Long Chen; Zhongpeng Wang; Feng He; Jiajia Yang; Hongzhi Qi; Peng Zhou; Baikun Wan; Dong Ming
2015-08-01
The hybrid brain computer interface (hBCI) could provide higher information transfer rate than did the classical BCIs. It included more than one brain-computer or human-machine interact paradigms, such as the combination of the P300 and SSVEP paradigms. Research firstly constructed independent subsystems of three different paradigms and tested each of them with online experiments. Then we constructed a serial hybrid BCI system which combined these paradigms to achieve the functions of typing letters, moving and clicking cursor, and switching among them for the purpose of browsing webpages. Five subjects were involved in this study. They all successfully realized these functions in the online tests. The subjects could achieve an accuracy above 90% after training, which met the requirement in operating the system efficiently. The results demonstrated that it was an efficient system capable of robustness, which provided an approach for the clinic application.
Region based Brain Computer Interface for a home control application.
Akman Aydin, Eda; Bay, Omer Faruk; Guler, Inan
2015-08-01
Environment control is one of the important challenges for disabled people who suffer from neuromuscular diseases. Brain Computer Interface (BCI) provides a communication channel between the human brain and the environment without requiring any muscular activation. The most important expectation for a home control application is high accuracy and reliable control. Region-based paradigm is a stimulus paradigm based on oddball principle and requires selection of a target at two levels. This paper presents an application of region based paradigm for a smart home control application for people with neuromuscular diseases. In this study, a region based stimulus interface containing 49 commands was designed. Five non-disabled subjects were attended to the experiments. Offline analysis results of the experiments yielded 95% accuracy for five flashes. This result showed that region based paradigm can be used to select commands of a smart home control application with high accuracy in the low number of repetitions successfully. Furthermore, a statistically significant difference was not observed between the level accuracies.
Training to use a commercial brain-computer interface as access technology: a case study.
Taherian, Sarvnaz; Selitskiy, Dmitry; Pau, James; Davies, T Claire; Owens, R Glynn
2016-01-01
This case study describes how an individual with spastic quadriplegic cerebral palsy was trained over a period of four weeks to use a commercial electroencephalography (EEG)-based brain-computer interface (BCI). The participant spent three sessions exploring the system, and seven sessions playing a game focused on EEG feedback training of left and right arm motor imagery and a customised, training game paradigm was employed. The participant showed improvement in the production of two distinct EEG patterns. The participant's performance was influenced by motivation, fatigue and concentration. Six weeks post-training the participant could still control the BCI and used this to type a sentence using an augmentative and alternative communication application on a wirelessly linked device. The results from this case study highlight the importance of creating a dynamic, relevant and engaging training environment for BCIs. Implications for Rehabilitation Customising a training paradigm to suit the users' interests can influence adherence to assistive technology training. Mood, fatigue, physical illness and motivation influence the usability of a brain-computer interface. Commercial brain-computer interfaces, which require little set up time, may be used as access technology for individuals with severe disabilities.
Brain-computer interfaces in the continuum of consciousness.
Kübler, Andrea; Kotchoubey, Boris
2007-12-01
To summarize recent developments and look at important future aspects of brain-computer interfaces. Recent brain-computer interface studies are largely targeted at helping severely or even completely paralysed patients. The former are only able to communicate yes or no via a single muscle twitch, and the latter are totally nonresponsive. Such patients can control brain-computer interfaces and use them to select letters, words or items on a computer screen, for neuroprosthesis control or for surfing the Internet. This condition of motor paralysis, in which cognition and consciousness appear to be unaffected, is traditionally opposed to nonresponsiveness due to disorders of consciousness. Although these groups of patients may appear to be very alike, numerous transition states between them are demonstrated by recent studies. All nonresponsive patients can be regarded on a continuum of consciousness which may vary even within short time periods. As overt behaviour is lacking, cognitive functions in such patients can only be investigated using neurophysiological methods. We suggest that brain-computer interfaces may provide a new tool to investigate cognition in disorders of consciousness, and propose a hierarchical procedure entailing passive stimulation, active instructions, volitional paradigms, and brain-computer interface operation.
Rutkowski, Tomasz M
2015-08-01
This paper presents an applied concept of a brain-computer interface (BCI) student research laboratory (BCI-LAB) at the Life Science Center of TARA, University of Tsukuba, Japan. Several successful case studies of the student projects are reviewed together with the BCI Research Award 2014 winner case. The BCI-LAB design and project-based teaching philosophy is also explained. Future teaching and research directions summarize the review.
An Efficient ERP-Based Brain-Computer Interface Using Random Set Presentation and Face Familiarity
Müller, Klaus-Robert; Lee, Seong-Whan
2014-01-01
Event-related potential (ERP)-based P300 spellers are commonly used in the field of brain-computer interfaces as an alternative channel of communication for people with severe neuro-muscular diseases. This study introduces a novel P300 based brain-computer interface (BCI) stimulus paradigm using a random set presentation pattern and exploiting the effects of face familiarity. The effect of face familiarity is widely studied in the cognitive neurosciences and has recently been addressed for the purpose of BCI. In this study we compare P300-based BCI performances of a conventional row-column (RC)-based paradigm with our approach that combines a random set presentation paradigm with (non-) self-face stimuli. Our experimental results indicate stronger deflections of the ERPs in response to face stimuli, which are further enhanced when using the self-face images, and thereby improving P300-based spelling performance. This lead to a significant reduction of stimulus sequences required for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-based BCI setup. PMID:25384045
An efficient ERP-based brain-computer interface using random set presentation and face familiarity.
Yeom, Seul-Ki; Fazli, Siamac; Müller, Klaus-Robert; Lee, Seong-Whan
2014-01-01
Event-related potential (ERP)-based P300 spellers are commonly used in the field of brain-computer interfaces as an alternative channel of communication for people with severe neuro-muscular diseases. This study introduces a novel P300 based brain-computer interface (BCI) stimulus paradigm using a random set presentation pattern and exploiting the effects of face familiarity. The effect of face familiarity is widely studied in the cognitive neurosciences and has recently been addressed for the purpose of BCI. In this study we compare P300-based BCI performances of a conventional row-column (RC)-based paradigm with our approach that combines a random set presentation paradigm with (non-) self-face stimuli. Our experimental results indicate stronger deflections of the ERPs in response to face stimuli, which are further enhanced when using the self-face images, and thereby improving P300-based spelling performance. This lead to a significant reduction of stimulus sequences required for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-based BCI setup.
A comparison among several P300 brain-computer interface speller paradigms.
Fazel-Rezai, Reza; Gavett, Scott; Ahmad, Waqas; Rabbi, Ahmed; Schneider, Eric
2011-10-01
Since the brain-computer interface (BCI) speller was first proposed by Farwell and Donchin, there have been modifications in the visual aspects of P300 paradigms. Most of the changes are based on the original matrix format such as changes in the number of rows and columns, font size, flash/ blank time, and flash order. The improvement in the resulting accuracy and speed of such systems has always been the ultimate goal. In this study, we have compared several different speller paradigms including row-column, single character flashing, and two region-based paradigms which are not based on the matrix format. In the first region-based paradigm, at the first level, characters and symbols are distributed over seven regions alphabetically, while in the second region-based paradigm they are distributed in the most frequently used order. At the second level, each one of the regions is further subdivided into seven subsets. The experimental results showed that the average accuracy and user acceptability for two region-based paradigms were higher than those for traditional paradigms such as row/column and single character.
Taherian, Sarvnaz; Selitskiy, Dmitry; Pau, James; Claire Davies, T
2017-02-01
Using a commercial electroencephalography (EEG)-based brain-computer interface (BCI), the training and testing protocol for six individuals with spastic quadriplegic cerebral palsy (GMFCS and MACS IV and V) was evaluated. A customised, gamified training paradigm was employed. Over three weeks, the participants spent two sessions exploring the system, and up to six sessions playing the game which focussed on EEG feedback of left and right arm motor imagery. The participants showed variable inconclusive results in the ability to produce two distinct EEG patterns. Participant performance was influenced by physical illness, motivation, fatigue and concentration. The results from this case study highlight the infancy of BCIs as a form of assistive technology for people with cerebral palsy. Existing commercial BCIs are not designed according to the needs of end-users. Implications for Rehabilitation Mood, fatigue, physical illness and motivation influence the usability of a brain-computer interface. Commercial brain-computer interfaces are not designed for practical assistive technology use for people with cerebral palsy. Practical brain-computer interface assistive technologies may need to be flexible to suit individual needs.
Performance improvement of ERP-based brain-computer interface via varied geometric patterns.
Ma, Zheng; Qiu, Tianshuang
2017-12-01
Recently, many studies have been focusing on optimizing the stimulus of an event-related potential (ERP)-based brain-computer interface (BCI). However, little is known about the effectiveness when increasing the stimulus unpredictability. We investigated a new stimulus type of varied geometric pattern where both complexity and unpredictability of the stimulus are increased. The proposed and classical paradigms were compared in within-subject experiments with 16 healthy participants. Results showed that the BCI performance was significantly improved for the proposed paradigm, with an average online written symbol rate increasing by 138% comparing with that of the classical paradigm. Amplitudes of primary ERP components, such as N1, P2a, P2b, N2, were also found to be significantly enhanced with the proposed paradigm. In this paper, a novel ERP BCI paradigm with a new stimulus type of varied geometric pattern is proposed. By jointly increasing the complexity and unpredictability of the stimulus, the performance of an ERP BCI could be considerably improved.
Combaz, Adrien; Van Hulle, Marc M
2015-01-01
We study the feasibility of a hybrid Brain-Computer Interface (BCI) combining simultaneous visual oddball and Steady-State Visually Evoked Potential (SSVEP) paradigms, where both types of stimuli are superimposed on a computer screen. Potentially, such a combination could result in a system being able to operate faster than a purely P300-based BCI and encode more targets than a purely SSVEP-based BCI. We analyse the interactions between the brain responses of the two paradigms, and assess the possibility to detect simultaneously the brain activity evoked by both paradigms, in a series of 3 experiments where EEG data are analysed offline. Despite differences in the shape of the P300 response between pure oddball and hybrid condition, we observe that the classification accuracy of this P300 response is not affected by the SSVEP stimulation. We do not observe either any effect of the oddball stimulation on the power of the SSVEP response in the frequency of stimulation. Finally results from the last experiment show the possibility of detecting both types of brain responses simultaneously and suggest not only the feasibility of such hybrid BCI but also a gain over pure oddball- and pure SSVEP-based BCIs in terms of communication rate.
A Hybrid Brain-Computer Interface Based on the Fusion of P300 and SSVEP Scores.
Yin, Erwei; Zeyl, Timothy; Saab, Rami; Chau, Tom; Hu, Dewen; Zhou, Zongtan
2015-07-01
The present study proposes a hybrid brain-computer interface (BCI) with 64 selectable items based on the fusion of P300 and steady-state visually evoked potential (SSVEP) brain signals. With this approach, row/column (RC) P300 and two-step SSVEP paradigms were integrated to create two hybrid paradigms, which we denote as the double RC (DRC) and 4-D spellers. In each hybrid paradigm, the target is simultaneously detected based on both P300 and SSVEP potentials as measured by the electroencephalogram. We further proposed a maximum-probability estimation (MPE) fusion approach to combine the P300 and SSVEP on a score level and compared this approach to other approaches based on linear discriminant analysis, a naïve Bayes classifier, and support vector machines. The experimental results obtained from thirteen participants indicated that the 4-D hybrid paradigm outperformed the DRC paradigm and that the MPE fusion achieved higher accuracy compared with the other approaches. Importantly, 12 of the 13 participants, using the 4-D paradigm achieved an accuracy of over 90% and the average accuracy was 95.18%. These promising results suggest that the proposed hybrid BCI system could be used in the design of a high-performance BCI-based keyboard.
Halder, S; Käthner, I; Kübler, A
2016-02-01
Auditory brain-computer interfaces are an assistive technology that can restore communication for motor impaired end-users. Such non-visual brain-computer interface paradigms are of particular importance for end-users that may lose or have lost gaze control. We attempted to show that motor impaired end-users can learn to control an auditory speller on the basis of event-related potentials. Five end-users with motor impairments, two of whom with additional visual impairments, participated in five sessions. We applied a newly developed auditory brain-computer interface paradigm with natural sounds and directional cues. Three of five end-users learned to select symbols using this method. Averaged over all five end-users the information transfer rate increased by more than 1800% from the first session (0.17 bits/min) to the last session (3.08 bits/min). The two best end-users achieved information transfer rates of 5.78 bits/min and accuracies of 92%. Our results show that an auditory BCI with a combination of natural sounds and directional cues, can be controlled by end-users with motor impairment. Training improves the performance of end-users to the level of healthy controls. To our knowledge, this is the first time end-users with motor impairments controlled an auditory brain-computer interface speller with such high accuracy and information transfer rates. Further, our results demonstrate that operating a BCI with event-related potentials benefits from training and specifically end-users may require more than one session to develop their full potential. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
A novel brain-computer interface based on the rapid serial visual presentation paradigm.
Acqualagna, Laura; Treder, Matthias Sebastian; Schreuder, Martijn; Blankertz, Benjamin
2010-01-01
Most present-day visual brain computer interfaces (BCIs) suffer from the fact that they rely on eye movements, are slow-paced, or feature a small vocabulary. As a potential remedy, we explored a novel BCI paradigm consisting of a central rapid serial visual presentation (RSVP) of the stimuli. It has a large vocabulary and realizes a BCI system based on covert non-spatial selective visual attention. In an offline study, eight participants were presented sequences of rapid bursts of symbols. Two different speeds and two different color conditions were investigated. Robust early visual and P300 components were elicited time-locked to the presentation of the target. Offline classification revealed a mean accuracy of up to 90% for selecting the correct symbol out of 30 possibilities. The results suggest that RSVP-BCI is a promising new paradigm, also for patients with oculomotor impairments.
Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users.
Rutkowski, Tomasz M; Mori, Hiromu
2015-04-15
The paper presents a report on the recently developed BCI alternative for users suffering from impaired vision (lack of focus or eye-movements) or from the so-called "ear-blocking-syndrome" (limited hearing). We report on our recent studies of the extents to which vibrotactile stimuli delivered to the head of a user can serve as a platform for a brain computer interface (BCI) paradigm. In the proposed tactile and bone-conduction auditory BCI novel multiple head positions are used to evoke combined somatosensory and auditory (via the bone conduction effect) P300 brain responses, in order to define a multimodal tactile and bone-conduction auditory brain computer interface (tbcaBCI). In order to further remove EEG interferences and to improve P300 response classification synchrosqueezing transform (SST) is applied. SST outperforms the classical time-frequency analysis methods of the non-linear and non-stationary signals such as EEG. The proposed method is also computationally more effective comparing to the empirical mode decomposition. The SST filtering allows for online EEG preprocessing application which is essential in the case of BCI. Experimental results with healthy BCI-naive users performing online tbcaBCI, validate the paradigm, while the feasibility of the concept is illuminated through information transfer rate case studies. We present a comparison of the proposed SST-based preprocessing method, combined with a logistic regression (LR) classifier, together with classical preprocessing and LDA-based classification BCI techniques. The proposed tbcaBCI paradigm together with data-driven preprocessing methods are a step forward in robust BCI applications research. Copyright © 2014 Elsevier B.V. All rights reserved.
Yu, Yang; Zhou, Zongtan; Yin, Erwei; Jiang, Jun; Tang, Jingsheng; Liu, Yadong; Hu, Dewen
2016-10-01
This study presented a paradigm for controlling a car using an asynchronous electroencephalogram (EEG)-based brain-computer interface (BCI) and presented the experimental results of a simulation performed in an experimental environment outside the laboratory. This paradigm uses two distinct MI tasks, imaginary left- and right-hand movements, to generate a multi-task car control strategy consisting of starting the engine, moving forward, turning left, turning right, moving backward, and stopping the engine. Five healthy subjects participated in the online car control experiment, and all successfully controlled the car by following a previously outlined route. Subject S1 exhibited the most satisfactory BCI-based performance, which was comparable to the manual control-based performance. We hypothesize that the proposed self-paced car control paradigm based on EEG signals could potentially be used in car control applications, and we provide a complementary or alternative way for individuals with locked-in disorders to achieve more mobility in the future, as well as providing a supplementary car-driving strategy to assist healthy people in driving a car. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Krusienski, D. J.; Shih, J. J.
2011-04-01
A brain-computer interface (BCI) is a device that enables severely disabled people to communicate and interact with their environments using their brain waves. Most research investigating BCI in humans has used scalp-recorded electroencephalography or intracranial electrocorticography. The use of brain signals obtained directly from stereotactic depth electrodes to control a BCI has not previously been explored. In this study, event-related potentials (ERPs) recorded from bilateral stereotactic depth electrodes implanted in and adjacent to the hippocampus were used to control a P300 Speller paradigm. The ERPs were preprocessed and used to train a linear classifier to subsequently predict the intended target letters. The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in the two subjects tested. Our results demonstrate that ERPs from hippocampal and hippocampal adjacent depth electrodes can be used to reliably control the P300 Speller BCI paradigm.
Tsui, Chun Sing Louis; Gan, John Q; Roberts, Stephen J
2009-03-01
Due to the non-stationarity of EEG signals, online training and adaptation are essential to EEG based brain-computer interface (BCI) systems. Self-paced BCIs offer more natural human-machine interaction than synchronous BCIs, but it is a great challenge to train and adapt a self-paced BCI online because the user's control intention and timing are usually unknown. This paper proposes a novel motor imagery based self-paced BCI paradigm for controlling a simulated robot in a specifically designed environment which is able to provide user's control intention and timing during online experiments, so that online training and adaptation of the motor imagery based self-paced BCI can be effectively investigated. We demonstrate the usefulness of the proposed paradigm with an extended Kalman filter based method to adapt the BCI classifier parameters, with experimental results of online self-paced BCI training with four subjects.
Cheng, Jiao; Jin, Jing; Daly, Ian; Zhang, Yu; Wang, Bei; Wang, Xingyu; Cichocki, Andrzej
2018-02-13
Brain-computer interface (BCI) systems can allow their users to communicate with the external world by recognizing intention directly from their brain activity without the assistance of the peripheral motor nervous system. The P300-speller is one of the most widely used visual BCI applications. In previous studies, a flip stimulus (rotating the background area of the character) that was based on apparent motion, suffered from less refractory effects. However, its performance was not improved significantly. In addition, a presentation paradigm that used a "zooming" action (changing the size of the symbol) has been shown to evoke relatively higher P300 amplitudes and obtain a better BCI performance. To extend this method of stimuli presentation within a BCI and, consequently, to improve BCI performance, we present a new paradigm combining both the flip stimulus with a zooming action. This new presentation modality allowed BCI users to focus their attention more easily. We investigated whether such an action could combine the advantages of both types of stimuli presentation to bring a significant improvement in performance compared to the conventional flip stimulus. The experimental results showed that the proposed paradigm could obtain significantly higher classification accuracies and bit rates than the conventional flip paradigm (p<0.01).
A Prototype SSVEP Based Real Time BCI Gaming System
Martišius, Ignas
2016-01-01
Although brain-computer interface technology is mainly designed with disabled people in mind, it can also be beneficial to healthy subjects, for example, in gaming or virtual reality systems. In this paper we discuss the typical architecture, paradigms, requirements, and limitations of electroencephalogram-based gaming systems. We have developed a prototype three-class brain-computer interface system, based on the steady state visually evoked potentials paradigm and the Emotiv EPOC headset. An online target shooting game, implemented in the OpenViBE environment, has been used for user feedback. The system utilizes wave atom transform for feature extraction, achieving an average accuracy of 78.2% using linear discriminant analysis classifier, 79.3% using support vector machine classifier with a linear kernel, and 80.5% using a support vector machine classifier with a radial basis function kernel. PMID:27051414
A Prototype SSVEP Based Real Time BCI Gaming System.
Martišius, Ignas; Damaševičius, Robertas
2016-01-01
Although brain-computer interface technology is mainly designed with disabled people in mind, it can also be beneficial to healthy subjects, for example, in gaming or virtual reality systems. In this paper we discuss the typical architecture, paradigms, requirements, and limitations of electroencephalogram-based gaming systems. We have developed a prototype three-class brain-computer interface system, based on the steady state visually evoked potentials paradigm and the Emotiv EPOC headset. An online target shooting game, implemented in the OpenViBE environment, has been used for user feedback. The system utilizes wave atom transform for feature extraction, achieving an average accuracy of 78.2% using linear discriminant analysis classifier, 79.3% using support vector machine classifier with a linear kernel, and 80.5% using a support vector machine classifier with a radial basis function kernel.
P300 brain computer interface: current challenges and emerging trends
Fazel-Rezai, Reza; Allison, Brendan Z.; Guger, Christoph; Sellers, Eric W.; Kleih, Sonja C.; Kübler, Andrea
2012-01-01
A brain-computer interface (BCI) enables communication without movement based on brain signals measured with electroencephalography (EEG). BCIs usually rely on one of three types of signals: the P300 and other components of the event-related potential (ERP), steady state visual evoked potential (SSVEP), or event related desynchronization (ERD). Although P300 BCIs were introduced over twenty years ago, the past few years have seen a strong increase in P300 BCI research. This closed-loop BCI approach relies on the P300 and other components of the ERP, based on an oddball paradigm presented to the subject. In this paper, we overview the current status of P300 BCI technology, and then discuss new directions: paradigms for eliciting P300s; signal processing methods; applications; and hybrid BCIs. We conclude that P300 BCIs are quite promising, as several emerging directions have not yet been fully explored and could lead to improvements in bit rate, reliability, usability, and flexibility. PMID:22822397
Brain communication in the locked-in state.
De Massari, Daniele; Ruf, Carolin A; Furdea, Adrian; Matuz, Tamara; van der Heiden, Linda; Halder, Sebastian; Silvoni, Stefano; Birbaumer, Niels
2013-06-01
Patients in the completely locked-in state have no means of communication and they represent the target population for brain-computer interface research in the last 15 years. Although different paradigms have been tested and different physiological signals used, to date no sufficiently documented completely locked-in state patient was able to control a brain-computer interface over an extended time period. We introduce Pavlovian semantic conditioning to enable basic communication in completely locked-in state. This novel paradigm is based on semantic conditioning for online classification of neuroelectric or any other physiological signals to discriminate between covert (cognitive) 'yes' and 'no' responses. The paradigm comprised the presentation of affirmative and negative statements used as conditioned stimuli, while the unconditioned stimulus consisted of electrical stimulation of the skin paired with affirmative statements. Three patients with advanced amyotrophic lateral sclerosis participated over an extended time period, one of which was in a completely locked-in state, the other two in the locked-in state. The patients' level of vigilance was assessed through auditory oddball procedures to study the correlation between vigilance level and the classifier's performance. The average online classification accuracies of slow cortical components of electroencephalographic signals were around chance level for all the patients. The use of a non-linear classifier in the offline classification procedure resulted in a substantial improvement of the accuracy in one locked-in state patient achieving 70% correct classification. A reliable level of performance in the completely locked-in state patient was not achieved uniformly throughout the 37 sessions despite intact cognitive processing capacity, but in some sessions communication accuracies up to 70% were achieved. Paradigm modifications are proposed. Rapid drop of vigilance was detected suggesting attentional variations or variations of circadian period as important factors in brain-computer interface communication with locked-in state and completely locked-in state.
A novel task-oriented optimal design for P300-based brain-computer interfaces.
Zhou, Zongtan; Yin, Erwei; Liu, Yang; Jiang, Jun; Hu, Dewen
2014-10-01
Objective. The number of items of a P300-based brain-computer interface (BCI) should be adjustable in accordance with the requirements of the specific tasks. To address this issue, we propose a novel task-oriented optimal approach aimed at increasing the performance of general P300 BCIs with different numbers of items. Approach. First, we proposed a stimulus presentation with variable dimensions (VD) paradigm as a generalization of the conventional single-character (SC) and row-column (RC) stimulus paradigms. Furthermore, an embedding design approach was employed for any given number of items. Finally, based on the score-P model of each subject, the VD flash pattern was selected by a linear interpolation approach for a certain task. Main results. The results indicate that the optimal BCI design consistently outperforms the conventional approaches, i.e., the SC and RC paradigms. Specifically, there is significant improvement in the practical information transfer rate for a large number of items. Significance. The results suggest that the proposed optimal approach would provide useful guidance in the practical design of general P300-based BCIs.
A novel task-oriented optimal design for P300-based brain-computer interfaces
NASA Astrophysics Data System (ADS)
Zhou, Zongtan; Yin, Erwei; Liu, Yang; Jiang, Jun; Hu, Dewen
2014-10-01
Objective. The number of items of a P300-based brain-computer interface (BCI) should be adjustable in accordance with the requirements of the specific tasks. To address this issue, we propose a novel task-oriented optimal approach aimed at increasing the performance of general P300 BCIs with different numbers of items. Approach. First, we proposed a stimulus presentation with variable dimensions (VD) paradigm as a generalization of the conventional single-character (SC) and row-column (RC) stimulus paradigms. Furthermore, an embedding design approach was employed for any given number of items. Finally, based on the score-P model of each subject, the VD flash pattern was selected by a linear interpolation approach for a certain task. Main results. The results indicate that the optimal BCI design consistently outperforms the conventional approaches, i.e., the SC and RC paradigms. Specifically, there is significant improvement in the practical information transfer rate for a large number of items. Significance. The results suggest that the proposed optimal approach would provide useful guidance in the practical design of general P300-based BCIs.
A covert attention P300-based brain-computer interface: Geospell.
Aloise, Fabio; Aricò, Pietro; Schettini, Francesca; Riccio, Angela; Salinari, Serenella; Mattia, Donatella; Babiloni, Fabio; Cincotti, Febo
2012-01-01
The Farwell and Donchin P300 speller interface is one of the most widely used brain-computer interface (BCI) paradigms for writing text. Recent studies have shown that the recognition accuracy of the P300 speller decreases significantly when eye movement is impaired. This report introduces the GeoSpell interface (Geometric Speller), which implements a stimulation framework for a P300-based BCI that has been optimised for operation in covert visual attention. We compared the Geospell with the P300 speller interface under overt attention conditions with regard to effectiveness, efficiency and user satisfaction. Ten healthy subjects participated in the study. The performance of the GeoSpell interface in covert attention was comparable with that of the P300 speller in overt attention. As expected, the effectiveness of the spelling decreased with the new interface in covert attention. The NASA task load index (TLX) for workload assessment did not differ significantly between the two modalities. This study introduces and evaluates a gaze-independent, P300-based brain-computer interface, the efficacy and user satisfaction of which were comparable with those off the classical P300 speller. Despite a decrease in effectiveness due to the use of covert attention, the performance of the GeoSpell far exceeded the threshold of accuracy with regard to effective spelling.
Wittevrongel, Benjamin; Van Hulle, Marc M
2017-01-01
Brain-Computer Interfaces (BCIs) decode brain activity with the aim to establish a direct communication channel with an external device. Albeit they have been hailed to (re-)establish communication in persons suffering from severe motor- and/or communication disabilities, only recently BCI applications have been challenging other assistive technologies. Owing to their considerably increased performance and the advent of affordable technological solutions, BCI technology is expected to trigger a paradigm shift not only in assistive technology but also in the way we will interface with technology. However, the flipside of the quest for accuracy and speed is most evident in EEG-based visual BCI where it has led to a gamut of increasingly complex classifiers, tailored to the needs of specific stimulation paradigms and use contexts. In this contribution, we argue that spatiotemporal beamforming can serve several synchronous visual BCI paradigms. We demonstrate this for three popular visual paradigms even without attempting to optimizing their electrode sets. For each selectable target, a spatiotemporal beamformer is applied to assess whether the corresponding signal-of-interest is present in the preprocessed multichannel EEG signals. The target with the highest beamformer output is then selected by the decoder (maximum selection). In addition to this simple selection rule, we also investigated whether interactions between beamformer outputs could be employed to increase accuracy by combining the outputs for all targets into a feature vector and applying three common classification algorithms. The results show that the accuracy of spatiotemporal beamforming with maximum selection is at par with that of the classification algorithms and interactions between beamformer outputs do not further improve that accuracy.
A Gaze Independent Brain-Computer Interface Based on Visual Stimulation through Closed Eyelids
NASA Astrophysics Data System (ADS)
Hwang, Han-Jeong; Ferreria, Valeria Y.; Ulrich, Daniel; Kilic, Tayfun; Chatziliadis, Xenofon; Blankertz, Benjamin; Treder, Matthias
2015-10-01
A classical brain-computer interface (BCI) based on visual event-related potentials (ERPs) is of limited application value for paralyzed patients with severe oculomotor impairments. In this study, we introduce a novel gaze independent BCI paradigm that can be potentially used for such end-users because visual stimuli are administered on closed eyelids. The paradigm involved verbally presented questions with 3 possible answers. Online BCI experiments were conducted with twelve healthy subjects, where they selected one option by attending to one of three different visual stimuli. It was confirmed that typical cognitive ERPs can be evidently modulated by the attention of a target stimulus in eyes-closed and gaze independent condition, and further classified with high accuracy during online operation (74.58% ± 17.85 s.d.; chance level 33.33%), demonstrating the effectiveness of the proposed novel visual ERP paradigm. Also, stimulus-specific eye movements observed during stimulation were verified as reflex responses to light stimuli, and they did not contribute to classification. To the best of our knowledge, this study is the first to show the possibility of using a gaze independent visual ERP paradigm in an eyes-closed condition, thereby providing another communication option for severely locked-in patients suffering from complex ocular dysfunctions.
Shin, Jaeyoung; Müller, Klaus-R; Hwang, Han-Jeong
2016-01-01
We propose a near-infrared spectroscopy (NIRS)-based brain-computer interface (BCI) that can be operated in eyes-closed (EC) state. To evaluate the feasibility of NIRS-based EC BCIs, we compared the performance of an eye-open (EO) BCI paradigm and an EC BCI paradigm with respect to hemodynamic response and classification accuracy. To this end, subjects performed either mental arithmetic or imagined vocalization of the English alphabet as a baseline task with very low cognitive loading. The performances of two linear classifiers were compared; resulting in an advantage of shrinkage linear discriminant analysis (LDA). The classification accuracy of EC paradigm (75.6 ± 7.3%) was observed to be lower than that of EO paradigm (77.0 ± 9.2%), which was statistically insignificant (p = 0.5698). Subjects reported they felt it more comfortable (p = 0.057) and easier (p < 0.05) to perform the EC BCI tasks. The different task difficulty may become a cause of the slightly lower classification accuracy of EC data. From the analysis results, we could confirm the feasibility of NIRS-based EC BCIs, which can be a BCI option that may ultimately be of use for patients who cannot keep their eyes open consistently. PMID:27824089
Shin, Jaeyoung; Müller, Klaus-R; Hwang, Han-Jeong
2016-11-08
We propose a near-infrared spectroscopy (NIRS)-based brain-computer interface (BCI) that can be operated in eyes-closed (EC) state. To evaluate the feasibility of NIRS-based EC BCIs, we compared the performance of an eye-open (EO) BCI paradigm and an EC BCI paradigm with respect to hemodynamic response and classification accuracy. To this end, subjects performed either mental arithmetic or imagined vocalization of the English alphabet as a baseline task with very low cognitive loading. The performances of two linear classifiers were compared; resulting in an advantage of shrinkage linear discriminant analysis (LDA). The classification accuracy of EC paradigm (75.6 ± 7.3%) was observed to be lower than that of EO paradigm (77.0 ± 9.2%), which was statistically insignificant (p = 0.5698). Subjects reported they felt it more comfortable (p = 0.057) and easier (p < 0.05) to perform the EC BCI tasks. The different task difficulty may become a cause of the slightly lower classification accuracy of EC data. From the analysis results, we could confirm the feasibility of NIRS-based EC BCIs, which can be a BCI option that may ultimately be of use for patients who cannot keep their eyes open consistently.
Brain-Computer Interface Spellers: A Review.
Rezeika, Aya; Benda, Mihaly; Stawicki, Piotr; Gembler, Felix; Saboor, Abdul; Volosyak, Ivan
2018-03-30
A Brain-Computer Interface (BCI) provides a novel non-muscular communication method via brain signals. A BCI-speller can be considered as one of the first published BCI applications and has opened the gate for many advances in the field. Although many BCI-spellers have been developed during the last few decades, to our knowledge, no reviews have described the different spellers proposed and studied in this vital field. The presented speller systems are categorized according to major BCI paradigms: P300, steady-state visual evoked potential (SSVEP), and motor imagery (MI). Different BCI paradigms require specific electroencephalogram (EEG) signal features and lead to the development of appropriate Graphical User Interfaces (GUIs). The purpose of this review is to consolidate the most successful BCI-spellers published since 2010, while mentioning some other older systems which were built explicitly for spelling purposes. We aim to assist researchers and concerned individuals in the field by illustrating the highlights of different spellers and presenting them in one review. It is almost impossible to carry out an objective comparison between different spellers, as each has its variables, parameters, and conditions. However, the gathered information and the provided taxonomy about different BCI-spellers can be helpful, as it could identify suitable systems for first-hand users, as well as opportunities of development and learning from previous studies for BCI researchers.
Towards User-Friendly Spelling with an Auditory Brain-Computer Interface: The CharStreamer Paradigm
Höhne, Johannes; Tangermann, Michael
2014-01-01
Realizing the decoding of brain signals into control commands, brain-computer interfaces (BCI) aim to establish an alternative communication pathway for locked-in patients. In contrast to most visual BCI approaches which use event-related potentials (ERP) of the electroencephalogram, auditory BCI systems are challenged with ERP responses, which are less class-discriminant between attended and unattended stimuli. Furthermore, these auditory approaches have more complex interfaces which imposes a substantial workload on their users. Aiming for a maximally user-friendly spelling interface, this study introduces a novel auditory paradigm: “CharStreamer”. The speller can be used with an instruction as simple as “please attend to what you want to spell”. The stimuli of CharStreamer comprise 30 spoken sounds of letters and actions. As each of them is represented by the sound of itself and not by an artificial substitute, it can be selected in a one-step procedure. The mental mapping effort (sound stimuli to actions) is thus minimized. Usability is further accounted for by an alphabetical stimulus presentation: contrary to random presentation orders, the user can foresee the presentation time of the target letter sound. Healthy, normal hearing users (n = 10) of the CharStreamer paradigm displayed ERP responses that systematically differed between target and non-target sounds. Class-discriminant features, however, varied individually from the typical N1-P2 complex and P3 ERP components found in control conditions with random sequences. To fully exploit the sequential presentation structure of CharStreamer, novel data analysis approaches and classification methods were introduced. The results of online spelling tests showed that a competitive spelling speed can be achieved with CharStreamer. With respect to user rating, it clearly outperforms a control setup with random presentation sequences. PMID:24886978
Sequenced subjective accents for brain-computer interfaces
NASA Astrophysics Data System (ADS)
Vlek, R. J.; Schaefer, R. S.; Gielen, C. C. A. M.; Farquhar, J. D. R.; Desain, P.
2011-06-01
Subjective accenting is a cognitive process in which identical auditory pulses at an isochronous rate turn into the percept of an accenting pattern. This process can be voluntarily controlled, making it a candidate for communication from human user to machine in a brain-computer interface (BCI) system. In this study we investigated whether subjective accenting is a feasible paradigm for BCI and how its time-structured nature can be exploited for optimal decoding from non-invasive EEG data. Ten subjects perceived and imagined different metric patterns (two-, three- and four-beat) superimposed on a steady metronome. With an offline classification paradigm, we classified imagined accented from non-accented beats on a single trial (0.5 s) level with an average accuracy of 60.4% over all subjects. We show that decoding of imagined accents is also possible with a classifier trained on perception data. Cyclic patterns of accents and non-accents were successfully decoded with a sequence classification algorithm. Classification performances were compared by means of bit rate. Performance in the best scenario translates into an average bit rate of 4.4 bits min-1 over subjects, which makes subjective accenting a promising paradigm for an online auditory BCI.
Ryan, David B; Colwell, Kenneth A; Throckmorton, Chandra S; Collins, Leslie M; Caves, Kevin; Sellers, Eric W
2018-03-01
The objective of this study was to investigate the performance of 3 brain-computer interface (BCI) paradigms in an amyotrophic lateral sclerosis (ALS) population (n = 11). Using a repeated-measures design, participants completed 3 BCI conditions: row/column (RCW), checkerboard (CBW), and gray-to-color (CBC). Based on previous studies, it is hypothesized that the CBC and CBW conditions will result in higher accuracy, information transfer rate, waveform amplitude, and user preference over the RCW condition. An offline dynamic stopping simulation will also increase information transfer rate. Higher mean accuracy was observed in the CBC condition (89.7%), followed by the CBW (84.3%) condition, and lowest in the RCW condition (78.7%); however, these differences did not reach statistical significance ( P = .062). Eight of the eleven participants preferred the CBC and the remaining three preferred the CBW conditions. The offline dynamic stopping simulation significantly increased information transfer rate ( P = .005) and decreased accuracy ( P < .000). The findings of this study suggest that color stimuli provide a modest improvement in performance and that participants prefer color stimuli over monochromatic stimuli. Given these findings, BCI paradigms that use color stimuli should be considered for individuals who have ALS.
Goal selection versus process control in a brain-computer interface based on sensorimotor rhythms.
Royer, Audrey S; He, Bin
2009-02-01
In a brain-computer interface (BCI) utilizing a process control strategy, the signal from the cortex is used to control the fine motor details normally handled by other parts of the brain. In a BCI utilizing a goal selection strategy, the signal from the cortex is used to determine the overall end goal of the user, and the BCI controls the fine motor details. A BCI based on goal selection may be an easier and more natural system than one based on process control. Although goal selection in theory may surpass process control, the two have never been directly compared, as we are reporting here. Eight young healthy human subjects participated in the present study, three trained and five naïve in BCI usage. Scalp-recorded electroencephalograms (EEG) were used to control a computer cursor during five different paradigms. The paradigms were similar in their underlying signal processing and used the same control signal. However, three were based on goal selection, and two on process control. For both the trained and naïve populations, goal selection had more hits per run, was faster, more accurate (for seven out of eight subjects) and had a higher information transfer rate than process control. Goal selection outperformed process control in every measure studied in the present investigation.
