioural competences (such as coalition formation) that required novel cognitive skills. These may all have been supported by a domain-general form of cognition that can be used in many different contexts. This article is part of the themed issue ‘Physiological determinants of social behaviour in animals’. PMID:28673920

  3. Organizing Principles of Human Cortical Development--Thickness and Area from 4 to 30 Years: Insights from Comparative Primate Neuroanatomy.

    PubMed

    Amlien, Inge K; Fjell, Anders M; Tamnes, Christian K; Grydeland, Håkon; Krogsrud, Stine K; Chaplin, Tristan A; Rosa, Marcello G P; Walhovd, Kristine B

    2016-01-01

    The human cerebral cortex undergoes a protracted, regionally heterogeneous development well into young adulthood. Cortical areas that expand the most during human development correspond to those that differ most markedly when the brains of macaque monkeys and humans are compared. However, it remains unclear to what extent this relationship derives from allometric scaling laws that apply to primate brains in general, or represents unique evolutionary adaptations. Furthermore, it is unknown whether the relationship only applies to surface area (SA), or also holds for cortical thickness (CT). In 331 participants aged 4 to 30, we calculated age functions of SA and CT, and examined the correspondence of human cortical development with macaque to human expansion, and with expansion across nonhuman primates. CT followed a linear negative age function from 4 to 30 years, while SA showed positive age functions until 12 years with little further development. Differential cortical expansion across primates was related to regional maturation of SA and CT, with age trajectories differing between high- and low-expanding cortical regions. This relationship adhered to allometric scaling laws rather than representing uniquely macaque-human differences: regional correspondence with human development was as large for expansion across nonhuman primates as between humans and macaque. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Processing Of Visual Information In Primate Brains

    NASA Technical Reports Server (NTRS)

    Anderson, Charles H.; Van Essen, David C.

    1991-01-01

    Report reviews and analyzes information-processing strategies and pathways in primate retina and visual cortex. Of interest both in biological fields and in such related computational fields as artificial neural networks. Focuses on data from macaque, which has superb visual system similar to that of humans. Authors stress concept of "good engineering" in understanding visual system.

  5. The retention time of inorganic mercury in the brain — A systematic review of the evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rooney, James P.K., E-mail: jrooney@rcsi.ie

    2014-02-01

    Reports from human case studies indicate a half-life for inorganic mercury in the brain in the order of years—contradicting older radioisotope studies that estimated half-lives in the order of weeks to months in duration. This study systematically reviews available evidence on the retention time of inorganic mercury in humans and primates to better understand this conflicting evidence. A broad search strategy was used to capture 16,539 abstracts on the Pubmed database. Abstracts were screened to include only study types containing relevant information. 131 studies of interest were identified. Only 1 primate study made a numeric estimate for the half-life ofmore » inorganic mercury (227–540 days). Eighteen human mercury poisoning cases were followed up long term including autopsy. Brain inorganic mercury concentrations at death were consistent with a half-life of several years or longer. 5 radionucleotide studies were found, one of which estimated head half-life (21 days). This estimate has sometimes been misinterpreted to be equivalent to brain half-life—which ignores several confounding factors including limited radioactive half-life and radioactive decay from surrounding tissues including circulating blood. No autopsy cohort study estimated a half-life for inorganic mercury, although some noted bioaccumulation of brain mercury with age. Modelling studies provided some extreme estimates (69 days vs 22 years). Estimates from modelling studies appear sensitive to model assumptions, however predications based on a long half-life (27.4 years) are consistent with autopsy findings. In summary, shorter estimates of half-life are not supported by evidence from animal studies, human case studies, or modelling studies based on appropriate assumptions. Evidence from such studies point to a half-life of inorganic mercury in human brains of several years to several decades. This finding carries important implications for pharmcokinetic modelling of mercury and potentially for the regulatory toxicology of mercury.« less

  6. Selective localization of oxytocin receptors and vasopressin 1a receptors in the human brainstem

    PubMed Central

    Freeman, Sara M.; Smith, Aaron L.; Goodman, Mark M.; Bales, Karen L.

    2017-01-01

    Intranasal oxytocin affects a suite of human social behaviors, including trust, eye contact, and emotion recognition. However, it is unclear where oxytocin receptors (OXTR) and the structurally related vasopressin 1a receptors (AVPR1a) are expressed in the human brain. We have previously described a reliable, pharmacologically informed receptor autoradiography protocol for visualizing these receptors in postmortem primate brain tissue. We used this technique in human brainstem tissue to identify the neural targets of oxytocin and vasopressin. To determine binding selectivity of the OXTR radioligand and AVPR1a radioligand, sections were incubated in four conditions: radioligand alone, radioligand with the selective AVPR1a competitor SR49059, and radioligand with a low or high concentration of the selective OXTR competitor ALS-II-69. We found selective OXTR binding in the spinal trigeminal nucleus, a conserved region of OXTR expression in all primate species investigated to date. We found selective AVPR1a binding in the nucleus prepositus, an area implicated in eye gaze stabilization. The tissue's postmortem interval was not correlated with either the specific or nonspecific binding of either radioligand, indicating that it will not likely be a factor in similar postmortem studies. This study provides critical data for future studies of OXTR and AVPR1a in human brain tissue. PMID:26911439

  7. Cellular Composition and Organization of the Subventricular Zone and Rostral Migratory Stream in the Adult and Neonatal Common Marmoset Brain

    PubMed Central

    Sawamoto, Kazunobu; Hirota, Yuki; Alfaro-Cervello, Clara; Soriano-Navarro, Mario; He, Xiaoping; Hayakawa-Yano, Yoshika; Yamada, Masayuki; Hikishima, Keigo; Tabata, Hidenori; Iwanami, Akio; Nakajima, Kazunori; Toyama, Yoshiaki; Itoh, Toshio; Alvarez-Buylla, Arturo; Garcia-Verdugo, Jose Manuel; Okano, Hideyuki

    2014-01-01

    The adult subventricular zone (SVZ) of the lateral ventricle contains neural stem cells. In rodents, these cells generate neuroblasts that migrate as chains toward the olfactory bulb along the rostral migratory stream (RMS). The neural-stem-cell niche at the ventricular wall is conserved in various animal species, including primates. However, it is unclear how the SVZ and RMS organization in nonhuman primates relates to that of rodents and humans. Here we studied the SVZ and RMS of the adult and neonatal common marmoset (Callithrix jacchus), a New World primate used widely in neuroscience, by electron microscopy, and immunohistochemical detection of cell-type-specific markers. The marmoset SVZ contained cells similar to type B, C, and A cells of the rodent SVZ in their marker expression and morphology. The adult marmoset SVZ had a three-layer organization, as in the human brain, with ependymal, hypocellular, and astro-cyte-ribbon layers. However, the hypocellular layer was very thin or absent in the adult-anterior and neonatal SVZ. Anti-PSA-NCAM staining of the anterior SVZ in whole-mount ventricular wall preparations of adult marmosets revealed an extensive network of elongated cell aggregates similar to the neuroblast chains in rodents. Time-lapse recordings of marmoset SVZ explants cultured in Matrigel showed the neuroblasts migrating in chains, like rodent type A cells. These results suggest that some features of neurogenesis and neuronal migration in the SVZ are common to marmosets, humans, and rodents. This basic description of the adult and neonatal marmoset SVZ will be useful for future studies on adult neurogenesis in primates. PMID:21246550

  8. Is the social brain theory applicable to human individual differences? Relationship between sociability personality dimension and brain size.

    PubMed

    Horváth, Klára; Martos, János; Mihalik, Béla; Bódizs, Róbert

    2011-06-17

    Our study intends to examine whether the social brain theory is applicable to human individual differences. According to the social brain theory primates have larger brains as it could be expected from their body sizes due to the adaptation to a more complex social life. Regarding humans there were few studies about the relationship between theory of mind and frontal and temporal brain lobes. We hypothesized that these brain lobes, as well as the whole cerebrum and neocortex are in connection with the Sociability personality dimension that is associated with individuals' social lives. Our findings support this hypothesis as Sociability correlated positively with the examined brain structures if we control the effects of body size differences and age. These results suggest that the social brain theory can be extended to human interindividual differences and they have some implications to personality psychology too.

  9. Intranasal oxytocin modulates neural functional connectivity during human social interaction.

    PubMed

    Rilling, James K; Chen, Xiangchuan; Chen, Xu; Haroon, Ebrahim

    2018-02-10

    Oxytocin (OT) modulates social behavior in primates and many other vertebrate species. Studies in non-primate animals have demonstrated that, in addition to influencing activity within individual brain areas, OT influences functional connectivity across networks of areas involved in social behavior. Previously, we used fMRI to image brain function in human subjects during a dyadic social interaction task following administration of either intranasal oxytocin (INOT) or placebo, and analyzed the data with a standard general linear model. Here, we conduct an extensive re-analysis of these data to explore how OT modulates functional connectivity across a neural network that animal studies implicate in social behavior. OT induced widespread increases in functional connectivity in response to positive social interactions among men and widespread decreases in functional connectivity in response to negative social interactions among women. Nucleus basalis of Meynert, an important regulator of selective attention and motivation with a particularly high density of OT receptors, had the largest number of OT-modulated connections. Regions known to receive mesolimbic dopamine projections such as the nucleus accumbens and lateral septum were also hubs for OT effects on functional connectivity. Our results suggest that the neural mechanism by which OT influences primate social cognition may include changes in patterns of activity across neural networks that regulate social behavior in other animals. © 2018 Wiley Periodicals, Inc.

  10. Cerebral volumetric asymmetries in non-human primates: A magnetic resonance imaging study

    PubMed Central

    Pilcher, Dawn L.; Hammock, Elizabeth A.D.; Hopkins, William D.

    2007-01-01

    Magnetic resonance images (MRI) were collected in a sample of 23 apes, 14 Old World monkeys, and 8 New World monkeys. The total area or volume of the anterior and posterior cerebral regions of each hemisphere of the brain was measured. The results indicated that a rightward frontal and leftward occipital pattern of asymmetry was present at a population level in the great ape sample. Population-level cerebral asymmetries were not revealed in the sample of New or Old World monkeys. The total area or volume of the planum temporale, which was localised only in the great apes, was also measured in both hemispheres. A leftward planum temporale asymmetry was evident at the population level in the great apes. It was hypothesised that the rightward frontal and leftward occipital asymmetries would correlate with leftward planum temporale asymmetries. This hypothesis was based on the assumption that, similar to development of the human brain, the non-human primate brain ‘‘torques’’ during development due to a growth gradient which progresses anterior to posterior, ventral to dorsal, and right to left. The results of this study confirmed the predicted relationship between cerebral volume and the planum temporale asymmetries. This supports the hypothesis that the great ape brain may develop in a ‘‘torquing’’ manner, producing similar anatomical asymmetries as reported in humans. PMID:15513168

  11. Brain-mapping projects using the common marmoset.

    PubMed

    Okano, Hideyuki; Mitra, Partha

    2015-04-01

    Globally, there is an increasing interest in brain-mapping projects, including the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative project in the USA, the Human Brain Project (HBP) in Europe, and the Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) project in Japan. These projects aim to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain. Brain/MINDS is focused on structural and functional mapping of the common marmoset (Callithrix jacchus) brain. This non-human primate has numerous advantages for brain mapping, including a well-developed frontal cortex and a compact brain size, as well as the availability of transgenic technologies. In the present review article, we discuss strategies for structural and functional mapping of the marmoset brain and the relation of the common marmoset to other animals models. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  12. Serotonergic, Brain Volume and Attentional Correlates of Trait Anxiety in Primates

    PubMed Central

    Mikheenko, Yevheniia; Shiba, Yoshiro; Sawiak, Stephen; Braesicke, Katrin; Cockcroft, Gemma; Clarke, Hannah; Roberts, Angela C

    2015-01-01

    Trait anxiety is a risk factor for the development and maintenance of affective disorders, and insights into the underlying brain mechanisms are vital for improving treatment and prevention strategies. Translational studies in non-human primates, where targeted neurochemical and genetic manipulations can be made, are critical in view of their close neuroanatomical similarity to humans in brain regions implicated in trait anxiety. Thus, we characterised the serotonergic and regional brain volume correlates of trait-like anxiety in the marmoset monkey. Low- and high-anxious animals were identified by behavioral responses to a human intruder (HI) that are known to be sensitive to anxiolytic drug treatment. Extracellular serotonin levels within the amygdala were measured with in vivo microdialysis, at baseline and in response to challenge with the selective serotonin reuptake inhibitor, citalopram. Regional brain volume was assessed by structural magnetic resonance imaging. Anxious individuals showed persistent, long-term fearful responses to both a HI and a model snake, alongside sustained attention (vigilance) to novel cues in a context associated with unpredictable threat. Neurally, high-anxious marmosets showed reduced amygdala serotonin levels, and smaller volumes in a closely connected prefrontal region, the dorsal anterior cingulate cortex. These findings highlight behavioral and neural similarities between trait-like anxiety in marmosets and humans, and set the stage for further investigation of the processes contributing to vulnerability and resilience to affective disorders. PMID:25586542

  13. Evolutionary and developmental implications of asymmetric brain folding in a large primate pedigree.

    PubMed

    Atkinson, Elizabeth G; Rogers, Jeffrey; Cheverud, James M

    2016-03-01

    Bilateral symmetry is a fundamental property of the vertebrate central nervous system. Local deviations from symmetry provide various types of information about the development, evolution, and function of elements within the CNS, especially the cerebral hemispheres. Here, we quantify the pattern and extent of asymmetry in cortical folding within the cerebrum of Papio baboons and assess the evolutionary and developmental implications of the findings. Analyses of directional asymmetry show a population-level trend in length measurements indicating that baboons are genetically predisposed to be asymmetrical, with the right side longer than the left in the anterior cerebrum while the left side is longer than the right posteriorly. We also find a corresponding bias to display a right frontal petalia (overgrowth of the anterior pole of the cerebral cortex on the right side). By quantifying fluctuating asymmetry, we assess canalization of brain features and the susceptibility of the baboon brain to developmental perturbations. We find that features are differentially canalized depending on their ontogenetic timing. We further deduce that development of the two hemispheres is to some degree independent. This independence has important implications for the evolution of cerebral hemispheres and their separate specialization. Asymmetry is a major feature of primate brains and is characteristic of both brain structure and function. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  14. Right Hemisphere Dominance for Emotion Processing in Baboons

    ERIC Educational Resources Information Center

    Wallez, Catherine; Vauclair, Jacques

    2011-01-01

    Asymmetries of emotional facial expressions in humans offer reliable indexes to infer brain lateralization and mostly revealed right hemisphere dominance. Studies concerned with oro-facial asymmetries in nonhuman primates largely showed a left-sided asymmetry in chimpanzees, marmosets and macaques. The presence of asymmetrical oro-facial…

  15. Genetics of Cerebellar and Neocortical Expansion in Anthropoid Primates: A Comparative Approach

    PubMed Central

    Harrison, Peter W.; Montgomery, Stephen H.

    2017-01-01

    What adaptive changes in brain structure and function underpin the evolution of increased cognitive performance in humans and our close relatives? Identifying the genetic basis of brain evolution has become a major tool in answering this question. Numerous cases of positive selection, altered gene expression or gene duplication have been identified that may contribute to the evolution of the neocortex, which is widely assumed to play a predominant role in cognitive evolution. However, the components of the neocortex co-evolve with other functionally interdependent regions of the brain, most notably in the cerebellum. The cerebellum is linked to a range of cognitive tasks and expanded rapidly during hominoid evolution. Here we present data that suggest that, across anthropoid primates, protein-coding genes with known roles in cerebellum development were just as likely to be targeted by selection as genes linked to cortical development. Indeed, based on currently available gene ontology data, protein-coding genes with known roles in cerebellum development are more likely to have evolved adaptively during hominoid evolution. This is consistent with phenotypic data suggesting an accelerated rate of cerebellar expansion in apes that is beyond that predicted from scaling with the neocortex in other primates. Finally, we present evidence that the strength of selection on specific genes is associated with variation in the volume of either the neocortex or the cerebellum, but not both. This result provides preliminary evidence that co-variation between these brain components during anthropoid evolution may be at least partly regulated by selection on independent loci, a conclusion that is consistent with recent intraspecific genetic analyses and a mosaic model of brain evolution that predicts adaptive evolution of brain structure. PMID:28683440

  16. A Comparative View of Face Perception

    PubMed Central

    Leopold, David A.; Rhodes, Gillian

    2010-01-01

    Face perception serves as the basis for much of human social exchange. Diverse information can be extracted about an individual from a single glance at their face, including their identity, emotional state, and direction of attention. Neuropsychological and fMRI experiments reveal a complex network of specialized areas in the human brain supporting these face-reading skills. Here we consider the evolutionary roots of human face perception by exploring the manner in which different animal species view and respond to faces. We focus on behavioral experiments collected from both primates and non-primates, assessing the types of information that animals are able to extract from the faces of their conspecifics, human experimenters, and natural predators. These experiments reveal that faces are an important category of visual stimuli for animals in all major vertebrate taxa, possibly reflecting the early emergence of neural specialization for faces in vertebrate evolution. At the same time, some aspects of facial perception are only evident in primates and a few other social mammals, and may therefore have evolved to suit the needs of complex social communication. Since the human brain likely utilizes both primitive and recently evolved neural specializations for the processing of faces, comparative studies may hold the key to understanding how these parallel circuits emerged during human evolution. PMID:20695655

  17. Reading wild minds: A computational assay of Theory of Mind sophistication across seven primate species

    PubMed Central

    Devaine, Marie; San-Galli, Aurore; Trapanese, Cinzia; Bardino, Giulia; Hano, Christelle; Saint Jalme, Michel; Bouret, Sebastien

    2017-01-01

    Theory of Mind (ToM), i.e. the ability to understand others' mental states, endows humans with highly adaptive social skills such as teaching or deceiving. Candidate evolutionary explanations have been proposed for the unique sophistication of human ToM among primates. For example, the Machiavellian intelligence hypothesis states that the increasing complexity of social networks may have induced a demand for sophisticated ToM. This type of scenario ignores neurocognitive constraints that may eventually be crucial limiting factors for ToM evolution. In contradistinction, the cognitive scaffolding hypothesis asserts that a species' opportunity to develop sophisticated ToM is mostly determined by its general cognitive capacity (on which ToM is scaffolded). However, the actual relationships between ToM sophistication and either brain volume (a proxy for general cognitive capacity) or social group size (a proxy for social network complexity) are unclear. Here, we let 39 individuals sampled from seven non-human primate species (lemurs, macaques, mangabeys, orangutans, gorillas and chimpanzees) engage in simple dyadic games against artificial ToM players (via a familiar human caregiver). Using computational analyses of primates' choice sequences, we found that the probability of exhibiting a ToM-compatible learning style is mainly driven by species' brain volume (rather than by social group size). Moreover, primates' social cognitive sophistication culminates in a precursor form of ToM, which still falls short of human fully-developed ToM abilities. PMID:29112973

  18. Reading wild minds: A computational assay of Theory of Mind sophistication across seven primate species.

    PubMed

    Devaine, Marie; San-Galli, Aurore; Trapanese, Cinzia; Bardino, Giulia; Hano, Christelle; Saint Jalme, Michel; Bouret, Sebastien; Masi, Shelly; Daunizeau, Jean

    2017-11-01

    Theory of Mind (ToM), i.e. the ability to understand others' mental states, endows humans with highly adaptive social skills such as teaching or deceiving. Candidate evolutionary explanations have been proposed for the unique sophistication of human ToM among primates. For example, the Machiavellian intelligence hypothesis states that the increasing complexity of social networks may have induced a demand for sophisticated ToM. This type of scenario ignores neurocognitive constraints that may eventually be crucial limiting factors for ToM evolution. In contradistinction, the cognitive scaffolding hypothesis asserts that a species' opportunity to develop sophisticated ToM is mostly determined by its general cognitive capacity (on which ToM is scaffolded). However, the actual relationships between ToM sophistication and either brain volume (a proxy for general cognitive capacity) or social group size (a proxy for social network complexity) are unclear. Here, we let 39 individuals sampled from seven non-human primate species (lemurs, macaques, mangabeys, orangutans, gorillas and chimpanzees) engage in simple dyadic games against artificial ToM players (via a familiar human caregiver). Using computational analyses of primates' choice sequences, we found that the probability of exhibiting a ToM-compatible learning style is mainly driven by species' brain volume (rather than by social group size). Moreover, primates' social cognitive sophistication culminates in a precursor form of ToM, which still falls short of human fully-developed ToM abilities.

  19. Convergent evolution of complex brains and high intelligence.

    PubMed

    Roth, Gerhard

    2015-12-19

    Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. © 2015 The Author(s).

  20. Profiling nonhuman intelligence: An exercise in developing unbiased tools for describing other "types" of intelligence on earth

    NASA Astrophysics Data System (ADS)

    Herzing, Denise L.

    2014-02-01

    Intelligence has historically been studied by comparing nonhuman cognitive and language abilities with human abilities. Primate-like species, which show human-like anatomy and share evolutionary lineage, have been the most studied. However, when comparing animals of non-primate origins our abilities to profile the potential for intelligence remains inadequate. Historically our measures for nonhuman intelligence have included a variety of tools: (1) physical measurements - brain to body ratio, brain structure/convolution/neural density, presence of artifacts and physical tools, (2) observational and sensory measurements - sensory signals, complexity of signals, cross-modal abilities, social complexity, (3) data mining - information theory, signal/noise, pattern recognition, (4) experimentation - memory, cognition, language comprehension/use, theory of mind, (5) direct interfaces - one way and two way interfaces with primates, dolphins, birds and (6) accidental interactions - human/animal symbiosis, cross-species enculturation. Because humans tend to focus on "human-like" attributes and measures and scientists are often unwilling to consider other "types" of intelligence that may not be human equated, our abilities to profile "types" of intelligence that differ on a variety of scales is weak. Just as biologists stretch their definitions of life to look at extremophiles in unusual conditions, so must we stretch our descriptions of types of minds and begin profiling, rather than equating, other life forms we may encounter.

  1. Simultaneous transcranial magnetic stimulation and single neuron recording in alert non-human primates

    PubMed Central

    Mueller, Jerel K.; Grigsby, Erinn M.; Prevosto, Vincent; Petraglia, Frank W.; Rao, Hrishikesh; Deng, Zhi-De; Peterchev, Angel V.; Sommer, Marc A.; Egner, Tobias; Platt, Michael L.; Grill, Warren M.

    2014-01-01

    Transcranial magnetic stimulation (TMS) is a widely used, noninvasive method for stimulating nervous tissue, yet its mechanisms of effect are poorly understood. Here we report novel methods for studying the influence of TMS on single neurons in the brain of alert non-human primates. We designed a TMS coil that focuses its effect near the tip of a recording electrode and recording electronics that enable direct acquisition of neuronal signals at the site of peak stimulus strength minimally perturbed by stimulation artifact in intact, awake monkeys (Macaca mulatta). We recorded action potentials within ~1 ms after 0.4 ms TMS pulses and observed changes in activity that differed significantly for active stimulation as compared to sham stimulation. The methodology is compatible with standard equipment in primate laboratories, allowing for easy implementation. Application of these new tools will facilitate the refinement of next generation TMS devices, experiments, and treatment protocols. PMID:24974797

  2. Telemetric recordings of single neuron activity and visual scenes in monkeys walking in an open field.

    PubMed

    Lei, Yanlin; Sun, Ninglei; Wilson, Fraser A W; Wang, Xiusong; Chen, Nanhui; Yang, Jianzhen; Peng, Yanping; Wang, Jianhong; Tian, Shaohua; Wang, Maohua; Miao, Yingda; Zhu, Weina; Qi, Hua; Ma, Yuanye

    2004-05-30

    This paper describes a portable recording system and methods for obtaining chronic recordings of single units and tracking rhesus monkey behavior in an open field. The integrated system consists of four major components: (1) microelectrode assembly; (2) head-stage; (3) recording station; and (4) data storage station, the first three of which are carried by the monkey and weigh 800 g. Our system provides synchronized video and electrophysiological signals, which are transmitted by a wireless system to a distance of 50 m. Its major advantages are that neuronal recordings are made in freely moving monkeys, and well-separated action potentials with amplitude five times higher than the background noise are usually recorded and readily kept for many hours. Using this system, we were able to study "place cells" in non-human primate brains. The described methods provide a new way to examine correlations between single neuron activity and primate behaviors, and can also be used to study the cellular basis of social behaviors in non-human primates.

  3. Stereotaxic 18F-FDG PET and MRI templates with three-dimensional digital atlas for statistical parametric mapping analysis of tree shrew brain.

    PubMed

    Huang, Qi; Nie, Binbin; Ma, Chen; Wang, Jing; Zhang, Tianhao; Duan, Shaofeng; Wu, Shang; Liang, Shengxiang; Li, Panlong; Liu, Hua; Sun, Hua; Zhou, Jiangning; Xu, Lin; Shan, Baoci

    2018-01-01

    Tree shrews are proposed as an alternative animal model to nonhuman primates due to their close affinity to primates. Neuroimaging techniques are widely used to study brain functions and structures of humans and animals. However, tree shrews are rarely applied in neuroimaging field partly due to the lack of available species specific analysis methods. In this study, 10 PET/CT and 10 MRI images of tree shrew brain were used to construct PET and MRI templates; based on histological atlas we reconstructed a three-dimensional digital atlas with 628 structures delineated; then the digital atlas and templates were aligned into a stereotaxic space. Finally, we integrated the digital atlas and templates into a toolbox for tree shrew brain spatial normalization, statistical analysis and results localization. We validated the feasibility of the toolbox by simulated data with lesions in laterodorsal thalamic nucleus (LD). The lesion volumes of simulated PET and MRI images were (12.97±3.91)mm 3 and (7.04±0.84)mm 3 . Statistical results at p<0.005 showed the lesion volumes of PET and MRI were 13.18mm 3 and 8.06mm 3 in LD. To our knowledge, we report the first PET template and digital atlas of tree shrew brain. Compared to the existing MRI templates, our MRI template was aligned into stereotaxic space. And the toolbox is the first software dedicated for tree shrew brain analysis. The templates and digital atlas of tree shrew brain, as well as the toolbox, facilitate the use of tree shrews in neuroimaging field. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Brains, genes, and primates.

    PubMed

    Izpisua Belmonte, Juan Carlos; Callaway, Edward M; Caddick, Sarah J; Churchland, Patricia; Feng, Guoping; Homanics, Gregg E; Lee, Kuo-Fen; Leopold, David A; Miller, Cory T; Mitchell, Jude F; Mitalipov, Shoukhrat; Moutri, Alysson R; Movshon, J Anthony; Okano, Hideyuki; Reynolds, John H; Ringach, Dario; Sejnowski, Terrence J; Silva, Afonso C; Strick, Peter L; Wu, Jun; Zhang, Feng

    2015-05-06

    One of the great strengths of the mouse model is the wide array of genetic tools that have been developed. Striking examples include methods for directed modification of the genome, and for regulated expression or inactivation of genes. Within neuroscience, it is now routine to express reporter genes, neuronal activity indicators, and opsins in specific neuronal types in the mouse. However, there are considerable anatomical, physiological, cognitive, and behavioral differences between the mouse and the human that, in some areas of inquiry, limit the degree to which insights derived from the mouse can be applied to understanding human neurobiology. Several recent advances have now brought into reach the goal of applying these tools to understanding the primate brain. Here we describe these advances, consider their potential to advance our understanding of the human brain and brain disorders, discuss bioethical considerations, and describe what will be needed to move forward. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Brains, Genes and Primates

    PubMed Central

    Belmonte, Juan Carlos Izpisua; Callaway, Edward M.; Churchland, Patricia; Caddick, Sarah J.; Feng, Guoping; Homanics, Gregg E.; Lee, Kuo-Fen; Leopold, David A.; Miller, Cory T.; Mitchell, Jude F.; Mitalipov, Shoukhrat; Moutri, Alysson R.; Movshon, J. Anthony; Okano, Hideyuki; Reynolds, John H.; Ringach, Dario; Sejnowski, Terrence J.; Silva, Afonso C.; Strick, Peter L.; Wu, Jun; Zhang, Feng

    2015-01-01

    One of the great strengths of the mouse model is the wide array of genetic tools that have been developed. Striking examples include methods for directed modification of the genome, and for regulated expression or inactivation of genes. Within neuroscience, it is now routine to express reporter genes, neuronal activity indicators and opsins in specific neuronal types in the mouse. However, there are considerable anatomical, physiological, cognitive and behavioral differences between the mouse and the human that, in some areas of inquiry, limit the degree to which insights derived from the mouse can be applied to understanding human neurobiology. Several recent advances have now brought into reach the goal of applying these tools to understanding the primate brain. Here we describe these advances, consider their potential to advance our understanding of the human brain and brain disorders, discuss bioethical considerations, and describe what will be needed to move forward. PMID:25950631

  6. The neuroanatomical distribution of oxytocin receptor binding and mRNA in the male rhesus macaque (Macaca mulatta).

    PubMed

    Freeman, Sara M; Inoue, Kiyoshi; Smith, Aaron L; Goodman, Mark M; Young, Larry J

    2014-07-01

    The rhesus macaque (Macaca mulatta) is an important primate model for social cognition, and recent studies have begun to explore the impact of oxytocin on social cognition and behavior. Macaques have great potential for elucidating the neural mechanisms by which oxytocin modulates social cognition, which has implications for oxytocin-based pharmacotherapies for psychiatric disorders such as autism and schizophrenia. Previous attempts to localize oxytocin receptors (OXTR) in the rhesus macaque brain have failed due to reduced selectivity of radioligands, which in primates bind to both OXTR and the structurally similar vasopressin 1a receptor (AVPR1A). We have developed a pharmacologically-informed competitive binding autoradiography protocol that selectively reveals OXTR and AVPR1A binding sites in primate brain sections. Using this protocol, we describe the neuroanatomical distribution of OXTR in the macaque. Finally, we use in situ hybridization to localize OXTR mRNA. Our results demonstrate that OXTR expression in the macaque brain is much more restricted than AVPR1A. OXTR is largely limited to the nucleus basalis of Meynert, pedunculopontine tegmental nucleus, the superficial gray layer of the superior colliculus, the trapezoid body, and the ventromedial hypothalamus. These regions are involved in a variety of functions relevant to social cognition, including modulating visual attention, processing auditory and multimodal sensory stimuli, and controlling orienting responses to visual stimuli. These results provide insights into the neural mechanisms by which oxytocin modulates social cognition and behavior in this species, which, like humans, uses vision and audition as the primary modalities for social communication. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The neuroanatomical distribution of oxytocin receptor binding and mRNA in the male rhesus macaque (Macaca mulatta)

    PubMed Central

    Freeman, Sara M.; Inoue, Kiyoshi; Smith, Aaron L.; Goodman, Mark M.; Young, Larry J.

    2014-01-01

    The rhesus macaque (Macaca mulatta) is an important primate model for social cognition, and recent studies have begun to explore the impact of oxytocin on social cognition and behavior. Macaques have great potential for elucidating the neural mechanisms by which oxytocin modulates social cognition, which has implications for oxytocin-based pharmacotherapies for psychiatric disorders such as autism and schizophrenia. Previous attempts to localize oxytocin receptors (OXTR) in the rhesus macaque brain have failed due to reduced selectivity of radioligands, which in primates bind to both OXTR and the structurally similar vasopressin 1a receptor (AVPR1A). We have developed a pharmacologically-informed competitive binding autoradiography protocol that selectively reveals OXTR and AVPR1A binding sites in primate brain sections. Using this protocol, we describe the neuroanatomical distribution of OXTR in the macaque. Finally, we use in situ hybridization to localize OXTR mRNA. Our results demonstrate that OXTR expression in the macaque brain is much more restricted than AVPR1A. OXTR is largely limited to the nucleus basalis of Meynert, pedunculopontine tegmental nucleus, the superficial gray layer of the superior colliculus, the trapezoid body, and the ventromedial hypothalamus. These regions are involved in a variety of functions relevant to social cognition, including modulating visual attention, processing auditory and multimodal sensory stimuli, and controlling orienting responses to visual stimuli. These results provide insights into the neural mechanisms by which oxytocin modulates social cognition and behavior in this species, which, like humans, uses vision and audition as the primary modalities for social communication. PMID:24845184

  8. Severe Dopaminergic Neurotoxicity in Primates After a Common Recreational Dose Regimen of MDMA (``Ecstasy'')

    NASA Astrophysics Data System (ADS)

    Ricaurte, George A.; Yuan, Jie; Hatzidimitriou, George; Cord, Branden J.; McCann, Una D.

    2002-09-01

    The prevailing view is that the popular recreational drug (+/-)3,4-methylenedioxymethamphetamine (MDMA, or ``ecstasy'') is a selective serotonin neurotoxin in animals and possibly in humans. Nonhuman primates exposed to several sequential doses of MDMA, a regimen modeled after one used by humans, developed severe brain dopaminergic neurotoxicity, in addition to less pronounced serotonergic neurotoxicity. MDMA neurotoxicity was associated with increased vulnerability to motor dysfunction secondary to dopamine depletion. These results have implications for mechanisms of MDMA neurotoxicity and suggest that recreational MDMA users may unwittingly be putting themselves at risk, either as young adults or later in life, for developing neuropsychiatric disorders related to brain dopamine and/or serotonin deficiency.

  9. On the origins of human handedness and language: a comparative review of hand preferences for bimanual coordinated actions and gestural communication in nonhuman primates.

    PubMed

    Meguerditchian, Adrien; Vauclair, Jacques; Hopkins, William D

    2013-09-01

    Within the evolutionary framework about the origin of human handedness and hemispheric specialization for language, the question of expression of population-level manual biases in nonhuman primates and their potential continuities with humans remains controversial. Nevertheless, there is a growing body of evidence showing consistent population-level handedness particularly for complex manual behaviors in both monkeys and apes. In the present article, within a large comparative approach among primates, we will review our contribution to the field and the handedness literature related to two particular sophisticated manual behaviors regarding their potential and specific implications for the origins of hemispheric specialization in humans: bimanual coordinated actions and gestural communication. Whereas bimanual coordinated actions seem to elicit predominance of left-handedness in arboreal primates and of right-handedness in terrestrial primates, all handedness studies that have investigated gestural communication in several primate species have reported stronger degree of population-level right-handedness compared to noncommunicative actions. Communicative gestures and bimanual actions seem to affect differently manual asymmetries in both human and nonhuman primates and to be related to different lateralized brain substrates. We will discuss (1) how the data of hand preferences for bimanual coordinated actions highlight the role of ecological factors in the evolution of handedness and provide additional support the postural origin theory of handedness proposed by MacNeilage [MacNeilage [2007]. Present status of the postural origins theory. In W. D. Hopkins (Ed.), The evolution of hemispheric specialization in primates (pp. 59-91). London: Elsevier/Academic Press] and (2) the hypothesis that the emergence of gestural communication might have affected lateralization in our ancestor and may constitute the precursors of the hemispheric specialization for language. © 2013 Wiley Periodicals, Inc.

  10. Image-guided convection-enhanced delivery of muscimol to the primate brain

    PubMed Central

    Heiss, John D.; Walbridge, Stuart; Asthagiri, Ashok R.; Lonser, Russell R.

    2009-01-01

    Object Muscimol is a potent γ-aminobutyric acid-A receptor agonist (GABAA) that temporarily and selectively suppresses neurons. Targeted muscimol-suppression of neuronal structures could provide insight into the pathophysiology and treatment of a variety of neurologic disorders. To determine if muscimol delivered to the brain by convection-enhanced delivery (CED) could be monitored using a co-infused surrogate magnetic resonance (MR)-imaging tracer, we perfused the striata of primates with tritiated muscimol and gadolinium-DTPA. Methods Three primates underwent convective co-infusion of 3H-muscimol (0.8 μM) and gadolinium-DTPA (−5 mM) into the bilateral striata. Primates underwent serial MR-imaging during infusion and animals were sacrificed immediately after infusion. Post-mortem quantitative autoradiography and histological analysis was performed. Results MR-imaging revealed that infusate (tritiated muscimol and gadolinium-DTPA) distribution was clearly discernible from the non-infused parenchyma. Real-time MR-imaging of the infusion revealed the precise region of anatomic perfusion in each animal. Imaging analysis during infusion revealed that the distribution volume of infusate linearly increased (R=0.92) with volume of infusion. Overall, the mean (±S.D.) volume of distribution to volume of infusion ratio was 8.2±1.3. Autoradiographic analysis revealed that MR-imaging of gadolinium-DTPA closely correlated with the distribution of 3H-muscimol and precisely estimated its volume of distribution (mean difference in volume of distribution, 7.4%). Quantitative autoradiograms revealed that muscimol was homogeneously distributed over the perfused region in a square-shaped concentration profile. Conclusions Muscimol can be effectively delivered to clinically relevant volumes of the primate brain. Moreover, the distribution of muscimol can be tracked by co-infusion of gadolinium-DTPA using MR-imaging. The ability to accurately monitor and control the anatomic extent of muscimol distribution during its convection-enhanced delivery will enhance safety, permit correlations of muscimol distribution with clinical effect, and should lead to an improved understanding of the pathophysiologic processes underlying a variety of neurologic disorders. PMID:19715424

  11. Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency

    PubMed Central

    Chen, Yuhan; Wang, Shengjun

    2017-01-01

    The primate connectome, possessing a characteristic global topology and specific regional connectivity profiles, is well organized to support both segregated and integrated brain function. However, the organization mechanisms shaping the characteristic connectivity and its relationship to functional requirements remain unclear. The primate brain connectome is shaped by metabolic economy as well as functional values. Here, we explored the influence of two competing factors and additional advanced functional requirements on the primate connectome employing an optimal trade-off model between neural wiring cost and the representative functional requirement of processing efficiency. Moreover, we compared this model with a generative model combining spatial distance and topological similarity, with the objective of statistically reproducing multiple topological features of the network. The primate connectome indeed displays a cost-efficiency trade-off and that up to 67% of the connections were recovered by optimal combination of the two basic factors of wiring economy and processing efficiency, clearly higher than the proportion of connections (56%) explained by the generative model. While not explicitly aimed for, the trade-off model captured several key topological features of the real connectome as the generative model, yet better explained the connectivity of most regions. The majority of the remaining 33% of connections unexplained by the best trade-off model were long-distance links, which are concentrated on few cortical areas, termed long-distance connectors (LDCs). The LDCs are mainly non-hubs, but form a densely connected group overlapping on spatially segregated functional modalities. LDCs are crucial for both functional segregation and integration across different scales. These organization features revealed by the optimization analysis provide evidence that the demands of advanced functional segregation and integration among spatially distributed regions may play a significant role in shaping the cortical connectome, in addition to the basic cost-efficiency trade-off. These findings also shed light on inherent vulnerabilities of brain networks in diseases. PMID:28961235

  12. Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency.

    PubMed

    Chen, Yuhan; Wang, Shengjun; Hilgetag, Claus C; Zhou, Changsong

    2017-09-01

    The primate connectome, possessing a characteristic global topology and specific regional connectivity profiles, is well organized to support both segregated and integrated brain function. However, the organization mechanisms shaping the characteristic connectivity and its relationship to functional requirements remain unclear. The primate brain connectome is shaped by metabolic economy as well as functional values. Here, we explored the influence of two competing factors and additional advanced functional requirements on the primate connectome employing an optimal trade-off model between neural wiring cost and the representative functional requirement of processing efficiency. Moreover, we compared this model with a generative model combining spatial distance and topological similarity, with the objective of statistically reproducing multiple topological features of the network. The primate connectome indeed displays a cost-efficiency trade-off and that up to 67% of the connections were recovered by optimal combination of the two basic factors of wiring economy and processing efficiency, clearly higher than the proportion of connections (56%) explained by the generative model. While not explicitly aimed for, the trade-off model captured several key topological features of the real connectome as the generative model, yet better explained the connectivity of most regions. The majority of the remaining 33% of connections unexplained by the best trade-off model were long-distance links, which are concentrated on few cortical areas, termed long-distance connectors (LDCs). The LDCs are mainly non-hubs, but form a densely connected group overlapping on spatially segregated functional modalities. LDCs are crucial for both functional segregation and integration across different scales. These organization features revealed by the optimization analysis provide evidence that the demands of advanced functional segregation and integration among spatially distributed regions may play a significant role in shaping the cortical connectome, in addition to the basic cost-efficiency trade-off. These findings also shed light on inherent vulnerabilities of brain networks in diseases.

  13. Silencing, positive selection and parallel evolution: busy history of primate cytochromes C.

    PubMed

    Pierron, Denis; Opazo, Juan C; Heiske, Margit; Papper, Zack; Uddin, Monica; Chand, Gopi; Wildman, Derek E; Romero, Roberto; Goodman, Morris; Grossman, Lawrence I

    2011-01-01

    Cytochrome c (cyt c) participates in two crucial cellular processes, energy production and apoptosis, and unsurprisingly is a highly conserved protein. However, previous studies have reported for the primate lineage (i) loss of the paralogous testis isoform, (ii) an acceleration and then a deceleration of the amino acid replacement rate of the cyt c somatic isoform, and (iii) atypical biochemical behavior of human cyt c. To gain insight into the cause of these major evolutionary events, we have retraced the history of cyt c loci among primates. For testis cyt c, all primate sequences examined carry the same nonsense mutation, which suggests that silencing occurred before the primates diversified. For somatic cyt c, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses yielded the same tree topology. The evolutionary analyses show that a fast accumulation of non-synonymous mutations (suggesting positive selection) occurred specifically on the anthropoid lineage root and then continued in parallel on the early catarrhini and platyrrhini stems. Analysis of evolutionary changes using the 3D structure suggests they are focused on the respiratory chain rather than on apoptosis or other cyt c functions. In agreement with previous biochemical studies, our results suggest that silencing of the cyt c testis isoform could be linked with the decrease of primate reproduction rate. Finally, the evolution of cyt c in the two sister anthropoid groups leads us to propose that somatic cyt c evolution may be related both to COX evolution and to the convergent brain and body mass enlargement in these two anthropoid clades.

  14. Silencing, Positive Selection and Parallel Evolution: Busy History of Primate Cytochromes c

    PubMed Central

    Pierron, Denis; Opazo, Juan C.; Heiske, Margit; Papper, Zack; Uddin, Monica; Chand, Gopi; Wildman, Derek E.; Romero, Roberto; Goodman, Morris; Grossman, Lawrence I.

    2011-01-01

    Cytochrome c (cyt c) participates in two crucial cellular processes, energy production and apoptosis, and unsurprisingly is a highly conserved protein. However, previous studies have reported for the primate lineage (i) loss of the paralogous testis isoform, (ii) an acceleration and then a deceleration of the amino acid replacement rate of the cyt c somatic isoform, and (iii) atypical biochemical behavior of human cyt c. To gain insight into the cause of these major evolutionary events, we have retraced the history of cyt c loci among primates. For testis cyt c, all primate sequences examined carry the same nonsense mutation, which suggests that silencing occurred before the primates diversified. For somatic cyt c, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses yielded the same tree topology. The evolutionary analyses show that a fast accumulation of non-synonymous mutations (suggesting positive selection) occurred specifically on the anthropoid lineage root and then continued in parallel on the early catarrhini and platyrrhini stems. Analysis of evolutionary changes using the 3D structure suggests they are focused on the respiratory chain rather than on apoptosis or other cyt c functions. In agreement with previous biochemical studies, our results suggest that silencing of the cyt c testis isoform could be linked with the decrease of primate reproduction rate. Finally, the evolution of cyt c in the two sister anthropoid groups leads us to propose that somatic cyt c evolution may be related both to COX evolution and to the convergent brain and body mass enlargement in these two anthropoid clades. PMID:22028846

  15. Emerging category representation in the visual forebrain hierarchy of pigeons (Columba livia).

    PubMed

    Azizi, Amir Hossein; Pusch, Roland; Koenen, Charlotte; Klatt, Sebastian; Bröcker, Franziska; Thiele, Samuel; Kellermann, Janosch; Güntürkün, Onur; Cheng, Sen

    2018-06-06

    Recognizing and categorizing visual stimuli are cognitive functions vital for survival, and an important feature of visual systems in primates as well as in birds. Visual stimuli are processed along the ventral visual pathway. At every stage in the hierarchy, neurons respond selectively to more complex features, transforming the population representation of the stimuli. It is therefore easier to read-out category information in higher visual areas. While explicit category representations have been observed in the primate brain, less is known on equivalent processes in the avian brain. Even though their brain anatomies are radically different, it has been hypothesized that visual object representations are comparable across mammals and birds. In the present study, we investigated category representations in the pigeon visual forebrain using recordings from single cells responding to photographs of real-world objects. Using a linear classifier, we found that the population activity in the visual associative area mesopallium ventrolaterale (MVL) distinguishes between animate and inanimate objects, although this distinction is not required by the task. By contrast, a population of cells in the entopallium, a region that is lower in the hierarchy of visual areas and that is related to the primate extrastriate cortex, lacked this information. A model that pools responses of simple cells, which function as edge detectors, can account for the animate vs. inanimate categorization in the MVL, but performance in the model is based on different features than in MVL. Therefore, processing in MVL cells is very likely more abstract than simple computations on the output of edge detectors. Copyright © 2018. Published by Elsevier B.V.

  16. Evolution of cytoarchitectural landscapes in the mammalian isocortex: Sirenians (Trichechus manatus) in comparison with other mammals.

    PubMed

    Charvet, Christine J; Reep, Roger L; Finlay, Barbara L

    2016-03-01

    The isocortex of several primates and rodents shows a systematic increase in the number of neurons per unit of cortical surface area from its rostrolateral to caudomedial border. The steepness of the gradient in neuronal number and density is positively correlated with cortical volume. The relative duration of neurogenesis along the same rostrocaudal gradient predicts a substantial fraction of this variation in neuron number and laminar position, which is produced principally from layers II-IV neurons. However, virtually all of our quantitative knowledge about total and laminar variation in cortical neuron numbers and neurogenesis comes from rodents and primates, leaving whole taxonomic groups and many intermediate-sized brains unexplored. Thus, the ubiquity in mammals of the covariation of longer cortical neurogenesis and increased cortical neuron number deriving from cortical layers II-IV is undetermined. To begin to address this gap, we examined the isocortex of the manatee using the optical disector method in sectioned tissue, and also assembled partial data from published reports of the domestic cat brain. The manatee isocortex has relatively fewer neurons per total volume, and fewer II-IV neurons than primates with equivalently sized brains. The gradient in number of neurons from the rostral to the caudal pole is intermediate between primates and rodents, and, like those species, is observed only in the upper cortical layers. The cat isocortex (Felis domesticus) shows a similar structure. Key species for further tests of the origin, ubiquity, and significance of this organizational feature are discussed. © 2015 Wiley Periodicals, Inc.

  17. Generation of transgenic monkeys with human inherited genetic disease.

    PubMed

    Chan, Anthony W S; Yang, Shang-Hsun

    2009-09-01

    Modeling human diseases using nonhuman primates including chimpanzee, rhesus, cynomolgus, marmoset and squirrel monkeys has been reported in the past decades. Due to the high similarity between nonhuman primates and humans, including genome constitution, cognitive behavioral functions, anatomical structure, metabolic, reproductive, and brain functions; nonhuman primates have played an important role in understanding physiological functions of the human body, clarifying the underlying mechanism of human diseases, and the development of novel treatments for human diseases. However, nonhuman primate research has been restricted to cognitive, behavioral, biochemical and pharmacological approaches of human diseases due to the limitation of gene transfer technology in nonhuman primates. The recent advancement in transgenic technology that has led to the generation of the first transgenic monkey in 2001 and a transgenic monkey model of Huntington's disease (HD) in 2008 has changed that focus. The creation of transgenic HD monkeys that replicate key pathological features of human HD patients further suggests the crucial role of nonhuman primates in the future development of biomedicine. These successes have opened the door to genetic manipulation in nonhuman primates and a new era in modeling human inherited genetic disorders. We focused on the procedures in creating transgenic Huntington's disease monkeys, but our work can be applied to transgenesis in other nonhuman primate species.

  18. "Life history space": a multivariate analysis of life history variation in extant and extinct Malagasy lemurs.

    PubMed

    Catlett, Kierstin K; Schwartz, Gary T; Godfrey, Laurie R; Jungers, William L

    2010-07-01

    Studies of primate life history variation are constrained by the fact that all large-bodied extant primates are haplorhines. However, large-bodied strepsirrhines recently existed. If we can extract life history information from their skeletons, these species can contribute to our understanding of primate life history variation. This is particularly important in light of new critiques of the classic "fast-slow continuum" as a descriptor of variation in life history profiles across mammals in general. We use established dental histological methods to estimate gestation length and age at weaning for five extinct lemur species. On the basis of these estimates, we reconstruct minimum interbirth intervals and maximum reproductive rates. We utilize principal components analysis to create a multivariate "life history space" that captures the relationships among reproductive parameters and brain and body size in extinct and extant lemurs. Our data show that, whereas large-bodied extinct lemurs can be described as "slow" in some fashion, they also varied greatly in their life history profiles. Those with relatively large brains also weaned their offspring late and had long interbirth intervals. These were not the largest of extinct lemurs. Thus, we distinguish size-related life history variation from variation that linked more strongly to ecological factors. Because all lemur species larger than 10 kg, regardless of life history profile, succumbed to extinction after humans arrived in Madagascar, we argue that large body size increased the probability of extinction independently of reproductive rate. We also provide some evidence that, among lemurs, brain size predicts reproductive rate better than body size. (c) 2010 Wiley-Liss, Inc.

  19. Motor system evolution and the emergence of high cognitive functions.

    PubMed

    Mendoza, Germán; Merchant, Hugo

    2014-11-01

    In human and nonhuman primates, the cortical motor system comprises a collection of brain areas primarily related to motor control. Existing evidence suggests that no other mammalian group has the number, extension, and complexity of motor-related areas observed in the frontal lobe of primates. Such diversity is probably related to the wide behavioral flexibility that primates display. Indeed, recent comparative anatomical, psychophysical, and neurophysiological studies suggest that the evolution of the motor cortical areas closely correlates with the emergence of high cognitive abilities. Advances in understanding the cortical motor system have shown that these areas are also related to functions previously linked to higher-order associative areas. In addition, experimental observations have shown that the classical distinction between perceptual and motor functions is not strictly followed across cortical areas. In this paper, we review evidence suggesting that evolution of the motor system had a role in the shaping of different cognitive functions in primates. We argue that the increase in the complexity of the motor system has contributed to the emergence of new abilities observed in human and nonhuman primates, including the recognition and imitation of the actions of others, speech perception and production, and the execution and appreciation of the rhythmic structure of music. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Molecular networks and the evolution of human cognitive specializations.

    PubMed

    Fontenot, Miles; Konopka, Genevieve

    2014-12-01

    Inroads into elucidating the origins of human cognitive specializations have taken many forms, including genetic, genomic, anatomical, and behavioral assays that typically compare humans to non-human primates. While the integration of all of these approaches is essential for ultimately understanding human cognition, here, we review the usefulness of coexpression network analysis for specifically addressing this question. An increasing number of studies have incorporated coexpression networks into brain expression studies comparing species, disease versus control tissue, brain regions, or developmental time periods. A clearer picture has emerged of the key genes driving brain evolution, as well as the developmental and regional contributions of gene expression patterns important for normal brain development and those misregulated in cognitive diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Distinct BOLD fMRI Responses of Capsaicin-Induced Thermal Sensation Reveal Pain-Related Brain Activation in Nonhuman Primates

    PubMed Central

    Asad, Abu Bakar Ali; Seah, Stephanie; Baumgartner, Richard; Feng, Dai; Jensen, Andres; Manigbas, Elaine; Henry, Brian; Houghton, Andrea; Evelhoch, Jeffrey L.; Derbyshire, Stuart W. G.; Chin, Chih-Liang

    2016-01-01

    Background Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored. Methodology Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8). BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle) at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm) application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail). Principal Findings Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the ‘pain matrix’, including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, p<0.02, n = 8), while no significant change was found after the vehicle application. The tail withdrawal behavioral study demonstrated a significant main effect of temperature and a trend towards capsaicin induced reduction of latency at both temperatures. Conclusions These findings provide insights into the specific brain regions involved with aversive, ‘pain-like’, responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain deeper understanding of pain processing and evaluate the preclinical efficacy of novel analgesics. PMID:27309348

  2. Developmental constraints on behavioural flexibility.

    PubMed

    Holekamp, Kay E; Swanson, Eli M; Van Meter, Page E

    2013-05-19

    We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility.

  3. Naltrexone treatment reverses astrocyte atrophy and immune dysfunction in self-harming macaques

    PubMed Central

    Lee, Kim M.; Chiu, Kevin B.; Didier, Peter J.; Baker, Kate C.; MacLean, Andrew G.

    2015-01-01

    The role of glia in the development and treatment of behavioral abnormalities is understudied. Recent reports have observed glial activation in several disorders, including depression, autism spectrum disorders and self-injurious behaviors (SIB). In the current study, we examined SIB in the physiologically and anatomically relevant nonhuman primate (NHP) model. At the Tulane National Primate Research Center (TNPRC), approximately 5% of singly housed macaques develop symptoms of SIB. We have previously demonstrated that naltrexone hydrochloride can be effective in reducing SIB. We have also demonstrated that the astrocytes of animals with SIB are distinctly atrophic and display heightened innate immune activation compared with control animals. We have added a third group of animals (five macaques identified with SIB and treated with oral naltrexone at a dose of 3.2 mg/kg) to the previous cohort (six macaques with a history of SIB but not treated, and nine animals with no history of SIB) for this study. Gray and white matter astrocytes from frontal cortical tissue were examined following necropsy. Innate immune activation of astrocytes, which was increased in SIB animals, was markedly decreased in animals receiving naltrexone, as was atrophy of both grey and white matter astrocytes. This was concomitant with improved behavioral correlates. Preventing astrocyte activation in select areas of the brain to reduce injurious behavior is an innovative concept with implications for mental health studies. Differences in multiple areas of primate brain would help determine how self-injurious behavior develops. These studies suggest a stronger role for astrocytes in the cellular events associated with self-injurious behaviors. PMID:26191654

  4. Naltrexone treatment reverses astrocyte atrophy and immune dysfunction in self-harming macaques.

    PubMed

    Lee, Kim M; Chiu, Kevin B; Didier, Peter J; Baker, Kate C; MacLean, Andrew G

    2015-11-01

    The role of glia in the development and treatment of behavioral abnormalities is understudied. Recent reports have observed glial activation in several disorders, including depression, autism spectrum disorders and self-injurious behaviors (SIB). In the current study, we examined SIB in the physiologically and anatomically relevant nonhuman primate (NHP) model. At the Tulane National Primate Research Center (TNPRC), approximately 5% of singly housed macaques develop symptoms of SIB. We have previously demonstrated that naltrexone hydrochloride can be effective in reducing SIB. We have also demonstrated that the astrocytes of animals with SIB are distinctly atrophic and display heightened innate immune activation compared with control animals. We have added a third group of animals (five macaques identified with SIB and treated with oral naltrexone at a dose of 3.2mg/kg) to the previous cohort (six macaques with a history of SIB but not treated, and nine animals with no history of SIB) for this study. Gray and white matter astrocytes from frontal cortical tissue were examined following necropsy. Innate immune activation of astrocytes, which was increased in SIB animals, was markedly decreased in animals receiving naltrexone, as was atrophy of both grey and white matter astrocytes. This was concomitant with improved behavioral correlates. Preventing astrocyte activation in select areas of the brain to reduce injurious behavior is an innovative concept with implications for mental health studies. Differences in multiple areas of primate brain would help determine how self-injurious behavior develops. These studies suggest a stronger role for astrocytes in the cellular events associated with self-injurious behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. First demonstration of cerebrospinal fluid and plasma A beta lowering with oral administration of a beta-site amyloid precursor protein-cleaving enzyme 1 inhibitor in nonhuman primates.