A sLORETA study for gaze-independent BCI speller.
Xingwei An; Jinwen Wei; Shuang Liu; Dong Ming
2017-07-01
EEG-based BCI (brain-computer-interface) speller, especially gaze-independent BCI speller, has become a hot topic in recent years. It provides direct spelling device by non-muscular method for people with severe motor impairments and with limited gaze movement. Brain needs to conduct both stimuli-driven and stimuli-related attention in fast presented BCI paradigms for such BCI speller applications. Few researchers studied the mechanism of brain response to such fast presented BCI applications. In this study, we compared the distribution of brain activation in visual, auditory, and audio-visual combined stimuli paradigms using sLORETA (standardized low-resolution brain electromagnetic tomography). Between groups comparisons showed the importance of visual and auditory stimuli in audio-visual combined paradigm. They both contribute to the activation of brain regions, with visual stimuli being the predominate stimuli. Visual stimuli related brain region was mainly located at parietal and occipital lobe, whereas response in frontal-temporal lobes might be caused by auditory stimuli. These regions played an important role in audio-visual bimodal paradigms. These new findings are important for future study of ERP speller as well as the mechanism of fast presented stimuli.
Debener, Stefan; Emkes, Reiner; Volkening, Nils; Fudickar, Sebastian; Bleichner, Martin G.
2017-01-01
Objective Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. Approach In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. Main Results We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. Significance We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms. PMID:29349070
Blum, Sarah; Debener, Stefan; Emkes, Reiner; Volkening, Nils; Fudickar, Sebastian; Bleichner, Martin G
2017-01-01
Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms.
Key considerations in designing a speech brain-computer interface.
Bocquelet, Florent; Hueber, Thomas; Girin, Laurent; Chabardès, Stéphan; Yvert, Blaise
2016-11-01
Restoring communication in case of aphasia is a key challenge for neurotechnologies. To this end, brain-computer strategies can be envisioned to allow artificial speech synthesis from the continuous decoding of neural signals underlying speech imagination. Such speech brain-computer interfaces do not exist yet and their design should consider three key choices that need to be made: the choice of appropriate brain regions to record neural activity from, the choice of an appropriate recording technique, and the choice of a neural decoding scheme in association with an appropriate speech synthesis method. These key considerations are discussed here in light of (1) the current understanding of the functional neuroanatomy of cortical areas underlying overt and covert speech production, (2) the available literature making use of a variety of brain recording techniques to better characterize and address the challenge of decoding cortical speech signals, and (3) the different speech synthesis approaches that can be considered depending on the level of speech representation (phonetic, acoustic or articulatory) envisioned to be decoded at the core of a speech BCI paradigm. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Comparison of Classification Methods for P300 Brain-Computer Interface on Disabled Subjects
Manyakov, Nikolay V.; Chumerin, Nikolay; Combaz, Adrien; Van Hulle, Marc M.
2011-01-01
We report on tests with a mind typing paradigm based on a P300 brain-computer interface (BCI) on a group of amyotrophic lateral sclerosis (ALS), middle cerebral artery (MCA) stroke, and subarachnoid hemorrhage (SAH) patients, suffering from motor and speech disabilities. We investigate the achieved typing accuracy given the individual patient's disorder, and how it correlates with the type of classifier used. We considered 7 types of classifiers, linear as well as nonlinear ones, and found that, overall, one type of linear classifier yielded a higher classification accuracy. In addition to the selection of the classifier, we also suggest and discuss a number of recommendations to be considered when building a P300-based typing system for disabled subjects. PMID:21941530
Motor prediction in Brain-Computer Interfaces for controlling mobile robots.
Geng, Tao; Gan, John Q
2008-01-01
EEG-based Brain-Computer Interface (BCI) can be regarded as a new channel for motor control except that it does not involve muscles. Normal neuromuscular motor control has two fundamental components: (1) to control the body, and (2) to predict the consequences of the control command, which is called motor prediction. In this study, after training with a specially designed BCI paradigm based on motor imagery, two subjects learnt to predict the time course of some features of the EEG signals. It is shown that, with this newly-obtained motor prediction skill, subjects can use motor imagery of feet to directly control a mobile robot to avoid obstacles and reach a small target in a time-critical scenario.
Biased feedback in brain-computer interfaces.
Barbero, Alvaro; Grosse-Wentrup, Moritz
2010-07-27
Even though feedback is considered to play an important role in learning how to operate a brain-computer interface (BCI), to date no significant influence of feedback design on BCI-performance has been reported in literature. In this work, we adapt a standard motor-imagery BCI-paradigm to study how BCI-performance is affected by biasing the belief subjects have on their level of control over the BCI system. Our findings indicate that subjects already capable of operating a BCI are impeded by inaccurate feedback, while subjects normally performing on or close to chance level may actually benefit from an incorrect belief on their performance level. Our results imply that optimal feedback design in BCIs should take into account a subject's current skill level.
Townsend, G.; LaPallo, B.K.; Boulay, C.B.; Krusienski, D.J.; Frye, G.E.; Hauser, C.K.; Schwartz, N.E.; Vaughan, T.M.; Wolpaw, J.R.; Sellers, E.W.
2010-01-01
Objective An electroencephalographic brain-computer interface (BCI) can provide a non-muscular means of communication for people with amyotrophic lateral sclerosis (ALS) or other neuromuscular disorders. We present a novel P300-based BCI stimulus presentation – the checkerboard paradigm (CBP). CBP performance is compared to that of the standard row/column paradigm (RCP) introduced by Farwell and Donchin (1988). Methods Using an 8×9 matrix of alphanumeric characters and keyboard commands, 18 participants used the CBP and RCP in counter-balanced fashion. With approximately 9 – 12 minutes of calibration data, we used a stepwise linear discriminant analysis for online classification of subsequent data. Results Mean online accuracy was significantly higher for the CBP, 92%, than for the RCP, 77%. Correcting for extra selections due to errors, mean bit rate was also significantly higher for the CBP, 23 bits/min, than for the RCP, 17 bits/min. Moreover, the two paradigms produced significantly different waveforms. Initial tests with three advanced ALS participants produced similar results. Furthermore, these individuals preferred the CBP to the RCP. Conclusions These results suggest that the CBP is markedly superior to the RCP in performance and user acceptability. Significance The CBP has the potential to provide a substantially more effective BCI than the RCP. This is especially important for people with severe neuromuscular disabilities. PMID:20347387
NASA Astrophysics Data System (ADS)
Kaufmann, Tobias; Kübler, Andrea
2014-10-01
Objective. The speed of brain-computer interfaces (BCI), based on event-related potentials (ERP), is inherently limited by the commonly used one-stimulus paradigm. In this paper, we introduce a novel paradigm that can increase the spelling speed by a factor of 2, thereby extending the one-stimulus paradigm to a two-stimulus paradigm. Two different stimuli (a face and a symbol) are presented at the same time, superimposed on different characters and ERPs are classified using a multi-class classifier. Here, we present the proof-of-principle that is achieved with healthy participants. Approach. Eight participants were confronted with the novel two-stimulus paradigm and, for comparison, with two one-stimulus paradigms that used either one of the stimuli. Classification accuracies (percentage of correctly predicted letters) and elicited ERPs from the three paradigms were compared in a comprehensive offline analysis. Main results. The accuracies slightly decreased with the novel system compared to the established one-stimulus face paradigm. However, the use of two stimuli allowed for spelling at twice the maximum speed of the one-stimulus paradigms, and participants still achieved an average accuracy of 81.25%. This study introduced an alternative way of increasing the spelling speed in ERP-BCIs and illustrated that ERP-BCIs may not yet have reached their speed limit. Future research is needed in order to improve the reliability of the novel approach, as some participants displayed reduced accuracies. Furthermore, a comparison to the most recent BCI systems with individually adjusted, rapid stimulus timing is needed to draw conclusions about the practical relevance of the proposed paradigm. Significance. We introduced a novel two-stimulus paradigm that might be of high value for users who have reached the speed limit with the current one-stimulus ERP-BCI systems.
Towards a symbiotic brain-computer interface: exploring the application-decoder interaction
NASA Astrophysics Data System (ADS)
Verhoeven, T.; Buteneers Wiersema, P., Jr.; Dambre, J.; Kindermans, PJ
2015-12-01
Objective. State of the art brain-computer interface (BCI) research focuses on improving individual components such as the application or the decoder that converts the user’s brain activity to control signals. In this study, we investigate the interaction between these components in the P300 speller, a BCI for communication. We introduce a synergistic approach in which the stimulus presentation sequence is modified to enhance the machine learning decoding. In this way we aim for an improved overall BCI performance. Approach. First, a new stimulus presentation paradigm is introduced which provides us flexibility in tuning the sequence of visual stimuli presented to the user. Next, an experimental setup in which this paradigm is compared to other paradigms uncovers the underlying mechanism of the interdependence between the application and the performance of the decoder. Main results. Extensive analysis of the experimental results reveals the changing requirements of the decoder concerning the data recorded during the spelling session. When few data is recorded, the balance in the number of target and non-target stimuli shown to the user is more important than the signal-to-noise rate (SNR) of the recorded response signals. Only when more data has been collected, the SNR becomes the dominant factor. Significance. For BCIs in general, knowing the dominant factor that affects the decoder performance and being able to respond to it is of utmost importance to improve system performance. For the P300 speller, the proposed tunable paradigm offers the possibility to tune the application to the decoder’s needs at any time and, as such, fully exploit this application-decoder interaction.
Turning Shortcomings into Challenges: Brain-Computer Interfaces for Games
NASA Astrophysics Data System (ADS)
Nijholt, Anton; Reuderink, Boris; Oude Bos, Danny
In recent years we have seen a rising interest in brain-computer interfacing for human-computer interaction and potential game applications. Until now, however, we have almost only seen attempts where BCI is used to measure the affective state of the user or in neurofeedback games. There have hardly been any attempts to design BCI games where BCI is considered to be one of the possible input modalities that can be used to control the game. One reason may be that research still follows the paradigms of the traditional, medically oriented, BCI approaches. In this paper we discuss current BCI research from the viewpoint of games and game design. It is hoped that this survey will make clear that we need to design different games than we used to, but that such games can nevertheless be interesting and exciting.
Evaluating brain-computer interface performance using color in the P300 checkerboard speller.
Ryan, D B; Townsend, G; Gates, N A; Colwell, K; Sellers, E W
2017-10-01
Current Brain-Computer Interface (BCI) systems typically flash an array of items from grey to white (GW). The objective of this study was to evaluate BCI performance using uniquely colored stimuli. In addition to the GW stimuli, the current study tested two types of color stimuli (grey to color [GC] and color intensification [CI]). The main hypotheses were that in a checkboard paradigm, unique color stimuli will: (1) increase BCI performance over the standard GW paradigm; (2) elicit larger event-related potentials (ERPs); and, (3) improve offline performance with an electrode selection algorithm (i.e., Jumpwise). Online results (n=36) showed that GC provides higher accuracy and information transfer rate than the CI and GW conditions. Waveform analysis showed that GC produced higher amplitude ERPs than CI and GW. Information transfer rate was improved by the Jumpwise-selected channel locations in all conditions. Unique color stimuli (GC) improved BCI performance and enhanced ERPs. Jumpwise-selected electrode locations improved offline performance. These results show that in a checkerboard paradigm, unique color stimuli increase BCI performance, are preferred by participants, and are important to the design of end-user applications; thus, could lead to an increase in end-user performance and acceptance of BCI technology. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.
Goal selection versus process control while learning to use a brain-computer interface
NASA Astrophysics Data System (ADS)
Royer, Audrey S.; Rose, Minn L.; He, Bin
2011-06-01
A brain-computer interface (BCI) can be used to accomplish a task without requiring motor output. Two major control strategies used by BCIs during task completion are process control and goal selection. In process control, the user exerts continuous control and independently executes the given task. In goal selection, the user communicates their goal to the BCI and then receives assistance executing the task. A previous study has shown that goal selection is more accurate and faster in use. An unanswered question is, which control strategy is easier to learn? This study directly compares goal selection and process control while learning to use a sensorimotor rhythm-based BCI. Twenty young healthy human subjects were randomly assigned either to a goal selection or a process control-based paradigm for eight sessions. At the end of the study, the best user from each paradigm completed two additional sessions using all paradigms randomly mixed. The results of this study were that goal selection required a shorter training period for increased speed, accuracy, and information transfer over process control. These results held for the best subjects as well as in the general subject population. The demonstrated characteristics of goal selection make it a promising option to increase the utility of BCIs intended for both disabled and able-bodied users.
Guger, C; Schlögl, A; Walterspacher, D; Pfurtscheller, G
1999-01-01
An EEG-based brain-computer interface (BCI) is a direct connection between the human brain and the computer. Such a communication system is needed by patients with severe motor impairments (e.g. late stage of Amyotrophic Lateral Sclerosis) and has to operate in real-time. This paper describes the selection of the appropriate components to construct such a BCI and focuses also on the selection of a suitable programming language and operating system. The multichannel system runs under Windows 95, equipped with a real-time Kernel expansion to obtain reasonable real-time operations on a standard PC. Matlab controls the data acquisition and the presentation of the experimental paradigm, while Simulink is used to calculate the recursive least square (RLS) algorithm that describes the current state of the EEG in real-time. First results of the new low-cost BCI show that the accuracy of differentiating imagination of left and right hand movement is around 95%.
Silvoni, S; Konicar, L; Prats-Sedano, M A; Garcia-Cossio, E; Genna, C; Volpato, C; Cavinato, M; Paggiaro, A; Veser, S; De Massari, D; Birbaumer, N
2016-01-01
We investigated neurophysiological brain responses elicited by a tactile event-related potential paradigm in a sample of ALS patients. Underlying cognitive processes and neurophysiological signatures for brain-computer interface (BCI) are addressed. We stimulated the palm of the hand in a group of fourteen ALS patients and a control group of ten healthy participants and recorded electroencephalographic signals in eyes-closed condition. Target and non-target brain responses were analyzed and classified offline. Classification errors served as the basis for neurophysiological brain response sub-grouping. A combined behavioral and quantitative neurophysiological analysis of sub-grouped data showed neither significant between-group differences, nor significant correlations between classification performance and the ALS patients' clinical state. Taking sequential effects of stimuli presentation into account, analyses revealed mean classification errors of 19.4% and 24.3% in healthy participants and ALS patients respectively. Neurophysiological correlates of tactile stimuli presentation are not altered by ALS. Tactile event-related potentials can be used to monitor attention level and task performance in ALS and may constitute a viable basis for future BCIs. Implications for brain-computer interface implementation of the proposed method for patients in critical conditions, such as the late stage of ALS and the (completely) locked-in state, are discussed. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Mainsah, B O; Reeves, G; Collins, L M; Throckmorton, C S
2017-08-01
The role of a brain-computer interface (BCI) is to discern a user's intended message or action by extracting and decoding relevant information from brain signals. Stimulus-driven BCIs, such as the P300 speller, rely on detecting event-related potentials (ERPs) in response to a user attending to relevant or target stimulus events. However, this process is error-prone because the ERPs are embedded in noisy electroencephalography (EEG) data, representing a fundamental problem in communication of the uncertainty in the information that is received during noisy transmission. A BCI can be modeled as a noisy communication system and an information-theoretic approach can be exploited to design a stimulus presentation paradigm to maximize the information content that is presented to the user. However, previous methods that focused on designing error-correcting codes failed to provide significant performance improvements due to underestimating the effects of psycho-physiological factors on the P300 ERP elicitation process and a limited ability to predict online performance with their proposed methods. Maximizing the information rate favors the selection of stimulus presentation patterns with increased target presentation frequency, which exacerbates refractory effects and negatively impacts performance within the context of an oddball paradigm. An information-theoretic approach that seeks to understand the fundamental trade-off between information rate and reliability is desirable. We developed a performance-based paradigm (PBP) by tuning specific parameters of the stimulus presentation paradigm to maximize performance while minimizing refractory effects. We used a probabilistic-based performance prediction method as an evaluation criterion to select a final configuration of the PBP. With our PBP, we demonstrate statistically significant improvements in online performance, both in accuracy and spelling rate, compared to the conventional row-column paradigm. By accounting for refractory effects, an information-theoretic approach can be exploited to significantly improve BCI performance across a wide range of performance levels.
NASA Astrophysics Data System (ADS)
Mainsah, B. O.; Reeves, G.; Collins, L. M.; Throckmorton, C. S.
2017-08-01
Objective. The role of a brain-computer interface (BCI) is to discern a user’s intended message or action by extracting and decoding relevant information from brain signals. Stimulus-driven BCIs, such as the P300 speller, rely on detecting event-related potentials (ERPs) in response to a user attending to relevant or target stimulus events. However, this process is error-prone because the ERPs are embedded in noisy electroencephalography (EEG) data, representing a fundamental problem in communication of the uncertainty in the information that is received during noisy transmission. A BCI can be modeled as a noisy communication system and an information-theoretic approach can be exploited to design a stimulus presentation paradigm to maximize the information content that is presented to the user. However, previous methods that focused on designing error-correcting codes failed to provide significant performance improvements due to underestimating the effects of psycho-physiological factors on the P300 ERP elicitation process and a limited ability to predict online performance with their proposed methods. Maximizing the information rate favors the selection of stimulus presentation patterns with increased target presentation frequency, which exacerbates refractory effects and negatively impacts performance within the context of an oddball paradigm. An information-theoretic approach that seeks to understand the fundamental trade-off between information rate and reliability is desirable. Approach. We developed a performance-based paradigm (PBP) by tuning specific parameters of the stimulus presentation paradigm to maximize performance while minimizing refractory effects. We used a probabilistic-based performance prediction method as an evaluation criterion to select a final configuration of the PBP. Main results. With our PBP, we demonstrate statistically significant improvements in online performance, both in accuracy and spelling rate, compared to the conventional row-column paradigm. Significance. By accounting for refractory effects, an information-theoretic approach can be exploited to significantly improve BCI performance across a wide range of performance levels.
Affective Interaction with a Virtual Character Through an fNIRS Brain-Computer Interface.
Aranyi, Gabor; Pecune, Florian; Charles, Fred; Pelachaud, Catherine; Cavazza, Marc
2016-01-01
Affective brain-computer interfaces (BCI) harness Neuroscience knowledge to develop affective interaction from first principles. In this article, we explore affective engagement with a virtual agent through Neurofeedback (NF). We report an experiment where subjects engage with a virtual agent by expressing positive attitudes towards her under a NF paradigm. We use for affective input the asymmetric activity in the dorsolateral prefrontal cortex (DL-PFC), which has been previously found to be related to the high-level affective-motivational dimension of approach/avoidance. The magnitude of left-asymmetric DL-PFC activity, measured using functional near infrared spectroscopy (fNIRS) and treated as a proxy for approach, is mapped onto a control mechanism for the virtual agent's facial expressions, in which action units (AUs) are activated through a neural network. We carried out an experiment with 18 subjects, which demonstrated that subjects are able to successfully engage with the virtual agent by controlling their mental disposition through NF, and that they perceived the agent's responses as realistic and consistent with their projected mental disposition. This interaction paradigm is particularly relevant in the case of affective BCI as it facilitates the volitional activation of specific areas normally not under conscious control. Overall, our contribution reconciles a model of affect derived from brain metabolic data with an ecologically valid, yet computationally controllable, virtual affective communication environment.
NASA Astrophysics Data System (ADS)
Frye, G. E.; Hauser, C. K.; Townsend, G.; Sellers, E. W.
2011-04-01
Since the introduction of the P300 brain-computer interface (BCI) speller by Farwell and Donchin in 1988, the speed and accuracy of the system has been significantly improved. Larger electrode montages and various signal processing techniques are responsible for most of the improvement in performance. New presentation paradigms have also led to improvements in bit rate and accuracy (e.g. Townsend et al (2010 Clin. Neurophysiol. 121 1109-20)). In particular, the checkerboard paradigm for online P300 BCI-based spelling performs well, has started to document what makes for a successful paradigm, and is a good platform for further experimentation. The current paper further examines the checkerboard paradigm by suppressing items which surround the target from flashing during calibration (i.e. the suppression condition). In the online feedback mode the standard checkerboard paradigm is used with a stepwise linear discriminant classifier derived from the suppression condition and one classifier derived from the standard checkerboard condition, counter-balanced. The results of this research demonstrate that using suppression during calibration produces significantly more character selections/min ((6.46) time between selections included) than the standard checkerboard condition (5.55), and significantly fewer target flashes are needed per selection in the SUP condition (5.28) as compared to the RCP condition (6.17). Moreover, accuracy in the SUP and RCP conditions remained equivalent (~90%). Mean theoretical bit rate was 53.62 bits/min in the suppression condition and 46.36 bits/min in the standard checkerboard condition (ns). Waveform morphology also showed significant differences in amplitude and latency.
Optimized Motor Imagery Paradigm Based on Imagining Chinese Characters Writing Movement.
Qiu, Zhaoyang; Allison, Brendan Z; Jin, Jing; Zhang, Yu; Wang, Xingyu; Li, Wei; Cichocki, Andrzej
2017-07-01
motor imagery (MI) is a mental representation of motor behavior. The MI-based brain computer interfaces (BCIs) can provide communication for the physically impaired. The performance of MI-based BCI mainly depends on the subject's ability to self-modulate electroencephalogram signals. Proper training can help naive subjects learn to modulate brain activity proficiently. However, training subjects typically involve abstract motor tasks and are time-consuming. to improve the performance of naive subjects during motor imagery, a novel paradigm was presented that would guide naive subjects to modulate brain activity effectively. In this new paradigm, pictures of the left or right hand were used as cues for subjects to finish the motor imagery task. Fourteen healthy subjects (11 male, aged 22-25 years, and mean 23.6±1.16) participated in this study. The task was to imagine writing a Chinese character. Specifically, subjects could imagine hand movements corresponding to the sequence of writing strokes in the Chinese character. This paradigm was meant to find an effective and familiar action for most Chinese people, to provide them with a specific, extensively practiced task and help them modulate brain activity. results showed that the writing task paradigm yielded significantly better performance than the traditional arrow paradigm (p < 0.001). Questionnaire replies indicated that most subjects thought that the new paradigm was easier. the proposed new motor imagery paradigm could guide subjects to help them modulate brain activity effectively. Results showed that there were significant improvements using new paradigm, both in classification accuracy and usability.
Brain-Computer Interfaces: A Neuroscience Paradigm of Social Interaction? A Matter of Perspective
Mattout, Jérémie
2012-01-01
A number of recent studies have put human subjects in true social interactions, with the aim of better identifying the psychophysiological processes underlying social cognition. Interestingly, this emerging Neuroscience of Social Interactions (NSI) field brings up challenges which resemble important ones in the field of Brain-Computer Interfaces (BCI). Importantly, these challenges go beyond common objectives such as the eventual use of BCI and NSI protocols in the clinical domain or common interests pertaining to the use of online neurophysiological techniques and algorithms. Common fundamental challenges are now apparent and one can argue that a crucial one is to develop computational models of brain processes relevant to human interactions with an adaptive agent, whether human or artificial. Coupled with neuroimaging data, such models have proved promising in revealing the neural basis and mental processes behind social interactions. Similar models could help BCI to move from well-performing but offline static machines to reliable online adaptive agents. This emphasizes a social perspective to BCI, which is not limited to a computational challenge but extends to all questions that arise when studying the brain in interaction with its environment. PMID:22675291
Xie, Jun; Xu, Guanghua; Luo, Ailing; Li, Min; Zhang, Sicong; Han, Chengcheng; Yan, Wenqiang
2017-08-14
As a spatial selective attention-based brain-computer interface (BCI) paradigm, steady-state visual evoked potential (SSVEP) BCI has the advantages of high information transfer rate, high tolerance to artifacts, and robust performance across users. However, its benefits come at the cost of mental load and fatigue occurring in the concentration on the visual stimuli. Noise, as a ubiquitous random perturbation with the power of randomness, may be exploited by the human visual system to enhance higher-level brain functions. In this study, a novel steady-state motion visual evoked potential (SSMVEP, i.e., one kind of SSVEP)-based BCI paradigm with spatiotemporal visual noise was used to investigate the influence of noise on the compensation of mental load and fatigue deterioration during prolonged attention tasks. Changes in α , θ , θ + α powers, θ / α ratio, and electroencephalography (EEG) properties of amplitude, signal-to-noise ratio (SNR), and online accuracy, were used to evaluate mental load and fatigue. We showed that presenting a moderate visual noise to participants could reliably alleviate the mental load and fatigue during online operation of visual BCI that places demands on the attentional processes. This demonstrated that noise could provide a superior solution to the implementation of visual attention controlling-based BCI applications.
Prueckl, R; Taub, A H; Herreros, I; Hogri, R; Magal, A; Bamford, S A; Giovannucci, A; Almog, R Ofek; Shacham-Diamand, Y; Verschure, P F M J; Mintz, M; Scharinger, J; Silmon, A; Guger, C
2011-01-01
In this paper the replacement of a lost learning function of rats through a computer-based real-time recording and feedback system is shown. In an experiment two recording electrodes and one stimulation electrode were implanted in an anesthetized rat. During a classical-conditioning paradigm, which includes tone and airpuff stimulation, biosignals were recorded and the stimulation events detected. A computational model of the cerebellum acquired the association between the stimuli and gave feedback to the brain of the rat using deep brain stimulation in order to close the eyelid of the rat. The study shows that replacement of a lost brain function using a direct bidirectional interface to the brain is realizable and can inspire future research for brain rehabilitation.
Electroencephalogy (EEG) Feedback in Decision-Making
2015-08-26
19 Variability in individual subject BCI classification...approach traditionally used in single-trial BCI (Brain-Computer Interface) tasks suggested a similar effect-size and scalp distribution. However...situation. Although nearly all BCI paradigms have used a variant of the RSVP technique, there was no indication in the literature as to why this was
Eye-gaze independent EEG-based brain-computer interfaces for communication.
Riccio, A; Mattia, D; Simione, L; Olivetti, M; Cincotti, F
2012-08-01
The present review systematically examines the literature reporting gaze independent interaction modalities in non-invasive brain-computer interfaces (BCIs) for communication. BCIs measure signals related to specific brain activity and translate them into device control signals. This technology can be used to provide users with severe motor disability (e.g. late stage amyotrophic lateral sclerosis (ALS); acquired brain injury) with an assistive device that does not rely on muscular contraction. Most of the studies on BCIs explored mental tasks and paradigms using visual modality. Considering that in ALS patients the oculomotor control can deteriorate and also other potential users could have impaired visual function, tactile and auditory modalities have been investigated over the past years to seek alternative BCI systems which are independent from vision. In addition, various attentional mechanisms, such as covert attention and feature-directed attention, have been investigated to develop gaze independent visual-based BCI paradigms. Three areas of research were considered in the present review: (i) auditory BCIs, (ii) tactile BCIs and (iii) independent visual BCIs. Out of a total of 130 search results, 34 articles were selected on the basis of pre-defined exclusion criteria. Thirteen articles dealt with independent visual BCIs, 15 reported on auditory BCIs and the last six on tactile BCIs, respectively. From the review of the available literature, it can be concluded that a crucial point is represented by the trade-off between BCI systems/paradigms with high accuracy and speed, but highly demanding in terms of attention and memory load, and systems requiring lower cognitive effort but with a limited amount of communicable information. These issues should be considered as priorities to be explored in future studies to meet users' requirements in a real-life scenario.
Eye-gaze independent EEG-based brain-computer interfaces for communication
NASA Astrophysics Data System (ADS)
Riccio, A.; Mattia, D.; Simione, L.; Olivetti, M.; Cincotti, F.
2012-08-01
The present review systematically examines the literature reporting gaze independent interaction modalities in non-invasive brain-computer interfaces (BCIs) for communication. BCIs measure signals related to specific brain activity and translate them into device control signals. This technology can be used to provide users with severe motor disability (e.g. late stage amyotrophic lateral sclerosis (ALS); acquired brain injury) with an assistive device that does not rely on muscular contraction. Most of the studies on BCIs explored mental tasks and paradigms using visual modality. Considering that in ALS patients the oculomotor control can deteriorate and also other potential users could have impaired visual function, tactile and auditory modalities have been investigated over the past years to seek alternative BCI systems which are independent from vision. In addition, various attentional mechanisms, such as covert attention and feature-directed attention, have been investigated to develop gaze independent visual-based BCI paradigms. Three areas of research were considered in the present review: (i) auditory BCIs, (ii) tactile BCIs and (iii) independent visual BCIs. Out of a total of 130 search results, 34 articles were selected on the basis of pre-defined exclusion criteria. Thirteen articles dealt with independent visual BCIs, 15 reported on auditory BCIs and the last six on tactile BCIs, respectively. From the review of the available literature, it can be concluded that a crucial point is represented by the trade-off between BCI systems/paradigms with high accuracy and speed, but highly demanding in terms of attention and memory load, and systems requiring lower cognitive effort but with a limited amount of communicable information. These issues should be considered as priorities to be explored in future studies to meet users’ requirements in a real-life scenario.
An auditory oddball brain-computer interface for binary choices.
Halder, S; Rea, M; Andreoni, R; Nijboer, F; Hammer, E M; Kleih, S C; Birbaumer, N; Kübler, A
2010-04-01
Brain-computer interfaces (BCIs) provide non-muscular communication for individuals diagnosed with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)). In the final stages of the disease, a BCI cannot rely on the visual modality. This study examined a method to achieve high accuracies using auditory stimuli only. We propose an auditory BCI based on a three-stimulus paradigm. This paradigm is similar to the standard oddball but includes an additional target (i.e. two target stimuli, one frequent stimulus). Three versions of the task were evaluated in which the target stimuli differed in loudness, pitch or direction. Twenty healthy participants achieved an average information transfer rate (ITR) of up to 2.46 bits/min and accuracies of 78.5%. Most subjects (14 of 20) achieved their best performance with targets differing in pitch. With this study, the viability of the paradigm was shown for healthy participants and will next be evaluated with individuals diagnosed with ALS or locked-in syndrome (LIS) after stroke. The here presented BCI offers communication with binary choices (yes/no) independent of vision. As it requires only little time per selection, it may constitute a reliable means of communication for patients who lost all motor function and have a short attention span. 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Using the Electrocorticographic Speech Network to Control a Brain-Computer Interface in Humans
Leuthardt, Eric C.; Gaona, Charles; Sharma, Mohit; Szrama, Nicholas; Roland, Jarod; Freudenberg, Zac; Solis, Jamie; Breshears, Jonathan; Schalk, Gerwin
2013-01-01
Electrocorticography (ECoG) has emerged as a new signal platform for brain-computer interface (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been brain signals from sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the speech network, could be used to further improve on or complement existing motor-based control paradigms. We demonstrate here for the first time that ECoG signals associated with different overt and imagined phoneme articulation can enable invasively monitored human patients to control a one-dimensional computer cursor rapidly and accurately. This phonetic content was distinguishable within higher gamma frequency oscillations and enabled users to achieve final target accuracies between 68 and 91% within 15 minutes. Additionally, one of the patients achieved robust control using recordings from a microarray consisting of 1 mm spaced microwires. These findings suggest that the cortical network associated with speech could provide an additional cognitive and physiologic substrate for BCI operation and that these signals can be acquired from a cortical array that is small and minimally invasive. PMID:21471638
Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms.
Rutkowski, Tomasz M
2016-01-01
The paper reviews nine robotic and virtual reality (VR) brain-computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI-lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms.
An optical brain computer interface for environmental control.
Ayaz, Hasan; Shewokis, Patricia A; Bunce, Scott; Onaral, Banu
2011-01-01
A brain computer interface (BCI) is a system that translates neurophysiological signals detected from the brain to supply input to a computer or to control a device. Volitional control of neural activity and its real-time detection through neuroimaging modalities are key constituents of BCI systems. The purpose of this study was to develop and test a new BCI design that utilizes intention-related cognitive activity within the dorsolateral prefrontal cortex using functional near infrared (fNIR) spectroscopy. fNIR is a noninvasive, safe, portable and affordable optical technique with which to monitor hemodynamic changes, in the brain's cerebral cortex. Because of its portability and ease of use, fNIR is amenable to deployment in ecologically valid natural working environments. We integrated a control paradigm in a computerized 3D virtual environment to augment interactivity. Ten healthy participants volunteered for a two day study in which they navigated a virtual environment with keyboard inputs, but were required to use the fNIR-BCI for interaction with virtual objects. Results showed that participants consistently utilized the fNIR-BCI with an overall success rate of 84% and volitionally increased their cerebral oxygenation level to trigger actions within the virtual environment.
Hong, Keum-Shik; Khan, Muhammad Jawad
2017-01-01
In this article, non-invasive hybrid brain-computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain-computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided.
Multi-channel linear descriptors for event-related EEG collected in brain computer interface.
Pei, Xiao-mei; Zheng, Chong-xun; Xu, Jin; Bin, Guang-yu; Wang, Hong-wu
2006-03-01
By three multi-channel linear descriptors, i.e. spatial complexity (omega), field power (sigma) and frequency of field changes (phi), event-related EEG data within 8-30 Hz were investigated during imagination of left or right hand movement. Studies on the event-related EEG data indicate that a two-channel version of omega, sigma and phi could reflect the antagonistic ERD/ERS patterns over contralateral and ipsilateral areas and also characterize different phases of the changing brain states in the event-related paradigm. Based on the selective two-channel linear descriptors, the left and right hand motor imagery tasks are classified to obtain satisfactory results, which testify the validity of the three linear descriptors omega, sigma and phi for characterizing event-related EEG. The preliminary results show that omega, sigma together with phi have good separability for left and right hand motor imagery tasks, which could be considered for classification of two classes of EEG patterns in the application of brain computer interfaces.
An independent SSVEP-based brain-computer interface in locked-in syndrome.
Lesenfants, D; Habbal, D; Lugo, Z; Lebeau, M; Horki, P; Amico, E; Pokorny, C; Gómez, F; Soddu, A; Müller-Putz, G; Laureys, S; Noirhomme, Q
2014-06-01
Steady-state visually evoked potential (SSVEP)-based brain-computer interfaces (BCIs) allow healthy subjects to communicate. However, their dependence on gaze control prevents their use with severely disabled patients. Gaze-independent SSVEP-BCIs have been designed but have shown a drop in accuracy and have not been tested in brain-injured patients. In the present paper, we propose a novel independent SSVEP-BCI based on covert attention with an improved classification rate. We study the influence of feature extraction algorithms and the number of harmonics. Finally, we test online communication on healthy volunteers and patients with locked-in syndrome (LIS). Twenty-four healthy subjects and six LIS patients participated in this study. An independent covert two-class SSVEP paradigm was used with a newly developed portable light emitting diode-based 'interlaced squares' stimulation pattern. Mean offline and online accuracies on healthy subjects were respectively 85 ± 2% and 74 ± 13%, with eight out of twelve subjects succeeding to communicate efficiently with 80 ± 9% accuracy. Two out of six LIS patients reached an offline accuracy above the chance level, illustrating a response to a command. One out of four LIS patients could communicate online. We have demonstrated the feasibility of online communication with a covert SSVEP paradigm that is truly independent of all neuromuscular functions. The potential clinical use of the presented BCI system as a diagnostic (i.e., detecting command-following) and communication tool for severely brain-injured patients will need to be further explored.
Flight simulation using a Brain-Computer Interface: A pilot, pilot study.
Kryger, Michael; Wester, Brock; Pohlmeyer, Eric A; Rich, Matthew; John, Brendan; Beaty, James; McLoughlin, Michael; Boninger, Michael; Tyler-Kabara, Elizabeth C
2017-01-01
As Brain-Computer Interface (BCI) systems advance for uses such as robotic arm control it is postulated that the control paradigms could apply to other scenarios, such as control of video games, wheelchair movement or even flight. The purpose of this pilot study was to determine whether our BCI system, which involves decoding the signals of two 96-microelectrode arrays implanted into the motor cortex of a subject, could also be used to control an aircraft in a flight simulator environment. The study involved six sessions in which various parameters were modified in order to achieve the best flight control, including plane type, view, control paradigm, gains, and limits. Successful flight was determined qualitatively by evaluating the subject's ability to perform requested maneuvers, maintain flight paths, and avoid control losses such as dives, spins and crashes. By the end of the study, it was found that the subject could successfully control an aircraft. The subject could use both the jet and propeller plane with different views, adopting an intuitive control paradigm. From the subject's perspective, this was one of the most exciting and entertaining experiments she had performed in two years of research. In conclusion, this study provides a proof-of-concept that traditional motor cortex signals combined with a decoding paradigm can be used to control systems besides a robotic arm for which the decoder was developed. Aside from possible functional benefits, it also shows the potential for a new recreational activity for individuals with disabilities who are able to master BCI control. Copyright © 2016 Elsevier Inc. All rights reserved.
Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces
NASA Astrophysics Data System (ADS)
Waytowich, Nicholas R.; Krusienski, Dean J.