    PubMed

    Sankaranarayanan, Sethu; Holahan, Marie A; Colussi, Dennis; Crouthamel, Ming-Chih; Devanarayan, Viswanath; Ellis, Joan; Espeseth, Amy; Gates, Adam T; Graham, Samuel L; Gregro, Allison R; Hazuda, Daria; Hochman, Jerome H; Holloway, Katharine; Jin, Lixia; Kahana, Jason; Lai, Ming-tain; Lineberger, Janet; McGaughey, Georgia; Moore, Keith P; Nantermet, Philippe; Pietrak, Beth; Price, Eric A; Rajapakse, Hemaka; Stauffer, Shaun; Steinbeiser, Melissa A; Seabrook, Guy; Selnick, Harold G; Shi, Xiao-Ping; Stanton, Matthew G; Swestock, John; Tugusheva, Katherine; Tyler, Keala X; Vacca, Joseph P; Wong, Jacky; Wu, Guoxin; Xu, Min; Cook, Jacquelynn J; Simon, Adam J

    2009-01-01

    beta-Site amyloid precursor protein (APP)-cleaving enzyme (BACE) 1 cleavage of amyloid precursor protein is an essential step in the generation of the potentially neurotoxic and amyloidogenic A beta 42 peptides in Alzheimer's disease. Although previous mouse studies have shown brain A beta lowering after BACE1 inhibition, extension of such studies to nonhuman primates or man was precluded by poor potency, brain penetration, and pharmacokinetics of available inhibitors. In this study, a novel tertiary carbinamine BACE1 inhibitor, tertiary carbinamine (TC)-1, was assessed in a unique cisterna magna ported rhesus monkey model, where the temporal dynamics of A beta in cerebrospinal fluid (CSF) and plasma could be evaluated. TC-1, a potent inhibitor (IC(50) approximately 0.4 nM), has excellent passive membrane permeability, low susceptibility to P-glycoprotein transport, and lowered brain A beta levels in a mouse model. Intravenous infusion of TC-1 led to a significant but transient lowering of CSF and plasma A beta levels in conscious rhesus monkeys because it underwent CYP3A4-mediated metabolism. Oral codosing of TC-1 with ritonavir, a potent CYP3A4 inhibitor, twice daily over 3.5 days in rhesus monkeys led to sustained plasma TC-1 exposure and a significant and sustained reduction in CSF sAPP beta, A beta 40, A beta 42, and plasma A beta 40 levels. CSF A beta 42 lowering showed an EC(50) of approximately 20 nM with respect to the CSF [TC-1] levels, demonstrating excellent concordance with its potency in a cell-based assay. These results demonstrate the first in vivo proof of concept of CSF A beta lowering after oral administration of a BACE1 inhibitor in a nonhuman primate.

  6. Advancing research in regeneration and repair of the motor circuitry: non-human primate models and imaging scales as the missing links for successfully translating injectable therapeutics to the clinic.

    PubMed

    Tsintou, Magdalini; Dalamagkas, Kyriakos; Makris, Nikos

    2016-01-01

    Regeneration and repair is the ultimate goal of therapeutics in trauma of the central nervous system (CNS). Stroke and spinal cord injury (SCI) are two highly prevalent CNS disorders that remain incurable, despite numerous research studies and the clinical need for effective treatments. Neural engineering is a diverse biomedical field, that addresses these diseases using new approaches. Research in the field involves principally rodent models and biologically active, biodegradable hydrogels. Promising results have been reported in preclinical studies of CNS repair, demonstrating the great potential for the development of new treatments for the brain, spinal cord and peripheral nerve injury. Several obstacles stand in the way of clinical translation of neuroregeneration research. There seems to be a key gap in the translation of research from rodent models to human applications, namely non-human primate models, which constitute a critical bridging step. Applying injectable therapeutics and multimodal neuroimaging in stroke lesions using experimental rhesus monkey models is an avenue that a few research groups have begun to embark on. Understanding and assessing the changes that the injured brain or spinal cord undergoes after an intervention with biodegradable hydrogels in non-human primates seem to represent critical preclinical research steps. Existing innovative models in non-human primates allow us to evaluate the potential of neural engineering and injectable hydrogels. The results of these preliminary studies will pave the way for translating this research into much needed clinical therapeutic approaches. Cutting edge imaging technology using Connectome scanners represents a tremendous advancement, enabling the in vivo, detailed, high-resolution evaluation of these therapeutic interventions in experimental animals. Most importantly, they also allow quantifiable and clinically meaningful correlations with humans, increasing the translatability of these innovations to the bedside.

  7. Bisphenol A in Relation to Behavior and Learning of School-Age Children

    ERIC Educational Resources Information Center

    Hong, Soon-Beom; Hong, Yun-Chul; Kim, Jae-Won; Park, Eun-Jin; Shin, Min-Sup; Kim, Boong-Nyun; Yoo, Hee-Jeong; Cho, In-Hee; Bhang, Soo-Young; Cho, Soo-Churl

    2013-01-01

    Bisphenol A (BPA) has been shown to affect brain and behavior in rodents and nonhuman primates, but there are few studies focusing on its relationship to human neurobehavior. We aimed to investigate the relationship between environmental exposure to BPA and childhood neurobehavior. Methods: Urinary BPA concentrations and behavioral and learning…

  8. Lutein accumulates in subcellular membranes of brain regions in adult rhesus macaques: Relationship to DHA oxidation products

    PubMed Central

    Erdman, John W.; Kuchan, Matthew J.; Neuringer, Martha; Johnson, Elizabeth J.

    2017-01-01

    Objectives Lutein, a carotenoid with anti-oxidant functions, preferentially accumulates in primate brain and is positively related to cognition in humans. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid (PUFA), is also beneficial for cognition, but is susceptible to oxidation. The present study characterized the membrane distribution of lutein in brain regions important for different domains of cognitive function and determined whether membrane lutein was associated with brain PUFA oxidation. Methods Adult rhesus monkeys were fed a stock diet (~2 mg/day lutein or ~0.5 μmol/kg body weight/day) (n = 9) or the stock diet plus a daily supplement of lutein (~4.5 mg/day or~1 μmol/kg body weight/day) and zeaxanthin (~0.5 mg/day or 0.1 μmol/kg body weight/day) for 6–12 months (n = 4). Nuclear, myelin, mitochondrial, and neuronal plasma membranes were isolated using a Ficoll density gradient from prefrontal cortex (PFC), cerebellum (CER), striatum (ST), and hippocampus (HC). Carotenoids, PUFAs, and PUFA oxidation products were measured using HPLC, GC, and LC-GC/MS, respectively. Results All-trans-lutein (ng/mg protein) was detected in all regions and membranes and was highly variable among monkeys. Lutein/zeaxanthin supplementation significantly increased total concentrations of lutein in serum, PFC and CER, as well as lutein in mitochondrial membranes and total DHA concentrations in PFC only (P<0.05). In PFC and ST, mitochondrial lutein was inversely related to DHA oxidation products, but not those from arachidonic acid (P <0.05). Discussion This study provides novel data on subcellular lutein accumulation and its relationship to DHA oxidation in primate brain. These findings support the hypothesis that lutein may be associated with antioxidant functions in the brain. PMID:29049383

  9. The number of functional olfactory receptor genes and the relative size of olfactory brain structures are poor predictors of olfactory discrimination performance with enantiomers.

    PubMed

    Laska, Matthias; Genzel, Daria; Wieser, Alexandra

    2005-02-01

    The ability of four squirrel monkeys and three pigtail macaques to distinguish between nine enantiomeric odor pairs sharing an isopropenyl group at the chiral center was investigated in terms of a conditioning paradigm. All animals from both species were able to discriminate between the optical isomers of limonene, carvone, dihydrocarvone, dihydrocarveole and dihydrocarvyl acetate, whereas they failed to distinguish between the (+)- and (-)-forms of perillaaldehyde and limonene oxide. The pigtail macaques, but not the squirrel monkeys, also discriminated between the antipodes of perillaalcohol and isopulegol. A comparison of the across-task patterns of discrimination performance shows a high degree of similarity among the two primate species and also between these nonhuman primates and human subjects tested in an earlier study on the same tasks. These findings suggest that between-species comparisons of the relative size of olfactory brain structures or of the number of functional olfactory receptor genes are poor predictors of olfactory discrimination performance with enantiomers.

  10. Age-associated evolution of plasmatic amyloid in mouse lemur primates: Relationship with intracellular amyloid deposition

    PubMed Central

    Roy, Maggie; Cardoso, Cécile; Dorieux, Olène; Malgorn, Carole; Epelbaum, Stephane; Petit, Fanny; Kraska, Audrey; Brouillet, Emmanuel; Delatour, Benoît; Perret, Martine; Aujard, Fabienne; Dhenain, Marc

    2014-01-01

    Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Amyloid-β peptide (Aβ) deposition in the brain is one of its hallmarks and the measure of plasma Aβ is considered to be a biomarker for anti-amyloid drug efficacy in animal models of AD. However, age-associated plasmatic Aβ modulation in animal models is practically never addressed in the literature. Mouse lemur primates are used as a model of normal and AD-like cerebral aging. Here, we studied the effect of age on plasmatic Aβ in 58 mouse lemurs aged from 1 to 10 years. A subset of animals presented high plasmatic Aβ and the proportion of animals with high plasmatic Aβ was higher in aged animals as compared to young ones. Histological evaluation of the brain of some of these animals was carried out to assess extracellular and intracellular amyloid load. In aged lemurs, plasmatic Aβ was negatively correlated with the density of neurons accumulating deposits of Aβ. PMID:25131002

  11. Primate energy expenditure and life history

    PubMed Central

    Pontzer, Herman; Raichlen, David A.; Gordon, Adam D.; Schroepfer-Walker, Kara K.; Hare, Brian; O’Neill, Matthew C.; Muldoon, Kathleen M.; Dunsworth, Holly M.; Wood, Brian M.; Isler, Karin; Burkart, Judith; Irwin, Mitchell; Shumaker, Robert W.; Lonsdorf, Elizabeth V.; Ross, Stephen R.

    2014-01-01

    Humans and other primates are distinct among placental mammals in having exceptionally slow rates of growth, reproduction, and aging. Primates’ slow life history schedules are generally thought to reflect an evolved strategy of allocating energy away from growth and reproduction and toward somatic investment, particularly to the development and maintenance of large brains. Here we examine an alternative explanation: that primates’ slow life histories reflect low total energy expenditure (TEE) (kilocalories per day) relative to other placental mammals. We compared doubly labeled water measurements of TEE among 17 primate species with similar measures for other placental mammals. We found that primates use remarkably little energy each day, expending on average only 50% of the energy expected for a placental mammal of similar mass. Such large differences in TEE are not easily explained by differences in physical activity, and instead appear to reflect systemic metabolic adaptation for low energy expenditures in primates. Indeed, comparisons of wild and captive primate populations indicate similar levels of energy expenditure. Broad interspecific comparisons of growth, reproduction, and maximum life span indicate that primates’ slow metabolic rates contribute to their characteristically slow life histories. PMID:24474770

  12. Frontal Non-Invasive Neurostimulation Modulates Antisaccade Preparation in Non-Human Primates

    PubMed Central

    Valero-Cabre, Antoni; Wattiez, Nicolas; Monfort, Morgane; François, Chantal; Rivaud-Péchoux, Sophie; Gaymard, Bertrand; Pouget, Pierre

    2012-01-01

    A combination of oculometric measurements, invasive electrophysiological recordings and microstimulation have proven instrumental to study the role of the Frontal Eye Field (FEF) in saccadic activity. We hereby gauged the ability of a non-invasive neurostimulation technology, Transcranial Magnetic Stimulation (TMS), to causally interfere with frontal activity in two macaque rhesus monkeys trained to perform a saccadic antisaccade task. We show that online single pulse TMS significantly modulated antisaccade latencies. Such effects proved dependent on TMS site (effects on FEF but not on an actively stimulated control site), TMS modality (present under active but not sham TMS on the FEF area), TMS intensity (intensities of at least 40% of the TMS machine maximal output required), TMS timing (more robust for pulses delivered at 150 ms than at 100 post target onset) and visual hemifield (relative latency decreases mainly for ipsilateral AS). Our results demonstrate the feasibility of using TMS to causally modulate antisaccade-associated computations in the non-human primate brain and support the use of this approach in monkeys to study brain function and its non-invasive neuromodulation for exploratory and therapeutic purposes. PMID:22701691

  13. Image-guided intracranial cannula placement for awake in vivo microdialysis in nonhuman primates

    NASA Astrophysics Data System (ADS)

    Chen, Antong; Bone, Ashleigh; Hines, Catherine D. G.; Dogdas, Belma; Montgomery, Tamara O.; Michener, Maria; Winkelmann, Christopher T.; Ghafurian, Soheil; Lubbers, Laura S.; Renger, John; Bagchi, Ansuman; Uslaner, Jason M.; Johnson, Colena; Zariwala, Hatim A.

    2016-03-01

    Intracranial microdialysis is used for sampling neurochemicals and large peptides along with their metabolites from the interstitial fluid (ISF) of the brain. The ability to perform this in nonhuman primates (NHP) e.g., rhesus could improve the prediction of pharmacokinetic (PK) and pharmacodynamics (PD) action of drugs in human. However, microdialysis in rhesus brains is not as routinely performed as in rodents. One challenge is that the precise intracranial probe placement in NHP brains is difficult due to the richness of the anatomical structure and the variability of the size and shape of brains across animals. Also, a repeatable and reproducible ISF sampling from the same animal is highly desirable when combined with cognitive behaviors or other longitudinal study end points. Toward that end, we have developed a semi-automatic flexible neurosurgical method employing MR and CT imaging to (a) derive coordinates for permanent guide cannula placement in mid-brain structures and (b) fabricate a customized recording chamber to implant above the skull for enclosing and safeguarding access to the cannula for repeated experiments. In order to place the intracranial guide cannula in each subject, the entry points in the skull and the depth in the brain were derived using co-registered images acquired from MR and CT scans. The anterior/posterior (A/P) and medial-lateral (M/L) rotation in the pose of the animal was corrected in the 3D image to appropriately represent the pose used in the stereotactic frame. An array of implanted fiducial markers was used to transform stereotactic coordinates to the images. The recording chamber was custom fabricated using computer-aided design (CAD), such that it would fit the contours of the individual skull with minimum error. The chamber also helped in guiding the cannula through the entry points down a trajectory into the depth of the brain. We have validated our method in four animals and our results indicate average placement error of cannula to be 1.20 +/- 0.68 mm of the targeted positions. The approach employed here for derivation of the coordinates, surgical implantation and post implant validation is built using traditional access to surgical and imaging methods without the necessity of intra-operative imaging. The validation of our method lends support to its wider application in most nonhuman primate laboratories with onsite MR and CT imaging capabilities.

  14. Comprehensive transcriptional map of primate brain development

    PubMed Central

    Bakken, Trygve E.; Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A.; Ng, Lydia; Szafer, Aaron; Dalley, Rachel A.; Royall, Joshua J.; Lemon, Tracy; Shapouri, Sheila; Aiona, Kaylynn; Arnold, James; Bennett, Jeffrey L.; Bertagnolli, Darren; Bickley, Kristopher; Boe, Andrew; Brouner, Krissy; Butler, Stephanie; Byrnes, Emi; Caldejon, Shiella; Carey, Anita; Cate, Shelby; Chapin, Mike; Chen, Jefferey; Dee, Nick; Desta, Tsega; Dolbeare, Tim A.; Dotson, Nadia; Ebbert, Amanda; Fulfs, Erich; Gee, Garrett; Gilbert, Terri L.; Goldy, Jeff; Gourley, Lindsey; Gregor, Ben; Gu, Guangyu; Hall, Jon; Haradon, Zeb; Haynor, David R.; Hejazinia, Nika; Hoerder-Suabedissen, Anna; Howard, Robert; Jochim, Jay; Kinnunen, Marty; Kriedberg, Ali; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Luong, Lon; Mastan, Naveed; May, Ryan; Melchor, Jose; Mosqueda, Nerick; Mott, Erika; Ngo, Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana; Pendergraft, Julie; Potekhina, Lydia; Reding, Melissa; Riley, Zackery L.; Roberts, Tyson; Rogers, Brandon; Roll, Kate; Rosen, David; Sandman, David; Sarreal, Melaine; Shapovalova, Nadiya; Shi, Shu; Sjoquist, Nathan; Sodt, Andy J.; Townsend, Robbie; Velasquez, Lissette; Wagley, Udi; Wakeman, Wayne B.; White, Cassandra; Bennett, Crissa; Wu, Jennifer; Young, Rob; Youngstrom, Brian L.; Wohnoutka, Paul; Gibbs, Richard A.; Rogers, Jeffrey; Hohmann, John G.; Hawrylycz, Michael J.; Hevner, Robert F.; Molnár, Zoltán; Phillips, John W.; Dang, Chinh; Jones, Allan R.; Amaral, David G.; Bernard, Amy; Lein, Ed S.

    2017-01-01

    The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high resolution transcriptional atlas of rhesus monkey brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical parcellation of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons, and cortical layers and areas acquire adult-like molecular profiles surprisingly late postnatally. Disparate cell populations exhibit distinct developmental timing but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, and approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny. PMID:27409810

  15. Large-scale topology and the default mode network in the mouse connectome

    PubMed Central

    Stafford, James M.; Jarrett, Benjamin R.; Miranda-Dominguez, Oscar; Mills, Brian D.; Cain, Nicholas; Mihalas, Stefan; Lahvis, Garet P.; Lattal, K. Matthew; Mitchell, Suzanne H.; David, Stephen V.; Fryer, John D.; Nigg, Joel T.; Fair, Damien A.

    2014-01-01

    Noninvasive functional imaging holds great promise for serving as a translational bridge between human and animal models of various neurological and psychiatric disorders. However, despite a depth of knowledge of the cellular and molecular underpinnings of atypical processes in mouse models, little is known about the large-scale functional architecture measured by functional brain imaging, limiting translation to human conditions. Here, we provide a robust processing pipeline to generate high-resolution, whole-brain resting-state functional connectivity MRI (rs-fcMRI) images in the mouse. Using a mesoscale structural connectome (i.e., an anterograde tracer mapping of axonal projections across the mouse CNS), we show that rs-fcMRI in the mouse has strong structural underpinnings, validating our procedures. We next directly show that large-scale network properties previously identified in primates are present in rodents, although they differ in several ways. Last, we examine the existence of the so-called default mode network (DMN)—a distributed functional brain system identified in primates as being highly important for social cognition and overall brain function and atypically functionally connected across a multitude of disorders. We show the presence of a potential DMN in the mouse brain both structurally and functionally. Together, these studies confirm the presence of basic network properties and functional networks of high translational importance in structural and functional systems in the mouse brain. This work clears the way for an important bridge measurement between human and rodent models, enabling us to make stronger conclusions about how regionally specific cellular and molecular manipulations in mice relate back to humans. PMID:25512496

  16. The evolution of intelligence in mammalian carnivores.

    PubMed

    Holekamp, Kay E; Benson-Amram, Sarah

    2017-06-06

    Although intelligence should theoretically evolve to help animals solve specific types of problems posed by the environment, it is unclear which environmental challenges favour enhanced cognition, or how general intelligence evolves along with domain-specific cognitive abilities. The social intelligence hypothesis posits that big brains and great intelligence have evolved to cope with the labile behaviour of group mates. We have exploited the remarkable convergence in social complexity between cercopithecine primates and spotted hyaenas to test predictions of the social intelligence hypothesis in regard to both cognition and brain size. Behavioural data indicate that there has been considerable convergence between primates and hyaenas with respect to their social cognitive abilities. Moreover, compared with other hyaena species, spotted hyaenas have larger brains and expanded frontal cortex, as predicted by the social intelligence hypothesis. However, broader comparative study suggests that domain-general intelligence in carnivores probably did not evolve in response to selection pressures imposed specifically in the social domain. The cognitive buffer hypothesis, which suggests that general intelligence evolves to help animals cope with novel or changing environments, appears to offer a more robust explanation for general intelligence in carnivores than any hypothesis invoking selection pressures imposed strictly by sociality or foraging demands.

  17. The evolution of intelligence in mammalian carnivores

    PubMed Central

    Benson-Amram, Sarah

    2017-01-01

    Although intelligence should theoretically evolve to help animals solve specific types of problems posed by the environment, it is unclear which environmental challenges favour enhanced cognition, or how general intelligence evolves along with domain-specific cognitive abilities. The social intelligence hypothesis posits that big brains and great intelligence have evolved to cope with the labile behaviour of group mates. We have exploited the remarkable convergence in social complexity between cercopithecine primates and spotted hyaenas to test predictions of the social intelligence hypothesis in regard to both cognition and brain size. Behavioural data indicate that there has been considerable convergence between primates and hyaenas with respect to their social cognitive abilities. Moreover, compared with other hyaena species, spotted hyaenas have larger brains and expanded frontal cortex, as predicted by the social intelligence hypothesis. However, broader comparative study suggests that domain-general intelligence in carnivores probably did not evolve in response to selection pressures imposed specifically in the social domain. The cognitive buffer hypothesis, which suggests that general intelligence evolves to help animals cope with novel or changing environments, appears to offer a more robust explanation for general intelligence in carnivores than any hypothesis invoking selection pressures imposed strictly by sociality or foraging demands. PMID:28479979

  18. Energetic and nutritional constraints on infant brain development: implications for brain expansion during human evolution.

    PubMed

    Cunnane, Stephen C; Crawford, Michael A

    2014-12-01

    The human brain confronts two major challenges during its development: (i) meeting a very high energy requirement, and (ii) reliably accessing an adequate dietary source of specific brain selective nutrients needed for its structure and function. Implicitly, these energetic and nutritional constraints to normal brain development today would also have been constraints on human brain evolution. The energetic constraint was solved in large measure by the evolution in hominins of a unique and significant layer of body fat on the fetus starting during the third trimester of gestation. By providing fatty acids for ketone production that are needed as brain fuel, this fat layer supports the brain's high energy needs well into childhood. This fat layer also contains an important reserve of the brain selective omega-3 fatty acid, docosahexaenoic acid (DHA), not available in other primates. Foremost amongst the brain selective minerals are iodine and iron, with zinc, copper and selenium also being important. A shore-based diet, i.e., fish, molluscs, crustaceans, frogs, bird's eggs and aquatic plants, provides the richest known dietary sources of brain selective nutrients. Regular access to these foods by the early hominin lineage that evolved into humans would therefore have helped free the nutritional constraint on primate brain development and function. Inadequate dietary supply of brain selective nutrients still has a deleterious impact on human brain development on a global scale today, demonstrating the brain's ongoing vulnerability. The core of the shore-based paradigm of human brain evolution proposes that sustained access by certain groups of early Homo to freshwater and marine food resources would have helped surmount both the nutritional as well as the energetic constraints on mammalian brain development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Hydroxysteroid dehydrogenase HSD1L is localised to the pituitary–gonadal axis of primates

    PubMed Central

    Bird, A Daniel; Greatorex, Spencer; Reser, David; Lavery, Gareth G

    2017-01-01

    Steroid hormones play clinically important and specific regulatory roles in the development, growth, metabolism, reproduction and brain function in human. The type 1 and 2 11-beta hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 2) have key roles in the pre-receptor modification of glucocorticoids allowing aldosterone regulation of blood pressure, control of systemic fluid and electrolyte homeostasis and modulation of integrated metabolism and brain function. Although the activity and function of 11β-HSDs is thought to be understood, there exists an open reading frame for a distinct 11βHSD-like gene; HSD11B1L, which is present in human, non-human primate, sheep, pig and many other higher organisms, whereas an orthologue is absent in the genomes of mouse, rat and rabbit. We have now characterised this novel HSD11B1L gene as encoded by 9 exons and analysis of EST library transcripts indicated the use of two alternate ATG start sites in exons 2 and 3, and alternate splicing in exon 9. Relatively strong HSD11B1L gene expression was detected in human, non-human primate and sheep tissue samples from the brain, ovary and testis. Analysis in non-human primates and sheep by immunohistochemistry localised HSD11B1L protein to the cytoplasm of ovarian granulosa cells, testis Leydig cells, and gonadatroph cells in the anterior pituitary. Intracellular localisation analysis in transfected human HEK293 cells showed HSD1L protein within the endoplasmic reticulum and sequence analysis suggests that similar to 11βHSD1 it is membrane bound. The endogenous substrate of this third HSD enzyme remains elusive with localisation and expression data suggesting a reproductive hormone as a likely substrate. PMID:28871060

  20. Safety and tolerability of MRI-guided infusion of AAV2-hAADC into the mid-brain of nonhuman primate

    PubMed Central

    Sebastian, Waldy San; Kells, Adrian P; Bringas, John; Samaranch, Lluis; Hadaczek, Piotr; Ciesielska, Agnieszka; Macayan, Michael J; Pivirotto, Phillip J; Forsayeth, John; Osborne, Sheryl; Wright, J Fraser; Green, Foad; Heller, Gregory; Bankiewicz, Krystof S

    2014-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare, autosomal-recessive neurological disorder caused by mutations in the DDC gene that leads to an inability to synthesize catecholamines and serotonin. As a result, patients suffer compromised development, particularly in motor function. A recent gene replacement clinical trial explored putaminal delivery of recombinant adeno-associated virus serotype 2 vector encoding human AADC (AAV2-hAADC) in AADC-deficient children. Unfortunately, patients presented only modest amelioration of motor symptoms, which authors acknowledged could be due to insufficient transduction of putamen. We hypothesize that, with the development of a highly accurate MRI-guided cannula placement technology, a more effective approach might be to target the affected mid-brain neurons directly. Transduction of AADC-deficient dopaminergic neurons in the substantia nigra and ventral tegmental area with locally infused AAV2-hAADC would be expected to lead to restoration of normal dopamine levels in affected children. The objective of this study was to assess the long-term safety and tolerability of bilateral AAV2-hAADC MRI-guided pressurized infusion into the mid-brain of nonhuman primates. Animals received either vehicle, low or high AAV2-hAADC vector dose and were euthanized 1, 3, or 9 months after surgery. Our data indicate that effective mid-brain transduction was achieved without untoward effects. PMID:25541617

  1. Ethical issues when modelling brain disorders innon-human primates.

    PubMed

    Neuhaus, Carolyn P

    2018-05-01

    Non-human animal models of human diseases advance our knowledge of the genetic underpinnings of disease and lead to the development of novel therapies for humans. While mice are the most common model organisms, their usefulness is limited. Larger animals may provide more accurate and valuable disease models, but it has, until recently, been challenging to create large animal disease models. Genome editors, such as Clustered Randomised Interspersed Palindromic Repeat (CRISPR), meet some of these challenges and bring routine genome engineering of larger animals and non-human primates (NHPs) well within reach. There is growing interest in creating NHP models of brain disorders such as autism, depression and Alzheimer's, which are very difficult to model or study in other organisms, including humans. New treatments are desperately needed for this set of disorders. This paper is novel in asking: Insofar as NHPs are being considered for use as model organisms for brain disorders, can this be done ethically? The paper concludes that it cannot. Notwithstanding ongoing debate about NHPs' moral status, (1) animal welfare concerns, (2) the availability of alternative methods of studying brain disorders and (3) unmet expectations of benefit justify a stop on the creation of NHP model organisms to study brain disorders. The lure of using new genetic technologies combined with the promise of novel therapeutics presents a formidable challenge to those who call for slow, careful, and only necessary research involving NHPs. But researchers should not create macaques with social deficits or capuchin monkeys with memory deficits just because they can. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. The evolution of primate general and cultural intelligence

    PubMed Central

    Reader, Simon M.; Hager, Yfke; Laland, Kevin N.

    2011-01-01

    There are consistent individual differences in human intelligence, attributable to a single ‘general intelligence’ factor, g. The evolutionary basis of g and its links to social learning and culture remain controversial. Conflicting hypotheses regard primate cognition as divided into specialized, independently evolving modules versus a single general process. To assess how processes underlying culture relate to one another and other cognitive capacities, we compiled ecologically relevant cognitive measures from multiple domains, namely reported incidences of behavioural innovation, social learning, tool use, extractive foraging and tactical deception, in 62 primate species. All exhibited strong positive associations in principal component and factor analyses, after statistically controlling for multiple potential confounds. This highly correlated composite of cognitive traits suggests social, technical and ecological abilities have coevolved in primates, indicative of an across-species general intelligence that includes elements of cultural intelligence. Our composite species-level measure of general intelligence, ‘primate gS’, covaried with both brain volume and captive learning performance measures. Our findings question the independence of cognitive traits and do not support ‘massive modularity’ in primate cognition, nor an exclusively social model of primate intelligence. High general intelligence has independently evolved at least four times, with convergent evolution in capuchins, baboons, macaques and great apes. PMID:21357224

  3. Diabetes Mellitus Accelerates Aβ Pathology in Brain Accompanied by Enhanced GAβ Generation in Nonhuman Primates

    PubMed Central

    Okabayashi, Sachi; Shimozawa, Nobuhiro; Yasutomi, Yasuhiro; Yanagisawa, Katsuhiko; Kimura, Nobuyuki

    2015-01-01

    Growing evidence suggests that diabetes mellitus (DM) is one of the strongest risk factors for developing Alzheimer’s disease (AD). However, it remains unclear why DM accelerates AD pathology. In cynomolgus monkeys older than 25 years, senile plaques (SPs) are spontaneously and consistently observed in their brains, and neurofibrillary tangles are present at 32 years of age and older. In laboratory-housed monkeys, obesity is occasionally observed and frequently leads to development of type 2 DM. In the present study, we performed histopathological and biochemical analyses of brain tissue in cynomolgus monkeys with type 2 DM to clarify the relationship between DM and AD pathology. Here, we provide the evidence that DM accelerates Aβ pathology in vivo in nonhuman primates who had not undergone any genetic manipulation. In DM-affected monkey brains, SPs were observed in frontal and temporal lobe cortices, even in monkeys younger than 20 years. Biochemical analyses of brain revealed that the amount of GM1-ganglioside-bound Aβ (GAβ)—the endogenous seed for Aβ fibril formation in the brain—was clearly elevated in DM-affected monkeys. Furthermore, the level of Rab GTPases was also significantly increased in the brains of adult monkeys with DM, almost to the same levels as in aged monkeys. Intraneuronal accumulation of enlarged endosomes was also observed in DM-affected monkeys, suggesting that exacerbated endocytic disturbance may underlie the acceleration of Aβ pathology due to DM. PMID:25675436

  4. Brains, brawn and sociality: a hyaena’s tale

    PubMed Central

    Holekamp, Kay E.; Dantzer, Ben; Stricker, Gregory; Shaw Yoshida, Kathryn C.; Benson-Amram, Sarah

    2015-01-01

    Theoretically intelligence should evolve to help animals solve specific types of problems posed by the environment, but it remains unclear how environmental complexity or novelty facilitates the evolutionary enhancement of cognitive abilities, or whether domain-general intelligence can evolve in response to domain-specific selection pressures. The social complexity hypothesis, which posits that intelligence evolved to cope with the labile behaviour of conspecific group-mates, has been strongly supported by work on the sociocognitive abilities of primates and other animals. Here we review the remarkable convergence in social complexity between cercopithecine primates and spotted hyaenas, and describe our tests of predictions of the social complexity hypothesis in regard to both cognition and brain size in hyaenas. Behavioural data indicate that there has been remarkable convergence between primates and hyaenas with respect to their abilities in the domain of social cognition. Furthermore, within the family Hyaenidae, our data suggest that social complexity might have contributed to enlargement of the frontal cortex. However, social complexity failed to predict either brain volume or frontal cortex volume in a larger array of mammalian carnivores. To address the question of whether or not social complexity might be able to explain the evolution of domain-general intelligence as well as social cognition in particular, we presented simple puzzle boxes, baited with food and scaled to accommodate body size, to members of 39 carnivore species housed in zoos and found that species with larger brains relative to their body mass were more innovative and more successful at opening the boxes. However, social complexity failed to predict success in solving this problem. Overall our work suggests that, although social complexity enhances social cognition, there are no unambiguous causal links between social complexity and either brain size or performance in problem-solving tasks outside the social domain in mammalian carnivores. PMID:26160980

  5. Using stereotactic brain atlases for small rodents and nonhuman primates for optrode array customization

    NASA Astrophysics Data System (ADS)

    Boutte, Ronald W.; Merlin, Sam; Griffiths, Brandon; Parry, Trent; Blair, Steve

    2017-02-01

    As the optogenetic field expands its need to target with high specificity only grows more crucial. This work will show a method for customizing soda-lime glass optrode arrays so that fine structures within the brains of small rodents and nonhuman primates can be optically interrogated below the outer cortical layer. An 8 × 6 array is customized for optrode length (400 μm ), optrode width (75 μm ), optrode pitch (400 μm ), backplane thickness (500 μm ), and overall form factor (3.45 mm × 2.65 mm ). The 400 μm long optrode is capable of illuminating the cortical Layer IV of rhesus macaque ( Macaca Fascicularis ) and the motor cortex of small mice ( Mus Musculus ).

  6. Neuroanatomical distribution of oxytocin and vasopressin 1a receptors in the socially monogamous coppery titi monkey (Callicebus cupreus)

    PubMed Central

    Freeman, Sara M.; Walum, Hasse; Inoue, Kiyoshi; Smith, Aaron L.; Goodman, Mark M.; Bales, Karen L.; Young, Larry J.

    2014-01-01

    The coppery titi monkey (Callicebus cupreus) is a socially monogamous New World primate that has been studied in the field and the laboratory to investigate the behavioral neuroendocrinology of primate pair bonding and parental care. Arginine vasopressin has been shown to influence male titi monkey pair-bonding behavior, and studies are currently underway to examine the effects of oxytocin on titi monkey behavior and physiology. Here, we use receptor autoradiography to identify the distribution of arginine vasopressin 1a (AVPR1a) and oxytocin receptors (OXTR) in hemispheres of titi monkey brain (n=5). AVPR1a are diffuse and widespread throughout the brain, but the OXTR distribution is much more limited, with the densest binding being in the hippocampal formation (dentate gyrus, CA1 field) and the presubiculum (layers I and III). Moderate OXTR binding was detected in the nucleus basalis of Meynert, pulvinar, superior colliculus, layer 4C of primary visual cortex, periaqueductal gray, pontine gray, nucleus prepositus, and spinal trigeminal nucleus. OXTR mRNA overlapped with OXTR radioligand binding, confirming that the radioligand was detecting OXTR protein. AVPR1a binding is present throughout the cortex, especially in cingulate, insular, and occipital cortices, as well as in the caudate, putamen, nucleus accumbens, central amygdala, endopiriform nucleus, hippocampus (CA4 field), globus pallidus, lateral geniculate nucleus, infundibulum, habenula, periaqueductal gray, substantia nigra, olivary nucleus, hypoglossal nucleus, and cerebellum. Furthermore, we show that, in titi monkey brain, the OXTR antagonist ALS-II-69 is highly selective for OXTR and that the AVPR1a antagonist SR49059 is highly selective for AVPR1a. Based on these results and the fact that both ALS-II-69 and SR49059 are non-peptide, small-molecule antagonists that should be capable of crossing the blood brain barrier, these two compounds emerge as excellent candidates for the pharmacological manipulation of OXTR and AVPR1a in future behavioral experiments in titi monkeys and other primate species. PMID:24814726

  7. Large Volume, Behaviorally-relevant Illumination for Optogenetics in Non-human Primates.

    PubMed

    Acker, Leah C; Pino, Erica N; Boyden, Edward S; Desimone, Robert

    2017-10-03

    This protocol describes a large-volume illuminator, which was developed for optogenetic manipulations in the non-human primate brain. The illuminator is a modified plastic optical fiber with etched tip, such that the light emitting surface area is > 100x that of a conventional fiber. In addition to describing the construction of the large-volume illuminator, this protocol details the quality-control calibration used to ensure even light distribution. Further, this protocol describes techniques for inserting and removing the large volume illuminator. Both superficial and deep structures may be illuminated. This large volume illuminator does not need to be physically coupled to an electrode, and because the illuminator is made of plastic, not glass, it will simply bend in circumstances when traditional optical fibers would shatter. Because this illuminator delivers light over behaviorally-relevant tissue volumes (≈ 10 mm 3 ) with no greater penetration damage than a conventional optical fiber, it facilitates behavioral studies using optogenetics in non-human primates.

  8. Columnar processing in primate pFC: evidence for executive control microcircuits.

    PubMed

    Opris, Ioan; Hampson, Robert E; Gerhardt, Greg A; Berger, Theodore W; Deadwyler, Sam A

    2012-12-01

    A common denominator for many cognitive disorders of human brain is the disruption of neural activity within pFC, whose structural basis is primarily interlaminar (columnar) microcircuits or "minicolumns." The importance of this brain region for executive decision-making has been well documented; however, because of technological constraints, the minicolumnar basis is not well understood. Here, via implementation of a unique conformal multielectrode recording array, the role of interlaminar pFC minicolumns in the executive control of task-related target selection is demonstrated in nonhuman primates performing a visuomotor DMS task. The results reveal target-specific, interlaminar correlated firing during the decision phase of the trial between multielectrode recording array-isolated minicolumnar pairs of neurons located in parallel in layers 2/3 and layer 5 of pFC. The functional significance of individual pFC minicolumns (separated by 40 μm) was shown by reduced correlated firing between cell pairs within single minicolumns on error trials with inappropriate target selection. To further demonstrate dependence on performance, a task-disrupting drug (cocaine) was administered in the middle of the session, which also reduced interlaminar firing in minicolumns that fired appropriately in the early (nondrug) portion of the session. The results provide a direct demonstration of task-specific, real-time columnar processing in pFC indicating the role of this type of microcircuit in executive control of decision-making in primate brain.

  9. Characterization of Cerebral Damage in a Monkey Model of Alzheimer's Disease Induced by Intracerebroventricular Injection of Streptozotocin.

    PubMed

    Yeo, Hyeon-Gu; Lee, Youngjeon; Jeon, Chang-Yeop; Jeong, Kang-Jin; Jin, Yeung Bae; Kang, Philyong; Kim, Sun-Uk; Kim, Ji-Su; Huh, Jae-Won; Kim, Young-Hyun; Sim, Bo-Woong; Song, Bong-Seok; Park, Young-Ho; Hong, Yonggeun; Lee, Sang-Rae; Chang, Kyu-Tae

    2015-01-01

    In line with recent findings showing Alzheimer's disease (AD) as an insulin-resistant brain state, a non-transgenic animal model with intracerebroventricular streptozotocin (icv-STZ) administration has been proposed as a representative experimental model of AD. Although icv-STZ rodent models of AD have been increasingly researched, studies in non-human primate models are very limited. In this study, we aimed to characterize the cerebral damage caused by icv-STZ in non-human primates; to achieve this, three cynomolgus monkeys (Macaca fascicularis) were administered four dosages of STZ (2 mg/kg) dissolved in artificial cerebrospinal fluid and another three controls were injected with only artificial cerebrospinal fluid at the cerebellomedullary cistern. In vivo neuroimaging was performed with clinical 3.0 T MRI, followed by quantitative analysis with FSL for evaluation of structural changes of the brain. Immunohistochemistry was performed to evaluate cerebral histopathology. We showed that icv-STZ caused severe ventricular enlargement and parenchymal atrophy, accompanying amyloid-β deposition, hippocampal cell loss, tauopathy, ependymal cell loss, astrogliosis, and microglial activation, which are observed in human aged or AD brain. The findings suggest that the icv-STZ monkey model would be a valuable resource to study the mechanisms and consequences of a variety of cerebral pathologies including major pathological hallmarks of AD. Furthermore, the study of icv-STZ monkeys could contribute to the development of treatments for age- or AD-associated cerebral changes.

  10. Cognitive Consilience: Primate Non-Primary Neuroanatomical Circuits Underlying Cognition

    PubMed Central

    Solari, Soren Van Hout; Stoner, Rich

    2011-01-01

    Interactions between the cerebral cortex, thalamus, and basal ganglia form the basis of cognitive information processing in the mammalian brain. Understanding the principles of neuroanatomical organization in these structures is critical to understanding the functions they perform and ultimately how the human brain works. We have manually distilled and synthesized hundreds of primate neuroanatomy facts into a single interactive visualization. The resulting picture represents the fundamental neuroanatomical blueprint upon which cognitive functions must be implemented. Within this framework we hypothesize and detail 7 functional circuits corresponding to psychological perspectives on the brain: consolidated long-term declarative memory, short-term declarative memory, working memory/information processing, behavioral memory selection, behavioral memory output, cognitive control, and cortical information flow regulation. Each circuit is described in terms of distinguishable neuronal groups including the cerebral isocortex (9 pyramidal neuronal groups), parahippocampal gyrus and hippocampus, thalamus (4 neuronal groups), basal ganglia (7 neuronal groups), metencephalon, basal forebrain, and other subcortical nuclei. We focus on neuroanatomy related to primate non-primary cortical systems to elucidate the basis underlying the distinct homotypical cognitive architecture. To display the breadth of this review, we introduce a novel method of integrating and presenting data in multiple independent visualizations: an interactive website (http://www.frontiersin.org/files/cognitiveconsilience/index.html) and standalone iPhone and iPad applications. With these tools we present a unique, annotated view of neuroanatomical consilience (integration of knowledge). PMID:22194717

  11. Glutathione Peroxidase 4 is associated with Neuromelanin in Substantia Nigra and Dystrophic Axons in Putamen of Parkinson’s brain

    DTIC Science & Technology

    2011-01-21

    the substance accumulates in the SN of aging primates [4, 21]. Neuromelanin is specific to catecholaminergic neurons of higher mammals, and SN...Zambenedetti P , Arslan P , Galzigna L: Increased dopamine peroxidation in postmortem Parkinsonian brain. Biochim Biophys Acta 2002, 1573:63-67. 6. Arthur JR...Havlik RJ, Wergowske G, et al: Prevalence of dementia in older Japanese-American men in Hawaii: The Honolulu-Asia Aging Study. Jama 1996, 276:955

  12. Adaptive neuroplastic responses in early and late hemispherectomized monkeys.

    PubMed

    Burke, Mark W; Kupers, Ron; Ptito, Maurice

    2012-01-01

    Behavioural recovery in children who undergo medically required hemispherectomy showcase the remarkable ability of the cerebral cortex to adapt and reorganize following insult early in life. Case study data suggest that lesions sustained early in childhood lead to better recovery compared to those that occur later in life. In these children, it is possible that neural reorganization had begun prior to surgery but was masked by the dysfunctional hemisphere. The degree of neural reorganization has been difficult to study systematically in human infants. Here we present a 20-year culmination of data on our nonhuman primate model (Chlorocebus sabeus) of early-life hemispherectomy in which behavioral recovery is interpreted in light of plastic processes that lead to the anatomical reorganization of the early-damaged brain. The model presented here suggests that significant functional recovery occurs after the removal of one hemisphere in monkeys with no preexisting neurological dysfunctions. Human and primate studies suggest a critical role for subcortical and brainstem structures as well as corticospinal tracts in the neuroanatomical reorganization which result in the remarkable behavioral recovery following hemispherectomy. The non-human primate model presented here offers a unique opportunity for studying the behavioral and functional neuroanatomical reorganization that underlies developmental plasticity.

  13. State-dependent μ-opioid modulation of social motivation

    PubMed Central

    Loseth, Guro E.; Ellingsen, Dan-Mikael; Leknes, Siri

    2014-01-01

    Social mammals engage in affiliative interactions both when seeking relief from negative affect and when searching for pleasure and joy. These two motivational states are both modulated by μ-opioid transmission. The μ-opioid receptor (MOR) system in the brain mediates pain relief and reward behaviors, and is implicated in social reward processing and affiliative bonding across mammalian species. However, pharmacological manipulation of the μ-opioid system has yielded opposite effects on rodents and primates: in rodents, social motivation is generally increased by MOR agonists and reduced by antagonists, whereas the opposite pattern has been shown in primates. Here, we address this paradox by taking into account differences in motivational state. We first review evidence for μ-opioid mediation of reward processing, emotion regulation, and affiliation in humans, non-human primates, rodents and other species. Based on the consistent cross-species similarities in opioid functioning, we propose a unified, state-dependent model for μ-opioid modulation of affiliation across the mammalian species. Finally, we show that this state-dependent model is supported by evidence from both rodent and primate studies, when species and age differences in social separation response are taken into account. PMID:25565999

  14. The Human Ventromedial Frontal Lobe Is Critical for Learning from Negative Feedback

    ERIC Educational Resources Information Center

    Wheeler, Elizabeth Z.; Fellows, Lesley K.

    2008-01-01

    Are positive and negative feedback weighed in a common balance in the brain, or do they influence behaviour through distinct neural mechanisms? Recent neuroeconomic studies in both human and non-human primates indicate that the ventromedial frontal lobe carries information about both losses and gains, suggesting that this region may encode value…

  15. Synthesis and Initial in Vivo Studies with [11C]SB-216763: The First Radiolabeled Brain Penetrative Inhibitor of GSK-3

    PubMed Central

    2015-01-01

    Quantifying glycogen synthase kinase-3 (GSK-3) activity in vivo using positron emission tomography (PET) imaging is of interest because dysregulation of GSK-3 is implicated in numerous diseases and neurological disorders for which GSK-3 inhibitors are being considered as therapeutic strategies. Previous PET radiotracers for GSK-3 have been reported, but none of the published examples cross the blood–brain barrier. Therefore, we have an ongoing interest in developing a brain penetrating radiotracer for GSK-3. To this end, we were interested in synthesis and preclinical evaluation of [11C]SB-216763, a high-affinity inhibitor of GSK-3 (Ki = 9 nM; IC50 = 34 nM). Initial radiosyntheses of [11C]SB-216763 proved ineffective in our hands because of competing [3 + 3] sigmatropic shifts. Therefore, we have developed a novel one-pot two-step synthesis of [11C]SB-216763 from a 2,4-dimethoxybenzyl-protected maleimide precursor, which provided high specific activity [11C]SB-216763 in 1% noncorrected radiochemical yield (based upon [11C]CH3I) and 97–100% radiochemical purity (n = 7). Initial preclinical evaluation in rodent and nonhuman primate PET imaging studies revealed high initial brain uptake (peak rodent SUV = 2.5 @ 3 min postinjection; peak nonhuman primate SUV = 1.9 @ 5 min postinjection) followed by washout. Brain uptake was highest in thalamus, striatum, cortex, and cerebellum, areas known to be rich in GSK-3. These results make the arylindolemaleimide skeleton our lead scaffold for developing a PET radiotracer for quantification of GSK-3 density in vivo and ultimately translating it into clinical use. PMID:26005531

  16. Monkey alcohol tissue research resource: banking tissues for alcohol research.

    PubMed

    Daunais, James B; Davenport, April T; Helms, Christa M; Gonzales, Steven W; Hemby, Scott E; Friedman, David P; Farro, Jonathan P; Baker, Erich J; Grant, Kathleen A

    2014-07-01

    An estimated 18 million adults in the United States meet the clinical criteria for diagnosis of alcohol abuse or alcoholism, a disorder ranked as the third leading cause of preventable death. In addition to brain pathology, heavy alcohol consumption is comorbid with damage to major organs including heart, lungs, liver, pancreas, and kidneys. Much of what is known about risk for and consequences of heavy consumption derive from rodent or retrospective human studies. The neurobiological effects of chronic intake in rodent studies may not easily translate to humans due to key differences in brain structure and organization between species, including a lack of higher-order cognitive functions, and differences in underlying prefrontal cortical neural structures that characterize the primate brain. Further, rodents do not voluntarily consume large quantities of ethanol (EtOH) and they metabolize it more rapidly than primates. The basis of the Monkey Alcohol Tissue Research Resource (MATRR) is that nonhuman primates, specifically monkeys, show a range of drinking excessive amounts of alcohol (>3.0 g/kg or a 12 drink equivalent per day) over long periods of time (12 to 30 months) with concomitant pathological changes in endocrine, hepatic, and central nervous system (CNS) processes. The patterns and range of alcohol intake that monkeys voluntarily consume parallel what is observed in humans with alcohol use disorders and the longitudinal experimental design spans stages of drinking from the EtOH-naïve state to early exposure through chronic abuse. Age- and sex-matched control animals self-administer an isocaloric solution under identical operant procedures. The MATRR is a unique postmortem tissue bank that provides CNS and peripheral tissues, and associated bioinformatics from monkeys that self-administer EtOH using a standardized experimental paradigm to the broader alcohol research community. This resource provides a translational platform from which we can better understand the disease processes associated with alcoholism. Copyright © 2014 by the Research Society on Alcoholism.

  17. Oxytocin and Serotonin Brain Mechanisms in the Nonhuman Primate.

    PubMed

    Lefevre, Arthur; Richard, Nathalie; Jazayeri, Mina; Beuriat, Pierre-Aurélien; Fieux, Sylvain; Zimmer, Luc; Duhamel, Jean-René; Sirigu, Angela

    2017-07-12

    Oxytocin (OT) is increasingly studied for its therapeutic potential in psychiatric disorders, which are associated with the deregulation of several neurotransmission systems. Studies in rodents demonstrated that the interaction between OT and serotonin (5-HT) is critical for several aspects of social behavior. Using PET scan in humans, we have recently found that 5-HT 1A receptor (5-HT 1A R) function is modified after intranasal oxytocin intake. However, the underlying mechanism between OT and 5-HT remains unclear. To understand this interaction, we tested 3 male macaque monkeys using both [ 11 C]DASB and [ 18 F]MPPF, two PET radiotracers, marking the serotonin transporter and the 5-HT 1A R, respectively. Oxytocin (1 IU in 20 μl of ACSF) or placebo was injected into the brain lateral ventricle 45 min before scans. Additionally, we performed postmortem autoradiography. Compared with placebo, OT significantly reduced [ 11 C]DASB binding potential in right amygdala, insula, and hippocampus, whereas [ 18 F]MPPF binding potential increased in right amygdala and insula. Autoradiography revealed that [ 11 C]DASB was sensitive to physiological levels of 5-HT modification, and that OT does not act directly on the 5-HT 1A R. Our results show that oxytocin administration in nonhuman primates influences serotoninergic neurotransmission via at least two ways: (1) by provoking a release of serotonin in key limbic regions; and (2) by increasing the availability of 5-HT 1A R receptors in the same limbic areas. Because these two molecules are important for social behavior, our study sheds light on the specific nature of their interaction, therefore helping to develop new mechanisms-based therapies for psychiatric disorders. SIGNIFICANCE STATEMENT Social behavior is largely controlled by brain neuromodulators, such as oxytocin and serotonin. While these are currently targeted in the context of psychiatric disorders such as autism and schizophrenia, a new promising pharmaceutical strategy is to study the interaction between these systems. Here we depict the interplay between oxytocin and serotonin in the nonhuman primate brain. We found that oxytocin provokes the release of serotonin, which in turn impacts on the serotonin 1A receptor system, by modulating its availability. This happens in several key brain regions for social behavior, such as the amygdala and insula. This novel finding can open ways to advance treatments where drugs are combined to influence several neurotransmission networks. Copyright © 2017 the authors 0270-6474/17/376741-10$15.00/0.

  18. Discovery of common sequences absent in the human reference genome using pooled samples from next generation sequencing.

    PubMed

    Liu, Yu; Koyutürk, Mehmet; Maxwell, Sean; Xiang, Min; Veigl, Martina; Cooper, Richard S; Tayo, Bamidele O; Li, Li; LaFramboise, Thomas; Wang, Zhenghe; Zhu, Xiaofeng; Chance, Mark R

    2014-08-16

    Sequences up to several megabases in length have been found to be present in individual genomes but absent in the human reference genome. These sequences may be common in populations, and their absence in the reference genome may indicate rare variants in the genomes of individuals who served as donors for the human genome project. As the reference genome is used in probe design for microarray technology and mapping short reads in next generation sequencing (NGS), this missing sequence could be a source of bias in functional genomic studies and variant analysis. One End Anchor (OEA) and/or orphan reads from paired-end sequencing have been used to identify novel sequences that are absent in reference genome. However, there is no study to investigate the distribution, evolution and functionality of those sequences in human populations. To systematically identify and study the missing common sequences (micSeqs), we extended the previous method by pooling OEA reads from large number of individuals and applying strict filtering methods to remove false sequences. The pipeline was applied to data from phase 1 of the 1000 Genomes Project. We identified 309 micSeqs that are present in at least 1% of the human population, but absent in the reference genome. We confirmed 76% of these 309 micSeqs by comparison to other primate genomes, individual human genomes, and gene expression data. Furthermore, we randomly selected fifteen micSeqs and confirmed their presence using PCR validation in 38 additional individuals. Functional analysis using published RNA-seq and ChIP-seq data showed that eleven micSeqs are highly expressed in human brain and three micSeqs contain transcription factor (TF) binding regions, suggesting they are functional elements. In addition, the identified micSeqs are absent in non-primates and show dynamic acquisition during primate evolution culminating with most micSeqs being present in Africans, suggesting some micSeqs may be important sources of human diversity. 76% of micSeqs were confirmed by a comparative genomics approach. Fourteen micSeqs are expressed in human brain or contain TF binding regions. Some micSeqs are primate-specific, conserved and may play a role in the evolution of primates.

  19. Chronic, Wireless Recordings of Large Scale Brain Activity in Freely Moving Rhesus Monkeys

    PubMed Central

    Schwarz, David A.; Lebedev, Mikhail A.; Hanson, Timothy L.; Dimitrov, Dragan F.; Lehew, Gary; Meloy, Jim; Rajangam, Sankaranarayani; Subramanian, Vivek; Ifft, Peter J.; Li, Zheng; Ramakrishnan, Arjun; Tate, Andrew; Zhuang, Katie; Nicolelis, Miguel A.L.

    2014-01-01

    Advances in techniques for recording large-scale brain activity contribute to both the elucidation of neurophysiological principles and the development of brain-machine interfaces (BMIs). Here we describe a neurophysiological paradigm for performing tethered and wireless large-scale recordings based on movable volumetric three-dimensional (3D) multielectrode implants. This approach allowed us to isolate up to 1,800 units per animal and simultaneously record the extracellular activity of close to 500 cortical neurons, distributed across multiple cortical areas, in freely behaving rhesus monkeys. The method is expandable, in principle, to thousands of simultaneously recorded channels. It also allows increased recording longevity (5 consecutive years), and recording of a broad range of behaviors, e.g. social interactions, and BMI paradigms in freely moving primates. We propose that wireless large-scale recordings could have a profound impact on basic primate neurophysiology research, while providing a framework for the development and testing of clinically relevant neuroprostheses. PMID:24776634

  20. Primate energy input and the evolutionary transition to energy-dense diets in humans.

    PubMed

    Simmen, Bruno; Pasquet, Patrick; Masi, Shelly; Koppert, Georgius J A; Wells, Jonathan C K; Hladik, Claude Marcel

    2017-06-14

    Humans and other large-brained hominins have been proposed to increase energy turnover during their evolutionary history. Such increased energy turnover is plausible, given the evolution of energy-rich diets, but requires empirical confirmation. Framing human energetics in a phylogenetic context, our meta-analysis of 17 wild non-human primate species shows that daily metabolizable energy input follows an allometric relationship with body mass where the allometric exponent for mass is 0.75 ± 0.04, close to that reported for daily energy expenditure measured with doubly labelled water in primates. Human populations at subsistence level ( n = 6) largely fall within the variation of primate species in the scaling of energy intake and therefore do not consume significantly more energy than predicted for a non-human primate of equivalent mass. By contrast, humans ingest a conspicuously lower mass of food (-64 ± 6%) compared with primates and maintain their energy intake relatively more constantly across the year. We conclude that our hominin hunter-gatherer ancestors did not increase their energy turnover beyond the allometric relationship characterizing all primate species. The reduction in digestive costs due to consumption of a lower mass of high-quality food, as well as stabilization of energy supply, may have been important evolutionary steps enabling encephalization in the absence of significantly raised energy intakes. © 2017 The Author(s).