2015-06-01
Objective. Recently, paradigms using code-modulated visual evoked potentials (c-VEPs) have proven to achieve among the highest information transfer rates for noninvasive brain-computer interfaces (BCIs). One issue with current c-VEP paradigms, and visual-evoked paradigms in general, is that they require direct foveal fixation of the flashing stimuli. These interfaces are often visually unpleasant and can be irritating and fatiguing to the user, thus adversely impacting practical performance. In this study, a novel c-VEP BCI paradigm is presented that attempts to perform spatial decoupling of the targets and flashing stimuli using two distinct concepts: spatial separation and boundary positioning. Approach. For the paradigm, the flashing stimuli form a ring that encompasses the intended non-flashing targets, which are spatially separated from the stimuli. The user fixates on the desired target, which is classified using the changes to the EEG induced by the flashing stimuli located in the non-foveal visual field. Additionally, a subset of targets is also positioned at or near the stimulus boundaries, which decouples targets from direct association with a single stimulus. This allows a greater number of target locations for a fixed number of flashing stimuli. Main results. Results from 11 subjects showed practical classification accuracies for the non-foveal condition, with comparable performance to the direct-foveal condition for longer observation lengths. Online results from 5 subjects confirmed the offline results with an average accuracy across subjects of 95.6% for a 4-target condition. The offline analysis also indicated that targets positioned at or near the boundaries of two stimuli could be classified with the same accuracy as traditional superimposed (non-boundary) targets. Significance. The implications of this research are that c-VEPs can be detected and accurately classified to achieve comparable BCI performance without requiring potentially irritating direct foveation of flashing stimuli. Furthermore, this study shows that it is possible to increase the number of targets beyond the number of stimuli without degrading performance. Given the superior information transfer rate of c-VEP paradigms, these results can lead to the development of more practical and ergonomic BCIs.
Kasashima-Shindo, Yuko; Fujiwara, Toshiyuki; Ushiba, Junichi; Matsushika, Yayoi; Kamatani, Daiki; Oto, Misa; Ono, Takashi; Nishimoto, Atsuko; Shindo, Keiichiro; Kawakami, Michiyuki; Tsuji, Tetsuya; Liu, Meigen
2015-04-01
Brain-computer interface technology has been applied to stroke patients to improve their motor function. Event-related desynchronization during motor imagery, which is used as a brain-computer interface trigger, is sometimes difficult to detect in stroke patients. Anodal transcranial direct current stimulation (tDCS) is known to increase event-related desynchronization. This study investigated the adjunctive effect of anodal tDCS for brain-computer interface training in patients with severe hemiparesis. Eighteen patients with chronic stroke. A non-randomized controlled study. Subjects were divided between a brain-computer interface group and a tDCS- brain-computer interface group and participated in a 10-day brain-computer interface training. Event-related desynchronization was detected in the affected hemisphere during motor imagery of the affected fingers. The tDCS-brain-computer interface group received anodal tDCS before brain-computer interface training. Event-related desynchronization was evaluated before and after the intervention. The Fugl-Meyer Assessment upper extremity motor score (FM-U) was assessed before, immediately after, and 3 months after, the intervention. Event-related desynchronization was significantly increased in the tDCS- brain-computer interface group. The FM-U was significantly increased in both groups. The FM-U improvement was maintained at 3 months in the tDCS-brain-computer interface group. Anodal tDCS can be a conditioning tool for brain-computer interface training in patients with severe hemiparetic stroke.
Effects of training and motivation on auditory P300 brain-computer interface performance.
Baykara, E; Ruf, C A; Fioravanti, C; Käthner, I; Simon, N; Kleih, S C; Kübler, A; Halder, S
2016-01-01
Brain-computer interface (BCI) technology aims at helping end-users with severe motor paralysis to communicate with their environment without using the natural output pathways of the brain. For end-users in complete paralysis, loss of gaze control may necessitate non-visual BCI systems. The present study investigated the effect of training on performance with an auditory P300 multi-class speller paradigm. For half of the participants, spatial cues were added to the auditory stimuli to see whether performance can be further optimized. The influence of motivation, mood and workload on performance and P300 component was also examined. In five sessions, 16 healthy participants were instructed to spell several words by attending to animal sounds representing the rows and columns of a 5 × 5 letter matrix. 81% of the participants achieved an average online accuracy of ⩾ 70%. From the first to the fifth session information transfer rates increased from 3.72 bits/min to 5.63 bits/min. Motivation significantly influenced P300 amplitude and online ITR. No significant facilitative effect of spatial cues on performance was observed. Training improves performance in an auditory BCI paradigm. Motivation influences performance and P300 amplitude. The described auditory BCI system may help end-users to communicate independently of gaze control with their environment. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Brumberg, Jonathan S; Nguyen, Anh; Pitt, Kevin M; Lorenz, Sean D
2018-01-31
We investigated how overt visual attention and oculomotor control influence successful use of a visual feedback brain-computer interface (BCI) for accessing augmentative and alternative communication (AAC) devices in a heterogeneous population of individuals with profound neuromotor impairments. BCIs are often tested within a single patient population limiting generalization of results. This study focuses on examining individual sensory abilities with an eye toward possible interface adaptations to improve device performance. Five individuals with a range of neuromotor disorders participated in four-choice BCI control task involving the steady state visually evoked potential. The BCI graphical interface was designed to simulate a commercial AAC device to examine whether an integrated device could be used successfully by individuals with neuromotor impairment. All participants were able to interact with the BCI and highest performance was found for participants able to employ an overt visual attention strategy. For participants with visual deficits to due to impaired oculomotor control, effective performance increased after accounting for mismatches between the graphical layout and participant visual capabilities. As BCIs are translated from research environments to clinical applications, the assessment of BCI-related skills will help facilitate proper device selection and provide individuals who use BCI the greatest likelihood of immediate and long term communicative success. Overall, our results indicate that adaptations can be an effective strategy to reduce barriers and increase access to BCI technology. These efforts should be directed by comprehensive assessments for matching individuals to the most appropriate device to support their complex communication needs. Implications for Rehabilitation Brain computer interfaces using the steady state visually evoked potential can be integrated with an augmentative and alternative communication device to provide access to language and literacy for individuals with neuromotor impairment. Comprehensive assessments are needed to fully understand the sensory, motor, and cognitive abilities of individuals who may use brain-computer interfaces for proper feature matching as selection of the most appropriate device including optimization device layouts and control paradigms. Oculomotor impairments negatively impact brain-computer interfaces that use the steady state visually evoked potential, but modifications to place interface stimuli and communication items in the intact visual field can improve successful outcomes.
User-centered design in brain-computer interfaces-a case study.
Schreuder, Martijn; Riccio, Angela; Risetti, Monica; Dähne, Sven; Ramsay, Andrew; Williamson, John; Mattia, Donatella; Tangermann, Michael
2013-10-01
The array of available brain-computer interface (BCI) paradigms has continued to grow, and so has the corresponding set of machine learning methods which are at the core of BCI systems. The latter have evolved to provide more robust data analysis solutions, and as a consequence the proportion of healthy BCI users who can use a BCI successfully is growing. With this development the chances have increased that the needs and abilities of specific patients, the end-users, can be covered by an existing BCI approach. However, most end-users who have experienced the use of a BCI system at all have encountered a single paradigm only. This paradigm is typically the one that is being tested in the study that the end-user happens to be enrolled in, along with other end-users. Though this corresponds to the preferred study arrangement for basic research, it does not ensure that the end-user experiences a working BCI. In this study, a different approach was taken; that of a user-centered design. It is the prevailing process in traditional assistive technology. Given an individual user with a particular clinical profile, several available BCI approaches are tested and - if necessary - adapted to him/her until a suitable BCI system is found. Described is the case of a 48-year-old woman who suffered from an ischemic brain stem stroke, leading to a severe motor- and communication deficit. She was enrolled in studies with two different BCI systems before a suitable system was found. The first was an auditory event-related potential (ERP) paradigm and the second a visual ERP paradigm, both of which are established in literature. The auditory paradigm did not work successfully, despite favorable preconditions. The visual paradigm worked flawlessly, as found over several sessions. This discrepancy in performance can possibly be explained by the user's clinical deficit in several key neuropsychological indicators, such as attention and working memory. While the auditory paradigm relies on both categories, the visual paradigm could be used with lower cognitive workload. Besides attention and working memory, several other neurophysiological and -psychological indicators - and the role they play in the BCIs at hand - are discussed. The user's performance on the first BCI paradigm would typically have excluded her from further ERP-based BCI studies. However, this study clearly shows that, with the numerous paradigms now at our disposal, the pursuit for a functioning BCI system should not be stopped after an initial failed attempt. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Connections that Count: Brain-Computer Interface Enables the Profoundly Paralyzed to Communicate
... Home Current Issue Past Issues Connections that Count: Brain-Computer Interface Enables the Profoundly Paralyzed to Communicate ... of this page please turn Javascript on. A brain-computer interface (BCI) system This brain-computer interface ( ...
Robotic and Virtual Reality BCIs Using Spatial Tactile and Auditory Oddball Paradigms
Rutkowski, Tomasz M.
2016-01-01
The paper reviews nine robotic and virtual reality (VR) brain–computer interface (BCI) projects developed by the author, in collaboration with his graduate students, within the BCI–lab research group during its association with University of Tsukuba, Japan. The nine novel approaches are discussed in applications to direct brain-robot and brain-virtual-reality-agent control interfaces using tactile and auditory BCI technologies. The BCI user intentions are decoded from the brainwaves in realtime using a non-invasive electroencephalography (EEG) and they are translated to a symbiotic robot or virtual reality agent thought-based only control. A communication protocol between the BCI output and the robot or the virtual environment is realized in a symbiotic communication scenario using an user datagram protocol (UDP), which constitutes an internet of things (IoT) control scenario. Results obtained from healthy users reproducing simple brain-robot and brain-virtual-agent control tasks in online experiments support the research goal of a possibility to interact with robotic devices and virtual reality agents using symbiotic thought-based BCI technologies. An offline BCI classification accuracy boosting method, using a previously proposed information geometry derived approach, is also discussed in order to further support the reviewed robotic and virtual reality thought-based control paradigms. PMID:27999538
A Co-Adaptive Brain-Computer Interface for End Users with Severe Motor Impairment
Faller, Josef; Scherer, Reinhold; Costa, Ursula; Opisso, Eloy; Medina, Josep; Müller-Putz, Gernot R.
2014-01-01
Co-adaptive training paradigms for event-related desynchronization (ERD) based brain-computer interfaces (BCI) have proven effective for healthy users. As of yet, it is not clear whether co-adaptive training paradigms can also benefit users with severe motor impairment. The primary goal of our paper was to evaluate a novel cue-guided, co-adaptive BCI training paradigm with severely impaired volunteers. The co-adaptive BCI supports a non-control state, which is an important step toward intuitive, self-paced control. A secondary aim was to have the same participants operate a specifically designed self-paced BCI training paradigm based on the auto-calibrated classifier. The co-adaptive BCI analyzed the electroencephalogram from three bipolar derivations (C3, Cz, and C4) online, while the 22 end users alternately performed right hand movement imagery (MI), left hand MI and relax with eyes open (non-control state). After less than five minutes, the BCI auto-calibrated and proceeded to provide visual feedback for the MI task that could be classified better against the non-control state. The BCI continued to regularly recalibrate. In every calibration step, the system performed trial-based outlier rejection and trained a linear discriminant analysis classifier based on one auto-selected logarithmic band-power feature. In 24 minutes of training, the co-adaptive BCI worked significantly (p = 0.01) better than chance for 18 of 22 end users. The self-paced BCI training paradigm worked significantly (p = 0.01) better than chance in 11 of 20 end users. The presented co-adaptive BCI complements existing approaches in that it supports a non-control state, requires very little setup time, requires no BCI expert and works online based on only two electrodes. The preliminary results from the self-paced BCI paradigm compare favorably to previous studies and the collected data will allow to further improve self-paced BCI systems for disabled users. PMID:25014055
Amaral, Carlos P; Simões, Marco A; Mouga, Susana; Andrade, João; Castelo-Branco, Miguel
2017-10-01
We present a novel virtual-reality P300-based Brain Computer Interface (BCI) paradigm using social cues to direct the focus of attention. We combined interactive immersive virtual-reality (VR) technology with the properties of P300 signals in a training tool which can be used in social attention disorders such as autism spectrum disorder (ASD). We tested the novel social attention training paradigm (P300-based BCI paradigm for rehabilitation of joint-attention skills) in 13 healthy participants, in 3 EEG systems. The more suitable setup was tested online with 4 ASD subjects. Statistical accuracy was assessed based on the detection of P300, using spatial filtering and a Naïve-Bayes classifier. We compared: 1 - g.Mobilab+ (active dry-electrodes, wireless transmission); 2 - g.Nautilus (active electrodes, wireless transmission); 3 - V-Amp with actiCAP Xpress dry-electrodes. Significant statistical classification was achieved in all systems. g.Nautilus proved to be the best performing system in terms of accuracy in the detection of P300, preparation time, speed and reported comfort. Proof of concept tests in ASD participants proved that this setup is feasible for training joint attention skills in ASD. This work provides a unique combination of 'easy-to-use' BCI systems with new technologies such as VR to train joint-attention skills in autism. Our P300 BCI paradigm is feasible for future Phase I/II clinical trials to train joint-attention skills, with successful classification within few trials, online in ASD participants. The g.Nautilus system is the best performing one to use with the developed BCI setup. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hwang, Han-Jeong; Choi, Han; Kim, Jeong-Youn; Chang, Won-Du; Kim, Do-Won; Kim, Kiwoong; Jo, Sungho; Im, Chang-Hwan
2016-09-01
In traditional brain-computer interface (BCI) studies, binary communication systems have generally been implemented using two mental tasks arbitrarily assigned to "yes" or "no" intentions (e.g., mental arithmetic calculation for "yes"). A recent pilot study performed with one paralyzed patient showed the possibility of a more intuitive paradigm for binary BCI communications, in which the patient's internal yes/no intentions were directly decoded from functional near-infrared spectroscopy (fNIRS). We investigated whether such an "fNIRS-based direct intention decoding" paradigm can be reliably used for practical BCI communications. Eight healthy subjects participated in this study, and each participant was administered 70 disjunctive questions. Brain hemodynamic responses were recorded using a multichannel fNIRS device, while the participants were internally expressing "yes" or "no" intentions to each question. Different feature types, feature numbers, and time window sizes were tested to investigate optimal conditions for classifying the internal binary intentions. About 75% of the answers were correctly classified when the individual best feature set was employed (75.89% ±1.39 and 74.08% ±2.87 for oxygenated and deoxygenated hemoglobin responses, respectively), which was significantly higher than a random chance level (68.57% for p<0.001). The kurtosis feature showed the highest mean classification accuracy among all feature types. The grand-averaged hemodynamic responses showed that wide brain regions are associated with the processing of binary implicit intentions. Our experimental results demonstrated that direct decoding of internal binary intention has the potential to be used for implementing more intuitive and user-friendly communication systems for patients with motor disabilities.
An independent SSVEP-based brain-computer interface in locked-in syndrome
NASA Astrophysics Data System (ADS)
Lesenfants, D.; Habbal, D.; Lugo, Z.; Lebeau, M.; Horki, P.; Amico, E.; Pokorny, C.; Gómez, F.; Soddu, A.; Müller-Putz, G.; Laureys, S.; Noirhomme, Q.
2014-06-01
Objective. Steady-state visually evoked potential (SSVEP)-based brain-computer interfaces (BCIs) allow healthy subjects to communicate. However, their dependence on gaze control prevents their use with severely disabled patients. Gaze-independent SSVEP-BCIs have been designed but have shown a drop in accuracy and have not been tested in brain-injured patients. In the present paper, we propose a novel independent SSVEP-BCI based on covert attention with an improved classification rate. We study the influence of feature extraction algorithms and the number of harmonics. Finally, we test online communication on healthy volunteers and patients with locked-in syndrome (LIS). Approach. Twenty-four healthy subjects and six LIS patients participated in this study. An independent covert two-class SSVEP paradigm was used with a newly developed portable light emitting diode-based ‘interlaced squares' stimulation pattern. Main results. Mean offline and online accuracies on healthy subjects were respectively 85 ± 2% and 74 ± 13%, with eight out of twelve subjects succeeding to communicate efficiently with 80 ± 9% accuracy. Two out of six LIS patients reached an offline accuracy above the chance level, illustrating a response to a command. One out of four LIS patients could communicate online. Significance. We have demonstrated the feasibility of online communication with a covert SSVEP paradigm that is truly independent of all neuromuscular functions. The potential clinical use of the presented BCI system as a diagnostic (i.e., detecting command-following) and communication tool for severely brain-injured patients will need to be further explored.
Liberati, Giulia; Dalboni da Rocha, Josué Luiz; van der Heiden, Linda; Raffone, Antonino; Birbaumer, Niels; Olivetti Belardinelli, Marta; Sitaram, Ranganatha
2012-01-01
Brain-computer interfaces (BCIs) provide alternative methods for communicating and acting on the world, since messages or commands are conveyed from the brain to an external device without using the normal output pathways of peripheral nerves and muscles. Alzheimer's disease (AD) patients in the most advanced stages, who have lost the ability to communicate verbally, could benefit from a BCI that may allow them to convey basic thoughts (e.g., "yes" and "no") and emotions. There is currently no report of such research, mostly because the cognitive deficits in AD patients pose serious limitations to the use of traditional BCIs, which are normally based on instrumental learning and require users to self-regulate their brain activation. Recent studies suggest that not only self-regulated brain signals, but also involuntary signals, for instance related to emotional states, may provide useful information about the user, opening up the path for so-called "affective BCIs". These interfaces do not necessarily require users to actively perform a cognitive task, and may therefore be used with patients who are cognitively challenged. In the present hypothesis paper, we propose a paradigm shift from instrumental learning to classical conditioning, with the aim of discriminating "yes" and "no" thoughts after associating them to positive and negative emotional stimuli respectively. This would represent a first step in the development of a BCI that could be used by AD patients, lending a new direction not only for communication, but also for rehabilitation and diagnosis.
An auditory brain-computer interface evoked by natural speech
NASA Astrophysics Data System (ADS)
Lopez-Gordo, M. A.; Fernandez, E.; Romero, S.; Pelayo, F.; Prieto, Alberto
2012-06-01
Brain-computer interfaces (BCIs) are mainly intended for people unable to perform any muscular movement, such as patients in a complete locked-in state. The majority of BCIs interact visually with the user, either in the form of stimulation or biofeedback. However, visual BCIs challenge their ultimate use because they require the subjects to gaze, explore and shift eye-gaze using their muscles, thus excluding patients in a complete locked-in state or under the condition of the unresponsive wakefulness syndrome. In this study, we present a novel fully auditory EEG-BCI based on a dichotic listening paradigm using human voice for stimulation. This interface has been evaluated with healthy volunteers, achieving an average information transmission rate of 1.5 bits min-1 in full-length trials and 2.7 bits min-1 using the optimal length of trials, recorded with only one channel and without formal training. This novel technique opens the door to a more natural communication with users unable to use visual BCIs, with promising results in terms of performance, usability, training and cognitive effort.
Control of a visual keyboard using an electrocorticographic brain-computer interface.
Krusienski, Dean J; Shih, Jerry J
2011-05-01
Brain-computer interfaces (BCIs) are devices that enable severely disabled people to communicate and interact with their environments using their brain waves. Most studies investigating BCI in humans have used scalp EEG as the source of electrical signals and focused on motor control of prostheses or computer cursors on a screen. The authors hypothesize that the use of brain signals obtained directly from the cortical surface will more effectively control a communication/spelling task compared to scalp EEG. A total of 6 patients with medically intractable epilepsy were tested for the ability to control a visual keyboard using electrocorticographic (ECOG) signals. ECOG data collected during a P300 visual task paradigm were preprocessed and used to train a linear classifier to subsequently predict the intended target letters. The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in 5 of the 6 people tested. ECOG data from electrodes outside the language cortex contributed to the classifier and enabled participants to write words on a visual keyboard. This is a novel finding because previous invasive BCI research in humans used signals exclusively from the motor cortex to control a computer cursor or prosthetic device. These results demonstrate that ECOG signals from electrodes both overlying and outside the language cortex can reliably control a visual keyboard to generate language output without voice or limb movements.
NASA Astrophysics Data System (ADS)
Grosse-Wentrup, Moritz; Schölkopf, Bernhard
2014-10-01
Objective. Brain-computer interface (BCI) systems are often based on motor- and/or sensory processes that are known to be impaired in late stages of amyotrophic lateral sclerosis (ALS). We propose a novel BCI designed for patients in late stages of ALS that only requires high-level cognitive processes to transmit information from the user to the BCI. Approach. We trained subjects via EEG-based neurofeedback to self-regulate the amplitude of gamma-oscillations in the superior parietal cortex (SPC). We argue that parietal gamma-oscillations are likely to be associated with high-level attentional processes, thereby providing a communication channel that does not rely on the integrity of sensory- and/or motor-pathways impaired in late stages of ALS. Main results. Healthy subjects quickly learned to self-regulate gamma-power in the SPC by alternating between states of focused attention and relaxed wakefulness, resulting in an average decoding accuracy of 70.2%. One locked-in ALS patient (ALS-FRS-R score of zero) achieved an average decoding accuracy significantly above chance-level though insufficient for communication (55.8%). Significance. Self-regulation of gamma-power in the SPC is a feasible paradigm for brain-computer interfacing and may be preserved in late stages of ALS. This provides a novel approach to testing whether completely locked-in ALS patients retain the capacity for goal-directed thinking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Feng; Zhang, Xin; Xie, Jun
2015-03-10
This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method;more » Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n{sup n} with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method.« less
Kaplan, A Ya
2016-01-01
Technology brain-computer interface (BCI) based on the registration and interpretation of EEG has recently become one of the most popular developments in neuroscience and psychophysiology. This is due not only to the intended future use of these technologies in many areas of practical human activity, but also to the fact that IMC--is a completely new paradigm in psychophysiology, allowing test hypotheses about the possibilities of the human brain to the development of skills of interaction with the outside world without the mediation of the motor system, i.e. only with the help of voluntary modulation of EEG generators. This paper examines the theoretical and experimental basis, the current state and prospects of development of training, communicational and assisting complexes based on BCI to control them without muscular effort on the basis of mental commands detected in the EEG of patients with severely impaired speech and motor system.
Grissmann, Sebastian; Zander, Thorsten O; Faller, Josef; Brönstrup, Jonas; Kelava, Augustin; Gramann, Klaus; Gerjets, Peter
2017-01-01
Most brain-computer interfaces (BCIs) focus on detecting single aspects of user states (e.g., motor imagery) in the electroencephalogram (EEG) in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC) was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios.
Grissmann, Sebastian; Zander, Thorsten O.; Faller, Josef; Brönstrup, Jonas; Kelava, Augustin; Gramann, Klaus; Gerjets, Peter
2017-01-01
Most brain-computer interfaces (BCIs) focus on detecting single aspects of user states (e.g., motor imagery) in the electroencephalogram (EEG) in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC) was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios. PMID:28769776
Towards Development of a 3-State Self-Paced Brain-Computer Interface
Bashashati, Ali; Ward, Rabab K.; Birch, Gary E.
2007-01-01
Most existing brain-computer interfaces (BCIs) detect specific mental activity in a so-called synchronous paradigm. Unlike synchronous systems which are operational at specific system-defined periods, self-paced (asynchronous) interfaces have the advantage of being operational at all times. The low-frequency asynchronous switch design (LF-ASD) is a 2-state self-paced BCI that detects the presence of a specific finger movement in the ongoing EEG. Recent evaluations of the 2-state LF-ASD show an average true positive rate of 41% at the fixed false positive rate of 1%. This paper proposes two designs for a 3-state self-paced BCI that is capable of handling idle brain state. The two proposed designs aim at detecting right- and left-hand extensions from the ongoing EEG. They are formed of two consecutive detectors. The first detects the presence of a right- or a left-hand movement and the second classifies the detected movement as a right or a left one. In an offline analysis of the EEG data collected from four able-bodied individuals, the 3-state brain-computer interface shows a comparable performance with a 2-state system and significant performance improvement if used as a 2-state BCI, that is, in detecting the presence of a right- or a left-hand movement (regardless of the type of movement). It has an average true positive rate of 37.5% and 42.8% (at false positives rate of 1%) in detecting right- and left-hand extensions, respectively, in the context of a 3-state self-paced BCI and average detection rate of 58.1% (at false positive rate of 1%) in the context of a 2-state self-paced BCI. PMID:18288260
Engineering incremental resistive switching in TaOx based memristors for brain-inspired computing
NASA Astrophysics Data System (ADS)
Wang, Zongwei; Yin, Minghui; Zhang, Teng; Cai, Yimao; Wang, Yangyuan; Yang, Yuchao; Huang, Ru
2016-07-01
Brain-inspired neuromorphic computing is expected to revolutionize the architecture of conventional digital computers and lead to a new generation of powerful computing paradigms, where memristors with analog resistive switching are considered to be potential solutions for synapses. Here we propose and demonstrate a novel approach to engineering the analog switching linearity in TaOx based memristors, that is, by homogenizing the filament growth/dissolution rate via the introduction of an ion diffusion limiting layer (DLL) at the TiN/TaOx interface. This has effectively mitigated the commonly observed two-regime conductance modulation behavior and led to more uniform filament growth (dissolution) dynamics with time, therefore significantly improving the conductance modulation linearity that is desirable in neuromorphic systems. In addition, the introduction of the DLL also served to reduce the power consumption of the memristor, and important synaptic learning rules in biological brains such as spike timing dependent plasticity were successfully implemented using these optimized devices. This study could provide general implications for continued optimizations of memristor performance for neuromorphic applications, by carefully tuning the dynamics involved in filament growth and dissolution.Brain-inspired neuromorphic computing is expected to revolutionize the architecture of conventional digital computers and lead to a new generation of powerful computing paradigms, where memristors with analog resistive switching are considered to be potential solutions for synapses. Here we propose and demonstrate a novel approach to engineering the analog switching linearity in TaOx based memristors, that is, by homogenizing the filament growth/dissolution rate via the introduction of an ion diffusion limiting layer (DLL) at the TiN/TaOx interface. This has effectively mitigated the commonly observed two-regime conductance modulation behavior and led to more uniform filament growth (dissolution) dynamics with time, therefore significantly improving the conductance modulation linearity that is desirable in neuromorphic systems. In addition, the introduction of the DLL also served to reduce the power consumption of the memristor, and important synaptic learning rules in biological brains such as spike timing dependent plasticity were successfully implemented using these optimized devices. This study could provide general implications for continued optimizations of memristor performance for neuromorphic applications, by carefully tuning the dynamics involved in filament growth and dissolution. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00476h
Kaufmann, Tobias; Holz, Elisa M; Kübler, Andrea
2013-01-01
This paper describes a case study with a patient in the classic locked-in state, who currently has no means of independent communication. Following a user-centered approach, we investigated event-related potentials (ERP) elicited in different modalities for use in brain-computer interface (BCI) systems. Such systems could provide her with an alternative communication channel. To investigate the most viable modality for achieving BCI based communication, classic oddball paradigms (1 rare and 1 frequent stimulus, ratio 1:5) in the visual, auditory and tactile modality were conducted (2 runs per modality). Classifiers were built on one run and tested offline on another run (and vice versa). In these paradigms, the tactile modality was clearly superior to other modalities, displaying high offline accuracy even when classification was performed on single trials only. Consequently, we tested the tactile paradigm online and the patient successfully selected targets without any error. Furthermore, we investigated use of the visual or tactile modality for different BCI systems with more than two selection options. In the visual modality, several BCI paradigms were tested offline. Neither matrix-based nor so-called gaze-independent paradigms constituted a means of control. These results may thus question the gaze-independence of current gaze-independent approaches to BCI. A tactile four-choice BCI resulted in high offline classification accuracies. Yet, online use raised various issues. Although performance was clearly above chance, practical daily life use appeared unlikely when compared to other communication approaches (e.g., partner scanning). Our results emphasize the need for user-centered design in BCI development including identification of the best stimulus modality for a particular user. Finally, the paper discusses feasibility of EEG-based BCI systems for patients in classic locked-in state and compares BCI to other AT solutions that we also tested during the study.
Evaluation of a Compact Hybrid Brain-Computer Interface System
Müller, Klaus-Robert; Schmitz, Christoph H.
2017-01-01
We realized a compact hybrid brain-computer interface (BCI) system by integrating a portable near-infrared spectroscopy (NIRS) device with an economical electroencephalography (EEG) system. The NIRS array was located on the subjects' forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA) and baseline (BL) tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG) with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation. PMID:28373984
Evaluation of a Compact Hybrid Brain-Computer Interface System.
Shin, Jaeyoung; Müller, Klaus-Robert; Schmitz, Christoph H; Kim, Do-Won; Hwang, Han-Jeong
2017-01-01
We realized a compact hybrid brain-computer interface (BCI) system by integrating a portable near-infrared spectroscopy (NIRS) device with an economical electroencephalography (EEG) system. The NIRS array was located on the subjects' forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA) and baseline (BL) tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG) with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation.
Hong, Keum-Shik; Khan, Muhammad Jawad
2017-01-01
In this article, non-invasive hybrid brain–computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain–computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided. PMID:28790910
Hwang, Han-Jeong; Choi, Han; Kim, Jeong-Youn; Chang, Won-Du; Kim, Do-Won; Kim, Kiwoong; Jo, Sungho; Im, Chang-Hwan
2016-09-01
In traditional brain-computer interface (BCI) studies, binary communication systems have generally been implemented using two mental tasks arbitrarily assigned to “yes” or “no” intentions (e.g., mental arithmetic calculation for “yes”). A recent pilot study performed with one paralyzed patient showed the possibility of a more intuitive paradigm for binary BCI communications, in which the patient’s internal yes/no intentions were directly decoded from functional near-infrared spectroscopy (fNIRS). We investigated whether such an “fNIRS-based direct intention decoding” paradigm can be reliably used for practical BCI communications. Eight healthy subjects participated in this study, and each participant was administered 70 disjunctive questions. Brain hemodynamic responses were recorded using a multichannel fNIRS device, while the participants were internally expressing “yes” or “no” intentions to each question. Different feature types, feature numbers, and time window sizes were tested to investigate optimal conditions for classifying the internal binary intentions. About 75% of the answers were correctly classified when the individual best feature set was employed (75.89% ± 1.39 and 74.08% ± 2.87 for oxygenated and deoxygenated hemoglobin responses, respectively), which was significantly higher than a random chance level (68.57% for p < 0.001). The kurtosis feature showed the highest mean classification accuracy among all feature types. The grand-averaged hemodynamic responses showed that wide brain regions are associated with the processing of binary implicit intentions. Our experimental results demonstrated that direct decoding of internal binary intention has the potential to be used for implementing more intuitive and user-friendly communication systems for patients with motor disabilities.
Feasibility of an EEG-based brain-computer interface in the intensive care unit.
Chatelle, Camille; Spencer, Camille A; Cash, Sydney S; Hochberg, Leigh R; Edlow, Brian L
2018-05-09
We tested the feasibility of deploying a commercially available EEG-based brain-computer interface (BCI) in the intensive care unit (ICU) to detect consciousness in patients with acute disorders of consciousness (DoC) or locked-in syndrome (LIS). Ten patients (9 DoC, 1 LIS) and 10 healthy subjects (HS) were enrolled. The BCI utilized oddball auditory evoked potentials, vibrotactile evoked potentials (VTP) and motor imagery (MoI) to assess consciousness. We recorded the assessment completion rate and the time required for assessment, and we calculated the sensitivity and specificity of each paradigm for detecting behavioral signs of consciousness. All 10 patients completed the assessment, 9 of whom required less than 1 h. The LIS patient reported fatigue before the end of the session. The HS and LIS patient showed more consistent BCI responses than DoC patients, but overall there was no association between BCI responses and behavioral signs of consciousness. The system is feasible to deploy in the ICU and may confirm consciousness in acute LIS, but it was unreliable in acute DoC. The accuracy of the paradigms for detecting consciousness must be improved and the duration of the protocol should be shortened before this commercially available BCI is ready for clinical implementation in the ICU in patients with acute DoC. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
A comparison study of visually stimulated brain-computer and eye-tracking interfaces
NASA Astrophysics Data System (ADS)
Suefusa, Kaori; Tanaka, Toshihisa
2017-06-01
Objective. Brain-computer interfacing (BCI) based on visual stimuli detects the target on a screen on which a user is focusing. The detection of the gazing target can be achieved by tracking gaze positions with a video camera, which is called eye-tracking or eye-tracking interfaces (ETIs). The two types of interface have been developed in different communities. Thus, little work on a comprehensive comparison between these two types of interface has been reported. This paper quantitatively compares the performance of these two interfaces on the same experimental platform. Specifically, our study is focused on two major paradigms of BCI and ETI: steady-state visual evoked potential-based BCIs and dwelling-based ETIs. Approach. Recognition accuracy and the information transfer rate were measured by giving subjects the task of selecting one of four targets by gazing at it. The targets were displayed in three different sizes (with sides 20, 40 and 60 mm long) to evaluate performance with respect to the target size. Main results. The experimental results showed that the BCI was comparable to the ETI in terms of accuracy and the information transfer rate. In particular, when the size of a target was relatively small, the BCI had significantly better performance than the ETI. Significance. The results on which of the two interfaces works better in different situations would not only enable us to improve the design of the interfaces but would also allow for the appropriate choice of interface based on the situation. Specifically, one can choose an interface based on the size of the screen that displays the targets.
Low Cost Electroencephalographic Acquisition Amplifier to serve as Teaching and Research Tool
Jain, Ankit; Kim, Insoo; Gluckman, Bruce J.
2012-01-01
We describe the development and testing of a low cost, easily constructed electroencephalographic acquisition amplifier for noninvasive Brain Computer Interface (BCI) education and research. The acquisition amplifier is constructed from newly available off-the-shelf integrated circuit components, and readily sends a 24-bit data stream via USB bus to a computer platform. We demonstrate here the hardware’s use in the analysis of a visually evoked P300 paradigm for a choose one-of-eight task. This clearly shows the applicability of this system as a low cost teaching and research tool. PMID:22254699
Aydın, Eda Akman; Bay, Ömer Faruk; Güler, İnan
2016-01-01
Brain Computer Interface (BCI) based environment control systems could facilitate life of people with neuromuscular diseases, reduces dependence on their caregivers, and improves their quality of life. As well as easy usage, low-cost, and robust system performance, mobility is an important functionality expected from a practical BCI system in real life. In this study, in order to enhance users' mobility, we propose internet based wireless communication between BCI system and home environment. We designed and implemented a prototype of an embedded low-cost, low power, easy to use web server which is employed in internet based wireless control of a BCI based home environment. The embedded web server provides remote access to the environmental control module through BCI and web interfaces. While the proposed system offers to BCI users enhanced mobility, it also provides remote control of the home environment by caregivers as well as the individuals in initial stages of neuromuscular disease. The input of BCI system is P300 potentials. We used Region Based Paradigm (RBP) as stimulus interface. Performance of the BCI system is evaluated on data recorded from 8 non-disabled subjects. The experimental results indicate that the proposed web server enables internet based wireless control of electrical home appliances successfully through BCIs.
Artificial Intelligence and brain.
Shapshak, Paul
2018-01-01
From the start, Kurt Godel observed that computer and brain paradigms were considered on a par by researchers and that researchers had misunderstood his theorems. He hailed with displeasure that the brain transcends computers. In this brief article, we point out that Artificial Intelligence (AI) comprises multitudes of human-made methodologies, systems, and languages, and implemented with computer technology. These advances enhance development in the electron and quantum realms. In the biological realm, animal neurons function, also utilizing electron flow, and are products of evolution. Mirror neurons are an important paradigm in neuroscience research. Moreover, the paradigm shift proposed here - 'hall of mirror neurons' - is a potentially further productive research tactic. These concepts further expand AI and brain research.
An independent brain-computer interface using covert non-spatial visual selective attention
NASA Astrophysics Data System (ADS)
Zhang, Dan; Maye, Alexander; Gao, Xiaorong; Hong, Bo; Engel, Andreas K.; Gao, Shangkai
2010-02-01
In this paper, a novel independent brain-computer interface (BCI) system based on covert non-spatial visual selective attention of two superimposed illusory surfaces is described. Perception of two superimposed surfaces was induced by two sets of dots with different colors rotating in opposite directions. The surfaces flickered at different frequencies and elicited distinguishable steady-state visual evoked potentials (SSVEPs) over parietal and occipital areas of the brain. By selectively attending to one of the two surfaces, the SSVEP amplitude at the corresponding frequency was enhanced. An online BCI system utilizing the attentional modulation of SSVEP was implemented and a 3-day online training program with healthy subjects was carried out. The study was conducted with Chinese subjects at Tsinghua University, and German subjects at University Medical Center Hamburg-Eppendorf (UKE) using identical stimulation software and equivalent technical setup. A general improvement of control accuracy with training was observed in 8 out of 18 subjects. An averaged online classification accuracy of 72.6 ± 16.1% was achieved on the last training day. The system renders SSVEP-based BCI paradigms possible for paralyzed patients with substantial head or ocular motor impairments by employing covert attention shifts instead of changing gaze direction.
An independent brain-computer interface using covert non-spatial visual selective attention.
Zhang, Dan; Maye, Alexander; Gao, Xiaorong; Hong, Bo; Engel, Andreas K; Gao, Shangkai
2010-02-01
In this paper, a novel independent brain-computer interface (BCI) system based on covert non-spatial visual selective attention of two superimposed illusory surfaces is described. Perception of two superimposed surfaces was induced by two sets of dots with different colors rotating in opposite directions. The surfaces flickered at different frequencies and elicited distinguishable steady-state visual evoked potentials (SSVEPs) over parietal and occipital areas of the brain. By selectively attending to one of the two surfaces, the SSVEP amplitude at the corresponding frequency was enhanced. An online BCI system utilizing the attentional modulation of SSVEP was implemented and a 3-day online training program with healthy subjects was carried out. The study was conducted with Chinese subjects at Tsinghua University, and German subjects at University Medical Center Hamburg-Eppendorf (UKE) using identical stimulation software and equivalent technical setup. A general improvement of control accuracy with training was observed in 8 out of 18 subjects. An averaged online classification accuracy of 72.6 +/- 16.1% was achieved on the last training day. The system renders SSVEP-based BCI paradigms possible for paralyzed patients with substantial head or ocular motor impairments by employing covert attention shifts instead of changing gaze direction.
Power, Sarah D; Kushki, Azadeh; Chau, Tom
2011-12-01
Near-infrared spectroscopy (NIRS) has recently been investigated as a non-invasive brain-computer interface (BCI) for individuals with severe motor impairments. For the most part, previous research has investigated the development of NIRS-BCIs operating under synchronous control paradigms, which require the user to exert conscious control over their mental activity whenever the system is vigilant. Though functional, this is mentally demanding and an unnatural way to communicate. An attractive alternative to the synchronous control paradigm is system-paced control, in which users are required to consciously modify their brain activity only when they wish to affect the BCI output, and can remain in a more natural, 'no-control' state at all other times. In this study, we investigated the feasibility of a system-paced NIRS-BCI with one intentional control (IC) state corresponding to the performance of either mental arithmetic or mental singing. In particular, this involved determining if these tasks could be distinguished, individually, from the unconstrained 'no-control' state. Deploying a dual-wavelength frequency domain near-infrared spectrometer, we interrogated nine sites around the frontopolar locations (International 10-20 System) while eight able-bodied adults performed mental arithmetic and mental singing to answer multiple-choice questions within a system-paced paradigm. With a linear classifier trained on a six-dimensional feature set, an overall classification accuracy of 71.2% across participants was achieved for the mental arithmetic versus no-control classification problem. While the mental singing versus no-control classification was less successful across participants (62.7% on average), four participants did attain accuracies well in excess of chance, three of which were above 70%. Analyses were performed offline. Collectively, these results are encouraging, and demonstrate the potential of a system-paced NIRS-BCI with one IC state corresponding to either mental arithmetic or mental singing.
NASA Astrophysics Data System (ADS)
Power, Sarah D.; Kushki, Azadeh; Chau, Tom
2011-10-01
Near-infrared spectroscopy (NIRS) has recently been investigated as a non-invasive brain-computer interface (BCI) for individuals with severe motor impairments. For the most part, previous research has investigated the development of NIRS-BCIs operating under synchronous control paradigms, which require the user to exert conscious control over their mental activity whenever the system is vigilant. Though functional, this is mentally demanding and an unnatural way to communicate. An attractive alternative to the synchronous control paradigm is system-paced control, in which users are required to consciously modify their brain activity only when they wish to affect the BCI output, and can remain in a more natural, 'no-control' state at all other times. In this study, we investigated the feasibility of a system-paced NIRS-BCI with one intentional control (IC) state corresponding to the performance of either mental arithmetic or mental singing. In particular, this involved determining if these tasks could be distinguished, individually, from the unconstrained 'no-control' state. Deploying a dual-wavelength frequency domain near-infrared spectrometer, we interrogated nine sites around the frontopolar locations (International 10-20 System) while eight able-bodied adults performed mental arithmetic and mental singing to answer multiple-choice questions within a system-paced paradigm. With a linear classifier trained on a six-dimensional feature set, an overall classification accuracy of 71.2% across participants was achieved for the mental arithmetic versus no-control classification problem. While the mental singing versus no-control classification was less successful across participants (62.7% on average), four participants did attain accuracies well in excess of chance, three of which were above 70%. Analyses were performed offline. Collectively, these results are encouraging, and demonstrate the potential of a system-paced NIRS-BCI with one IC state corresponding to either mental arithmetic or mental singing.
Weyand, Sabine; Takehara-Nishiuchi, Kaori; Chau, Tom
2015-10-30
Near-infrared spectroscopy (NIRS) brain-computer interfaces (BCIs) enable users to interact with their environment using only cognitive activities. This paper presents the results of a comparison of four methodological frameworks used to select a pair of tasks to control a binary NIRS-BCI; specifically, three novel personalized task paradigms and the state-of-the-art prescribed task framework were explored. Three types of personalized task selection approaches were compared, including: user-selected mental tasks using weighted slope scores (WS-scores), user-selected mental tasks using pair-wise accuracy rankings (PWAR), and researcher-selected mental tasks using PWAR. These paradigms, along with the state-of-the-art prescribed mental task framework, where mental tasks are selected based on the most commonly used tasks in literature, were tested by ten able-bodied participants who took part in five NIRS-BCI sessions. The frameworks were compared in terms of their accuracy, perceived ease-of-use, computational time, user preference, and length of training. Most notably, researcher-selected personalized tasks resulted in significantly higher accuracies, while user-selected personalized tasks resulted in significantly higher perceived ease-of-use. It was also concluded that PWAR minimized the amount of data that needed to be collected; while, WS-scores maximized user satisfaction and minimized computational time. In comparison to the state-of-the-art prescribed mental tasks, our findings show that overall, personalized tasks appear to be superior to prescribed tasks with respect to accuracy and perceived ease-of-use. The deployment of personalized rather than prescribed mental tasks ought to be considered and further investigated in future NIRS-BCI studies. Copyright © 2015 Elsevier B.V. All rights reserved.
Task-induced frequency modulation features for brain-computer interfacing.
Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz
2017-10-01
Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects' intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects' intents with an accuracy comparable to task-induced amplitude modulation. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.
Lyons, Kenneth R; Joshi, Sanjay S
2013-06-01
Here we demonstrate the use of a new singlesignal surface electromyography (sEMG) brain-computer interface (BCI) to control a mobile robot in a remote location. Previous work on this BCI has shown that users are able to perform cursor-to-target tasks in two-dimensional space using only a single sEMG signal by continuously modulating the signal power in two frequency bands. Using the cursor-to-target paradigm, targets are shown on the screen of a tablet computer so that the user can select them, commanding the robot to move in different directions for a fixed distance/angle. A Wifi-enabled camera transmits video from the robot's perspective, giving the user feedback about robot motion. Current results show a case study with a C3-C4 spinal cord injury (SCI) subject using a single auricularis posterior muscle site to navigate a simple obstacle course. Performance metrics for operation of the BCI as well as completion of the telerobotic command task are developed. It is anticipated that this noninvasive and mobile system will open communication opportunities for the severely paralyzed, possibly using only a single sensor.
NASA Astrophysics Data System (ADS)
Wilson, John J.; Palaniappan, Ramaswamy
2011-04-01
The steady state visual evoked protocol has recently become a popular paradigm in brain-computer interface (BCI) applications. Typically (regardless of function) these applications offer the user a binary selection of targets that perform correspondingly discrete actions. Such discrete control systems are appropriate for applications that are inherently isolated in nature, such as selecting numbers from a keypad to be dialled or letters from an alphabet to be spelled. However motivation exists for users to employ proportional control methods in intrinsically analogue tasks such as the movement of a mouse pointer. This paper introduces an online BCI in which control of a mouse pointer is directly proportional to a user's intent. Performance is measured over a series of pointer movement tasks and compared to the traditional discrete output approach. Analogue control allowed subjects to move the pointer faster to the cued target location compared to discrete output but suffers more undesired movements overall. Best performance is achieved when combining the threshold to movement of traditional discrete techniques with the range of movement offered by proportional control.
Performance predictors of brain-computer interfaces in patients with amyotrophic lateral sclerosis
NASA Astrophysics Data System (ADS)
Geronimo, A.; Simmons, Z.; Schiff, S. J.
2016-04-01
Objective. Patients with amyotrophic lateral sclerosis (ALS) may benefit from brain-computer interfaces (BCI), but the utility of such devices likely will have to account for the functional, cognitive, and behavioral heterogeneity of this neurodegenerative disorder. Approach. In this study, a heterogeneous group of patients with ALS participated in a study on BCI based on the P300 event related potential and motor-imagery. Results. The presence of cognitive impairment in these patients significantly reduced the quality of the control signals required to use these communication systems, subsequently impairing performance, regardless of progression of physical symptoms. Loss in performance among the cognitively impaired was accompanied by a decrease in the signal-to-noise ratio of task-relevant EEG band power. There was also evidence that behavioral dysfunction negatively affects P300 speller performance. Finally, older participants achieved better performance on the P300 system than the motor-imagery system, indicating a preference of BCI paradigm with age. Significance. These findings highlight the importance of considering the heterogeneity of disease when designing BCI augmentative and alternative communication devices for clinical applications.
A cognitive brain-computer interface for patients with amyotrophic lateral sclerosis.
Hohmann, M R; Fomina, T; Jayaram, V; Widmann, N; Förster, C; Just, J; Synofzik, M; Schölkopf, B; Schöls, L; Grosse-Wentrup, M
2016-01-01
Brain-computer interfaces (BCIs) are often based on the control of sensorimotor processes, yet sensorimotor processes are impaired in patients suffering from amyotrophic lateral sclerosis (ALS). We devised a new paradigm that targets higher-level cognitive processes to transmit information from the user to the BCI. We instructed five ALS patients and twelve healthy subjects to either activate self-referential memories or to focus on a process without mnemonic content while recording a high-density electroencephalogram (EEG). Both tasks are designed to modulate activity in the default mode network (DMN) without involving sensorimotor pathways. We find that the two tasks can be distinguished after only one experimental session from the average of the combined bandpower modulations in the theta- (4-7Hz) and alpha-range (8-13Hz), with an average accuracy of 62.5% and 60.8% for healthy subjects and ALS patients, respectively. The spatial weights of the decoding algorithm show a preference for the parietal area, consistent with modulation of neural activity in primary nodes of the DMN. © 2016 Elsevier B.V. All rights reserved.
2012-01-01
computerized stimulation paradigms for use during functional neuroimaging (i.e., MSIT). Accomplishments: • The following computer tasks were...and Stability Test. • Programming of all computerized functional MRI stimulation paradigms and assessment tasks using E-prime software was completed...Computer stimulation paradigms were tested in the scanner environment to ensure that they could be presented and seen by subjects in the scanner
A hybrid three-class brain-computer interface system utilizing SSSEPs and transient ERPs
NASA Astrophysics Data System (ADS)
Breitwieser, Christian; Pokorny, Christoph; Müller-Putz, Gernot R.
2016-12-01
Objective. This paper investigates the fusion of steady-state somatosensory evoked potentials (SSSEPs) and transient event-related potentials (tERPs), evoked through tactile simulation on the left and right-hand fingertips, in a three-class EEG based hybrid brain-computer interface. It was hypothesized, that fusing the input signals leads to higher classification rates than classifying tERP and SSSEP individually. Approach. Fourteen subjects participated in the studies, consisting of a screening paradigm to determine person dependent resonance-like frequencies and a subsequent online paradigm. The whole setup of the BCI system was based on open interfaces, following suggestions for a common implementation platform. During the online experiment, subjects were instructed to focus their attention on the stimulated fingertips as indicated by a visual cue. The recorded data were classified during runtime using a multi-class shrinkage LDA classifier and the outputs were fused together applying a posterior probability based fusion. Data were further analyzed offline, involving a combined classification of SSSEP and tERP features as a second fusion principle. The final results were tested for statistical significance applying a repeated measures ANOVA. Main results. A significant classification increase was achieved when fusing the results with a combined classification compared to performing an individual classification. Furthermore, the SSSEP classifier was significantly better in detecting a non-control state, whereas the tERP classifier was significantly better in detecting control states. Subjects who had a higher relative band power increase during the screening session also achieved significantly higher classification results than subjects with lower relative band power increase. Significance. It could be shown that utilizing SSSEP and tERP for hBCIs increases the classification accuracy and also that tERP and SSSEP are not classifying control- and non-control states with the same level of accuracy.
Optimization of SSVEP brain responses with application to eight-command Brain-Computer Interface.
Bakardjian, Hovagim; Tanaka, Toshihisa; Cichocki, Andrzej
2010-01-18
This study pursues the optimization of the brain responses to small reversing patterns in a Steady-State Visual Evoked Potentials (SSVEP) paradigm, which could be used to maximize the efficiency of applications such as Brain-Computer Interfaces (BCI). We investigated the SSVEP frequency response for 32 frequencies (5-84 Hz), and the time dynamics of the brain response at 8, 14 and 28 Hz, to aid the definition of the optimal neurophysiological parameters and to outline the onset-delay and other limitations of SSVEP stimuli in applications such as our previously described four-command BCI system. Our results showed that the 5.6-15.3 Hz pattern reversal stimulation evoked the strongest responses, peaking at 12 Hz, and exhibiting weaker local maxima at 28 and 42 Hz. After stimulation onset, the long-term SSVEP response was highly non-stationary and the dynamics, including the first peak, was frequency-dependent. The evaluation of the performance of a frequency-optimized eight-command BCI system with dynamic neurofeedback showed a mean success rate of 98%, and a time delay of 3.4s. Robust BCI performance was achieved by all subjects even when using numerous small patterns clustered very close to each other and moving rapidly in 2D space. These results emphasize the need for SSVEP applications to optimize not only the analysis algorithms but also the stimuli in order to maximize the brain responses they rely on. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ceballos, G. A.; Hernández, L. F.
2015-04-01
Objective. The classical ERP-based speller, or P300 Speller, is one of the most commonly used paradigms in the field of Brain Computer Interfaces (BCI). Several alterations to the visual stimuli presentation system have been developed to avoid unfavorable effects elicited by adjacent stimuli. However, there has been little, if any, regard to useful information contained in responses to adjacent stimuli about spatial location of target symbols. This paper aims to demonstrate that combining the classification of non-target adjacent stimuli with standard classification (target versus non-target) significantly improves classical ERP-based speller efficiency. Approach. Four SWLDA classifiers were trained and combined with the standard classifier: the lower row, upper row, right column and left column classifiers. This new feature extraction procedure and the classification method were carried out on three open databases: the UAM P300 database (Universidad Autonoma Metropolitana, Mexico), BCI competition II (dataset IIb) and BCI competition III (dataset II). Main results. The inclusion of the classification of non-target adjacent stimuli improves target classification in the classical row/column paradigm. A gain in mean single trial classification of 9.6% and an overall improvement of 25% in simulated spelling speed was achieved. Significance. We have provided further evidence that the ERPs produced by adjacent stimuli present discriminable features, which could provide additional information about the spatial location of intended symbols. This work promotes the searching of information on the peripheral stimulation responses to improve the performance of emerging visual ERP-based spellers.
Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude
Halder, Sebastian; Hammer, Eva Maria; Kleih, Sonja Claudia; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels; Kübler, Andrea
2013-01-01
Objective Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball. Methods Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude. Results Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy. Conclusions Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection. Significance Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population. PMID:23457444
Placidi, Giuseppe; Petracca, Andrea; Spezialetti, Matteo; Iacoviello, Daniela
2016-01-01
A Brain Computer Interface (BCI) allows communication for impaired people unable to express their intention with common channels. Electroencephalography (EEG) represents an effective tool to allow the implementation of a BCI. The present paper describes a modular framework for the implementation of the graphic interface for binary BCIs based on the selection of symbols in a table. The proposed system is also designed to reduce the time required for writing text. This is made by including a motivational tool, necessary to improve the quality of the collected signals, and by containing a predictive module based on the frequency of occurrence of letters in a language, and of words in a dictionary. The proposed framework is described in a top-down approach through its modules: signal acquisition, analysis, classification, communication, visualization, and predictive engine. The framework, being modular, can be easily modified to personalize the graphic interface to the needs of the subject who has to use the BCI and it can be integrated with different classification strategies, communication paradigms, and dictionaries/languages. The implementation of a scenario and some experimental results on healthy subjects are also reported and discussed: the modules of the proposed scenario can be used as a starting point for further developments, and application on severely disabled people under the guide of specialized personnel.
Real-World Neuroimaging Technologies
2013-05-10
system enables long-term wear of up to 10 consecutive hours of operation time. The system’s wireless technologies, light weight (200g), and dry sensor ...biomarkers, body sensor networks , brain computer interactionbrain, computer interfaces, data acquisition, electroencephalography monitoring, translational...brain activity in real-world scenarios. INDEX TERMS Behavioral science, biomarkers, body sensor networks , brain computer interfaces, brain computer
Towards Zero Training for Brain-Computer Interfacing
Krauledat, Matthias; Tangermann, Michael; Blankertz, Benjamin; Müller, Klaus-Robert
2008-01-01
Electroencephalogram (EEG) signals are highly subject-specific and vary considerably even between recording sessions of the same user within the same experimental paradigm. This challenges a stable operation of Brain-Computer Interface (BCI) systems. The classical approach is to train users by neurofeedback to produce fixed stereotypical patterns of brain activity. In the machine learning approach, a widely adapted method for dealing with those variances is to record a so called calibration measurement on the beginning of each session in order to optimize spatial filters and classifiers specifically for each subject and each day. This adaptation of the system to the individual brain signature of each user relieves from the need of extensive user training. In this paper we suggest a new method that overcomes the requirement of these time-consuming calibration recordings for long-term BCI users. The method takes advantage of knowledge collected in previous sessions: By a novel technique, prototypical spatial filters are determined which have better generalization properties compared to single-session filters. In particular, they can be used in follow-up sessions without the need to recalibrate the system. This way the calibration periods can be dramatically shortened or even completely omitted for these ‘experienced’ BCI users. The feasibility of our novel approach is demonstrated with a series of online BCI experiments. Although performed without any calibration measurement at all, no loss of classification performance was observed. PMID:18698427
Brain–Computer Interface Spellers: A Review
Gembler, Felix; Saboor, Abdul
2018-01-01
A Brain–Computer Interface (BCI) provides a novel non-muscular communication method via brain signals. A BCI-speller can be considered as one of the first published BCI applications and has opened the gate for many advances in the field. Although many BCI-spellers have been developed during the last few decades, to our knowledge, no reviews have described the different spellers proposed and studied in this vital field. The presented speller systems are categorized according to major BCI paradigms: P300, steady-state visual evoked potential (SSVEP), and motor imagery (MI). Different BCI paradigms require specific electroencephalogram (EEG) signal features and lead to the development of appropriate Graphical User Interfaces (GUIs). The purpose of this review is to consolidate the most successful BCI-spellers published since 2010, while mentioning some other older systems which were built explicitly for spelling purposes. We aim to assist researchers and concerned individuals in the field by illustrating the highlights of different spellers and presenting them in one review. It is almost impossible to carry out an objective comparison between different spellers, as each has its variables, parameters, and conditions. However, the gathered information and the provided taxonomy about different BCI-spellers can be helpful, as it could identify suitable systems for first-hand users, as well as opportunities of development and learning from previous studies for BCI researchers. PMID:29601538
The Human Factors and Ergonomics of P300-Based Brain-Computer Interfaces
Powers, J. Clark; Bieliaieva, Kateryna; Wu, Shuohao; Nam, Chang S.
2015-01-01
Individuals with severe neuromuscular impairments face many challenges in communication and manipulation of the environment. Brain-computer interfaces (BCIs) show promise in presenting real-world applications that can provide such individuals with the means to interact with the world using only brain waves. Although there has been a growing body of research in recent years, much relates only to technology, and not to technology in use—i.e., real-world assistive technology employed by users. This review examined the literature to highlight studies that implicate the human factors and ergonomics (HFE) of P300-based BCIs. We assessed 21 studies on three topics to speak directly to improving the HFE of these systems: (1) alternative signal evocation methods within the oddball paradigm; (2) environmental interventions to improve user performance and satisfaction within the constraints of current BCI systems; and (3) measures and methods of measuring user acceptance. We found that HFE is central to the performance of P300-based BCI systems, although researchers do not often make explicit this connection. Incorporation of measures of user acceptance and rigorous usability evaluations, increased engagement of disabled users as test participants, and greater realism in testing will help progress the advancement of P300-based BCI systems in assistive applications. PMID:26266424
Mental Task Evaluation for Hybrid NIRS-EEG Brain-Computer Interfaces
Gupta, Rishabh; Falk, Tiago H.
2017-01-01
Based on recent electroencephalography (EEG) and near-infrared spectroscopy (NIRS) studies that showed that tasks such as motor imagery and mental arithmetic induce specific neural response patterns, we propose a hybrid brain-computer interface (hBCI) paradigm in which EEG and NIRS data are fused to improve binary classification performance. We recorded simultaneous NIRS-EEG data from nine participants performing seven mental tasks (word generation, mental rotation, subtraction, singing and navigation, and motor and face imagery). Classifiers were trained for each possible pair of tasks using (1) EEG features alone, (2) NIRS features alone, and (3) EEG and NIRS features combined, to identify the best task pairs and assess the usefulness of a multimodal approach. The NIRS-EEG approach led to an average increase in peak kappa of 0.03 when using features extracted from one-second windows (equivalent to an increase of 1.5% in classification accuracy for balanced classes). The increase was much stronger (0.20, corresponding to an 10% accuracy increase) when focusing on time windows of high NIRS performance. The EEG and NIRS analyses further unveiled relevant brain regions and important feature types. This work provides a basis for future NIRS-EEG hBCI studies aiming to improve classification performance toward more efficient and flexible BCIs. PMID:29181021
Neural constraints on learning.
Sadtler, Patrick T; Quick, Kristin M; Golub, Matthew D; Chase, Steven M; Ryu, Stephen I; Tyler-Kabara, Elizabeth C; Yu, Byron M; Batista, Aaron P
2014-08-28
Learning, whether motor, sensory or cognitive, requires networks of neurons to generate new activity patterns. As some behaviours are easier to learn than others, we asked if some neural activity patterns are easier to generate than others. Here we investigate whether an existing network constrains the patterns that a subset of its neurons is capable of exhibiting, and if so, what principles define this constraint. We employed a closed-loop intracortical brain-computer interface learning paradigm in which Rhesus macaques (Macaca mulatta) controlled a computer cursor by modulating neural activity patterns in the primary motor cortex. Using the brain-computer interface paradigm, we could specify and alter how neural activity mapped to cursor velocity. At the start of each session, we observed the characteristic activity patterns of the recorded neural population. The activity of a neural population can be represented in a high-dimensional space (termed the neural space), wherein each dimension corresponds to the activity of one neuron. These characteristic activity patterns comprise a low-dimensional subspace (termed the intrinsic manifold) within the neural space. The intrinsic manifold presumably reflects constraints imposed by the underlying neural circuitry. Here we show that the animals could readily learn to proficiently control the cursor using neural activity patterns that were within the intrinsic manifold. However, animals were less able to learn to proficiently control the cursor using activity patterns that were outside of the intrinsic manifold. These results suggest that the existing structure of a network can shape learning. On a timescale of hours, it seems to be difficult to learn to generate neural activity patterns that are not consistent with the existing network structure. These findings offer a network-level explanation for the observation that we are more readily able to learn new skills when they are related to the skills that we already possess.
Task-induced frequency modulation features for brain-computer interfacing
NASA Astrophysics Data System (ADS)
Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz
2017-10-01
Objective. Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects’ intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects’ intents with an accuracy comparable to task-induced amplitude modulation. Approach. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. Main results. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Significance. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.
Concept of software interface for BCI systems
NASA Astrophysics Data System (ADS)
Svejda, Jaromir; Zak, Roman; Jasek, Roman
2016-06-01
Brain Computer Interface (BCI) technology is intended to control external system by brain activity. One of main part of such system is software interface, which carries about clear communication between brain and either computer or additional devices connected to computer. This paper is organized as follows. Firstly, current knowledge about human brain is briefly summarized to points out its complexity. Secondly, there is described a concept of BCI system, which is then used to build an architecture of proposed software interface. Finally, there are mentioned disadvantages of sensing technology discovered during sensing part of our research.
[The P300 based brain-computer interface: effect of stimulus position in a stimulus train].
Ganin, I P; Shishkin, S L; Kochetova, A G; Kaplan, A Ia
2012-01-01
The P300 brain-computer interface (BCI) is currently the most efficient BCI. This interface is based on detection of the P300 wave of the brain potentials evoked when a symbol related to the intended input is highlighted. To increase operation speed of the P300 BCI, reduction of the number of stimuli repetitions is needed. This reduction leads to increase of the relative contribution to the input symbol detection from the reaction to the first target stimulus. It is known that the event-related potentials (ERP) to the first stimulus presentations can be different from the ERP to stimuli presented latter. In particular, the amplitude of responses to the first stimulus presentations is often increased, which is beneficial for their recognition by the BCI. However, this effect was not studied within the BCI framework. The current study examined the ERP obtained from healthy participants (n = 14) in the standard P300 BCI paradigm using 10 trials, as well as in the modified P300 BCI with stimuli presented on moving objects in triple-trial (n = 6) and single-trial (n = 6) stimulation modes. Increased ERP amplitude was observed in response to the first target stimuli in both conditions, as well as in the single-trial mode comparing to triple-trial. We discuss the prospects of using the specific features of the ERP to first stimuli and the single-trial ERP for optimizing the high-speed modes in the P300 BCIs.
Townsend, G; Platsko, V
2016-04-01
A new presentation paradigm for the P300-based brain-computer interface (BCI) referred to as the 'asynchronous paradigm' (ASP) is introduced and studied. It is based on the principle of performance guided constraints (Townsend et al 2012 Neurosci. Lett. 531 63-8) extended from the spatial domain into the temporal domain. The traditional constraint of flashing targets in predefined constant epochs of time is eliminated and targets flash asynchronously with timing based instead on constraints intended to improve performance. We propose appropriate temporal constraints to derive the ASP and compare its performance to that of the 'checkerboard paradigm' (CBP), which has previously been shown to be superior to the standard 'row/column paradigm' introduced by Farwell and Donchin (1988 Electroencephalogr. Clin. Neurophysiol. 70 510-23). Ten participants were tested in the ASP and CBP conditions both with traditional flashing items and with flashing faces in place of the targets (see Zhang et al 2012 J. Neural Eng. 9 026018; Kaufmann and Kübler 2014 J. Neural Eng. 11 ; Chen et al 2015 J. Neurosci. Methods 239 18-27). Eleven minutes of calibration data were used as input to a stepwise linear discriminant analysis to derive classification coefficients used for online classification. Accuracy was consistently high for both paradigms (87% and 93%) while information transfer rate was 45% higher for the ASP than the CBP. In a free spelling task, one subject spelled a 66 character sentence (from a 72 item matrix) with 100% accuracy in 3 min and 24 s demonstrating a practical throughput of 120 bits per minute (bpm) with a theoretical upper bound of 258 bpm. The subject repeated the task three times in a row without error. This work represents an advance in P300 speller technology and raises the ceiling that was being reached on P300-based BCIs. Most importantly, the research presented here is a novel and effective general strategy for organising timing for flashing items. The ASP is only one possible implementation of this work since in general it can be used to describe all previous existing presentation paradigms as well as any possible new ones. This may be especially important for people with neuromuscular disabilities.
NASA Astrophysics Data System (ADS)
Lakey, Chad E.; Berry, Daniel R.; Sellers, Eric W.
2011-04-01
In this study, we examined the effects of a short mindfulness meditation induction (MMI) on the performance of a P300-based brain-computer interface (BCI) task. We expected that MMI would harness present-moment attentional resources, resulting in two positive consequences for P300-based BCI use. Specifically, we believed that MMI would facilitate increases in task accuracy and promote the production of robust P300 amplitudes. Sixteen-channel electroencephalographic data were recorded from 18 subjects using a row/column speller task paradigm. Nine subjects participated in a 6 min MMI and an additional nine subjects served as a control group. Subjects were presented with a 6 × 6 matrix of alphanumeric characters on a computer monitor. Stimuli were flashed at a stimulus onset asynchrony (SOA) of 125 ms. Calibration data were collected on 21 items without providing feedback. These data were used to derive a stepwise linear discriminate analysis classifier that was applied to an additional 14 items to evaluate accuracy. Offline performance analyses revealed that MMI subjects were significantly more accurate than control subjects. Likewise, MMI subjects produced significantly larger P300 amplitudes than control subjects at Cz and PO7. The discussion focuses on the potential attentional benefits of MMI for P300-based BCI performance.
A novel Bayesian framework for discriminative feature extraction in Brain-Computer Interfaces.
Suk, Heung-Il; Lee, Seong-Whan
2013-02-01
As there has been a paradigm shift in the learning load from a human subject to a computer, machine learning has been considered as a useful tool for Brain-Computer Interfaces (BCIs). In this paper, we propose a novel Bayesian framework for discriminative feature extraction for motor imagery classification in an EEG-based BCI in which the class-discriminative frequency bands and the corresponding spatial filters are optimized by means of the probabilistic and information-theoretic approaches. In our framework, the problem of simultaneous spatiospectral filter optimization is formulated as the estimation of an unknown posterior probability density function (pdf) that represents the probability that a single-trial EEG of predefined mental tasks can be discriminated in a state. In order to estimate the posterior pdf, we propose a particle-based approximation method by extending a factored-sampling technique with a diffusion process. An information-theoretic observation model is also devised to measure discriminative power of features between classes. From the viewpoint of classifier design, the proposed method naturally allows us to construct a spectrally weighted label decision rule by linearly combining the outputs from multiple classifiers. We demonstrate the feasibility and effectiveness of the proposed method by analyzing the results and its success on three public databases.
An adaptive brain actuated system for augmenting rehabilitation
Roset, Scott A.; Gant, Katie; Prasad, Abhishek; Sanchez, Justin C.
2014-01-01
For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days. PMID:25565945
A reductionist approach to the analysis of learning in brain-computer interfaces.
Danziger, Zachary
2014-04-01
The complexity and scale of brain-computer interface (BCI) studies limit our ability to investigate how humans learn to use BCI systems. It also limits our capacity to develop adaptive algorithms needed to assist users with their control. Adaptive algorithm development is forced offline and typically uses static data sets. But this is a poor substitute for the online, dynamic environment where algorithms are ultimately deployed and interact with an adapting user. This work evaluates a paradigm that simulates the control problem faced by human subjects when controlling a BCI, but which avoids the many complications associated with full-scale BCI studies. Biological learners can be studied in a reductionist way as they solve BCI-like control problems, and machine learning algorithms can be developed and tested in closed loop with the subjects before being translated to full BCIs. The method is to map 19 joint angles of the hand (representing neural signals) to the position of a 2D cursor which must be piloted to displayed targets (a typical BCI task). An investigation is presented on how closely the joint angle method emulates BCI systems; a novel learning algorithm is evaluated, and a performance difference between genders is discussed.
Mukaino, Masahiko; Ono, Takashi; Shindo, Keiichiro; Fujiwara, Toshiyuki; Ota, Tetsuo; Kimura, Akio; Liu, Meigen; Ushiba, Junichi
2014-04-01
Brain computer interface technology is of great interest to researchers as a potential therapeutic measure for people with severe neurological disorders. The aim of this study was to examine the efficacy of brain computer interface, by comparing conventional neuromuscular electrical stimulation and brain computer interface-driven neuromuscular electrical stimulation, using an A-B-A-B withdrawal single-subject design. A 38-year-old male with severe hemiplegia due to a putaminal haemorrhage participated in this study. The design involved 2 epochs. In epoch A, the patient attempted to open his fingers during the application of neuromuscular electrical stimulation, irrespective of his actual brain activity. In epoch B, neuromuscular electrical stimulation was applied only when a significant motor-related cortical potential was observed in the electroencephalogram. The subject initially showed diffuse functional magnetic resonance imaging activation and small electro-encephalogram responses while attempting finger movement. Epoch A was associated with few neurological or clinical signs of improvement. Epoch B, with a brain computer interface, was associated with marked lateralization of electroencephalogram (EEG) and blood oxygenation level dependent responses. Voluntary electromyogram (EMG) activity, with significant EEG-EMG coherence, was also prompted. Clinical improvement in upper-extremity function and muscle tone was observed. These results indicate that self-directed training with a brain computer interface may induce activity- dependent cortical plasticity and promote functional recovery. This preliminary clinical investigation encourages further research using a controlled design.
Brain-Computer Interfaces in Medicine
Shih, Jerry J.; Krusienski, Dean J.; Wolpaw, Jonathan R.
2012-01-01
Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroencephalography-based spelling and single-neuron-based device control, researchers have gone on to use electroencephalographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function. PMID:22325364
NASA Astrophysics Data System (ADS)
Lim, Jeong-Hwan; Hwang, Han-Jeong; Han, Chang-Hee; Jung, Ki-Young; Im, Chang-Hwan
2013-04-01
Objective. Some patients suffering from severe neuromuscular diseases have difficulty controlling not only their bodies but also their eyes. Since these patients have difficulty gazing at specific visual stimuli or keeping their eyes open for a long time, they are unable to use the typical steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. In this study, we introduce a new paradigm for SSVEP-based BCI, which can be potentially suitable for disabled individuals with impaired oculomotor function. Approach. The proposed electroencephalography (EEG)-based BCI system allows users to express their binary intentions without needing to open their eyes. A pair of glasses with two light emitting diodes flickering at different frequencies was used to present visual stimuli to participants with their eyes closed, and we classified the recorded EEG patterns in the online experiments conducted with five healthy participants and one patient with severe amyotrophic lateral sclerosis (ALS). Main results. Through offline experiments performed with 11 participants, we confirmed that human SSVEP could be modulated by visual selective attention to a specific light stimulus penetrating through the eyelids. Furthermore, the recorded EEG patterns could be classified with accuracy high enough for use in a practical BCI system. After customizing the parameters of the proposed SSVEP-based BCI paradigm based on the offline analysis results, binary intentions of five healthy participants were classified in real time. The average information transfer rate of our online experiments reached 10.83 bits min-1. A preliminary online experiment conducted with an ALS patient showed a classification accuracy of 80%. Significance. The results of our offline and online experiments demonstrated the feasibility of our proposed SSVEP-based BCI paradigm. It is expected that our ‘eyes-closed’ SSVEP-based BCI system can be potentially used for communication of disabled individuals with impaired oculomotor function.
Lim, Jeong-Hwan; Hwang, Han-Jeong; Han, Chang-Hee; Jung, Ki-Young; Im, Chang-Hwan
2013-04-01
Some patients suffering from severe neuromuscular diseases have difficulty controlling not only their bodies but also their eyes. Since these patients have difficulty gazing at specific visual stimuli or keeping their eyes open for a long time, they are unable to use the typical steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. In this study, we introduce a new paradigm for SSVEP-based BCI, which can be potentially suitable for disabled individuals with impaired oculomotor function. The proposed electroencephalography (EEG)-based BCI system allows users to express their binary intentions without needing to open their eyes. A pair of glasses with two light emitting diodes flickering at different frequencies was used to present visual stimuli to participants with their eyes closed, and we classified the recorded EEG patterns in the online experiments conducted with five healthy participants and one patient with severe amyotrophic lateral sclerosis (ALS). Through offline experiments performed with 11 participants, we confirmed that human SSVEP could be modulated by visual selective attention to a specific light stimulus penetrating through the eyelids. Furthermore, the recorded EEG patterns could be classified with accuracy high enough for use in a practical BCI system. After customizing the parameters of the proposed SSVEP-based BCI paradigm based on the offline analysis results, binary intentions of five healthy participants were classified in real time. The average information transfer rate of our online experiments reached 10.83 bits min(-1). A preliminary online experiment conducted with an ALS patient showed a classification accuracy of 80%. The results of our offline and online experiments demonstrated the feasibility of our proposed SSVEP-based BCI paradigm. It is expected that our 'eyes-closed' SSVEP-based BCI system can be potentially used for communication of disabled individuals with impaired oculomotor function.
Paris, Alan; Atia, George K; Vosoughi, Azadeh; Berman, Stephen A
2017-08-01
A characteristic of neurological signal processing is high levels of noise from subcellular ion channels up to whole-brain processes. In this paper, we propose a new model of electroencephalogram (EEG) background periodograms, based on a family of functions which we call generalized van der Ziel-McWhorter (GVZM) power spectral densities (PSDs). To the best of our knowledge, the GVZM PSD function is the only EEG noise model that has relatively few parameters, matches recorded EEG PSD's with high accuracy from 0 to over 30 Hz, and has approximately 1/f θ behavior in the midfrequencies without infinities. We validate this model using three approaches. First, we show how GVZM PSDs can arise in a population of ion channels at maximum entropy equilibrium. Second, we present a class of mixed autoregressive models, which simulate brain background noise and whose periodograms are asymptotic to the GVZM PSD. Third, we present two real-time estimation algorithms for steady-state visual evoked potential (SSVEP) frequencies, and analyze their performance statistically. In pairwise comparisons, the GVZM-based algorithms showed statistically significant accuracy improvement over two well-known and widely used SSVEP estimators. The GVZM noise model can be a useful and reliable technique for EEG signal processing. Understanding EEG noise is essential for EEG-based neurology and applications such as real-time brain-computer interfaces, which must make accurate control decisions from very short data epochs. The GVZM approach represents a successful new paradigm for understanding and managing this neurological noise.
Yue, Jingwei; Zhou, Zongtan; Jiang, Jun; Liu, Yadong; Hu, Dewen
2012-08-30
Most brain-computer interfaces (BCIs) are non-time-restraint systems. However, the method used to design a real-time BCI paradigm for controlling unstable devices is still a challenging problem. This paper presents a real-time feedback BCI paradigm for controlling an inverted pendulum on a cart (IPC). In this paradigm, sensorimotor rhythms (SMRs) were recorded using 15 active electrodes placed on the surface of the subject's scalp. Subsequently, common spatial pattern (CSP) was used as the basic filter to extract spatial patterns. Finally, linear discriminant analysis (LDA) was used to translate the patterns into control commands that could stabilize the simulated inverted pendulum. Offline trainings were employed to teach the subjects to execute corresponding mental tasks, such as left/right hand motor imagery. Five subjects could successfully balance the online inverted pendulum for more than 35s. The results demonstrated that BCIs are able to control nonlinear unstable devices. Furthermore, the demonstration and extension of real-time continuous control might be useful for the real-life application and generalization of BCI. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.
Beveridge, R; Wilson, S; Coyle, D
2016-01-01
A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming. © 2016 Elsevier B.V. All rights reserved.