  1. Visuomotor cerebellum in human and nonhuman primates.

    PubMed

    Voogd, Jan; Schraa-Tam, Caroline K L; van der Geest, Jos N; De Zeeuw, Chris I

    2012-06-01

    In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula-nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively. Of the visuomotor functions of the cerebellum, the vestibulo-ocular reflex is controlled by the floccular lobe; saccadic eye movements are controlled by the oculomotor vermis and ansiform lobule, while control of smooth pursuit involves all these cerebellar visuomotor regions. Functional imaging studies in humans further emphasize cerebellar involvement in visual reflexive eye movements and are discussed.

  2. The Comparative Reach of Play and Brain: Perspective, Evidence, and Implications

    ERIC Educational Resources Information Center

    Burghardt, Gordon M.

    2010-01-01

    Scholars interested in play in humans should take note of the growing literature on play in other species, especially in light of the application of evolutionary approaches to virtually all areas of psychology. Although most research on animal play deals with mammals--particularly rodents, carnivores, and primates--studies have recorded play of…

  3. Macular lutein and zeaxanthin are related to brain lutein and zeaxanthin in primates

    USDA-ARS?s Scientific Manuscript database

    The xanthophyll pigments lutein and zeaxanthin cross the blood-retina barrier to preferentially accumulate in the macular region of the neural retina. There they form macular pigment, protecting the retina from blue light damage and oxidative stress. Lutein and zeaxanthin also accumulate in brain t...

  4. The Molecular Pathway Regulating Bergmann Glia and Folia Generation in the Cerebellum.

    PubMed

    Leung, Alan W; Li, James Y H

    2018-02-01

    Evolution of complex behaviors in higher vertebrates and primates require the development of sophisticated neuronal circuitry and the expansion of brain surface area to accommodate the vast number of neuronal and glial populations. To achieve these goals, the neocortex in primates and the cerebellum in amniotes have developed specialized types of basal progenitors to aid the folding of their cortices. In the cerebellum, Bergmann glia constitute such a basal progenitor population, having a distinctive morphology and playing a critical role in cerebellar corticogenesis. Here, we review recent studies on the induction of Bergmann glia and their crucial role in mediating folding of the cerebellar cortex. These studies uncover a key function of FGF-ERK-ETV signaling cascade in the transformation of Bergmann glia from radial glia in the ventricular zone. Remarkably, in the neocortex, the same signaling axis operates to facilitate the transformation of ventricular radial glia into basal radial glia, a Bergmann glia-like basal progenitor population, which have been implicated in the establishment of neocortical gyri. These new findings draw a striking similarity in the function and ontogeny of the two basal progenitor populations born in distinct brain compartments.

  5. Rapid inverse planning for pressure-driven drug infusions in the brain.

    PubMed

    Rosenbluth, Kathryn H; Martin, Alastair J; Mittermeyer, Stephan; Eschermann, Jan; Dickinson, Peter J; Bankiewicz, Krystof S

    2013-01-01

    Infusing drugs directly into the brain is advantageous to oral or intravenous delivery for large molecules or drugs requiring high local concentrations with low off-target exposure. However, surgeons manually planning the cannula position for drug delivery in the brain face a challenging three-dimensional visualization task. This study presents an intuitive inverse-planning technique to identify the optimal placement that maximizes coverage of the target structure while minimizing the potential for leakage outside the target. The technique was retrospectively validated using intraoperative magnetic resonance imaging of infusions into the striatum of non-human primates and into a tumor in a canine model and applied prospectively to upcoming human clinical trials.

  6. The Effect of Brain-Derived Neurotrophic Factor on Periodontal Furcation Defects

    PubMed Central

    Jimbo, Ryo; Tovar, Nick; Janal, Malvin N.; Mousa, Ramy; Marin, Charles; Yoo, Daniel; Teixeira, Hellen S.; Anchieta, Rodolfo B.; Bonfante, Estevam A.; Konishi, Akihiro; Takeda, Katsuhiro; Kurihara, Hidemi; Coelho, Paulo G.

    2014-01-01

    This study aimed to observe the regenerative effect of brain-derived neurotrophic factor (BDNF) in a non-human primate furcation defect model. Class II furcation defects were created in the first and second molars of 8 non-human primates to simulate a clinical situation. The defect was filled with either, Group A: BDNF (500 µg/ml) in high-molecular weight-hyaluronic acid (HMW-HA), Group B: BDNF (50 µg/ml) in HMW-HA, Group C: HMW-HA acid only, Group D: empty defect, or Group E: BDNF (500 µg/ml) in saline. The healing status for all groups was observed at different time-points with micro computed tomography. The animals were euthanized after 11 weeks, and the tooth-bone specimens were subjected to histologic processing. The results showed that all groups seemed to successfully regenerate the alveolar buccal bone, however, only Group A regenerated the entire periodontal tissue, i.e., alveolar bone, cementum and periodontal ligament. It is suggested that the use of BDNF in combination with a scaffold such as the hyaluronic acid in periodontal furcation defects may be an effective treatment option. PMID:24454754

  7. Genetic and molecular risk factors within the newly identified primate-specific exon of the SAP97/DLG1 gene in the 3q29 schizophrenia-associated locus.

    PubMed

    Uezato, Akihito; Yamamoto, Naoki; Jitoku, Daisuke; Haramo, Emiko; Hiraaki, Eri; Iwayama, Yoshimi; Toyota, Tomoko; Umino, Masakazu; Umino, Asami; Iwata, Yasuhide; Suzuki, Katsuaki; Kikuchi, Mitsuru; Hashimoto, Tasuku; Kanahara, Nobuhisa; Kurumaji, Akeo; Yoshikawa, Takeo; Nishikawa, Toru

    2017-12-01

    The synapse-associated protein 97/discs, large homolog 1 of Drosophila (DLG1) gene encodes synaptic scaffold PDZ proteins interacting with ionotropic glutamate receptors including the N-methyl-D-aspartate type glutamate receptor (NMDAR) that is presumed to be hypoactive in brains of patients with schizophrenia. The DLG1 gene resides in the chromosomal position 3q29, the microdeletion of which confers a 40-fold increase in the risk for schizophrenia. In the present study, we performed genetic association analyses for DLG1 gene using a Japanese cohort with 1808 schizophrenia patients and 2170 controls. We detected an association which remained significant after multiple comparison testing between schizophrenia and the single nucleotide polymorphism (SNP) rs3915512 that is located within the newly identified primate-specific exon (exon 3b) of the DLG1 gene and constitutes the exonic splicing enhancer sequence. When stratified by onset age, although it did not survive multiple comparisons, the association was observed in non-early onset schizophrenia, whose onset-age selectivity is consistent with our recent postmortem study demonstrating a decrease in the expression of the DLG1 variant in early-onset schizophrenia. Although the present study did not demonstrate the previously reported association of the SNP rs9843659 by itself, a meta-analysis revealed a significant association between DLG1 gene and schizophrenia. These findings provide a valuable clue for molecular mechanisms on how genetic variations in the primate-specific exon of the gene in the schizophrenia-associated 3q29 locus affect its regulation in the glutamate system and lead to the disease onset around a specific stage of brain development. © 2017 Wiley Periodicals, Inc.

  8. How Play Makes for a More Adaptable Brain: A Comparative and Neural Perspective

    ERIC Educational Resources Information Center

    Pellis, Sergio M.; Pellis, Vivien C.; Himmler, Brett T.

    2014-01-01

    Studies of rats and some primates show that rough-and-tumble play among juveniles improves social competence, cognition, and emotional regulation later in life. Most critically, such play makes animals better able to respond to unexpected situations. But not all animals engage in play, and not all animals that play appear to gain these benefits.…

  9. Gene Expression Profiling of Nonhuman Primates Exposed to Aerosolized Venezuelan Equine Encephalitis Virus

    DTIC Science & Technology

    2007-12-01

    endogenous pyrogens occur slightly earlier in s.c. infections, but are more pro- longed by aerosol. Lymphopenia also seems to be more aggressive in...brain) Brain P-value (lung) Lung P-value (spleen) Spleen Antigen processing, endogenous antigen via MHC class I (BP) HLA-A 213932_x_at 8.58E-05 2.40

  10. Monkey cortex through fMRI glasses

    PubMed Central

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A.

    2015-01-01

    In 1998 several groups reported the feasibility of functional magnetic resonance imaging (fMRI) experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category and feature selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. PMID:25102559

  11. Monkey cortex through fMRI glasses.

    PubMed

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A

    2014-08-06

    In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size.

    PubMed

    Otani, Tomoki; Marchetto, Maria C; Gage, Fred H; Simons, Benjamin D; Livesey, Frederick J

    2016-04-07

    Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Nonhuman primate models of focal cerebral ischemia

    PubMed Central

    Fan, Jingjing; Li, Yi; Fu, Xinyu; Li, Lijuan; Hao, Xiaoting; Li, Shasha

    2017-01-01

    Rodents have been widely used in the production of cerebral ischemia models. However, successful therapies have been proven on experimental rodent stroke model, and they have often failed to be effective when tested clinically. Therefore, nonhuman primates were recommended as the ideal alternatives, owing to their similarities with the human cerebrovascular system, brain metabolism, grey to white matter ratio and even their rich behavioral repertoire. The present review is a thorough summary of ten methods that establish nonhuman primate models of focal cerebral ischemia; electrocoagulation, endothelin-1-induced occlusion, microvascular clip occlusion, autologous blood clot embolization, balloon inflation, microcatheter embolization, coil embolization, surgical suture embolization, suture, and photochemical induction methods. This review addresses the advantages and disadvantages of each method, as well as precautions for each model, compared nonhuman primates with rodents, different species of nonhuman primates and different modeling methods. Finally it discusses various factors that need to be considered when modelling and the method of evaluation after modelling. These are critical for understanding their respective strengths and weaknesses and underlie the selection of the optimum model. PMID:28400817

  14. Evolutionary and developmental implications of asymmetric brain folding in a large primate pedigree

    PubMed Central

    Atkinson, Elizabeth G.; Rogers, Jeffrey; Cheverud, James M.

    2016-01-01

    Bilateral symmetry is a fundamental property of the vertebrate central nervous system. Local deviations from symmetry provide various types of information about the development, evolution and function of elements within the CNS, especially the cerebral hemispheres. Here, we quantify the pattern and extent of asymmetry in cortical folding within the cerebrum of Papio baboons and assess the evolutionary and developmental implications of the findings. Analyses of directional asymmetry show a population-level trend in length measurements indicating that baboons are genetically predisposed to be asymmetrical, with the right side longer than the left in the anterior cerebrum while the left side is longer than the right posteriorly. We also find a corresponding bias to display a right frontal petalia (overgrowth of the anterior pole of the cerebral cortex on the right side). By quantifying fluctuating asymmetry, we assess canalization of brain features and the susceptibility of the baboon brain to developmental perturbations. We find that features are differentially canalized depending on their ontogenetic timing. We further deduce that development of the two hemispheres is to some degree independent. This independence has important implications for the evolution of cerebral hemispheres and their separate specialization. Asymmetry is a major feature of primate brains and is characteristic of both brain structure and function. PMID:26813679

  15. Transplantation of embryonic stem cell-derived dopaminergic neurons in MPTP-treated monkeys.

    PubMed

    Takahashi, Jun; Takagi, Yasushi; Saiki, Hidemoto

    2009-01-01

    One of the target diseases of cell-replacement therapy is Parkinson's disease. Clinical experiences with fetal dopaminergic cell graft have shown that the therapy is effective, but limited and accompanied by side effects, such as dyskinesia. So, the therapy needs to be further improved and sophisticated. Embryonic stem (ES) cells are expected to be another donor cell for the treatment, because of its proliferative and differentiation capacities. For clinical application, experiments using non-human primates are important, because size, anatomy, and biological characteristics of the brain are different between rodents and primates. Here, we would like to discuss induction of dopaminergic neurons from monkey ES cells and cell transplantation into the brain of monkey Parkinson's disease model.

  16. Do Chimeras Have Minds?

    PubMed

    Capps, Benjamin

    2017-10-01

    Suppose that a colleague proposed a fantastic experiment: to introduce human stem cells into a neonatal mouse so that its entire brain developed into "human-like" neuronal structures. The colleague claimed it would still be a mouse, and that its chimeric brain would be nothing like a "human" one. It would not, as a result, have a moral status beyond its nonhuman animal origins. Thus, the "human neuron mouse" would allow scientists to tinker with human-like neurology in ways that would be precluded if it were a human being, and that would promise to lead to substantial understanding of the destructive and incurable brain diseases that befall humanity. The colleague does admit, however, that for reasons of comparative fidelity, experiments in human patients would be scientifically preferable, although in this case, neither ethically justified nor legally permitted. For that reason, it might be desirable to create a human brain in a nonhuman primate, where it would be more likely that significant human-like neuronal development would occur, but still could not become a person. This article explores the significance of a "human neuron chimpanzee," and suggests that contradictions in the design of the experiment make it unethical to proceed in either murine or primate models.

  17. A computational model of the development of separate representations of facial identity and expression in the primate visual system.

    PubMed

    Tromans, James Matthew; Harris, Mitchell; Stringer, Simon Maitland

    2011-01-01

    Experimental studies have provided evidence that the visual processing areas of the primate brain represent facial identity and facial expression within different subpopulations of neurons. For example, in non-human primates there is evidence that cells within the inferior temporal gyrus (TE) respond primarily to facial identity, while cells within the superior temporal sulcus (STS) respond to facial expression. More recently, it has been found that the orbitofrontal cortex (OFC) of non-human primates contains some cells that respond exclusively to changes in facial identity, while other cells respond exclusively to facial expression. How might the primate visual system develop physically separate representations of facial identity and expression given that the visual system is always exposed to simultaneous combinations of facial identity and expression during learning? In this paper, a biologically plausible neural network model, VisNet, of the ventral visual pathway is trained on a set of carefully-designed cartoon faces with different identities and expressions. The VisNet model architecture is composed of a hierarchical series of four Self-Organising Maps (SOMs), with associative learning in the feedforward synaptic connections between successive layers. During learning, the network develops separate clusters of cells that respond exclusively to either facial identity or facial expression. We interpret the performance of the network in terms of the learning properties of SOMs, which are able to exploit the statistical indendependence between facial identity and expression.

  18. Blood-Brain Barrier Opening in Behaving Non-Human Primates via Focused Ultrasound with Systemically Administered Microbubbles

    NASA Astrophysics Data System (ADS)

    Downs, Matthew E.; Buch, Amanda; Karakatsani, Maria Eleni; Konofagou, Elisa E.; Ferrera, Vincent P.

    2015-10-01

    Over the past fifteen years, focused ultrasound coupled with intravenously administered microbubbles (FUS) has been proven an effective, non-invasive technique to open the blood-brain barrier (BBB) in vivo. Here we show that FUS can safely and effectively open the BBB at the basal ganglia and thalamus in alert non-human primates (NHP) while they perform a behavioral task. The BBB was successfully opened in 89% of cases at the targeted brain regions of alert NHP with an average volume of opening 28% larger than prior anesthetized FUS procedures. Safety (lack of edema or microhemorrhage) of FUS was also improved during alert compared to anesthetized procedures. No physiological effects (change in heart rate, motor evoked potentials) were observed during any of the procedures. Furthermore, the application of FUS did not disrupt reaching behavior, but in fact improved performance by decreasing reaction times by 23 ms, and significantly decreasing touch error by 0.76 mm on average.

  19. A high density of human communication-associated genes in chromosome 7q31-q36: differential expression in human and non-human primate cortices.

    PubMed

    Schneider, E; Jensen, L R; Farcas, R; Kondova, I; Bontrop, R E; Navarro, B; Fuchs, E; Kuss, A W; Haaf, T

    2012-01-01

    The human brain is distinguished by its remarkable size, high energy consumption, and cognitive abilities compared to all other mammals and non-human primates. However, little is known about what has accelerated brain evolution in the human lineage. One possible explanation is that the appearance of advanced communication skills and language has been a driving force of human brain development. The phenotypic adaptations in brain structure and function which occurred on the way to modern humans may be associated with specific molecular signatures in today's human genome and/or transcriptome. Genes that have been linked to language, reading, and/or autism spectrum disorders are prime candidates when searching for genes for human-specific communication abilities. The database and genome-wide expression analyses we present here revealed a clustering of such communication-associated genes (COAG) on human chromosomes X and 7, in particular chromosome 7q31-q36. Compared to the rest of the genome, we found a high number of COAG to be differentially expressed in the cortices of humans and non-human primates (chimpanzee, baboon, and/or marmoset). The role of X-linked genes for the development of human-specific cognitive abilities is well known. We now propose that chromosome 7q31-q36 also represents a hot spot for the evolution of human-specific communication abilities. Selective pressure on the T cell receptor beta locus on chromosome 7q34, which plays a pivotal role in the immune system, could have led to rapid dissemination of positive gene variants in hitchhiking COAG. Copyright © 2012 S. Karger AG, Basel.

  20. Brain Mass and Encephalization Quotients in the Domestic Industrial Pig (Sus scrofa)

    PubMed Central

    Minervini, Serena; Accogli, Gianluca; Pirone, Andrea; Graïc, Jean-Marie; Cozzi, Bruno; Desantis, Salvatore

    2016-01-01

    In the present study we examined the brain of fetal, newborn, and adult pigs raised for meat production. The fresh and formalin-fixed weights of the brain have been recorded and used, together with body weight, to calculate the Encephalization Quotient (EQ). The weight of the cerebellum has been used to calculate the Cerebellar Quotient (CQ). The results have been discussed together with analogue data obtained in other terrestrial Cetartiodactyla (including the domestic bovine, sheep, goat, and camel), domesticated Carnivora, Proboscidata, and Primates. Our study, based on a relatively large experimental series, corrects former observations present in the literature based on smaller samples, and emphasizes that the domestic pig has a small brain relative to its body size (EQ = 0.38 for adults), possibly due to factors linked to the necessity of meat production and improved body weight. Comparison with other terrestrial Cetartiodactyla indicates a similar trend for all domesticated species. PMID:27351807

  1. Intrinsic qualities of primate bones as predictors of skeletal element representation in modern and fossil carnivore feeding assemblages.

    PubMed

    Carlson, Kristian J; Pickering, Travis Rayne

    2003-04-01

    Plio-Pleistocene faunal assemblages from Swartkrans Cave (South Africa) preserve large numbers of primate remains. Brain, C.K., 1981. The Hunters or the Hunted? An Introduction to African Cave Taphonomy. University of Chicago Press, Chicago suggested that these primate subassemblages might have resulted from a focus by carnivores on primate predation and bone accumulation. Brain's hypothesis prompted us to investigate, in a previous study, this taphonomic issue as it relates to density-mediated destruction of primate bones (J. Archaeol. Sci. 29, 2002, 883). Here we extend our investigation of Brain's hypothesis by examining additional intrinsic qualities of baboon bones and their role as mediators of skeletal element representation in carnivore-created assemblages. Using three modern adult baboon skeletons, we collected data on four intrinsic bone qualities (bulk bone mineral density, maximum length, volume, and cross-sectional area) for approximately 81 bones per baboon skeleton. We investigated the relationship between these intrinsic bone qualities and a measure of skeletal part representation (the percentage minimum animal unit) for baboon bones in carnivore refuse and scat assemblages. Refuse assemblages consist of baboon bones not ingested during ten separate experimental feeding episodes in which individual baboon carcasses were fed to individual captive leopards and a spotted hyena. Scat assemblages consist of those baboon bones recovered in carnivore regurgitations and feces resulting from the feeding episodes. In refuse assemblages, volume (i.e., size) was consistently the best predictor of element representation, while cross-sectional area was the poorest predictor in the leopard refuse assemblage and bulk bone mineral density (i.e., a measure of the proportion of cortical to trabecular bone) was the poorest predictor in the hyena refuse assemblage. In light of previous documentation of carnivore-induced density-mediated destruction to bone assemblages, we interpret the current findings as suggestive of the secondary importance of bulk bone mineral density to other intrinsic qualities of skeletal elements (e.g., size, maximum dimension, and average cross-sectional area). It is only when skeletal elements are too large for consumption (e.g., many long bones) that they are fragmented following intra-element patterns of density-mediated carnivore destruction. There appears to be a size threshold beneath which bulk bone mineral density contributes little to mediating carnivore destruction of carcasses. Thus, depending on body size of the predator, body size of the prey, and specific size of the element, bulk bone mineral density may play little or no role of primary importance in mediating the destruction of skeletal elements. We compare patterns in modern comparative assemblages to patterns in primate fossil assemblages from Swartkrans. One of the fossil assemblages, Swartkrans Member 1, Hanging Remnant, most closely approximates a hyena (possibly refuse) assemblage pattern, while the Swartkrans Member 2 assemblage most closely approximates a leopard (possibly scat) assemblage pattern. The Swartkrans Member 1, Lower Bank, assemblage does not closely approximate any of our modern comparative assemblage patterns.

  2. A Translational Neuroscience Approach to Understanding the Development of Social Anxiety Disorder and its Pathophysiology

    PubMed Central

    Fox, Andrew S.; Kalin, Ned H.

    2014-01-01

    This review brings together recent research from molecular, neural circuit, animal model, and human studies to understand the neurodevelopmental mechanisms underlying Social Anxiety Disorder (SAD). SAD is common, debilitating, and often leads to further psychopathology. Numerous studies demonstrate that extremely behaviorally inhibited and temperamentally anxious young children are at marked risk to develop SAD. Recent work in human and nonhuman primates has identified a distributed brain network that underlies early-life anxiety including: central nucleus of the amygdala, anterior hippocampus and orbitofrontal cortex. Moreover, studies in nonhuman primates demonstrate that alterations in this circuit are trait-like in that they are stable over time and across contexts. Importantly, the components of this circuit are differentially influenced by heritable and environmental factors and specific lesion studies demonstrate a causal role for multiple components of the circuit. Molecular studies in rodents and primates are pointing to disrupted neurodevelopmental and neuroplastic processes within critical components of the early-life dispositional anxiety neural circuit. The possibility of identifying an early-life at-risk phenotype, along with an understanding of its neurobiology, provides an unusual opportunity to conceptualize novel preventive intervention strategies aimed at reducing the suffering of anxious children and preventing them from developing further psychopathology. PMID:25157566

  3. A translational neuroscience approach to understanding the development of social anxiety disorder and its pathophysiology.

    PubMed

    Fox, Andrew S; Kalin, Ned H

    2014-11-01

    This review brings together recent research from molecular, neural circuit, animal model, and human studies to help understand the neurodevelopmental mechanisms underlying social anxiety disorder. Social anxiety disorder is common and debilitating, and it often leads to further psychopathology. Numerous studies have demonstrated that extremely behaviorally inhibited and temperamentally anxious young children are at marked risk of developing social anxiety disorder. Recent work in human and nonhuman primates has identified a distributed brain network that underlies early-life anxiety including the central nucleus of the amygdala, the anterior hippocampus, and the orbitofrontal cortex. Studies in nonhuman primates have demonstrated that alterations in this circuit are trait-like in that they are stable over time and across contexts. Notably, the components of this circuit are differentially influenced by heritable and environmental factors, and specific lesion studies have demonstrated a causal role for multiple components of the circuit. Molecular studies in rodents and primates point to disrupted neurodevelopmental and neuroplastic processes within critical components of the early-life dispositional anxiety neural circuit. The possibility of identifying an early-life at-risk phenotype, along with an understanding of its neurobiology, provides an unusual opportunity to conceptualize novel preventive intervention strategies aimed at reducing the suffering of anxious children and preventing them from developing further psychopathology.

  4. Is the ferret a suitable species for studying perinatal brain injury?

    PubMed Central

    Empie, Kristen; Rangarajan, Vijayeta; Juul, Sandra E.

    2016-01-01

    Complications of prematurity often disrupt normal brain development and/or cause direct damage to the developing brain, resulting in poor neurodevelopmental outcomes. Physiologically relevant animal models of perinatal brain injury can advance our understanding of these influences and thereby provide opportunities to develop therapies and improve long-term outcomes. While there are advantages to currently available small animal models, there are also significant drawbacks that have limited translation of research findings to humans. Large animal models such as newborn pig, sheep and nonhuman primates have complex brain development more similar to humans, but these animals are expensive, and developmental testing of sheep and piglets is limited. Ferrets (Mustela putorius furo) are born lissencephalic and undergo postnatal cortical folding to form complex gyrencephalic brains. This review examines whether ferrets might provide a novel intermediate animal model of neonatal brain disease that has the benefit of a gyrified, altricial brain in a small animal. It summarizes attributes of ferret brain growth and development that make it an appealing animal in which to model perinatal brain injury. We postulate that because of their innate characteristics, ferrets have great potential in neonatal neurodevelopmental studies. PMID:26102988

  5. Social networks in primates: smart and tolerant species have more efficient networks.

    PubMed

    Pasquaretta, Cristian; Levé, Marine; Claidière, Nicolas; van de Waal, Erica; Whiten, Andrew; MacIntosh, Andrew J J; Pelé, Marie; Bergstrom, Mackenzie L; Borgeaud, Christèle; Brosnan, Sarah F; Crofoot, Margaret C; Fedigan, Linda M; Fichtel, Claudia; Hopper, Lydia M; Mareno, Mary Catherine; Petit, Odile; Schnoell, Anna Viktoria; di Sorrentino, Eugenia Polizzi; Thierry, Bernard; Tiddi, Barbara; Sueur, Cédric

    2014-12-23

    Network optimality has been described in genes, proteins and human communicative networks. In the latter, optimality leads to the efficient transmission of information with a minimum number of connections. Whilst studies show that differences in centrality exist in animal networks with central individuals having higher fitness, network efficiency has never been studied in animal groups. Here we studied 78 groups of primates (24 species). We found that group size and neocortex ratio were correlated with network efficiency. Centralisation (whether several individuals are central in the group) and modularity (how a group is clustered) had opposing effects on network efficiency, showing that tolerant species have more efficient networks. Such network properties affecting individual fitness could be shaped by natural selection. Our results are in accordance with the social brain and cultural intelligence hypotheses, which suggest that the importance of network efficiency and information flow through social learning relates to cognitive abilities.

  6. Social networks in primates: smart and tolerant species have more efficient networks

    PubMed Central

    Pasquaretta, Cristian; Levé, Marine; Claidière, Nicolas; van de Waal, Erica; Whiten, Andrew; MacIntosh, Andrew J. J.; Pelé, Marie; Bergstrom, Mackenzie L.; Borgeaud, Christèle; Brosnan, Sarah F.; Crofoot, Margaret C.; Fedigan, Linda M.; Fichtel, Claudia; Hopper, Lydia M.; Mareno, Mary Catherine; Petit, Odile; Schnoell, Anna Viktoria; di Sorrentino, Eugenia Polizzi; Thierry, Bernard; Tiddi, Barbara; Sueur, Cédric

    2014-01-01

    Network optimality has been described in genes, proteins and human communicative networks. In the latter, optimality leads to the efficient transmission of information with a minimum number of connections. Whilst studies show that differences in centrality exist in animal networks with central individuals having higher fitness, network efficiency has never been studied in animal groups. Here we studied 78 groups of primates (24 species). We found that group size and neocortex ratio were correlated with network efficiency. Centralisation (whether several individuals are central in the group) and modularity (how a group is clustered) had opposing effects on network efficiency, showing that tolerant species have more efficient networks. Such network properties affecting individual fitness could be shaped by natural selection. Our results are in accordance with the social brain and cultural intelligence hypotheses, which suggest that the importance of network efficiency and information flow through social learning relates to cognitive abilities. PMID:25534964

  7. Task complexity, posture, age, sex: which is the main factor influencing manual laterality in captive Cercocebus torquatus torquatus?

    PubMed

    Laurence, Agathe; Wallez, Catherine; Blois-Heulin, Catherine

    2011-09-01

    Behavioural asymmetries reflect brain asymmetry in nonhuman primates (NHP) as in humans. By investigating manual laterality, researchers can study the evolution of brain hemisphere specialisation. Three dominant theories aim to establish an evolutionary scenario. The most recent theory relates different levels of manual laterality to task complexity. Our investigation aimed to evaluate the importance of two extrinsic factors (posture and the need for manual coordination) and two intrinsic factors (age and sex) on the expression of manual laterality by red-capped mangabeys. We observed 19 captive-born mangabeys, in spontaneous situations and under experimental conditions (seven experimental tasks varying in complexity). No directionality was observed in hand preference at the group level whatever the task. But our data revealed an effect of task complexity: more subjects were lateralised than not lateralised for the bipedal task and for the three most complex tasks. Finally, we evidenced an age and a sex effect. We compare our results with data for several other primate species and discuss them in the light of different manual laterality theories.

  8. Resting State Network Topology of the Ferret Brain

    PubMed Central

    Zhou, Zhe Charles; Salzwedel, Andrew P.; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K.; Gilmore, John H.; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei

    2016-01-01

    Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4 tesla MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. PMID:27596024

  9. The evolution of human reproduction: a primatological perspective.

    PubMed

    Martin, Robert D

    2007-01-01

    Successful reconstruction of any aspect of human evolution ideally requires broad-based comparisons with other primates, as recognition of general principles provides a more reliable foundation for inference. Indeed, in many cases it is necessary to conduct comparisons with other placental mammals to test interpretations. This review considers comparative evidence with respect to the following topics relating to human reproduction: (1) size of the testes, sperm, and baculum; (2) ovarian processes and mating cyclicity; (3) placentation and embryonic membranes; (4) gestation period and neonatal condition; (5) brain development in relation to reproduction; and (6) suckling and age at weaning. Relative testis size, the size of the sperm midpiece, and perhaps the absence of a baculum indicate that humans are adapted for a mating system in which sperm competition was not a major factor. Because sizes of mammalian gametes do not increase with body size, they are increasingly dwarfed by the size of the female reproductive tract as body size increases. The implications of this have yet to be explored. Primates have long ovarian cycles and humans show an average pattern. Menstruation is completely lacking in strepsirrhine primates, possibly weakly present in tarsiers and variably expressed in simians. The only other mammals reliably reported to show menstruation are bats. Three hypotheses have been proposed to explain the evolution of menstruation (eliminating sperm-borne pathogens; reducing the metabolic cost of a prepared uterine lining; occurrence as a side-effect of physiological changes), but no consensus has emerged. Copulation at times other than the periovulatory period is not unique to humans, and its occurrence during pregnancy is widespread among mammals. Although the human condition is extreme, extended copulation during the ovarian cycle is the norm among simian primates, in stark contrast to prosimians, in which mating is typically restricted to a few days when the female is in oestrus. The model of regular mid-cycle ovulation in simians is questionable. Gestation periods calculated on that basis show greater variability than in other mammals, and evidence from laboratory breeding colonies indicates that an extended mating period is matched by an extended period in which conception can occur. New evidence indicates that the noninvasive placentation found in strepsirrhine primates is not primitive after all. Furthermore, comparative studies reveal that such noninvasive placentation is not "inefficient". Evolution of highly invasive placentation in haplorhine primates is probably linked instead to immunological factors. Primates have relatively long gestation periods, and humans are average in this respect. However, there is evidence that humans show greater maternal investment during pregnancy in comparison with apes. Although the human neonate matches the typical precocial pattern of primates in most respects, a fetal pattern of brain growth continues for a year after birth, such that the human infant is "secondarily altricial" in terms of its dependence on parental care. Nevertheless, the "natural" lactation period of humans is probably about 3 years, fitting the expectation in comparison to other hominoids. (c) 2007 Wiley-Liss, Inc.

  10. Optogenetic manipulation of neural circuits in awake marmosets

    PubMed Central

    MacDougall, Matthew; Nummela, Samuel U.; Coop, Shanna; Disney, Anita; Mitchell, Jude F.

    2016-01-01

    Optogenetics has revolutionized the study of functional neuronal circuitry (Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Nat Neurosci 8: 1263–1268, 2005; Deisseroth K. Nat Methods 8: 26–29, 2011). Although these techniques have been most successfully implemented in rodent models, they have the potential to be similarly impactful in studies of nonhuman primate brains. Common marmosets (Callithrix jacchus) have recently emerged as a candidate primate model for gene editing, providing a potentially powerful model for studies of neural circuitry and disease in primates. The application of viral transduction methods in marmosets for identifying and manipulating neuronal circuitry is a crucial step in developing this species for neuroscience research. In the present study we developed a novel, chronic method to successfully induce rapid photostimulation in individual cortical neurons transduced by adeno-associated virus to express channelrhodopsin (ChR2) in awake marmosets. We found that large proportions of neurons could be effectively photoactivated following viral transduction and that this procedure could be repeated for several months. These data suggest that techniques for viral transduction and optical manipulation of neuronal populations are suitable for marmosets and can be combined with existing behavioral preparations in the species to elucidate the functional neural circuitry underlying perceptual and cognitive processes. PMID:27334951

  11. Visual guidance in control of grasping.

    PubMed

    Janssen, Peter; Scherberger, Hansjörg

    2015-07-08

    Humans and other primates possess a unique capacity to grasp and manipulate objects skillfully, a facility pervasive in everyday life that has undoubtedly contributed to the success of our species. When we reach and grasp an object, various cortical areas in the parietal and frontal lobes work together effortlessly to analyze object shape and position, transform this visual information into useful motor commands, and implement these motor representations to preshape the hand before contact with the object is made. In recent years, a growing number of studies have investigated the neural circuits underlying object grasping in both the visual and motor systems of the macaque monkey. The accumulated knowledge not only helps researchers understand how object grasping is implemented in the primate brain but may also contribute to the development of novel neural interfaces and neuroprosthetics.

  12. Assessment of tropism and effectiveness of new primate-derived hybrid recombinant AAV serotypes in the mouse and primate retina.

    PubMed

    Charbel Issa, Peter; De Silva, Samantha R; Lipinski, Daniel M; Singh, Mandeep S; Mouravlev, Alexandre; You, Qisheng; Barnard, Alun R; Hankins, Mark W; During, Matthew J; Maclaren, Robert E

    2013-01-01

    Adeno-associated viral vectors (AAV) have been shown to be safe in the treatment of retinal degenerations in clinical trials. Thus, improving the efficiency of viral gene delivery has become increasingly important to increase the success of clinical trials. In this study, structural domains of different rAAV serotypes isolated from primate brain were combined to create novel hybrid recombinant AAV serotypes, rAAV2/rec2 and rAAV2/rec3. The efficacy of these novel serotypes were assessed in wild type mice and in two models of retinal degeneration (the Abca4(-/-) mouse which is a model for Stargardt disease and in the Pde6b(rd1/rd1) mouse) in vivo, in primate tissue ex-vivo, and in the human-derived SH-SY5Y cell line, using an identical AAV2 expression cassette. We show that these novel hybrid serotypes can transduce retinal tissue in mice and primates efficiently, although no more than AAV2/2 and rAAV2/5 serotypes. Transduction efficiency appeared lower in the Abca4(-/-) mouse compared to wild type with all vectors tested, suggesting an effect of specific retinal diseases on the efficiency of gene delivery. Shuffling of AAV capsid domains may have clinical applications for patients who develop T-cell immune responses following AAV gene therapy, as specific peptide antigen sequences could be substituted using this technique prior to vector re-treatments.

  13. The antiquity of empathy.

    PubMed

    de Waal, Frans B M

    2012-05-18

    The view of humans as violent war-prone apes is poorly supported by archaeological evidence and only partly supported by the behavior of our closest primate relatives, chimpanzees and bonobos. Whereas the first species is marked by xenophobia, the second is relatively peaceful and highly empathic in both behavior and brain organization. Animal empathy is best regarded as a multilayered phenomenon, built around motor mirroring and shared neural representations at basal levels, that develops into more advanced cognitive perspective-taking in large-brained species. As indicated by both observational and experimental studies on our closest relatives, empathy may be the main motivator of prosocial behavior.

  14. A brain-spine interface alleviating gait deficits after spinal cord injury in primates.

    PubMed

    Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire

    2016-11-10

    Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain-computer interfaces have directly linked cortical activity to electrical stimulation of muscles, and have thus restored grasping abilities after hand paralysis. Theoretically, this strategy could also restore control over leg muscle activity for walking. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges. Recently, it was shown in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion. Here we interface leg motor cortex activity with epidural electrical stimulation protocols to establish a brain-spine interface that alleviated gait deficits after a spinal cord injury in non-human primates. Rhesus monkeys (Macaca mulatta) were implanted with an intracortical microelectrode array in the leg area of the motor cortex and with a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain-spine interface in intact (uninjured) monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain-spine interface restored weight-bearing locomotion of the paralysed leg on a treadmill and overground. The implantable components integrated in the brain-spine interface have all been approved for investigational applications in similar human research, suggesting a practical translational pathway for proof-of-concept studies in people with spinal cord injury.

  15. Active Microelectronic Neurosensor Arrays for Implantable Brain Communication Interfaces

    PubMed Central

    Song, Y.-K.; Borton, D. A.; Park, S.; Patterson, W. R.; Bull, C. W.; Laiwalla, F.; Mislow, J.; Simeral, J. D.; Donoghue, J. P.; Nurmikko, A. V.

    2010-01-01

    We have built a wireless implantable microelectronic device for transmitting cortical signals transcutaneously. The device is aimed at interfacing a microelectrode array cortical to an external computer for neural control applications. Our implantable microsystem enables presently 16-channel broadband neural recording in a non-human primate brain by converting these signals to a digital stream of infrared light pulses for transmission through the skin. The implantable unit employs a flexible polymer substrate onto which we have integrated ultra-low power amplification with analog multiplexing, an analog-to-digital converter, a low power digital controller chip, and infrared telemetry. The scalable 16-channel microsystem can employ any of several modalities of power supply, including via radio frequency by induction, or infrared light via a photovoltaic converter. As of today, the implant has been tested as a sub-chronic unit in non-human primates (~ 1 month), yielding robust spike and broadband neural data on all available channels. PMID:19502132

  16. Basal ganglia systems in ritualistic social displays: reptiles and humans; function and illness.

    PubMed

    Baxter, Lewis R

    2003-08-01

    Complex, situation-specific territorial maintenance routines are similar across living terrestrial vertebrates (=amniotes). Decades ago, Paul MacLean et al., at the Laboratory of Brain Evolution and Behavior of the National Institute of Mental Health, postulated that these are evolutionarily conserved behaviors whose expression is mediated by the similarly conserved amniote basal ganglia and related brain systems (BG systems). Therefore, they undertook studies in nonhuman primates and in small social lizards (the common green anole, Anolis carolinensis) to examine this idea. MacLean et al. also postulated that when BG systems misfunction in humans, behavioral abnormalities result, some of them under the rubric of psychiatric illnesses. Obsessive-compulsive disorder (OCD) was singled out as one likely candidate. In the last dozen years, functional brain imaging studies of OCD patients have validated the contention that this is, in fact, a condition involving dysfunctioning BG systems. Inspired by the MacLean group's original investigations, my colleagues and I have now applied related functional imaging techniques in naturalistic experiments using Anolis to better understand BG systems' roles in the mediation of complex behavioral routines in healthy amniotes. Here, I will review this functional imaging work in primates (man, and a little in monkey) and in lizards. I believe the literature not only supports MacLean et al.'s contentions about BG systems and behavior in general, but also validates Paul MacLean's life-long contention that human behavioral medicine can profit from a broad comparative approach.

  17. Dogs Have the Most Neurons, Though Not the Largest Brain: Trade-Off between Body Mass and Number of Neurons in the Cerebral Cortex of Large Carnivoran Species

    PubMed Central

    Jardim-Messeder, Débora; Lambert, Kelly; Noctor, Stephen; Pestana, Fernanda M.; de Castro Leal, Maria E.; Bertelsen, Mads F.; Alagaili, Abdulaziz N.; Mohammad, Osama B.; Manger, Paul R.; Herculano-Houzel, Suzana

    2017-01-01

    Carnivorans are a diverse group of mammals that includes carnivorous, omnivorous and herbivorous, domesticated and wild species, with a large range of brain sizes. Carnivory is one of several factors expected to be cognitively demanding for carnivorans due to a requirement to outsmart larger prey. On the other hand, large carnivoran species have high hunting costs and unreliable feeding patterns, which, given the high metabolic cost of brain neurons, might put them at risk of metabolic constraints regarding how many brain neurons they can afford, especially in the cerebral cortex. For a given cortical size, do carnivoran species have more cortical neurons than the herbivorous species they prey upon? We find they do not; carnivorans (cat, mongoose, dog, hyena, lion) share with non-primates, including artiodactyls (the typical prey of large carnivorans), roughly the same relationship between cortical mass and number of neurons, which suggests that carnivorans are subject to the same evolutionary scaling rules as other non-primate clades. However, there are a few important exceptions. Carnivorans stand out in that the usual relationship between larger body, larger cortical mass and larger number of cortical neurons only applies to small and medium-sized species, and not beyond dogs: we find that the golden retriever dog has more cortical neurons than the striped hyena, African lion and even brown bear, even though the latter species have up to three times larger cortices than dogs. Remarkably, the brown bear cerebral cortex, the largest examined, only has as many neurons as the ten times smaller cat cerebral cortex, although it does have the expected ten times as many non-neuronal cells in the cerebral cortex compared to the cat. We also find that raccoons have dog-like numbers of neurons in their cat-sized brain, which makes them comparable to primates in neuronal density. Comparison of domestic and wild species suggests that the neuronal composition of carnivoran brains is not affected by domestication. Instead, large carnivorans appear to be particularly vulnerable to metabolic constraints that impose a trade-off between body size and number of cortical neurons. PMID:29311850

  18. Dogs Have the Most Neurons, Though Not the Largest Brain: Trade-Off between Body Mass and Number of Neurons in the Cerebral Cortex of Large Carnivoran Species.

    PubMed

    Jardim-Messeder, Débora; Lambert, Kelly; Noctor, Stephen; Pestana, Fernanda M; de Castro Leal, Maria E; Bertelsen, Mads F; Alagaili, Abdulaziz N; Mohammad, Osama B; Manger, Paul R; Herculano-Houzel, Suzana

    2017-01-01

    Carnivorans are a diverse group of mammals that includes carnivorous, omnivorous and herbivorous, domesticated and wild species, with a large range of brain sizes. Carnivory is one of several factors expected to be cognitively demanding for carnivorans due to a requirement to outsmart larger prey. On the other hand, large carnivoran species have high hunting costs and unreliable feeding patterns, which, given the high metabolic cost of brain neurons, might put them at risk of metabolic constraints regarding how many brain neurons they can afford, especially in the cerebral cortex. For a given cortical size, do carnivoran species have more cortical neurons than the herbivorous species they prey upon? We find they do not; carnivorans (cat, mongoose, dog, hyena, lion) share with non-primates, including artiodactyls (the typical prey of large carnivorans), roughly the same relationship between cortical mass and number of neurons, which suggests that carnivorans are subject to the same evolutionary scaling rules as other non-primate clades. However, there are a few important exceptions. Carnivorans stand out in that the usual relationship between larger body, larger cortical mass and larger number of cortical neurons only applies to small and medium-sized species, and not beyond dogs: we find that the golden retriever dog has more cortical neurons than the striped hyena, African lion and even brown bear, even though the latter species have up to three times larger cortices than dogs. Remarkably, the brown bear cerebral cortex, the largest examined, only has as many neurons as the ten times smaller cat cerebral cortex, although it does have the expected ten times as many non-neuronal cells in the cerebral cortex compared to the cat. We also find that raccoons have dog-like numbers of neurons in their cat-sized brain, which makes them comparable to primates in neuronal density. Comparison of domestic and wild species suggests that the neuronal composition of carnivoran brains is not affected by domestication. Instead, large carnivorans appear to be particularly vulnerable to metabolic constraints that impose a trade-off between body size and number of cortical neurons.

  19. Understanding the Effects of Blast Wave on the Intracranial Pressure and Traumatic Brain Injury in Rodents and Humans Using Experimental Shock Tube and Numerical Simulations

    DTIC Science & Technology

    2014-07-01

    common mechanism of injury responsible for 52% TBI cases overall [24]. The analysis also showed that intracranial injuries, particularly concussions ...about the same time Ommaya and his collegues developed scaling relations (based on Holbourn’s theory) to scale experimental concussion data on sub-human...primates to concussion threshold in man [86]. The primates were subjected to head impact and whiplash in order to produce concussions in them [87

  20. Large-scale brain networks in the awake, truly resting marmoset monkey.

    PubMed

    Belcher, Annabelle M; Yen, Cecil C; Stepp, Haley; Gu, Hong; Lu, Hanbing; Yang, Yihong; Silva, Afonso C; Stein, Elliot A

    2013-10-16

    Resting-state functional MRI is a powerful tool that is increasingly used as a noninvasive method for investigating whole-brain circuitry and holds great potential as a possible diagnostic for disease. Despite this potential, few resting-state studies have used animal models (of which nonhuman primates represent our best opportunity of understanding complex human neuropsychiatric disease), and no work has characterized networks in awake, truly resting animals. Here we present results from a small New World monkey that allows for the characterization of resting-state networks in the awake state. Six adult common marmosets (Callithrix jacchus) were acclimated to light, comfortable restraint using individualized helmets. Following behavioral training, resting BOLD data were acquired during eight consecutive 10 min scans for each conscious subject. Group independent component analysis revealed 12 brain networks that overlap substantially with known anatomically constrained circuits seen in the awake human. Specifically, we found eight sensory and "lower-order" networks (four visual, two somatomotor, one cerebellar, and one caudate-putamen network), and four "higher-order" association networks (one default mode-like network, one orbitofrontal, one frontopolar, and one network resembling the human salience network). In addition to their functional relevance, these network patterns bear great correspondence to those previously described in awake humans. This first-of-its-kind report in an awake New World nonhuman primate provides a platform for mechanistic neurobiological examination for existing disease models established in the marmoset.

  1. Internal carotid arterial canal size and scaling in Euarchonta: Re-assessing implications for arterial patency and phylogenetic relationships in early fossil primates.

    PubMed

    Boyer, Doug M; Kirk, E Christopher; Silcox, Mary T; Gunnell, Gregg F; Gilbert, Christopher C; Yapuncich, Gabriel S; Allen, Kari L; Welch, Emma; Bloch, Jonathan I; Gonzales, Lauren A; Kay, Richard F; Seiffert, Erik R

    2016-08-01

    Primate species typically differ from other mammals in having bony canals that enclose the branches of the internal carotid artery (ICA) as they pass through the middle ear. The presence and relative size of these canals varies among major primate clades. As a result, differences in the anatomy of the canals for the promontorial and stapedial branches of the ICA have been cited as evidence of either haplorhine or strepsirrhine affinities among otherwise enigmatic early fossil euprimates. Here we use micro X-ray computed tomography to compile the largest quantitative dataset on ICA canal sizes. The data suggest greater variation of the ICA canals within some groups than has been previously appreciated. For example, Lepilemur and Avahi differ from most other lemuriforms in having a larger promontorial canal than stapedial canal. Furthermore, various lemurids are intraspecifically variable in relative canal size, with the promontorial canal being larger than the stapedial canal in some individuals but not others. In species where the promontorial artery supplies the brain with blood, the size of the promontorial canal is significantly correlated with endocranial volume (ECV). Among species with alternate routes of encephalic blood supply, the promontorial canal is highly reduced relative to ECV, and correlated with both ECV and cranium size. Ancestral state reconstructions incorporating data from fossils suggest that the last common ancestor of living primates had promontorial and stapedial canals that were similar to each other in size and large relative to ECV. We conclude that the plesiomorphic condition for crown primates is to have a patent promontorial artery supplying the brain and a patent stapedial artery for various non-encephalic structures. This inferred ancestral condition is exhibited by treeshrews and most early fossil euprimates, while extant primates exhibit reduction in one canal or another. The only early fossils deviating from this plesiomorphic condition are Adapis parisiensis with a reduced promontorial canal, and Rooneyia and Mahgarita with reduced stapedial canals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. [Does Alzheimer's disease exist in all primates? Alzheimer pathology in non-human primates and its pathophysiological implications (II)].

    PubMed

    Toledano, A; Álvarez, M I; López-Rodríguez, A B; Toledano-Díaz, A; Fernández-Verdecia, C I

    2014-01-01

    In the ageing process there are some species of non-human primates which can show some of the defining characteristics of the Alzheimer's disease (AD) of man, both in neuropathological changes and cognitive-behavioural symptoms. The study of these species is of prime importance to understand AD and develop therapies to combat this neurodegenerative disease. In this second part of the study, these AD features are discussed in the most important non-experimental AD models (Mouse Lemur -Microcebus murinus, Caribbean vervet -Chlorocebus aethiops, and the Rhesus and stump-tailed macaque -Macaca mulatta and M. arctoides) and experimental models (lesional, neurotoxic, pharmacological, immunological, etc.) non-human primates. In all these models cerebral amyloid neuropathology can occur in senility, although with different levels of incidence (100% in vervets;<30% in macaques). The differences between normal and pathological (Alzheimer's) senility in these species are difficult to establish due to the lack of cognitive-behavioural studies in the many groups analysed, as well as the controversy in the results of these studies when they were carried out. However, in some macaques, a correlation between a high degree of functional brain impairment and a large number of neuropathological changes ("possible AD") has been found. In some non-human primates, such as the macaque, the existence of a possible continuum between "normal" ageing process, "normal" ageing with no deep neuropathological and cognitive-behavioural changes, and "pathological ageing" (or "Alzheimer type ageing"), may be considered. In other cases, such as the Caribbean vervet, neuropathological changes are constant and quite marked, but its impact on cognition and behaviour does not seem to be very important. This does assume the possible existence in the human senile physiological regression of a stable phase without dementia even if neuropathological changes appeared. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  3. Human-animal chimera: a neuro driven discussion? Comparison of three leading European research countries.

    PubMed

    Cabrera Trujillo, Laura Yenisa; Engel-Glatter, Sabrina

    2015-06-01

    Research with human-animal chimera raises a number of ethical concerns, especially when neural stem cells are transplanted into the brains of non-human primates (NHPs). Besides animal welfare concerns and ethical issues associated with the use of embryonic stem cells, the research is also regarded as controversial from the standpoint of NHPs developing cognitive or behavioural capabilities that are regarded as "unique" to humans. However, scientists are urging to test new therapeutic approaches for neurological diseases in primate models as they better mimic human physiology than all current animal models. As a response, various countries have issued reports on the topic. Our paper summarizes the ethical issues raised by research with human-animal brain chimeras and compares the relevant regulatory instruments and different recommendations issued in national reports from three important European research nations: Germany, Switzerland and the United Kingdom. We assess and discuss the focus and priorities set by the different reports, review various reasons for and perspectives on the importance of the brain in chimera research, and identify critical points in the reports that warrant further specification and debate.

  4. A voice region in the monkey brain.

    PubMed

    Petkov, Christopher I; Kayser, Christoph; Steudel, Thomas; Whittingstall, Kevin; Augath, Mark; Logothetis, Nikos K

    2008-03-01

    For vocal animals, recognizing species-specific vocalizations is important for survival and social interactions. In humans, a voice region has been identified that is sensitive to human voices and vocalizations. As this region also strongly responds to speech, it is unclear whether it is tightly associated with linguistic processing and is thus unique to humans. Using functional magnetic resonance imaging of macaque monkeys (Old World primates, Macaca mulatta) we discovered a high-level auditory region that prefers species-specific vocalizations over other vocalizations and sounds. This region not only showed sensitivity to the 'voice' of the species, but also to the vocal identify of conspecific individuals. The monkey voice region is located on the superior-temporal plane and belongs to an anterior auditory 'what' pathway. These results establish functional relationships with the human voice region and support the notion that, for different primate species, the anterior temporal regions of the brain are adapted for recognizing communication signals from conspecifics.

  5. Comparative neuronal morphology of the cerebellar cortex in afrotherians, carnivores, cetartiodactyls, and primates

    PubMed Central

    Jacobs, Bob; Johnson, Nicholas L.; Wahl, Devin; Schall, Matthew; Maseko, Busisiwe C.; Lewandowski, Albert; Raghanti, Mary A.; Wicinski, Bridget; Butti, Camilla; Hopkins, William D.; Bertelsen, Mads F.; Walsh, Timothy; Roberts, John R.; Reep, Roger L.; Hof, Patrick R.; Sherwood, Chet C.; Manger, Paul R.

    2014-01-01

    Although the basic morphological characteristics of neurons in the cerebellar cortex have been documented in several species, virtually nothing is known about the quantitative morphological characteristics of these neurons across different taxa. To that end, the present study investigated cerebellar neuronal morphology among eight different, large-brained mammalian species comprising a broad phylogenetic range: afrotherians (African elephant, Florida manatee), carnivores (Siberian tiger, clouded leopard), cetartiodactyls (humpback whale, giraffe) and primates (human, common chimpanzee). Specifically, several neuron types (e.g., stellate, basket, Lugaro, Golgi, and granule neurons; N = 317) of the cerebellar cortex were stained with a modified rapid Golgi technique and quantified on a computer-assisted microscopy system. There was a 64-fold variation in brain mass across species in our sample (from clouded leopard to the elephant) and a 103-fold variation in cerebellar volume. Most dendritic measures tended to increase with cerebellar volume. The cerebellar cortex in these species exhibited the trilaminate pattern common to all mammals. Morphologically, neuron types in the cerebellar cortex were generally consistent with those described in primates (Fox et al., 1967) and rodents (Palay and Chan-Palay, 1974), although there was substantial quantitative variation across species. In particular, Lugaro neurons in the elephant appeared to be disproportionately larger than those in other species. To explore potential quantitative differences in dendritic measures across species, MARSplines analyses were used to evaluate whether species could be differentiated from each other based on dendritic characteristics alone. Results of these analyses indicated that there were significant differences among all species in dendritic measures. PMID:24795574

  6. Shared neural coding for social hierarchy and reward value in primate amygdala.

    PubMed

    Munuera, Jérôme; Rigotti, Mattia; Salzman, C Daniel

    2018-03-01

    The social brain hypothesis posits that dedicated neural systems process social information. In support of this, neurophysiological data have shown that some brain regions are specialized for representing faces. It remains unknown, however, whether distinct anatomical substrates also represent more complex social variables, such as the hierarchical rank of individuals within a social group. Here we show that the primate amygdala encodes the hierarchical rank of individuals in the same neuronal ensembles that encode the rewards associated with nonsocial stimuli. By contrast, orbitofrontal and anterior cingulate cortices lack strong representations of hierarchical rank while still representing reward values. These results challenge the conventional view that dedicated neural systems process social information. Instead, information about hierarchical rank-which contributes to the assessment of the social value of individuals within a group-is linked in the amygdala to representations of rewards associated with nonsocial stimuli.

  7. Pyroglutamate-3 Amyloid-β Deposition in the Brains of Humans, Non-Human Primates, Canines, and Alzheimer Disease–Like Transgenic Mouse Models

    PubMed Central

    Frost, Jeffrey L.; Le, Kevin X.; Cynis, Holger; Ekpo, Elizabeth; Kleinschmidt, Martin; Palmour, Roberta M.; Ervin, Frank R.; Snigdha, Shikha; Cotman, Carl W.; Saido, Takaomi C.; Vassar, Robert J.; George-Hyslop, Peter St.; Ikezu, Tsuneya; Schilling, Stephan; Demuth, Hans-Ulrich; Lemere, Cynthia A.