Emami, Zahra; Chau, Tom
2018-06-01
Brain-computer interfaces (BCIs) allow users to operate a device or application by means of cognitive activity. This technology will ultimately be used in real-world environments which include the presence of distractors. The purpose of the study was to determine the effect of visual distractors on BCI performance. Sixteen able-bodied participants underwent neurofeedback training to achieve motor imagery-guided BCI control in an online paradigm using electroencephalography (EEG) to measure neural signals. Participants then completed two sessions of the motor imagery EEG-BCI protocol in the presence of infrequent, small visual distractors. BCI performance was determined based on classification accuracy. The presence of distractors was found to affect motor imagery-specific patterns in mu and beta power. However, the distractors did not significantly affect the BCI classification accuracy; across participants, the mean classification accuracy was 81.5 ± 14% for non-distractor trials, and 78.3 ± 17% for distractor trials. This minimal consequence suggests that the BCI was robust to distractor effects, despite motor imagery-related brain activity being attenuated amid distractors. A BCI system that mitigates distraction-related effects may improve the ease of its use and ultimately facilitate the effective translation of the technology from the lab to the home. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.
Koo, Bonkon; Lee, Hwan-Gon; Nam, Yunjun; Kang, Hyohyeong; Koh, Chin Su; Shin, Hyung-Cheul; Choi, Seungjin
2015-04-15
For a self-paced motor imagery based brain-computer interface (BCI), the system should be able to recognize the occurrence of a motor imagery, as well as the type of the motor imagery. However, because of the difficulty of detecting the occurrence of a motor imagery, general motor imagery based BCI studies have been focusing on the cued motor imagery paradigm. In this paper, we present a novel hybrid BCI system that uses near infrared spectroscopy (NIRS) and electroencephalography (EEG) systems together to achieve online self-paced motor imagery based BCI. We designed a unique sensor frame that records NIRS and EEG simultaneously for the realization of our system. Based on this hybrid system, we proposed a novel analysis method that detects the occurrence of a motor imagery with the NIRS system, and classifies its type with the EEG system. An online experiment demonstrated that our hybrid system had a true positive rate of about 88%, a false positive rate of 7% with an average response time of 10.36 s. As far as we know, there is no report that explored hemodynamic brain switch for self-paced motor imagery based BCI with hybrid EEG and NIRS system. From our experimental results, our hybrid system showed enough reliability for using in a practical self-paced motor imagery based BCI. Copyright © 2014 Elsevier B.V. All rights reserved.
How stimulation speed affects Event-Related Potentials and BCI performance.
Höhne, Johannes; Tangermann, Michael
2012-01-01
In most paradigms for Brain-Computer Interfaces (BCIs) that are based on Event-Related Potentials (ERPs), stimuli are presented with a pre-defined and constant speed. In order to boost BCI performance by optimizing the parameters of stimulation, this offline study investigates the impact of the stimulus onset asynchrony (SOA) on ERPs and the resulting classification accuracy. The SOA is defined as the time between the onsets of two consecutive stimuli, which represents a measure for stimulation speed. A simple auditory oddball paradigm was tested in 14 SOA conditions with a SOA between 50 ms and 1000 ms. Based on an offline ERP analysis, the BCI performance (quantified by the Information Transfer Rate, ITR in bits/min) was simulated. A great variability in the simulated BCI performance was observed within subjects (N=11). This indicates a potential increase in BCI performance (≥ 1.6 bits/min) for ERP-based paradigms, if the stimulation speed is specified for each user individually.
Vourvopoulos, Athanasios; Bermúdez I Badia, Sergi
2016-08-09
The use of Brain-Computer Interface (BCI) technology in neurorehabilitation provides new strategies to overcome stroke-related motor limitations. Recent studies demonstrated the brain's capacity for functional and structural plasticity through BCI. However, it is not fully clear how we can take full advantage of the neurobiological mechanisms underlying recovery and how to maximize restoration through BCI. In this study we investigate the role of multimodal virtual reality (VR) simulations and motor priming (MP) in an upper limb motor-imagery BCI task in order to maximize the engagement of sensory-motor networks in a broad range of patients who can benefit from virtual rehabilitation training. In order to investigate how different BCI paradigms impact brain activation, we designed 3 experimental conditions in a within-subject design, including an immersive Multimodal Virtual Reality with Motor Priming (VRMP) condition where users had to perform motor-execution before BCI training, an immersive Multimodal VR condition, and a control condition with standard 2D feedback. Further, these were also compared to overt motor-execution. Finally, a set of questionnaires were used to gather subjective data on Workload, Kinesthetic Imagery and Presence. Our findings show increased capacity to modulate and enhance brain activity patterns in all extracted EEG rhythms matching more closely those present during motor-execution and also a strong relationship between electrophysiological data and subjective experience. Our data suggest that both VR and particularly MP can enhance the activation of brain patterns present during overt motor-execution. Further, we show changes in the interhemispheric EEG balance, which might play an important role in the promotion of neural activation and neuroplastic changes in stroke patients in a motor-imagery neurofeedback paradigm. In addition, electrophysiological correlates of psychophysiological responses provide us with valuable information about the motor and affective state of the user that has the potential to be used to predict MI-BCI training outcome based on user's profile. Finally, we propose a BCI paradigm in VR, which gives the possibility of motor priming for patients with low level of motor control.
Brain-computer interfaces in medicine.
Shih, Jerry J; Krusienski, Dean J; Wolpaw, Jonathan R
2012-03-01
Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroencephalography-based spelling and single-neuron-based device control, researchers have gone on to use electroencephalographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function. Copyright © 2012 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Engineering brain-computer interfaces: past, present and future.
Hughes, M A
2014-06-01
Electricity governs the function of both nervous systems and computers. Whilst ions move in polar fluids to depolarize neuronal membranes, electrons move in the solid-state lattices of microelectronic semiconductors. Joining these two systems together, to create an iono-electric brain-computer interface, is an immense challenge. However, such interfaces offer (and in select clinical contexts have already delivered) a method of overcoming disability caused by neurological or musculoskeletal pathology. To fulfill their theoretical promise, several specific challenges demand consideration. Rate-limiting steps cover a diverse range of disciplines including microelectronics, neuro-informatics, engineering, and materials science. As those who work at the tangible interface between brain and outside world, neurosurgeons are well placed to contribute to, and inform, this cutting edge area of translational research. This article explores the historical background, status quo, and future of brain-computer interfaces; and outlines the challenges to progress and opportunities available to the clinical neurosciences community.
ERIC Educational Resources Information Center
Kerawalla, Lucinda; Pearce, Darren; Yuill, Nicola; Luckin, Rosemary; Harris, Amanda
2008-01-01
We take a socio-cultural approach to comparing how dual control of a new user interface paradigm--Separate Control of Shared Space (SCOSS)--and dual control of a single user interface can work to mediate the collaborative decision-making process between pairs of children carrying out a multiple categorisation word task on a shared computer.…
NASA Astrophysics Data System (ADS)
Obeidat, Qasem Turki
A brain-computer interface (BCI) enables a paralyzed user to interact with an external device through brain signals. A BCI measures identifies patterns within these measured signals, translating such patterns into commands. The P300 is a pattern of a scalp potentials elicited by a luminance increment of an attended target rather than a non-target character of an alphanumeric matrix. The Row-Column Paradigm (RCP) can utilize responses to series of illuminations of matrix target and non-target characters to spell out alphanumeric strings of P300-eliciting target characters, yet this popular RCP speller faces three challenges. Theadjacent problem concerns the proximity of neighboring characters, the crowding problem concerns their number. Both adjacent and crowding problems concern how these factors impede BCI performance. The fatigue problem concerns how RCP use is tiring. This dissertation addressed these challenges for both desktop and mobile platforms. A new P300 speller interface, the Zigzag Paradigm (ZP), reduced the adjacent problem by increasing the distance between adjacent characters, as well as the crowding problem, by reducing the number neighboring characters. In desktop study, the classification accuracy was significantly improved 91% with the ZP VS 80.6% with the RCP. Since the ZP is not suitable for mobile P300 spellers with a small screen size, a new P300 speller interface was developed in this study, the Edges Paradigm (EP). The EP reduced the adjacent and crowding problems by adding flashing squares located upon the outer edges of the character matrix in the EP. The classification accuracy of the EP (i.e., 93.3%) was significantly higher than the RCP (i.e., 82.1%). We further compared three speller paradigms (i.e., RCP, ZP, and EP), and the result indicated that the EP produced the highest accuracy and caused less fatigue. Later, the EP is implemented in a simulator of a Samsung galaxy smart phone on the Microsoft Surface Pro 2. The mobile EP was compared with the RCP under the mobility situation when a user is moving on a wheelchair. The results showed that the EP significantly improved the online classification accuracy and user experience over the RCP.
Li, Rui; Zhang, Xiaodong; Li, Hanzhe; Zhang, Liming; Lu, Zhufeng; Chen, Jiangcheng
2018-08-01
Brain control technology can restore communication between the brain and a prosthesis, and choosing a Brain-Computer Interface (BCI) paradigm to evoke electroencephalogram (EEG) signals is an essential step for developing this technology. In this paper, the Scene Graph paradigm used for controlling prostheses was proposed; this paradigm is based on Steady-State Visual Evoked Potentials (SSVEPs) regarding the Scene Graph of a subject's intention. A mathematic model was built to predict SSVEPs evoked by the proposed paradigm and a sinusoidal stimulation method was used to present the Scene Graph stimulus to elicit SSVEPs from subjects. Then, a 2-degree of freedom (2-DOF) brain-controlled prosthesis system was constructed to validate the performance of the Scene Graph-SSVEP (SG-SSVEP)-based BCI. The classification of SG-SSVEPs was detected via the Canonical Correlation Analysis (CCA) approach. To assess the efficiency of proposed BCI system, the performances of traditional SSVEP-BCI system were compared. Experimental results from six subjects suggested that the proposed system effectively enhanced the SSVEP responses, decreased the degradation of SSVEP strength and reduced the visual fatigue in comparison with the traditional SSVEP-BCI system. The average signal to noise ratio (SNR) of SG-SSVEP was 6.31 ± 2.64 dB, versus 3.38 ± 0.78 dB of traditional-SSVEP. In addition, the proposed system achieved good performances in prosthesis control. The average accuracy was 94.58% ± 7.05%, and the corresponding high information transfer rate (IRT) was 19.55 ± 3.07 bit/min. The experimental results revealed that the SG-SSVEP based BCI system achieves the good performance and improved the stability relative to the conventional approach. Copyright © 2018 Elsevier B.V. All rights reserved.
Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future.
Huggins, Jane E; Guger, Christoph; Allison, Brendan; Anderson, Charles W; Batista, Aaron; Brouwer, Anne-Marie A-M; Brunner, Clemens; Chavarriaga, Ricardo; Fried-Oken, Melanie; Gunduz, Aysegul; Gupta, Disha; Kübler, Andrea; Leeb, Robert; Lotte, Fabien; Miller, Lee E; Müller-Putz, Gernot; Rutkowski, Tomasz; Tangermann, Michael; Thompson, David Edward
2014-01-01
The Fifth International Brain-Computer Interface (BCI) Meeting met June 3-7 th , 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in BCIs applications, and future BCI directions. BCI research is well established and transitioning to practical use to benefit people with physical impairments. At the same time, new applications are being explored, both for people with physical impairments and beyond. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and high-lighting important issues for future research and development.
A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.
Boi, Fabio; Moraitis, Timoleon; De Feo, Vito; Diotalevi, Francesco; Bartolozzi, Chiara; Indiveri, Giacomo; Vato, Alessandro
2016-01-01
Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link between the brain and the external world. A decoder translates recorded neural activity into motor commands and an encoder delivers sensory information collected from the environment directly to the brain creating a closed-loop system. These two modules are typically integrated in bulky external devices. However, the clinical support of patients with severe motor and sensory deficits requires compact, low-power, and fully implantable systems that can decode neural signals to control external devices. As a first step toward this goal, we developed a modular bidirectional BMI setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn to decode neural signals recorded from the brain into motor outputs controlling the movements of an external device. The modularity of the BMI allowed us to tune the individual components of the setup without modifying the whole system. In this paper, we present the features of this modular BMI and describe how we configured the network of spiking neuron circuits to implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an anesthetized rat with an external object. We show that the chip learned the decoding task correctly, allowing the interfaced brain to control the object's trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is mature enough for the development of BMI modules that are sufficiently low-power and compact, while being highly computationally powerful and adaptive.
A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder
Boi, Fabio; Moraitis, Timoleon; De Feo, Vito; Diotalevi, Francesco; Bartolozzi, Chiara; Indiveri, Giacomo; Vato, Alessandro
2016-01-01
Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link between the brain and the external world. A decoder translates recorded neural activity into motor commands and an encoder delivers sensory information collected from the environment directly to the brain creating a closed-loop system. These two modules are typically integrated in bulky external devices. However, the clinical support of patients with severe motor and sensory deficits requires compact, low-power, and fully implantable systems that can decode neural signals to control external devices. As a first step toward this goal, we developed a modular bidirectional BMI setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn to decode neural signals recorded from the brain into motor outputs controlling the movements of an external device. The modularity of the BMI allowed us to tune the individual components of the setup without modifying the whole system. In this paper, we present the features of this modular BMI and describe how we configured the network of spiking neuron circuits to implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an anesthetized rat with an external object. We show that the chip learned the decoding task correctly, allowing the interfaced brain to control the object's trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is mature enough for the development of BMI modules that are sufficiently low-power and compact, while being highly computationally powerful and adaptive. PMID:28018162
True Zero-Training Brain-Computer Interfacing – An Online Study
Kindermans, Pieter-Jan; Schreuder, Martijn; Schrauwen, Benjamin; Müller, Klaus-Robert; Tangermann, Michael
2014-01-01
Despite several approaches to realize subject-to-subject transfer of pre-trained classifiers, the full performance of a Brain-Computer Interface (BCI) for a novel user can only be reached by presenting the BCI system with data from the novel user. In typical state-of-the-art BCI systems with a supervised classifier, the labeled data is collected during a calibration recording, in which the user is asked to perform a specific task. Based on the known labels of this recording, the BCI's classifier can learn to decode the individual's brain signals. Unfortunately, this calibration recording consumes valuable time. Furthermore, it is unproductive with respect to the final BCI application, e.g. text entry. Therefore, the calibration period must be reduced to a minimum, which is especially important for patients with a limited concentration ability. The main contribution of this manuscript is an online study on unsupervised learning in an auditory event-related potential (ERP) paradigm. Our results demonstrate that the calibration recording can be bypassed by utilizing an unsupervised trained classifier, that is initialized randomly and updated during usage. Initially, the unsupervised classifier tends to make decoding mistakes, as the classifier might not have seen enough data to build a reliable model. Using a constant re-analysis of the previously spelled symbols, these initially misspelled symbols can be rectified posthoc when the classifier has learned to decode the signals. We compare the spelling performance of our unsupervised approach and of the unsupervised posthoc approach to the standard supervised calibration-based dogma for n = 10 healthy users. To assess the learning behavior of our approach, it is unsupervised trained from scratch three times per user. Even with the relatively low SNR of an auditory ERP paradigm, the results show that after a limited number of trials (30 trials), the unsupervised approach performs comparably to a classic supervised model. PMID:25068464
Brain-computer interface control along instructed paths
NASA Astrophysics Data System (ADS)
Sadtler, P. T.; Ryu, S. I.; Tyler-Kabara, E. C.; Yu, B. M.; Batista, A. P.
2015-02-01
Objective. Brain-computer interfaces (BCIs) are being developed to assist paralyzed people and amputees by translating neural activity into movements of a computer cursor or prosthetic limb. Here we introduce a novel BCI task paradigm, intended to help accelerate improvements to BCI systems. Through this task, we can push the performance limits of BCI systems, we can quantify more accurately how well a BCI system captures the user’s intent, and we can increase the richness of the BCI movement repertoire. Approach. We have implemented an instructed path task, wherein the user must drive a cursor along a visible path. The instructed path task provides a versatile framework to increase the difficulty of the task and thereby push the limits of performance. Relative to traditional point-to-point tasks, the instructed path task allows more thorough analysis of decoding performance and greater richness of movement kinematics. Main results. We demonstrate that monkeys are able to perform the instructed path task in a closed-loop BCI setting. We further investigate how the performance under BCI control compares to native arm control, whether users can decrease their movement variability in the face of a more demanding task, and how the kinematic richness is enhanced in this task. Significance. The use of the instructed path task has the potential to accelerate the development of BCI systems and their clinical translation.
Wavelet multiresolution complex network for decoding brain fatigued behavior from P300 signals
NASA Astrophysics Data System (ADS)
Gao, Zhong-Ke; Wang, Zi-Bo; Yang, Yu-Xuan; Li, Shan; Dang, Wei-Dong; Mao, Xiao-Qian
2018-09-01
Brain-computer interface (BCI) enables users to interact with the environment without relying on neural pathways and muscles. P300 based BCI systems have been extensively used to achieve human-machine interaction. However, the appearance of fatigue symptoms during operation process leads to the decline in classification accuracy of P300. Characterizing brain cognitive process underlying normal and fatigue conditions constitutes a problem of vital importance in the field of brain science. We in this paper propose a novel wavelet decomposition based complex network method to efficiently analyze the P300 signals recorded in the image stimulus test based on classical 'Oddball' paradigm. Initially, multichannel EEG signals are decomposed into wavelet coefficient series. Then we construct complex network by treating electrodes as nodes and determining the connections according to the 2-norm distances between wavelet coefficient series. The analysis of topological structure and statistical index indicates that the properties of brain network demonstrate significant distinctions between normal status and fatigue status. More specifically, the brain network reconfiguration in response to the cognitive task in fatigue status is reflected as the enhancement of the small-worldness.
EEG Responses to Auditory Stimuli for Automatic Affect Recognition
Hettich, Dirk T.; Bolinger, Elaina; Matuz, Tamara; Birbaumer, Niels; Rosenstiel, Wolfgang; Spüler, Martin
2016-01-01
Brain state classification for communication and control has been well established in the area of brain-computer interfaces over the last decades. Recently, the passive and automatic extraction of additional information regarding the psychological state of users from neurophysiological signals has gained increased attention in the interdisciplinary field of affective computing. We investigated how well specific emotional reactions, induced by auditory stimuli, can be detected in EEG recordings. We introduce an auditory emotion induction paradigm based on the International Affective Digitized Sounds 2nd Edition (IADS-2) database also suitable for disabled individuals. Stimuli are grouped in three valence categories: unpleasant, neutral, and pleasant. Significant differences in time domain domain event-related potentials are found in the electroencephalogram (EEG) between unpleasant and neutral, as well as pleasant and neutral conditions over midline electrodes. Time domain data were classified in three binary classification problems using a linear support vector machine (SVM) classifier. We discuss three classification performance measures in the context of affective computing and outline some strategies for conducting and reporting affect classification studies. PMID:27375410
Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future
Huggins, Jane E.; Guger, Christoph; Allison, Brendan; Anderson, Charles W.; Batista, Aaron; Brouwer, Anne-Marie (A.-M.); Brunner, Clemens; Chavarriaga, Ricardo; Fried-Oken, Melanie; Gunduz, Aysegul; Gupta, Disha; Kübler, Andrea; Leeb, Robert; Lotte, Fabien; Miller, Lee E.; Müller-Putz, Gernot; Rutkowski, Tomasz; Tangermann, Michael; Thompson, David Edward
2014-01-01
The Fifth International Brain-Computer Interface (BCI) Meeting met June 3–7th, 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in BCIs applications, and future BCI directions. BCI research is well established and transitioning to practical use to benefit people with physical impairments. At the same time, new applications are being explored, both for people with physical impairments and beyond. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and high-lighting important issues for future research and development. PMID:25485284
Bashford, Luke; Mehring, Carsten
2016-01-01
To study body ownership and control, illusions that elicit these feelings in non-body objects are widely used. Classically introduced with the Rubber Hand Illusion, these illusions have been replicated more recently in virtual reality and by using brain-computer interfaces. Traditionally these illusions investigate the replacement of a body part by an artificial counterpart, however as brain-computer interface research develops it offers us the possibility to explore the case where non-body objects are controlled in addition to movements of our own limbs. Therefore we propose a new illusion designed to test the feeling of ownership and control of an independent supernumerary hand. Subjects are under the impression they control a virtual reality hand via a brain-computer interface, but in reality there is no causal connection between brain activity and virtual hand movement but correct movements are observed with 80% probability. These imitation brain-computer interface trials are interspersed with movements in both the subjects' real hands, which are in view throughout the experiment. We show that subjects develop strong feelings of ownership and control over the third hand, despite only receiving visual feedback with no causal link to the actual brain signals. Our illusion is crucially different from previously reported studies as we demonstrate independent ownership and control of the third hand without loss of ownership in the real hands.
Kiper, Pawel; Szczudlik, Andrzej; Venneri, Annalena; Stozek, Joanna; Luque-Moreno, Carlos; Opara, Jozef; Baba, Alfonc; Agostini, Michela; Turolla, Andrea
2016-10-15
Computational approaches for modelling the central nervous system (CNS) aim to develop theories on processes occurring in the brain that allow the transformation of all information needed for the execution of motor acts. Computational models have been proposed in several fields, to interpret not only the CNS functioning, but also its efferent behaviour. Computational model theories can provide insights into neuromuscular and brain function allowing us to reach a deeper understanding of neuroplasticity. Neuroplasticity is the process occurring in the CNS that is able to permanently change both structure and function due to interaction with the external environment. To understand such a complex process several paradigms related to motor learning and computational modeling have been put forward. These paradigms have been explained through several internal model concepts, and supported by neurophysiological and neuroimaging studies. Therefore, it has been possible to make theories about the basis of different learning paradigms according to known computational models. Here we review the computational models and motor learning paradigms used to describe the CNS and neuromuscular functions, as well as their role in the recovery process. These theories have the potential to provide a way to rigorously explain all the potential of CNS learning, providing a basis for future clinical studies. Copyright © 2016 Elsevier B.V. All rights reserved.
On-chip phase-change photonic memory and computing
NASA Astrophysics Data System (ADS)
Cheng, Zengguang; Ríos, Carlos; Youngblood, Nathan; Wright, C. David; Pernice, Wolfram H. P.; Bhaskaran, Harish
2017-08-01
The use of photonics in computing is a hot topic of interest, driven by the need for ever-increasing speed along with reduced power consumption. In existing computing architectures, photonic data storage would dramatically improve the performance by reducing latencies associated with electrical memories. At the same time, the rise of `big data' and `deep learning' is driving the quest for non-von Neumann and brain-inspired computing paradigms. To succeed in both aspects, we have demonstrated non-volatile multi-level photonic memory avoiding the von Neumann bottleneck in the existing computing paradigm and a photonic synapse resembling the biological synapses for brain-inspired computing using phase-change materials (Ge2Sb2Te5).
Ruf, Carolin A.; De Massari, Daniele; Furdea, Adrian; Matuz, Tamara; Fioravanti, Chiara; van der Heiden, Linda; Halder, Sebastian; Birbaumer, Niels
2013-01-01
The aim of the study was to investigate conditioned electroencephalography (EEG) responses to factually correct and incorrect statements in order to enable binary communication by means of a brain-computer interface (BCI). In two experiments with healthy participants true and false statements (serving as conditioned stimuli, CSs) were paired with two different tones which served as unconditioned stimuli (USs). The features of the USs were varied and tested for their effectiveness to elicit differentiable conditioned reactions (CRs). After acquisition of the CRs, these CRs to true and false statements were classified offline using a radial basis function kernel support vector machine. A mean single-trial classification accuracy of 50.5% was achieved for differentiating conditioned “yes” versus “no” thinking and mean accuracies of 65.4% for classification of “yes” and 68.8% for “no” thinking (both relative to baseline) were found using the best US. Analysis of the area under the curve of the conditioned EEG responses revealed significant differences between conditioned “yes” and “no” answers. Even though improvements are necessary, these first results indicate that the semantic conditioning paradigm could be a useful basis for further research regarding BCI communication in patients in the complete locked-in state. PMID:23471568
Spatial Brain Control Interface using Optical and Electrophysiological Measures
2013-08-27
appropriate for implementing a reliable brain-computer interface ( BCI ). The LSVM method 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 27-08-2013 13...Machine (LSVM) was the most appropriate for implementing a reliable brain-computer interface ( BCI ). The LSVM method was applied to the imaging data...local field potentials proved to be fast and strongly tuned for the spatial parameters of the task. Thus, a reliable BCI that can predict upcoming
Adaptive P300 based control system
Jin, Jing; Allison, Brendan Z.; Sellers, Eric W.; Brunner, Clemens; Horki, Petar; Wang, Xingyu; Neuper, Christa
2015-01-01
An adaptive P300 brain-computer interface (BCI) using a 12 × 7 matrix explored new paradigms to improve bit rate and accuracy. During online use, the system adaptively selects the number of flashes to average. Five different flash patterns were tested. The 19-flash paradigm represents the typical row/column presentation (i.e., 12 columns and 7 rows). The 9- and 14-flash A & B paradigms present all items of the 12 × 7 matrix three times using either nine or 14 flashes (instead of 19), decreasing the amount of time to present stimuli. Compared to 9-flash A, 9-flash B decreased the likelihood that neighboring items would flash when the target was not flashing, thereby reducing interference from items adjacent to targets. 14-flash A also reduced adjacent item interference and 14-flash B additionally eliminated successive (double) flashes of the same item. Results showed that accuracy and bit rate of the adaptive system were higher than the non-adaptive system. In addition, 9- and 14-flash B produced significantly higher performance than their respective A conditions. The results also show the trend that the 14-flash B paradigm was better than the 19-flash pattern for naïve users. PMID:21474877
An Architecture for Cross-Cloud System Management
NASA Astrophysics Data System (ADS)
Dodda, Ravi Teja; Smith, Chris; van Moorsel, Aad
The emergence of the cloud computing paradigm promises flexibility and adaptability through on-demand provisioning of compute resources. As the utilization of cloud resources extends beyond a single provider, for business as well as technical reasons, the issue of effectively managing such resources comes to the fore. Different providers expose different interfaces to their compute resources utilizing varied architectures and implementation technologies. This heterogeneity poses a significant system management problem, and can limit the extent to which the benefits of cross-cloud resource utilization can be realized. We address this problem through the definition of an architecture to facilitate the management of compute resources from different cloud providers in an homogenous manner. This preserves the flexibility and adaptability promised by the cloud computing paradigm, whilst enabling the benefits of cross-cloud resource utilization to be realized. The practical efficacy of the architecture is demonstrated through an implementation utilizing compute resources managed through different interfaces on the Amazon Elastic Compute Cloud (EC2) service. Additionally, we provide empirical results highlighting the performance differential of these different interfaces, and discuss the impact of this performance differential on efficiency and profitability.
The effects of semantic congruency: a research of audiovisual P300-speller.
Cao, Yong; An, Xingwei; Ke, Yufeng; Jiang, Jin; Yang, Hanjun; Chen, Yuqian; Jiao, Xuejun; Qi, Hongzhi; Ming, Dong
2017-07-25
Over the past few decades, there have been many studies of aspects of brain-computer interface (BCI). Of particular interests are event-related potential (ERP)-based BCI spellers that aim at helping mental typewriting. Nowadays, audiovisual unimodal stimuli based BCI systems have attracted much attention from researchers, and most of the existing studies of audiovisual BCIs were based on semantic incongruent stimuli paradigm. However, no related studies had reported that whether there is difference of system performance or participant comfort between BCI based on semantic congruent paradigm and that based on semantic incongruent paradigm. The goal of this study was to investigate the effects of semantic congruency in system performance and participant comfort in audiovisual BCI. Two audiovisual paradigms (semantic congruent and incongruent) were adopted, and 11 healthy subjects participated in the experiment. High-density electrical mapping of ERPs and behavioral data were measured for the two stimuli paradigms. The behavioral data indicated no significant difference between congruent and incongruent paradigms for offline classification accuracy. Nevertheless, eight of the 11 participants reported their priority to semantic congruent experiment, two reported no difference between the two conditions, and only one preferred the semantic incongruent paradigm. Besides, the result indicted that higher amplitude of ERP was found in incongruent stimuli based paradigm. In a word, semantic congruent paradigm had a better participant comfort, and maintained the same recognition rate as incongruent paradigm. Furthermore, our study suggested that the paradigm design of spellers must take both system performance and user experience into consideration rather than merely pursuing a larger ERP response.
Robust artifactual independent component classification for BCI practitioners.
Winkler, Irene; Brandl, Stephanie; Horn, Franziska; Waldburger, Eric; Allefeld, Carsten; Tangermann, Michael
2014-06-01
EEG artifacts of non-neural origin can be separated from neural signals by independent component analysis (ICA). It is unclear (1) how robustly recently proposed artifact classifiers transfer to novel users, novel paradigms or changed electrode setups, and (2) how artifact cleaning by a machine learning classifier impacts the performance of brain-computer interfaces (BCIs). Addressing (1), the robustness of different strategies with respect to the transfer between paradigms and electrode setups of a recently proposed classifier is investigated on offline data from 35 users and 3 EEG paradigms, which contain 6303 expert-labeled components from two ICA and preprocessing variants. Addressing (2), the effect of artifact removal on single-trial BCI classification is estimated on BCI trials from 101 users and 3 paradigms. We show that (1) the proposed artifact classifier generalizes to completely different EEG paradigms. To obtain similar results under massively reduced electrode setups, a proposed novel strategy improves artifact classification. Addressing (2), ICA artifact cleaning has little influence on average BCI performance when analyzed by state-of-the-art BCI methods. When slow motor-related features are exploited, performance varies strongly between individuals, as artifacts may obstruct relevant neural activity or are inadvertently used for BCI control. Robustness of the proposed strategies can be reproduced by EEG practitioners as the method is made available as an EEGLAB plug-in.
ERIC Educational Resources Information Center
Moghimi, Saba; Kushki, Azadeh; Guerguerian, Anne Marie; Chau, Tom
2013-01-01
Electroencephalography (EEG) is a non-invasive method for measuring brain activity and is a strong candidate for brain-computer interface (BCI) development. While BCIs can be used as a means of communication for individuals with severe disabilities, the majority of existing studies have reported BCI evaluations by able-bodied individuals.…
Biosensor Technologies for Augmented Brain-Computer Interfaces in the Next Decades
2012-05-13
Research Triangle Park, NC 27709-2211 Augmented brain–computer interface (ABCI);biosensor; cognitive-state monitoring; electroencephalogram( EEG ); human...biosensor; cognitive-state monitoring; electroencephalogram ( EEG ); human brain imaging Manuscript received November 28, 2011; accepted December 20...magnetic reso- nance imaging (fMRI) [1], positron emission tomography (PET) [2], electroencephalograms ( EEGs ) and optical brain imaging techniques (i.e
Practical Designs of Brain-Computer Interfaces Based on the Modulation of EEG Rhythms
NASA Astrophysics Data System (ADS)
Wang, Yijun; Gao, Xiaorong; Hong, Bo; Gao, Shangkai
A brain-computer interface (BCI) is a communication channel which does not depend on the brain's normal output pathways of peripheral nerves and muscles [1-3]. It supplies paralyzed patients with a new approach to communicate with the environment. Among various brain monitoring methods employed in current BCI research, electroencephalogram (EEG) is the main interest due to its advantages of low cost, convenient operation and non-invasiveness. In present-day EEG-based BCIs, the following signals have been paid much attention: visual evoked potential (VEP), sensorimotor mu/beta rhythms, P300 evoked potential, slow cortical potential (SCP), and movement-related cortical potential (MRCP). Details about these signals can be found in chapter "Brain Signals for Brain-Computer Interfaces". These systems offer some practical solutions (e.g., cursor movement and word processing) for patients with motor disabilities.
A hybrid brain-computer interface-based mail client.
Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng
2013-01-01
Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method.
A Hybrid Brain-Computer Interface-Based Mail Client
Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng
2013-01-01
Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method. PMID:23690880
Basic concepts and development of an all-purpose computer interface for ROC/FROC observer study.
Shiraishi, Junji; Fukuoka, Daisuke; Hara, Takeshi; Abe, Hiroyuki
2013-01-01
In this study, we initially investigated various aspects of requirements for a computer interface employed in receiver operating characteristic (ROC) and free-response ROC (FROC) observer studies which involve digital images and ratings obtained by observers (radiologists). Secondly, by taking into account these aspects, an all-purpose computer interface utilized for these observer performance studies was developed. Basically, the observer studies can be classified into three paradigms, such as one rating for one case without an identification of a signal location, one rating for one case with an identification of a signal location, and multiple ratings for one case with identification of signal locations. For these paradigms, display modes on the computer interface can be used for single/multiple views of a static image, continuous viewing with cascade images (i.e., CT, MRI), and dynamic viewing of movies (i.e., DSA, ultrasound). Various functions on these display modes, which include windowing (contrast/level), magnifications, and annotations, are needed to be selected by an experimenter corresponding to the purpose of the research. In addition, the rules of judgment for distinguishing between true positives and false positives are an important factor for estimating diagnostic accuracy in an observer study. We developed a computer interface which runs on a Windows operating system by taking into account all aspects required for various observer studies. This computer interface requires experimenters to have sufficient knowledge about ROC/FROC observer studies, but allows its use for any purpose of the observer studies. This computer interface will be distributed publicly in the near future.
Wilson, James C; Kesler, Mitch; Pelegrin, Sara-Lynn E; Kalvi, LeAnna; Gruber, Aaron; Steenland, Hendrik W
2015-09-30
The physical distance between predator and prey is a primary determinant of behavior, yet few paradigms exist to study this reliably in rodents. The utility of a robotically controlled laser for use in a predator-prey-like (PPL) paradigm was explored for use in rats. This involved the construction of a robotic two-dimensional gimbal to dynamically position a laser beam in a behavioral test chamber. Custom software was used to control the trajectory and final laser position in response to user input on a console. The software also detected the location of the laser beam and the rodent continuously so that the dynamics of the distance between them could be analyzed. When the animal or laser beam came within a fixed distance the animal would either be rewarded with electrical brain stimulation or shocked subcutaneously. Animals that received rewarding electrical brain stimulation could learn to chase the laser beam, while animals that received aversive subcutaneous shock learned to actively avoid the laser beam in the PPL paradigm. Mathematical computations are presented which describe the dynamic interaction of the laser and rodent. The robotic laser offers a neutral stimulus to train rodents in an open field and is the first device to be versatile enough to assess distance between predator and prey in real time. With ongoing behavioral testing this tool will permit the neurobiological investigation of predator/prey-like relationships in rodents, and may have future implications for prosthetic limb development through brain-machine interfaces. Copyright © 2015 Elsevier B.V. All rights reserved.
Decoding Saccadic Directions Using Epidural ECoG in Non-Human Primates
2017-01-01
A brain-computer interface (BCI) can be used to restore some communication as an alternative interface for patients suffering from locked-in syndrome. However, most BCI systems are based on SSVEP, P300, or motor imagery, and a diversity of BCI protocols would be needed for various types of patients. In this paper, we trained the choice saccade (CS) task in 2 non-human primate monkeys and recorded the brain signal using an epidural electrocorticogram (eECoG) to predict eye movement direction. We successfully predicted the direction of the upcoming eye movement using a support vector machine (SVM) with the brain signals after the directional cue onset and before the saccade execution. The mean accuracies were 80% for 2 directions and 43% for 4 directions. We also quantified the spatial-spectro-temporal contribution ratio using SVM recursive feature elimination (RFE). The channels over the frontal eye field (FEF), supplementary eye field (SEF), and superior parietal lobule (SPL) area were dominantly used for classification. The α-band in the spectral domain and the time bins just after the directional cue onset and just before the saccadic execution were mainly useful for prediction. A saccade based BCI paradigm can be projected in the 2D space, and will hopefully provide an intuitive and convenient communication platform for users. PMID:28665058
Huggins, Jane E; Guger, Christoph; Ziat, Mounia; Zander, Thorsten O; Taylor, Denise; Tangermann, Michael; Soria-Frisch, Aureli; Simeral, John; Scherer, Reinhold; Rupp, Rüdiger; Ruffini, Giulio; Robinson, Douglas K R; Ramsey, Nick F; Nijholt, Anton; Müller-Putz, Gernot; McFarland, Dennis J; Mattia, Donatella; Lance, Brent J; Kindermans, Pieter-Jan; Iturrate, Iñaki; Herff, Christian; Gupta, Disha; Do, An H; Collinger, Jennifer L; Chavarriaga, Ricardo; Chase, Steven M; Bleichner, Martin G; Batista, Aaron; Anderson, Charles W; Aarnoutse, Erik J
2017-01-01
The Sixth International Brain-Computer Interface (BCI) Meeting was held 30 May-3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain-machine interface research. Topics included BCI for specific populations or applications, advancing BCI research through use of specific signals or technological advances, and translational and commercial issues to bring both implanted and non-invasive BCIs to market. BCI research is growing and expanding in the breadth of its applications, the depth of knowledge it can produce, and the practical benefit it can provide both for those with physical impairments and the general public. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and highlighting important issues and calls for action to support future research and development.
Heidrich, Regina O; Jensen, Emely; Rebelo, Francisco; Oliveira, Tiago
2015-01-01
This article presents a comparative study among people with cerebral palsy and healthy controls, of various ages, using a Brain-computer Interface (BCI) device. The research is qualitative in its approach. Researchers worked with Observational Case Studies. People with cerebral palsy and healthy controls were evaluated in Portugal and in Brazil. The study aimed to develop a study for product evaluation in order to perceive whether people with cerebral palsy could interact with the computer and compare whether their performance is similar to that of healthy controls when using the Brain-computer Interface. Ultimately, it was found that there are no significant differences between people with cerebral palsy in the two countries, as well as between populations without cerebral palsy (healthy controls).
Connecting Neurons to a Mobile Robot: An In Vitro Bidirectional Neural Interface
Novellino, A.; D'Angelo, P.; Cozzi, L.; Chiappalone, M.; Sanguineti, V.; Martinoia, S.