    2014-01-01

    Amyloid-β (Aβ) peptides, starting with pyroglutamate at the third residue (pyroGlu-3 Aβ), are a major species deposited in the brain of Alzheimer disease (AD) patients. Recent studies suggest that this isoform shows higher toxicity and amyloidogenecity when compared to full-length Aβ peptides. Here, we report the first comprehensive and comparative IHC evaluation of pyroGlu-3 Aβ deposition in humans and animal models. PyroGlu-3 Aβ immunoreactivity (IR) is abundant in plaques and cerebral amyloid angiopathy of AD and Down syndrome patients, colocalizing with general Aβ IR. PyroGlu-3 Aβ is further present in two nontransgenic mammalian models of cerebral amyloidosis, Caribbean vervets, and beagle canines. In addition, pyroGlu-3 Aβ deposition was analyzed in 12 different AD-like transgenic mouse models. In contrast to humans, all transgenic models showed general Aβ deposition preceding pyroGlu-3 Aβ deposition. The findings varied greatly among the mouse models concerning age of onset and cortical brain region. In summary, pyroGlu-3 Aβ is a major species of β-amyloid deposited early in diffuse and focal plaques and cerebral amyloid angiopathy in humans and nonhuman primates, whereas it is deposited later in a subset of focal and vascular amyloid in AD-like transgenic mouse models. Given the proposed decisive role of pyroGlu-3 Aβ peptides for the development of human AD pathology, this study provides insights into the usage of animal models in AD studies. PMID:23747948

  8. Widespread suppression of huntingtin with convection-enhanced delivery of siRNA.

    PubMed

    Stiles, David K; Zhang, Zhiming; Ge, Pei; Nelson, Brian; Grondin, Richard; Ai, Yi; Hardy, Peter; Nelson, Peter T; Guzaev, Andrei P; Butt, Mark T; Charisse, Klaus; Kosovrasti, Verbena; Tchangov, Lubomir; Meys, Michael; Maier, Martin; Nechev, Lubomir; Manoharan, Muthiah; Kaemmerer, William F; Gwost, Douglas; Stewart, Gregory R; Gash, Don M; Sah, Dinah W Y

    2012-01-01

    Huntington's disease is an autosomal dominant neurodegenerative disease caused by a toxic gain of function mutation in the huntingtin gene (Htt). Silencing of Htt with RNA interference using direct CNS delivery in rodent models of Huntington's disease has been shown to reduce pathology and promote neuronal recovery. A key translational step for this approach is extension to the larger non-human primate brain, achieving sufficient distribution of small interfering RNA targeting Htt (siHtt) and levels of Htt suppression that may have therapeutic benefit. We evaluated the potential for convection enhanced delivery (CED) of siHtt to provide widespread and robust suppression of Htt in nonhuman primates. siHtt was infused continuously for 7 or 28 days into the nonhuman primate putamen to analyze effects of infusion rate and drug concentration on the volume of effective suppression. Distribution of radiolabeled siHtt and Htt suppression were quantified by autoradiography and PCR, respectively, in tissue punches. Histopathology was evaluated and Htt suppression was also visualized in animals treated for 28 days. Seven days of CED led to widespread distribution of siHtt and significant Htt silencing throughout the nonhuman primate striatum in an infusion rate and dose dependent manner. Htt suppression at therapeutic dose levels was well tolerated by the brain. A model developed from these results predicts that continuous CED of siHtt can achieve significant coverage of the striatum of Huntington's disease patients. These findings suggest that this approach may provide an important therapeutic strategy for treating Huntington's disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Overexpressing corticotropin-releasing hormone (CRH) in the primate amygdala increases anxious temperament and alters its neural circuit

    PubMed Central

    Kalin, Ned H; Fox, Andrew S; Kovner, Rothem; Riedel, Marissa K; Fekete, Eva M; Roseboom, Patrick H; Tromp, Do P M; Grabow, Benjamin P; Olsen, Miles E; Brodsky, Ethan K; McFarlin, Daniel R.; Alexander, Andrew L; Emborg, Marina E; Block, Walter F; Fudge, Julie L; Oler, Jonathan A

    2016-01-01

    Background Nonhuman primate models are critical for understanding mechanisms underlying human psychopathology. We established a non-human primate model of anxious temperament (AT) for studying the early-life risk to develop anxiety and depression. Studies have identified the central nucleus of the amygdala (Ce) as an essential component of AT’s neural substrates. Corticotropin-releasing hormone (CRH) is expressed in the Ce, has a role in stress, and is linked to psychopathology. Here, in young rhesus monkeys, we combined viral vector technology with assessments of anxiety and multimodal neuroimaging to understand the consequences of chronically increased CRH in the Ce-region. Methods Using real-time intraoperative MRI-guided convection-enhanced delivery, 5 monkeys received bilateral dorsal amygdala Ce-region infusions of adeno-associated virus serotype 2 (AAV2) containing the CRH construct. Their cage-mates served as unoperated controls. AT, regional brain metabolism, “resting” fMRI, and diffusion tensor imaging (DTI) were assessed before and two months after viral infusions. Results Dorsal amygdala CRH overexpression significantly increased AT and metabolism within the dorsal amygdala. Additionally, we observed changes in metabolism in other AT-related regions, as well as in measures of functional and structural connectivity. Conclusion This study provides a translational roadmap that is important for understanding human psychopathology by combining molecular manipulations used in rodents with behavioral phenotyping and multimodal neuroimaging measures used in humans. The results indicate that chronic CRH overexpression in primates not only increases AT, but also affects metabolism and connectivity within components of AT’s neural circuitry. PMID:27016385

  10. The social network-network: size is predicted by brain structure and function in the amygdala and paralimbic regions

    PubMed Central

    Von Der Heide, Rebecca; Vyas, Govinda

    2014-01-01

    The social brain hypothesis proposes that the large size of the primate neocortex evolved to support complex and demanding social interactions. Accordingly, recent studies have reported correlations between the size of an individual’s social network and the density of gray matter (GM) in regions of the brain implicated in social cognition. However, the reported relationships between GM density and social group size are somewhat inconsistent with studies reporting correlations in different brain regions. One factor that might account for these discrepancies is the use of different measures of social network size (SNS). This study used several measures of SNS to assess the relationships SNS and GM density. The second goal of this study was to test the relationship between social network measures and functional brain activity. Participants performed a social closeness task using photos of their friends and unknown people. Across the VBM and functional magnetic resonance imaging analyses, individual differences in SNS were consistently related to structural and functional differences in three regions: the left amygdala, right amygdala and the right entorhinal/ventral anterior temporal cortex. PMID:24493846

  11. Species-Specific 5 mC and 5 hmC Genomic Landscapes Indicate Epigenetic Contribution to Human Brain Evolution

    PubMed Central

    Madrid, Andy; Chopra, Pankaj; Alisch, Reid S.

    2018-01-01

    Human evolution from non-human primates has seen substantial change in the central nervous system, with the molecular mechanisms underlying human brain evolution remaining largely unknown. Methylation of cytosine at the fifth carbon (5-methylcytosine; 5 mC) is an essential epigenetic mark linked to neurodevelopment, as well as neurological disease. The emergence of another modified form of cytosine (5-hydroxymethylcytosine; 5 hmC) that is enriched in the brain further substantiates a role for these epigenetic marks in neurodevelopment, yet little is known about the evolutionary importance of these marks in brain development. Here, human and monkey brain tissue were profiled, identifying 5,516 and 4,070 loci that were differentially methylated and hydroxymethylated, respectively, between the species. Annotation of these loci to the human genome revealed genes critical for the development of the nervous system and that are associated with intelligence and higher cognitive functioning, such as RELN and GNAS. Moreover, ontological analyses of these differentially methylated and hydroxymethylated genes revealed a significant enrichment of neuronal/immunological–related processes, including neurogenesis and axon development. Finally, the sequences flanking the differentially methylated/hydroxymethylated loci contained a significant enrichment of binding sites for neurodevelopmentally important transcription factors (e.g., OTX1 and PITX1), suggesting that DNA methylation may regulate gene expression by mediating transcription factor binding on these transcripts. Together, these data support dynamic species-specific epigenetic contributions in the evolution and development of the human brain from non-human primates. PMID:29491831

  12. Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates.

    PubMed

    Kaas, Jon H; Stepniewska, Iwona

    2016-02-15

    Posterior parietal cortex (PPC) is an extensive region of the human brain that develops relatively late and is proportionally large compared with that of monkeys and prosimian primates. Our ongoing comparative studies have led to several conclusions about the evolution of this posterior parietal region. In early placental mammals, PPC likely was a small multisensory region much like PPC of extant rodents and tree shrews. In early primates, PPC likely resembled that of prosimian galagos, in which caudal PPC (PPCc) is visual and rostral PPC (PPCr) has eight or more multisensory domains where electrical stimulation evokes different complex motor behaviors, including reaching, hand-to-mouth, looking, protecting the face or body, and grasping. These evoked behaviors depend on connections with functionally matched domains in premotor cortex (PMC) and motor cortex (M1). Domains in each region compete with each other, and a serial arrangement of domains allows different factors to influence motor outcomes successively. Similar arrangements of domains have been retained in New and Old World monkeys, and humans appear to have at least some of these domains. The great expansion and prolonged development of PPC in humans suggest the addition of functionally distinct territories. We propose that, across primates, PMC and M1 domains are second and third levels in a number of parallel, interacting networks for mediating and selecting one type of action over others. © 2015 Wiley Periodicals, Inc.

  13. Dunbar's number: group size and brain physiology in humans reexamined.

    PubMed

    de Ruiter, Jan; Weston, Gavin; Lyon, Stephen M

    2011-01-01

    Popular academic ideas linking physiological adaptations to social behaviors are spreading disconcertingly into wider societal contexts. In this article, we note our skepticism with one particularly popular—in our view, problematic—supposed causal correlation between neocortex size and social group size. The resulting Dunbar's Number, as it has come to be called, has been statistically tested against observed group size in different primate species. Although there may be reason to doubt the Dunbar's Number hypothesis among nonhuman primate species, we restrict ourselves here to the application of such an explanatory hypothesis to human, culture-manipulating populations. Human information process management, we argue, cannot be understood as a simple product of brain physiology. Cross-cultural comparison of not only group size but also relationship-reckoning systems like kinship terminologies suggests that although neocortices are undoubtedly crucial to human behavior, they cannot be given such primacy in explaining complex group composition, formation, or management.

  14. Gene expression links functional networks across cortex and striatum.

    PubMed

    Anderson, Kevin M; Krienen, Fenna M; Choi, Eun Young; Reinen, Jenna M; Yeo, B T Thomas; Holmes, Avram J

    2018-04-12

    The human brain is comprised of a complex web of functional networks that link anatomically distinct regions. However, the biological mechanisms supporting network organization remain elusive, particularly across cortical and subcortical territories with vastly divergent cellular and molecular properties. Here, using human and primate brain transcriptional atlases, we demonstrate that spatial patterns of gene expression show strong correspondence with limbic and somato/motor cortico-striatal functional networks. Network-associated expression is consistent across independent human datasets and evolutionarily conserved in non-human primates. Genes preferentially expressed within the limbic network (encompassing nucleus accumbens, orbital/ventromedial prefrontal cortex, and temporal pole) relate to risk for psychiatric illness, chloride channel complexes, and markers of somatostatin neurons. Somato/motor associated genes are enriched for oligodendrocytes and markers of parvalbumin neurons. These analyses indicate that parallel cortico-striatal processing channels possess dissociable genetic signatures that recapitulate distributed functional networks, and nominate molecular mechanisms supporting cortico-striatal circuitry in health and disease.

  15. Neuropeptide diversity and the regulation of social behavior in New World primates

    PubMed Central

    French, Jeffrey A.; Taylor, Jack H.; Mustoe, Aaryn C.; Cavanaugh, Jon

    2016-01-01

    Oxytocin (OT) and vasopressin (AVP) are important hypothalamic neuropeptides that regulate peripheral physiology, and have emerged as important modulators of brain function, particularly in the social realm. OT structure and the genes that ultimately determine structure are highly conserved among diverse eutherian mammals, but recent discoveries have identified surprising variability in OT and peptide structure in New World monkeys (NWM), with five new OT variants identified to date. This review explores these new findings in light of comparative OT/AVP ligand evolution, documents coevolutionary changes in the oxytocin and vasopressin receptors (OTR and V1aR), and highlights the distribution of neuropeptidergic neurons and receptors in the primate brain. Finally, the behavioral consequences of OT and AVP in regulating NWM sociality are summarized, demonstrating important neuromodulatory effects of these compounds and OT ligand-specific influences in certain social domains. PMID:27020799

  16. Variable postpartum responsiveness among humans and other primates with "cooperative breeding": A comparative and evolutionary perspective.

    PubMed

    Hrdy, Sarah B

    2016-01-01

    This article is part of a Special Issue "Parental Care".Until recently, evolutionists reconstructing mother-infant bonding among human ancestors relied on nonhuman primate models characterized by exclusively maternal care, overlooking the highly variable responsiveness exhibited by mothers in species with obligate reliance on allomaternal care and provisioning. It is now increasingly recognized that apes as large-brained, slow maturing, and nutritionally dependent for so long as early humans were, could not have evolved unless "alloparents" (group members other than genetic parents), in addition to parents, had helped mothers to care for and provision offspring, a rearing system known as "cooperative breeding." Here I review situation-dependent maternal responses ranging from highly possessive to permissive, temporarily distancing, rejecting, or infanticidal, documented for a small subset of cooperatively breeding primates. As in many mammals, primate maternal responsiveness is influenced by physical condition, endocrinological priming, prior experience and local environments (especially related to security). But mothers among primates who evolved as cooperative breeders also appear unusually sensitive to cues of social support. In addition to more "sapient" or rational decision-making, humankind's deep history of cooperative breeding must be considered when trying to understand the extremely variable responsiveness of human mothers. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Gonadotropin-releasing hormone immunoreactivity in the adult and fetal human olfactory system.

    PubMed

    Kim, K H; Patel, L; Tobet, S A; King, J C; Rubin, B S; Stopa, E G

    1999-05-01

    Studies in fetal brain tissue of rodents, nonhuman primates and birds have demonstrated that cells containing gonadotropin-releasing hormone (GnRH) migrate from the olfactory placode across the nasal septum into the forebrain. The purpose of this study was to examine GnRH neurons in components of the adult and fetal human olfactory system. In the adult human brain (n=4), immunoreactive GnRH was evident within diffusely scattered cell bodies and processes in the olfactory bulb, olfactory nerve, olfactory cortex, and nervus terminalis located on the anterior surface of the gyrus rectus. GnRH-immunoreactive structures showed a similar distribution in 20-week human fetal brains (n=2), indicating that the migration of GnRH neurons is complete at this time. In 10-11-week fetal brains (n=2), more cells were noted in the nasal cavity than in the brain. Our data are consistent with observations made in other species, confirming olfactory derivation and migration of GnRH neurons into the brain from the olfactory placode. Copyright 1999 Elsevier Science B.V.

  18. Old World Monkeys Compare to Apes in the Primate Cognition Test Battery

    PubMed Central

    Schmitt, Vanessa; Pankau, Birte; Fischer, Julia

    2012-01-01

    Understanding the evolution of intelligence rests on comparative analyses of brain sizes as well as the assessment of cognitive skills of different species in relation to potential selective pressures such as environmental conditions and social organization. Because of the strong interest in human cognition, much previous work has focused on the comparison of the cognitive skills of human toddlers to those of our closest living relatives, i.e. apes. Such analyses revealed that apes and children have relatively similar competencies in the physical domain, while human children excel in the socio-cognitive domain; in particular in terms of attention sharing, cooperation, and mental state attribution. To develop a full understanding of the evolutionary dynamics of primate intelligence, however, comparative data for monkeys are needed. We tested 18 Old World monkeys (long-tailed macaques and olive baboons) in the so-called Primate Cognition Test Battery (PCTB) (Herrmann et al. 2007, Science). Surprisingly, our tests revealed largely comparable results between Old World monkeys and the Great apes. Single comparisons showed that chimpanzees performed only better than the macaques in experiments on spatial understanding and tool use, but in none of the socio-cognitive tasks. These results question the clear-cut relationship between cognitive performance and brain size and – prima facie – support the view of an accelerated evolution of social intelligence in humans. One limitation, however, is that the initial experiments were devised to tap into human specific skills in the first place, thus potentially underestimating both true nonhuman primate competencies as well as species differences. PMID:22485130

  19. Natural and accelerated recovery from brain damage: experimental and theoretical approaches.

    PubMed

    Andersen, Richard A; Schieber, Marc H; Thakor, Nitish; Loeb, Gerald E

    2012-03-01

    The goal of the Caltech group is to gain insight into the processes that occur within the primate nervous system during dexterous reaching and grasping and to see whether natural recovery from local brain damage can be accelerated by artificial means. We will create computational models of the nervous system embodying this insight and explain a variety of clinically observed neurological deficits in human subjects using these models.

  20. Derivation of an occupational exposure level for manganese in welding fumes.

    PubMed

    Bailey, Lisa A; Kerper, Laura E; Goodman, Julie E

    2018-01-01

    Exposure to high levels of manganese (Mn) in occupational settings is known to lead to adverse neurological effects. Since Mn is an essential nutrient, there are mechanisms that maintain its homeostatic control in the body, and there is some level of Mn in air that does not perturb Mn homeostasis. However, the Mn exposure concentrations at which no adverse effects are expected in occupational settings vary considerably across regulatory agencies. We set out to derive a Mn Occupational Exposure Level (OEL) for welders based on a review of studies that evaluated Mn exposure concentrations from welding fumes and: (1) neurological effects in welders; (2) levels of Mn in the brains of welders (via pallidal index [PI] estimated from magnetic resonance imaging [MRI]); (3) other biomarkers of Mn exposure in welders (i.e., blood and urine); and (4) Mn brain concentrations, PI, and corresponding neurological effects in non-human primates. Our analysis suggests uncertainty in quantifying dose-response associations for Mn from many of the occupational welding studies. The few welding studies that adequately estimate exposure suggest a possible OEL of 100-140μg/m 3 for respirable Mn. This range is consistent with other epidemiology studies, studies of biomarkers of Mn exposure in welders, and with studies in non-human primates, though future studies could provide a stronger basis for deriving a Mn occupational guideline for welders. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Resting state network topology of the ferret brain.

    PubMed

    Zhou, Zhe Charles; Salzwedel, Andrew P; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K; Gilmore, John H; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei

    2016-12-01

    Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4T MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The origins of non-human primates' manual gestures

    PubMed Central

    Liebal, Katja; Call, Josep

    2012-01-01

    The increasing body of research into human and non-human primates' gestural communication reflects the interest in a comparative approach to human communication, particularly possible scenarios of language evolution. One of the central challenges of this field of research is to identify appropriate criteria to differentiate a gesture from other non-communicative actions. After an introduction to the criteria currently used to define non-human primates' gestures and an overview of ongoing research, we discuss different pathways of how manual actions are transformed into manual gestures in both phylogeny and ontogeny. Currently, the relationship between actions and gestures is not only investigated on a behavioural, but also on a neural level. Here, we focus on recent evidence concerning the differential laterality of manual actions and gestures in apes in the framework of a functional asymmetry of the brain for both hand use and language. PMID:22106431

  3. Histone Deacetylase Inhibitor MS-275 Exhibits Poor Brain Penetration: Pharmacokinetic Studies of [11C]MS-275 using Positron Emission Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooker, J.M.; Hooker, J.M.; Kim, S.W.

    2009-10-01

    MS-275 (entinostat) is a histone deacetylase (HDAC) inhibitor currently in clinical trials for the treatment of several types of cancer. Recent reports have noted that MS-275 can cross the blood-brain barrier (BBB) and cause region-specific changes in rodent brain histone acetylation. To characterize the pharmacokinetics and distribution of MS-275 in the brain using positron emission tomography (PET), we labeled the carbamate carbon of MS-275 with carbon-11. Using PET, we determined that [{sup 11}C]MS-275 has low uptake in brain tissue when administered intravenously to nonhuman primates. In rodent studies, we observed that pharmacokinetics and brain accumulation of [{sup 11}C]MS-275 were notmore » changed by the coadministration of large doses of unlabeled MS-275. These results, which both highlight the poor brain penetration of MS-275, clearly suggest its limitation as a therapeutic agent for the central nervous system (CNS). Moreover, our study demonstrates the effectiveness of PET at providing brain pharmacokinetic data for HDAC inhibitors. These data are important not only for the development of new compounds for peripheral cancer treatment (where CNS exclusion is often advantageous) but also for the treatment of neurological disorders (where CNS penetration is critical).« less

  4. The Sociobiological Foundations of Stability and Support Operations

    DTIC Science & Technology

    1999-01-01

    of fatherhood. Parental responsibility is not a factor for the warrior rapist as future proof of paternity is unlikely. In raping the wives and...allows a single parent to replicate his genetic code for as long as the reproductive resources last. If there is a change in the environment or the...aggression. The mammalian brain controls, among other emotions, social behavior and the nurturing of children . The surrounding primate brain gives man

  5. T156. IN VIVO CHARACTERIZATION OF THE FIRST AGONIST DOPAMINE D1 RECEPTORS PET IMAGING TRACER [18F]MNI-968 IN HUMAN

    PubMed Central

    Tamagnan, Gilles; Barret, Olivier; Alagille, David; Carroll, Vincent; Madonia, Jennifer; Constantinescu, Cristian; SanDiego, Christine; Papin, Caroline; Morley, Thomas; Russell, David; McCarthy, Timothy; Zhang, Lei; Gray, David; Villalobos, Anna; Lee, Chewah; Chen, Jianqing; Seibyl, John; Marek, Kenneth

    2018-01-01

    Abstract Background D1 receptors, which couple to inhibitory G-proteins, have been shown to regulate neuronal growth and development, mediate some behavioral responses. Its function has been shown to be altered in both neurologic and psychiatric disorders. To date, there is a lack of agonist PET tracers for the D1 receptors labeled with 18F with relevance in clinical studies. We report the evaluation in non-human primates of [18F]MNI-968 (PF-06730110), a novel PET radiotracer of the D1 receptors Methods Four brain PET studies, 2 baselines and 2 blockade studies using PF-2562, a D1 partial agonist compound, were conducted for 90 min in two rhesus monkeys with [18F]MNI-968 (169 ± 31 MBq). [18F]PF-06730110 was administered at the same dose level for both monkeys as a bolus followed by a 2-hour infusion, with [18F]MNI-968 administered 30 min into the infusion. Additionally, six brain PET studies were conducted over 180 min (317 ± 49 MBq) in 6 healthy human volunteers (3 test/retest and 3 test). PET data were modeled with 2-tissue compartmental model (2T), Logan graphical analysis (LGA), and non-invasive Logan graphical analysis (NI-LGA) with cerebellar cortex as reference region to estimate total distribution volume VT, and binding potential BPND. For the blockade studies in rhesus monkeys, occupancy was estimated from BPND at baseline and post blockade. Results In rhesus monkeys, [18F]MNI-968 (PF-06730110), penetrated the brain with a peak whole-brain uptake up to ~3% of the injected dose at ~ 6 min post injection and showed a fast washout. The highest signal was found in the caudate, putamen, with moderate extrastriatal uptake. The lowest signal was in the cerebellum. BPND values were up to ~1.4 in the putamen. All three quantification methods (2T, LGA and NI-LGA) were in excellent agreement, with a similar estimated D1 receptors occupancy of PF-06730110 of ~40% for both monkeys in the caudate and putamen. In human, [18F]MNI-968 kinetics appeared to be faster compared to non-human primates, with a BPND in the putamen of ~0.8. Initial measurement of test-retest reproducibility was ≤ 7% for BPND in the striatal regions. Discussion Our work showed that [18F]MNI-968 ([18F]PF-06730110), is a promising agonist PET radiotracer for imaging D1agnist receptors that can be quantified non-invasively. Studies are currently ongoing both in non-human and human primates to further characterize the tracer.

  6. The marmoset monkey as a model for visual neuroscience

    PubMed Central

    Mitchell, Jude F.; Leopold, David A.

    2015-01-01

    The common marmoset (Callithrix jacchus) has been valuable as a primate model in biomedical research. Interest in this species has grown recently, in part due to the successful demonstration of transgenic marmosets. Here we examine the prospects of the marmoset model for visual neuroscience research, adopting a comparative framework to place the marmoset within a broader evolutionary context. The marmoset’s small brain bears most of the organizational features of other primates, and its smooth surface offers practical advantages over the macaque for areal mapping, laminar electrode penetration, and two-photon and optical imaging. Behaviorally, marmosets are more limited at performing regimented psychophysical tasks, but do readily accept the head restraint that is necessary for accurate eye tracking and neurophysiology, and can perform simple discriminations. Their natural gaze behavior closely resembles that of other primates, with a tendency to focus on objects of social interest including faces. Their immaturity at birth and routine twinning also makes them ideal for the study of postnatal visual development. These experimental factors, together with the theoretical advantages inherent in comparing anatomy, physiology, and behavior across related species, make the marmoset an excellent model for visual neuroscience. PMID:25683292

  7. A chronic generalized bi-directional brain-machine interface.

    PubMed

    Rouse, A G; Stanslaski, S R; Cong, P; Jensen, R M; Afshar, P; Ullestad, D; Gupta, R; Molnar, G F; Moran, D W; Denison, T J

    2011-06-01

    A bi-directional neural interface (NI) system was designed and prototyped by incorporating a novel neural recording and processing subsystem into a commercial neural stimulator architecture. The NI system prototype leverages the system infrastructure from an existing neurostimulator to ensure reliable operation in a chronic implantation environment. In addition to providing predicate therapy capabilities, the device adds key elements to facilitate chronic research, such as four channels of electrocortigram/local field potential amplification and spectral analysis, a three-axis accelerometer, algorithm processing, event-based data logging, and wireless telemetry for data uploads and algorithm/configuration updates. The custom-integrated micropower sensor and interface circuits facilitate extended operation in a power-limited device. The prototype underwent significant verification testing to ensure reliability, and meets the requirements for a class CF instrument per IEC-60601 protocols. The ability of the device system to process and aid in classifying brain states was preclinically validated using an in vivo non-human primate model for brain control of a computer cursor (i.e. brain-machine interface or BMI). The primate BMI model was chosen for its ability to quantitatively measure signal decoding performance from brain activity that is similar in both amplitude and spectral content to other biomarkers used to detect disease states (e.g. Parkinson's disease). A key goal of this research prototype is to help broaden the clinical scope and acceptance of NI techniques, particularly real-time brain state detection. These techniques have the potential to be generalized beyond motor prosthesis, and are being explored for unmet needs in other neurological conditions such as movement disorders, stroke and epilepsy.

  8. Activation of TrkB with TAM-163 Results in Opposite Effects on Body Weight in Rodents and Non-Human Primates

    PubMed Central

    Perreault, Mylène; Feng, Guo; Will, Sarah; Gareski, Tiffany; Kubasiak, David; Marquette, Kimberly; Vugmeyster, Yulia; Unger, Thaddeus J.; Jones, Juli; Qadri, Ariful; Hahm, Seung; Sun, Ying; Rohde, Cynthia M.; Zwijnenberg, Raphael; Paulsen, Janet; Gimeno, Ruth E.

    2013-01-01

    Strong genetic data link the Tyrosine kinase receptor B (TrkB) and its major endogenous ligand brain-derived neurotrophic factor (BDNF) to the regulation of energy homeostasis, with loss-of-function mutations in either gene causing severe obesity in both mice and humans. It has previously been reported that peripheral administration of the endogenous TrkB agonist ligand neurotrophin-4 (NT-4) profoundly decreases food intake and body weight in rodents, while paradoxically increasing these same parameters in monkeys. We generated a humanized TrkB agonist antibody, TAM-163, and characterized its therapeutic potential in several models of type 2 diabetes and obesity. In vitro, TAM-163 bound to human and rodent TrkB with high affinity, activated all aspects of the TrkB signaling cascade and induced TrkB internalization and degradation in a manner similar to BDNF. In vivo, peripheral administration of TAM-163 decreased food intake and/or body weight in mice, rats, hamsters, and dogs, but increased food intake and body weight in monkeys. The magnitude of weight change was similar in rodents and non-human primates, occurred at doses where there was no appreciable penetration into deep structures of the brain, and could not be explained by differences in exposures between species. Rather, peripherally administered TAM-163 localized to areas in the hypothalamus and the brain stem located outside the blood-brain barrier in a similar manner between rodents and non-human primates, suggesting differences in neuroanatomy across species. Our data demonstrate that a TrkB agonist antibody, administered peripherally, causes species-dependent effects on body weight similar to the endogenous TrkB ligand NT-4. The possible clinical utility of TrkB agonism in treating weight regulatory disorder, such as obesity or cachexia, will require evaluation in man. PMID:23700410

  9. Neuronal and behavioural modulations by pathway-selective optogenetic stimulation of the primate oculomotor system

    PubMed Central

    Inoue, Ken-ichi; Takada, Masahiko; Matsumoto, Masayuki

    2015-01-01

    Optogenetics enables temporally and spatially precise control of neuronal activity in vivo. One of the key advantages of optogenetics is that it can be used to control the activity of targeted neural pathways that connect specific brain regions. While such pathway-selective optogenetic control is a popular tool in rodents, attempts at modulating behaviour using pathway-selective optogenetics have not yet been successful in primates. Here we develop a methodology for pathway-selective optogenetics in macaque monkeys, focusing on the pathway from the frontal eye field (FEF) to the superior colliculus (SC), part of the complex oculomotor network. We find that the optogenetic stimulation of FEF projections to the SC modulates SC neuron activity and is sufficient to evoke saccadic eye movements towards the response field corresponding to the stimulation site. Thus, our results demonstrate the feasibility of using pathway-selective optogenetics to elucidate neural network function in primates. PMID:26387804

  10. Neuronal and behavioural modulations by pathway-selective optogenetic stimulation of the primate oculomotor system.

    PubMed

    Inoue, Ken-ichi; Takada, Masahiko; Matsumoto, Masayuki

    2015-09-21

    Optogenetics enables temporally and spatially precise control of neuronal activity in vivo. One of the key advantages of optogenetics is that it can be used to control the activity of targeted neural pathways that connect specific brain regions. While such pathway-selective optogenetic control is a popular tool in rodents, attempts at modulating behaviour using pathway-selective optogenetics have not yet been successful in primates. Here we develop a methodology for pathway-selective optogenetics in macaque monkeys, focusing on the pathway from the frontal eye field (FEF) to the superior colliculus (SC), part of the complex oculomotor network. We find that the optogenetic stimulation of FEF projections to the SC modulates SC neuron activity and is sufficient to evoke saccadic eye movements towards the response field corresponding to the stimulation site. Thus, our results demonstrate the feasibility of using pathway-selective optogenetics to elucidate neural network function in primates.

  11. The Brain/MINDS 3D digital marmoset brain atlas

    PubMed Central

    Woodward, Alexander; Hashikawa, Tsutomu; Maeda, Masahide; Kaneko, Takaaki; Hikishima, Keigo; Iriki, Atsushi; Okano, Hideyuki; Yamaguchi, Yoko

    2018-01-01

    We present a new 3D digital brain atlas of the non-human primate, common marmoset monkey (Callithrix jacchus), with MRI and coregistered Nissl histology data. To the best of our knowledge this is the first comprehensive digital 3D brain atlas of the common marmoset having normalized multi-modal data, cortical and sub-cortical segmentation, and in a common file format (NIfTI). The atlas can be registered to new data, is useful for connectomics, functional studies, simulation and as a reference. The atlas was based on previously published work but we provide several critical improvements to make this release valuable for researchers. Nissl histology images were processed to remove illumination and shape artifacts and then normalized to the MRI data. Brain region segmentation is provided for both hemispheres. The data is in the NIfTI format making it easy to integrate into neuroscience pipelines, whereas the previous atlas was in an inaccessible file format. We also provide cortical, mid-cortical and white matter boundary segmentations useful for visualization and analysis. PMID:29437168

  12. Operant conditioning of a multiple degree-of-freedom brain-machine interface in a primate model of amputation.

    PubMed

    Balasubramanian, Karthikeyan; Southerland, Joshua; Vaidya, Mukta; Qian, Kai; Eleryan, Ahmed; Fagg, Andrew H; Sluzky, Marc; Oweiss, Karim; Hatsopoulos, Nicholas

    2013-01-01

    Operant conditioning with biofeedback has been shown to be an effective method to modify neural activity to generate goal-directed actions in a brain-machine interface. It is particularly useful when neural activity cannot be mathematically mapped to motor actions of the actual body such as in the case of amputation. Here, we implement an operant conditioning approach with visual feedback in which an amputated monkey is trained to control a multiple degree-of-freedom robot to perform a reach-to-grasp behavior. A key innovation is that each controlled dimension represents a behaviorally relevant synergy among a set of joint degrees-of-freedom. We present a number of behavioral metrics by which to assess improvements in BMI control with exposure to the system. The use of non-human primates with chronic amputation is arguably the most clinically-relevant model of human amputation that could have direct implications for developing a neural prosthesis to treat humans with missing upper limbs.

  13. A Putative Multiple-Demand System in the Macaque Brain.

    PubMed

    Mitchell, Daniel J; Bell, Andrew H; Buckley, Mark J; Mitchell, Anna S; Sallet, Jerome; Duncan, John

    2016-08-17

    In humans, cognitively demanding tasks of many types recruit common frontoparietal brain areas. Pervasive activation of this "multiple-demand" (MD) network suggests a core function in supporting goal-oriented behavior. A similar network might therefore be predicted in nonhuman primates that readily perform similar tasks after training. However, an MD network in nonhuman primates has not been described. Single-cell recordings from macaque frontal and parietal cortex show some similar properties to human MD fMRI responses (e.g., adaptive coding of task-relevant information). Invasive recordings, however, come from limited prespecified locations, so they do not delineate a macaque homolog of the MD system and their positioning could benefit from knowledge of where MD foci lie. Challenges of scanning behaving animals mean that few macaque fMRI studies specifically contrast levels of cognitive demand, so we sought to identify a macaque counterpart to the human MD system using fMRI connectivity in 35 rhesus macaques. Putative macaque MD regions, mapped from frontoparietal MD regions defined in humans, were found to be functionally connected under anesthesia. To further refine these regions, an iterative process was used to maximize their connectivity cross-validated across animals. Finally, whole-brain connectivity analyses identified voxels that were robustly connected to MD regions, revealing seven clusters across frontoparietal and insular cortex comparable to human MD regions and one unexpected cluster in the lateral fissure. The proposed macaque MD regions can be used to guide future electrophysiological investigation of MD neural coding and in task-based fMRI to test predictions of similar functional properties to human MD cortex. In humans, a frontoparietal "multiple-demand" (MD) brain network is recruited during a wide range of cognitively demanding tasks. Because this suggests a fundamental function, one might expect a similar network to exist in nonhuman primates, but this remains controversial. Here, we sought to identify a macaque counterpart to the human MD system using fMRI connectivity. Putative macaque MD regions were functionally connected under anesthesia and were further refined by iterative optimization. The result is a network including lateral frontal, dorsomedial frontal, and insular and inferior parietal regions closely similar to the human counterpart. The proposed macaque MD regions can be useful in guiding electrophysiological recordings or in task-based fMRI to test predictions of similar functional properties to human MD cortex. Copyright © 2016 Mitchell et al.

  14. OAT3-mediated extrusion of the 99mTc-ECD metabolite in the mouse brain

    PubMed Central

    Kikuchi, Tatsuya; Okamura, Toshimitsu; Wakizaka, Hidekatsu; Okada, Maki; Odaka, Kenichi; Yui, Joji; Tsuji, Atsushi B; Fukumura, Toshimitsu; Zhang, Ming-Rong

    2014-01-01

    After administration of the 99mTc complex with N,N'-1,2-ethylenediylbis-L-cysteine diethyl ester (99mTc-ECD), a brain perfusion imaging agent, the radioactive metabolite is trapped in primate brain, but not in mouse and rat. Here, we investigate the involvement of metabolite extrusion by organic anion transporter 3 (OAT3), which is highly expressed at the blood–brain barrier in mice, in this species difference. The efflux rate of radioactivity in the cerebrum of Oat3−/− mice at later phase was 20% of that of control mice. Thus, organic anion transporters in mouse brain would be involved in the low brain retention of radioactivity after 99mTc-ECD administration. PMID:24496177

  15. Apoptotic natural cell death in developing primate dopamine midbrain neurons occurs during a restricted period in the second trimester of gestation

    PubMed Central

    Morrow, Bret A.; Roth, Robert H.; Redmond, D. Eugene; Sladek, John R.; Elsworth, John D.

    2012-01-01

    Natural cell death (NCD) by apoptosis is a normal developmental event in most neuronal populations, and is a determinant of the eventual size of a population. We decided to examine the timing and extent of NCD of the midbrain dopamine system in a primate species, as dopamine deficiency or excess has been implicated in several disorders. Genetic or environmental differences may alter the extent of NCD and predispose individuals to neurological or psychiatric diseases. In developing rats, NCD in the midbrain dopamine system has been observed to start at the end of gestation and peak in the postnatal period. In fetal monkey brains, apoptosis in midbrain DA neurons was identified histologically by chromatin clumping in tyrosine hydroxylase-positive cells, and confirmed by TUNEL and active caspase-3 staining. A distinct peak of NCD occurred at about E80, midway through gestation in this species. We estimate that at least 50% of the population may be lost in this process. In other brains we determined biochemically that the onset of apoptosis coincides with the time of greatest rate of increase of striatal DA concentration. Thus, marked apoptotic NCD occurs in the primate midbrain dopamine system half-way through gestation, and appears to be associated with the rapid developmental increase in striatal dopamine innervation. PMID:17313945

  16. Auto Transplant for High Risk or Relapsed Solid or CNS Tumors

    ClinicalTrials.gov

    2018-04-24

    Ewing's Family Tumors; Renal Tumors; Hepatoblastoma; Rhabdomyosarcoma; Soft Tissue Sarcoma; Primary Malignant Brain Neoplasms; Retinoblastoma; Medulloblastoma; Supra-tentorial Primative Neuro-Ectodermal Tumor (PNET); Atypical Teratoid/Rhabdoid Tumor (AT/RT); CNS Tumors; Germ Cell Tumors

  17. Distinction of Neurons, Glia and Endothelial Cells in the Cerebral Cortex: An Algorithm Based on Cytological Features

    PubMed Central

    García-Cabezas, Miguel Á.; John, Yohan J.; Barbas, Helen; Zikopoulos, Basilis

    2016-01-01

    The estimation of the number or density of neurons and types of glial cells and their relative proportions in different brain areas are at the core of rigorous quantitative neuroanatomical studies. Unfortunately, the lack of detailed, updated, systematic and well-illustrated descriptions of the cytology of neurons and glial cell types, especially in the primate brain, makes such studies especially demanding, often limiting their scope and broad use. Here, following an extensive analysis of histological materials and the review of current and classical literature, we compile a list of precise morphological criteria that can facilitate and standardize identification of cells in stained sections examined under the microscope. We describe systematically and in detail the cytological features of neurons and glial cell types in the cerebral cortex of the macaque monkey and the human using semithin and thick sections stained for Nissl. We used this classical staining technique because it labels all cells in the brain in distinct ways. In addition, we corroborate key distinguishing characteristics of different cell types in sections immunolabeled for specific markers counterstained for Nissl and in ultrathin sections processed for electron microscopy. Finally, we summarize the core features that distinguish each cell type in easy-to-use tables and sketches, and structure these key features in an algorithm that can be used to systematically distinguish cellular types in the cerebral cortex. Moreover, we report high inter-observer algorithm reliability, which is a crucial test for obtaining consistent and reproducible cell counts in unbiased stereological studies. This protocol establishes a consistent framework that can be used to reliably identify and quantify cells in the cerebral cortex of primates as well as other mammalian species in health and disease. PMID:27847469

  18. Spinal cord stimulation alleviates motor deficits in a primate model of Parkinson disease.

    PubMed

    Santana, Maxwell B; Halje, Pär; Simplício, Hougelle; Richter, Ulrike; Freire, Marco Aurelio M; Petersson, Per; Fuentes, Romulo; Nicolelis, Miguel A L

    2014-11-19

    Although deep brain electrical stimulation can alleviate the motor symptoms of Parkinson disease (PD), just a small fraction of patients with PD can take advantage of this procedure due to its invasive nature. A significantly less invasive method--epidural spinal cord stimulation (SCS)--has been suggested as an alternative approach for symptomatic treatment of PD. However, the mechanisms underlying motor improvements through SCS are unknown. Here, we show that SCS reproducibly alleviates motor deficits in a primate model of PD. Simultaneous neuronal recordings from multiple structures of the cortico-basal ganglia-thalamic loop in parkinsonian monkeys revealed abnormal highly synchronized neuronal activity within each of these structures and excessive functional coupling among them. SCS disrupted this pathological circuit behavior in a manner that mimics the effects caused by pharmacological dopamine replacement therapy or deep brain stimulation. These results suggest that SCS should be considered as an additional treatment option for patients with PD. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Wireless, High-Bandwidth Recordings from Non-Human Primate Motor Cortex using a Scalable 16-Ch Implantable Microsystem

    PubMed Central

    Borton, David A.; Song, Yoon-Kyu; Patterson, William R.; Bull, Christopher W.; Park, Sunmee; Laiwalla, Farah; Donoghue, John P.; Nurmikko, Arto V.

    2013-01-01

    A multitude of neuroengineering challenges exist today in creating practical, chronic multichannel neural recording systems for primate research and human clinical application. Specifically, a) the persistent wired connections limit patient mobility from the recording system, b) the transfer of high bandwidth signals to external (even distant) electronics normally forces premature data reduction, and c) the chronic susceptibility to infection due to the percutaneous nature of the implants all severely hinder the success of neural prosthetic systems. Here we detail one approach to overcome these limitations: an entirely implantable, wirelessly communicating, integrated neural recording microsystem, dubbed the Brain Implantable Chip (BIC). PMID:19964128

  20. Brain maps, great and small: lessons from comparative studies of primate visual cortical organization

    PubMed Central

    Rosa, Marcello G.P; Tweedale, Rowan

    2005-01-01

    In this paper, we review evidence from comparative studies of primate cortical organization, highlighting recent findings and hypotheses that may help us to understand the rules governing evolutionary changes of the cortical map and the process of formation of areas during development. We argue that clear unequivocal views of cortical areas and their homologies are more likely to emerge for ‘core’ fields, including the primary sensory areas, which are specified early in development by precise molecular identification steps. In primates, the middle temporal area is probably one of these primordial cortical fields. Areas that form at progressively later stages of development correspond to progressively more recent evolutionary events, their development being less firmly anchored in molecular specification. The certainty with which areal boundaries can be delimited, and likely homologies can be assigned, becomes increasingly blurred in parallel with this evolutionary/developmental sequence. For example, while current concepts for the definition of cortical areas have been vindicated in allowing a clarification of the organization of the New World monkey ‘third tier’ visual cortex (the third and dorsomedial areas, V3 and DM), our analyses suggest that more flexible mapping criteria may be needed to unravel the organization of higher-order visual association and polysensory areas. PMID:15937007

  1. Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream.

    PubMed

    Güçlü, Umut; van Gerven, Marcel A J

    2015-07-08

    Converging evidence suggests that the primate ventral visual pathway encodes increasingly complex stimulus features in downstream areas. We quantitatively show that there indeed exists an explicit gradient for feature complexity in the ventral pathway of the human brain. This was achieved by mapping thousands of stimulus features of increasing complexity across the cortical sheet using a deep neural network. Our approach also revealed a fine-grained functional specialization of downstream areas of the ventral stream. Furthermore, it allowed decoding of representations from human brain activity at an unsurpassed degree of accuracy, confirming the quality of the developed approach. Stimulus features that successfully explained neural responses indicate that population receptive fields were explicitly tuned for object categorization. This provides strong support for the hypothesis that object categorization is a guiding principle in the functional organization of the primate ventral stream. Copyright © 2015 the authors 0270-6474/15/3510005-10$15.00/0.

  2. Updated Neuronal Scaling Rules for the Brains of Glires (Rodents/Lagomorphs)

    PubMed Central

    Herculano-Houzel, Suzana; Ribeiro, Pedro; Campos, Leandro; Valotta da Silva, Alexandre; Torres, Laila B.; Catania, Kenneth C.; Kaas, Jon H.

    2011-01-01

    Brain size scales as different functions of its number of neurons across mammalian orders such as rodents, primates, and insectivores. In rodents, we have previously shown that, across a sample of 6 species, from mouse to capybara, the cerebral cortex, cerebellum and the remaining brain structures increase in size faster than they gain neurons, with an accompanying decrease in neuronal density in these structures [Herculano-Houzel et al.: Proc Natl Acad Sci USA 2006;103:12138–12143]. Important remaining questions are whether such neuronal scaling rules within an order apply equally to all pertaining species, and whether they extend to closely related taxa. Here, we examine whether 4 other species of Rodentia, as well as the closely related rabbit (Lagomorpha), conform to the scaling rules identified previously for rodents. We report the updated neuronal scaling rules obtained for the average values of each species in a way that is directly comparable to the scaling rules that apply to primates [Gabi et al.: Brain Behav Evol 2010;76:32–44], and examine whether the scaling relationships are affected when phylogenetic relatedness in the dataset is accounted for. We have found that the brains of the spiny rat, squirrel, prairie dog and rabbit conform to the neuronal scaling rules that apply to the previous sample of rodents. The conformity to the previous rules of the new set of species, which includes the rabbit, suggests that the cellular scaling rules we have identified apply to rodents in general, and probably to Glires as a whole (rodents/lagomorphs), with one notable exception: the naked mole-rat brain is apparently an outlier, with only about half of the neurons expected from its brain size in its cerebral cortex and cerebellum. PMID:21985803

  3. New insights into differences in brain organization between Neanderthals and anatomically modern humans

    PubMed Central

    Pearce, Eiluned; Stringer, Chris; Dunbar, R. I. M.

    2013-01-01

    Previous research has identified morphological differences between the brains of Neanderthals and anatomically modern humans (AMHs). However, studies using endocasts or the cranium itself are limited to investigating external surface features and the overall size and shape of the brain. A complementary approach uses comparative primate data to estimate the size of internal brain areas. Previous attempts to do this have generally assumed that identical total brain volumes imply identical internal organization. Here, we argue that, in the case of Neanderthals and AMHs, differences in the size of the body and visual system imply differences in organization between the same-sized brains of these two taxa. We show that Neanderthals had significantly larger visual systems than contemporary AMHs (indexed by orbital volume) and that when this, along with their greater body mass, is taken into account, Neanderthals have significantly smaller adjusted endocranial capacities than contemporary AMHs. We discuss possible implications of differing brain organization in terms of social cognition, and consider these in the context of differing abilities to cope with fluctuating resources and cultural maintenance. PMID:23486442

  4. TALEN-based generation of a cynomolgus monkey disease model for human microcephaly

    PubMed Central

    Ke, Qiong; Li, Weiqiang; Lai, Xingqiang; Chen, Hong; Huang, Lihua; Kang, Zhuang; Li, Kai; Ren, Jie; Lin, Xiaofeng; Zheng, Haiqing; Huang, Weijun; Ma, Yunhan; Xu, Dongdong; Chen, Zheng; Song, Xinming; Lin, Xinyi; Zhuang, Min; Wang, Tao; Zhuang, Fengfeng; Xi, Jianzhong; Mao, Frank Fuxiang; Xia, Huimin; Lahn, Bruce T; Zhou, Qi; Yang, Shihua; Xiang, Andy Peng

    2016-01-01

    Gene editing in non-human primates may lead to valuable models for exploring the etiologies and therapeutic strategies of genetically based neurological disorders in humans. However, a monkey model of neurological disorders that closely mimics pathological and behavioral deficits in humans has not yet been successfully generated. Microcephalin 1 (MCPH1) is implicated in the evolution of the human brain, and MCPH1 mutation causes microcephaly accompanied by mental retardation. Here we generated a cynomolgus monkey (Macaca fascicularis) carrying biallelic MCPH1 mutations using transcription activator-like effector nucleases. The monkey recapitulated most of the important clinical features observed in patients, including marked reductions in head circumference, premature chromosome condensation (PCC), hypoplasia of the corpus callosum and upper limb spasticity. Moreover, overexpression of MCPH1 in mutated dermal fibroblasts rescued the PCC syndrome. This monkey model may help us elucidate the role of MCPH1 in the pathogenesis of human microcephaly and better understand the function of this protein in the evolution of primate brain size. PMID:27502025

  5. Reward and decision processes in the brains of humans and nonhuman primates.

    PubMed

    Sirigu, Angela; Duhamel, Jean-René

    2016-03-01

    Choice behavior requires weighing multiple decision variables, such as utility, uncertainty, delay, or effort, that combine to define a subjective value for each considered option or course of action. This capacity is based on prior learning about potential rewards (and punishments) that result from prior actions. When made in a social context, decisions can involve strategic thinking about the intentions of others and about the impact of others' behavior on one's own outcome. Valuation is also influenced by different emotions that serve to adaptively regulate our choices in order to, for example, stay away from excessively risky gambles, prevent future regrets, or avoid personal rejection or conflicts. Drawing on economic theory and on advances in the study of neuronal mechanisms, we review relevant recent experiments in nonhuman primates and clinical observations made in neurologically impaired patients suffering from impaired decision-making capacities.

  6. Reward and decision processes in the brains of humans and nonhuman primates

    PubMed Central

    Sirigu, Angela; Duhamel, Jean-René

    2016-01-01

    Choice behavior requires weighing multiple decision variables, such as utility, uncertainty, delay, or effort, that combine to define a subjective value for each considered option or course of action. This capacity is based on prior learning about potential rewards (and punishments) that result from prior actions. When made in a social context, decisions can involve strategic thinking about the intentions of others and about the impact of others' behavior on one's own outcome. Valuation is also influenced by different emotions that serve to adaptively regulate our choices in order to, for example, stay away from excessively risky gambles, prevent future regrets, or avoid personal rejection or conflicts. Drawing on economic theory and on advances in the study of neuronal mechanisms, we review relevant recent experiments in nonhuman primates and clinical observations made in neurologically impaired patients suffering from impaired decision-making capacities. PMID:27069379

  7. Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex.

    PubMed

    Mejias, Jorge F; Murray, John D; Kennedy, Henry; Wang, Xiao-Jing

    2016-11-01

    Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions.

  8. Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex

    PubMed Central

    Mejias, Jorge F.; Murray, John D.; Kennedy, Henry; Wang, Xiao-Jing

    2016-01-01

    Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions. PMID:28138530

  9. Improved cell therapy protocol for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC and non-human primate iPSC-derived DA neurons

    PubMed Central

    Maria, Sundberg; Helle, Bogetofte; Tristan, Lawson; Gaynor, Smith; Arnar, Astradsson; Michele, Moore; Teresia, Osborn; Oliver, Cooper; Roger, Spealman; Penelope, Hallett; Ole, Isacson

    2013-01-01

    The main motor symptoms of Parkinson’s disease are due to the loss of dopaminergic (DA) neurons in the ventral midbrain (VM). For the future treatment of Parkinson’s disease with cell transplantation it is important to develop efficient differentiation methods for production of human iPSCs and hESCs-derived midbrain-type DA neurons. Here we describe an efficient differentiation and sorting strategy for DA-neurons from both human ES/iPS cells and non-human primate iPSCs. The use of non-human primate iPSCs for neuronal differentiation and autologous transplantation is important for pre-clinical evaluation of safety and efficacy of stem cell-derived DA neurons. The aim of this study was to improve the safety of human- and non-human primate-iPSC (PiPSC)-derived DA neurons. According to our results, NCAM+/CD29low sorting enriched VM DA-neurons from pluripotent stem cell-derived neural cell populations. NCAM+/CD29low DA-neurons were positive for FOXA2/TH and EN1/TH and this cell population had increased expression levels of FOXA2, LMX1A, TH, GIRK2, PITX3, EN1, NURR1 mRNA compared to unsorted neural cell populations. PiPSC-derived NCAM+/CD29low DA-neurons were able to restore motor function of 6-OHDA lesioned rats 16 weeks after transplantation. The transplanted sorted cells also integrated in the rodent brain tissue, with robust TH+/hNCAM+ neuritic innervation of the host striatum. One year after autologous transplantation, the primate iPSC-derived neural cells survived in the striatum of one primate without any immunosuppression. These neural cell grafts contained FOXA2/TH-positive neurons in the graft site. This is an important proof of concept for the feasibility and safety of iPSC-derived cell transplantation therapies in the future. PMID:23666606

  10. Alu elements shape the primate transcriptome by cis-regulation of RNA editing

    PubMed Central

    2014-01-01

    Background RNA editing by adenosine to inosine deamination is a widespread phenomenon, particularly frequent in the human transcriptome, largely due to the presence of inverted Alu repeats and their ability to form double-stranded structures – a requisite for ADAR editing. While several hundred thousand editing sites have been identified within these primate-specific repeats, the function of Alu-editing has yet to be elucidated. Results We show that inverted Alu repeats, expressed in the primate brain, can induce site-selective editing in cis on sites located several hundred nucleotides from the Alu elements. Furthermore, a computational analysis, based on available RNA-seq data, finds that site-selective editing occurs significantly closer to edited Alu elements than expected. These targets are poorly edited upon deletion of the editing inducers, as well as in homologous transcripts from organisms lacking Alus. Sequences surrounding sites near edited Alus in UTRs, have been subjected to a lesser extent of evolutionary selection than those far from edited Alus, indicating that their editing generally depends on cis-acting Alus. Interestingly, we find an enrichment of primate-specific editing within encoded sequence or the UTRs of zinc finger-containing transcription factors. Conclusions We propose a model whereby primate-specific editing is induced by adjacent Alu elements that function as recruitment elements for the ADAR editing enzymes. The enrichment of site-selective editing with potentially functional consequences on the expression of transcription factors indicates that editing contributes more profoundly to the transcriptomic regulation and repertoire in primates than previously thought. PMID:24485196

  11. Antisera against Neisseria gonorrhoeae cross-react with specific brain proteins of the common marmoset monkey and other nonhuman primate species.

    PubMed

    Reuss, Bernhard; Asif, Abdul R; Almamy, Abdullah; Schwerk, Christian; Schroten, Horst; Ishikawa, Hiroshi; Drummer, Charis; Behr, Rüdiger

    2016-12-15

    Prenatal maternal infections with Neisseria gonorrhoeae (NG) correlate with an increased lifetime probability for the offspring to develop psychosis. We could previously demonstrate that in human choroid plexus papilloma cells, anti-NG antibodies (α-NG) bind to mitochondrial proteins HSP60 and ATPB, and interfere with cellular energy metabolism. To assess the in vivo relevance for this, especially during prenatal neural development, we investigated here interactions of NG-specific antisera (α-NG1, α-NG2) with brain, choroid plexus and other non-neural tissues in pre- and perinatal samples of the nonhuman primate (NHP) Callithrix jacchus (CJ), a NHP model for preclinical research. In histological sections at embryonic day E75, immunohistochemistry revealed α-NG1 and -2-staining in choroid plexus, ganglionic hill, optic cup, heart, and liver. Within the cells, organelle-like structures were labeled, which could be identified by immunohistochemical double-labeling as mitochondria. Both one- and two-dimensional Western blot analysis revealed tissue specific patterns of α-NG1 immunoreactive bands and spots, respectively, which were subsequently characterized by mass spectrometry. Thereby we could confirm the interactions of α-NG1 with human HSP60 and ATPB also in CJ choroid plexus and liver. Even more important, in the CJ brain, several new targets, including NCAM1, CRMP2, and SYT1, were identified, which by unrelated studies have been previously suggested to correlate with an increased schizophrenia risk. These findings support the idea that the marmoset monkey is a useful NHP model to investigate the role of maternal bacterial infections during prenatal brain development, and thereby might improve the understanding of this important aspect of schizophrenia pathology. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Using animal models to evaluate the functional consequences of anesthesia during early neurodevelopment.

    PubMed

    Maloney, Susan E; Creeley, Catherine E; Hartman, Richard E; Yuede, Carla M; Zorumski, Charles F; Jevtovic-Todorovic, Vesna; Dikranian, Krikor; Noguchi, Kevin K; Farber, Nuri B; Wozniak, David F

    2018-03-14

    Fifteen years ago Olney and colleagues began using animal models to evaluate the effects of anesthetic and sedative agents (ASAs) on neurodevelopment. The results from ongoing studies indicate that, under certain conditions, exposure to these drugs during development induces an acute elevated apoptotic neurodegenerative response in the brain and long-term functional impairments. These animal models have played a significant role in bringing attention to the possible adverse effects of exposing the developing brain to ASAs when few concerns had been raised previously in the medical community. The apoptotic degenerative response resulting from neonatal exposure to ASAs has been replicated in many studies in both rodents and non-human primates, suggesting that a similar effect may occur in humans. In both rodents and non-human primates, significantly increased levels of apoptotic degeneration are often associated with functional impairments later in life. However, behavioral deficits following developmental ASA exposure have not been consistently reported even when significantly elevated levels of apoptotic degeneration have been documented in animal models. In the present work, we review this literature and propose a rodent model for assessing potential functional deficits following neonatal ASA exposure with special reference to experimental design and procedural issues. Our intent is to improve test sensitivity and replicability for detecting subtle behavioral effects, and thus enhance the translational significance of ASA models. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. A comparative view of face perception.

    PubMed

    Leopold, David A; Rhodes, Gillian

    2010-08-01

    Face perception serves as the basis for much of human social exchange. Diverse information can be extracted about an individual from a single glance at their face, including their identity, emotional state, and direction of attention. Neuropsychological and functional magnetic resonance imaging (fMRI) experiments reveal a complex network of specialized areas in the human brain supporting these face-reading skills. Here we consider the evolutionary roots of human face perception by exploring the manner in which different animal species view and respond to faces. We focus on behavioral experiments collected from both primates and nonprimates, assessing the types of information that animals are able to extract from the faces of their conspecifics, human experimenters, and natural predators. These experiments reveal that faces are an important category of visual stimuli for animals in all major vertebrate taxa, possibly reflecting the early emergence of neural specialization for faces in vertebrate evolution. At the same time, some aspects of facial perception are only evident in primates and a few other social mammals, and may therefore have evolved to suit the needs of complex social communication. Because the human brain likely utilizes both primitive and recently evolved neural specializations for the processing of faces, comparative studies may hold the key to understanding how these parallel circuits emerged during human evolution. 2010 APA, all rights reserved

  14. Processing of chromatic information in a deep convolutional neural network.

    PubMed

    Flachot, Alban; Gegenfurtner, Karl R

    2018-04-01

    Deep convolutional neural networks are a class of machine-learning algorithms capable of solving non-trivial tasks, such as object recognition, with human-like performance. Little is known about the exact computations that deep neural networks learn, and to what extent these computations are similar to the ones performed by the primate brain. Here, we investigate how color information is processed in the different layers of the AlexNet deep neural network, originally trained on object classification of over 1.2M images of objects in their natural contexts. We found that the color-responsive units in the first layer of AlexNet learned linear features and were broadly tuned to two directions in color space, analogously to what is known of color responsive cells in the primate thalamus. Moreover, these directions are decorrelated and lead to statistically efficient representations, similar to the cardinal directions of the second-stage color mechanisms in primates. We also found, in analogy to the early stages of the primate visual system, that chromatic and achromatic information were segregated in the early layers of the network. Units in the higher layers of AlexNet exhibit on average a lower responsivity for color than units at earlier stages.

  15. Titi Monkeys as a Novel Non-Human Primate Model for the Neurobiology of Pair Bonding


    PubMed Central

    Bales, Karen L.; Arias del Razo, Rocío; Conklin, Quinn A.; Hartman, Sarah; Mayer, Heather S.; Rogers, Forrest D.; Simmons, Trenton C.; Smith, Leigh K.; Williams, Alexia; Williams, Donald R.; Witczak, Lynea R.; Wright, Emily C.

    2017-01-01

    It is now widely recognized that social bonds are critical to human health and well-being. One of the most important social bonds is the attachment relationship between two adults, known as the pair bond. The pair bond involves many characteristics that are inextricably linked to quality of health, including providing a secure psychological base and acting as a social buffer against stress. The majority of our knowledge about the neurobiology of pair bonding comes from studies of a socially monogamous rodent, the prairie vole (Microtus ochrogaster), and from human imaging studies, which inherently lack control. Here, we first review what is known of the neurobiology of pair bonding from humans and prairie voles. We then present a summary of the studies we have conducted in titi monkeys (Callicebus cupreus)—a species of socially monogamous New World primates. Finally, we construct a neural model based on the location of neuropeptide receptors in the titi monkey brain, as well as the location of neural changes in our imaging studies, with some basic assumptions based on the prairie vole model. In this model, we emphasize the role of visual mating stimuli as well as contributions of the dopaminergic reward system and a strong role for the lateral septum. This model represents an important step in understanding the neurobiology of social bonds in non-human primates, which will in turn facilitate a better understanding of these mechanisms in humans. PMID:28955178

  16. Morphological and functional maturation of Leydig cells: from rodent models to primates.

    PubMed

    Teerds, Katja J; Huhtaniemi, Ilpo T

    2015-01-01

    Leydig cells (LC) are the sites of testicular androgen production. Development of LC occurs in the testes of most mammalian species as two distinct growth phases, i.e. as fetal and pubertal/adult populations. In primates there are indications of a third neonatal growth phase. LC androgen production begins in embryonic life and is crucial for the intrauterine masculinization of the male fetal genital tract and brain, and continues until birth after which it rapidly declines. A short post-natal phase of LC activity in primates (including human) termed 'mini-puberty' precedes the period of juvenile quiescence. The adult population of LC evolves, depending on species, in mid- to late-prepuberty upon reawakening of the hypothalamic-pituitary-testicular axis, and these cells are responsible for testicular androgen production in adult life, which continues with a slight gradual decline until senescence. This review is an updated comparative analysis of the functional and morphological maturation of LC in model species with special reference to rodents and primates. Pubmed, Scopus, Web of Science and Google Scholar databases were searched between December 2012 and October 2014. Studies published in languages other than English or German were excluded, as were data in abstract form only. Studies available on primates were primarily examined and compared with available data from specific animal models with emphasis on rodents. Expression of different marker genes in rodents provides evidence that at least two distinct progenitor lineages give rise to the fetal LC (FLC) population, one arising from the coelomic epithelium and the other from specialized vascular-associated cells along the gonad-mesonephros border. There is general agreement that the formation and functioning of the FLC population in rodents is gonadotrophin-responsive but not gonadotrophin-dependent. In contrast, although there is in primates some controversy on the role of gonadotrophins in the formation of the FLC population, there is consensus about the essential role of gonadotrophins in testosterone production. Like the FLC population, adult Leydig cells (ALC) in rodents arise from stem cells, which have their origin in the fetal testis. In contrast, in primates the ALC population is thought to originate from FLC, which undergo several cycles of regression and redifferentiation before giving rise to the mature ALC population, as well as from differentiation of stem cells/precursor cells. Despite this difference in origin, both in primates and rodents the formation of the mature and functionally active ALC population is critically dependent on the pituitary gonadotrophin, LH. From studies on rodents considerable knowledge has emerged on factors that are involved besides LH in the regulation of this developmental process. Whether the same factors also play a role in the development of the mature primate LC population awaits further investigation. Distinct populations of LC develop along the life span of males, including fetal, neonatal (primates) and ALC. Despite differences in the LC lineages of rodents and primates, the end product is a mature population of LC with the main function to provide androgens necessary for the maintenance of spermatogenesis and extra-gonadal androgen actions. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Optogenetics through windows on the brain in the nonhuman primate

    PubMed Central

    Ruiz, Octavio; Lustig, Brian R.; Nassi, Jonathan J.; Cetin, Ali; Reynolds, John H.; Albright, Thomas D.; Callaway, Edward M.; Stoner, Gene R.

    2013-01-01

    Optogenetics combines optics and genetics to control neuronal activity with cell-type specificity and millisecond temporal precision. Its use in model organisms such as rodents, Drosophila, and Caenorhabditis elegans is now well-established. However, application of this technology in nonhuman primates (NHPs) has been slow to develop. One key challenge has been the delivery of viruses and light to the brain through the thick dura mater of NHPs, which can only be penetrated with large-diameter devices that damage the brain. The opacity of the NHP dura prevents visualization of the underlying cortex, limiting the spatial precision of virus injections, electrophysiological recordings, and photostimulation. Here, we describe a new optogenetics approach in which the native dura is replaced with an optically transparent artificial dura. This artificial dura can be penetrated with fine glass micropipettes, enabling precisely targeted injections of virus into brain tissue with minimal damage to cortex. The expression of optogenetic agents can be monitored visually over time. Most critically, this optical window permits targeted, noninvasive photostimulation and concomitant measurements of neuronal activity via intrinsic signal imaging and electrophysiological recordings. We present results from both anesthetized-paralyzed (optical imaging) and awake-behaving NHPs (electrophysiology). The improvements over current methods made possible by the artificial dura should enable the widespread use of optogenetic tools in NHP research, a key step toward the development of therapies for neuropsychiatric and neurological diseases in humans. PMID:23761700

  18. Cortical and sub-cortical effects in primate models of cocaine use: implications for addiction and the increased risk of psychiatric illness.

    PubMed

    Bradberry, Charles W

    2011-02-01

    Drug abuse is a serious risk factor for the incidence and severity of multiple psychiatric illnesses. Understanding the neurobiological consequences of repeated exposure to abused drugs can help to inform how those risks are manifested in terms of specific neurochemical mechanisms and brain networks. This review examines selective studies in non-human primates that employed a cocaine self-administration model. Neurochemical consequences of chronic exposure appear to differ from observations in rodent studies. Whereas chronic intermittent exposure in the rodent is usually associated with a dose-dependent increase in dopaminergic response to a cocaine challenge, in the rhesus monkey, high cumulative exposure was not observed to cause a sensitized dopamine response. These non-human primate observations are concordant with clinical findings in human users. The results of cue exposure studies on dopaminergic transmission are also reviewed. Direct microdialysis measurements indicate that there is not a sustained increase in dopamine associated with cocaine-linked cues. As an alternative to striatal dopaminergic mechanisms mediating cue effects, single unit studies in prefrontal cortex during self-administration in monkeys suggests the orbitofrontal and anterior cingulate cortex are strongly engaged by cocaine cues. Based on the strong clinical imaging literature on cortical and cognitive dysfunction associated with addiction, it is proposed that the strong engagement of cortical systems during repeated cocaine reinforcement results in maladaptive changes that contribute to the risks of drug use for exacerbation of other psychiatric disorders.

  19. Sensorimotor rhythm neurofeedback as adjunct therapy for Parkinson's disease.

    PubMed

    Philippens, Ingrid H C H M; Wubben, Jacqueline A; Vanwersch, Raymond A P; Estevao, Dave L; Tass, Peter A

    2017-08-01

    Neurofeedback may enhance compensatory brain mechanisms. EEG-based sensorimotor rhythm neurofeedback training was suggested to be beneficial in Parkinson's disease. In a placebo-controlled study in parkinsonian nonhuman primates we here show that sensorimotor rhythm neurofeedback training reduces MPTP-induced parkinsonian symptoms and both ON and OFF scores during classical L-DOPA treatment. Our findings encourage further development of sensorimotor rhythm neurofeedback training as adjunct therapy for Parkinson's disease which might help reduce L-DOPA-induced side effects.

  20. An integrated system for synchronous detection of neuron spikes and dopamine activities in the striatum of Parkinson monkey brain.

    PubMed

    Xu, Shengwei; Zhang, Yu; Zhang, Song; Xiao, Guihua; Wang, Mixia; Song, Yilin; Gao, Fei; Li, Ziyue; Zhuang, Ping; Chan, Piu; Tao, Guoxian; Yue, Feng; Cai, Xinxia

    2018-07-01

    Synchronous detecting neuron spikes and dopamine (DA) activities in the non-human primate brain play an important role in understanding of Parkinson's disease (PD). At present, most experiments are carried out by combing of electrodes and commercial instruments, which are inconvenient, time-consuming and inefficient. Herein, this study describes a novel integrated system for monitoring neuron spikes and DA activities in non-human primate brain synchronously. This system integrates an implantable sensor, a dual-function head-stage and a low noise detection instrument. The system was developed efficiently by using the key technologies of noise reduction, interference protection and differential amplification. To demonstrate the utility of this system, synchronous recordings of electrophysiological signals and DA were in vivo performed in a monkey before and after treated as a Parkinson model monkey. The system typically exhibited input-referred noise levels of only ∼ 3 μV RMS , input impedance levels of up to 5.1 GΩ, and a sensitivity of 14.075 pA/μM for DA and could detect electrophysiological signals and DA without mutual interference. In monkey experiments, lower DA concentrations in the striatum and more intensive spikes of the Parkinson model monkey than the normal one were synchronously recorded efficiently. This integrated system will not only significantly simplify the experimental operation and improve the experimental efficiency, but also improve the signal quality and synchronization performance. This integrated system, which is practical, efficient and convenient, can be widely used for the study of PD and other neurological disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Measuring reward assessment in a semi-naturalistic context

    PubMed Central

    Machado, Christopher J.; Bachevalier, Jocelyne

    2007-01-01

    Studying the neural mechanisms underlying complex goal-directed behaviors, such as social behavior, reward seeking or punishment avoidance, has become increasingly tractable in humans, nonhuman primates and rodents. In most experiments, however, goal-directed behaviors are measured in a laboratory setting, which is vastly different from the context in which these behaviors naturally occur. This study adapted a reward assessment paradigm, previously conducted with nonhuman primates in the controlled environment of a WGTA (Machado and Bachevalier, 2007), to a more naturalistic context. We used this new paradigm to examine the effects of bilateral amygdaloid, hippocampal or orbital frontal cortex lesions on established food and nonfood preferences. Behavioral modification following reinforcer devaluation was also measured. Consistent with our previous study, none of the lesions produced changes in preference for palatable foods relative to pre-surgery, but animals with amygdala lesions displayed heightened preference for unpalatable foods that control or other operated animals typically avoided. In contrast to several previous WGTA-based experiments, nonfood preference was not affected by any of the lesions. Finally, animals with orbital frontal cortex lesions continued to select preferred foods after satiation, but those with amygdala, hippocampal or sham lesions altered their foraging behavior appropriately and selected less of the sated food. These findings parallel food devaluation results obtained with these same animals when tested in the WGTA. Overall, this study stresses the importance of testing context when measuring decision-making abilities in nonhuman primates with selective brain lesions. PMID:17693034

  2. Easy rider: monkeys learn to drive a wheelchair to navigate through a complex maze.

    PubMed

    Etienne, Stephanie; Guthrie, Martin; Goillandeau, Michel; Nguyen, Tho Hai; Orignac, Hugues; Gross, Christian; Boraud, Thomas

    2014-01-01

    The neurological bases of spatial navigation are mainly investigated in rodents and seldom in primates. The few studies led on spatial navigation in both human and non-human primates are performed in virtual, not in real environments. This is mostly because of methodological difficulties inherent in conducting research on freely-moving monkeys in real world environments. There is some incertitude, however, regarding the extrapolation of rodent spatial navigation strategies to primates. Here we present an entirely new platform for investigating real spatial navigation in rhesus monkeys. We showed that monkeys can learn a pathway by using different strategies. In these experiments three monkeys learned to drive the wheelchair and to follow a specified route through a real maze. After learning the route, probe tests revealed that animals successively use three distinct navigation strategies based on i) the place of the reward, ii) the direction taken to obtain reward or iii) a cue indicating reward location. The strategy used depended of the options proposed and the duration of learning. This study reveals that monkeys, like rodents and humans, switch between different spatial navigation strategies with extended practice, implying well-conserved brain learning systems across different species. This new task with freely driving monkeys provides a good support for the electrophysiological and pharmacological investigation of spatial navigation in the real world by making possible electrophysiological and pharmacological investigations.

  3. Lemur Biorhythms and Life History Evolution.

    PubMed

    Hogg, Russell T; Godfrey, Laurie R; Schwartz, Gary T; Dirks, Wendy; Bromage, Timothy G

    2015-01-01

    Skeletal histology supports the hypothesis that primate life histories are regulated by a neuroendocrine rhythm, the Havers-Halberg Oscillation (HHO). Interestingly, subfossil lemurs are outliers in HHO scaling relationships that have been discovered for haplorhine primates and other mammals. We present new data to determine whether these species represent the general lemur or strepsirrhine condition and to inform models about neuroendocrine-mediated life history evolution. We gathered the largest sample to date of HHO data from histological sections of primate teeth (including the subfossil lemurs) to assess the relationship of these chronobiological measures with life history-related variables including body mass, brain size, age at first female reproduction, and activity level. For anthropoids, these variables show strong correlations with HHO conforming to predictions, though body mass and endocranial volume are strongly correlated with HHO periodicity in this group. However, lemurs (possibly excepting Daubentonia) do not follow this pattern and show markedly less variability in HHO periodicity and lower correlation coefficients and slopes. Moreover, body mass is uncorrelated, and brain size and activity levels are more strongly correlated with HHO periodicity in these animals. We argue that lemurs evolved this pattern due to selection for risk-averse life histories driven by the unpredictability of the environment in Madagascar. These results reinforce the idea that HHO influences life history evolution differently in response to specific ecological selection regimes.

  4. Lemur Biorhythms and Life History Evolution

    PubMed Central

    Hogg, Russell T.; Godfrey, Laurie R.; Schwartz, Gary T.; Dirks, Wendy; Bromage, Timothy G.

    2015-01-01

    Skeletal histology supports the hypothesis that primate life histories are regulated by a neuroendocrine rhythm, the Havers-Halberg Oscillation (HHO). Interestingly, subfossil lemurs are outliers in HHO scaling relationships that have been discovered for haplorhine primates and other mammals. We present new data to determine whether these species represent the general lemur or strepsirrhine condition and to inform models about neuroendocrine-mediated life history evolution. We gathered the largest sample to date of HHO data from histological sections of primate teeth (including the subfossil lemurs) to assess the relationship of these chronobiological measures with life history-related variables including body mass, brain size, age at first female reproduction, and activity level. For anthropoids, these variables show strong correlations with HHO conforming to predictions, though body mass and endocranial volume are strongly correlated with HHO periodicity in this group. However, lemurs (possibly excepting Daubentonia) do not follow this pattern and show markedly less variability in HHO periodicity and lower correlation coefficients and slopes. Moreover, body mass is uncorrelated, and brain size and activity levels are more strongly correlated with HHO periodicity in these animals. We argue that lemurs evolved this pattern due to selection for risk-averse life histories driven by the unpredictability of the environment in Madagascar. These results reinforce the idea that HHO influences life history evolution differently in response to specific ecological selection regimes. PMID:26267241

  5. Brain state-dependence of electrically evoked potentials monitored with head-mounted electronics.

    PubMed

    Richardson, Andrew G; Fetz, Eberhard E

    2012-11-01

    Inferring changes in brain connectivity is critical to studies of learning-related plasticity and stimulus-induced conditioning of neural circuits. In addition, monitoring spontaneous fluctuations in connectivity can provide insight into information processing during different brain states. Here, we quantified state-dependent connectivity changes throughout the 24-h sleep-wake cycle in freely behaving monkeys. A novel, head-mounted electronic device was used to electrically stimulate at one site and record evoked potentials at other sites. Electrically evoked potentials (EEPs) revealed the connectivity pattern between several cortical sites and the basal forebrain. We quantified state-dependent changes in the EEPs. Cortico-cortical EEP amplitude increased during slow-wave sleep, compared to wakefulness, while basal-cortical EEP amplitude decreased. The results demonstrate the utility of using portable electronics to document state-dependent connectivity changes in freely behaving primates.

  6. Relaxed genetic control of cortical organization in human brains compared with chimpanzees

    PubMed Central

    Gómez-Robles, Aida; Hopkins, William D.; Schapiro, Steven J.; Sherwood, Chet C.

    2015-01-01

    The study of hominin brain evolution has focused largely on the neocortical expansion and reorganization undergone by humans as inferred from the endocranial fossil record. Comparisons of modern human brains with those of chimpanzees provide an additional line of evidence to define key neural traits that have emerged in human evolution and that underlie our unique behavioral specializations. In an attempt to identify fundamental developmental differences, we have estimated the genetic bases of brain size and cortical organization in chimpanzees and humans by studying phenotypic similarities between individuals with known kinship relationships. We show that, although heritability for brain size and cortical organization is high in chimpanzees, cerebral cortical anatomy is substantially less genetically heritable than brain size in humans, indicating greater plasticity and increased environmental influence on neurodevelopment in our species. This relaxed genetic control on cortical organization is especially marked in association areas and likely is related to underlying microstructural changes in neural circuitry. A major result of increased plasticity is that the development of neural circuits that underlie behavior is shaped by the environmental, social, and cultural context more intensively in humans than in other primate species, thus providing an anatomical basis for behavioral and cognitive evolution. PMID:26627234

  7. The effects of chronic alcohol self-administration in nonhuman primate brain networks.

    PubMed

    Telesford, Qawi K; Laurienti, Paul J; Davenport, April T; Friedman, David P; Kraft, Robert A; Daunais, James B

    2015-04-01

    Long-term alcohol abuse is associated with change in behavior, brain structure, and brain function. However, the nature of these changes is not well understood. In this study, we used network science to analyze a nonhuman primate model of ethanol self-administration to evaluate functional differences between animals with chronic alcohol use and animals with no exposure to alcohol. Of particular interest was how chronic alcohol exposure may affect the resting state network. Baseline resting state functional magnetic resonance imaging was acquired in a cohort of vervet monkeys. Animals underwent an induction period where they were exposed to an isocaloric maltose dextrin solution (control) or ethanol in escalating doses over three 30-day epochs. Following induction, animals were given ad libitum access to water and a maltose dextrin solution (control) or water and ethanol for 22 h/d over 12 months. Cross-sectional analyses examined region of interests in hubs and community structure across animals to determine differences between drinking and nondrinking animals after the 12-month free access period. Animals were classified as lighter (<2.0 g/kg/d) or heavier drinkers (≥2.0 g/kg/d) based on a median split of their intake pattern during the 12-month ethanol free access period. Statistical analysis of hub connectivity showed significant differences in heavier drinkers for hubs in the precuneus, posterior parietal cortices, superior temporal gyrus, subgenual cingulate, and sensorimotor cortex. Heavier drinkers were also shown to have less consistent communities across the brain compared to lighter drinkers. The different level of consumption between the lighter and heavier drinking monkeys suggests that differences in connectivity may be intake dependent. Animals that consume alcohol show topological differences in brain network organization, particularly in animals that drink heavily. Differences in the resting state network were linked to areas that are associated with spatial association, working memory, and visuomotor processing. Copyright © 2015 by the Research Society on Alcoholism.

  8. Normative brain size variation and brain shape diversity in humans.

    PubMed

    Reardon, P K; Seidlitz, Jakob; Vandekar, Simon; Liu, Siyuan; Patel, Raihaan; Park, Min Tae M; Alexander-Bloch, Aaron; Clasen, Liv S; Blumenthal, Jonathan D; Lalonde, Francois M; Giedd, Jay N; Gur, Ruben C; Gur, Raquel E; Lerch, Jason P; Chakravarty, M Mallar; Satterthwaite, Theodore D; Shinohara, Russell T; Raznahan, Armin

    2018-06-15

    Brain size variation over primate evolution and human development is associated with shifts in the proportions of different brain regions. Individual brain size can vary almost twofold among typically developing humans, but the consequences of this for brain organization remain poorly understood. Using in vivo neuroimaging data from more than 3000 individuals, we find that larger human brains show greater areal expansion in distributed frontoparietal cortical networks and related subcortical regions than in limbic, sensory, and motor systems. This areal redistribution recapitulates cortical remodeling across evolution, manifests by early childhood in humans, and is linked to multiple markers of heightened metabolic cost and neuronal connectivity. Thus, human brain shape is systematically coupled to naturally occurring variations in brain size through a scaling map that integrates spatiotemporally diverse aspects of neurobiology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Lutein and brain function

    USDA-ARS?s Scientific Manuscript database

    Lutein is one of the most prevalent carotenoids in nature and in the human diet. Together with zeaxanthin, it is highly concentrated in macular pigment in the foveal retina of primates, attenuating blue light exposure, providing protection from photo-oxidation and enhancing visual performance. Rece...

  10. Genetic variation and gene expression across multiple tissues and developmental stages in a nonhuman primate.

    PubMed

    Jasinska, Anna J; Zelaya, Ivette; Service, Susan K; Peterson, Christine B; Cantor, Rita M; Choi, Oi-Wa; DeYoung, Joseph; Eskin, Eleazar; Fairbanks, Lynn A; Fears, Scott; Furterer, Allison E; Huang, Yu S; Ramensky, Vasily; Schmitt, Christopher A; Svardal, Hannes; Jorgensen, Matthew J; Kaplan, Jay R; Villar, Diego; Aken, Bronwen L; Flicek, Paul; Nag, Rishi; Wong, Emily S; Blangero, John; Dyer, Thomas D; Bogomolov, Marina; Benjamini, Yoav; Weinstock, George M; Dewar, Ken; Sabatti, Chiara; Wilson, Richard K; Jentsch, J David; Warren, Wesley; Coppola, Giovanni; Woods, Roger P; Freimer, Nelson B

    2017-12-01

    By analyzing multitissue gene expression and genome-wide genetic variation data in samples from a vervet monkey pedigree, we generated a transcriptome resource and produced the first catalog of expression quantitative trait loci (eQTLs) in a nonhuman primate model. This catalog contains more genome-wide significant eQTLs per sample than comparable human resources and identifies sex- and age-related expression patterns. Findings include a master regulatory locus that likely has a role in immune function and a locus regulating hippocampal long noncoding RNAs (lncRNAs), whose expression correlates with hippocampal volume. This resource will facilitate genetic investigation of quantitative traits, including brain and behavioral phenotypes relevant to neuropsychiatric disorders.

  11. Behavioral Adjustments by a Small Neotropical Primate (Callithrix jacchus) in a Semiarid Caatinga Environment

    PubMed Central

    De la Fuente, María Fernanda Castellón; Souto, Antonio; Sampaio, Marilian Boachá; Schiel, Nicola

    2014-01-01

    We provide the first information on the behavior of a small primate (Callithrix jacchus) inhabiting a semiarid Caatinga environment in northeastern Brazil. We observed behavioral variations in response to temperature fluctuation throughout the day. Due to the high temperatures, low precipitation, and resource scarcity in the Caatinga, as well as the lack of physiological adaptations (e.g., a highly concentrated urine and a carotid rete to cool down the brain) of these primates, we expected that the common marmosets would exhibit behavioral adjustments, such as a prolonged resting period or the use of a large home range. During the six-month period, we collected 246 hours of behavioral data of two groups (10 individuals) of Callithrix jacchus. Most of the observed behavioral patterns were influenced by temperature fluctuation. Animals rested longer and reduced other activities, such as foraging, when temperatures were higher. Both study groups exploited home ranges of 2.21–3.26 ha, which is within the range described for common marmosets inhabiting the Atlantic Forest. Our findings confirm that common marmosets inhabiting the Caatinga adjust their behavioral patterns to cope with the high temperatures that characterize this environment and highlight their ability to survive across a wide range of different environmental conditions. PMID:25431785

  12. Behavioral adjustments by a small neotropical primate (Callithrix jacchus) in a semiarid Caatinga environment.

    PubMed

    De la Fuente, María Fernanda Castellón; Souto, Antonio; Sampaio, Marilian Boachá; Schiel, Nicola

    2014-01-01

    We provide the first information on the behavior of a small primate (Callithrix jacchus) inhabiting a semiarid Caatinga environment in northeastern Brazil. We observed behavioral variations in response to temperature fluctuation throughout the day. Due to the high temperatures, low precipitation, and resource scarcity in the Caatinga, as well as the lack of physiological adaptations (e.g., a highly concentrated urine and a carotid rete to cool down the brain) of these primates, we expected that the common marmosets would exhibit behavioral adjustments, such as a prolonged resting period or the use of a large home range. During the six-month period, we collected 246 hours of behavioral data of two groups (10 individuals) of Callithrix jacchus. Most of the observed behavioral patterns were influenced by temperature fluctuation. Animals rested longer and reduced other activities, such as foraging, when temperatures were higher. Both study groups exploited home ranges of 2.21-3.26 ha, which is within the range described for common marmosets inhabiting the Atlantic Forest. Our findings confirm that common marmosets inhabiting the Caatinga adjust their behavioral patterns to cope with the high temperatures that characterize this environment and highlight their ability to survive across a wide range of different environmental conditions.

  13. Figure-ground discrimination in the avian brain: the nucleus rotundus and its inhibitory complex.

    PubMed

    Acerbo, Martin J; Lazareva, Olga F; McInnerney, John; Leiker, Emily; Wasserman, Edward A; Poremba, Amy

    2012-10-01

    In primates, neurons sensitive to figure-ground status are located in striate cortex (area V1) and extrastriate cortex (area V2). Although much is known about the anatomical structure and connectivity of the avian visual pathway, the functional organization of the avian brain remains largely unexplored. To pinpoint the areas associated with figure-ground segregation in the avian brain, we used a radioactively labeled glucose analog to compare differences in glucose uptake after figure-ground, color, and shape discriminations. We also included a control group that received food on a variable-interval schedule, but was not required to learn a visual discrimination. Although the discrimination task depended on group assignment, the stimulus displays were identical for all three experimental groups, ensuring that all animals were exposed to the same visual input. Our analysis concentrated on the primary thalamic nucleus associated with visual processing, the nucleus rotundus (Rt), and two nuclei providing regulatory feedback, the pretectum (PT) and the nucleus subpretectalis/interstitio-pretecto-subpretectalis complex (SP/IPS). We found that figure-ground discrimination was associated with strong and nonlateralized activity of Rt and SP/IPS, whereas color discrimination produced strong and lateralized activation in Rt alone. Shape discrimination was associated with lower activity of Rt than in the control group. Taken together, our results suggest that figure-ground discrimination is associated with Rt and that SP/IPS may be a main source of inhibitory control. Thus, figure-ground segregation in the avian brain may occur earlier than in the primate brain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Figure-ground discrimination in the avian brain: The nucleus rotundus and its inhibitory complex

    PubMed Central

    Acerbo, Martin J.; Lazareva, Olga F.; McInnerney, John; Leiker, Emily; Wasserman, Edward A.; Poremba, Amy

    2012-01-01

    In primates, neurons sensitive to figure-ground status are located in striate cortex (area V1) and extrastriate cortex (area V2). Although much is known about the anatomical structure and connectivity of the avian visual pathway, the functional organization of the avian brain remains largely unexplored. To pinpoint the areas associated with figure-ground segregation in the avian brain, we used a radioactively labeled glucose analog to compare differences in glucose uptake after figure-ground, color, and shape discriminations. We also included a control group that received food on a variable-interval schedule, but was not required to learn a visual discrimination. Although the discrimination task depended on group assignment, the stimulus displays were identical for all three experimental groups, ensuring that all animals were exposed to the same visual input. Our analysis concentrated on the primary thalamic nucleus associated with visual processing, the nucleus rotundus (Rt), and two nuclei providing regulatory feedback, the pretectum (PT) and the nucleus subpretectalis/interstitio-pretecto-subpretectalis complex (SP/IPS). We found that figure-ground discrimination was associated with strong and nonlateralized activity of Rt and SP/IPS, whereas color discrimination produced strong and lateralized activation in Rt alone. Shape discrimination was associated with lower activity of Rt than in the control group. Taken together, our results suggest that figure-ground discrimination is associated with Rt and that SP/IPS may be a main source of inhibitory control. Thus, figure-ground segregation in the avian brain may occur earlier than in the primate brain. PMID:22917681

  15. Non-human primate skull effects on the cavitation detection threshold of FUS-induced blood-brain barrier opening

    NASA Astrophysics Data System (ADS)

    Wu, Shih-Ying; Tung, Yao-Sheng; Marquet, Fabrice; Chen, Cherry C.; Konofagou, Elisa E.

    2012-11-01

    Microbubble (MB)-assisted focused ultrasound is a promising technique for delivering drugs to the brain by noninvasively and transiently opening the blood-brain barrier (BBB), and monitoring BBB opening using passive cavitation detection (PCD) is critical in detecting its occurrence, extent as well as assessing its mechanism. One of the main obstacles in achieving those objectives in large animals is the transcranial attenuation. To study the effects, the cavitation response through the in-vitro non-human primate (NHP) skull was investigated. In-house manufactured lipid-shelled MB (medium diameter: 4-5 um) were injected into a 4-mm channel of a phantom below a degassed monkey skull. A hydrophone confocally aligned with the FUS transducer served as PCD during sonication (frequency: 0.50 MHz, peak rarefactional pressures: 0.05-0.60 MPa, pulse length: 100 cycles, PRF: 10 Hz, duration: 2 s) for four cases: water without skull, water with skull, MB without skull and MB with skull. A 5.1-MHz linear-array transducer was also used to monitor the MB disruption. The frequency spectra, spectrograms, stable cavitation dose (SCD) and inertial cavitation dose (ICD) were quantified. Results showed that the onset of stable cavitation and inertial cavitation in the experiments occurred at 50 kPa, and was detectable throught the NHP skull since the both the detection thresholds for stable cavitation and inertial cavitation remained unchanged compared to the non-skull case, and the SCD and ICD acquired transcranially may not adequately represent the true extent of stable and inertial cavitation due to the skull attenuation.

  16. Indications for quantum computation requirements from comparative brain analysis

    NASA Astrophysics Data System (ADS)

    Bernroider, Gustav; Baer, Wolfgang

    2010-04-01

    Whether or not neuronal signal properties can engage 'non-trivial', i.e. functionally significant, quantum properties, is the subject of an ongoing debate. Here we provide evidence that quantum coherence dynamics can play a functional role in ion conduction mechanism with consequences on the shape and associative character of classical membrane signals. In particular, these new perspectives predict that a specific neuronal topology (e.g. the connectivity pattern of cortical columns in the primate brain) is less important and not really required to explain abilities in perception and sensory-motor integration. Instead, this evidence is suggestive for a decisive role of the number and functional segregation of ion channel proteins that can be engaged in a particular neuronal constellation. We provide evidence from comparative brain studies and estimates of computational capacity behind visual flight functions suggestive for a possible role of quantum computation in biological systems.

  17. The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer's disease.

    PubMed

    Batista, Andre F; Forny-Germano, Leticia; Clarke, Julia R; Lyra E Silva, Natalia M; Brito-Moreira, Jordano; Boehnke, Susan E; Winterborn, Andrew; Coe, Brian C; Lablans, Ann; Vital, Juliana F; Marques, Suelen A; Martinez, Ana Mb; Gralle, Matthias; Holscher, Christian; Klein, William L; Houzel, Jean-Christophe; Ferreira, Sergio T; Munoz, Douglas P; De Felice, Fernanda G

    2018-05-01

    Alzheimer's disease (AD) is a devastating neurological disorder that still lacks an effective treatment, and this has stimulated an intense pursuit of disease-modifying therapeutics. Given the increasingly recognized link between AD and defective brain insulin signaling, we investigated the actions of liraglutide, a glucagon-like peptide-1 (GLP-1) analog marketed for treatment of type 2 diabetes, in experimental models of AD. Insulin receptor pathology is an important feature of AD brains that impairs the neuroprotective actions of central insulin signaling. Here, we show that liraglutide prevented the loss of brain insulin receptors and synapses, and reversed memory impairment induced by AD-linked amyloid-β oligomers (AβOs) in mice. Using hippocampal neuronal cultures, we determined that the mechanism of neuroprotection by liraglutide involves activation of the PKA signaling pathway. Infusion of AβOs into the lateral cerebral ventricle of non-human primates (NHPs) led to marked loss of insulin receptors and synapses in brain regions related to memory. Systemic treatment of NHPs with liraglutide provided partial protection, decreasing AD-related insulin receptor, synaptic, and tau pathology in specific brain regions. Synapse damage and elimination are amongst the earliest known pathological changes and the best correlates of memory impairment in AD. The results illuminate mechanisms of neuroprotection by liraglutide, and indicate that GLP-1 receptor activation may be harnessed to protect brain insulin receptors and synapses in AD. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  18. Perceptions of nonhuman primates in human-wildlife conflict scenarios.

    PubMed

    Hill, Catherine M; Webber, Amanda D

    2010-09-01

    Nonhuman primates (referred to as primates in this study) are sometimes revered as gods, abhorred as evil spirits, killed for food because they damage crops, or butchered for sport. Primates' perceived similarity to humans places them in an anomalous position. While some human groups accept the idea that primates "straddle" the human-nonhuman boundary, for others this resemblance is a violation of the human-animal divide. In this study we use two case studies to explore how people's perceptions of primates are often influenced by these animals' apparent similarity to humans, creating expectations, founded within a "human morality" about how primates should interact with people. When animals transgress these social rules, they are measured against the same moral framework as humans. This has implications for how people view and respond to certain kinds of primate behaviors, their willingness to tolerate co-existence with primates and their likely support for primate conservation initiatives. 2010 Wiley-Liss, Inc.

  19. PHONATION TAKES PRECEDENCE IN DEVELOPMENT AS WELL AS EVOLUTION OF LANGUAGE

    PubMed Central

    Oller, D. Kimbrough

    2014-01-01

    Early development of vocalization in humans is characterized by emerging control of phonation, rather than of prosody or supraglottal articulation. This fact offers an opportunity to the authors of the target article to enrich their characterization of the evolution of differential brain mechanisms in human and non-human primates. Phonation, I suggest, is the initial target of human-specific brain changes in sound-making capability upon which language is founded. PMID:25514957

  20. Attention-like processes in insects

    PubMed Central

    2016-01-01

    Attention is fundamentally important for sensory systems to focus on behaviourally relevant stimuli. It has therefore been an important field of study in human psychology and neuroscience. Primates, however, are not the only animals that might benefit from attention-like processes. Other animals, including insects, also have to use their senses and select one among many stimuli to forage, avoid predators and find mates. They have evolved different mechanisms to reduce the information processed by their brains to focus on only relevant stimuli. What are the mechanisms used by insects to selectively attend to visual and auditory stimuli? Do these attention-like mechanisms achieve the same functions as they do in primates? To investigate these questions, I use an established framework for investigating attention in non-human animals that proposes four fundamental components of attention: salience filters, competitive selection, top-down sensitivity control and working memory. I discuss evidence for each of these component processes in insects and compare the characteristics of these processes in insects to what we know from primates. Finally, I highlight important outstanding questions about insect attention that need to be addressed for us to understand the differences and similarities between vertebrate and insect attention. PMID:27852803

  1. Attention-like processes in insects.

    PubMed

    Nityananda, Vivek

    2016-11-16

    Attention is fundamentally important for sensory systems to focus on behaviourally relevant stimuli. It has therefore been an important field of study in human psychology and neuroscience. Primates, however, are not the only animals that might benefit from attention-like processes. Other animals, including insects, also have to use their senses and select one among many stimuli to forage, avoid predators and find mates. They have evolved different mechanisms to reduce the information processed by their brains to focus on only relevant stimuli. What are the mechanisms used by insects to selectively attend to visual and auditory stimuli? Do these attention-like mechanisms achieve the same functions as they do in primates? To investigate these questions, I use an established framework for investigating attention in non-human animals that proposes four fundamental components of attention: salience filters, competitive selection, top-down sensitivity control and working memory. I discuss evidence for each of these component processes in insects and compare the characteristics of these processes in insects to what we know from primates. Finally, I highlight important outstanding questions about insect attention that need to be addressed for us to understand the differences and similarities between vertebrate and insect attention. © 2016 The Author(s).

  2. Analysis of a simulation algorithm for direct brain drug delivery

    PubMed Central

    Rosenbluth, Kathryn Hammond; Eschermann, Jan Felix; Mittermeyer, Gabriele; Thomson, Rowena; Mittermeyer, Stephan; Bankiewicz, Krystof S.

    2011-01-01

    Convection enhanced delivery (CED) achieves targeted delivery of drugs with a pressure-driven infusion through a cannula placed stereotactically in the brain. This technique bypasses the blood brain barrier and gives precise distributions of drugs, minimizing off-target effects of compounds such as viral vectors for gene therapy or toxic chemotherapy agents. The exact distribution is affected by the cannula positioning, flow rate and underlying tissue structure. This study presents an analysis of a simulation algorithm for predicting the distribution using baseline MRI images acquired prior to inserting the cannula. The MRI images included diffusion tensor imaging (DTI) to estimate the tissue properties. The algorithm was adapted for the devices and protocols identified for upcoming trials and validated with direct MRI visualization of Gadolinium in 20 infusions in non-human primates. We found strong agreement between the size and location of the simulated and gadolinium volumes, demonstrating the clinical utility of this surgical planning algorithm. PMID:21945468

  3. A population MRI brain template and analysis tools for the macaque.

    PubMed

    Seidlitz, Jakob; Sponheim, Caleb; Glen, Daniel; Ye, Frank Q; Saleem, Kadharbatcha S; Leopold, David A; Ungerleider, Leslie; Messinger, Adam

    2018-04-15

    The use of standard anatomical templates is common in human neuroimaging, as it facilitates data analysis and comparison across subjects and studies. For non-human primates, previous in vivo templates have lacked sufficient contrast to reliably validate known anatomical brain regions and have not provided tools for automated single-subject processing. Here we present the "National Institute of Mental Health Macaque Template", or NMT for short. The NMT is a high-resolution in vivo MRI template of the average macaque brain generated from 31 subjects, as well as a neuroimaging tool for improved data analysis and visualization. From the NMT volume, we generated maps of tissue segmentation and cortical thickness. Surface reconstructions and transformations to previously published digital brain atlases are also provided. We further provide an analysis pipeline using the NMT that automates and standardizes the time-consuming processes of brain extraction, tissue segmentation, and morphometric feature estimation for anatomical scans of individual subjects. The NMT and associated tools thus provide a common platform for precise single-subject data analysis and for characterizations of neuroimaging results across subjects and studies. Copyright © 2017 ElsevierCompany. All rights reserved.

  4. Decoding Saccadic Directions Using Epidural ECoG in Non-Human Primates

    PubMed Central

    2017-01-01

    A brain-computer interface (BCI) can be used to restore some communication as an alternative interface for patients suffering from locked-in syndrome. However, most BCI systems are based on SSVEP, P300, or motor imagery, and a diversity of BCI protocols would be needed for various types of patients. In this paper, we trained the choice saccade (CS) task in 2 non-human primate monkeys and recorded the brain signal using an epidural electrocorticogram (eECoG) to predict eye movement direction. We successfully predicted the direction of the upcoming eye movement using a support vector machine (SVM) with the brain signals after the directional cue onset and before the saccade execution. The mean accuracies were 80% for 2 directions and 43% for 4 directions. We also quantified the spatial-spectro-temporal contribution ratio using SVM recursive feature elimination (RFE). The channels over the frontal eye field (FEF), supplementary eye field (SEF), and superior parietal lobule (SPL) area were dominantly used for classification. The α-band in the spectral domain and the time bins just after the directional cue onset and just before the saccadic execution were mainly useful for prediction. A saccade based BCI paradigm can be projected in the 2D space, and will hopefully provide an intuitive and convenient communication platform for users. PMID:28665058

  5. Electrophysiological Signals of Familiarity and Recency in the Infant Brain

    ERIC Educational Resources Information Center

    Snyder, Kelly A.; Garza, John; Zolot, Liza; Kresse, Anna

    2010-01-01

    Electrophysiological work in nonhuman primates has established the existence of multiple types of signals in the temporal lobe that contribute to recognition memory, including information regarding a stimulus's relative novelty, familiarity, and recency of occurrence. We used high-density event-related potentials (ERPs) to examine whether young…

  6. Programmed to Learn? The Ontogeny of Mirror Neurons

    ERIC Educational Resources Information Center

    Del Giudice, Marco; Manera, Valeria; Keysers, Christian

    2009-01-01

    Mirror neurons are increasingly recognized as a crucial substrate for many developmental processes, including imitation and social learning. Although there has been considerable progress in describing their function and localization in the primate and adult human brain, we still know little about their ontogeny. The idea that mirror neurons result…

  7. Using cross-species comparisons and a neurobiological framework to understand early social deprivation effects on behavioral development.

    PubMed

    Brett, Zoë H; Humphreys, Kathryn L; Fleming, Alison S; Kraemer, Gary W; Drury, Stacy S

    2015-05-01

    Building upon the transactional model of brain development, we explore the impact of early maternal deprivation on neural development and plasticity in three neural systems: hyperactivity/impulsivity, executive function, and hypothalamic-pituitary-adrenal axis functioning across rodent, nonhuman primate, and human studies. Recognizing the complexity of early maternal-infant interactions, we limit our cross-species comparisons to data from rodent models of artificial rearing, nonhuman primate studies of peer rearing, and the relations between these two experimental approaches and human studies of children exposed to the early severe psychosocial deprivation associated with institutional care. In addition to discussing the strengths and limitations of these paradigms, we present the current state of research on the neurobiological impact of early maternal deprivation and the evidence of sensitive periods, noting methodological challenges. Integrating data across preclinical animal models and human studies, we speculate about the underlying biological mechanisms; the differential impact of deprivation due to temporal factors including onset, offset, and duration of the exposure; and the possibility and consequences of reopening of sensitive periods during adolescence.

  8. Using cross-species comparisons and a neurobiological framework to understand early social deprivation effects on behavioral development

    PubMed Central

    BRETT, ZOË H.; HUMPHREYS, KATHRYN L.; FLEMING, ALISON S.; KRAEMER, GARY W.; DRURY, STACY S.

    2017-01-01

    Building upon the transactional model of brain development, we explore the impact of early maternal deprivation on neural development and plasticity in three neural systems: hyperactivity/impulsivity, executive function, and hypothalamic–pituitary–adrenal axis functioning across rodent, nonhuman primate, and human studies. Recognizing the complexity of early maternal–infant interactions, we limit our cross-species comparisons to data from rodent models of artificial rearing, nonhuman primate studies of peer rearing, and the relations between these two experimental approaches and human studies of children exposed to the early severe psychosocial deprivation associated with institutional care. In addition to discussing the strengths and limitations of these paradigms, we present the current state of research on the neurobiological impact of early maternal deprivation and the evidence of sensitive periods, noting methodological challenges. Integrating data across preclinical animal models and human studies, we speculate about the underlying biological mechanisms; the differential impact of deprivation due to temporal factors including onset, offset, and duration of the exposure; and the possibility and consequences of reopening of sensitive periods during adolescence. PMID:25997759

  9. Mechanisms and functions of brain and behavioural asymmetries

    PubMed Central

    Tommasi, Luca

    2008-01-01

    For almost a century the field of brain and behavioural asymmetries has been dominated by studies on humans, resting on the evidence that the anatomical structures underlying language functions are asymmetrical, and that human handedness is lateralized at the population level. Today, there is not only evidence of population-level lateralization of brain and behaviour across a variety of vertebrate and invertebrate species, but also a growing consensus that the comparative analysis of the environmental and developmental factors that give origin to neural and behavioural laterality in animal models, together with theoretical analyses of their costs and benefits, will be crucial for understanding the evolutionary pathways that led to such a multifaceted phenomenon. The present theme issue provides a survey of theoretical, review and research work cutting across the biological and the cognitive sciences, focusing on various species of fishes, birds and primates (including humans) and emphasizing an integrative approach to the study of lateralization encompassing neural, behavioural, cognitive, developmental and environmental aspects. PMID:19064348

  10. Convection-enhanced delivery of M13 bacteriophage to the brain

    PubMed Central

    Ksendzovsky, Alexander; Walbridge, Stuart; Saunders, Richard C.; Asthagiri, Ashok R.; Heiss, John D.; Lonser, Russell R.

    2013-01-01

    Object Recent studies indicate that M13 bacteriophage, a very large nanoparticle, binds to β-amyloid and α-synuclein proteins, leading to plaque disaggregation in models of Alzheimer and Parkinson disease. To determine the feasibility, safety, and characteristics of convection-enhanced delivery (CED) of M13 bacteriophage to the brain, the authors perfused primate brains with bacteriophage. Methods Four nonhuman primates underwent CED of M13 bacteriophage (900 nm) to thalamic gray matter (4 infusions) and frontal white matter (3 infusions). Bacteriophage was coinfused with Gd-DTPA (1 mM), and serial MRI studies were performed during infusion. Animals were monitored for neurological deficits and were killed 3 days after infusion. Tissues were analyzed for bacteriophage distribution. Results Real-time T1-weighted MRI studies of coinfused Gd-DTPA during infusion demonstrated a discrete region of perfusion in both thalamic gray and frontal white matter. An MRI-volumetric analysis revealed that the mean volume of distribution (Vd) to volume of infusion (Vi) ratio of M13 bacteriophage was 2.3 ± 0.2 in gray matter and 1.9 ± 0.3 in white matter. The mean values are expressed ± SD. Immunohistochemical analysis demonstrated mean Vd:Vi ratios of 2.9 ± 0.2 in gray matter and 2.1 ± 0.3 in white matter. The Gd-DTPA accurately tracked M13 bacteriophage distribution (the mean difference between imaging and actual bacteriophage Vd was insignificant [p > 0.05], and was −2.2% ± 9.9% in thalamic gray matter and 9.1% ± 9.5% in frontal white matter). Immunohistochemical analysis revealed evidence of additional spread from the initial delivery site in white matter (mean Vd:Vi, 16.1 ± 9.1). All animals remained neurologically intact after infusion during the observation period, and histological studies revealed no evidence of toxicity. Conclusions The CED method can be used successfully and safely to distribute M13 bacteriophage in the brain. Furthermore, additional white matter spread after infusion cessation enhances distribution of this large nanoparticle. Real-time MRI studies of coinfused Gd-DTPA (1 mM) can be used for accurate tracking of distribution during infusion of M13 bacteriophage. PMID:22606981

  11. Convection-enhanced delivery of M13 bacteriophage to the brain.

    PubMed

    Ksendzovsky, Alexander; Walbridge, Stuart; Saunders, Richard C; Asthagiri, Ashok R; Heiss, John D; Lonser, Russell R

    2012-08-01

    Recent studies indicate that M13 bacteriophage, a very large nanoparticle, binds to β-amyloid and α-synuclein proteins, leading to plaque disaggregation in models of Alzheimer and Parkinson disease. To determine the feasibility, safety, and characteristics of convection-enhanced delivery (CED) of M13 bacteriophage to the brain, the authors perfused primate brains with bacteriophage. Four nonhuman primates underwent CED of M13 bacteriophage (900 nm) to thalamic gray matter (4 infusions) and frontal white matter (3 infusions). Bacteriophage was coinfused with Gd-DTPA (1 mM), and serial MRI studies were performed during infusion. Animals were monitored for neurological deficits and were killed 3 days after infusion. Tissues were analyzed for bacteriophage distribution. Real-time T1-weighted MRI studies of coinfused Gd-DTPA during infusion demonstrated a discrete region of perfusion in both thalamic gray and frontal white matter. An MRI-volumetric analysis revealed that the mean volume of distribution (Vd) to volume of infusion (Vi) ratio of M13 bacteriophage was 2.3 ± 0.2 in gray matter and 1.9 ± 0.3 in white matter. The mean values are expressed ± SD. Immunohistochemical analysis demonstrated mean Vd:Vi ratios of 2.9 ± 0.2 in gray matter and 2.1 ± 0.3 in white matter. The Gd-DTPA accurately tracked M13 bacteriophage distribution (the mean difference between imaging and actual bacteriophage Vd was insignificant [p > 0.05], and was -2.2% ± 9.9% in thalamic gray matter and 9.1% ± 9.5% in frontal white matter). Immunohistochemical analysis revealed evidence of additional spread from the initial delivery site in white matter (mean Vd:Vi, 16.1 ± 9.1). All animals remained neurologically intact after infusion during the observation period, and histological studies revealed no evidence of toxicity. The CED method can be used successfully and safely to distribute M13 bacteriophage in the brain. Furthermore, additional white matter spread after infusion cessation enhances distribution of this large nanoparticle. Real-time MRI studies of coinfused Gd-DTPA (1 mM) can be used for accurate tracking of distribution during infusion of M13 bacteriophage.

  12. Regional selection of the brain size regulating gene CASC5 provides new insight into human brain evolution.

    PubMed

    Shi, Lei; Hu, Enzhi; Wang, Zhenbo; Liu, Jiewei; Li, Jin; Li, Ming; Chen, Hua; Yu, Chunshui; Jiang, Tianzi; Su, Bing

    2017-02-01

    Human evolution is marked by a continued enlargement of the brain. Previous studies on human brain evolution focused on identifying sequence divergences of brain size regulating genes between humans and nonhuman primates. However, the evolutionary pattern of the brain size regulating genes during recent human evolution is largely unknown. We conducted a comprehensive analysis of the brain size regulating gene CASC5 and found that in recent human evolution, CASC5 has accumulated many modern human specific amino acid changes, including two fixed changes and six polymorphic changes. Among human populations, 4 of the 6 amino acid polymorphic sites have high frequencies of derived alleles in East Asians, but are rare in Europeans and Africans. We proved that this between-population allelic divergence was caused by regional Darwinian positive selection in East Asians. Further analysis of brain image data of Han Chinese showed significant associations of the amino acid polymorphic sites with gray matter volume. Hence, CASC5 may contribute to the morphological and structural changes of the human brain during recent evolution. The observed between-population divergence of CASC5 variants was driven by natural selection that tends to favor a larger gray matter volume in East Asians.

  13. Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor

    PubMed Central

    Manuel, Martine N.; Mi, Da; Mason, John O.; Price, David J.

    2015-01-01

    Understanding brain development remains a major challenge at the heart of understanding what makes us human. The neocortex, in evolutionary terms the newest part of the cerebral cortex, is the seat of higher cognitive functions. Its normal development requires the production, positioning, and appropriate interconnection of very large numbers of both excitatory and inhibitory neurons. Pax6 is one of a relatively small group of transcription factors that exert high-level control of cortical development, and whose mutation or deletion from developing embryos causes major brain defects and a wide range of neurodevelopmental disorders. Pax6 is very highly conserved between primate and non-primate species, is expressed in a gradient throughout the developing cortex and is essential for normal corticogenesis. Our understanding of Pax6’s functions and the cellular processes that it regulates during mammalian cortical development has significantly advanced in the last decade, owing to the combined application of genetic and biochemical analyses. Here, we review the functional importance of Pax6 in regulating cortical progenitor proliferation, neurogenesis, and formation of cortical layers and highlight important differences between rodents and primates. We also review the pathological effects of PAX6 mutations in human neurodevelopmental disorders. We discuss some aspects of Pax6’s molecular actions including its own complex transcriptional regulation, the distinct molecular functions of its splice variants and some of Pax6’s known direct targets which mediate its actions during cortical development. PMID:25805971

  14. Radiosynthesis and in Vivo Evaluation of [11C]A1070722, a High Affinity GSK-3 PET Tracer in Primate Brain.

    PubMed

    Prabhakaran, Jaya; Zanderigo, Francesca; Sai, Kiran Kumar Solingapuram; Rubin-Falcone, Harry; Jorgensen, Matthew J; Kaplan, Jay R; Mintz, Akiva; Mann, J John; Kumar, J S Dileep

    2017-08-16

    Dysfunction of glycogen synthase kinase 3 (GSK-3) is implicated in the etiology of Alzheimer's disease, Parkinson's disease, diabetes, pain, and cancer. A radiotracer for functional positron emission tomography (PET) imaging could be used to study the kinase in brain disorders and to facilitate the development of small molecule inhibitors of GSK-3 for treatment. At present, there is no target-specific or validated PET tracer available for the in vivo monitoring of GSK-3. We radiolabeled the small molecule inhibitor [ 11 C]1-(7-methoxy- quinolin-4-yl)-3-(6-(trifluoromethyl)pyridin-2-yl)urea ([ 11 C]A1070722) with high affinity to GSK-3 (K i = 0.6 nM) in excellent radiochemical yield. PET imaging experiments in anesthetized vervet/African green monkey exhibited that [ 11 C]A1070722 penetrated the blood-brain barrier (BBB) and accumulated in brain regions, with highest radioactivity binding in frontal cortex followed by parietal cortex and anterior cingulate, and with the lowest bindings found in caudate, putamen, and thalamus, similarly to the known distribution of GSK-3 in human brain. Our studies suggest that [ 11 C]A1070722 can be a potential PET radiotracer for the in vivo quantification of GSK-3 in brain.