2007-01-01
One of the key properties of intelligent behaviors is the capability to learn and adapt to changing environmental conditions. These features are the result of the continuous and intense interaction of the brain with the external world, mediated by the body. For this reason “embodiment” represents an innovative and very suitable experimental paradigm when studying the neural processes underlying learning new behaviors and adapting to unpredicted situations. To this purpose, we developed a novel bidirectional neural interface. We interconnected in vitro neurons, extracted from rat embryos and plated on a microelectrode array (MEA), to external devices, thus allowing real-time closed-loop interaction. The novelty of this experimental approach entails the necessity to explore different computational schemes and experimental hypotheses. In this paper, we present an open, scalable architecture, which allows fast prototyping of different modules and where coding and decoding schemes and different experimental configurations can be tested. This hybrid system can be used for studying the computational properties and information coding in biological neuronal networks with far-reaching implications for the future development of advanced neuroprostheses. PMID:18350128
Orientation selectivity in a multi-gated organic electrochemical transistor
NASA Astrophysics Data System (ADS)
Gkoupidenis, Paschalis; Koutsouras, Dimitrios A.; Lonjaret, Thomas; Fairfield, Jessamyn A.; Malliaras, George G.
2016-06-01
Neuromorphic devices offer promising computational paradigms that transcend the limitations of conventional technologies. A prominent example, inspired by the workings of the brain, is spatiotemporal information processing. Here we demonstrate orientation selectivity, a spatiotemporal processing function of the visual cortex, using a poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) organic electrochemical transistor with multiple gates. Spatially distributed inputs on a gate electrode array are found to correlate with the output of the transistor, leading to the ability to discriminate between different stimuli orientations. The demonstration of spatiotemporal processing in an organic electronic device paves the way for neuromorphic devices with new form factors and a facile interface with biology.
A hybrid BCI for enhanced control of a telepresence robot.
Carlson, Tom; Tonin, Luca; Perdikis, Serafeim; Leeb, Robert; del R Millán, José
2013-01-01
Motor-disabled end users have successfully driven a telepresence robot in a complex environment using a Brain-Computer Interface (BCI). However, to facilitate the interaction aspect that underpins the notion of telepresence, users must be able to voluntarily and reliably stop the robot at any moment, not just drive from point to point. In this work, we propose to exploit the user's residual muscular activity to provide a fast and reliable control channel, which can start/stop the telepresence robot at any moment. Our preliminary results show that not only does this hybrid approach increase the accuracy, but it also helps to reduce the workload and was the preferred control paradigm of all the participants.
Ahn, Minkyu; Lee, Mijin; Choi, Jinyoung; Jun, Sung Chan
2014-01-01
In recent years, research on Brain-Computer Interface (BCI) technology for healthy users has attracted considerable interest, and BCI games are especially popular. This study reviews the current status of, and describes future directions, in the field of BCI games. To this end, we conducted a literature search and found that BCI control paradigms using electroencephalographic signals (motor imagery, P300, steady state visual evoked potential and passive approach reading mental state) have been the primary focus of research. We also conducted a survey of nearly three hundred participants that included researchers, game developers and users around the world. From this survey, we found that all three groups (researchers, developers and users) agreed on the significant influence and applicability of BCI and BCI games, and they all selected prostheses, rehabilitation and games as the most promising BCI applications. User and developer groups tended to give low priority to passive BCI and the whole head sensor array. Developers gave higher priorities to “the easiness of playing” and the “development platform” as important elements for BCI games and the market. Based on our assessment, we discuss the critical point at which BCI games will be able to progress from their current stage to widespread marketing to consumers. In conclusion, we propose three critical elements important for expansion of the BCI game market: standards, gameplay and appropriate integration. PMID:25116904
Dry and noncontact EEG sensors for mobile brain-computer interfaces.
Chi, Yu Mike; Wang, Yu-Te; Wang, Yijun; Maier, Christoph; Jung, Tzyy-Ping; Cauwenberghs, Gert
2012-03-01
Dry and noncontact electroencephalographic (EEG) electrodes, which do not require gel or even direct scalp coupling, have been considered as an enabler of practical, real-world, brain-computer interface (BCI) platforms. This study compares wet electrodes to dry and through hair, noncontact electrodes within a steady state visual evoked potential (SSVEP) BCI paradigm. The construction of a dry contact electrode, featuring fingered contact posts and active buffering circuitry is presented. Additionally, the development of a new, noncontact, capacitive electrode that utilizes a custom integrated, high-impedance analog front-end is introduced. Offline tests on 10 subjects characterize the signal quality from the different electrodes and demonstrate that acquisition of small amplitude, SSVEP signals is possible, even through hair using the new integrated noncontact sensor. Online BCI experiments demonstrate that the information transfer rate (ITR) with the dry electrodes is comparable to that of wet electrodes, completely without the need for gel or other conductive media. In addition, data from the noncontact electrode, operating on the top of hair, show a maximum ITR in excess of 19 bits/min at 100% accuracy (versus 29.2 bits/min for wet electrodes and 34.4 bits/min for dry electrodes), a level that has never been demonstrated before. The results of these experiments show that both dry and noncontact electrodes, with further development, may become a viable tool for both future mobile BCI and general EEG applications.
An Asynchronous P300-Based Brain-Computer Interface Web Browser for Severely Disabled People.
Martinez-Cagigal, Victor; Gomez-Pilar, Javier; Alvarez, Daniel; Hornero, Roberto
2017-08-01
This paper presents an electroencephalographic (EEG) P300-based brain-computer interface (BCI) Internet browser. The system uses the "odd-ball" row-col paradigm for generating the P300 evoked potentials on the scalp of the user, which are immediately processed and translated into web browser commands. There were previous approaches for controlling a BCI web browser. However, to the best of our knowledge, none of them was focused on an assistive context, failing to test their applications with a suitable number of end users. In addition, all of them were synchronous applications, where it was necessary to introduce a "read-mode" command in order to avoid a continuous command selection. Thus, the aim of this study is twofold: 1) to test our web browser with a population of multiple sclerosis (MS) patients in order to assess the usefulness of our proposal to meet their daily communication needs; and 2) to overcome the aforementioned limitation by adding a threshold that discerns between control and non-control states, allowing the user to calmly read the web page without undesirable selections. The browser was tested with sixteen MS patients and five healthy volunteers. Both quantitative and qualitative metrics were obtained. MS participants reached an average accuracy of 84.14%, whereas 95.75% was achieved by control subjects. Results show that MS patients can successfully control the BCI web browser, improving their personal autonomy.
Ahn, Minkyu; Lee, Mijin; Choi, Jinyoung; Jun, Sung Chan
2014-08-11
In recent years, research on Brain-Computer Interface (BCI) technology for healthy users has attracted considerable interest, and BCI games are especially popular. This study reviews the current status of, and describes future directions, in the field of BCI games. To this end, we conducted a literature search and found that BCI control paradigms using electroencephalographic signals (motor imagery, P300, steady state visual evoked potential and passive approach reading mental state) have been the primary focus of research. We also conducted a survey of nearly three hundred participants that included researchers, game developers and users around the world. From this survey, we found that all three groups (researchers, developers and users) agreed on the significant influence and applicability of BCI and BCI games, and they all selected prostheses, rehabilitation and games as the most promising BCI applications. User and developer groups tended to give low priority to passive BCI and the whole head sensor array. Developers gave higher priorities to "the easiness of playing" and the "development platform" as important elements for BCI games and the market. Based on our assessment, we discuss the critical point at which BCI games will be able to progress from their current stage to widespread marketing to consumers. In conclusion, we propose three critical elements important for expansion of the BCI game market: standards, gameplay and appropriate integration.
Lulé, Dorothée; Noirhomme, Quentin; Kleih, Sonja C; Chatelle, Camille; Halder, Sebastian; Demertzi, Athena; Bruno, Marie-Aurélie; Gosseries, Olivia; Vanhaudenhuyse, Audrey; Schnakers, Caroline; Thonnard, Marie; Soddu, Andrea; Kübler, Andrea; Laureys, Steven
2013-01-01
To determine if brain-computer interfaces (BCIs) could serve as supportive tools for detecting consciousness in patients with disorders of consciousness by detecting response to command and communication. We tested a 4-choice auditory oddball EEG-BCI paradigm on 16 healthy subjects and 18 patients in a vegetative state/unresponsive wakefulness syndrome, in a minimally conscious state (MCS), and in locked-in syndrome (LIS). Subjects were exposed to 4 training trials and 10 -12 questions. Thirteen healthy subjects and one LIS patient were able to communicate using the BCI. Four of those did not present with a P3. One MCS patient showed command following with the BCI while no behavioral response could be detected at bedside. All other patients did not show any response to command and could not communicate with the BCI. The present study provides evidence that EEG based BCI can detect command following in patients with altered states of consciousness and functional communication in patients with locked-in syndrome. However, BCI approaches have to be simplified to increase sensitivity. For some patients without any clinical sign of consciousness, a BCI might bear the potential to employ a "yes-no" spelling device offering the hope of functional interactive communication. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Orhan, Umut; Erdogmus, Deniz; Roark, Brian; Purwar, Shalini; Hild, Kenneth E.; Oken, Barry; Nezamfar, Hooman; Fried-Oken, Melanie
2013-01-01
Event related potentials (ERP) corresponding to a stimulus in electroencephalography (EEG) can be used to detect the intent of a person for brain computer interfaces (BCI). This paradigm is widely utilized to build letter-by-letter text input systems using BCI. Nevertheless using a BCI-typewriter depending only on EEG responses will not be sufficiently accurate for single-trial operation in general, and existing systems utilize many-trial schemes to achieve accuracy at the cost of speed. Hence incorporation of a language model based prior or additional evidence is vital to improve accuracy and speed. In this paper, we study the effects of Bayesian fusion of an n-gram language model with a regularized discriminant analysis ERP detector for EEG-based BCIs. The letter classification accuracies are rigorously evaluated for varying language model orders as well as number of ERP-inducing trials. The results demonstrate that the language models contribute significantly to letter classification accuracy. Specifically, we find that a BCI-speller supported by a 4-gram language model may achieve the same performance using 3-trial ERP classification for the initial letters of the words and using single trial ERP classification for the subsequent ones. Overall, fusion of evidence from EEG and language models yields a significant opportunity to increase the word rate of a BCI based typing system. PMID:22255652
2014-01-01
Background People with severe disabilities, e.g. due to neurodegenerative disease, depend on technology that allows for accurate wheelchair control. For those who cannot operate a wheelchair with a joystick, brain-computer interfaces (BCI) may offer a valuable option. Technology depending on visual or auditory input may not be feasible as these modalities are dedicated to processing of environmental stimuli (e.g. recognition of obstacles, ambient noise). Herein we thus validated the feasibility of a BCI based on tactually-evoked event-related potentials (ERP) for wheelchair control. Furthermore, we investigated use of a dynamic stopping method to improve speed of the tactile BCI system. Methods Positions of four tactile stimulators represented navigation directions (left thigh: move left; right thigh: move right; abdomen: move forward; lower neck: move backward) and N = 15 participants delivered navigation commands by focusing their attention on the desired tactile stimulus in an oddball-paradigm. Results Participants navigated a virtual wheelchair through a building and eleven participants successfully completed the task of reaching 4 checkpoints in the building. The virtual wheelchair was equipped with simulated shared-control sensors (collision avoidance), yet these sensors were rarely needed. Conclusion We conclude that most participants achieved tactile ERP-BCI control sufficient to reliably operate a wheelchair and dynamic stopping was of high value for tactile ERP classification. Finally, this paper discusses feasibility of tactile ERPs for BCI based wheelchair control. PMID:24428900
Hollmann, M; Mönch, T; Mulla-Osman, S; Tempelmann, C; Stadler, J; Bernarding, J
2008-10-30
In functional MRI (fMRI) complex experiments and applications require increasingly complex parameter handling as the experimental setup usually consists of separated soft- and hardware systems. Advanced real-time applications such as neurofeedback-based training or brain computer interfaces (BCIs) may even require adaptive changes of the paradigms and experimental setup during the measurement. This would be facilitated by an automated management of the overall workflow and a control of the communication between all experimental components. We realized a concept based on an XML software framework called Experiment Description Language (EDL). All parameters relevant for real-time data acquisition, real-time fMRI (rtfMRI) statistical data analysis, stimulus presentation, and activation processing are stored in one central EDL file, and processed during the experiment. A usability study comparing the central EDL parameter management with traditional approaches showed an improvement of the complete experimental handling. Based on this concept, a feasibility study realizing a dynamic rtfMRI-based brain computer interface showed that the developed system in combination with EDL was able to reliably detect and evaluate activation patterns in real-time. The implementation of a centrally controlled communication between the subsystems involved in the rtfMRI experiments reduced potential inconsistencies, and will open new applications for adaptive BCIs.
Application of a single-flicker online SSVEP BCI for spatial navigation.
Chen, Jingjing; Zhang, Dan; Engel, Andreas K; Gong, Qin; Maye, Alexander
2017-01-01
A promising approach for brain-computer interfaces (BCIs) employs the steady-state visual evoked potential (SSVEP) for extracting control information. Main advantages of these SSVEP BCIs are a simple and low-cost setup, little effort to adjust the system parameters to the user and comparatively high information transfer rates (ITR). However, traditional frequency-coded SSVEP BCIs require the user to gaze directly at the selected flicker stimulus, which is liable to cause fatigue or even photic epileptic seizures. The spatially coded SSVEP BCI we present in this article addresses this issue. It uses a single flicker stimulus that appears always in the extrafoveal field of view, yet it allows the user to control four control channels. We demonstrate the embedding of this novel SSVEP stimulation paradigm in the user interface of an online BCI for navigating a 2-dimensional computer game. Offline analysis of the training data reveals an average classification accuracy of 96.9±1.64%, corresponding to an information transfer rate of 30.1±1.8 bits/min. In online mode, the average classification accuracy reached 87.9±11.4%, which resulted in an ITR of 23.8±6.75 bits/min. We did not observe a strong relation between a subject's offline and online performance. Analysis of the online performance over time shows that users can reliably control the new BCI paradigm with stable performance over at least 30 minutes of continuous operation.
Horschig, Jörn M; Oosterheert, Wouter; Oostenveld, Robert; Jensen, Ole
2015-11-01
Here we report that the modulation of alpha activity by covert attention can be used as a control signal in an online brain-computer interface, that it is reliable, and that it is robust. Subjects were instructed to orient covert visual attention to the left or right hemifield. We decoded the direction of attention from the magnetoencephalogram by a template matching classifier and provided the classification outcome to the subject in real-time using a novel graphical user interface. Training data for the templates were obtained from a Posner-cueing task conducted just before the BCI task. Eleven subjects participated in four sessions each. Eight of the subjects achieved classification rates significantly above chance level. Subjects were able to significantly increase their performance from the first to the second session. Individual patterns of posterior alpha power remained stable throughout the four sessions and did not change with increased performance. We conclude that posterior alpha power can successfully be used as a control signal in brain-computer interfaces. We also discuss several ideas for further improving the setup and propose future research based on solid hypotheses about behavioral consequences of modulating neuronal oscillations by brain computer interfacing.
Hashimoto, Yasunari; Ota, Tetsuo; Mukaino, Masahiko; Ushiba, Junichi
2013-01-01
Neuronal mechanism underlying dystonia is poorly understood. Dystonia can be treated with botulinum toxin injections or deep brain stimulation but these methods are not available for every patient therefore we need to consider other methods Our study aimed to develop a novel rehabilitation training using brain-computer interface system that decreases neural overexcitation in the sensorimotor cortex by bypassing brain and external world without the normal neuromuscular pathway. To achieve this purpose, we recorded electroencephalograms (10 channels) and forearm electromyograms (3 channels) from 2 patients with the diagnosis of writer's cramp and healthy control participants as a preliminary experiment. The patients were trained to control amplitude of their electroencephalographic signal using feedback from the brain-computer interface for 1 hour a day and then continued the training twice a month. After the 5-month training, a patient clearly showed reduction of dystonic movement during writing.
[The current state of the brain-computer interface problem].
Shurkhay, V A; Aleksandrova, E V; Potapov, A A; Goryainov, S A
2015-01-01
It was only 40 years ago that the first PC appeared. Over this period, rather short in historical terms, we have witnessed the revolutionary changes in lives of individuals and the entire society. Computer technologies are tightly connected with any field, either directly or indirectly. We can currently claim that computers are manifold superior to a human mind in terms of a number of parameters; however, machines lack the key feature: they are incapable of independent thinking (like a human). However, the key to successful development of humankind is collaboration between the brain and the computer rather than competition. Such collaboration when a computer broadens, supplements, or replaces some brain functions is known as the brain-computer interface. Our review focuses on real-life implementation of this collaboration.
Gaze-independent BCI-spelling using rapid serial visual presentation (RSVP).
Acqualagna, Laura; Blankertz, Benjamin
2013-05-01
A Brain Computer Interface (BCI) speller is a communication device, which can be used by patients suffering from neurodegenerative diseases to select symbols in a computer application. For patients unable to overtly fixate the target symbol, it is crucial to develop a speller independent of gaze shifts. In the present online study, we investigated rapid serial visual presentation (RSVP) as a paradigm for mental typewriting. We investigated the RSVP speller in three conditions, regarding the Stimulus Onset Asynchrony (SOA) and the use of color features. A vocabulary of 30 symbols was presented one-by-one in a pseudo random sequence at the same location of display. All twelve participants were able to successfully operate the RSVP speller. The results show a mean online spelling rate of 1.43 symb/min and a mean symbol selection accuracy of 94.8% in the best condition. We conclude that the RSVP is a promising paradigm for BCI spelling and its performance is competitive with the fastest gaze-independent spellers in literature. The RSVP speller does not require gaze shifts towards different target locations and can be operated by non-spatial visual attention, therefore it can be considered as a valid paradigm in applications with patients for impaired oculo-motor control. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Pyff - a pythonic framework for feedback applications and stimulus presentation in neuroscience.
Venthur, Bastian; Scholler, Simon; Williamson, John; Dähne, Sven; Treder, Matthias S; Kramarek, Maria T; Müller, Klaus-Robert; Blankertz, Benjamin
2010-01-01
This paper introduces Pyff, the Pythonic feedback framework for feedback applications and stimulus presentation. Pyff provides a platform-independent framework that allows users to develop and run neuroscientific experiments in the programming language Python. Existing solutions have mostly been implemented in C++, which makes for a rather tedious programming task for non-computer-scientists, or in Matlab, which is not well suited for more advanced visual or auditory applications. Pyff was designed to make experimental paradigms (i.e., feedback and stimulus applications) easily programmable. It includes base classes for various types of common feedbacks and stimuli as well as useful libraries for external hardware such as eyetrackers. Pyff is also equipped with a steadily growing set of ready-to-use feedbacks and stimuli. It can be used as a standalone application, for instance providing stimulus presentation in psychophysics experiments, or within a closed loop such as in biofeedback or brain-computer interfacing experiments. Pyff communicates with other systems via a standardized communication protocol and is therefore suitable to be used with any system that may be adapted to send its data in the specified format. Having such a general, open-source framework will help foster a fruitful exchange of experimental paradigms between research groups. In particular, it will decrease the need of reprogramming standard paradigms, ease the reproducibility of published results, and naturally entail some standardization of stimulus presentation.
Eugster, Manuel J. A.; Ruotsalo, Tuukka; Spapé, Michiel M.; Barral, Oswald; Ravaja, Niklas; Jacucci, Giulio; Kaski, Samuel
2016-01-01
Finding relevant information from large document collections such as the World Wide Web is a common task in our daily lives. Estimation of a user’s interest or search intention is necessary to recommend and retrieve relevant information from these collections. We introduce a brain-information interface used for recommending information by relevance inferred directly from brain signals. In experiments, participants were asked to read Wikipedia documents about a selection of topics while their EEG was recorded. Based on the prediction of word relevance, the individual’s search intent was modeled and successfully used for retrieving new relevant documents from the whole English Wikipedia corpus. The results show that the users’ interests toward digital content can be modeled from the brain signals evoked by reading. The introduced brain-relevance paradigm enables the recommendation of information without any explicit user interaction and may be applied across diverse information-intensive applications. PMID:27929077
NASA Astrophysics Data System (ADS)
Eugster, Manuel J. A.; Ruotsalo, Tuukka; Spapé, Michiel M.; Barral, Oswald; Ravaja, Niklas; Jacucci, Giulio; Kaski, Samuel
2016-12-01
Finding relevant information from large document collections such as the World Wide Web is a common task in our daily lives. Estimation of a user’s interest or search intention is necessary to recommend and retrieve relevant information from these collections. We introduce a brain-information interface used for recommending information by relevance inferred directly from brain signals. In experiments, participants were asked to read Wikipedia documents about a selection of topics while their EEG was recorded. Based on the prediction of word relevance, the individual’s search intent was modeled and successfully used for retrieving new relevant documents from the whole English Wikipedia corpus. The results show that the users’ interests toward digital content can be modeled from the brain signals evoked by reading. The introduced brain-relevance paradigm enables the recommendation of information without any explicit user interaction and may be applied across diverse information-intensive applications.
de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares
2018-01-01
This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named “Get Coins,” through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user. PMID:29849549
Leite, Harlei Miguel de Arruda; de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares
2018-01-01
This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named "Get Coins," through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user.
Elsawy, Amr S; Eldawlatly, Seif; Taher, Mohamed; Aly, Gamal M
2014-01-01
The current trend to use Brain-Computer Interfaces (BCIs) with mobile devices mandates the development of efficient EEG data processing methods. In this paper, we demonstrate the performance of a Principal Component Analysis (PCA) ensemble classifier for P300-based spellers. We recorded EEG data from multiple subjects using the Emotiv neuroheadset in the context of a classical oddball P300 speller paradigm. We compare the performance of the proposed ensemble classifier to the performance of traditional feature extraction and classifier methods. Our results demonstrate the capability of the PCA ensemble classifier to classify P300 data recorded using the Emotiv neuroheadset with an average accuracy of 86.29% on cross-validation data. In addition, offline testing of the recorded data reveals an average classification accuracy of 73.3% that is significantly higher than that achieved using traditional methods. Finally, we demonstrate the effect of the parameters of the P300 speller paradigm on the performance of the method.
Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses
NASA Astrophysics Data System (ADS)
Baek, Hyun Jae; Kim, Hyun Seok; Heo, Jeong; Lim, Yong Gyu; Park, Kwang Suk
2013-04-01
Objective. Brain-computer interface (BCI) technologies have been intensely studied to provide alternative communication tools entirely independent of neuromuscular activities. Current BCI technologies use electroencephalogram (EEG) acquisition methods that require unpleasant gel injections, impractical preparations and clean-up procedures. The next generation of BCI technologies requires practical, user-friendly, nonintrusive EEG platforms in order to facilitate the application of laboratory work in real-world settings. Approach. A capacitive electrode that does not require an electrolytic gel or direct electrode-scalp contact is a potential alternative to the conventional wet electrode in future BCI systems. We have proposed a new capacitive EEG electrode that contains a conductive polymer-sensing surface, which enhances electrode performance. This paper presents results from five subjects who exhibited visual or auditory steady-state responses according to BCI using these new capacitive electrodes. The steady-state visual evoked potential (SSVEP) spelling system and the auditory steady-state response (ASSR) binary decision system were employed. Main results. Offline tests demonstrated BCI performance high enough to be used in a BCI system (accuracy: 95.2%, ITR: 19.91 bpm for SSVEP BCI (6 s), accuracy: 82.6%, ITR: 1.48 bpm for ASSR BCI (14 s)) with the analysis time being slightly longer than that when wet electrodes were employed with the same BCI system (accuracy: 91.2%, ITR: 25.79 bpm for SSVEP BCI (4 s), accuracy: 81.3%, ITR: 1.57 bpm for ASSR BCI (12 s)). Subjects performed online BCI under the SSVEP paradigm in copy spelling mode and under the ASSR paradigm in selective attention mode with a mean information transfer rate (ITR) of 17.78 ± 2.08 and 0.7 ± 0.24 bpm, respectively. Significance. The results of these experiments demonstrate the feasibility of using our capacitive EEG electrode in BCI systems. This capacitive electrode may become a flexible and non-intrusive tool fit for various applications in the next generation of BCI technologies.
Robot Control Through Brain Computer Interface For Patterns Generation
NASA Astrophysics Data System (ADS)
Belluomo, P.; Bucolo, M.; Fortuna, L.; Frasca, M.
2011-09-01
A Brain Computer Interface (BCI) system processes and translates neuronal signals, that mainly comes from EEG instruments, into commands for controlling electronic devices. This system can allow people with motor disabilities to control external devices through the real-time modulation of their brain waves. In this context an EEG-based BCI system that allows creative luminous artistic representations is here presented. The system that has been designed and realized in our laboratory interfaces the BCI2000 platform performing real-time analysis of EEG signals with a couple of moving luminescent twin robots. Experiments are also presented.
A review of classification algorithms for EEG-based brain-computer interfaces.
Lotte, F; Congedo, M; Lécuyer, A; Lamarche, F; Arnaldi, B
2007-06-01
In this paper we review classification algorithms used to design brain-computer interface (BCI) systems based on electroencephalography (EEG). We briefly present the commonly employed algorithms and describe their critical properties. Based on the literature, we compare them in terms of performance and provide guidelines to choose the suitable classification algorithm(s) for a specific BCI.
Boninger, Michael L; Wechsler, Lawrence R; Stein, Joel
2014-11-01
The aim of this study was to describe the current state and latest advances in robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery for stroke. The authors of this summary recently reviewed this work as part of a national presentation. The article represents the information included in each area. Each area has seen great advances and challenges as products move to market and experiments are ongoing. Robotics, stem cells, and brain-computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial.
Boninger, Michael L; Wechsler, Lawrence R.; Stein, Joel
2014-01-01
Objective To describe the current state and latest advances in robotics, stem cells, and brain computer interfaces in rehabilitation and recovery for stroke. Design The authors of this summary recently reviewed this work as part of a national presentation. The paper represents the information included in each area. Results Each area has seen great advances and challenges as products move to market and experiments are ongoing. Conclusion Robotics, stem cells, and brain computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial PMID:25313662
Brain Computer Interfaces for Enhanced Interaction with Mobile Robot Agents
2016-07-27
synergistic and complementary way. This project focused on acquiring a mobile robotic agent platform that can be used to explore these interfaces...providing a test environment where the human control of a robot agent can be experimentally validated in 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...Distribution Unlimited UU UU UU UU 27-07-2016 17-Sep-2013 16-Sep-2014 Final Report: Brain Computer Interfaces for Enhanced Interactions with Mobile Robot
A novel BCI based on ERP components sensitive to configural processing of human faces
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhao, Qibin; Jing, Jin; Wang, Xingyu; Cichocki, Andrzej
2012-04-01
This study introduces a novel brain-computer interface (BCI) based on an oddball paradigm using stimuli of facial images with loss of configural face information (e.g., inversion of face). To the best of our knowledge, till now the configural processing of human faces has not been applied to BCI but widely studied in cognitive neuroscience research. Our experiments confirm that the face-sensitive event-related potential (ERP) components N170 and vertex positive potential (VPP) have reflected early structural encoding of faces and can be modulated by the configural processing of faces. With the proposed novel paradigm, we investigate the effects of ERP components N170, VPP and P300 on target detection for BCI. An eight-class BCI platform is developed to analyze ERPs and evaluate the target detection performance using linear discriminant analysis without complicated feature extraction processing. The online classification accuracy of 88.7% and information transfer rate of 38.7 bits min-1 using stimuli of inverted faces with only single trial suggest that the proposed paradigm based on the configural processing of faces is very promising for visual stimuli-driven BCI applications.
A novel BCI based on ERP components sensitive to configural processing of human faces.
Zhang, Yu; Zhao, Qibin; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej
2012-04-01
This study introduces a novel brain-computer interface (BCI) based on an oddball paradigm using stimuli of facial images with loss of configural face information (e.g., inversion of face). To the best of our knowledge, till now the configural processing of human faces has not been applied to BCI but widely studied in cognitive neuroscience research. Our experiments confirm that the face-sensitive event-related potential (ERP) components N170 and vertex positive potential (VPP) have reflected early structural encoding of faces and can be modulated by the configural processing of faces. With the proposed novel paradigm, we investigate the effects of ERP components N170, VPP and P300 on target detection for BCI. An eight-class BCI platform is developed to analyze ERPs and evaluate the target detection performance using linear discriminant analysis without complicated feature extraction processing. The online classification accuracy of 88.7% and information transfer rate of 38.7 bits min(-1) using stimuli of inverted faces with only single trial suggest that the proposed paradigm based on the configural processing of faces is very promising for visual stimuli-driven BCI applications.
Fully Implanted Brain-Computer Interface in a Locked-In Patient with ALS.
Vansteensel, Mariska J; Pels, Elmar G M; Bleichner, Martin G; Branco, Mariana P; Denison, Timothy; Freudenburg, Zachary V; Gosselaar, Peter; Leinders, Sacha; Ottens, Thomas H; Van Den Boom, Max A; Van Rijen, Peter C; Aarnoutse, Erik J; Ramsey, Nick F
2016-11-24
Options for people with severe paralysis who have lost the ability to communicate orally are limited. We describe a method for communication in a patient with late-stage amyotrophic lateral sclerosis (ALS), involving a fully implanted brain-computer interface that consists of subdural electrodes placed over the motor cortex and a transmitter placed subcutaneously in the left side of the thorax. By attempting to move the hand on the side opposite the implanted electrodes, the patient accurately and independently controlled a computer typing program 28 weeks after electrode placement, at the equivalent of two letters per minute. The brain-computer interface offered autonomous communication that supplemented and at times supplanted the patient's eye-tracking device. (Funded by the Government of the Netherlands and the European Union; ClinicalTrials.gov number, NCT02224469 .).
Neuroimaging Study Designs, Computational Analyses and Data Provenance Using the LONI Pipeline
Dinov, Ivo; Lozev, Kamen; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Pierce, Jonathan; Zamanyan, Alen; Chakrapani, Shruthi; Van Horn, John; Parker, D. Stott; Magsipoc, Rico; Leung, Kelvin; Gutman, Boris; Woods, Roger; Toga, Arthur
2010-01-01
Modern computational neuroscience employs diverse software tools and multidisciplinary expertise to analyze heterogeneous brain data. The classical problems of gathering meaningful data, fitting specific models, and discovering appropriate analysis and visualization tools give way to a new class of computational challenges—management of large and incongruous data, integration and interoperability of computational resources, and data provenance. We designed, implemented and validated a new paradigm for addressing these challenges in the neuroimaging field. Our solution is based on the LONI Pipeline environment [3], [4], a graphical workflow environment for constructing and executing complex data processing protocols. We developed study-design, database and visual language programming functionalities within the LONI Pipeline that enable the construction of complete, elaborate and robust graphical workflows for analyzing neuroimaging and other data. These workflows facilitate open sharing and communication of data and metadata, concrete processing protocols, result validation, and study replication among different investigators and research groups. The LONI Pipeline features include distributed grid-enabled infrastructure, virtualized execution environment, efficient integration, data provenance, validation and distribution of new computational tools, automated data format conversion, and an intuitive graphical user interface. We demonstrate the new LONI Pipeline features using large scale neuroimaging studies based on data from the International Consortium for Brain Mapping [5] and the Alzheimer's Disease Neuroimaging Initiative [6]. User guides, forums, instructions and downloads of the LONI Pipeline environment are available at http://pipeline.loni.ucla.edu. PMID:20927408
A Brain-Machine Interface Instructed by Direct Intracortical Microstimulation
O'Doherty, Joseph E.; Lebedev, Mikhail A.; Hanson, Timothy L.; Fitzsimmons, Nathan A.; Nicolelis, Miguel A. L.
2009-01-01
Brain–machine interfaces (BMIs) establish direct communication between the brain and artificial actuators. As such, they hold considerable promise for restoring mobility and communication in patients suffering from severe body paralysis. To achieve this end, future BMIs must also provide a means for delivering sensory signals from the actuators back to the brain. Prosthetic sensation is needed so that neuroprostheses can be better perceived and controlled. Here we show that a direct intracortical input can be added to a BMI to instruct rhesus monkeys in choosing the direction of reaching movements generated by the BMI. Somatosensory instructions were provided to two monkeys operating the BMI using either: (a) vibrotactile stimulation of the monkey's hands or (b) multi-channel intracortical microstimulation (ICMS) delivered to the primary somatosensory cortex (S1) in one monkey and posterior parietal cortex (PP) in the other. Stimulus delivery was contingent on the position of the computer cursor: the monkey placed it in the center of the screen to receive machine–brain recursive input. After 2 weeks of training, the same level of proficiency in utilizing somatosensory information was achieved with ICMS of S1 as with the stimulus delivered to the hand skin. ICMS of PP was not effective. These results indicate that direct, bi-directional communication between the brain and neuroprosthetic devices can be achieved through the combination of chronic multi-electrode recording and microstimulation of S1. We propose that in the future, bidirectional BMIs incorporating ICMS may become an effective paradigm for sensorizing neuroprosthetic devices. PMID:19750199
The Self-Paced Graz Brain-Computer Interface: Methods and Applications
Scherer, Reinhold; Schloegl, Alois; Lee, Felix; Bischof, Horst; Janša, Janez; Pfurtscheller, Gert
2007-01-01
We present the self-paced 3-class Graz brain-computer interface (BCI) which is based on the detection of sensorimotor electroencephalogram (EEG) rhythms induced by motor imagery. Self-paced operation means that the BCI is able to determine whether the ongoing brain activity is intended as control signal (intentional control) or not (non-control state). The presented system is able to automatically reduce electrooculogram (EOG) artifacts, to detect electromyographic (EMG) activity, and uses only three bipolar EEG channels. Two applications are presented: the freeSpace virtual environment (VE) and the Brainloop interface. The freeSpace is a computer-game-like application where subjects have to navigate through the environment and collect coins by autonomously selecting navigation commands. Three subjects participated in these feedback experiments and each learned to navigate through the VE and collect coins. Two out of the three succeeded in collecting all three coins. The Brainloop interface provides an interface between the Graz-BCI and Google Earth. PMID:18350133
Assessment and Communication for People with Disorders of Consciousness.
Ortner, Rupert; Allison, Brendan Z; Pichler, Gerald; Heilinger, Alexander; Sabathiel, Nikolaus; Guger, Christoph
2017-08-01
In this experiment, we demonstrate a suite of hybrid Brain-Computer Interface (BCI)-based paradigms that are designed for two applications: assessing the level of consciousness of people unable to provide motor response and, in a second stage, establishing a communication channel for these people that enables them to answer questions with either 'yes' or 'no'. The suite of paradigms is designed to test basic responses in the first step and to continue to more comprehensive tasks if the first tests are successful. The latter tasks require more cognitive functions, but they could provide communication, which is not possible with the basic tests. All assessment tests produce accuracy plots that show whether the algorithms were able to detect the patient's brain's response to the given tasks. If the accuracy level is beyond the significance level, we assume that the subject understood the task and was able to follow the sequence of commands presented via earphones to the subject. The tasks require users to concentrate on certain stimuli or to imagine moving either the left or right hand. All tasks are designed around the assumption that the user is unable to use the visual modality, and thus, all stimuli presented to the user (including instructions, cues, and feedback) are auditory or tactile.
Decoding Saccadic Directions Using Epidural ECoG in Non-Human Primates.
Lee, Jeyeon; Choi, Hoseok; Lee, Seho; Cho, Baek Hwan; Ahn, Kyoung Ha; Kim, In Young; Lee, Kyoung Min; Jang, Dong Pyo
2017-08-01
A brain-computer interface (BCI) can be used to restore some communication as an alternative interface for patients suffering from locked-in syndrome. However, most BCI systems are based on SSVEP, P300, or motor imagery, and a diversity of BCI protocols would be needed for various types of patients. In this paper, we trained the choice saccade (CS) task in 2 non-human primate monkeys and recorded the brain signal using an epidural electrocorticogram (eECoG) to predict eye movement direction. We successfully predicted the direction of the upcoming eye movement using a support vector machine (SVM) with the brain signals after the directional cue onset and before the saccade execution. The mean accuracies were 80% for 2 directions and 43% for 4 directions. We also quantified the spatial-spectro-temporal contribution ratio using SVM recursive feature elimination (RFE). The channels over the frontal eye field (FEF), supplementary eye field (SEF), and superior parietal lobule (SPL) area were dominantly used for classification. The α-band in the spectral domain and the time bins just after the directional cue onset and just before the saccadic execution were mainly useful for prediction. A saccade based BCI paradigm can be projected in the 2D space, and will hopefully provide an intuitive and convenient communication platform for users. © 2017 The Korean Academy of Medical Sciences.
Detecting Mental States by Machine Learning Techniques: The Berlin Brain-Computer Interface
NASA Astrophysics Data System (ADS)
Blankertz, Benjamin; Tangermann, Michael; Vidaurre, Carmen; Dickhaus, Thorsten; Sannelli, Claudia; Popescu, Florin; Fazli, Siamac; Danóczy, Márton; Curio, Gabriel; Müller, Klaus-Robert
The Berlin Brain-Computer Interface Brain-Computer Interface (BBCI) uses a machine learning approach to extract user-specific patterns from high-dimensional EEG-features optimized for revealing the user's mental state. Classical BCI applications are brain actuated tools for patients such as prostheses (see Section 4.1) or mental text entry systems ([1] and see [2-5] for an overview on BCI). In these applications, the BBCI uses natural motor skills of the users and specifically tailored pattern recognition algorithms for detecting the user's intent. But beyond rehabilitation, there is a wide range of possible applications in which BCI technology is used to monitor other mental states, often even covert ones (see also [6] in the fMRI realm). While this field is still largely unexplored, two examples from our studies are exemplified in Sections 4.3 and 4.4.