  15. Trans-synaptic (GABA-dopamine) modulation of cocaine induced dopamine release: A potential therapeutic strategy for cocaine abuse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewey, S.L.; Straughter-Moore, R.; Chen, R.

    We recently developed a new experimental strategy for measuring interactions between functionally-linked neurotransmitter systems in the primate and human brain with PET. As part of this research, we demonstrated that increases in endogenous GABA concentrations significantly reduced striatal dopamine concentrations in the primate brain. We report here the application of the neurotransmitter interaction paradigm with PET and with microdialysis to the investigation of a novel therapeutic strategy for treating cocaine abuse based on the ability of GABA to inhibit cocaine induced increases in striatal dopamine. Using gamma-vinyl GABA (GVG, a suicide inhibitor of GABA transaminase), we performed a series ofmore » PET studies where animals received a baseline PET scan with labeled raclopride injection, animals received cocaine (2.0 mg/kg). Normally, a cocaine challenge significantly reduces the striatal binding of {sup 11}C-raclopride. However, in animals pretreated with GVG, {sup 11}C-raclopride binding was less affected by a cocaine challenge compared to control studies. Furthermore, microdialysis studies in freely moving rats demonstrate that GVG (300 mg/kg) significantly inhibited cocaine-induced increases in extracellular dopamine release. GVG also attenuated cocaine-induced increases in locomotor activity. However, at a dose of 100 mg/kg, GVG had no effect. Similar findings were obtained with alcohol. Alcohol pretreatment dose dependantly (1-4 g/kg) inhibited cocaine-induced increases in extracellular dopamine concentrations in freely moving rats. Taken together, these studies suggest that therapeutic strategies targeted at increasing central GABA concentrations may be beneficial for the treatment of cocaine abuse.« less

  16. Mutation in a primate-conserved retrotransposon reveals a noncoding RNA as a mediator of infantile encephalopathy

    PubMed Central

    Cartault, François; Munier, Patrick; Benko, Edgar; Desguerre, Isabelle; Hanein, Sylvain; Boddaert, Nathalie; Bandiera, Simonetta; Vellayoudom, Jeanine; Krejbich-Trotot, Pascale; Bintner, Marc; Hoarau, Jean-Jacques; Girard, Muriel; Génin, Emmanuelle; de Lonlay, Pascale; Fourmaintraux, Alain; Naville, Magali; Rodriguez, Diana; Feingold, Josué; Renouil, Michel; Munnich, Arnold; Westhof, Eric; Fähling, Michael; Lyonnet, Stanislas; Henrion-Caude, Alexandra

    2012-01-01

    The human genome is densely populated with transposons and transposon-like repetitive elements. Although the impact of these transposons and elements on human genome evolution is recognized, the significance of subtle variations in their sequence remains mostly unexplored. Here we report homozygosity mapping of an infantile neurodegenerative disease locus in a genetic isolate. Complete DNA sequencing of the 400-kb linkage locus revealed a point mutation in a primate-specific retrotransposon that was transcribed as part of a unique noncoding RNA, which was expressed in the brain. In vitro knockdown of this RNA increased neuronal apoptosis, consistent with the inappropriate dosage of this RNA in vivo and with the phenotype. Moreover, structural analysis of the sequence revealed a small RNA-like hairpin that was consistent with the putative gain of a functional site when mutated. We show here that a mutation in a unique transposable element-containing RNA is associated with lethal encephalopathy, and we suggest that RNAs that harbor evolutionarily recent repetitive elements may play important roles in human brain development. PMID:22411793

  17. Behavioral consequences of selective damage to frontal pole and posterior cingulate cortices

    PubMed Central

    Mansouri, Farshad A.; Buckley, Mark J.; Mahboubi, Majid; Tanaka, Keiji

    2015-01-01

    Frontal pole cortex (FPC) and posterior cingulate cortex (PCC) have close neuroanatomical connections, and imaging studies have shown coactivation or codeactivation of these brain regions during performance of certain tasks. However, they are among the least well-understood regions of the primate brain. One reason for this is that the consequences of selective bilateral lesions to either structure have not previously been studied in any primate species. We studied the effects of circumscribed bilateral lesions to FPC or PCC on monkeys’ ability to perform an analog of Wisconsin Card Sorting Test (WCST) and related tasks. In contrast to lesions in other prefrontal regions, neither posttraining FPC nor PCC lesions impaired animals’ abilities to follow the rule switches that frequently occurred within the WCST task. However, FPC lesions were not without effect, because they augmented the ability of animals to adjust cognitive control after experiencing high levels of conflict (whereas PCC lesions did not have any effect). In addition, FPC-lesioned monkeys were more successful than controls or PCC-lesioned animals at remembering the relevant rule across experimentally imposed distractions involving either an intervening secondary task or a surprising delivery of free reward. Although prefrontal cortex posterior to FPC is specialized for mediating efficient goal-directed behavior to maximally exploit reward opportunities from ongoing tasks, our data led us to suggest that FPC is, instead, specialized for disengaging executive control from the current task and redistributing it to novel sources of reward to explore new opportunities/goals. PMID:26150522

  18. Evolution of New miRNAs and Cerebro-Cortical Development.

    PubMed

    Kosik, Kenneth S; Nowakowski, Tomasz

    2018-04-04

    The noncoding portion of the genome, including microRNAs, has been fertile evolutionary soil for cortical development in primates. A major contribution to cortical expansion in primates is the generation of novel precursor cell populations. Because miRNA expression profiles track closely with cell identity, it is likely that numerous novel microRNAs have contributed to cellular diversity in the brain. The tools to determine the genomic context within which novel microRNAs emerge and how they become integrated into molecular circuitry are now in hand. Expected final online publication date for the Annual Review of Neuroscience Volume 41 is July 8, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  19. The need for calcium imaging in nonhuman primates: New motor neuroscience and brain-machine interfaces.

    PubMed

    O'Shea, Daniel J; Trautmann, Eric; Chandrasekaran, Chandramouli; Stavisky, Sergey; Kao, Jonathan C; Sahani, Maneesh; Ryu, Stephen; Deisseroth, Karl; Shenoy, Krishna V

    2017-01-01

    A central goal of neuroscience is to understand how populations of neurons coordinate and cooperate in order to give rise to perception, cognition, and action. Nonhuman primates (NHPs) are an attractive model with which to understand these mechanisms in humans, primarily due to the strong homology of their brains and the cognitively sophisticated behaviors they can be trained to perform. Using electrode recordings, the activity of one to a few hundred individual neurons may be measured electrically, which has enabled many scientific findings and the development of brain-machine interfaces. Despite these successes, electrophysiology samples sparsely from neural populations and provides little information about the genetic identity and spatial micro-organization of recorded neurons. These limitations have spurred the development of all-optical methods for neural circuit interrogation. Fluorescent calcium signals serve as a reporter of neuronal responses, and when combined with post-mortem optical clearing techniques such as CLARITY, provide dense recordings of neuronal populations, spatially organized and annotated with genetic and anatomical information. Here, we advocate that this methodology, which has been of tremendous utility in smaller animal models, can and should be developed for use with NHPs. We review here several of the key opportunities and challenges for calcium-based optical imaging in NHPs. We focus on motor neuroscience and brain-machine interface design as representative domains of opportunity within the larger field of NHP neuroscience. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. A novel neural prosthesis providing long-term electrocorticography recording and cortical stimulation for epilepsy and brain-computer interface.

    PubMed

    Romanelli, Pantaleo; Piangerelli, Marco; Ratel, David; Gaude, Christophe; Costecalde, Thomas; Puttilli, Cosimo; Picciafuoco, Mauro; Benabid, Alim; Torres, Napoleon

    2018-05-11

    OBJECTIVE Wireless technology is a novel tool for the transmission of cortical signals. Wireless electrocorticography (ECoG) aims to improve the safety and diagnostic gain of procedures requiring invasive localization of seizure foci and also to provide long-term recording of brain activity for brain-computer interfaces (BCIs). However, no wireless devices aimed at these clinical applications are currently available. The authors present the application of a fully implantable and externally rechargeable neural prosthesis providing wireless ECoG recording and direct cortical stimulation (DCS). Prolonged wireless ECoG monitoring was tested in nonhuman primates by using a custom-made device (the ECoG implantable wireless 16-electrode [ECOGIW-16E] device) containing a 16-contact subdural grid. This is a preliminary step toward large-scale, long-term wireless ECoG recording in humans. METHODS The authors implanted the ECOGIW-16E device over the left sensorimotor cortex of a nonhuman primate ( Macaca fascicularis), recording ECoG signals over a time span of 6 months. Daily electrode impedances were measured, aiming to maintain the impedance values below a threshold of 100 KΩ. Brain mapping was obtained through wireless cortical stimulation at fixed intervals (1, 3, and 6 months). After 6 months, the device was removed. The authors analyzed cortical tissues by using conventional histological and immunohistological investigation to assess whether there was evidence of damage after the long-term implantation of the grid. RESULTS The implant was well tolerated; no neurological or behavioral consequences were reported in the monkey, which resumed his normal activities within a few hours of the procedure. The signal quality of wireless ECoG remained excellent over the 6-month observation period. Impedance values remained well below the threshold value; the average impedance per contact remains approximately 40 KΩ. Wireless cortical stimulation induced movements of the upper and lower limbs, and elicited fine movements of the digits as well. After the monkey was euthanized, the grid was found to be encapsulated by a newly formed dural sheet. The grid removal was performed easily, and no direct adhesions of the grid to the cortex were found. Conventional histological studies showed no cortical damage in the brain region covered by the grid, except for a single microscopic spot of cortical necrosis (not visible to the naked eye) in a region that had undergone repeated procedures of electrical stimulation. Immunohistological studies of the cortex underlying the grid showed a mild inflammatory process. CONCLUSIONS This preliminary experience in a nonhuman primate shows that a wireless neuroprosthesis, with related long-term ECoG recording (up to 6 months) and multiple DCSs, was tolerated without sequelae. The authors predict that epilepsy surgery could realize great benefit from this novel prosthesis, providing an extended time span for ECoG recording.

  1. Effects of chronic alcohol consumption on neuronal function in the non-human primate BNST

    EPA Science Inventory

    Alterations in hypothalamic–pituitary–adrenal axis function contribute to many of the adverse behavioral effects of chronic voluntary alcohol drinking, including alcohol dependence and mood disorders; limbic brain structures such as the bed nucleus of the stria termin...

  2. The Social Brain Is Not Enough: On the Importance of the Ecological Brain for the Origin of Language.

    PubMed

    Ferretti, Francesco

    2016-01-01

    In this paper, I assume that the study of the origin of language is strictly connected to the analysis of the traits that distinguish human language from animal communication. Usually, human language is said to be unique in the animal kingdom because it enables and/or requires intentionality or mindreading. By emphasizing the importance of mindreading, the social brain hypothesis has provided major insights within the origin of language debate. However, as studies on non-human primates have demonstrated that intentional forms of communication are already present in these species to a greater or lesser extent, I maintain that the social brain is a necessary but not a sufficient condition to explain the uniqueness of language. In this paper, I suggest that the distinctive feature of human communication resides in the ability to tell stories, and that the origin of language should be traced with respect to the capacity to produce discourses, rather than phrases or words. As narrative requires the ability to link events distant from one another in space and time, my proposal is that in order to explain the origin of language, we need to appeal to both the social brain and the ecological brain - that is, the cognitive devices which allow us to mentally travel in space and time.

  3. Social buffering of stress responses in nonhuman primates: Maternal regulation of the development of emotional regulatory brain circuits.

    PubMed

    Sanchez, Mar M; McCormack, Kai M; Howell, Brittany R

    2015-01-01

    Social buffering, the phenomenon by which the presence of a familiar individual reduces or even eliminates stress- and fear-induced responses, exists in different animal species and has been examined in the context of the mother-infant relationship, in addition to adults. Although it is a well-known effect, the biological mechanisms that underlie it as well as its developmental impact are not well understood. Here, we provide a review of evidence of social and maternal buffering of stress reactivity in nonhuman primates, and some data from our group suggesting that when the mother-infant relationship is disrupted, maternal buffering is impaired. This evidence underscores the critical role that maternal care plays for proper regulation and development of emotional and stress responses of primate infants. Disruptions of the parent-infant bond constitute early adverse experiences associated with increased risk for psychopathology. We will focus on infant maltreatment, a devastating experience not only for humans, but for nonhuman primates as well. Taking advantage of this naturalistic animal model of adverse maternal caregiving, we have shown that competent maternal care is critical for the development of healthy attachment, social behavior, and emotional and stress regulation, as well as of the neural circuits underlying these functions.

  4. Social Buffering of Stress Responses in Nonhuman Primates: Maternal Regulation of the Development of Emotional Regulatory Brain Circuits

    PubMed Central

    McCormack, Kai M.; Howell, Brittany R.

    2015-01-01

    Social buffering, the phenomenon by which the presence of a familiar individual reduces or even eliminates stress- and fear-induced responses exists in different animal species, and has been examined in the context of the mother-infant relationship in addition to adults. Although it is a well-known effect, the biological mechanisms, which underlie it, as well as its developmental impact are not well understood. Here we provide a review of evidence of social and maternal buffering of stress reactivity in nonhuman primates, and some data from our group suggesting that when the mother-infant relationship is disrupted maternal buffering is impaired. This evidence underscores the critical role that maternal care plays for proper regulation and development of emotional and stress responses of primate infants. Disruptions of the parent-infant bond constitute early adverse experiences associated with increased risk for psychopathology. We will focus on infant maltreatment, a devastating experience not only for humans, but for nonhuman primates as well. Taking advantage of this naturalistic animal model of adverse maternal caregiving we have shown that competent maternal care is critical for the development of healthy attachment, social behavior and emotional and stress regulation, as well as of neural circuits underlying these functions. PMID:26324227

  5. Research Review: A Neuroscience Framework for Pediatric Anxiety Disorders

    ERIC Educational Resources Information Center

    Pine, Daniel S.

    2007-01-01

    Across a range of mammalian species, early developmental variations in fear-related behaviors constrain patterns of anxious behavior throughout life. Individual differences in anxiety among rodents and non-human primates have been shown to reflect early-life influences of genes and the environment on brain circuitry. However, in humans, the manner…

  6. The statistics of the vestibular input experienced during natural self-motion differ between rodents and primates.

    PubMed

    Carriot, Jérome; Jamali, Mohsen; Chacron, Maurice J; Cullen, Kathleen E

    2017-04-15

    In order to understand how the brain's coding strategies are adapted to the statistics of the sensory stimuli experienced during everyday life, the use of animal models is essential. Mice and non-human primates have become common models for furthering our knowledge of the neuronal coding of natural stimuli, but differences in their natural environments and behavioural repertoire may impact optimal coding strategies. Here we investigated the structure and statistics of the vestibular input experienced by mice versus non-human primates during natural behaviours, and found important differences. Our data establish that the structure and statistics of natural signals in non-human primates more closely resemble those observed previously in humans, suggesting similar coding strategies for incoming vestibular input. These results help us understand how the effects of active sensing and biomechanics will differentially shape the statistics of vestibular stimuli across species, and have important implications for sensory coding in other systems. It is widely believed that sensory systems are adapted to the statistical structure of natural stimuli, thereby optimizing coding. Recent evidence suggests that this is also the case for the vestibular system, which senses self-motion and in turn contributes to essential brain functions ranging from the most automatic reflexes to spatial perception and motor coordination. However, little is known about the statistics of self-motion stimuli actually experienced by freely moving animals in their natural environments. Accordingly, here we examined the natural self-motion signals experienced by mice and monkeys: two species commonly used to study vestibular neural coding. First, we found that probability distributions for all six dimensions of motion (three rotations, three translations) in both species deviated from normality due to long tails. Interestingly, the power spectra of natural rotational stimuli displayed similar structure for both species and were not well fitted by power laws. This result contrasts with reports that the natural spectra of other sensory modalities (i.e. vision, auditory and tactile) instead show a power-law relationship with frequency, which indicates scale invariance. Analysis of natural translational stimuli revealed important species differences as power spectra deviated from scale invariance for monkeys but not for mice. By comparing our results to previously published data for humans, we found the statistical structure of natural self-motion stimuli in monkeys and humans more closely resemble one another. Our results thus predict that, overall, neural coding strategies used by vestibular pathways to encode natural self-motion stimuli are fundamentally different in rodents and primates. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  7. The statistics of the vestibular input experienced during natural self‐motion differ between rodents and primates

    PubMed Central

    Carriot, Jérome; Jamali, Mohsen; Chacron, Maurice J.

    2017-01-01

    Key points In order to understand how the brain's coding strategies are adapted to the statistics of the sensory stimuli experienced during everyday life, the use of animal models is essential.Mice and non‐human primates have become common models for furthering our knowledge of the neuronal coding of natural stimuli, but differences in their natural environments and behavioural repertoire may impact optimal coding strategies.Here we investigated the structure and statistics of the vestibular input experienced by mice versus non‐human primates during natural behaviours, and found important differences.Our data establish that the structure and statistics of natural signals in non‐human primates more closely resemble those observed previously in humans, suggesting similar coding strategies for incoming vestibular input.These results help us understand how the effects of active sensing and biomechanics will differentially shape the statistics of vestibular stimuli across species, and have important implications for sensory coding in other systems. Abstract It is widely believed that sensory systems are adapted to the statistical structure of natural stimuli, thereby optimizing coding. Recent evidence suggests that this is also the case for the vestibular system, which senses self‐motion and in turn contributes to essential brain functions ranging from the most automatic reflexes to spatial perception and motor coordination. However, little is known about the statistics of self‐motion stimuli actually experienced by freely moving animals in their natural environments. Accordingly, here we examined the natural self‐motion signals experienced by mice and monkeys: two species commonly used to study vestibular neural coding. First, we found that probability distributions for all six dimensions of motion (three rotations, three translations) in both species deviated from normality due to long tails. Interestingly, the power spectra of natural rotational stimuli displayed similar structure for both species and were not well fitted by power laws. This result contrasts with reports that the natural spectra of other sensory modalities (i.e. vision, auditory and tactile) instead show a power‐law relationship with frequency, which indicates scale invariance. Analysis of natural translational stimuli revealed important species differences as power spectra deviated from scale invariance for monkeys but not for mice. By comparing our results to previously published data for humans, we found the statistical structure of natural self‐motion stimuli in monkeys and humans more closely resemble one another. Our results thus predict that, overall, neural coding strategies used by vestibular pathways to encode natural self‐motion stimuli are fundamentally different in rodents and primates. PMID:28083981

  8. Comparative analysis of cortical layering and supragranular layer enlargement in rodent carnivore and primate species.

    PubMed

    Hutsler, Jeffrey J; Lee, Dong-Geun; Porter, Kristin K

    2005-08-02

    The mammalian cerebral cortex is composed of individual layers characterized by the cell types they contain and their afferent and efferent connections. The current study examined the raw, and size-normalized, laminar thicknesses in three cortical regions (somatosensory, motor, and premotor) of fourteen species from three orders of mammals: primates, carnivores, and rodents. The proportional size of the pyramidal cell layers (supra- and infragranular) varied between orders but was similar within orders despite wide variance in absolute cortical thickness. Further, supragranular layer thickness was largest in primates (46 +/- 3 percent), followed by carnivores (36 +/- 3 percent), and then rodents (19 +/- 4 percent), suggesting a distinct difference in the proportion of cortex devoted to corticocortical connectivity across these orders. Although measures of supragranular layer thickness are highly correlated with measures of overall brain size, such associations are not present when independent contrasts are used to control for phylogenetic inertia. Interestingly, neurogenesis time span remains strongly associated with supragranular layer thickness despite size normalization and controlling for phylogenetic inertia. Such layering differences between orders, and similarities amongst species within an order, suggest that supragranular layer expansion may have occurred early in mammalian evolution and may be related to ontogenetic variables such as neurogenesis time span rather than measures of overall size.

  9. Modeling Rett Syndrome Using TALEN-Edited MECP2 Mutant Cynomolgus Monkeys.

    PubMed

    Chen, Yongchang; Yu, Juehua; Niu, Yuyu; Qin, Dongdong; Liu, Hailiang; Li, Gang; Hu, Yingzhou; Wang, Jiaojian; Lu, Yi; Kang, Yu; Jiang, Yong; Wu, Kunhua; Li, Siguang; Wei, Jingkuan; He, Jing; Wang, Junbang; Liu, Xiaojing; Luo, Yuping; Si, Chenyang; Bai, Raoxian; Zhang, Kunshan; Liu, Jie; Huang, Shaoyong; Chen, Zhenzhen; Wang, Shuang; Chen, Xiaoying; Bao, Xinhua; Zhang, Qingping; Li, Fuxing; Geng, Rui; Liang, Aibin; Shen, Dinggang; Jiang, Tianzi; Hu, Xintian; Ma, Yuanye; Ji, Weizhi; Sun, Yi Eve

    2017-05-18

    Gene-editing technologies have made it feasible to create nonhuman primate models for human genetic disorders. Here, we report detailed genotypes and phenotypes of TALEN-edited MECP2 mutant cynomolgus monkeys serving as a model for a neurodevelopmental disorder, Rett syndrome (RTT), which is caused by loss-of-function mutations in the human MECP2 gene. Male mutant monkeys were embryonic lethal, reiterating that RTT is a disease of females. Through a battery of behavioral analyses, including primate-unique eye-tracking tests, in combination with brain imaging via MRI, we found a series of physiological, behavioral, and structural abnormalities resembling clinical manifestations of RTT. Moreover, blood transcriptome profiling revealed that mutant monkeys resembled RTT patients in immune gene dysregulation. Taken together, the stark similarity in phenotype and/or endophenotype between monkeys and patients suggested that gene-edited RTT founder monkeys would be of value for disease mechanistic studies as well as development of potential therapeutic interventions for RTT. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Genetic variation and gene expression across multiple tissues and developmental stages in a non-human primate

    PubMed Central

    Jasinska, Anna J.; Zelaya, Ivette; Service, Susan K.; Peterson, Christine B.; Cantor, Rita M.; Choi, Oi-Wa; DeYoung, Joseph; Eskin, Eleazar; Fairbanks, Lynn A.; Fears, Scott; Furterer, Allison E.; Huang, Yu S.; Ramensky, Vasily; Schmitt, Christopher A.; Svardal, Hannes; Jorgensen, Matthew J.; Kaplan, Jay R.; Villar, Diego; Aken, Bronwen L.; Flicek, Paul; Nag, Rishi; Wong, Emily S.; Blangero, John; Dyer, Thomas D.; Bogomolov, Marina; Benjamini, Yoav; Weinstock, George M.; Dewar, Ken; Sabatti, Chiara; Wilson, Richard K.; Jentsch, J. David; Warren, Wesley; Coppola, Giovanni; Woods, Roger P.; Freimer, Nelson B.

    2017-01-01

    By analyzing multi-tissue gene expression and genome-wide genetic variation data in samples from a vervet monkey pedigree, we generated a transcriptome resource and produced the first catalogue of expression quantitative trait loci (eQTLs) in a non-human primate model. This catalogue contains more genome-wide significant eQTLs, per sample, than comparable human resources, and reveals sex and age-related expression patterns. Findings include a master regulatory locus that likely plays a role in immune function, and a locus regulating hippocampal long non-coding RNAs (lncRNAs), whose expression correlates with hippocampal volume. This resource will facilitate genetic investigation of quantitative traits, including brain and behavioral phenotypes relevant to neuropsychiatric disorders. PMID:29083405

  11. Network science and the human brain: Using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease.

    PubMed

    Mears, David; Pollard, Harvey B

    2016-06-01

    Over the past 15 years, the emerging field of network science has revealed the key features of brain networks, which include small-world topology, the presence of highly connected hubs, and hierarchical modularity. The value of network studies of the brain is underscored by the range of network alterations that have been identified in neurological and psychiatric disorders, including epilepsy, depression, Alzheimer's disease, schizophrenia, and many others. Here we briefly summarize the concepts of graph theory that are used to quantify network properties and describe common experimental approaches for analysis of brain networks of structural and functional connectivity. These range from tract tracing to functional magnetic resonance imaging, diffusion tensor imaging, electroencephalography, and magnetoencephalography. We then summarize the major findings from the application of graph theory to nervous systems ranging from Caenorhabditis elegans to more complex primate brains, including man. Focusing, then, on studies involving the amygdala, a brain region that has attracted intense interest as a center for emotional processing, fear, and motivation, we discuss the features of the amygdala in brain networks for fear conditioning and emotional perception. Finally, to highlight the utility of graph theory for studying dysfunction of the amygdala in mental illness, we review data with regard to changes in the hub properties of the amygdala in brain networks of patients with depression. We suggest that network studies of the human brain may serve to focus attention on regions and connections that act as principal drivers and controllers of brain function in health and disease. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  12. Auditory cortex of bats and primates: managing species-specific calls for social communication

    PubMed Central

    Kanwal, Jagmeet S.; Rauschecker, Josef P.

    2014-01-01

    Individuals of many animal species communicate with each other using sounds or “calls” that are made up of basic acoustic patterns and their combinations. We are interested in questions about the processing of communication calls and their representation within the mammalian auditory cortex. Our studies compare in particular two species for which a large body of data has accumulated: the mustached bat and the rhesus monkey. We conclude that the brains of both species share a number of functional and organizational principles, which differ only in the extent to which and how they are implemented. For instance, neurons in both species use “combination-sensitivity” (nonlinear spectral and temporal integration of stimulus components) as a basic mechanism to enable exquisite sensitivity to and selectivity for particular call types. Whereas combination-sensitivity is already found abundantly at the primary auditory cortical and also at subcortical levels in bats, it becomes prevalent only at the level of the lateral belt in the secondary auditory cortex of monkeys. A parallel-hierarchical framework for processing complex sounds up to the level of the auditory cortex in bats and an organization into parallel-hierarchical, cortico-cortical auditory processing streams in monkeys is another common principle. Response specialization of neurons seems to be more pronounced in bats than in monkeys, whereas a functional specialization into “what” and “where” streams in the cerebral cortex is more pronounced in monkeys than in bats. These differences, in part, are due to the increased number and larger size of auditory areas in the parietal and frontal cortex in primates. Accordingly, the computational prowess of neural networks and the functional hierarchy resulting in specializations is established early and accelerated across brain regions in bats. The principles proposed here for the neural “management” of species-specific calls in bats and primates can be tested by studying the details of call processing in additional species. Also, computational modeling in conjunction with coordinated studies in bats and monkeys can help to clarify the fundamental question of perceptual invariance (or “constancy”) in call recognition, which has obvious relevance for understanding speech perception and its disorders in humans. PMID:17485400

  13. Robust modulation of arousal regulation, performance, and frontostriatal activity through central thalamic deep brain stimulation in healthy nonhuman primates

    PubMed Central

    Ryou, Jae-Wook; Wei, Xuefeng F.; Butson, Christopher R.; Schiff, Nicholas D.; Purpura, Keith P.

    2016-01-01

    The central thalamus (CT) is a key component of the brain-wide network underlying arousal regulation and sensory-motor integration during wakefulness in the mammalian brain. Dysfunction of the CT, typically a result of severe brain injury (SBI), leads to long-lasting impairments in arousal regulation and subsequent deficits in cognition. Central thalamic deep brain stimulation (CT-DBS) is proposed as a therapy to reestablish and maintain arousal regulation to improve cognition in select SBI patients. However, a mechanistic understanding of CT-DBS and an optimal method of implementing this promising therapy are unknown. Here we demonstrate in two healthy nonhuman primates (NHPs), Macaca mulatta, that location-specific CT-DBS improves performance in visuomotor tasks and is associated with physiological effects consistent with enhancement of endogenous arousal. Specifically, CT-DBS within the lateral wing of the central lateral nucleus and the surrounding medial dorsal thalamic tegmental tract (DTTm) produces a rapid and robust modulation of performance and arousal, as measured by neuronal activity in the frontal cortex and striatum. Notably, the most robust and reliable behavioral and physiological responses resulted when we implemented a novel method of CT-DBS that orients and shapes the electric field within the DTTm using spatially separated DBS leads. Collectively, our results demonstrate that selective activation within the DTTm of the CT robustly regulates endogenous arousal and enhances cognitive performance in the intact NHP; these findings provide insights into the mechanism of CT-DBS and further support the development of CT-DBS as a therapy for reestablishing arousal regulation to support cognition in SBI patients. PMID:27582298

  14. Language systems in normal and aphasic human subjects: functional imaging studies and inferences from animal studies.

    PubMed

    Wise, Richard J S

    2003-01-01

    The old neurological model of language, based on the writings of Broca, Wernicke and Lichtheim in the 19th century, is now undergoing major modifications. Observations on the anatomy and physiology of auditory processing in non-human primates are giving strong indicators as to how speech perception is organised in the human brain. In the light of this knowledge, functional activation studies with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) are achieving a new level of precision in the investigation of language organisation in the human brain, in a manner not possible with observations on patients with aphasic stroke. Although the use of functional imaging to inform methods of improving aphasia rehabilitation remains underdeveloped, there are strong indicators that this methodology will provide the means to research a very imperfectly developed area of therapy.

  15. Functional mastery of percussive technology in nut-cracking and stone-flaking actions: experimental comparison and implications for the evolution of the human brain

    PubMed Central

    Bril, Blandine; Smaers, Jeroen; Steele, James; Rein, Robert; Nonaka, Tetsushi; Dietrich, Gilles; Biryukova, Elena; Hirata, Satoshi; Roux, Valentine

    2012-01-01

    Various authors have suggested behavioural similarities between tool use in early hominins and chimpanzee nut cracking, where nut cracking might be interpreted as a precursor of more complex stone flaking. In this paper, we bring together and review two separate strands of research on chimpanzee and human tool use and cognitive abilities. Firstly, and in the greatest detail, we review our recent experimental work on behavioural organization and skill acquisition in nut-cracking and stone-knapping tasks, highlighting similarities and differences between the two tasks that may be informative for the interpretation of stone tools in the early archaeological record. Secondly, and more briefly, we outline a model of the comparative neuropsychology of primate tool use and discuss recent descriptive anatomical and statistical analyses of anthropoid primate brain evolution, focusing on cortico-cerebellar systems. By juxtaposing these two strands of research, we are able to identify unsolved problems that can usefully be addressed by future research in each of these two research areas. PMID:22106427

  16. Monkey vocal tracts are speech-ready.

    PubMed

    Fitch, W Tecumseh; de Boer, Bart; Mathur, Neil; Ghazanfar, Asif A

    2016-12-01

    For four decades, the inability of nonhuman primates to produce human speech sounds has been claimed to stem from limitations in their vocal tract anatomy, a conclusion based on plaster casts made from the vocal tract of a monkey cadaver. We used x-ray videos to quantify vocal tract dynamics in living macaques during vocalization, facial displays, and feeding. We demonstrate that the macaque vocal tract could easily produce an adequate range of speech sounds to support spoken language, showing that previous techniques based on postmortem samples drastically underestimated primate vocal capabilities. Our findings imply that the evolution of human speech capabilities required neural changes rather than modifications of vocal anatomy. Macaques have a speech-ready vocal tract but lack a speech-ready brain to control it.

  17. WINCS Harmoni: Closed-loop dynamic neurochemical control of therapeutic interventions

    NASA Astrophysics Data System (ADS)

    Lee, Kendall H.; Lujan, J. Luis; Trevathan, James K.; Ross, Erika K.; Bartoletta, John J.; Park, Hyung Ook; Paek, Seungleal Brian; Nicolai, Evan N.; Lee, Jannifer H.; Min, Hoon-Ki; Kimble, Christopher J.; Blaha, Charles D.; Bennet, Kevin E.

    2017-04-01

    There has been significant progress in understanding the role of neurotransmitters in normal and pathologic brain function. However, preclinical trials aimed at improving therapeutic interventions do not take advantage of real-time in vivo neurochemical changes in dynamic brain processes such as disease progression and response to pharmacologic, cognitive, behavioral, and neuromodulation therapies. This is due in part to a lack of flexible research tools that allow in vivo measurement of the dynamic changes in brain chemistry. Here, we present a research platform, WINCS Harmoni, which can measure in vivo neurochemical activity simultaneously across multiple anatomical targets to study normal and pathologic brain function. In addition, WINCS Harmoni can provide real-time neurochemical feedback for closed-loop control of neurochemical levels via its synchronized stimulation and neurochemical sensing capabilities. We demonstrate these and other key features of this platform in non-human primate, swine, and rodent models of deep brain stimulation (DBS). Ultimately, systems like the one described here will improve our understanding of the dynamics of brain physiology in the context of neurologic disease and therapeutic interventions, which may lead to the development of precision medicine and personalized therapies for optimal therapeutic efficacy.

  18. Intracerebral infection of Cebus apella with the XJ-Clone 3 strain of Junín virus.

    PubMed

    Carballal, G; Oubiña, J R; Molinas, F C; Nagle, C; de la Vega, M T; Videla, C; Elsner, B

    1987-03-01

    To assess the usefulness of the South American primate Cebus apella as a model for neurovirulence of Junín virus, eight monkeys were inoculated with 10(5) LD50 of the attenuated XJ-Clone 3 Junín virus strain by the intrathalamic route. After the second week, weight loss and polyadenopathies were observed in most animals, one-half of which had a transient leukothrombocytopenia. Moderate clinical central nervous system (CNS) involvement was present in four of eight monkeys, while the rest had only mild neurologic signs. All recovered except one, which developed a deep coma and was killed in a pre-mortem stage at 18 days post-infection (pi). Junín virus was isolated from the throat from five, from the blood from three, and from the brain from two monkeys. In the most severely ill animal, virus titers higher than viremia were detected in both inoculated and contralateral brain hemispheres, as well as in lung, lymph node, and small intestine. Junín antigens and "in vivo" bound immunoglobulins were detected by immunofluorescence (IF) in the brain of four animals at 18, 21, 40, and 155 days pi. Moderate lymphocytic parenchymal and meningeal infiltration were observed in the brain of four animals, and gliosis was also present in the most affected monkey. Although the clinical response to infection was not uniform, all infected monkeys developed high IF antibodies. Cebus apella cannot be used as a highly sensitive model for Argentine hemorrhagic fever (AHF). However, the results obtained show that the XJ-Clone 3 strain can replicate in the primate CNS and to induce lesions and immunoglobulin deposition. In addition, viral persistence is suggested by the late detection of viral antigens in brain at 40 and 155 days pi.

  19. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain.

    PubMed

    Emborg, Marina E; Liu, Yan; Xi, Jiajie; Zhang, Xiaoqing; Yin, Yingnan; Lu, Jianfeng; Joers, Valerie; Swanson, Christine; Holden, James E; Zhang, Su-Chun

    2013-03-28

    The generation of induced pluripotent stem cells (iPSCs) opens up the possibility for personalized cell therapy. Here, we show that transplanted autologous rhesus monkey iPSC-derived neural progenitors survive for up to 6 months and differentiate into neurons, astrocytes, and myelinating oligodendrocytes in the brains of MPTP-induced hemiparkinsonian rhesus monkeys with a minimal presence of inflammatory cells and reactive glia. This finding represents a significant step toward personalized regenerative therapies. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Toward the Language-Ready Brain: Biological Evolution and Primate Comparisons.

    PubMed

    Arbib, Michael A

    2017-02-01

    The approach to language evolution suggested here focuses on three questions: How did the human brain evolve so that humans can develop, use, and acquire languages? How can the evolutionary quest be informed by studying brain, behavior, and social interaction in monkeys, apes, and humans? How can computational modeling advance these studies? I hypothesize that the brain is language ready in that the earliest humans had protolanguages but not languages (i.e., communication systems endowed with rich and open-ended lexicons and grammars supporting a compositional semantics), and that it took cultural evolution to yield societies (a cultural constructed niche) in which language-ready brains could become language-using brains. The mirror system hypothesis is a well-developed example of this approach, but I offer it here not as a closed theory but as an evolving framework for the development and analysis of conflicting subhypotheses in the hope of their eventual integration. I also stress that computational modeling helps us understand the evolving role of mirror neurons, not in and of themselves, but only in their interaction with systems "beyond the mirror." Because a theory of evolution needs a clear characterization of what it is that evolved, I also outline ideas for research in neurolinguistics to complement studies of the evolution of the language-ready brain. A clear challenge is to go beyond models of speech comprehension to include sign language and models of production, and to link language to visuomotor interaction with the physical and social world.

  1. Neuropharmacological sequelae of persistent CNS viral infections: lessons from Borna disease virus.

    PubMed

    Solbrig, Marylou V; Koob, George F

    2003-03-01

    Borna Disease Virus (BDV) is a neurotropic RNA virus that is worldwide in distribution, causing movement and behavior disorders in a wide range of animal species. BDV has also been reported to be associated with neuropsychiatric diseases of humans by serologic study and by recovery of nucleic acid or virus from blood or brain. Natural infections of horses and sheep produce encephalitis with erratic excited behaviors, hyperkinetic movement or gait abnormalities; naturally infected cats have ataxic "staggering disease." Experimentally infected primates develop hyperactivity, aggression, disinhibition, then apathy; prosimians (lower primates) have hyperactivity, circadian disruption, abnormal social and dominance behaviors, and postural disorders. However, the neuropharmacological determinants of BD phenotypes in laboratory and natural hosts are incompletely understood. Here we review how experimentally infected rodents have provided models for examining behavioral, pharmacologic, and biochemical responses to viral challenge, and how rodents experimentally infected as neonates or as adolescents are providing models for examining age-specific neuropharmacological adaptations to viral injury.

  2. Arboreal adaptations of body fat in wild toque macaques (Macaca sinica) and the evolution of adiposity in primates.

    PubMed

    Dittus, Wolfgang P J

    2013-11-01

    There is a paucity of information on body composition and fat patterning in wild nonhuman primates. Dissected adipose tissue from wild toque macaques (Macaca sinica) (WTM), feeding on a natural diet, accounted for 2.1% of body weight. This was far less than fatness reported for nonhuman primates raised in captivity or for contemporary humans. In WTM, fatness increased with age and diet richness, but did not differ by sex. In WTM (none of which were obese) intra-abdominal fat filled first, and "excess" fat was stored peripherally in a ratio of about 6:1. Intermuscular fat was minimal (0.1%). The superficial paunch held <15% of subcutaneous fat weight in contrast to its much larger proportions in obese humans and captive monkeys where most added fat accumulates subcutaneously. With increasing total adiposity, accumulating fat shifted in its distribution among eight different main internal and peripheral deposit areas-consistent with maintaining body balance and a low center of gravity. The available data suggest that, in arboreal primates, adaptations for agile locomotion and terminal branch feeding set constraints on the quantity and distribution of fat. The absence of a higher percentage of body fat in females and neonates (as are typical of humans) suggests that arboreal adaptations preclude the development of fat-dependent, large-brained infants and the adipose-rich mothers needed to sustain them. The lifestyle and body composition of wild primates represent a more appropriate model for early human foragers than well-fed captive monkeys do. Copyright © 2013 Wiley Periodicals, Inc.

  3. Long-Term Safety of Repeated Blood-Brain Barrier Opening via Focused Ultrasound with Microbubbles in Non-Human Primates Performing a Cognitive Task.

    PubMed

    Downs, Matthew E; Buch, Amanda; Sierra, Carlos; Karakatsani, Maria Eleni; Teichert, Tobias; Chen, Shangshang; Konofagou, Elisa E; Ferrera, Vincent P

    2015-01-01

    Focused Ultrasound (FUS) coupled with intravenous administration of microbubbles (MB) is a non-invasive technique that has been shown to reliably open (increase the permeability of) the blood-brain barrier (BBB) in multiple in vivo models including non-human primates (NHP). This procedure has shown promise for clinical and basic science applications, yet the safety and potential neurological effects of long term application in NHP requires further investigation under parameters shown to be efficacious in that species (500 kHz, 200-400 kPa, 4-5 μm MB, 2 minute sonication). In this study, we repeatedly opened the BBB in the caudate and putamen regions of the basal ganglia of 4 NHP using FUS with systemically-administered MB over 4-20 months. We assessed the safety of the FUS with MB procedure using MRI to detect edema or hemorrhaging in the brain. Contrast enhanced T1-weighted MRI sequences showed a 98% success rate for openings in the targeted regions. T2-weighted and SWI sequences indicated a lack edema in the majority of the cases. We investigated potential neurological effects of the FUS with MB procedure through quantitative cognitive testing of' visual, cognitive, motivational, and motor function using a random dot motion task with reward magnitude bias presented on a touchpanel display. Reaction times during the task significantly increased on the day of the FUS with MB procedure. This increase returned to baseline within 4-5 days after the procedure. Visual motion discrimination thresholds were unaffected. Our results indicate FUS with MB can be a safe method for repeated opening of the BBB at the basal ganglia in NHP for up to 20 months without any long-term negative physiological or neurological effects with the parameters used.

  4. A discrepancy within primate spatial vision and its bearing on the definition of edge detection processes in machine vision

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1990-01-01

    The visual perception of form information is considered to be based on the functioning of simple and complex neurons in the primate striate cortex. However, a review of the physiological data on these brain cells cannot be harmonized with either the perceptual spatial frequency performance of primates or the performance which is necessary for form perception in humans. This discrepancy together with recent interest in cortical-like and perceptual-like processing in image coding and machine vision prompted a series of image processing experiments intended to provide some definition of the selection of image operators. The experiments were aimed at determining operators which could be used to detect edges in a computational manner consistent with the visual perception of structure in images. Fundamental issues were the selection of size (peak spatial frequency) and circular versus oriented operators (or some combination). In a previous study, circular difference-of-Gaussian (DOG) operators, with peak spatial frequency responses at about 11 and 33 cyc/deg were found to capture the primary structural information in images. Here larger scale circular DOG operators were explored and led to severe loss of image structure and introduced spatial dislocations (due to blur) in structure which is not consistent with visual perception. Orientation sensitive operators (akin to one class of simple cortical neurons) introduced ambiguities of edge extent regardless of the scale of the operator. For machine vision schemes which are functionally similar to natural vision form perception, two circularly symmetric very high spatial frequency channels appear to be necessary and sufficient for a wide range of natural images. Such a machine vision scheme is most similar to the physiological performance of the primate lateral geniculate nucleus rather than the striate cortex.

  5. Primate vocal communication: a useful tool for understanding human speech and language evolution?

    PubMed

    Fedurek, Pawel; Slocombe, Katie E

    2011-04-01

    Language is a uniquely human trait, and questions of how and why it evolved have been intriguing scientists for years. Nonhuman primates (primates) are our closest living relatives, and their behavior can be used to estimate the capacities of our extinct ancestors. As humans and many primate species rely on vocalizations as their primary mode of communication, the vocal behavior of primates has been an obvious target for studies investigating the evolutionary roots of human speech and language. By studying the similarities and differences between human and primate vocalizations, comparative research has the potential to clarify the evolutionary processes that shaped human speech and language. This review examines some of the seminal and recent studies that contribute to our knowledge regarding the link between primate calls and human language and speech. We focus on three main aspects of primate vocal behavior: functional reference, call combinations, and vocal learning. Studies in these areas indicate that despite important differences, primate vocal communication exhibits some key features characterizing human language. They also indicate, however, that some critical aspects of speech, such as vocal plasticity, are not shared with our primate cousins. We conclude that comparative research on primate vocal behavior is a very promising tool for deepening our understanding of the evolution of human speech and language, but much is still to be done as many aspects of monkey and ape vocalizations remain largely unexplored.

  6. Comparative Methylome Analyses Identify Epigenetic Regulatory Loci of Human Brain Evolution

    PubMed Central

    Mendizabal, Isabel; Shi, Lei; Keller, Thomas E.; Konopka, Genevieve; Preuss, Todd M.; Hsieh, Tzung-Fu; Hu, Enzhi; Zhang, Zhe; Su, Bing; Yi, Soojin V.

    2016-01-01

    How do epigenetic modifications change across species and how do these modifications affect evolution? These are fundamental questions at the forefront of our evolutionary epigenomic understanding. Our previous work investigated human and chimpanzee brain methylomes, but it was limited by the lack of outgroup data which is critical for comparative (epi)genomic studies. Here, we compared whole genome DNA methylation maps from brains of humans, chimpanzees and also rhesus macaques (outgroup) to elucidate DNA methylation changes during human brain evolution. Moreover, we validated that our approach is highly robust by further examining 38 human-specific DMRs using targeted deep genomic and bisulfite sequencing in an independent panel of 37 individuals from five primate species. Our unbiased genome-scan identified human brain differentially methylated regions (DMRs), irrespective of their associations with annotated genes. Remarkably, over half of the newly identified DMRs locate in intergenic regions or gene bodies. Nevertheless, their regulatory potential is on par with those of promoter DMRs. An intriguing observation is that DMRs are enriched in active chromatin loops, suggesting human-specific evolutionary remodeling at a higher-order chromatin structure. These findings indicate that there is substantial reprogramming of epigenomic landscapes during human brain evolution involving noncoding regions. PMID:27563052

  7. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain

    PubMed Central

    Krienen, Fenna M.; Yeo, B. T. Thomas; Ge, Tian; Buckner, Randy L.; Sherwood, Chet C.

    2016-01-01

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute’s human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections. PMID:26739559

  8. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    PubMed

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  9. On the relationship between the “default mode network” and the “social brain”

    PubMed Central

    Mars, Rogier B.; Neubert, Franz-Xaver; Noonan, MaryAnn P.; Sallet, Jerome; Toni, Ivan; Rushworth, Matthew F. S.

    2012-01-01

    The default mode network (DMN) of the brain consists of areas that are typically more active during rest than during active task performance. Recently however, this network has been shown to be activated by certain types of tasks. Social cognition, particularly higher-order tasks such as attributing mental states to others, has been suggested to activate a network of areas at least partly overlapping with the DMN. Here, we explore this claim, drawing on evidence from meta-analyses of functional MRI data and recent studies investigating the structural and functional connectivity of the social brain. In addition, we discuss recent evidence for the existence of a DMN in non-human primates. We conclude by discussing some of the implications of these observations. PMID:22737119

  10. Decoding Saccadic Directions Using Epidural ECoG in Non-Human Primates.

    PubMed

    Lee, Jeyeon; Choi, Hoseok; Lee, Seho; Cho, Baek Hwan; Ahn, Kyoung Ha; Kim, In Young; Lee, Kyoung Min; Jang, Dong Pyo

    2017-08-01

    A brain-computer interface (BCI) can be used to restore some communication as an alternative interface for patients suffering from locked-in syndrome. However, most BCI systems are based on SSVEP, P300, or motor imagery, and a diversity of BCI protocols would be needed for various types of patients. In this paper, we trained the choice saccade (CS) task in 2 non-human primate monkeys and recorded the brain signal using an epidural electrocorticogram (eECoG) to predict eye movement direction. We successfully predicted the direction of the upcoming eye movement using a support vector machine (SVM) with the brain signals after the directional cue onset and before the saccade execution. The mean accuracies were 80% for 2 directions and 43% for 4 directions. We also quantified the spatial-spectro-temporal contribution ratio using SVM recursive feature elimination (RFE). The channels over the frontal eye field (FEF), supplementary eye field (SEF), and superior parietal lobule (SPL) area were dominantly used for classification. The α-band in the spectral domain and the time bins just after the directional cue onset and just before the saccadic execution were mainly useful for prediction. A saccade based BCI paradigm can be projected in the 2D space, and will hopefully provide an intuitive and convenient communication platform for users. © 2017 The Korean Academy of Medical Sciences.

  11. Strategies for targeting primate neural circuits with viral vectors

    PubMed Central

    El-Shamayleh, Yasmine; Ni, Amy M.

    2016-01-01

    Understanding how the brain works requires understanding how different types of neurons contribute to circuit function and organism behavior. Progress on this front has been accelerated by optogenetics and chemogenetics, which provide an unprecedented level of control over distinct neuronal types in small animals. In primates, however, targeting specific types of neurons with these tools remains challenging. In this review, we discuss existing and emerging strategies for directing genetic manipulations to targeted neurons in the adult primate central nervous system. We review the literature on viral vectors for gene delivery to neurons, focusing on adeno-associated viral vectors and lentiviral vectors, their tropism for different cell types, and prospects for new variants with improved efficacy and selectivity. We discuss two projection targeting approaches for probing neural circuits: anterograde projection targeting and retrograde transport of viral vectors. We conclude with an analysis of cell type-specific promoters and other nucleotide sequences that can be used in viral vectors to target neuronal types at the transcriptional level. PMID:27052579

  12. Atlas-Guided Segmentation of Vervet Monkey Brain MRI

    PubMed Central

    Fedorov, Andriy; Li, Xiaoxing; Pohl, Kilian M; Bouix, Sylvain; Styner, Martin; Addicott, Merideth; Wyatt, Chris; Daunais, James B; Wells, William M; Kikinis, Ron

    2011-01-01

    The vervet monkey is an important nonhuman primate model that allows the study of isolated environmental factors in a controlled environment. Analysis of monkey MRI often suffers from lower quality images compared with human MRI because clinical equipment is typically used to image the smaller monkey brain and higher spatial resolution is required. This, together with the anatomical differences of the monkey brains, complicates the use of neuroimage analysis pipelines tuned for human MRI analysis. In this paper we developed an open source image analysis framework based on the tools available within the 3D Slicer software to support a biological study that investigates the effect of chronic ethanol exposure on brain morphometry in a longitudinally followed population of male vervets. We first developed a computerized atlas of vervet monkey brain MRI, which was used to encode the typical appearance of the individual brain structures in MRI and their spatial distribution. The atlas was then used as a spatial prior during automatic segmentation to process two longitudinal scans per subject. Our evaluation confirms the consistency and reliability of the automatic segmentation. The comparison of atlas construction strategies reveals that the use of a population-specific atlas leads to improved accuracy of the segmentation for subcortical brain structures. The contribution of this work is twofold. First, we describe an image processing workflow specifically tuned towards the analysis of vervet MRI that consists solely of the open source software tools. Second, we develop a digital atlas of vervet monkey brain MRIs to enable similar studies that rely on the vervet model. PMID:22253661

  13. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback

    PubMed Central

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A.

    2015-01-01

    Present day cortical brain machine interfaces (BMI) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available (for review see Robles-De-La-Torre, 2006). To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation (ICMS) to provide ‘tactile’ sensation to a non-human primate (NHP). Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area (AIP), the parietal reach region (PRR) and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. PMID:25242377

  14. Brain oxygen tension controls the expansion of outer subventricular zone-like basal progenitors in the developing mouse brain.

    PubMed

    Wagenführ, Lisa; Meyer, Anne K; Braunschweig, Lena; Marrone, Lara; Storch, Alexander

    2015-09-01

    The mammalian neocortex shows a conserved six-layered structure that differs between species in the total number of cortical neurons produced owing to differences in the relative abundance of distinct progenitor populations. Recent studies have identified a new class of proliferative neurogenic cells in the outer subventricular zone (OSVZ) in gyrencephalic species such as primates and ferrets. Lissencephalic brains of mice possess fewer OSVZ-like progenitor cells and these do not constitute a distinct layer. Most in vitro and in vivo studies have shown that oxygen regulates the maintenance, proliferation and differentiation of neural progenitor cells. Here we dissect the effects of fetal brain oxygen tension on neural progenitor cell activity using a novel mouse model that allows oxygen tension to be controlled within the hypoxic microenvironment in the neurogenic niche of the fetal brain in vivo. Indeed, maternal oxygen treatment of 10%, 21% and 75% atmospheric oxygen tension for 48 h translates into robust changes in fetal brain oxygenation. Increased oxygen tension in fetal mouse forebrain in vivo leads to a marked expansion of a distinct proliferative cell population, basal to the SVZ. These cells constitute a novel neurogenic cell layer, similar to the OSVZ, and contribute to corticogenesis by heading for deeper cortical layers as a part of the cortical plate. © 2015. Published by The Company of Biologists Ltd.

  15. Larger cages with housing unit environment enrichment improve the welfare of marmosets.

    PubMed

    Yoshimoto, Takuro; Takahashi, Eiki; Yamashita, Shunji; Ohara, Kiichi; Niimi, Kimie

    2018-02-09

    The provision of adequate space for laboratory animals is essential not only for good welfare but accurate studies. For example, housing conditions for primates used in biomedical research may negatively affect welfare and thus the reliability of findings. In common marmosets (Callithrix jacchus), an appropriate cage size enables a socially harmonious family environment and optimizes reproductive potential. In this study, we investigated the effects of cage size on body weight (BW), behavior, and nursing succession in the common marmoset. Large cages (LCs) with environment enrichment led to an increase in BW while small cages (SCs) caused stereotypic behaviors that were not observed in LCs. In addition, the BW of infants increased with aging in LCs. Our findings indicate that the welfare of marmosets was enhanced by living in LCs. Research on non-human primates is essential for understanding the human brain and developing knowledge-based strategies for the diagnosis and treatment of psychiatric and neurological disorders. Thus, the present findings are important because they indicate that different cages may influence emotional and behavioral phenotypes.

  16. Broca's arrow: evolution, prediction, and language in the brain.

    PubMed

    Cooper, David L

    2006-01-01

    Brodmann's areas 44 and 45 in the human brain, also known as Broca's area, have long been associated with language functions, especially in the left hemisphere. However, the precise role Broca's area plays in human language has not been established with certainty. Broca's area has homologs in the great apes and in area F5 in monkeys, which suggests that its original function was not linguistic at all. In fact, great ape and hominid brains show very similar left-over-right asymmetries in Broca's area homologs as well as in other areas, such as homologs to Wernicke's area, that are normally associated with language in modern humans. Moreover, the so-called mirror neurons are located in Broca's area in great apes and area F5 in monkeys, which seem to provide a representation of cause and effect in a primate's environment, particularly its social environment. Humans appear to have these mirror neurons in Broca's area as well. Similarly, genetic evidence related to the FOXP2 gene implicates Broca's area in linguistic function and dysfunction, but the gene itself is a highly conserved developmental gene in vertebrates and is shared with only two or three differences between humans and great apes, five between humans and mice, and eight between humans and songbirds. Taking neurons and portions of the brain as discrete computational segments in the sense of constituting specific Turing machines, this evidence points to a predictive motor and conceptual function for Broca's area in primates, especially for social concepts. In human language, this is consistent with evidence from typological and cognitive linguistics. (c) 2006 Wiley-Liss, Inc.

  17. Somatosensory responses in a human motor cortex

    PubMed Central

    Donoghue, John P.; Hochberg, Leigh R.