Walter, Armin; Murguialday, Ander R.; Rosenstiel, Wolfgang; Birbaumer, Niels; Bogdan, Martin
2012-01-01
Brain-state-dependent stimulation (BSDS) combines brain-computer interfaces (BCIs) and cortical stimulation into one paradigm that allows the online decoding for example of movement intention from brain signals while simultaneously applying stimulation. If the BCI decoding is performed by spectral features, stimulation after-effects such as artefacts and evoked activity present a challenge for a successful implementation of BSDS because they can impair the detection of targeted brain states. Therefore, efficient and robust methods are needed to minimize the influence of the stimulation-induced effects on spectral estimation without violating the real-time constraints of the BCI. In this work, we compared four methods for spectral estimation with autoregressive (AR) models in the presence of pulsed cortical stimulation. Using combined EEG-TMS (electroencephalography-transcranial magnetic stimulation) as well as combined electrocorticography (ECoG) and epidural electrical stimulation, three patients performed a motor task using a sensorimotor-rhythm BCI. Three stimulation paradigms were varied between sessions: (1) no stimulation, (2) single stimulation pulses applied independently (open-loop), or (3) coupled to the BCI output (closed-loop) such that stimulation was given only while an intention to move was detected using neural data. We found that removing the stimulation after-effects by linear interpolation can introduce a bias in the estimation of the spectral power of the sensorimotor rhythm, leading to an overestimation of decoding performance in the closed-loop setting. We propose the use of the Burg algorithm for segmented data to deal with stimulation after-effects. This work shows that the combination of BCIs controlled with spectral features and cortical stimulation in a closed-loop fashion is possible when the influence of stimulation after-effects on spectral estimation is minimized. PMID:23162436
Distributed user interfaces for clinical ubiquitous computing applications.
Bång, Magnus; Larsson, Anders; Berglund, Erik; Eriksson, Henrik
2005-08-01
Ubiquitous computing with multiple interaction devices requires new interface models that support user-specific modifications to applications and facilitate the fast development of active workspaces. We have developed NOSTOS, a computer-augmented work environment for clinical personnel to explore new user interface paradigms for ubiquitous computing. NOSTOS uses several devices such as digital pens, an active desk, and walk-up displays that allow the system to track documents and activities in the workplace. We present the distributed user interface (DUI) model that allows standalone applications to distribute their user interface components to several devices dynamically at run-time. This mechanism permit clinicians to develop their own user interfaces and forms to clinical information systems to match their specific needs. We discuss the underlying technical concepts of DUIs and show how service discovery, component distribution, events and layout management are dealt with in the NOSTOS system. Our results suggest that DUIs--and similar network-based user interfaces--will be a prerequisite of future mobile user interfaces and essential to develop clinical multi-device environments.
Bigger data for big data: from Twitter to brain-computer interfaces.
Roesch, Etienne B; Stahl, Frederic; Gaber, Mohamed Medhat
2014-02-01
We are sympathetic with Bentley et al.'s attempt to encompass the wisdom of crowds in a generative model, but posit that a successful attempt at using big data will include more sensitive measurements, more varied sources of information, and will also build from the indirect information available through technology, from ancillary technical features to data from brain-computer interfaces.
Shan, Haijun; Xu, Haojie; Zhu, Shanan; He, Bin
2015-10-21
For sensorimotor rhythms based brain-computer interface (BCI) systems, classification of different motor imageries (MIs) remains a crucial problem. An important aspect is how many scalp electrodes (channels) should be used in order to reach optimal performance classifying motor imaginations. While the previous researches on channel selection mainly focus on MI tasks paradigms without feedback, the present work aims to investigate the optimal channel selection in MI tasks paradigms with real-time feedback (two-class control and four-class control paradigms). In the present study, three datasets respectively recorded from MI tasks experiment, two-class control and four-class control experiments were analyzed offline. Multiple frequency-spatial synthesized features were comprehensively extracted from every channel, and a new enhanced method IterRelCen was proposed to perform channel selection. IterRelCen was constructed based on Relief algorithm, but was enhanced from two aspects: change of target sample selection strategy and adoption of the idea of iterative computation, and thus performed more robust in feature selection. Finally, a multiclass support vector machine was applied as the classifier. The least number of channels that yield the best classification accuracy were considered as the optimal channels. One-way ANOVA was employed to test the significance of performance improvement among using optimal channels, all the channels and three typical MI channels (C3, C4, Cz). The results show that the proposed method outperformed other channel selection methods by achieving average classification accuracies of 85.2, 94.1, and 83.2 % for the three datasets, respectively. Moreover, the channel selection results reveal that the average numbers of optimal channels were significantly different among the three MI paradigms. It is demonstrated that IterRelCen has a strong ability for feature selection. In addition, the results have shown that the numbers of optimal channels in the three different motor imagery BCI paradigms are distinct. From a MI task paradigm, to a two-class control paradigm, and to a four-class control paradigm, the number of required channels for optimizing the classification accuracy increased. These findings may provide useful information to optimize EEG based BCI systems, and further improve the performance of noninvasive BCI.
Dendritic Learning as a Paradigm Shift in Brain Learning.
Sardi, Shira; Vardi, Roni; Goldental, Amir; Tugendhaft, Yael; Uzan, Herut; Kanter, Ido
2018-06-20
Experimental and theoretical results reveal a new underlying mechanism for fast brain learning process, dendritic learning, as opposed to the misdirected research in neuroscience over decades, which is based solely on slow synaptic plasticity. The presented paradigm indicates that learning occurs in closer proximity to the neuron, the computational unit, dendritic strengths are self-oscillating, and weak synapses, which comprise the majority of our brain and previously were assumed to be insignificant, play a key role in plasticity. The new learning sites of the brain call for a reevaluation of current treatments for disordered brain functionality and for a better understanding of proper chemical drugs and biological mechanisms to maintain, control and enhance learning.
Tu, Yiheng; Hung, Yeung Sam; Hu, Li; Huang, Gan; Hu, Yong; Zhang, Zhiguo
2014-12-01
This study aims (1) to develop an automated and fast approach for detecting visual evoked potentials (VEPs) in single trials and (2) to apply the single-trial VEP detection approach in designing a real-time and high-performance brain-computer interface (BCI) system. The single-trial VEP detection approach uses common spatial pattern (CSP) as a spatial filter and wavelet filtering (WF) a temporal-spectral filter to jointly enhance the signal-to-noise ratio (SNR) of single-trial VEPs. The performance of the joint spatial-temporal-spectral filtering approach was assessed in a four-command VEP-based BCI system. The offline classification accuracy of the BCI system was significantly improved from 67.6±12.5% (raw data) to 97.3±2.1% (data filtered by CSP and WF). The proposed approach was successfully implemented in an online BCI system, where subjects could make 20 decisions in one minute with classification accuracy of 90%. The proposed single-trial detection approach is able to obtain robust and reliable VEP waveform in an automatic and fast way and it is applicable in VEP based online BCI systems. This approach provides a real-time and automated solution for single-trial detection of evoked potentials or event-related potentials (EPs/ERPs) in various paradigms, which could benefit many applications such as BCI and intraoperative monitoring. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Chung, EunJung; Kim, Jung-Hee; Park, Dae-Sung; Lee, Byoung-Hee
2015-03-01
[Purpose] This study sought to determine the effects of brain-computer interface-based functional electrical stimulation (BCI-FES) on brain activation in patients with stroke. [Subjects] The subjects were randomized to in a BCI-FES group (n=5) and a functional electrical stimulation (FES) group (n=5). [Methods] Patients in the BCI-FES group received ankle dorsiflexion training with FES for 30 minutes per day, 5 times under the brain-computer interface-based program. The FES group received ankle dorsiflexion training with FES for the same amount of time. [Results] The BCI-FES group demonstrated significant differences in the frontopolar regions 1 and 2 attention indexes, and frontopolar 1 activation index. The FES group demonstrated no significant differences. There were significant differences in the frontopolar 1 region activation index between the two groups after the interventions. [Conclusion] The results of this study suggest that BCI-FES training may be more effective in stimulating brain activation than only FES training in patients recovering from stroke.
Researching and Reducing the Health Burden of Stroke
... the result of continuing research to map the brain and interface it with a computer to enable stroke patients to regain function. How important is the new effort to map the human brain? The brain is more complex than any computer ...
Bridging Social and Semantic Computing - Design and Evaluation of User Interfaces for Hybrid Systems
ERIC Educational Resources Information Center
Bostandjiev, Svetlin Alex I.
2012-01-01
The evolution of the Web brought new interesting problems to computer scientists that we loosely classify in the fields of social and semantic computing. Social computing is related to two major paradigms: computations carried out by a large amount of people in a collective intelligence fashion (i.e. wikis), and performing computations on social…
A Collaborative Brain-Computer Interface for Improving Human Performance
Wang, Yijun; Jung, Tzyy-Ping
2011-01-01
Electroencephalogram (EEG) based brain-computer interfaces (BCI) have been studied since the 1970s. Currently, the main focus of BCI research lies on the clinical use, which aims to provide a new communication channel to patients with motor disabilities to improve their quality of life. However, the BCI technology can also be used to improve human performance for normal healthy users. Although this application has been proposed for a long time, little progress has been made in real-world practices due to technical limits of EEG. To overcome the bottleneck of low single-user BCI performance, this study proposes a collaborative paradigm to improve overall BCI performance by integrating information from multiple users. To test the feasibility of a collaborative BCI, this study quantitatively compares the classification accuracies of collaborative and single-user BCI applied to the EEG data collected from 20 subjects in a movement-planning experiment. This study also explores three different methods for fusing and analyzing EEG data from multiple subjects: (1) Event-related potentials (ERP) averaging, (2) Feature concatenating, and (3) Voting. In a demonstration system using the Voting method, the classification accuracy of predicting movement directions (reaching left vs. reaching right) was enhanced substantially from 66% to 80%, 88%, 93%, and 95% as the numbers of subjects increased from 1 to 5, 10, 15, and 20, respectively. Furthermore, the decision of reaching direction could be made around 100–250 ms earlier than the subject's actual motor response by decoding the ERP activities arising mainly from the posterior parietal cortex (PPC), which are related to the processing of visuomotor transmission. Taken together, these results suggest that a collaborative BCI can effectively fuse brain activities of a group of people to improve the overall performance of natural human behavior. PMID:21655253
Jiang, Jun; Zhou, Zongtan; Yin, Erwei; Yu, Yang; Liu, Yadong; Hu, Dewen
2015-11-01
Motor imagery (MI)-based brain-computer interfaces (BCIs) allow disabled individuals to control external devices voluntarily, helping us to restore lost motor functions. However, the number of control commands available in MI-based BCIs remains limited, limiting the usability of BCI systems in control applications involving multiple degrees of freedom (DOF), such as control of a robot arm. To address this problem, we developed a novel Morse code-inspired method for MI-based BCI design to increase the number of output commands. Using this method, brain activities are modulated by sequences of MI (sMI) tasks, which are constructed by alternately imagining movements of the left or right hand or no motion. The codes of the sMI task was detected from EEG signals and mapped to special commands. According to permutation theory, an sMI task with N-length allows 2 × (2(N)-1) possible commands with the left and right MI tasks under self-paced conditions. To verify its feasibility, the new method was used to construct a six-class BCI system to control the arm of a humanoid robot. Four subjects participated in our experiment and the averaged accuracy of the six-class sMI tasks was 89.4%. The Cohen's kappa coefficient and the throughput of our BCI paradigm are 0.88 ± 0.060 and 23.5bits per minute (bpm), respectively. Furthermore, all of the subjects could operate an actual three-joint robot arm to grasp an object in around 49.1s using our approach. These promising results suggest that the Morse code-inspired method could be used in the design of BCIs for multi-DOF control. Copyright © 2015 Elsevier Ltd. All rights reserved.
Near infrared spectroscopy based brain-computer interface
NASA Astrophysics Data System (ADS)
Ranganatha, Sitaram; Hoshi, Yoko; Guan, Cuntai
2005-04-01
A brain-computer interface (BCI) provides users with an alternative output channel other than the normal output path of the brain. BCI is being given much attention recently as an alternate mode of communication and control for the disabled, such as patients suffering from Amyotrophic Lateral Sclerosis (ALS) or "locked-in". BCI may also find applications in military, education and entertainment. Most of the existing BCI systems which rely on the brain's electrical activity use scalp EEG signals. The scalp EEG is an inherently noisy and non-linear signal. The signal is detrimentally affected by various artifacts such as the EOG, EMG, ECG and so forth. EEG is cumbersome to use in practice, because of the need for applying conductive gel, and the need for the subject to be immobile. There is an urgent need for a more accessible interface that uses a more direct measure of cognitive function to control an output device. The optical response of Near Infrared Spectroscopy (NIRS) denoting brain activation can be used as an alternative to electrical signals, with the intention of developing a more practical and user-friendly BCI. In this paper, a new method of brain-computer interface (BCI) based on NIRS is proposed. Preliminary results of our experiments towards developing this system are reported.
A brain-controlled lower-limb exoskeleton for human gait training.
Liu, Dong; Chen, Weihai; Pei, Zhongcai; Wang, Jianhua
2017-10-01
Brain-computer interfaces have been a novel approach to translate human intentions into movement commands in robotic systems. This paper describes an electroencephalogram-based brain-controlled lower-limb exoskeleton for gait training, as a proof of concept towards rehabilitation with human-in-the-loop. Instead of using conventional single electroencephalography correlates, e.g., evoked P300 or spontaneous motor imagery, we propose a novel framework integrated two asynchronous signal modalities, i.e., sensorimotor rhythms (SMRs) and movement-related cortical potentials (MRCPs). We executed experiments in a biologically inspired and customized lower-limb exoskeleton where subjects (N = 6) actively controlled the robot using their brain signals. Each subject performed three consecutive sessions composed of offline training, online visual feedback testing, and online robot-control recordings. Post hoc evaluations were conducted including mental workload assessment, feature analysis, and statistics test. An average robot-control accuracy of 80.16% ± 5.44% was obtained with the SMR-based method, while estimation using the MRCP-based method yielded an average performance of 68.62% ± 8.55%. The experimental results showed the feasibility of the proposed framework with all subjects successfully controlled the exoskeleton. The current paradigm could be further extended to paraplegic patients in clinical trials.
A brain-controlled lower-limb exoskeleton for human gait training
NASA Astrophysics Data System (ADS)
Liu, Dong; Chen, Weihai; Pei, Zhongcai; Wang, Jianhua
2017-10-01
Brain-computer interfaces have been a novel approach to translate human intentions into movement commands in robotic systems. This paper describes an electroencephalogram-based brain-controlled lower-limb exoskeleton for gait training, as a proof of concept towards rehabilitation with human-in-the-loop. Instead of using conventional single electroencephalography correlates, e.g., evoked P300 or spontaneous motor imagery, we propose a novel framework integrated two asynchronous signal modalities, i.e., sensorimotor rhythms (SMRs) and movement-related cortical potentials (MRCPs). We executed experiments in a biologically inspired and customized lower-limb exoskeleton where subjects (N = 6) actively controlled the robot using their brain signals. Each subject performed three consecutive sessions composed of offline training, online visual feedback testing, and online robot-control recordings. Post hoc evaluations were conducted including mental workload assessment, feature analysis, and statistics test. An average robot-control accuracy of 80.16% ± 5.44% was obtained with the SMR-based method, while estimation using the MRCP-based method yielded an average performance of 68.62% ± 8.55%. The experimental results showed the feasibility of the proposed framework with all subjects successfully controlled the exoskeleton. The current paradigm could be further extended to paraplegic patients in clinical trials.
Brain-computer interfaces in neurological rehabilitation.
Daly, Janis J; Wolpaw, Jonathan R
2008-11-01
Recent advances in analysis of brain signals, training patients to control these signals, and improved computing capabilities have enabled people with severe motor disabilities to use their brain signals for communication and control of objects in their environment, thereby bypassing their impaired neuromuscular system. Non-invasive, electroencephalogram (EEG)-based brain-computer interface (BCI) technologies can be used to control a computer cursor or a limb orthosis, for word processing and accessing the internet, and for other functions such as environmental control or entertainment. By re-establishing some independence, BCI technologies can substantially improve the lives of people with devastating neurological disorders such as advanced amyotrophic lateral sclerosis. BCI technology might also restore more effective motor control to people after stroke or other traumatic brain disorders by helping to guide activity-dependent brain plasticity by use of EEG brain signals to indicate to the patient the current state of brain activity and to enable the user to subsequently lower abnormal activity. Alternatively, by use of brain signals to supplement impaired muscle control, BCIs might increase the efficacy of a rehabilitation protocol and thus improve muscle control for the patient.
Wang, Fang; Han, Yong; Wang, Bingyu; Peng, Qian; Huang, Xiaoqun; Miller, Karol; Wittek, Adam
2018-05-12
In this study, we investigate the effects of modelling choices for the brain-skull interface (layers of tissues between the brain and skull that determine boundary conditions for the brain) and the constitutive model of brain parenchyma on the brain responses under violent impact as predicted using computational biomechanics model. We used the head/brain model from Total HUman Model for Safety (THUMS)-extensively validated finite element model of the human body that has been applied in numerous injury biomechanics studies. The computations were conducted using a well-established nonlinear explicit dynamics finite element code LS-DYNA. We employed four approaches for modelling the brain-skull interface and four constitutive models for the brain tissue in the numerical simulations of the experiments on post-mortem human subjects exposed to violent impacts reported in the literature. The brain-skull interface models included direct representation of the brain meninges and cerebrospinal fluid, outer brain surface rigidly attached to the skull, frictionless sliding contact between the brain and skull, and a layer of spring-type cohesive elements between the brain and skull. We considered Ogden hyperviscoelastic, Mooney-Rivlin hyperviscoelastic, neo-Hookean hyperviscoelastic and linear viscoelastic constitutive models of the brain tissue. Our study indicates that the predicted deformations within the brain and related brain injury criteria are strongly affected by both the approach of modelling the brain-skull interface and the constitutive model of the brain parenchyma tissues. The results suggest that accurate prediction of deformations within the brain and risk of brain injury due to violent impact using computational biomechanics models may require representation of the meninges and subarachnoidal space with cerebrospinal fluid in the model and application of hyperviscoelastic (preferably Ogden-type) constitutive model for the brain tissue.
The Human Brain Project and neuromorphic computing
Calimera, Andrea; Macii, Enrico; Poncino, Massimo
Summary Understanding how the brain manages billions of processing units connected via kilometers of fibers and trillions of synapses, while consuming a few tens of Watts could provide the key to a completely new category of hardware (neuromorphic computing systems). In order to achieve this, a paradigm shift for computing as a whole is needed, which will see it moving away from current “bit precise” computing models and towards new techniques that exploit the stochastic behavior of simple, reliable, very fast, low-power computing devices embedded in intensely recursive architectures. In this paper we summarize how these objectives will be pursued in the Human Brain Project. PMID:24139655
Neurobiomimetic constructs for intelligent unmanned systems and robotics
NASA Astrophysics Data System (ADS)
Braun, Jerome J.; Shah, Danelle C.; DeAngelus, Marianne A.
2014-06-01
This paper discusses a paradigm we refer to as neurobiomimetic, which involves emulations of brain neuroanatomy and neurobiology aspects and processes. Neurobiomimetic constructs include rudimentary and down-scaled computational representations of brain regions, sub-regions, and synaptic connectivity. Many different instances of neurobiomimetic constructs are possible, depending on various aspects such as the initial conditions of synaptic connectivity, number of neuron elements in regions, connectivity specifics, and more, and we refer to these instances as `animats'. While downscaled for computational feasibility, the animats are very large constructs; the animats implemented in this work contain over 47,000 neuron elements and over 720,000 synaptic connections. The paper outlines aspects of the animats implemented, spatial memory and learning cognitive task, the virtual-reality environment constructed to study the animat performing that task, and discussion of results. In a broad sense, we argue that the neurobiomimetic paradigm pursued in this work constitutes a particularly promising path to artificial cognition and intelligent unmanned systems. Biological brains readily cope with challenges of real-life tasks that consistently prove beyond even the most sophisticated algorithmic approaches known. At the cross-over point of neuroscience, cognitive science and computer science, paradigms such as the one pursued in this work aim to mimic the mechanisms of biological brains and as such, we argue, may lead to machines with abilities closer to those of biological species.
Neuromuscular electrical stimulation induced brain patterns to decode motor imagery.
Vidaurre, C; Pascual, J; Ramos-Murguialday, A; Lorenz, R; Blankertz, B; Birbaumer, N; Müller, K-R
2013-09-01
Regardless of the paradigm used to implement a brain-computer interface (BCI), all systems suffer from BCI-inefficiency. In the case of patients the inefficiency can be high. Some solutions have been proposed to overcome this problem, however they have not been completely successful yet. EEG from 10 healthy users was recorded during neuromuscular electrical stimulation (NMES) of hands and feet and during motor imagery (MI) of the same limbs. Features and classifiers were computed using part of these data to decode MI. Offline analyses showed that it was possible to decode MI using a classifier based on afferent patterns induced by NMES and even infer a better model than with MI data. Afferent NMES motor patterns can support the calibration of BCI systems and be used to decode MI. This finding might be a new way to train sensorimotor rhythm (SMR) based BCI systems for healthy users having difficulties to attain BCI control. It might also be an alternative to train MI-based BCIs for users who cannot perform real movements but have remaining afferents (ALS, stroke patients). Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Aliakbaryhosseinabadi, Susan; Kostic, Vladimir; Pavlovic, Aleksandra; Radovanovic, Sasa; Nlandu Kamavuako, Ernest; Jiang, Ning; Petrini, Laura; Dremstrup, Kim; Farina, Dario; Mrachacz-Kersting, Natalie
2017-01-01
In this study, we analyzed the influence of artificially imposed attention variations using the auditory oddball paradigm on the cortical activity associated to motor preparation/execution. EEG signals from Cz and its surrounding channels were recorded during three sets of ankle dorsiflexion movements. Each set was interspersed with either a complex or a simple auditory oddball task for healthy participants and a complex auditory oddball task for stroke patients. The amplitude of the movement-related cortical potentials (MRCPs) decreased with the complex oddball paradigm, while MRCP variability increased. Both oddball paradigms increased the detection latency significantly (p<0.05) and the complex paradigm decreased the true positive rate (TPR) (p=0.04). In patients, the negativity of the MRCP decreased while pre-phase variability increased, and the detection latency and accuracy deteriorated with attention diversion. Attention diversion has a significant influence on MRCP features and detection parameters, although these changes were counteracted by the application of the laplacian method. Brain-computer interfaces for neuromodulation that use the MRCP as the control signal are robust to changes in attention. However, attention must be monitored since it plays a key role in plasticity induction. Here we demonstrate that this can be achieved using the single channel Cz. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
An Active RBSE Framework to Generate Optimal Stimulus Sequences in a BCI for Spelling
NASA Astrophysics Data System (ADS)
Moghadamfalahi, Mohammad; Akcakaya, Murat; Nezamfar, Hooman; Sourati, Jamshid; Erdogmus, Deniz
2017-10-01
A class of brain computer interfaces (BCIs) employs noninvasive recordings of electroencephalography (EEG) signals to enable users with severe speech and motor impairments to interact with their environment and social network. For example, EEG based BCIs for typing popularly utilize event related potentials (ERPs) for inference. Presentation paradigm design in current ERP-based letter by letter typing BCIs typically query the user with an arbitrary subset characters. However, the typing accuracy and also typing speed can potentially be enhanced with more informed subset selection and flash assignment. In this manuscript, we introduce the active recursive Bayesian state estimation (active-RBSE) framework for inference and sequence optimization. Prior to presentation in each iteration, rather than showing a subset of randomly selected characters, the developed framework optimally selects a subset based on a query function. Selected queries are made adaptively specialized for users during each intent detection. Through a simulation-based study, we assess the effect of active-RBSE on the performance of a language-model assisted typing BCI in terms of typing speed and accuracy. To provide a baseline for comparison, we also utilize standard presentation paradigms namely, row and column matrix presentation paradigm and also random rapid serial visual presentation paradigms. The results show that utilization of active-RBSE can enhance the online performance of the system, both in terms of typing accuracy and speed.
Internal models for interpreting neural population activity during sensorimotor control
Golub, Matthew D; Yu, Byron M; Chase, Steven M
2015-01-01
To successfully guide limb movements, the brain takes in sensory information about the limb, internally tracks the state of the limb, and produces appropriate motor commands. It is widely believed that this process uses an internal model, which describes our prior beliefs about how the limb responds to motor commands. Here, we leveraged a brain-machine interface (BMI) paradigm in rhesus monkeys and novel statistical analyses of neural population activity to gain insight into moment-by-moment internal model computations. We discovered that a mismatch between subjects’ internal models and the actual BMI explains roughly 65% of movement errors, as well as long-standing deficiencies in BMI speed control. We then used the internal models to characterize how the neural population activity changes during BMI learning. More broadly, this work provides an approach for interpreting neural population activity in the context of how prior beliefs guide the transformation of sensory input to motor output. DOI: http://dx.doi.org/10.7554/eLife.10015.001 PMID:26646183
Closed-loop brain training: the science of neurofeedback.
Sitaram, Ranganatha; Ros, Tomas; Stoeckel, Luke; Haller, Sven; Scharnowski, Frank; Lewis-Peacock, Jarrod; Weiskopf, Nikolaus; Blefari, Maria Laura; Rana, Mohit; Oblak, Ethan; Birbaumer, Niels; Sulzer, James
2017-02-01
Neurofeedback is a psychophysiological procedure in which online feedback of neural activation is provided to the participant for the purpose of self-regulation. Learning control over specific neural substrates has been shown to change specific behaviours. As a progenitor of brain-machine interfaces, neurofeedback has provided a novel way to investigate brain function and neuroplasticity. In this Review, we examine the mechanisms underlying neurofeedback, which have started to be uncovered. We also discuss how neurofeedback is being used in novel experimental and clinical paradigms from a multidisciplinary perspective, encompassing neuroscientific, neuroengineering and learning-science viewpoints.
Donati, Ana R C; Shokur, Solaiman; Morya, Edgard; Campos, Debora S F; Moioli, Renan C; Gitti, Claudia M; Augusto, Patricia B; Tripodi, Sandra; Pires, Cristhiane G; Pereira, Gislaine A; Brasil, Fabricio L; Gallo, Simone; Lin, Anthony A; Takigami, Angelo K; Aratanha, Maria A; Joshi, Sanjay; Bleuler, Hannes; Cheng, Gordon; Rudolph, Alan; Nicolelis, Miguel A L
2016-08-11
Brain-machine interfaces (BMIs) provide a new assistive strategy aimed at restoring mobility in severely paralyzed patients. Yet, no study in animals or in human subjects has indicated that long-term BMI training could induce any type of clinical recovery. Eight chronic (3-13 years) spinal cord injury (SCI) paraplegics were subjected to long-term training (12 months) with a multi-stage BMI-based gait neurorehabilitation paradigm aimed at restoring locomotion. This paradigm combined intense immersive virtual reality training, enriched visual-tactile feedback, and walking with two EEG-controlled robotic actuators, including a custom-designed lower limb exoskeleton capable of delivering tactile feedback to subjects. Following 12 months of training with this paradigm, all eight patients experienced neurological improvements in somatic sensation (pain localization, fine/crude touch, and proprioceptive sensing) in multiple dermatomes. Patients also regained voluntary motor control in key muscles below the SCI level, as measured by EMGs, resulting in marked improvement in their walking index. As a result, 50% of these patients were upgraded to an incomplete paraplegia classification. Neurological recovery was paralleled by the reemergence of lower limb motor imagery at cortical level. We hypothesize that this unprecedented neurological recovery results from both cortical and spinal cord plasticity triggered by long-term BMI usage.
Donati, Ana R. C.; Shokur, Solaiman; Morya, Edgard; Campos, Debora S. F.; Moioli, Renan C.; Gitti, Claudia M.; Augusto, Patricia B.; Tripodi, Sandra; Pires, Cristhiane G.; Pereira, Gislaine A.; Brasil, Fabricio L.; Gallo, Simone; Lin, Anthony A.; Takigami, Angelo K.; Aratanha, Maria A.; Joshi, Sanjay; Bleuler, Hannes; Cheng, Gordon; Rudolph, Alan; Nicolelis, Miguel A. L.
2016-01-01
Brain-machine interfaces (BMIs) provide a new assistive strategy aimed at restoring mobility in severely paralyzed patients. Yet, no study in animals or in human subjects has indicated that long-term BMI training could induce any type of clinical recovery. Eight chronic (3–13 years) spinal cord injury (SCI) paraplegics were subjected to long-term training (12 months) with a multi-stage BMI-based gait neurorehabilitation paradigm aimed at restoring locomotion. This paradigm combined intense immersive virtual reality training, enriched visual-tactile feedback, and walking with two EEG-controlled robotic actuators, including a custom-designed lower limb exoskeleton capable of delivering tactile feedback to subjects. Following 12 months of training with this paradigm, all eight patients experienced neurological improvements in somatic sensation (pain localization, fine/crude touch, and proprioceptive sensing) in multiple dermatomes. Patients also regained voluntary motor control in key muscles below the SCI level, as measured by EMGs, resulting in marked improvement in their walking index. As a result, 50% of these patients were upgraded to an incomplete paraplegia classification. Neurological recovery was paralleled by the reemergence of lower limb motor imagery at cortical level. We hypothesize that this unprecedented neurological recovery results from both cortical and spinal cord plasticity triggered by long-term BMI usage. PMID:27513629
Probabilistic co-adaptive brain-computer interfacing
NASA Astrophysics Data System (ADS)
Bryan, Matthew J.; Martin, Stefan A.; Cheung, Willy; Rao, Rajesh P. N.
2013-12-01
Objective. Brain-computer interfaces (BCIs) are confronted with two fundamental challenges: (a) the uncertainty associated with decoding noisy brain signals, and (b) the need for co-adaptation between the brain and the interface so as to cooperatively achieve a common goal in a task. We seek to mitigate these challenges. Approach. We introduce a new approach to brain-computer interfacing based on partially observable Markov decision processes (POMDPs). POMDPs provide a principled approach to handling uncertainty and achieving co-adaptation in the following manner: (1) Bayesian inference is used to compute posterior probability distributions (‘beliefs’) over brain and environment state, and (2) actions are selected based on entire belief distributions in order to maximize total expected reward; by employing methods from reinforcement learning, the POMDP’s reward function can be updated over time to allow for co-adaptive behaviour. Main results. We illustrate our approach using a simple non-invasive BCI which optimizes the speed-accuracy trade-off for individual subjects based on the signal-to-noise characteristics of their brain signals. We additionally demonstrate that the POMDP BCI can automatically detect changes in the user’s control strategy and can co-adaptively switch control strategies on-the-fly to maximize expected reward. Significance. Our results suggest that the framework of POMDPs offers a promising approach for designing BCIs that can handle uncertainty in neural signals and co-adapt with the user on an ongoing basis. The fact that the POMDP BCI maintains a probability distribution over the user’s brain state allows a much more powerful form of decision making than traditional BCI approaches, which have typically been based on the output of classifiers or regression techniques. Furthermore, the co-adaptation of the system allows the BCI to make online improvements to its behaviour, adjusting itself automatically to the user’s changing circumstances.
Progress in EEG-Based Brain Robot Interaction Systems
Li, Mengfan; Niu, Linwei; Xian, Bin; Zeng, Ming; Chen, Genshe
2017-01-01
The most popular noninvasive Brain Robot Interaction (BRI) technology uses the electroencephalogram- (EEG-) based Brain Computer Interface (BCI), to serve as an additional communication channel, for robot control via brainwaves. This technology is promising for elderly or disabled patient assistance with daily life. The key issue of a BRI system is to identify human mental activities, by decoding brainwaves, acquired with an EEG device. Compared with other BCI applications, such as word speller, the development of these applications may be more challenging since control of robot systems via brainwaves must consider surrounding environment feedback in real-time, robot mechanical kinematics, and dynamics, as well as robot control architecture and behavior. This article reviews the major techniques needed for developing BRI systems. In this review article, we first briefly introduce the background and development of mind-controlled robot technologies. Second, we discuss the EEG-based brain signal models with respect to generating principles, evoking mechanisms, and experimental paradigms. Subsequently, we review in detail commonly used methods for decoding brain signals, namely, preprocessing, feature extraction, and feature classification, and summarize several typical application examples. Next, we describe a few BRI applications, including wheelchairs, manipulators, drones, and humanoid robots with respect to synchronous and asynchronous BCI-based techniques. Finally, we address some existing problems and challenges with future BRI techniques. PMID:28484488
Stocco, Andrea; Prat, Chantel S; Losey, Darby M; Cronin, Jeneva A; Wu, Joseph; Abernethy, Justin A; Rao, Rajesh P N
2015-01-01
We present, to our knowledge, the first demonstration that a non-invasive brain-to-brain interface (BBI) can be used to allow one human to guess what is on the mind of another human through an interactive question-and-answering paradigm similar to the "20 Questions" game. As in previous non-invasive BBI studies in humans, our interface uses electroencephalography (EEG) to detect specific patterns of brain activity from one participant (the "respondent"), and transcranial magnetic stimulation (TMS) to deliver functionally-relevant information to the brain of a second participant (the "inquirer"). Our results extend previous BBI research by (1) using stimulation of the visual cortex to convey visual stimuli that are privately experienced and consciously perceived by the inquirer; (2) exploiting real-time rather than off-line communication of information from one brain to another; and (3) employing an interactive task, in which the inquirer and respondent must exchange information bi-directionally to collaboratively solve the task. The results demonstrate that using the BBI, ten participants (five inquirer-respondent pairs) can successfully identify a "mystery item" using a true/false question-answering protocol similar to the "20 Questions" game, with high levels of accuracy that are significantly greater than a control condition in which participants were connected through a sham BBI.
From Design to Implementation to Practice a Learning by Teaching System: Betty's Brain
ERIC Educational Resources Information Center
Biswas, Gautam; Segedy, James R.; Bunchongchit, Kritya
2016-01-01
This paper presents an overview of 10 years of research with the "Betty's Brain" computer-based learning environment. We discuss the theoretical basis for "Betty's Brain" and the learning-by-teaching paradigm. We also highlight our key research findings, and discuss how these findings have shaped subsequent research. Throughout…
Virtual reality and brain computer interface in neurorehabilitation
Dahdah, Marie; Driver, Simon; Parsons, Thomas D.; Richter, Kathleen M.
2016-01-01
The potential benefit of technology to enhance recovery after central nervous system injuries is an area of increasing interest and exploration. The primary emphasis to date has been motor recovery/augmentation and communication. This paper introduces two original studies to demonstrate how advanced technology may be integrated into subacute rehabilitation. The first study addresses the feasibility of brain computer interface with patients on an inpatient spinal cord injury unit. The second study explores the validity of two virtual environments with acquired brain injury as part of an intensive outpatient neurorehabilitation program. These preliminary studies support the feasibility of advanced technologies in the subacute stage of neurorehabilitation. These modalities were well tolerated by participants and could be incorporated into patients' inpatient and outpatient rehabilitation regimens without schedule disruptions. This paper expands the limited literature base regarding the use of advanced technologies in the early stages of recovery for neurorehabilitation populations and speaks favorably to the potential integration of brain computer interface and virtual reality technologies as part of a multidisciplinary treatment program. PMID:27034541
Martin, Suzanne; Armstrong, Elaine; Thomson, Eileen; Vargiu, Eloisa; Solà, Marc; Dauwalder, Stefan; Miralles, Felip; Daly Lynn, Jean
2017-07-14
Cognitive rehabilitation is established as a core intervention within rehabilitation programs following a traumatic brain injury (TBI). Digitally enabled assistive technologies offer opportunities for clinicians to increase remote access to rehabilitation supporting transition into home. Brain Computer Interface (BCI) systems can harness the residual abilities of individuals with limited function to gain control over computers through their brain waves. This paper presents an online cognitive rehabilitation application developed with therapists, to work remotely with people who have TBI, who will use BCI at home to engage in the therapy. A qualitative research study was completed with people who are community dwellers post brain injury (end users), and a cohort of therapists involved in cognitive rehabilitation. A user-centered approach over three phases in the development, design and feasibility testing of this cognitive rehabilitation application included two tasks (Find-a-Category and a Memory Card task). The therapist could remotely prescribe activity with different levels of difficulty. The service user had a home interface which would present the therapy activities. This novel work was achieved by an international consortium of academics, business partners and service users.
Modulation of post‐movement beta rebound by contraction force and rate of force development
Fry, Adam; Mullinger, Karen J.; O'Neill, George C.; Barratt, Eleanor L.; Morris, Peter G.; Bauer, Markus; Folland, Jonathan P.
2016-01-01
Abstract Movement induced modulation of the beta rhythm is one of the most robust neural oscillatory phenomena in the brain. In the preparation and execution phases of movement, a loss in beta amplitude is observed [movement related beta decrease (MRBD)]. This is followed by a rebound above baseline on movement cessation [post movement beta rebound (PMBR)]. These effects have been measured widely, and recent work suggests that they may have significant importance. Specifically, they have potential to form the basis of biomarkers for disease, and have been used in neuroscience applications ranging from brain computer interfaces to markers of neural plasticity. However, despite the robust nature of both MRBD and PMBR, the phenomena themselves are poorly understood. In this study, we characterise MRBD and PMBR during a carefully controlled isometric wrist flexion paradigm, isolating two fundamental movement parameters; force output, and the rate of force development (RFD). Our results show that neither altered force output nor RFD has a significant effect on MRBD. In contrast, PMBR was altered by both parameters. Higher force output results in greater PMBR amplitude, and greater RFD results in a PMBR which is higher in amplitude and shorter in duration. These findings demonstrate that careful control of movement parameters can systematically change PMBR. Further, for temporally protracted movements, the PMBR can be over 7 s in duration. This means accurate control of movement and judicious selection of paradigm parameters are critical in future clinical and basic neuroscientific studies of sensorimotor beta oscillations. Hum Brain Mapp 37:2493–2511, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc PMID:27061243
An Investment Behavior Analysis using by Brain Computer Interface
NASA Astrophysics Data System (ADS)
Suzuki, Kyoko; Kinoshita, Kanta; Miyagawa, Kazuhiro; Shiomi, Shinichi; Misawa, Tadanobu; Shimokawa, Tetsuya
In this paper, we will construct a new Brain Computer Interface (BCI), for the purpose of analyzing human's investment decision makings. The BCI is made up of three functional parts which take roles of, measuring brain information, determining market price in an artificial market, and specifying investment decision model, respectively. When subjects make decisions, their brain information is conveyed to the part of specifying investment decision model through the part of measuring brain information, whereas, their decisions of investment order are sent to the part of artificial market to form market prices. Both the support vector machine and the 3 layered perceptron are used to assess the investment decision model. In order to evaluate our BCI, we conduct an experiment in which subjects and a computer trader agent trade shares of stock in the artificial market and test how the computer trader agent can forecast market price formation and investment decision makings from the brain information of subjects. The result of the experiment shows that the brain information can improve the accuracy of forecasts, and so the computer trader agent can supply market liquidity to stabilize market volatility without his loss.