    2013-01-01

    Somatic sensory signals provide a major source of feedback to motor cortex. Changes in somatosensory systems after stroke or injury could profoundly influence brain computer interfaces (BCI) being developed to create new output signals from motor cortex activity patterns. We had the unique opportunity to study the responses of hand/arm area neurons in primary motor cortex to passive joint manipulation in a person with a long-standing brain stem stroke but intact sensory pathways. Neurons responded to passive manipulation of the contralateral shoulder, elbow, or wrist as predicted from prior studies of intact primates. Thus fundamental properties and organization were preserved despite arm/hand paralysis and damage to cortical outputs. The same neurons were engaged by attempted arm actions. These results indicate that intact sensory pathways retain the potential to influence primary motor cortex firing rates years after cortical outputs are interrupted and may contribute to online decoding of motor intentions for BCI applications. PMID:23343902

  18. VGLUT2 mRNA and protein expression in the visual thalamus and midbrain of prosimian galagos (Otolemur garnetti).

    PubMed

    Balaram, Pooja; Takahata, Toru; Kaas, Jon H

    2011-03-01

    Vesicular glutamate transporters (VGLUTs) control the storage and presynaptic release of glutamate in the central nervous system, and are involved in the majority of glutamatergic transmission in the brain. Two VGLUT isoforms, VGLUT1 and VGLUT2, are known to characterize complementary distributions of glutamatergic neurons in the rodent brain, which suggests that they are each responsible for unique circuits of excitatory transmission. In rodents, VGLUT2 is primarily utilized in thalamocortical circuits, and is strongly expressed in the primary sensory nuclei, including all areas of the visual thalamus. The distribution of VGLUT2 in the visual thalamus and midbrain has yet to be characterized in primate species. Thus, the present study describes the expression of VGLUT2 mRNA and protein across the visual thalamus and superior colliculus of prosimian galagos to provide a better understanding of glutamatergic transmission in the primate brain. VGLUT2 is strongly expressed in all six layers of the dorsal lateral geniculate nucleus, and much less so in the intralaminar zones, which correspond to retinal and superior collicular inputs, respectively. The parvocellular and magnocellular layers expressed VGLUT2 mRNA more densely than the koniocellular layers. A patchy distribution of VGLUT2 positive terminals in the pulvinar complex possibly reflects inputs from the superior colliculus. The upper superficial granular layers of the superior colliculus, with inputs from the retina, most densely expressed VGLUT2 protein, while the lower superficial granular layers, with projections to the pulvinar, most densely expressed VGLUT2 mRNA. The results are consistent with the conclusion that retinal and superior colliculus projections to the thalamus depend highly on the VGLUT2 transporter, as do cortical projections from the magnocellular and parvocellular layers of the lateral geniculate nucleus and neurons of the pulvinar complex.

  19. A self-organizing model of perisaccadic visual receptive field dynamics in primate visual and oculomotor system.

    PubMed

    Mender, Bedeho M W; Stringer, Simon M

    2015-01-01

    We propose and examine a model for how perisaccadic visual receptive field dynamics, observed in a range of primate brain areas such as LIP, FEF, SC, V3, V3A, V2, and V1, may develop through a biologically plausible process of unsupervised visually guided learning. These dynamics are associated with remapping, which is the phenomenon where receptive fields anticipate the consequences of saccadic eye movements. We find that a neural network model using a local associative synaptic learning rule, when exposed to visual scenes in conjunction with saccades, can account for a range of associated phenomena. In particular, our model demonstrates predictive and pre-saccadic remapping, responsiveness shifts around the time of saccades, and remapping from multiple directions.

  20. A self-organizing model of perisaccadic visual receptive field dynamics in primate visual and oculomotor system

    PubMed Central

    Mender, Bedeho M. W.; Stringer, Simon M.

    2015-01-01

    We propose and examine a model for how perisaccadic visual receptive field dynamics, observed in a range of primate brain areas such as LIP, FEF, SC, V3, V3A, V2, and V1, may develop through a biologically plausible process of unsupervised visually guided learning. These dynamics are associated with remapping, which is the phenomenon where receptive fields anticipate the consequences of saccadic eye movements. We find that a neural network model using a local associative synaptic learning rule, when exposed to visual scenes in conjunction with saccades, can account for a range of associated phenomena. In particular, our model demonstrates predictive and pre-saccadic remapping, responsiveness shifts around the time of saccades, and remapping from multiple directions. PMID:25717301

  1. Intraparenchymal ultrasound application and improved distribution of infusate with convection-enhanced delivery in rodent and nonhuman primate brain.

    PubMed

    Mano, Yui; Saito, Ryuta; Haga, Yoichi; Matsunaga, Tadao; Zhang, Rong; Chonan, Masashi; Haryu, Shinya; Shoji, Takuhiro; Sato, Aya; Sonoda, Yukihiko; Tsuruoka, Noriko; Nishiyachi, Keisuke; Sumiyoshi, Akira; Nonaka, Hiroi; Kawashima, Ryuta; Tominaga, Teiji

    2016-05-01

    OBJECT Convection-enhanced delivery (CED) is an effective drug delivery method that delivers high concentrations of drugs directly into the targeted lesion beyond the blood-brain barrier. However, the drug distribution attained using CED has not satisfactorily covered the entire targeted lesion in tumors such as glioma. Recently, the efficacy of ultrasound assistance was reported for various drug delivery applications. The authors developed a new ultrasound-facilitated drug delivery (UFD) system that enables the application of ultrasound at the infusion site. The purpose of this study was to demonstrate the efficacy of the UFD system and to examine effective ultrasound profiles. METHODS The authors fabricated a steel bar-based device that generates ultrasound and enables infusion of the aqueous drug from one end of the bar. The volume of distribution (Vd) after infusion of 10 ml of 2% Evans blue dye (EBD) into rodent brain was tested with different frequencies and applied voltages: 252 kHz/30 V; 252 kHz/60 V; 524 kHz/13 V; 524 kHz/30 V; and 524 kHz/60 V. In addition, infusion of 5 mM gadopentetate dimeglumine (Gd-DTPA) was tested with 260 kHz/60 V, the distribution of which was evaluated using a 7-T MRI unit. In a nonhuman primate (Macaca fascicularis) study, 300 μl of 1 mM Gd-DTPA/EBD was infused. The final distribution was evaluated using MRI. Two-sample comparisons were made by Student t-test, and 1-way ANOVA was used for multiple comparisons. Significance was set at p < 0.05. RESULTS After infusion of 10 μl of EBD into the rat brain using the UFD system, the Vds of EBD in the UFD groups were significantly larger than those of the control group. When a frequency of 252 kHz was applied, the Vd of the group in which 60 V was applied was significantly larger than that of the group in which 30 V was used. When a frequency of 524 kHz was applied, the Vd tended to increase with application of a higher voltage; however, the differences were not significant (1-way ANOVA). The Vd of Gd-DTPA was also significantly larger in the UFD group than in the control group (p < 0.05, Student t-test). The volume of Gd-DTPA in the nonhuman primate used in this study was 1209.8 ± 193.6 mm(3). This volume was much larger than that achieved by conventional CED (568.6 ± 141.0 mm(3)). CONCLUSIONS The UFD system facilitated the distribution of EBD and Gd-DTPA more effectively than conventional CED. Lower frequency and higher applied voltage using resonance frequencies might be more effective to enlarge the Vd. The UFD system may provide a new treatment approach for CNS disorders.

  2. Dwelling quietly in the rich club: brain network determinants of slow cortical fluctuations

    PubMed Central

    Gollo, Leonardo L.; Zalesky, Andrew; Hutchison, R. Matthew; van den Heuvel, Martijn; Breakspear, Michael

    2015-01-01

    For more than a century, cerebral cartography has been driven by investigations of structural and morphological properties of the brain across spatial scales and the temporal/functional phenomena that emerge from these underlying features. The next era of brain mapping will be driven by studies that consider both of these components of brain organization simultaneously—elucidating their interactions and dependencies. Using this guiding principle, we explored the origin of slowly fluctuating patterns of synchronization within the topological core of brain regions known as the rich club, implicated in the regulation of mood and introspection. We find that a constellation of densely interconnected regions that constitute the rich club (including the anterior insula, amygdala and precuneus) play a central role in promoting a stable, dynamical core of spontaneous activity in the primate cortex. The slow timescales are well matched to the regulation of internal visceral states, corresponding to the somatic correlates of mood and anxiety. In contrast, the topology of the surrounding ‘feeder’ cortical regions shows unstable, rapidly fluctuating dynamics likely to be crucial for fast perceptual processes. We discuss these findings in relation to psychiatric disorders and the future of connectomics. PMID:25823864

  3. Brain aromatase: roles in reproduction and neuroprotection.

    PubMed

    Roselli, Charles F

    2007-01-01

    It is well established that aromatization constitutes an essential part of testosterone's signaling pathway in brain and that estrogen metabolites, often together with testosterone, organize and activate masculine neural circuits. This paper summarizes the current understanding regarding the distribution, regulation and function of brain aromatase in mammals. Data from our laboratory are presented that highlight the important function of aromatase in the regulation of androgen feedback sensitivity in non-human primates and the possible role that aromatase plays in determining the brain structure and sexual partner preferences of rams. In addition, new data is presented indicating that the capacity for aromatization in cortical astrocytes is associated with cell survival and may be important for neuroprotection. It is anticipated that a better appreciation of the physiological and pathophysiological functions of aromatase will lead to important clinical insights.

  4. Archeological insights into hominin cognitive evolution.

    PubMed

    Wynn, Thomas; Coolidge, Frederick L

    2016-07-01

    How did the human mind evolve? How and when did we come to think in the ways we do? The last thirty years have seen an explosion in research related to the brain and cognition. This research has encompassed a range of biological and social sciences, from epigenetics and cognitive neuroscience to social and developmental psychology. Following naturally on this efflorescence has been a heightened interest in the evolution of the brain and cognition. Evolutionary scholars, including paleoanthropologists, have deployed the standard array of evolutionary methods. Ethological and experimental evidence has added significantly to our understanding of nonhuman brains and cognition, especially those of nonhuman primates. Studies of fossil brains through endocasts and sophisticated imaging techniques have revealed evolutionary changes in gross neural anatomy. Psychologists have also gotten into the game through application of reverse engineering to experimentally based descriptions of cognitive functions. For hominin evolution, there is another rich source of evidence of cognition, the archeological record. Using the methods of Paleolithic archeology and the theories and models of cognitive science, evolutionary cognitive archeology documents developments in the hominin mind that would otherwise be inaccessible. © 2016 Wiley Periodicals, Inc.

  5. The evolution and expression of the snaR family of small non-coding RNAs

    PubMed Central

    Parrott, Andrew M.; Tsai, Michael; Batchu, Priyanka; Ryan, Karen; Ozer, Harvey L.; Tian, Bin; Mathews, Michael B.

    2011-01-01

    We recently identified the snaR family of small non-coding RNAs that associate in vivo with the nuclear factor 90 (NF90/ILF3) protein. The major human species, snaR-A, is an RNA polymerase III transcript with restricted tissue distribution and orthologs in chimpanzee but not rhesus macaque or mouse. We report their expression in human tissues and their evolution in primates. snaR genes are exclusively in African Great Apes and some are unique to humans. Two novel families of snaR-related genetic elements were found in primates: CAS (catarrhine ancestor of snaR), limited to Old World Monkeys and apes; and ASR (Alu/snaR-related), present in all monkeys and apes. ASR and CAS appear to have spread by retrotransposition, whereas most snaR genes have spread by segmental duplication. snaR-A and snaR-G2 are differentially expressed in discrete regions of the human brain and other tissues, notably including testis. snaR-A is up-regulated in transformed and immortalized human cells, and is stably bound to ribosomes in HeLa cells. We infer that snaR evolved from the left monomer of the primate-specific Alu SINE family via ASR and CAS in conjunction with major primate speciation events, and suggest that snaRs participate in tissue- and species-specific regulation of cell growth and translation. PMID:20935053

  6. The Social Brain Is Not Enough: On the Importance of the Ecological Brain for the Origin of Language

    PubMed Central

    Ferretti, Francesco

    2016-01-01

    In this paper, I assume that the study of the origin of language is strictly connected to the analysis of the traits that distinguish human language from animal communication. Usually, human language is said to be unique in the animal kingdom because it enables and/or requires intentionality or mindreading. By emphasizing the importance of mindreading, the social brain hypothesis has provided major insights within the origin of language debate. However, as studies on non-human primates have demonstrated that intentional forms of communication are already present in these species to a greater or lesser extent, I maintain that the social brain is a necessary but not a sufficient condition to explain the uniqueness of language. In this paper, I suggest that the distinctive feature of human communication resides in the ability to tell stories, and that the origin of language should be traced with respect to the capacity to produce discourses, rather than phrases or words. As narrative requires the ability to link events distant from one another in space and time, my proposal is that in order to explain the origin of language, we need to appeal to both the social brain and the ecological brain – that is, the cognitive devices which allow us to mentally travel in space and time. PMID:27531987

  7. Cortical network architecture for context processing in primate brain

    PubMed Central

    Chao, Zenas C; Nagasaka, Yasuo; Fujii, Naotaka

    2015-01-01

    Context is information linked to a situation that can guide behavior. In the brain, context is encoded by sensory processing and can later be retrieved from memory. How context is communicated within the cortical network in sensory and mnemonic forms is unknown due to the lack of methods for high-resolution, brain-wide neuronal recording and analysis. Here, we report the comprehensive architecture of a cortical network for context processing. Using hemisphere-wide, high-density electrocorticography, we measured large-scale neuronal activity from monkeys observing videos of agents interacting in situations with different contexts. We extracted five context-related network structures including a bottom-up network during encoding and, seconds later, cue-dependent retrieval of the same network with the opposite top-down connectivity. These findings show that context is represented in the cortical network as distributed communication structures with dynamic information flows. This study provides a general methodology for recording and analyzing cortical network neuronal communication during cognition. DOI: http://dx.doi.org/10.7554/eLife.06121.001 PMID:26416139

  8. Genetic Causes of Microcephaly and Lessons for Neuronal Development

    PubMed Central

    Gilmore, Edward C.; Walsh, Christopher A.

    2012-01-01

    The study of human developmental microcephaly is providing important insights into brain development. It has become clear that developmental microcephalies are associated with abnormalities in cellular production, and that the pathophysiology of microcephaly provides remarkable insights into how the brain generates the proper number of neurons that determine brain size. Most of the genetic causes of ‘primary’ developmental microcephaly (i.e., not associated with other syndromic features) are associated with centrosomal abnormalities. In addition to other functions, centrosomal proteins control the mitotic spindle, which is essential for normal cell proliferation during mitosis. However, the brain is often uniquely affected when microcephaly genes are mutated implying special centrosomal related functions in neuronal production. Although models explaining how this could occur have some compelling data, they are not without controversy. Interestingly, some of the microcephaly genes show evidence that they were targets of evolutionary selection in primates and human ancestors, suggesting potential evolutionary roles in controlling neuronal number and brain volume across species. Mutations in DNA repair pathway genes also lead to microcephaly. Double stranded DNA breaks appear to be a prominent type of damage that needs to be repaired during brain development, yet why defects in DNA repair affect the brain preferentially and if DNA repair relates to centrosome function, are not clearly understood. PMID:24014418

  9. The “curved lead pathway” method to enable a single lead to reach any two intracranial targets

    NASA Astrophysics Data System (ADS)

    Ding, Chen-Yu; Yu, Liang-Hong; Lin, Yuan-Xiang; Chen, Fan; Lin, Zhang-Ya; Kang, De-Zhi

    2017-01-01

    Deep brain stimulation is an effective way to treat movement disorders, and a powerful research tool for exploring brain functions. This report proposes a “curved lead pathway” method for lead implantation, such that a single lead can reach in sequence to any two intracranial targets. A new type of stereotaxic system for implanting a curved lead to the brain of human/primates was designed, the auxiliary device needed for this method to be used in rat/mouse was fabricated and verified in rat, and the Excel algorithm used for automatically calculating the necessary parameters was implemented. This “curved lead pathway” method of lead implantation may complement the current method, make lead implantation for multiple targets more convenient, and expand the experimental techniques of brain function research.

  10. Functional consequences of cocaine expectation: findings in a non-human primate model of cocaine self-administration.

    PubMed

    Porrino, Linda J; Beveridge, Thomas J R; Smith, Hilary R; Nader, Michael A

    2016-05-01

    Exposure to stimuli and environments associated with drug use is considered one of the most important contributors to relapse among substance abusers. Neuroimaging studies have identified neural circuits underlying these responses in cocaine-dependent subjects. But these studies are often difficult to interpret because of the heterogeneity of the participants, substances abused, and differences in drug histories and social variables. Therefore, the goal of this study was to assess the functional effects of exposure to cocaine-associated stimuli in a non-human primate model of cocaine self-administration, providing precise control over these variables, with the 2-[(14) C]deoxyglucose method. Rhesus monkeys self-administered 0.3 mg/kg/injection cocaine (n = 4) under a fixed-interval 3-minute (FI 3-min) schedule of reinforcement (30 injections/session) for 100 sessions. Control animals (n = 4) underwent identical schedules of food reinforcement. Sessions were then discontinued for 30 days, after which time, monkeys were exposed to cocaine- or food-paired cues, and the 2-[(14) C]deoxyglucose experiment was conducted. The presentation of the cocaine-paired cues resulted in significant increases in functional activity within highly restricted circuits that included portions of the pre-commissural striatum, medial prefrontal cortex, rostral temporal cortex and limbic thalamus when compared with control animals presented with the food-paired cues. The presentation of cocaine-associated cues increased brain functional activity in contrast to the decreases observed after cocaine consumption. Furthermore, the topography of brain circuits engaged by the expectation of cocaine is similar to the distribution of effects during the earliest phases of cocaine self-administration, prior to the onset of neuroadaptations that accompany chronic cocaine exposure. © 2015 Society for the Study of Addiction.

  11. Discovery of a highly selective glycogen synthase kinase-3 inhibitor (PF-04802367) that modulates tau phosphorylation in brain: Translation for PET neuroimaging

    PubMed Central

    Liang, Steven H.; Chen, Jinshan Michael; Normandin, Marc D.; Chang, Jeanne S.; Chang, George C.; Taylor, Christine K.; Trapa, Patrick; Plummer, Mark S.; Para, Kimberly S.; Conn, Edward L.; Lopresti-Morrow, Lori; Lanyon, Lorraine F.; Cook, James M.; Richter, Karl E. G.; Nolan, Charlie E.; Schachter, Joel B.; Janat, Fouad; Che, Ye; Shanmugasundaram, Veerabahu; Lefker, Bruce A.; Enerson, Bradley E.; Livni, Elijahu; Wang, Lu; Guehl, Nicolas; Patnaik, Debasis; Wagner, Florence F.; Perlis, Roy; Holson, Edward B.; Haggarty, Stephen J.; Fakhri, Georges El

    2016-01-01

    Glycogen synthase kinase-3 (GSK-3) regulates multiple cellular processes in diabetes, oncology and neurology. We have identified N-(3-(1H-1,2,4-triazol-1-yl)propyl)-5-(3-chloro-4-methoxyphenyl)oxazole-4-carboxamide (PF-04802367 or PF-367) as a highly potent inhibitor, which is among the most selective antagonists of GSK-3 to date. We demonstrated its efficacy in modulation of tau phosphorylation in vitro and in vivo. Whereas the kinetics of PF-367 binding in brain tissues are too fast for an effective therapeutic agent, the pharmacokinetic profile of PF-367 is ideal for discovery of radiopharmaceuticals for GSK-3 in the central nervous system. A 11C-isotopologue of PF-367 was synthesized and preliminary PET imaging studies in non-human primates confirmed that we have overcome the two major obstacles for imaging GSK-3, namely, reasonable brain permeability and displaceable binding. PMID:27355874

  12. Mechanisms of object recognition: what we have learned from pigeons

    PubMed Central

    Soto, Fabian A.; Wasserman, Edward A.

    2014-01-01

    Behavioral studies of object recognition in pigeons have been conducted for 50 years, yielding a large body of data. Recent work has been directed toward synthesizing this evidence and understanding the visual, associative, and cognitive mechanisms that are involved. The outcome is that pigeons are likely to be the non-primate species for which the computational mechanisms of object recognition are best understood. Here, we review this research and suggest that a core set of mechanisms for object recognition might be present in all vertebrates, including pigeons and people, making pigeons an excellent candidate model to study the neural mechanisms of object recognition. Behavioral and computational evidence suggests that error-driven learning participates in object category learning by pigeons and people, and recent neuroscientific research suggests that the basal ganglia, which are homologous in these species, may implement error-driven learning of stimulus-response associations. Furthermore, learning of abstract category representations can be observed in pigeons and other vertebrates. Finally, there is evidence that feedforward visual processing, a central mechanism in models of object recognition in the primate ventral stream, plays a role in object recognition by pigeons. We also highlight differences between pigeons and people in object recognition abilities, and propose candidate adaptive specializations which may explain them, such as holistic face processing and rule-based category learning in primates. From a modern comparative perspective, such specializations are to be expected regardless of the model species under study. The fact that we have a good idea of which aspects of object recognition differ in people and pigeons should be seen as an advantage over other animal models. From this perspective, we suggest that there is much to learn about human object recognition from studying the “simple” brains of pigeons. PMID:25352784

  13. P-glycoprotein (ABCB1) inhibits the influx and increases the efflux of 11C-metoclopramide across the blood-brain barrier: a PET study on non-human primates.

    PubMed

    Auvity, Sylvain; Caillé, Fabien; Marie, Solène; Wimberley, Catriona; Bauer, Martin; Langer, Oliver; Buvat, Irène; Goutal, Sébastien; Tournier, Nicolas

    2018-05-10

    Rationale : PET imaging using radiolabeled high-affinity substrates of P-glycoprotein (ABCB1) has convincingly revealed the role of this major efflux transporter in limiting the influx of its substrates from blood into the brain across the blood-brain barrier (BBB). Many drugs, such as metoclopramide, are weak ABCB1 substrates and distribute into the brain even when ABCB1 is fully functional. In this study, we used kinetic modeling and validated simplified methods to highlight and quantify the impact of ABCB1 on the BBB influx and efflux of 11 C-metoclopramide, as a model weak ABCB1 substrate, in non-human primates. Methods : The regional brain kinetics of a tracer dose of 11 C-metoclopramide (298 ± 44 MBq) were assessed in baboons using PET without (n = 4) or with intravenous co-infusion of the ABCB1 inhibitor tariquidar (4 mg/kg/h, n = 4). Metabolite-corrected arterial input functions were generated to estimate the regional volume of distribution ( V T ) as well as the influx ( K 1 ) and efflux ( k 2 ) rate constants, using a one-tissue compartment model. Modeling outcome parameters were correlated with image-derived parameters, i.e. area under the curve AUC 0-30 min and AUC 30-60 min (SUV.min) as well as the elimination slope (k E ; min -1 ) from 30 to 60 min of the regional time-activity curves. Results : Tariquidar significantly increased the brain distribution of 11 C-metoclopramide ( V T = 4.3 ± 0.5 mL/cm 3 and 8.7 ± 0.5 mL/cm 3 for baseline and ABCB1 inhibition conditions, respectively, P<0.001), with a 1.28-fold increase in K 1 (P < 0.05) and a 1.64-fold decrease in k 2 (P < 0.001). The effect of tariquidar was homogeneous across different brain regions. The most sensitive parameters to ABCB1 inhibition were V T (2.02-fold increase) and AUC 30-60 min (2.02-fold increase). V T was significantly (P < 0.0001) correlated with AUC 30-60 min (r 2 = 0.95), AUC 0-30 min (r 2 = 0.87) and k E (r 2 = 0.62). Conclusion : 11 C-metoclopramide PET imaging revealed the relative importance of both the influx hindrance and efflux enhancement components of ABCB1 in a relevant model of the human BBB. The overall impact of ABCB1 on drug delivery to the brain can be non-invasively estimated from image-derived outcome parameters without the need for an arterial input function. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  14. What can volumes reveal about human brain evolution? A framework for bridging behavioral, histometric, and volumetric perspectives

    PubMed Central

    de Sousa, Alexandra A.; Proulx, Michael J.

    2014-01-01

    An overall relationship between brain size and cognitive ability exists across primates. Can more specific information about neural function be gleaned from cortical area volumes? Numerous studies have found significant relationships between brain structures and behaviors. However, few studies have speculated about brain structure-function relationships from the microanatomical to the macroanatomical level. Here we address this problem in comparative neuroanatomy, where the functional relevance of overall brain size and the sizes of cortical regions have been poorly understood, by considering comparative psychology, with measures of visual acuity and the perception of visual illusions. We outline a model where the macroscopic size (volume or surface area) of a cortical region (such as the primary visual cortex, V1) is related to the microstructure of discrete brain regions. The hypothesis developed here is that an absolutely larger V1 can process more information with greater fidelity due to having more neurons to represent a field of space. This is the first time that the necessary comparative neuroanatomical research at the microstructural level has been brought to bear on the issue. The evidence suggests that as the size of V1 increases: the number of neurons increases, the neuron density decreases, and the density of neuronal connections increases. Thus, we describe how information about gross neuromorphology, using V1 as a model for the study of other cortical areas, may permit interpretations of cortical function. PMID:25009469

  15. Mitochondrial-nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome C oxidase complex.

    PubMed

    Osada, Naoki; Akashi, Hiroshi

    2012-01-01

    Accelerated rates of mitochondrial protein evolution have been proposed to reflect Darwinian coadaptation for efficient energy production for mammalian flight and brain activity. However, several features of mammalian mtDNA (absence of recombination, small effective population size, and high mutation rate) promote genome degradation through the accumulation of weakly deleterious mutations. Here, we present evidence for "compensatory" adaptive substitutions in nuclear DNA- (nDNA) encoded mitochondrial proteins to prevent fitness decline in primate mitochondrial protein complexes. We show that high mutation rate and small effective population size, key features of primate mitochondrial genomes, can accelerate compensatory adaptive evolution in nDNA-encoded genes. We combine phylogenetic information and the 3D structure of the cytochrome c oxidase (COX) complex to test for accelerated compensatory changes among interacting sites. Physical interactions among mtDNA- and nDNA-encoded components are critical in COX evolution; amino acids in close physical proximity in the 3D structure show a strong tendency for correlated evolution among lineages. Only nuclear-encoded components of COX show evidence for positive selection and adaptive nDNA-encoded changes tend to follow mtDNA-encoded amino acid changes at nearby sites in the 3D structure. This bias in the temporal order of substitutions supports compensatory weak selection as a major factor in accelerated primate COX evolution.

  16. Batch Immunostaining for Large-Scale Protein Detection in the Whole Monkey Brain

    PubMed Central

    Zangenehpour, Shahin; Burke, Mark W.; Chaudhuri, Avi; Ptito, Maurice

    2009-01-01

    Immunohistochemistry (IHC) is one of the most widely used laboratory techniques for the detection of target proteins in situ. Questions concerning the expression pattern of a target protein across the entire brain are relatively easy to answer when using IHC in small brains, such as those of rodents. However, answering the same questions in large and convoluted brains, such as those of primates presents a number of challenges. Here we present a systematic approach for immunodetection of target proteins in an adult monkey brain. This approach relies on the tissue embedding and sectioning methodology of NeuroScience Associates (NSA) as well as tools developed specifically for batch-staining of free-floating sections. It results in uniform staining of a set of sections which, at a particular interval, represents the entire brain. The resulting stained sections can be subjected to a wide variety of analytical procedures in order to measure protein levels, the population of neurons expressing a certain protein. PMID:19636291

  17. Objects, Numbers, Fingers, Space: Clustering of Ventral and Dorsal Functions in Young Children and Adults

    ERIC Educational Resources Information Center

    Chinello, Alessandro; Cattani, Veronica; Bonfiglioli, Claudia; Dehaene, Stanislas; Piazza, Manuela

    2013-01-01

    In the primate brain, sensory information is processed along two partially segregated cortical streams: the ventral stream, mainly coding for objects' shape and identity, and the dorsal stream, mainly coding for objects' quantitative information (including size, number, and spatial position). Neurophysiological measures indicate that such…

  18. Exposure to a High-Fat Diet during Early Development Programs Behavior and Impairs the Central Serotonergic System in Juvenile Non-Human Primates.

    PubMed

    Thompson, Jacqueline R; Valleau, Jeanette C; Barling, Ashley N; Franco, Juliana G; DeCapo, Madison; Bagley, Jennifer L; Sullivan, Elinor L

    2017-01-01

    Perinatal exposure to maternal obesity and high-fat diet (HFD) consumption not only poses metabolic risks to offspring but also impacts brain development and mental health. Using a non-human primate model, we observed a persistent increase in anxiety in juvenile offspring exposed to a maternal HFD. Postweaning HFD consumption also increased anxiety and independently increased stereotypic behaviors. These behavioral changes were associated with modified cortisol stress response and impairments in the development of the central serotonin synthesis, with altered tryptophan hydroxylase-2 mRNA expression in the dorsal and median raphe. Postweaning HFD consumption decreased serotonergic immunoreactivity in area 10 of the prefrontal cortex. These results suggest that perinatal exposure to HFD consumption programs development of the brain and endocrine system, leading to behavioral impairments associated with mental health and neurodevelopmental disorders. Also, an early nutritional intervention (consumption of the control diet at weaning) was not sufficient to ameliorate many of the behavioral changes, such as increased anxiety, that were induced by maternal HFD consumption. Given the level of dietary fat consumption and maternal obesity in developed nations these findings have important implications for the mental health of future generations.

  19. Exposure to a High-Fat Diet during Early Development Programs Behavior and Impairs the Central Serotonergic System in Juvenile Non-Human Primates

    PubMed Central

    Thompson, Jacqueline R.; Valleau, Jeanette C.; Barling, Ashley N.; Franco, Juliana G.; DeCapo, Madison; Bagley, Jennifer L.; Sullivan, Elinor L.

    2017-01-01

    Perinatal exposure to maternal obesity and high-fat diet (HFD) consumption not only poses metabolic risks to offspring but also impacts brain development and mental health. Using a non-human primate model, we observed a persistent increase in anxiety in juvenile offspring exposed to a maternal HFD. Postweaning HFD consumption also increased anxiety and independently increased stereotypic behaviors. These behavioral changes were associated with modified cortisol stress response and impairments in the development of the central serotonin synthesis, with altered tryptophan hydroxylase-2 mRNA expression in the dorsal and median raphe. Postweaning HFD consumption decreased serotonergic immunoreactivity in area 10 of the prefrontal cortex. These results suggest that perinatal exposure to HFD consumption programs development of the brain and endocrine system, leading to behavioral impairments associated with mental health and neurodevelopmental disorders. Also, an early nutritional intervention (consumption of the control diet at weaning) was not sufficient to ameliorate many of the behavioral changes, such as increased anxiety, that were induced by maternal HFD consumption. Given the level of dietary fat consumption and maternal obesity in developed nations these findings have important implications for the mental health of future generations. PMID:28785241

  20. On the role of emerging voluntary control of vocalization in language evolution. Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by Michael A. Arbib

    NASA Astrophysics Data System (ADS)

    Coudé, Gino

    2016-03-01

    This comment will be focused on the role of monkey vocal control in the evolution of language. I will essentially reiterate the observations expressed in a commentary [1] about the book ;How the brain got language: the mirror system hypothesis;, written by Arbib [2]. I will hopefully clarify our suggestion that non-human primates vocal communication, in conjunction with gestures, could have had an active role in the emergence of the first voluntary forms of utterances that will later shape protospeech. This suggestion is mainly rooted in neurophysiological data about vocal control in monkey. I will very briefly summarize how neurophysiological data allowed us to suggest a possible role for monkey vocalization in language evolution. We conducted a study [3] in which we recorded from ventral premotor cortex (PMv) of macaques trained to emit vocalizations (i.e. coo-calls). The results showed that the rostro-lateral part of PMv contains neurons that fire during conditioned vocalization. The involvement of PMv in vocalization production was further supported by electrical microstimulation of the cortical sector where some of the vocalization neurons were found. Microstimulation elicited in some cases a combination of jaw, tongue and larynx movements. To us, the evolutionary implications of those results were obvious: a partial voluntary vocal control was already taking place in the primate PMv cortex some 25 million years ago.

  1. Insights into Human Behavior from Lesions to the Prefrontal Cortex

    PubMed Central

    Szczepanski, Sara M.; Knight, Robert T.

    2014-01-01

    SUMMARY The prefrontal cortex (PFC), a cortical region that was once thought to be functionally insignificant, is now known to play an essential role in the organization and control of goal-directed thought and behavior. Neuroimaging, neurophysiological, and modeling techniques have lead to tremendous advances in our understanding of PFC functions over the last few decades. It should be noted, however, that neurological, neuropathological, and neuropsychological studies have contributed some of the most essential, historical, and often prescient, conclusions regarding the functions of this region. Importantly, examination of patients with brain damage allows one to draw conclusions about whether a brain area is necessary for a particular function. Here, we provide a broad overview of PFC functions based upon behavioral and neural changes resulting from damage to PFC in both human patients and non-human primates. PMID:25175878

  2. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.

    PubMed

    Peikon, Ian D; Fitzsimmons, Nathan A; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2009-06-15

    Collection and analysis of limb kinematic data are essential components of the study of biological motion, including research into biomechanics, kinesiology, neurophysiology and brain-machine interfaces (BMIs). In particular, BMI research requires advanced, real-time systems capable of sampling limb kinematics with minimal contact to the subject's body. To answer this demand, we have developed an automated video tracking system for real-time tracking of multiple body parts in freely behaving primates. The system employs high-contrast markers painted on the animal's joints to continuously track the three-dimensional positions of their limbs during activity. Two-dimensional coordinates captured by each video camera are combined and converted to three-dimensional coordinates using a quadratic fitting algorithm. Real-time operation of the system is accomplished using direct memory access (DMA). The system tracks the markers at a rate of 52 frames per second (fps) in real-time and up to 100fps if video recordings are captured to be later analyzed off-line. The system has been tested in several BMI primate experiments, in which limb position was sampled simultaneously with chronic recordings of the extracellular activity of hundreds of cortical cells. During these recordings, multiple computational models were employed to extract a series of kinematic parameters from neuronal ensemble activity in real-time. The system operated reliably under these experimental conditions and was able to compensate for marker occlusions that occurred during natural movements. We propose that this system could also be extended to applications that include other classes of biological motion.

  3. Why is a landscape perspective important in studies of primates?

    PubMed

    Arroyo-Rodríguez, Víctor; Fahrig, Lenore

    2014-10-01

    With accelerated deforestation and fragmentation through the tropics, assessing the impact that landscape spatial changes may have on biodiversity is paramount, as this information is required to design and implement effective management and conservation plans. Primates are expected to be particularly dependent on the landscape context; yet, our understanding on this topic is limited as the majority of primate studies are at the local scale, meaning that landscape-scale inferences are not possible. To encourage primatologists to assess the impact of landscape changes on primates, and help future studies on the topic, we describe the meaning of a "landscape perspective" and evaluate important assumptions of using such a methodological approach. We also summarize a number of important, but unanswered, questions that can be addressed using a landscape-scale study design. For example, it is still unclear if habitat loss has larger consistent negative effects on primates than habitat fragmentation per se. Furthermore, interaction effects between habitat area and other landscape effects (e.g., fragmentation) are unknown for primates. We also do not know if primates are affected by synergistic interactions among factors at the landscape scale (e.g., habitat loss and diseases, habitat loss and climate change, hunting, and land-use change), or whether landscape complexity (or landscape heterogeneity) is important for primate conservation. Testing for patterns in the responses of primates to landscape change will facilitate the development of new guidelines and principles for improving primate conservation. © 2014 Wiley Periodicals, Inc.

  4. Theory of Auditory Thresholds in Primates

    NASA Astrophysics Data System (ADS)

    Harrison, Michael J.

    2001-03-01

    The influence of thermal pressure fluctuations at the tympanic membrane has been previously investigated as a possible determinant of the threshold of hearing in humans (L.J. Sivian and S.D. White, J. Acoust. Soc. Am. IV, 4;288(1933).). More recent work has focussed more precisely on the relation between statistical mechanics and sensory signal processing by biological means in creatures' brains (W. Bialek, in ``Physics of Biological Systems: from molecules to species'', H. Flyvberg et al, (Eds), p. 252; Springer 1997.). Clinical data on the frequency dependence of hearing thresholds in humans and other primates (W.C. Stebbins, ``The Acoustic Sense of Animals'', Harvard 1983.) has long been available. I have derived an expression for the frequency dependence of hearing thresholds in primates, including humans, by first calculating the frequency dependence of thermal pressure fluctuations at eardrums from damped normal modes excited in model ear canals of given simple geometry. I then show that most of the features of the clinical data are directly related to the frequency dependence of the ratio of thermal noise pressure arising from without to that arising from within the masking bandwidth which signals must dominate in order to be sensed. The higher intensity of threshold signals in primates smaller than humans, which is clinically observed over much but not all of the human auditory spectrum is shown to arise from their smaller meatus dimensions. note

  5. "The orang lives almost next door" the correspondence between John Fulton (New Haven) and Willem Verhaart (Java).

    PubMed

    Koehler, Peter

    2006-03-01

    Between 1937 and 1959 John Fulton (1899-1960), Sterling Professor of Physiology at Yale University (New Haven) and Willem Verhaart (1889-1983), neuropsychiatrist at Batavia Medical School (Java, Dutch East Indies) corresponded on neuroanatomical topics. Verhaart had easy access to primate brains in Batavia and stayed at Fulton's lab as a Rockefeller fellow (1938-1939), learning techniques of surgery and histology of the primate brain in order to apply it in his own lab. The correspondence relates of their undertakings in research, the preparations for Verhaart's stay in New Haven, the failure of subsequent research plans because of World War II, the camp experiences in Asia by Verhaart, the period of restoration after the war, helped by Fulton, and the political changes (independence) in Indonesia that finally lead to Verhaart's return to the Netherlands in 1950, where he became professor of histology and Director of the Neurological Institute at Leiden University. The correspondence shows how neuroscientists from different parts of the world cooperated. Moreover it is an example of the gradual change from a German (like his teacher Winkler) to an Anglo-American orientation in medical science that started in the beginning of the nineteenth century.

  6. A fully integrated wireless system for intracranial direct cortical stimulation, real-time electrocorticography data transmission, and smart cage for wireless battery recharge.

    PubMed

    Piangerelli, Marco; Ciavarro, Marco; Paris, Antonino; Marchetti, Stefano; Cristiani, Paolo; Puttilli, Cosimo; Torres, Napoleon; Benabid, Alim Louis; Romanelli, Pantaleo

    2014-01-01

    Wireless transmission of cortical signals is an essential step to improve the safety of epilepsy procedures requiring seizure focus localization and to provide chronic recording of brain activity for Brain Computer Interface (BCI) applications. Our group developed a fully implantable and externally rechargeable device, able to provide wireless electrocorticographic (ECoG) recording and cortical stimulation (CS). The first prototype of a wireless multi-channel very low power ECoG system was custom-designed to be implanted on non-human primates. The device, named ECOGIW-16E, is housed in a compact hermetically sealed Polyether ether ketone (PEEK) enclosure, allowing seamless battery recharge. ECOGIW-16E is recharged in a wireless fashion using a special cage designed to facilitate the recharge process in monkeys and developed in accordance with guidelines for accommodation of animals by Council of Europe (ETS123). The inductively recharging cage is made up of nylon and provides a thoroughly novel experimental setting on freely moving animals. The combination of wireless cable-free ECoG and external seamless battery recharge solves the problems and shortcomings caused by the presence of cables leaving the skull, providing a safer and easier way to monitor patients and to perform ECoG recording on primates. Data transmission exploits the newly available Medical Implant Communication Service band (MICS): 402-405 MHz. ECOGIW-16E was implanted over the left sensorimotor cortex of a macaca fascicularis to assess the feasibility of wireless ECoG monitoring and brain mapping through CS. With this device, we were able to record the everyday life ECoG signal from a monkey and to deliver focal brain stimulation with movement elicitation.

  7. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system

    PubMed Central

    Sunkin, Susan M.; Ng, Lydia; Lau, Chris; Dolbeare, Tim; Gilbert, Terri L.; Thompson, Carol L.; Hawrylycz, Michael; Dang, Chinh

    2013-01-01

    The Allen Brain Atlas (http://www.brain-map.org) provides a unique online public resource integrating extensive gene expression data, connectivity data and neuroanatomical information with powerful search and viewing tools for the adult and developing brain in mouse, human and non-human primate. Here, we review the resources available at the Allen Brain Atlas, describing each product and data type [such as in situ hybridization (ISH) and supporting histology, microarray, RNA sequencing, reference atlases, projection mapping and magnetic resonance imaging]. In addition, standardized and unique features in the web applications are described that enable users to search and mine the various data sets. Features include both simple and sophisticated methods for gene searches, colorimetric and fluorescent ISH image viewers, graphical displays of ISH, microarray and RNA sequencing data, Brain Explorer software for 3D navigation of anatomy and gene expression, and an interactive reference atlas viewer. In addition, cross data set searches enable users to query multiple Allen Brain Atlas data sets simultaneously. All of the Allen Brain Atlas resources can be accessed through the Allen Brain Atlas data portal. PMID:23193282

  8. Physical activity is linked to ceruloplasmin in the striatum of intact, but not MPTP-treated primates

    PubMed Central

    Leak, Rehana K.; Garbett, Krassimira A.; Dettmer, Amanda M.; Zhang, Zhiming; Mirnics, Károly; Cameron, Judy L.

    2013-01-01

    Ceruloplasmin is a protective ferroxidase. Although some studies suggest that plasma ceruloplasmin levels are raised by exercise, the impact of exercise on brain ceruloplasmin is unknown. The present study examined whether striatal ceruloplasmin is raised with treadmill exercise and/or is correlated with spontaneous physical activity in rhesus monkeys. Parkinson’s disease is characterized by a loss in ceruloplasmin and, similarly, Parkinson’s models lead to a loss in antioxidant defenses. Exercise may protect against Parkinson’s disease and is known to prevent antioxidant loss in experimental models. We therefore examined whether treadmill exercise prevents ceruloplasmin loss in monkeys treated unilaterally with the dopaminergic neurotoxin MPTP. We found that exercise raised ceruloplasmin expression in the caudate and accumbens, but not the putamen of intact monkeys. However, putamen ceruloplasmin was correlated with spontaneous activity in a home pen. MPTP alone did not cause unilateral loss of ceruloplasmin but blocked the impact of exercise on ceruloplasmin. Similarly, the correlation between putamen ceruloplasmin and activity was also lost with MPTP. MPTP elicited loss of tyrosine hydroxylase in the treated hemisphere and the remaining tyrosine hydroxylase was correlated with overall daily activity (spontaneous activity plus that induced by the treadmill). These data reveal that treadmill activity can raise ceruloplasmin, but that this impact and the link with spontaneous activity are both diminished in parkinsonian primates. Furthermore, low overall physical activity predicts greater loss of dopaminergic phenotype in MPTP-treated primates. These data have implications for the maintenance of active lifestyles in both healthy and neurodegenerative conditions. PMID:22940761

  9. Basal ganglia and cerebellar interconnectivity within the human thalamus.

    PubMed

    Pelzer, Esther A; Melzer, Corina; Timmermann, Lars; von Cramon, D Yves; Tittgemeyer, Marc

    2017-01-01

    Basal ganglia and the cerebellum are part of a densely interconnected network. While both subcortical structures process information in basically segregated loops that primarily interact in the neocortex, direct subcortical interaction has been recently confirmed by neuroanatomical studies using viral transneuronal tracers in non-human primate brains. The thalamus is thought to be the main relay station of both projection systems. Yet, our understanding of subcortical basal ganglia and cerebellar interconnectivity within the human thalamus is rather sparse, primarily due to limitation in the acquisition of in vivo tracing. Consequently, we strive to characterize projections of both systems and their potential overlap within the human thalamus by diffusion MRI and tractography. Our analysis revealed a decreasing anterior-to-posterior gradient for pallido-thalamic connections in: (1) the ventral-anterior thalamus, (2) the intralaminar nuclei, and (3) midline regions. Conversely, we found a decreasing posterior-to-anterior gradient for dentato-thalamic projections predominantly in: (1) the ventral-lateral and posterior nucleus; (2) dorsal parts of the intralaminar nuclei and the subparafascicular nucleus, and (3) the medioventral and lateral mediodorsal nucleus. A considerable overlap of connectivity pattern was apparent in intralaminar nuclei and midline regions. Notably, pallidal and cerebellar projections were both hemispherically lateralized to the left thalamus. While strikingly consistent with findings from transneuronal studies in non-human primates as well as with pre-existing anatomical studies on developmentally expressed markers or pathological human brains, our assessment provides distinctive connectional fingerprints that illustrate the anatomical substrate of integrated functional networks between basal ganglia and the cerebellum. Thereby, our findings furnish useful implications for cerebellar contributions to the clinical symptomatology of movement disorders.

  10. Laminar Module Cascade from Layer 5 to 6 Implementing Cue-to-Target Conversion for Object Memory Retrieval in the Primate Temporal Cortex.

    PubMed

    Koyano, Kenji W; Takeda, Masaki; Matsui, Teppei; Hirabayashi, Toshiyuki; Ohashi, Yohei; Miyashita, Yasushi

    2016-10-19

    The cerebral cortex computes through the canonical microcircuit that connects six stacked layers; however, how cortical processing streams operate in vivo, particularly in the higher association cortex, remains elusive. By developing a novel MRI-assisted procedure that reliably localizes recorded single neurons at resolution of six individual layers in monkey temporal cortex, we show that transformation of representations from a cued object to a to-be-recalled object occurs at the infragranular layer in a visual cued-recall task. This cue-to-target conversion started in layer 5 and was followed by layer 6. Finally, a subset of layer 6 neurons exclusively encoding the sought target became phase-locked to surrounding field potentials at theta frequency, suggesting that this coordinated cell assembly implements cortical long-distance outputs of the recalled target. Thus, this study proposes a link from local computation spanning laminar modules of the temporal cortex to the brain-wide network for memory retrieval in primates. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The neuroscience of vision-based grasping: a functional review for computational modeling and bio-inspired robotics.

    PubMed

    Chinellato, Eris; Del Pobil, Angel P

    2009-06-01

    The topic of vision-based grasping is being widely studied in humans and in other primates using various techniques and with different goals. The fundamental related findings are reviewed in this paper, with the aim of providing researchers from different fields, including intelligent robotics and neural computation, a comprehensive but accessible view on the subject. A detailed description of the principal sensorimotor processes and the brain areas involved is provided following a functional perspective, in order to make this survey especially useful for computational modeling and bio-inspired robotic applications.

  12. PET Imaging Evaluation of [18F]DBT-10, a Novel Radioligand Specific to α7 Nicotinic Acetylcholine Receptors, in Nonhuman Primates

    PubMed Central

    Hillmer, Ansel T.; Zheng, Ming-Qiang; Li, Songye; Scheunemann, Matthias; Lin, Shu-fei; Holden, Daniel; Labaree, David; Ropchan, Jim; Teodoro, Rodrigo; Deuther-Conrad, Winnie; Carson, Richard E.; Brust, Peter; Huang, Yiyun

    2015-01-01

    Purpose PET radioligands specific to α7 nicotinic acetylcholine receptors (nAChRs) afford in vivo imaging of this receptor for neuropathologies such as Alzheimer’s disease, schizophrenia, and substance abuse. This work aims to characterize the kinetic properties of an α7-nAChR specific radioligand, 7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-2-[18F]-fluorodibenzo[b,d]thiophene 5,5-dioxide ([18F]DBT-10), in nonhuman primates. Methods [18F]DBT-10 was produced via nucleophilic substitution of the nitro-precursor. Four Macaca mulatta subjects were imaged with [18F]DBT-10 PET, with measurement of [18F]DBT-10 parent concentrations and metabolism in arterial plasma. Baseline PET scans were acquired for all subjects. Following one scan, ex vivo analysis of brain tissue was performed to inspect for radiolabeled metabolites in brain. Three blocking scans with 0.69 and 1.24 mg/kg of the α7-nAChR-specific ligand ASEM were also acquired to assess dose-dependent blockade of [18F]DBT-10 binding. Kinetic analysis of PET data was performed using the metabolite-corrected input function to calculate the parent fraction corrected total distribution volume (VT/fP). Results [18F]DBT-10 was produced within 90 min at high specific activities of 428±436 GBq/μmol at end of synthesis. Metabolism of [18F]DBT-10 varied across subjects, stabilizing by 120 min post-injection at parent fractions of 15–55%. Uptake of [18F]DBT-10 in brain occurred rapidly, reaching peak SUVs of 2.9–3.7 within 30 min. The plasma free fraction was 18.8±3.4%. No evidence for radiolabeled [18F]DBT-10 metabolites was found in ex vivo brain tissue samples. Kinetic analysis of PET data was best described by the two-tissue compartment model. Estimated VT/fP values were 193–376 mL/cm3 across regions, with regional rank order of thalamus > frontal cortex > striatum > hippocampus > occipital cortex > cerebellum > pons. Dose dependent blockade of [18F]DBT-10 binding by structural analog ASEM was observed throughout the brain, and occupancy plots yielded a VND/fP estimate of 20±16 mL/cm3. Conclusions These results demonstrate suitable kinetic properties of [18F]DBT-10 for in vivo quantification of α7-nAChR binding in nonhuman primates. PMID:26455500

  13. Social Behavior, Prolactin and the Immune Response

    DTIC Science & Technology

    1989-04-01

    an ubiquitous characteristic of primate societies , including man’s. While social behavior and organization confer definite advantages on primate...groups, is characteristic of most primate species, including man. The ubiquity of primate societies makes the study of nonhuman primate groups of...organizations, man is much more flexible in terms of the kinds of social organization exhibited in his societies . Thus, generalizations from studies of

  14. Electric field characteristics of electroconvulsive therapy with individualized current amplitude: a preclinical study.

    PubMed

    Lee, Won Hee; Lisanby, Sarah H; Laine, Andrew F; Peterchev, Angel V

    2013-01-01

    This study examines the characteristics of the electric field induced in the brain by electroconvulsive therapy (ECT) with individualized current amplitude. The electric field induced by bilateral (BL), bifrontal (BF), right unilateral (RUL), and frontomedial (FM) ECT electrode configurations was computed in anatomically realistic finite element models of four nonhuman primates (NHPs). We generated maps of the electric field strength relative to an empirical neural activation threshold, and determined the stimulation strength and focality at fixed current amplitude and at individualized current amplitudes corresponding to seizure threshold (ST) measured in the anesthetized NHPs. The results show less variation in brain volume stimulated above threshold with individualized current amplitudes (16-36%) compared to fixed current amplitude (30-62%). Further, the stimulated brain volume at amplitude-titrated ST is substantially lower than that for ECT with conventional fixed current amplitudes. Thus individualizing the ECT stimulus current could compensate for individual anatomical variability and result in more focal and uniform electric field exposure across different subjects compared to the standard clinical practice of using high, fixed current for all patients.

  15. VGLUT1 and VGLUT2 mRNA expression in the primate auditory pathway

    PubMed Central

    Hackett, Troy A.; Takahata, Toru; Balaram, Pooja

    2011-01-01

    The vesicular glutamate transporters (VGLUTs) regulate storage and release of glutamate in the brain. In adult animals, the VGLUT1 and VGLUT2 isoforms are widely expressed and differentially distributed, suggesting that neural circuits exhibit distinct modes of glutamate regulation. Studies in rodents suggest that VGLUT1 and VGLUT2 mRNA expression patterns are partly complementary, with VGLUT1 expressed at higher levels in cortex and VGLUT2 prominent subcortically, but with overlapping distributions in some nuclei. In primates, VGLUT gene expression has not been previously studied in any part of the brain. The purposes of the present study were to document the regional expression of VGLUT1 and VGLUT2 mRNA in the auditory pathway through A1 in cortex, and to determine whether their distributions are comparable to rodents. In situ hybridization with antisense riboprobes revealed that VGLUT2 was strongly expressed by neurons in the cerebellum and most major auditory nuclei, including the dorsal and ventral cochlear nuclei, medial and lateral superior olivary nuclei, central nucleus of the inferior colliculus, sagulum, and all divisions of the medial geniculate. VGLUT1 was densely expressed in the hippocampus and ventral cochlear nuclei, and at reduced levels in other auditory nuclei. In auditory cortex, neurons expressing VGLUT1 were widely distributed in layers II – VI of the core, belt and parabelt regions. VGLUT2 was most strongly expressed by neurons in layers IIIb and IV, weakly by neurons in layers II – IIIa, and at very low levels in layers V – VI. The findings indicate that VGLUT2 is strongly expressed by neurons at all levels of the subcortical auditory pathway, and by neurons in the middle layers of cortex, whereas VGLUT1 is strongly expressed by most if not all glutamatergic neurons in auditory cortex and at variable levels among auditory subcortical nuclei. These patterns imply that VGLUT2 is the main vesicular glutamate transporter in subcortical and thalamocortical (TC) circuits, whereas VGLUT1 is dominant in cortico-cortical (CC) and cortico-thalamic (CT) systems of projections. The results also suggest that VGLUT mRNA expression patterns in primates are similar to rodents, and establishes a baseline for detailed studies of these transporters in selected circuits of the auditory system. PMID:21111036

  16. VGLUT1 and VGLUT2 mRNA expression in the primate auditory pathway.

    PubMed

    Hackett, Troy A; Takahata, Toru; Balaram, Pooja

    2011-04-01

    The vesicular glutamate transporters (VGLUTs) regulate the storage and release of glutamate in the brain. In adult animals, the VGLUT1 and VGLUT2 isoforms are widely expressed and differentially distributed, suggesting that neural circuits exhibit distinct modes of glutamate regulation. Studies in rodents suggest that VGLUT1 and VGLUT2 mRNA expression patterns are partly complementary, with VGLUT1 expressed at higher levels in the cortex and VGLUT2 prominent subcortically, but with overlapping distributions in some nuclei. In primates, VGLUT gene expression has not been previously studied in any part of the brain. The purposes of the present study were to document the regional expression of VGLUT1 and VGLUT2 mRNA in the auditory pathway through A1 in the cortex, and to determine whether their distributions are comparable to rodents. In situ hybridization with antisense riboprobes revealed that VGLUT2 was strongly expressed by neurons in the cerebellum and most major auditory nuclei, including the dorsal and ventral cochlear nuclei, medial and lateral superior olivary nuclei, central nucleus of the inferior colliculus, sagulum, and all divisions of the medial geniculate. VGLUT1 was densely expressed in the hippocampus and ventral cochlear nuclei, and at reduced levels in other auditory nuclei. In the auditory cortex, neurons expressing VGLUT1 were widely distributed in layers II-VI of the core, belt and parabelt regions. VGLUT2 was expressed most strongly by neurons in layers IIIb and IV, weakly by neurons in layers II-IIIa, and at very low levels in layers V-VI. The findings indicate that VGLUT2 is strongly expressed by neurons at all levels of the subcortical auditory pathway, and by neurons in the middle layers of the cortex, whereas VGLUT1 is strongly expressed by most if not all glutamatergic neurons in the auditory cortex and at variable levels among auditory subcortical nuclei. These patterns imply that VGLUT2 is the main vesicular glutamate transporter in subcortical and thalamocortical (TC) circuits, whereas VGLUT1 is dominant in corticocortical (CC) and corticothalamic (CT) systems of projections. The results also suggest that VGLUT mRNA expression patterns in primates are similar to rodents, and establish a baseline for detailed studies of these transporters in selected circuits of the auditory system. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Marmosets: A Neuroscientific Model of Human Social Behavior

    PubMed Central

    Freiwald, Winrich A; Leopold, David A; Mitchell, Jude F; Silva, Afonso C; Wang, Xiaoqin

    2016-01-01

    The common marmoset (Callithrix jacchus) has garnered interest recently as a powerful model for the future of neuroscience research. Much of this excitement has centered on the species’ reproductive biology and compatibility with gene editing techniques, which together have provided a path for transgenic marmosets to contribute to the study of disease as well as basic brain mechanisms. In step with technical advances is the need to establish experimental paradigms that optimally tap into the marmosets’ behavioral and cognitive capacities. While conditioned task performance of a marmoset can compare unfavorably with rhesus monkey performance on conventional testing paradigms, marmosets’ social cognition and communication are more similar to that of humans. For example, marmosets are amongst only a handful of primates that, like humans, routinely pair bond and care cooperatively for their young. They are also notably pro-social and exhibit social cognitive abilities, such as imitation, that are rare outside of the Apes. In this review, we describe key facets of marmoset natural social behavior and demonstrate that emerging behavioral paradigms are well suited to isolate components of marmoset cognition that are highly relevant to humans. These approaches generally embrace natural behavior and communication, which has been rare in conventional primate testing, and thus allow for a new consideration of neural mechanisms underlying primate social cognition and communication. We anticipate that through parallel technical and paradigmatic advances, marmosets will become an essential model of human social behavior, including its dysfunction in nearly all neuropsychiatric disorders. PMID:27100195

  18. Meeting report: Spontaneous lesions and diseases in wild, captive-bred, and zoo-housed nonhuman primates and in nonhuman primate species used in drug safety studies.

    PubMed

    Sasseville, V G; Mansfield, K G; Mankowski, J L; Tremblay, C; Terio, K A; Mätz-Rensing, K; Gruber-Dujardin, E; Delaney, M A; Schmidt, L D; Liu, D; Markovits, J E; Owston, M; Harbison, C; Shanmukhappa, S; Miller, A D; Kaliyaperumal, S; Assaf, B T; Kattenhorn, L; Macri, S Cummings; Simmons, H A; Baldessari, A; Sharma, P; Courtney, C; Bradley, A; Cline, J M; Reindel, J F; Hutto, D L; Montali, R J; Lowenstine, L J

    2012-11-01

    The combination of loss of habitat, human population encroachment, and increased demand of select nonhuman primates for biomedical research has significantly affected populations. There remains a need for knowledge and expertise in understanding background findings as related to the age, source, strain, and disease status of nonhuman primates. In particular, for safety/biomedical studies, a broader understanding and documentation of lesions would help clarify background from drug-related findings. A workshop and a minisymposium on spontaneous lesions and diseases in nonhuman primates were sponsored by the concurrent Annual Meetings of the American College of Veterinary Pathologists and the American Society for Veterinary Clinical Pathology held December 3-4, 2011, in Nashville, Tennessee. The first session had presentations from Drs Lowenstine and Montali, pathologists with extensive experience in wild and zoo populations of nonhuman primates, which was followed by presentations of 20 unique case reports of rare or newly observed spontaneous lesions in nonhuman primates (see online files for access to digital whole-slide images corresponding to each case report at http://www.scanscope.com/ACVP%20Slide%20Seminars/2011/Primate%20Pathology/view.apml). The minisymposium was composed of 5 nonhuman-primate researchers (Drs Bradley, Cline, Sasseville, Miller, Hutto) who concentrated on background and spontaneous lesions in nonhuman primates used in drug safety studies. Cynomolgus and rhesus macaques were emphasized, with some material presented on common marmosets. Congenital, acquired, inflammatory, and neoplastic changes were highlighed with a focus on clinical, macroscopic, and histopathologic findings that could confound the interpretation of drug safety studies.

  19. Endothelial ErbB4 deficit induces alterations in exploratory behavior and brain energy metabolism in mice.

    PubMed

    Wu, Gang; Liu, Xiu-Xiu; Lu, Nan-Nan; Liu, Qi-Bing; Tian, Yun; Ye, Wei-Feng; Jiang, Guo-Jun; Tao, Rong-Rong; Han, Feng; Lu, Ying-Mei

    2017-06-01

    The receptor tyrosine kinase ErbB4 is present throughout the primate brain and has a distinct functional profile. In this study, we investigate the potential role of endothelial ErbB4 receptor signaling in the brain. Here, we show that the endothelial cell-specific deletion of ErbB4 induces decreased exploratory behavior in adult mice. However, the water maze task for spatial memory and the memory reconsolidation test reveal no changes; additionally, we observe no impairment in CaMKII phosphorylation in Cdh5Cre;ErbB4 f/f mice, which indicates that the endothelial ErbB4 deficit leads to decreased exploratory activity rather than direct memory deficits. Furthermore, decreased brain metabolism, which was measured using micro-positron emission tomography, is observed in the Cdh5Cre;ErbB4 f/f mice. Consistently, the immunoblot data demonstrate the downregulation of brain Glut1, phospho-ULK1 (Ser555), and TIGAR in the endothelial ErbB4 conditional knockout mice. Collectively, our findings suggest that endothelial ErbB4 plays a critical role in regulating brain function, at least in part, through maintaining normal brain energy homeostasis. Targeting ErbB4 or the modulation of endothelial ErbB4 signaling may represent a rational pharmacological approach to treat neurological disorders. © 2017 John Wiley & Sons Ltd.

  20. Tracking blue cone signals in the primate brain.

    PubMed

    Jayakumar, Jaikishan; Dreher, Bogdan; Vidyasagar, Trichur R

    2013-05-01

    In this paper, we review the path taken by signals originating from the short wavelength sensitive cones (S-cones) in Old World and New World primates. Two types of retinal ganglion cells (RGCs) carrying S-cone signals (blue-On and blue-Off cells) project to the dorsal lateral geniculate nucleus (dLGN) in the thalamus. In all primates, these S-cone signals are relayed through the 'dust-like' (konis in classical Greek) dLGN cells. In New World primates such as common marmoset, these very small cells are known to form distinct and spatially extensive, koniocellular layers. Although in Old World primates, such as macaques, koniocellular layers tend to be very thin, the adjacent parvocellular layers contain distinct koniocellular extensions. It appears that all S-cone signals are relayed through such konio cells, whether they are in the main koniocellular layers or in their colonies within the parvocellular layers of the dLGN. In the primary visual cortex, these signals begin to merge with the signals carried by the other two principal parallel channels, namely the magnocellular and parvocellular channels. This article will also review the possible routes taken by the S-cone signals to reach one of the topographically organised extrastriate visual cortical areas, the middle temporal area (area MT). This area is the major conduit for signals reaching the parietal cortex. Alternative visual inputs to area MT not relayed via the primary visual cortex area (V1) may provide the neurological basis for the phenomenon of 'blindsight' observed in human and non-human primates, who have partial or complete damage to the primary visual cortex. Short wavelength sensitive cone (S-cone) signals to area MT may also play a role in directing visual attention with possible implications for understanding the pathology in dyslexia and some of its treatment options. © 2012 The Authors. Clinical and Experimental Optometry © 2012 Optometrists Association Australia.

  1. Comparative Methylome Analyses Identify Epigenetic Regulatory Loci of Human Brain Evolution.

    PubMed

    Mendizabal, Isabel; Shi, Lei; Keller, Thomas E; Konopka, Genevieve; Preuss, Todd M; Hsieh, Tzung-Fu; Hu, Enzhi; Zhang, Zhe; Su, Bing; Yi, Soojin V

    2016-11-01

    How do epigenetic modifications change across species and how do these modifications affect evolution? These are fundamental questions at the forefront of our evolutionary epigenomic understanding. Our previous work investigated human and chimpanzee brain methylomes, but it was limited by the lack of outgroup data which is critical for comparative (epi)genomic studies. Here, we compared whole genome DNA methylation maps from brains of humans, chimpanzees and also rhesus macaques (outgroup) to elucidate DNA methylation changes during human brain evolution. Moreover, we validated that our approach is highly robust by further examining 38 human-specific DMRs using targeted deep genomic and bisulfite sequencing in an independent panel of 37 individuals from five primate species. Our unbiased genome-scan identified human brain differentially methylated regions (DMRs), irrespective of their associations with annotated genes. Remarkably, over half of the newly identified DMRs locate in intergenic regions or gene bodies. Nevertheless, their regulatory potential is on par with those of promoter DMRs. An intriguing observation is that DMRs are enriched in active chromatin loops, suggesting human-specific evolutionary remodeling at a higher-order chromatin structure. These findings indicate that there is substantial reprogramming of epigenomic landscapes during human brain evolution involving noncoding regions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom body elaboration in insects.

    PubMed

    Farris, Sarah M

    2013-01-01

    Large, complex higher brain centers have evolved many times independently within the vertebrates, but the selective pressures driving these acquisitions have been difficult to pinpoint. It is well established that sensory brain centers become larger and more structurally complex to accommodate processing of a particularly important sensory modality. When higher brain centers such as the cerebral cortex become greatly expanded in a particular lineage, it is likely to support the coordination and execution of more complex behaviors, such as those that require flexibility, learning, and social interaction, in response to selective pressures that made these new behaviors advantageous. Vertebrate studies have established a link between complex behaviors, particularly those associated with sociality, and evolutionary expansions of telencephalic higher brain centers. Enlarged higher brain centers have convergently evolved in groups such as the insects, in which multimodal integration and learning and memory centers called the mushroom bodies have become greatly elaborated in at least four independent lineages. Is it possible that similar selective pressures acting on equivalent behavioral outputs drove the evolution of large higher brain centers in all bilaterians? Sociality has greatly impacted brain evolution in vertebrates such as primates, but it has not been a major driver of higher brain center enlargement in insects. However, feeding behaviors requiring flexibility and learning are associated with large higher brain centers in both phyla. Selection for the ability to support behavioral flexibility appears to be a common thread underlying the evolution of large higher brain centers, but the precise nature of these computations and behaviors may vary. © 2013 S. Karger AG, Basel.

  3. Conceptual learning by miniature brains

    PubMed Central

    Avarguès-Weber, Aurore; Giurfa, Martin

    2013-01-01

    Concepts act as a cornerstone of human cognition. Humans and non-human primates learn conceptual relationships such as ‘same’, ‘different’, ‘larger than’, ‘better than’, among others. In all cases, the relationships have to be encoded by the brain independently of the physical nature of objects linked by the relation. Consequently, concepts are associated with high levels of cognitive sophistication and are not expected in an insect brain. Yet, various works have shown that the miniature brain of honeybees rapidly learns conceptual relationships involving visual stimuli. Concepts such as ‘same’, ‘different’, ‘above/below of’ or ‘left/right are well mastered by bees. We review here evidence about concept learning in honeybees and discuss both its potential adaptive advantage and its possible neural substrates. The results reviewed here challenge the traditional view attributing supremacy to larger brains when it comes to the elaboration of concepts and have wide implications for understanding how brains can form conceptual relations. PMID:24107530

  4. Viral Oncolytic Therapeutics for Neoplastic Meningitis

    DTIC Science & Technology

    2012-07-01

    the central nervous system (CNS). While several novel molecular approaches are being developed, many of them require delivery of macromolecu- lar or...nonhuman primates. Keywords PET Imaging . Pharmacokinetics . Biopharmaceuticals . Macromolecules . Brain . Central nervous system . Drug delivery...Iodine-124 Introduction The leptomeningeal route to the central nervous system (CNS) starts from drug administration (injection or in- fusion) into the

  5. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation.

    PubMed

    Miocinovic, Svjetlana; Lempka, Scott F; Russo, Gary S; Maks, Christopher B; Butson, Christopher R; Sakaie, Ken E; Vitek, Jerrold L; McIntyre, Cameron C

    2009-03-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson's disease and shows great promise for numerous other disorders. While the fundamental purpose of DBS is to modulate neural activity with electric fields, little is known about the actual voltage distribution generated in the brain by DBS electrodes and as a result it is difficult to accurately predict which brain areas are directly affected by the stimulation. The goal of this study was to characterize the spatial and temporal characteristics of the voltage distribution generated by DBS electrodes. We experimentally recorded voltages around active DBS electrodes in either a saline bath or implanted in the brain of a non-human primate. Recordings were made during voltage-controlled and current-controlled stimulation. The experimental findings were compared to volume conductor electric field models of DBS parameterized to match the different experiments. Three factors directly affected the experimental and theoretical voltage measurements: 1) DBS electrode impedance, primarily dictated by a voltage drop at the electrode-electrolyte interface and the conductivity of the tissue medium, 2) capacitive modulation of the stimulus waveform, and 3) inhomogeneity and anisotropy of the tissue medium. While the voltage distribution does not directly predict the neural response to DBS, the results of this study do provide foundational building blocks for understanding the electrical parameters of DBS and characterizing its effects on the nervous system.

  6. Epigenetic and gene expression changes in the adolescent brain: What have we learned from animal models?

    PubMed

    Mychasiuk, Richelle; Metz, Gerlinde A S

    2016-11-01

    Adolescence is defined as the gradual period of transition between childhood and adulthood that is characterized by significant brain maturation, growth spurts, sexual maturation, and heightened social interaction. Although originally believed to be a uniquely human aspect of development, rodent and non-human primates demonstrate maturational patterns that distinctly support an adolescent stage. As epigenetic processes are essential for development and differentiation, but also transpire in mature cells in response to environmental influences, they are an important aspect of adolescent brain maturation. The purpose of this review article was to examine epigenetic programming in animal models of brain maturation during adolescence. The discussion focuses on animal models to examine three main concepts; epigenetic processes involved in normal adolescent brain maturation, the influence of fetal programming on adolescent brain development and the epigenome, and finally, postnatal experiences such as exercise and drugs that modify epigenetic processes important for adolescent brain maturation. This corollary emphasizes the utility of animal models to further our understanding of complex processes such as epigenetic regulation and brain development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: Mechanisms and implications for psychopathology

    PubMed Central

    McNamara, Robert K; Vannest, Jennifer J; Valentine, Christina J

    2015-01-01

    Accumulating translational evidence suggests that the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) plays a role in the maturation and stability of cortical circuits that are impaired in different recurrent psychiatric disorders. Specifically, rodent and cell culture studies find that DHA preferentially accumulates in synaptic and growth cone membranes and promotes neurite outgrowth, dendritic spine stability, and synaptogenesis. Additional evidence suggests that DHA may play a role in microglia-mediated synaptic pruning, as well as myelin development and resilience. In non-human primates n-3 fatty acid insufficiency during perinatal development leads to widespread deficits in functional connectivity in adult frontal cortical networks compared to primates raised on DHA-fortified diet. Preterm delivery in non-human primates and humans is associated with early deficits in cortical DHA accrual. Human preterm birth is associated with long-standing deficits in myelin integrity and cortical circuit connectivity and increased risk for attention deficit/hyperactivity disorder (ADHD), mood, and psychotic disorders. In general, ADHD and mood and psychotic disorders initially emerge during rapid periods of cortical circuit maturation and are characterized by DHA deficits, myelin pathology, and impaired cortical circuit connectivity. Together these associations suggest that early and uncorrected deficits in fetal brain DHA accrual may represent a modifiable risk factor for cortical circuit maturation deficits in psychiatric disorders, and could therefore have significant implications for informing early intervention and prevention strategies. PMID:25815252

  8. Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes.

    PubMed

    Pozzi, Luca; Hodgson, Jason A; Burrell, Andrew S; Sterner, Kirstin N; Raaum, Ryan L; Disotell, Todd R

    2014-06-01

    The origins and the divergence times of the most basal lineages within primates have been difficult to resolve mainly due to the incomplete sampling of early fossil taxa. The main source of contention is related to the discordance between molecular and fossil estimates: while there are no crown primate fossils older than 56Ma, most molecule-based estimates extend the origins of crown primates into the Cretaceous. Here we present a comprehensive mitogenomic study of primates. We assembled 87 mammalian mitochondrial genomes, including 62 primate species representing all the families of the order. We newly sequenced eleven mitochondrial genomes, including eight Old World monkeys and three strepsirrhines. Phylogenetic analyses support a strong topology, confirming the monophyly for all the major primate clades. In contrast to previous mitogenomic studies, the positions of tarsiers and colugos relative to strepsirrhines and anthropoids are well resolved. In order to improve our understanding of how fossil calibrations affect age estimates within primates, we explore the effect of seventeen fossil calibrations across primates and other mammalian groups and we select a subset of calibrations to date our mitogenomic tree. The divergence date estimates of the Strepsirrhine/Haplorhine split support an origin of crown primates in the Late Cretaceous, at around 74Ma. This result supports a short-fuse model of primate origins, whereby relatively little time passed between the origin of the order and the diversification of its major clades. It also suggests that the early primate fossil record is likely poorly sampled. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Evolution and development of the mammalian cerebral cortex.

    PubMed

    Molnár, Zoltán; Kaas, Jon H; de Carlos, Juan A; Hevner, Robert F; Lein, Ed; Němec, Pavel

    2014-01-01

    Comparative developmental studies of the mammalian brain can identify key changes that can generate the diverse structures and functions of the brain. We have studied how the neocortex of early mammals became organized into functionally distinct areas, and how the current level of cortical cellular and laminar specialization arose from the simpler premammalian cortex. We demonstrate the neocortical organization in early mammals, which helps to elucidate how the large, complex human brain evolved from a long line of ancestors. The radial and tangential enlargement of the cortex was driven by changes in the patterns of cortical neurogenesis, including alterations in the proportions of distinct progenitor types. Some cortical cell populations travel to the cortex through tangential migration whereas others migrate radially. A number of recent studies have begun to characterize the chick, mouse and human and nonhuman primate cortical transcriptome to help us understand how gene expression relates to the development and anatomical and functional organization of the adult neocortex. Although all mammalian forms share the basic layout of cortical areas, the areal proportions and distributions are driven by distinct evolutionary pressures acting on sensory and motor experiences during the individual ontogenies. © 2014 S. Karger AG, Basel.

  10. Radiosynthesis and initial characterization of a PDE10A specific PET tracer [18F]AMG 580 in non-human primates.

    PubMed

    Hwang, Dah-Ren; Hu, Essa; Allen, Jennifer R; Davis, Carl; Treanor, James; Miller, Silke; Chen, Hang; Shi, Bingzhi; Narayanan, Tanjorie K; Barret, Olivier; Alagille, David; Yu, Zhigang; Slifstein, Mark

    2015-08-01

    Phosphodiesterase 10A (PDE10A) is an intracellular enzyme responsible for the breakdown of cyclic nucleotides which are important second messengers for neurotransmission. Inhibition of PDE10A has been identified as a potential target for treatment of various neuropsychiatric disorders. To assist drug development, we have identified a selective PDE10A positron emission tomography (PET) tracer, AMG 580. We describe here the radiosynthesis of [(18)F]AMG 580 and in vitro and in vivo characterization results. The potency and selectivity were determined by in vitro assay using [(3)H]AMG 580 and baboon brain tissues. [(18)F]AMG 580 was prepared by a 1-step [(18)F]fluorination procedure. Dynamic brain PET scans were performed in non-human primates. Regions-of-interest were defined on individuals' MRIs and transferred to the co-registered PET images. Data were analyzed using two tissue compartment analysis (2TC), Logan graphical (Logan) analysis with metabolite-corrected input function and the simplified reference tissue model (SRTM) method. A PDE10A inhibitor and unlabeled AMG 580 were used to demonstrate the PDE10A specificity. KD was estimated by Scatchard analysis of high and low affinity PET scans. AMG 580 has an in vitro KD of 71.9 pM. Autoradiography showed specific uptake in striatum. Mean activity of 121 ± 18 MBq was used in PET studies. In Rhesus, the baseline BPND for putamen and caudate was 3.38 and 2.34, respectively, via 2TC, and 3.16, 2.34 via Logan, and 2.92, and 2.01 via SRTM. A dose dependent decrease of BPND was observed by the pre-treatment with a PDE10A inhibitor. In baboons, 0.24 mg/kg dose of AMG 580 resulted in about 70% decrease of BPND. The in vivo KD of [(18)F]AMG 580 was estimated to be around 0.44 nM in baboons. [(18)F]AMG 580 is a selective and potent PDE10A PET tracer with excellent specific striatal binding in non-human primates. It warrants further evaluation in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Building the Ferretome

    PubMed Central

    Sukhinin, Dmitrii I.; Engel, Andreas K.; Manger, Paul; Hilgetag, Claus C.

    2016-01-01

    Databases of structural connections of the mammalian brain, such as CoCoMac (cocomac.g-node.org) or BAMS (https://bams1.org), are valuable resources for the analysis of brain connectivity and the modeling of brain dynamics in species such as the non-human primate or the rodent, and have also contributed to the computational modeling of the human brain. Another animal model that is widely used in electrophysiological or developmental studies is the ferret; however, no systematic compilation of brain connectivity is currently available for this species. Thus, we have started developing a database of anatomical connections and architectonic features of the ferret brain, the Ferret(connect)ome, www.Ferretome.org. The Ferretome database has adapted essential features of the CoCoMac methodology and legacy, such as the CoCoMac data model. This data model was simplified and extended in order to accommodate new data modalities that were not represented previously, such as the cytoarchitecture of brain areas. The Ferretome uses a semantic parcellation of brain regions as well as a logical brain map transformation algorithm (objective relational transformation, ORT). The ORT algorithm was also adopted for the transformation of architecture data. The database is being developed in MySQL and has been populated with literature reports on tract-tracing observations in the ferret brain using a custom-designed web interface that allows efficient and validated simultaneous input and proofreading by multiple curators. The database is equipped with a non-specialist web interface. This interface can be extended to produce connectivity matrices in several formats, including a graphical representation superimposed on established ferret brain maps. An important feature of the Ferretome database is the possibility to trace back entries in connectivity matrices to the original studies archived in the system. Currently, the Ferretome contains 50 reports on connections comprising 20 injection reports with more than 150 labeled source and target areas, the majority reflecting connectivity of subcortical nuclei and 15 descriptions of regional brain architecture. We hope that the Ferretome database will become a useful resource for neuroinformatics and neural modeling, and will support studies of the ferret brain as well as facilitate advances in comparative studies of mesoscopic brain connectivity. PMID:27242503

  12. Building the Ferretome.

    PubMed

    Sukhinin, Dmitrii I; Engel, Andreas K; Manger, Paul; Hilgetag, Claus C

    2016-01-01

    Databases of structural connections of the mammalian brain, such as CoCoMac (cocomac.g-node.org) or BAMS (https://bams1.org), are valuable resources for the analysis of brain connectivity and the modeling of brain dynamics in species such as the non-human primate or the rodent, and have also contributed to the computational modeling of the human brain. Another animal model that is widely used in electrophysiological or developmental studies is the ferret; however, no systematic compilation of brain connectivity is currently available for this species. Thus, we have started developing a database of anatomical connections and architectonic features of the ferret brain, the Ferret(connect)ome, www.Ferretome.org. The Ferretome database has adapted essential features of the CoCoMac methodology and legacy, such as the CoCoMac data model. This data model was simplified and extended in order to accommodate new data modalities that were not represented previously, such as the cytoarchitecture of brain areas. The Ferretome uses a semantic parcellation of brain regions as well as a logical brain map transformation algorithm (objective relational transformation, ORT). The ORT algorithm was also adopted for the transformation of architecture data. The database is being developed in MySQL and has been populated with literature reports on tract-tracing observations in the ferret brain using a custom-designed web interface that allows efficient and validated simultaneous input and proofreading by multiple curators. The database is equipped with a non-specialist web interface. This interface can be extended to produce connectivity matrices in several formats, including a graphical representation superimposed on established ferret brain maps. An important feature of the Ferretome database is the possibility to trace back entries in connectivity matrices to the original studies archived in the system. Currently, the Ferretome contains 50 reports on connections comprising 20 injection reports with more than 150 labeled source and target areas, the majority reflecting connectivity of subcortical nuclei and 15 descriptions of regional brain architecture. We hope that the Ferretome database will become a useful resource for neuroinformatics and neural modeling, and will support studies of the ferret brain as well as facilitate advances in comparative studies of mesoscopic brain connectivity.

  13. Evolution of a behavior-linked microsatellite-containing element in the 5' flanking region of the primate AVPR1A gene

    PubMed Central

    2008-01-01

    Background The arginine vasopressin V1a receptor (V1aR) modulates social cognition and behavior in a wide variety of species. Variation in a repetitive microsatellite element in the 5' flanking region of the V1aR gene (AVPR1A) in rodents has been associated with variation in brain V1aR expression and in social behavior. In humans, the 5' flanking region of AVPR1A contains a tandem duplication of two ~350 bp, microsatellite-containing elements located approximately 3.5 kb upstream of the transcription start site. The first block, referred to as DupA, contains a polymorphic (GT)25 microsatellite; the second block, DupB, has a complex (CT)4-(TT)-(CT)8-(GT)24 polymorphic motif, known as RS3. Polymorphisms in RS3 have been associated with variation in sociobehavioral traits in humans, including autism spectrum disorders. Thus, evolution of these regions may have contributed to variation in social behavior in primates. We examined the structure of these regions in six ape, six monkey, and one prosimian species. Results Both tandem repeat blocks are present upstream of the AVPR1A coding region in five of the ape species we investigated, while monkeys have only one copy of this region. As in humans, the microsatellites within DupA and DupB are polymorphic in many primate species. Furthermore, both single (lacking DupB) and duplicated alleles (containing both DupA and DupB) are present in chimpanzee (Pan troglodytes) populations with allele frequencies of 0.795 and 0.205 for the single and duplicated alleles, respectively, based on the analysis of 47 wild-caught individuals. Finally, a phylogenetic reconstruction suggests two alternate evolutionary histories for this locus. Conclusion There is no obvious relationship between the presence of the RS3 duplication and social organization in primates. However, polymorphisms identified in some species may be useful in future genetic association studies. In particular, the presence of both single and duplicated alleles in chimpanzees provides a unique opportunity to assess the functional role of this duplication in contributing to variation in social behavior in primates. While our initial studies show no signs of directional selection on this locus in chimps, pharmacological and genetic association studies support a potential role for this region in influencing V1aR expression and social behavior. PMID:18573213

  14. Evolution of a behavior-linked microsatellite-containing element in the 5' flanking region of the primate AVPR1A gene.

    PubMed

    Donaldson, Zoe R; Kondrashov, Fyodor A; Putnam, Andrea; Bai, Yaohui; Stoinski, Tara L; Hammock, Elizabeth A D; Young, Larry J

    2008-06-23

    The arginine vasopressin V1a receptor (V1aR) modulates social cognition and behavior in a wide variety of species. Variation in a repetitive microsatellite element in the 5' flanking region of the V1aR gene (AVPR1A) in rodents has been associated with variation in brain V1aR expression and in social behavior. In humans, the 5' flanking region of AVPR1A contains a tandem duplication of two approximately 350 bp, microsatellite-containing elements located approximately 3.5 kb upstream of the transcription start site. The first block, referred to as DupA, contains a polymorphic (GT)25 microsatellite; the second block, DupB, has a complex (CT)4-(TT)-(CT)8-(GT)24 polymorphic motif, known as RS3. Polymorphisms in RS3 have been associated with variation in sociobehavioral traits in humans, including autism spectrum disorders. Thus, evolution of these regions may have contributed to variation in social behavior in primates. We examined the structure of these regions in six ape, six monkey, and one prosimian species. Both tandem repeat blocks are present upstream of the AVPR1A coding region in five of the ape species we investigated, while monkeys have only one copy of this region. As in humans, the microsatellites within DupA and DupB are polymorphic in many primate species. Furthermore, both single (lacking DupB) and duplicated alleles (containing both DupA and DupB) are present in chimpanzee (Pan troglodytes) populations with allele frequencies of 0.795 and 0.205 for the single and duplicated alleles, respectively, based on the analysis of 47 wild-caught individuals. Finally, a phylogenetic reconstruction suggests two alternate evolutionary histories for this locus. There is no obvious relationship between the presence of the RS3 duplication and social organization in primates. However, polymorphisms identified in some species may be useful in future genetic association studies. In particular, the presence of both single and duplicated alleles in chimpanzees provides a unique opportunity to assess the functional role of this duplication in contributing to variation in social behavior in primates. While our initial studies show no signs of directional selection on this locus in chimps, pharmacological and genetic association studies support a potential role for this region in influencing V1aR expression and social behavior.

  15. A brain MRI atlas of the common squirrel monkey, Saimiri sciureus

    NASA Astrophysics Data System (ADS)

    Gao, Yurui; Schilling, Kurt G.; Khare, Shweta P.; Panda, Swetasudha; Choe, Ann S.; Stepniewska, Iwona; Li, Xia; Ding, Zhoahua; Anderson, Adam; Landman, Bennett A.

    2014-03-01

    The common squirrel monkey, Saimiri sciureus, is a New World monkey with functional and microstructural organization of central nervous system similar to that of humans. It is one of the most commonly used South American primates in biomedical research. Unlike its Old World macaque cousins, no digital atlases have described the organization of the squirrel monkey brain. Here, we present a multi-modal magnetic resonance imaging (MRI) atlas constructed from the brain of an adult female squirrel monkey. In vivo MRI acquisitions include high resolution T2 structural imaging and low resolution diffusion tensor imaging. Ex vivo MRI acquisitions include high resolution T2 structural imaging and high resolution diffusion tensor imaging. Cortical regions were manually annotated on the co-registered volumes based on published histological sections.

  16. Meeting Report: Spontaneous Lesions and Diseases in Wild, Captive-Bred, and Zoo-Housed Nonhuman Primates and in Nonhuman Primate Species Used in Drug Safety Studies

    PubMed Central

    Sasseville, V. G.; Mansfield, K. G.; Mankowski, J. L.; Tremblay, C.; Terio, K. A.; Mätz-Rensing, K.; Gruber-Dujardin, E.; Delaney, M. A.; Schmidt, L. D.; Liu, D.; Markovits, J. E.; Owston, M.; Harbison, C.; Shanmukhappa, S.; Miller, A. D.; Kaliyaperumal, S.; Assaf, B. T.; Kattenhorn, L.; Macri, S. Cummings; Simmons, H. A.; Baldessari, A.; Sharma, P.; Courtney, C.; Bradley, A.; Cline, J. M.; Reindel, J. F.; Hutto, D. L.; Montali, R. J.; Lowenstine, L. J.

    2014-01-01

    The combination of loss of habitat, human population encroachment, and increased demand of select nonhuman primates for biomedical research has significantly affected populations. There remains a need for knowledge and expertise in understanding background findings as related to the age, source, strain, and disease status of nonhuman primates. In particular, for safety/biomedical studies, a broader understanding and documentation of lesions would help clarify background from drug-related findings. A workshop and a minisymposium on spontaneous lesions and diseases in nonhuman primates were sponsored by the concurrent Annual Meetings of the American College of Veterinary Pathologists and the American Society for Veterinary Clinical Pathology held December 3–4, 2011, in Nashville, Tennessee. The first session had presentations from Drs Lowenstine and Montali, pathologists with extensive experience in wild and zoo populations of nonhuman primates, which was followed by presentations of 20 unique case reports of rare or newly observed spontaneous lesions in nonhuman primates (see online files for access to digital whole-slide images corresponding to each case report at http://www.scanscope.com/ACVP%20Slide%20 Seminars/2011/Primate%20Pathology/view.apml). The minisymposium was composed of 5 nonhuman-primate researchers (Drs Bradley, Cline, Sasseville, Miller, Hutto) who concentrated on background and spontaneous lesions in nonhuman primates used in drug safety studies. Cynomolgus and rhesus macaques were emphasized, with some material presented on common marmosets. Congenital, acquired, inflammatory, and neoplastic changes were highlighed with a focus on clinical, macroscopic, and histopathologic findings that could confound the interpretation of drug safety studies. PMID:23135296

  17. Anti-correlated cortical networks of intrinsic connectivity in the rat brain.

    PubMed

    Schwarz, Adam J; Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang

    2013-01-01

    In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline "DMN-like" network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans.

  18. Anti-Correlated Cortical Networks of Intrinsic Connectivity in the Rat Brain

    PubMed Central

    Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang

    2013-01-01

    Abstract In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline “DMN-like” network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans. PMID:23919836

  19. Dwelling quietly in the rich club: brain network determinants of slow cortical fluctuations.

    PubMed

    Gollo, Leonardo L; Zalesky, Andrew; Hutchison, R Matthew; van den Heuvel, Martijn; Breakspear, Michael

    2015-05-19

    For more than a century, cerebral cartography has been driven by investigations of structural and morphological properties of the brain across spatial scales and the temporal/functional phenomena that emerge from these underlying features. The next era of brain mapping will be driven by studies that consider both of these components of brain organization simultaneously--elucidating their interactions and dependencies. Using this guiding principle, we explored the origin of slowly fluctuating patterns of synchronization within the topological core of brain regions known as the rich club, implicated in the regulation of mood and introspection. We find that a constellation of densely interconnected regions that constitute the rich club (including the anterior insula, amygdala and precuneus) play a central role in promoting a stable, dynamical core of spontaneous activity in the primate cortex. The slow timescales are well matched to the regulation of internal visceral states, corresponding to the somatic correlates of mood and anxiety. In contrast, the topology of the surrounding 'feeder' cortical regions shows unstable, rapidly fluctuating dynamics likely to be crucial for fast perceptual processes. We discuss these findings in relation to psychiatric disorders and the future of connectomics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Segmentation of the Cingulum Bundle in the Human Brain: A New Perspective Based on DSI Tractography and Fiber Dissection Study.

    PubMed

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao; Ou, Shaowu

    2016-01-01

    The cingulum bundle (CB) is a critical white matter fiber tract in the brain, which forms connections between the frontal lobe, parietal lobe and temporal lobe. In non-human primates, the CB is actually divided into distinct subcomponents on the basis of corticocortical connections. However, at present, no study has verified similar distinct subdivisions in the human brain. In this study, we reconstructed these distinct subdivisions in the human brain, and determined their exact cortical connections using high definition fiber tracking (HDFT) technique on 10 healthy adults and a 488-subject template from the Human Connectome Project (HCP-488). Fiber dissections were performed to verify tractography results. Five CB segments were identified. CB-I ran from the subrostral areas to the precuneus and splenium, encircling the corpus callosum (CC). CB-II arched around the splenium and extended anteriorly above the CC to the medial aspect of the superior frontal gyrus (SFG). CB-III connected the superior parietal lobule (SPL) and precuneus with the medial aspect of the SFG. CB-IV was a relatively minor subcomponent from the SPL and precuneus to the frontal region. CB-V, the para-hippocampal cingulum, stemmed from the medial temporal lobe and fanned out to the occipital lobes. Our findings not only provide a more accurate and detailed description on the associated architecture of the subcomponents within the CB, but also offer new insights into the functional role of the CB in the human brain.

  1. Loss of serum IGF-I input to the brain as an early biomarker of disease onset in Alzheimer mice

    PubMed Central

    Trueba-Sáiz, A; Cavada, C; Fernandez, A M; Leon, T; González, D A; Fortea Ormaechea, J; Lleó, A; Del Ser, T; Nuñez, A; Torres-Aleman, I

    2013-01-01

    Circulating insulin-like growth factor I (IGF-I) enters the brain and promotes clearance of amyloid peptides known to accumulate in Alzheimer's disease (AD) brains. Both patients and mouse models of AD show decreased level of circulating IGF-I enter the brain as evidenced by a lower ratio of cerebrospinal fluid/plasma IGF-I. Importantly, in presymptomatic AD mice this reduction is already manifested as a decreased brain input of serum IGF-I in response to environmental enrichment. To explore a potential diagnostic use of this early loss of IGF-I input, we monitored electrocorticogram (ECG) responses to systemic IGF-I in mice. Whereas control mice showed enhanced ECG activity after IGF-I, presymptomatic AD mice showed blunted ECG responses. Because nonhuman primates showed identically enhanced electroencephalogram (EEG) activity in response to systemic IGF-I, loss of the EEG signature of serum IGF-I may be exploited as a disease biomarker in AD patients. PMID:24301648

  2. Preclinical evaluation of a low-frequency transcranial MRI-guided focused ultrasound system in a primate model

    NASA Astrophysics Data System (ADS)

    McDannold, Nathan; Livingstone, Margaret; Barış Top, Can; Sutton, Jonathan; Todd, Nick; Vykhodtseva, Natalia

    2016-11-01

    This study investigated thermal ablation and skull-induced heating with a 230 kHz transcranial MRI-guided focused ultrasound (TcMRgFUS) system in nonhuman primates. We evaluated real-time acoustic feedback and aimed to understand whether cavitation contributed to the heating and the lesion formation. In four macaques, we sonicated thalamic targets at acoustic powers of 34-560 W (896-7590 J). Tissue effects evaluated with MRI and histology were compared to MRI-based temperature and thermal dose measurements, acoustic emissions recorded during the experiments, and acoustic and thermal simulations. Peak temperatures ranged from 46 to 57 °C, and lesions were produced in 5/8 sonicated targets. A linear relationship was observed between the applied acoustic energy and both the focal and brain surface heating. Thermal dose thresholds were 15-50 cumulative equivalent minutes at 43 °C, similar to prior studies at higher frequencies. Histology was also consistent with earlier studies of thermal effects in the brain. The system successfully controlled the power level and maintained a low level of cavitation activity. Increased acoustic emissions observed in 3/4 animals occurred when the focal temperature rise exceeded approximately 16 °C. Thresholds for thermally-significant subharmonic and wideband emissions were 129 and 140 W, respectively, corresponding to estimated pressure amplitudes of 2.1 and 2.2 MPa. Simulated focal heating was consistent with the measurements for sonications without thermally-significant acoustic emissions; otherwise it was consistently lower than the measurements. Overall, these results suggest that the lesions were produced by thermal mechanisms. The detected acoustic emissions, however, and their association with heating suggest that cavitation might have contributed to the focal heating. Compared to earlier work with a 670 kHz TcMRgFUS system, the brain surface heating was substantially reduced and the focal heating was higher with this 230 kHz system, suggesting that a reduced frequency can increase the treatment envelope for TcMRgFUS and potentially reduce the risk of skull heating.

  3. Behavioral and neural properties of social reinforcement learning

    PubMed Central

    Jones, Rebecca M.; Somerville, Leah H.; Li, Jian; Ruberry, Erika J.; Libby, Victoria; Glover, Gary; Voss, Henning U.; Ballon, Douglas J.; Casey, BJ

    2011-01-01

    Social learning is critical for engaging in complex interactions with other individuals. Learning from positive social exchanges, such as acceptance from peers, may be similar to basic reinforcement learning. We formally test this hypothesis by developing a novel paradigm that is based upon work in non-human primates and human imaging studies of reinforcement learning. The probability of receiving positive social reinforcement from three distinct peers was parametrically manipulated while brain activity was recorded in healthy adults using event-related functional magnetic resonance imaging (fMRI). Over the course of the experiment, participants responded more quickly to faces of peers who provided more frequent positive social reinforcement, and rated them as more likeable. Modeling trial-by-trial learning showed ventral striatum and orbital frontal cortex activity correlated positively with forming expectations about receiving social reinforcement. Rostral anterior cingulate cortex activity tracked positively with modulations of expected value of the cues (peers). Together, the findings across three levels of analysis - social preferences, response latencies and modeling neural responses – are consistent with reinforcement learning theory and non-human primate electrophysiological studies of reward. This work highlights the fundamental influence of acceptance by one’s peers in altering subsequent behavior. PMID:21917787

  4. Intrinsic connectivity of neural networks in the awake rabbit.

    PubMed

    Schroeder, Matthew P; Weiss, Craig; Procissi, Daniel; Disterhoft, John F; Wang, Lei

    2016-04-01

    The way in which the brain is functionally connected into different networks has emerged as an important research topic in order to understand normal neural processing and signaling. Since some experimental manipulations are difficult or unethical to perform in humans, animal models are better suited to investigate this topic. Rabbits are a species that can undergo MRI scanning in an awake and conscious state with minimal preparation and habituation. In this study, we characterized the intrinsic functional networks of the resting New Zealand White rabbit brain using BOLD fMRI data. Group independent component analysis revealed seven networks similar to those previously found in humans, non-human primates and/or rodents including the hippocampus, default mode, cerebellum, thalamus, and visual, somatosensory, and parietal cortices. For the first time, the intrinsic functional networks of the resting rabbit brain have been elucidated demonstrating the rabbit's applicability as a translational animal model. Without the confounding effects of anesthetics or sedatives, future experiments may employ rabbits to understand changes in neural connectivity and brain functioning as a result of experimental manipulation (e.g., temporary or permanent network disruption, learning-related changes, and drug administration). Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Toward a whole-body neuroprosthetic.

    PubMed

    Lebedev, Mikhail A; Nicolelis, Miguel A L

    2011-01-01

    Brain-machine interfaces (BMIs) hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurological diseases, and limb loss. Considerable progress has been achieved in BMIs that enact arm movements, and initial work has been done on BMIs for lower limb and trunk control. These developments put Duke University Center for Neuroengineering in the position to develop the first BMI for whole-body control. This whole-body BMI will incorporate very large-scale brain recordings, advanced decoding algorithms, artificial sensory feedback based on electrical stimulation of somatosensory areas, virtual environment representations, and a whole-body exoskeleton. This system will be first tested in nonhuman primates and then transferred to clinical trials in humans. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Adaptation of the vestibulo-ocular reflex for forward-eyed foveate vision

    PubMed Central

    Migliaccio, Americo A; Minor, Lloyd B; Santina, Charles C Della

    2010-01-01

    To maintain visual fixation on a distant target during head rotation, the angular vestibulo-ocular reflex (aVOR) should rotate the eyes at the same speed as the head and in exactly the opposite direction. However, in primates for which the 3-dimensional (3D) aVOR has been extensively characterised (humans and squirrel monkeys (Saimiri sciureus)), the aVOR response to roll head rotation about the naso-occipital axis is lower than that elicited by yaw and pitch, causing errors in aVOR magnitude and direction that vary with the axis of head rotation. In other words, primates keep the central part of the retinal image on the fovea (where photoreceptor density and visual acuity are greatest) but fail to keep that image from twisting about the eyes' resting optic axes. We tested the hypothesis that aVOR direction dependence is an adaptation related to primates' frontal-eyed, foveate status through comparison with the aVOR of a lateral-eyed, afoveate mammal (Chinchilla lanigera). As chinchillas' eyes are afoveate and never align with each other, we predicted that the chinchilla aVOR would be relatively low in gain and isotropic (equal in gain for every head rotation axis). In 11 normal chinchillas, we recorded binocular 3D eye movements in darkness during static tilts, 20–100 deg s−1 whole-body sinusoidal rotations (0.5–15 Hz), and 3000 deg s−2 acceleration steps. Although the chinchilla 3D aVOR gain changed with both frequency and peak velocity over the range we examined, we consistently found that it was more nearly isotropic than the primate aVOR. Our results suggest that primates' anisotropic aVOR represents an adaptation to their forward-eyed, foveate status. In primates, yaw and pitch aVOR must be compensatory to stabilise images on both foveae, whereas roll aVOR can be under-compensatory because the brain tolerates torsion of binocular images that remain on the foveae. In contrast, the lateral-eyed chinchilla faces different adaptive demands and thus enlists a different aVOR strategy. PMID:20724359

  7. Synthesis and evaluation of C-11, F-18 and I-125 small molecule radioligands for detecting oxytocin receptors

    PubMed Central

    Smith, Aaron L.; Freeman, Sara M.; Stehouwer, Jeffery S.; Inoue, Kiyoshi; Voll, Ronald J.; Young, Larry J.; Goodman, Mark M.

    2013-01-01

    Compounds 1–4 were synthesized and investigated for selectivity and potency for the oxytocin receptor (OTR) to determine their viability as radioactive ligands. Binding assays determined 1–4 to have high binding affinity for both the human and rodent OTR and also have high selectivity for the human OTR over human vasopressin V1a receptors (V1aR). Inadequate selectivity for OTR over V1aR was found for rodent receptors in all four compounds. The radioactive (C-11, F-18, and I-125) derivatives of 1–4 were synthesized and investigated for use as autoradiography and positron emission tomography (PET) ligands. Receptor autoradiography performed with [125I]1 and [125I]2 on rodent brain slices provided the first small molecule radioligand images of the OTR and V1aR. Biodistribution studies determined [125I]1 and [125I]2 were adequate for in vivo peripheral investigations, but not for central investigations due to low uptake within the brain. A biodistribution study with [18F]3 suggested brain uptake occurred slowly over time. PET imaging studies with [18F]3 and [11C]4 using a rat model provided insufficient uptake in the brain over a 90 and 45 min scan times respectively to merit further investigations in non-human primates. PMID:22425346

  8. Studying primate cognition in a social setting to improve validity and welfare: a literature review highlighting successful approaches.

    PubMed

    Cronin, Katherine A; Jacobson, Sarah L; Bonnie, Kristin E; Hopper, Lydia M

    2017-01-01

    Studying animal cognition in a social setting is associated with practical and statistical challenges. However, conducting cognitive research without disturbing species-typical social groups can increase ecological validity, minimize distress, and improve animal welfare. Here, we review the existing literature on cognitive research run with primates in a social setting in order to determine how widespread such testing is and highlight approaches that may guide future research planning. Using Google Scholar to search the terms "primate" "cognition" "experiment" and "social group," we conducted a systematic literature search covering 16 years (2000-2015 inclusive). We then conducted two supplemental searches within each journal that contained a publication meeting our criteria in the original search, using the terms "primate" and "playback" in one search and the terms "primate" "cognition" and "social group" in the second. The results were used to assess how frequently nonhuman primate cognition has been studied in a social setting (>3 individuals), to gain perspective on the species and topics that have been studied, and to extract successful approaches for social testing. Our search revealed 248 unique publications in 43 journals encompassing 71 species. The absolute number of publications has increased over years, suggesting viable strategies for studying cognition in social settings. While a wide range of species were studied they were not equally represented, with 19% of the publications reporting data for chimpanzees. Field sites were the most common environment for experiments run in social groups of primates, accounting for more than half of the results. Approaches to mitigating the practical and statistical challenges were identified. This analysis has revealed that the study of primate cognition in a social setting is increasing and taking place across a range of environments. This literature review calls attention to examples that may provide valuable models for researchers wishing to overcome potential practical and statistical challenges to studying cognition in a social setting, ultimately increasing validity and improving the welfare of the primates we study.

  9. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes

    PubMed Central

    Nitzsche, Björn; Frey, Stephen; Collins, Louis D.; Seeger, Johannes; Lobsien, Donald; Dreyer, Antje; Kirsten, Holger; Stoffel, Michael H.; Fonov, Vladimir S.; Boltze, Johannes

    2015-01-01

    Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5 T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight (BW), age, and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and BW explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species. PMID:26089780

  10. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback.

    PubMed

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A

    2014-10-01

    Present day cortical brain-machine interfaces (BMIs) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available. To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation to provide 'tactile' sensation to a non-human primate. Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area, the parietal reach region and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. Providing somatosensory feedback has the poyential to greatly improve the performance of cognitive neuroprostheses especially for fine control and object manipulation. Adding stimulation to a BMI system could therefore improve the quality of life for severely paralyzed patients.

  11. Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates

    NASA Astrophysics Data System (ADS)

    Rajangam, Sankaranarayani; Tseng, Po-He; Yin, Allen; Lehew, Gary; Schwarz, David; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.

    2016-03-01

    Several groups have developed brain-machine-interfaces (BMIs) that allow primates to use cortical activity to control artificial limbs. Yet, it remains unknown whether cortical ensembles could represent the kinematics of whole-body navigation and be used to operate a BMI that moves a wheelchair continuously in space. Here we show that rhesus monkeys can learn to navigate a robotic wheelchair, using their cortical activity as the main control signal. Two monkeys were chronically implanted with multichannel microelectrode arrays that allowed wireless recordings from ensembles of premotor and sensorimotor cortical neurons. Initially, while monkeys remained seated in the robotic wheelchair, passive navigation was employed to train a linear decoder to extract 2D wheelchair kinematics from cortical activity. Next, monkeys employed the wireless BMI to translate their cortical activity into the robotic wheelchair’s translational and rotational velocities. Over time, monkeys improved their ability to navigate the wheelchair toward the location of a grape reward. The navigation was enacted by populations of cortical neurons tuned to whole-body displacement. During practice with the apparatus, we also noticed the presence of a cortical representation of the distance to reward location. These results demonstrate that intracranial BMIs could restore whole-body mobility to severely paralyzed patients in the future.

  12. Prefrontal vulnerabilities and whole brain connectivity in aging and depression.

    PubMed

    Lamar, Melissa; Charlton, Rebecca A; Ajilore, Olusola; Zhang, Aifeng; Yang, Shaolin; Barrick, Thomas R; Rhodes, Emma; Kumar, Anand

    2013-07-01

    Studies exploring the underpinnings of age-related neurodegeneration suggest fronto-limbic alterations that are increasingly vulnerable in the presence of disease including late life depression. Less work has assessed the impact of this specific vulnerability on widespread brain circuitry. Seventy-nine older adults (healthy controls=45; late life depression=34) completed translational tasks shown in non-human primates to rely on fronto-limbic networks involving dorsolateral (Self-Ordered Pointing Task) or orbitofrontal (Object Alternation Task) cortices. A sub-sample of participants also completed diffusion tensor imaging for white matter tract quantification (uncinate and cingulum bundle; n=58) and whole brain tract-based spatial statistics (n=62). Despite task associations to specific white matter tracts across both groups, only healthy controls demonstrated significant correlations between widespread tract integrity and cognition. Thus, increasing Object Alternation Task errors were associated with decreasing fractional anisotropy in the uncinate in late life depression; however, only in healthy controls was the uncinate incorporated into a larger network of white matter vulnerability associating fractional anisotropy with Object Alternation Task errors using whole brain tract-based spatial statistics. It appears that the whole brain impact of specific fronto-limbic vulnerabilities in aging may be eclipsed in the presence of disease-specific neuropathology like that seen in late life depression. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Forest Fragmentation as Cause of Bacterial Transmission among Nonhuman Primates, Humans, and Livestock, Uganda

    PubMed Central

    Gillespie, Thomas R.; Rwego, Innocent B.; Estoff, Elizabeth L.; Chapman, Colin A.

    2008-01-01

    We conducted a prospective study of bacterial transmission among humans, nonhuman primates (primates hereafter), and livestock in western Uganda. Humans living near forest fragments harbored Escherichia coli bacteria that were ≈75% more similar to bacteria from primates in those fragments than to bacteria from primates in nearby undisturbed forests. Genetic similarity between human/livestock and primate bacteria increased ≈3-fold as anthropogenic disturbance within forest fragments increased from moderate to high. Bacteria harbored by humans and livestock were approximately twice as similar to those of red-tailed guenons, which habitually enter human settlements to raid crops, than to bacteria of other primate species. Tending livestock, experiencing gastrointestinal symptoms, and residing near a disturbed forest fragment increased genetic similarity between a participant’s bacteria and those of nearby primates. Forest fragmentation, anthropogenic disturbance within fragments, primate ecology, and human behavior all influence bidirectional, interspecific bacterial transmission. Targeted interventions on any of these levels should reduce disease transmission and emergence. PMID:18760003

  14. Automatic pose correction for image-guided nonhuman primate brain surgery planning

    NASA Astrophysics Data System (ADS)

    Ghafurian, Soheil; Chen, Antong; Hines, Catherine; Dogdas, Belma; Bone, Ashleigh; Lodge, Kenneth; O'Malley, Stacey; Winkelmann, Christopher T.; Bagchi, Ansuman; Lubbers, Laura S.; Uslaner, Jason M.; Johnson, Colena; Renger, John; Zariwala, Hatim A.

    2016-03-01

    Intracranial delivery of recombinant DNA and neurochemical analysis in nonhuman primate (NHP) requires precise targeting of various brain structures via imaging derived coordinates in stereotactic surgeries. To attain targeting precision, the surgical planning needs to be done on preoperative three dimensional (3D) CT and/or MR images, in which the animals head is fixed in a pose identical to the pose during the stereotactic surgery. The matching of the image to the pose in the stereotactic frame can be done manually by detecting key anatomical landmarks on the 3D MR and CT images such as ear canal and ear bar zero position. This is not only time intensive but also prone to error due to the varying initial poses in the images which affects both the landmark detection and rotation estimation. We have introduced a fast, reproducible, and semi-automatic method to detect the stereotactic coordinate system in the image and correct the pose. The method begins with a rigid registration of the subject images to an atlas and proceeds to detect the anatomical landmarks through a sequence of optimization, deformable and multimodal registration algorithms. The results showed similar precision (maximum difference of 1.71 in average in-plane rotation) to a manual pose correction.

  15. Temporally Coordinated Deep Brain Stimulation in the Dorsal and Ventral Striatum Synergistically Enhances Associative Learning.

    PubMed

    Katnani, Husam A; Patel, Shaun R; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T; Eskandar, Emad N

    2016-01-04

    The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect.

  16. Cycle-Triggered Cortical Stimulation during Slow Wave Sleep Facilitates Learning a BMI Task: A Case Report in a Non-Human Primate

    PubMed Central

    Rembado, Irene; Zanos, Stavros; Fetz, Eberhard E.

    2017-01-01

    Slow wave sleep (SWS) has been identified as the sleep stage involved in consolidating newly acquired information. A growing body of evidence has shown that delta (1–4 Hz) oscillatory activity, the characteristic electroencephalographic signature of SWS, is involved in coordinating interaction between the hippocampus and the neocortex and is thought to take a role in stabilizing memory traces related to a novel task. This case report describes a new protocol that uses neuroprosthetics training of a non-human primate to evaluate the effects of surface cortical electrical stimulation triggered from SWS cycles. The results suggest that stimulation phase-locked to SWS oscillatory activity promoted learning of the neuroprosthetic task. This protocol could be used to elucidate mechanisms of synaptic plasticity underlying off-line learning during sleep and offers new insights into the role of brain oscillations in information processing and memory consolidation. PMID:28450831

  17. Positron emission tomography (PET) imaging of nicotine-induced dopamine release in squirrel monkeys using [18F]Fallypride.

    PubMed

    Naylor, Jennifer E; Hiranita, Takato; Matazel, Katelin S; Zhang, Xuan; Paule, Merle G; Goodwin, Amy K

    2017-10-01

    Nicotine, the principal psychoactive tobacco constituent, is thought to produce its reinforcing effects via actions within the mesolimbic dopamine (DA) system. The objective of the current study was to examine the effect of nicotine on DA D 2 /D 3 receptor availability in the nonhuman primate brain with the use of the radioligand [ 18 F]fallypride and positron emission tomography (PET). Ten adult male squirrel monkeys were used in the current study. Each subject underwent two PET scans, one with an injection (IV) of saline and subsequently one with an injection of nicotine (0.032mg/kg). The DA D 2 /D 3 antagonist, [ 18 F]fallypride, was delivered IV at the beginning of each scan, and nicotine or saline was delivered at 45min into the scan. Regions of interest (ROI) were drawn on specific brain regions and these were used to quantify standard uptake values (SUVs). The SUV is defined as the average concentration of radioactivity in the ROI x body weight/injected dose. Using the cerebellum as a reference region, SUV ratios (SUV ROI /SUV cerebellum ) were calculated to compare saline and nicotine effects in each ROI. Two-way repeated ANOVA revealed a significant decrease of SUV ratios in both striatal and extrastriatal regions following an injection of nicotine during the PET scans. Like other drugs of abuse, these results indicate that nicotine administration may produce DA release, as suggested by the decrease in [ 18 F]fallypride signal in striatal regions. These findings from a nonhuman primate model provide further evidence that the mesolimbic DA system is affected by the use of products that contain nicotine. Published by Elsevier B.V.

  18. The Brain's Router: A Cortical Network Model of Serial Processing in the Primate Brain

    PubMed Central

    Zylberberg, Ariel; Fernández Slezak, Diego; Roelfsema, Pieter R.; Dehaene, Stanislas; Sigman, Mariano

    2010-01-01

    The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100–500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a “router” network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates. PMID:20442869

  19. Development and application of a modified dynamic time warping algorithm (DTW-S) to analyses of primate brain expression time series

    PubMed Central

    2011-01-01

    Background Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Results Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. Conclusions The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html. PMID:21851598

  20. Development and application of a modified dynamic time warping algorithm (DTW-S) to analyses of primate brain expression time series.

    PubMed

    Yuan, Yuan; Chen, Yi-Ping Phoebe; Ni, Shengyu; Xu, Augix Guohua; Tang, Lin; Vingron, Martin; Somel, Mehmet; Khaitovich, Philipp

    2011-08-18

    Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html.

Top