Lopes, Ana C; Nunes, Urbano
2009-01-01
This paper aims to present a new framework to train people with severe motor disabilities steering an assisted mobile robot (AMR), such as a powered wheelchair. Users with high level of motor disabilities are not able to use standard HMIs, which provide a continuous command signal (e. g. standard joystick). For this reason HMIs providing a small set of simple commands, which are sparse and discrete in time must be used (e. g. scanning interface, or brain computer interface), making very difficult to steer the AMR. In this sense, the assisted navigation training framework (ANTF) is designed to train users driving the AMR, in indoor structured environments, using this type of HMIs. Additionally it provides user characterization on steering the robot, which will later be used to adapt the AMR navigation system to human competence steering the AMR. A rule-based lens (RBL) model is used to characterize users on driving the AMR. Individual judgment performance choosing the best manoeuvres is modeled using a genetic-based policy capturing (GBPC) technique characterized to infer non-compensatory judgment strategies from human decision data. Three user models, at three different learning stages, using the RBL paradigm, are presented.
Visual modifications on the P300 speller BCI paradigm
NASA Astrophysics Data System (ADS)
Salvaris, M.; Sepulveda, F.
2009-08-01
The best known P300 speller brain-computer interface (BCI) paradigm is the Farwell and Donchin paradigm. In this paper, various changes to the visual aspects of this protocol are explored as well as their effects on classification. Changes to the dimensions of the symbols, the distance between the symbols and the colours used were tested. The purpose of the present work was not to achieve the highest possible accuracy results, but to ascertain whether these simple modifications to the visual protocol will provide classification differences between them and what these differences will be. Eight subjects were used, with each subject carrying out a total of six different experiments. In each experiment, the user spelt a total of 39 characters. Two types of classifiers were trained and tested to determine whether the results were classifier dependant. These were a support vector machine (SVM) with a radial basis function (RBF) kernel and Fisher's linear discriminant (FLD). The single-trial classification results and multiple-trial classification results were recorded and compared. Although no visual protocol was the best for all subjects, the best performances, across both classifiers, were obtained with the white background (WB) visual protocol. The worst performance was obtained with the small symbol size (SSS) visual protocol.
Improved Targeting Through Collaborative Decision-Making and Brain Computer Interfaces
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Barrero, David F.; McDonald-Maier, Klaus
2013-01-01
This paper reports a first step toward a brain-computer interface (BCI) for collaborative targeting. Specifically, we explore, from a broad perspective, how the collaboration of a group of people can increase the performance on a simple target identification task. To this end, we requested a group of people to identify the location and color of a sequence of targets appearing on the screen and measured the time and accuracy of the response. The individual results are compared to a collective identification result determined by simple majority voting, with random choice in case of drawn. The results are promising, as the identification becomes significantly more reliable even with this simple voting and a small number of people (either odd or even number) involved in the decision. In addition, the paper briefly analyzes the role of brain-computer interfaces in collaborative targeting, extending the targeting task by using a BCI instead of a mechanical response.
Rothschild, Ryan Mark
2010-01-01
The main focus of this review is to provide a holistic amalgamated overview of the most recent human in vivo techniques for implementing brain-computer interfaces (BCIs), bidirectional interfaces, and neuroprosthetics. Neuroengineering is providing new methods for tackling current difficulties; however neuroprosthetics have been studied for decades. Recent progresses are permitting the design of better systems with higher accuracies, repeatability, and system robustness. Bidirectional interfaces integrate recording and the relaying of information from and to the brain for the development of BCIs. The concepts of non-invasive and invasive recording of brain activity are introduced. This includes classical and innovative techniques like electroencephalography and near-infrared spectroscopy. Then the problem of gliosis and solutions for (semi-) permanent implant biocompatibility such as innovative implant coatings, materials, and shapes are discussed. Implant power and the transmission of their data through implanted pulse generators and wireless telemetry are taken into account. How sensation can be relayed back to the brain to increase integration of the neuroengineered systems with the body by methods such as micro-stimulation and transcranial magnetic stimulation are then addressed. The neuroprosthetic section discusses some of the various types and how they operate. Visual prosthetics are discussed and the three types, dependant on implant location, are examined. Auditory prosthetics, being cochlear or cortical, are then addressed. Replacement hand and limb prosthetics are then considered. These are followed by sections concentrating on the control of wheelchairs, computers and robotics directly from brain activity as recorded by non-invasive and invasive techniques.
Brain computer interface for operating a robot
NASA Astrophysics Data System (ADS)
Nisar, Humaira; Balasubramaniam, Hari Chand; Malik, Aamir Saeed
2013-10-01
A Brain-Computer Interface (BCI) is a hardware/software based system that translates the Electroencephalogram (EEG) signals produced by the brain activity to control computers and other external devices. In this paper, we will present a non-invasive BCI system that reads the EEG signals from a trained brain activity using a neuro-signal acquisition headset and translates it into computer readable form; to control the motion of a robot. The robot performs the actions that are instructed to it in real time. We have used the cognitive states like Push, Pull to control the motion of the robot. The sensitivity and specificity of the system is above 90 percent. Subjective results show a mixed trend of the difficulty level of the training activities. The quantitative EEG data analysis complements the subjective results. This technology may become very useful for the rehabilitation of disabled and elderly people.
A brain-computer interface controlled mail client.
Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Wang, Cong
2013-01-01
In this paper, we propose a brain-computer interface (BCI) based mail client. This system is controlled by hybrid features extracted from scalp-recorded electroencephalographic (EEG). We emulate the computer mouse by the motor imagery-based mu rhythm and the P300 potential. Furthermore, an adaptive P300 speller is included to provide text input function. With this BCI mail client, users can receive, read, write mails, as well as attach files in mail writing. The system has been tested on 3 subjects. Experimental results show that mail communication with this system is feasible.
Imaging deductive reasoning and the new paradigm
Oaksford, Mike
2015-01-01
There has been a great expansion of research into human reasoning at all of Marr’s explanatory levels. There is a tendency for this work to progress within a level largely ignoring the others which can lead to slippage between levels (Chater et al., 2003). It is argued that recent brain imaging research on deductive reasoning—implementational level—has largely ignored the new paradigm in reasoning—computational level (Over, 2009). Consequently, recent imaging results are reviewed with the focus on how they relate to the new paradigm. The imaging results are drawn primarily from a recent meta-analysis by Prado et al. (2011) but further imaging results are also reviewed where relevant. Three main observations are made. First, the main function of the core brain region identified is most likely elaborative, defeasible reasoning not deductive reasoning. Second, the subtraction methodology and the meta-analytic approach may remove all traces of content specific System 1 processes thought to underpin much human reasoning. Third, interpreting the function of the brain regions activated by a task depends on theories of the function that a task engages. When there are multiple interpretations of that function, interpreting what an active brain region is doing is not clear cut. It is concluded that there is a need to more tightly connect brain activation to function, which could be achieved using formalized computational level models and a parametric variation approach. PMID:25774130
Control-display mapping in brain-computer interfaces.
Thurlings, Marieke E; van Erp, Jan B F; Brouwer, Anne-Marie; Blankertz, Benjamin; Werkhoven, Peter
2012-01-01
Event-related potential (ERP) based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. When using a tactile ERP-BCI for navigation, mapping is required between navigation directions on a visual display and unambiguously corresponding tactile stimuli (tactors) from a tactile control device: control-display mapping (CDM). We investigated the effect of congruent (both display and control horizontal or both vertical) and incongruent (vertical display, horizontal control) CDMs on task performance, the ERP and potential BCI performance. Ten participants attended to a target (determined via CDM), in a stream of sequentially vibrating tactors. We show that congruent CDM yields best task performance, enhanced the P300 and results in increased estimated BCI performance. This suggests a reduced availability of attentional resources when operating an ERP-BCI with incongruent CDM. Additionally, we found an enhanced N2 for incongruent CDM, which indicates a conflict between visual display and tactile control orientations. Incongruency in control-display mapping reduces task performance. In this study, brain responses, task and system performance are related to (in)congruent mapping of command options and the corresponding stimuli in a brain-computer interface (BCI). Directional congruency reduces task errors, increases available attentional resources, improves BCI performance and thus facilitates human-computer interaction.
Zander, Thorsten O; Kothe, Christian
2011-04-01
Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.
My thoughts through a robot's eyes: an augmented reality-brain-machine interface.
Kansaku, Kenji; Hata, Naoki; Takano, Kouji
2010-02-01
A brain-machine interface (BMI) uses neurophysiological signals from the brain to control external devices, such as robot arms or computer cursors. Combining augmented reality with a BMI, we show that the user's brain signals successfully controlled an agent robot and operated devices in the robot's environment. The user's thoughts became reality through the robot's eyes, enabling the augmentation of real environments outside the anatomy of the human body.
Zhang, Shen; Zheng, Yanchun; Wang, Daifa; Wang, Ling; Ma, Jianai; Zhang, Jing; Xu, Weihao; Li, Deyu; Zhang, Dan
2017-08-10
Motor imagery is one of the most investigated paradigms in the field of brain-computer interfaces (BCIs). The present study explored the feasibility of applying a common spatial pattern (CSP)-based algorithm for a functional near-infrared spectroscopy (fNIRS)-based motor imagery BCI. Ten participants performed kinesthetic imagery of their left- and right-hand movements while 20-channel fNIRS signals were recorded over the motor cortex. The CSP method was implemented to obtain the spatial filters specific for both imagery tasks. The mean, slope, and variance of the CSP filtered signals were taken as features for BCI classification. Results showed that the CSP-based algorithm outperformed two representative channel-wise methods for classifying the two imagery statuses using either data from all channels or averaged data from imagery responsive channels only (oxygenated hemoglobin: CSP-based: 75.3±13.1%; all-channel: 52.3±5.3%; averaged: 64.8±13.2%; deoxygenated hemoglobin: CSP-based: 72.3±13.0%; all-channel: 48.8±8.2%; averaged: 63.3±13.3%). Furthermore, the effectiveness of the CSP method was also observed for the motor execution data to a lesser extent. A partial correlation analysis revealed significant independent contributions from all three types of features, including the often-ignored variance feature. To our knowledge, this is the first study demonstrating the effectiveness of the CSP method for fNIRS-based motor imagery BCIs. Copyright © 2017 Elsevier B.V. All rights reserved.
Hwang, Han-Jeong; Han, Chang-Hee; Lim, Jeong-Hwan; Kim, Yong-Wook; Choi, Soo-In; An, Kwang-Ok; Lee, Jun-Hak; Cha, Ho-Seung; Hyun Kim, Seung; Im, Chang-Hwan
2017-03-01
Although the feasibility of brain-computer interface (BCI) systems based on steady-state visual evoked potential (SSVEP) has been extensively investigated, only a few studies have evaluated its clinical feasibility in patients with locked-in syndrome (LIS), who are the main targets of BCI technology. The main objective of this case report was to share our experiences of SSVEP-based BCI experiments involving five patients with LIS, thereby providing researchers with useful information that can potentially help them to design BCI experiments for patients with LIS. In our experiments, a four-class online SSVEP-based BCI system was implemented and applied to four of five patients repeatedly on multiple days to investigate its test-retest reliability. In the last experiments with two of the four patients, the practical usability of our BCI system was tested using a questionnaire survey. All five patients showed clear and distinct SSVEP responses at all four fundamental stimulation frequencies (6, 6.66, 7.5, 10 Hz), and responses at harmonic frequencies were also observed in three patients. Mean classification accuracy was 76.99% (chance level = 25%). The test-retest reliability experiments demonstrated stable performance of our BCI system over different days even when the initial experimental settings (e.g., electrode configuration, fixation time, visual angle) used in the first experiment were used without significant modifications. Our results suggest that SSVEP-based BCI paradigms might be successfully used to implement clinically feasible BCI systems for severely paralyzed patients. © 2016 Society for Psychophysiological Research.
Real-Time Control of an Articulatory-Based Speech Synthesizer for Brain Computer Interfaces
Bocquelet, Florent; Hueber, Thomas; Girin, Laurent; Savariaux, Christophe; Yvert, Blaise
2016-01-01
Restoring natural speech in paralyzed and aphasic people could be achieved using a Brain-Computer Interface (BCI) controlling a speech synthesizer in real-time. To reach this goal, a prerequisite is to develop a speech synthesizer producing intelligible speech in real-time with a reasonable number of control parameters. We present here an articulatory-based speech synthesizer that can be controlled in real-time for future BCI applications. This synthesizer converts movements of the main speech articulators (tongue, jaw, velum, and lips) into intelligible speech. The articulatory-to-acoustic mapping is performed using a deep neural network (DNN) trained on electromagnetic articulography (EMA) data recorded on a reference speaker synchronously with the produced speech signal. This DNN is then used in both offline and online modes to map the position of sensors glued on different speech articulators into acoustic parameters that are further converted into an audio signal using a vocoder. In offline mode, highly intelligible speech could be obtained as assessed by perceptual evaluation performed by 12 listeners. Then, to anticipate future BCI applications, we further assessed the real-time control of the synthesizer by both the reference speaker and new speakers, in a closed-loop paradigm using EMA data recorded in real time. A short calibration period was used to compensate for differences in sensor positions and articulatory differences between new speakers and the reference speaker. We found that real-time synthesis of vowels and consonants was possible with good intelligibility. In conclusion, these results open to future speech BCI applications using such articulatory-based speech synthesizer. PMID:27880768
Modulation of post-movement beta rebound by contraction force and rate of force development.
Fry, Adam; Mullinger, Karen J; O'Neill, George C; Barratt, Eleanor L; Morris, Peter G; Bauer, Markus; Folland, Jonathan P; Brookes, Matthew J
2016-07-01
Movement induced modulation of the beta rhythm is one of the most robust neural oscillatory phenomena in the brain. In the preparation and execution phases of movement, a loss in beta amplitude is observed [movement related beta decrease (MRBD)]. This is followed by a rebound above baseline on movement cessation [post movement beta rebound (PMBR)]. These effects have been measured widely, and recent work suggests that they may have significant importance. Specifically, they have potential to form the basis of biomarkers for disease, and have been used in neuroscience applications ranging from brain computer interfaces to markers of neural plasticity. However, despite the robust nature of both MRBD and PMBR, the phenomena themselves are poorly understood. In this study, we characterise MRBD and PMBR during a carefully controlled isometric wrist flexion paradigm, isolating two fundamental movement parameters; force output, and the rate of force development (RFD). Our results show that neither altered force output nor RFD has a significant effect on MRBD. In contrast, PMBR was altered by both parameters. Higher force output results in greater PMBR amplitude, and greater RFD results in a PMBR which is higher in amplitude and shorter in duration. These findings demonstrate that careful control of movement parameters can systematically change PMBR. Further, for temporally protracted movements, the PMBR can be over 7 s in duration. This means accurate control of movement and judicious selection of paradigm parameters are critical in future clinical and basic neuroscientific studies of sensorimotor beta oscillations. Hum Brain Mapp 37:2493-2511, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Preserved covert cognition in noncommunicative patients with severe brain injury?
Schnakers, Caroline; Giacino, Joseph T; Løvstad, Marianne; Habbal, Dina; Boly, Melanie; Di, Haibo; Majerus, Steve; Laureys, Steven
2015-05-01
Despite recent evidence suggesting that some severely brain-injured patients retain some capacity for top-down processing (covert cognition), the degree of sparing is unknown. Top-down attentional processing was assessed in patients in minimally conscious (MCS) and vegetative states (VS) using an active event-related potential (ERP) paradigm. A total of 26 patients were included (38 ± 12 years old, 9 traumatic, 21 patients >1 year postonset): 8 MCS+, 8 MCS-, and 10 VS patients. There were 14 healthy controls (30 ± 8 years old). The ERP paradigm included (1) a passive condition and (2) an active condition, wherein the participant was instructed to voluntarily focus attention on his/her own name. In each condition, the participant's own name was presented 100 times (ie, 4 blocks of 25 stimuli). In 5 MCS+ patients as well as in 3 MCS- patients and 1 VS patient, an enhanced P3 amplitude was observed in the active versus passive condition. Relative to controls, patients showed a response that was (1) widely distributed over frontoparietal areas and (2) not present in all blocks (3 of 4). In patients with covert cognition, the amplitude of the response was lower in frontocentral electrodes compared with controls but did not differ from that in the MCS+ group. The results indicate that volitional top-down attention is impaired in patients with covert cognition. Further investigation is crucially needed to better understand top-down cognitive functioning in this population because this may help refine brain-computer interface-based communication strategies. © The Author(s) 2014.
Decoder calibration with ultra small current sample set for intracortical brain-machine interface
NASA Astrophysics Data System (ADS)
Zhang, Peng; Ma, Xuan; Chen, Luyao; Zhou, Jin; Wang, Changyong; Li, Wei; He, Jiping
2018-04-01
Objective. Intracortical brain-machine interfaces (iBMIs) aim to restore efficient communication and movement ability for paralyzed patients. However, frequent recalibration is required for consistency and reliability, and every recalibration will require relatively large most current sample set. The aim in this study is to develop an effective decoder calibration method that can achieve good performance while minimizing recalibration time. Approach. Two rhesus macaques implanted with intracortical microelectrode arrays were trained separately on movement and sensory paradigm. Neural signals were recorded to decode reaching positions or grasping postures. A novel principal component analysis-based domain adaptation (PDA) method was proposed to recalibrate the decoder with only ultra small current sample set by taking advantage of large historical data, and the decoding performance was compared with other three calibration methods for evaluation. Main results. The PDA method closed the gap between historical and current data effectively, and made it possible to take advantage of large historical data for decoder recalibration in current data decoding. Using only ultra small current sample set (five trials of each category), the decoder calibrated using the PDA method could achieve much better and more robust performance in all sessions than using other three calibration methods in both monkeys. Significance. (1) By this study, transfer learning theory was brought into iBMIs decoder calibration for the first time. (2) Different from most transfer learning studies, the target data in this study were ultra small sample set and were transferred to the source data. (3) By taking advantage of historical data, the PDA method was demonstrated to be effective in reducing recalibration time for both movement paradigm and sensory paradigm, indicating a viable generalization. By reducing the demand for large current training data, this new method may facilitate the application of intracortical brain-machine interfaces in clinical practice.
Post-acute stroke patients use brain-computer interface to activate electrical stimulation.
Tan, H G; Kong, K H; Shee, C Y; Wang, C C; Guan, C T; Ang, W T
2010-01-01
Through certain mental actions, our electroencephalogram (EEG) can be regulated to operate a brain-computer interface (BCI), which translates the EEG patterns into commands that can be used to operate devices such as prostheses. This allows paralyzed persons to gain direct brain control of the paretic limb, which could open up many possibilities for rehabilitative and assistive applications. When using a BCI neuroprosthesis in stroke, one question that has surfaced is whether stroke patients are able to produce a sufficient change in EEG that can be used as a control signal to operate a prosthesis.
A Brain-Computer Interface Project Applied in Computer Engineering
ERIC Educational Resources Information Center
Katona, Jozsef; Kovari, Attila
2016-01-01
Keeping up with novel methods and keeping abreast of new applications are crucial issues in engineering education. In brain research, one of the most significant research areas in recent decades, many developments have application in both modern engineering technology and education. New measurement methods in the observation of brain activity open…
A Computer Model for Red Blood Cell Chemistry
1996-10-01
5012. 13. ABSTRACT (Maximum 200 There is a growing need for interactive computational tools for medical education and research. The most exciting...paradigm for interactive education is simulation. Fluid Mod is a simulation based computational tool developed in the late sixties and early seventies at...to a modern Windows, object oriented interface. This development will provide students with a useful computational tool for learning . More important
Geometry aware Stationary Subspace Analysis
2016-11-22
approach to handling non-stationarity is to remove or minimize it before attempting to analyze the data. In the context of brain computer interface ( BCI ...context of brain computer interface ( BCI ) data analysis, two such note-worthy methods are stationary subspace analysis (SSA) (von Bünau et al., 2009a... BCI systems, is sCSP. Its goal is to project the data onto a subspace in which the various data classes are more separable. The sCSP method directs
Brain-computer interface for alertness estimation and improving
NASA Astrophysics Data System (ADS)
Hramov, Alexander; Maksimenko, Vladimir; Hramova, Marina
2018-02-01
Using wavelet analysis of the signals of electrical brain activity (EEG), we study the processes of neural activity, associated with perception of visual stimuli. We demonstrate that the brain can process visual stimuli in two scenarios: (i) perception is characterized by destruction of the alpha-waves and increase in the high-frequency (beta) activity, (ii) the beta-rhythm is not well pronounced, while the alpha-wave energy remains unchanged. The special experiments show that the motivation factor initiates the first scenario, explained by the increasing alertness. Based on the obtained results we build the brain-computer interface and demonstrate how the degree of the alertness can be estimated and controlled in real experiment.
Shin, Jaeyoung; Kwon, Jinuk; Im, Chang-Hwan
2018-01-01
The performance of a brain-computer interface (BCI) can be enhanced by simultaneously using two or more modalities to record brain activity, which is generally referred to as a hybrid BCI. To date, many BCI researchers have tried to implement a hybrid BCI system by combining electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS) to improve the overall accuracy of binary classification. However, since hybrid EEG-NIRS BCI, which will be denoted by hBCI in this paper, has not been applied to ternary classification problems, paradigms and classification strategies appropriate for ternary classification using hBCI are not well investigated. Here we propose the use of an hBCI for the classification of three brain activation patterns elicited by mental arithmetic, motor imagery, and idle state, with the aim to elevate the information transfer rate (ITR) of hBCI by increasing the number of classes while minimizing the loss of accuracy. EEG electrodes were placed over the prefrontal cortex and the central cortex, and NIRS optodes were placed only on the forehead. The ternary classification problem was decomposed into three binary classification problems using the "one-versus-one" (OVO) classification strategy to apply the filter-bank common spatial patterns filter to EEG data. A 10 × 10-fold cross validation was performed using shrinkage linear discriminant analysis (sLDA) to evaluate the average classification accuracies for EEG-BCI, NIRS-BCI, and hBCI when the meta-classification method was adopted to enhance classification accuracy. The ternary classification accuracies for EEG-BCI, NIRS-BCI, and hBCI were 76.1 ± 12.8, 64.1 ± 9.7, and 82.2 ± 10.2%, respectively. The classification accuracy of the proposed hBCI was thus significantly higher than those of the other BCIs ( p < 0.005). The average ITR for the proposed hBCI was calculated to be 4.70 ± 1.92 bits/minute, which was 34.3% higher than that reported for a previous binary hBCI study.
Towards a hemodynamic BCI using transcranial Doppler without user-specific training data
NASA Astrophysics Data System (ADS)
Aleem, Idris; Chau, Tom
2013-02-01
Transcranial Doppler (TCD) was recently introduced as a new brain-computer interface (BCI) modality for detecting task-induced hemispheric lateralization. To date, single-trial discrimination between a lateralized mental activity and a rest state has been demonstrated with long (45 s) activation time periods. However, the possibility of detecting successive activations in a user-independent framework (i.e. without training data from the user) remains an open question. Objective. The objective of this research was to assess TCD-based detection of lateralized mental activity with a user-independent classifier. In so doing, we also investigated the accuracy of detecting successive lateralizations. Approach. TCD data from 18 participants were collected during verbal fluency, mental rotation tasks and baseline counting tasks. Linear discriminant analysis and a set of four time-domain features were used to classify successive left and right brain activations. Main results. In a user-independent framework, accuracies up to 74.6 ± 12.6% were achieved using training data from a single participant, and lateralization task durations of 18 s. Significance. Subject-independent, algorithmic classification of TCD signals corresponding to successive brain lateralization may be a feasible paradigm for TCD-BCI design.
Real-time classification of auditory sentences using evoked cortical activity in humans
NASA Astrophysics Data System (ADS)
Moses, David A.; Leonard, Matthew K.; Chang, Edward F.
2018-06-01
Objective. Recent research has characterized the anatomical and functional basis of speech perception in the human auditory cortex. These advances have made it possible to decode speech information from activity in brain regions like the superior temporal gyrus, but no published work has demonstrated this ability in real-time, which is necessary for neuroprosthetic brain-computer interfaces. Approach. Here, we introduce a real-time neural speech recognition (rtNSR) software package, which was used to classify spoken input from high-resolution electrocorticography signals in real-time. We tested the system with two human subjects implanted with electrode arrays over the lateral brain surface. Subjects listened to multiple repetitions of ten sentences, and rtNSR classified what was heard in real-time from neural activity patterns using direct sentence-level and HMM-based phoneme-level classification schemes. Main results. We observed single-trial sentence classification accuracies of 90% or higher for each subject with less than 7 minutes of training data, demonstrating the ability of rtNSR to use cortical recordings to perform accurate real-time speech decoding in a limited vocabulary setting. Significance. Further development and testing of the package with different speech paradigms could influence the design of future speech neuroprosthetic applications.
A Semisupervised Support Vector Machines Algorithm for BCI Systems
Qin, Jianzhao; Li, Yuanqing; Sun, Wei
2007-01-01
As an emerging technology, brain-computer interfaces (BCIs) bring us new communication interfaces which translate brain activities into control signals for devices like computers, robots, and so forth. In this study, we propose a semisupervised support vector machine (SVM) algorithm for brain-computer interface (BCI) systems, aiming at reducing the time-consuming training process. In this algorithm, we apply a semisupervised SVM for translating the features extracted from the electrical recordings of brain into control signals. This SVM classifier is built from a small labeled data set and a large unlabeled data set. Meanwhile, to reduce the time for training semisupervised SVM, we propose a batch-mode incremental learning method, which can also be easily applied to the online BCI systems. Additionally, it is suggested in many studies that common spatial pattern (CSP) is very effective in discriminating two different brain states. However, CSP needs a sufficient labeled data set. In order to overcome the drawback of CSP, we suggest a two-stage feature extraction method for the semisupervised learning algorithm. We apply our algorithm to two BCI experimental data sets. The offline data analysis results demonstrate the effectiveness of our algorithm. PMID:18368141
Concentration on performance with P300-based BCI systems: a matter of interface features.
da Silva-Sauer, Leandro; Valero-Aguayo, Luis; de la Torre-Luque, Alejandro; Ron-Angevin, Ricardo; Varona-Moya, Sergio
2016-01-01
People who suffer from severe motor disabilities have difficulties to communicate with others or to interact with their environment using natural, i.e., muscular channels. These limitations can be overcome to some extent by using brain-computer interfaces (BCIs), because such systems allow users to communicate on the basis of their brain activity only. Among the several types of BCIs for spelling purposes, those that rely on the P300 event related potential-P300-based spellers-are chosen preferentially due to their high reliability. However, they demand from the user to sustain his/her attention to the desired character over a relatively long period of time. Therefore, the user's capacity to concentrate can affect his/her performance with a P300-based speller. The aim of this study was to test this hypothesis using three different interfaces: one based on the classic P300 speller paradigm, another also based on that speller but including a word predictor, and a third one that was based on the T9 interface developed for mobile phones. User performance was assessed by measuring the time to complete a spelling task and the accuracy of character selection. The d2 test was applied to assess attention and concentration. Sample (N = 14) was divided into two groups basing on of concentration scores. As a result, performance was better with the predictor-enriched interfaces: less time was needed to solve the task and participants made fewer errors (p < .05). There were also significant effects of concentration (p < .05) on performance with the standard P300 speller. In conclusion, the performance of those users with lower concentration level can be improved by providing BCIs with more interactive interfaces. These findings provide substantial evidence in order to highlight the impact of psychological features on BCI performance and should be taken into account for future assistive technology systems. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Stocco, Andrea; Prat, Chantel S.; Losey, Darby M.; Cronin, Jeneva A.; Wu, Joseph; Abernethy, Justin A.; Rao, Rajesh P. N.
2015-01-01
We present, to our knowledge, the first demonstration that a non-invasive brain-to-brain interface (BBI) can be used to allow one human to guess what is on the mind of another human through an interactive question-and-answering paradigm similar to the “20 Questions” game. As in previous non-invasive BBI studies in humans, our interface uses electroencephalography (EEG) to detect specific patterns of brain activity from one participant (the “respondent”), and transcranial magnetic stimulation (TMS) to deliver functionally-relevant information to the brain of a second participant (the “inquirer”). Our results extend previous BBI research by (1) using stimulation of the visual cortex to convey visual stimuli that are privately experienced and consciously perceived by the inquirer; (2) exploiting real-time rather than off-line communication of information from one brain to another; and (3) employing an interactive task, in which the inquirer and respondent must exchange information bi-directionally to collaboratively solve the task. The results demonstrate that using the BBI, ten participants (five inquirer-respondent pairs) can successfully identify a “mystery item” using a true/false question-answering protocol similar to the “20 Questions” game, with high levels of accuracy that are significantly greater than a control condition in which participants were connected through a sham BBI. PMID:26398267
Conscious brain-to-brain communication in humans using non-invasive technologies.
Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L; Pascual-Leone, Alvaro; Ruffini, Giulio
2014-01-01
Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.
Conscious Brain-to-Brain Communication in Humans Using Non-Invasive Technologies
Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L.; Pascual-Leone, Alvaro; Ruffini, Giulio
2014-01-01
Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues. PMID:25137064
Heterogeneous concurrent computing with exportable services
NASA Technical Reports Server (NTRS)
Sunderam, Vaidy
1995-01-01
Heterogeneous concurrent computing, based on the traditional process-oriented model, is approaching its functionality and performance limits. An alternative paradigm, based on the concept of services, supporting data driven computation, and built on a lightweight process infrastructure, is proposed to enhance the functional capabilities and the operational efficiency of heterogeneous network-based concurrent computing. TPVM is an experimental prototype system supporting exportable services, thread-based computation, and remote memory operations that is built as an extension of and an enhancement to the PVM concurrent computing system. TPVM offers a significantly different computing paradigm for network-based computing, while maintaining a close resemblance to the conventional PVM model in the interest of compatibility and ease of transition Preliminary experiences have demonstrated that the TPVM framework presents a natural yet powerful concurrent programming interface, while being capable of delivering performance improvements of upto thirty percent.
Designing a hands-on brain computer interface laboratory course.
Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima
2016-08-01
Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.
NASA Astrophysics Data System (ADS)
Stieglitz, Thomas
2009-05-01
Implantable medical devices to interface with muscles, peripheral nerves, and the brain have been developed for many applications over the last decades. They have been applied in fundamental neuroscientific studies as well as in diagnosis, therapy and rehabilitation in clinical practice. Success stories of these implants have been written with help of precision mechanics manufacturing techniques. Latest cutting edge research approaches to restore vision in blind persons and to develop an interface with the human brain as motor control interface, however, need more complex systems and larger scales of integration and higher degrees of miniaturization. Microsystems engineering offers adequate tools, methods, and materials but so far, no MEMS based active medical device has been transferred into clinical practice. Silicone rubber, polyimide, parylene as flexible materials and silicon and alumina (aluminum dioxide ceramics) as substrates and insulation or packaging materials, respectively, and precious metals as electrodes have to be combined to systems that do not harm the biological target structure and have to work reliably in a wet environment with ions and proteins. Here, different design, manufacturing and packaging paradigms will be presented and strengths and drawbacks will be discussed in close relation to the envisioned biological and medical applications.
A Procedure for Measuring Latencies in Brain-Computer Interfaces
Wilson, J. Adam; Mellinger, Jürgen; Schalk, Gerwin; Williams, Justin
2011-01-01
Brain-computer interface (BCI) systems must process neural signals with consistent timing in order to support adequate system performance. Thus, it is important to have the capability to determine whether a particular BCI configuration (i.e., hardware, software) provides adequate timing performance for a particular experiment. This report presents a method of measuring and quantifying different aspects of system timing in several typical BCI experiments across a range of settings, and presents comprehensive measures of expected overall system latency for each experimental configuration. PMID:20403781
Implantable brain computer interface: challenges to neurotechnology translation.
Konrad, Peter; Shanks, Todd
2010-06-01
This article reviews three concepts related to implantable brain computer interface (BCI) devices being designed for human use: neural signal extraction primarily for motor commands, signal insertion to restore sensation, and technological challenges that remain. A significant body of literature has occurred over the past four decades regarding motor cortex signal extraction for upper extremity movement or computer interface. However, little is discussed regarding postural or ambulation command signaling. Auditory prosthesis research continues to represent the majority of literature on BCI signal insertion. Significant hurdles continue in the technological translation of BCI implants. These include developing a stable neural interface, significantly increasing signal processing capabilities, and methods of data transfer throughout the human body. The past few years, however, have provided extraordinary human examples of BCI implant potential. Despite technological hurdles, proof-of-concept animal and human studies provide significant encouragement that BCI implants may well find their way into mainstream medical practice in the foreseeable future.
ERIC Educational Resources Information Center
Tung, Fang-Wu; Deng, Yi-Shin
2006-01-01
The "computers are social actors" paradigm asserts that human-to-computer interactions are fundamentally social responses. Earlier research has shown that effective management of the social presence in user interface design can improve user engagement and motivation. Much of this research has focused on adult subjects. This study…
NASA Astrophysics Data System (ADS)
Larger, Laurent; Baylón-Fuentes, Antonio; Martinenghi, Romain; Udaltsov, Vladimir S.; Chembo, Yanne K.; Jacquot, Maxime
2017-01-01
Reservoir computing, originally referred to as an echo state network or a liquid state machine, is a brain-inspired paradigm for processing temporal information. It involves learning a "read-out" interpretation for nonlinear transients developed by high-dimensional dynamics when the latter is excited by the information signal to be processed. This novel computational paradigm is derived from recurrent neural network and machine learning techniques. It has recently been implemented in photonic hardware for a dynamical system, which opens the path to ultrafast brain-inspired computing. We report on a novel implementation involving an electro-optic phase-delay dynamics designed with off-the-shelf optoelectronic telecom devices, thus providing the targeted wide bandwidth. Computational efficiency is demonstrated experimentally with speech-recognition tasks. State-of-the-art speed performances reach one million words per second, with very low word error rate. Additionally, to record speed processing, our investigations have revealed computing-efficiency improvements through yet-unexplored temporal-information-processing techniques, such as simultaneous multisample injection and pitched sampling at the read-out compared to information "write-in".
Implanted Miniaturized Antenna for Brain Computer Interface Applications: Analysis and Design
Zhao, Yujuan; Rennaker, Robert L.; Hutchens, Chris; Ibrahim, Tamer S.
2014-01-01
Implantable Brain Computer Interfaces (BCIs) are designed to provide real-time control signals for prosthetic devices, study brain function, and/or restore sensory information lost as a result of injury or disease. Using Radio Frequency (RF) to wirelessly power a BCI could widely extend the number of applications and increase chronic in-vivo viability. However, due to the limited size and the electromagnetic loss of human brain tissues, implanted miniaturized antennas suffer low radiation efficiency. This work presents simulations, analysis and designs of implanted antennas for a wireless implantable RF-powered brain computer interface application. The results show that thin (on the order of 100 micrometers thickness) biocompatible insulating layers can significantly impact the antenna performance. The proper selection of the dielectric properties of the biocompatible insulating layers and the implantation position inside human brain tissues can facilitate efficient RF power reception by the implanted antenna. While the results show that the effects of the human head shape on implanted antenna performance is somewhat negligible, the constitutive properties of the brain tissues surrounding the implanted antenna can significantly impact the electrical characteristics (input impedance, and operational frequency) of the implanted antenna. Three miniaturized antenna designs are simulated and demonstrate that maximum RF power of up to 1.8 milli-Watts can be received at 2 GHz when the antenna implanted around the dura, without violating the Specific Absorption Rate (SAR) limits. PMID:25079941
Compressive sensing scalp EEG signals: implementations and practical performance.
Abdulghani, Amir M; Casson, Alexander J; Rodriguez-Villegas, Esther
2012-11-01
Highly miniaturised, wearable computing and communication systems allow unobtrusive, convenient and long term monitoring of a range of physiological parameters. For long term operation from the physically smallest batteries, the average power consumption of a wearable device must be very low. It is well known that the overall power consumption of these devices can be reduced by the inclusion of low power consumption, real-time compression of the raw physiological data in the wearable device itself. Compressive sensing is a new paradigm for providing data compression: it has shown significant promise in fields such as MRI; and is potentially suitable for use in wearable computing systems as the compression process required in the wearable device has a low computational complexity. However, the practical performance very much depends on the characteristics of the signal being sensed. As such the utility of the technique cannot be extrapolated from one application to another. Long term electroencephalography (EEG) is a fundamental tool for the investigation of neurological disorders and is increasingly used in many non-medical applications, such as brain-computer interfaces. This article investigates in detail the practical performance of different implementations of the compressive sensing theory when applied to scalp EEG signals.
Visuomotor learning by passive motor experience
Sakamoto, Takashi; Kondo, Toshiyuki
2015-01-01
Humans can adapt to unfamiliar dynamic and/or kinematic transformations through the active motor experience. Recent studies of neurorehabilitation using robots or brain-computer interface (BCI) technology suggest that passive motor experience would play a measurable role in motor recovery, however our knowledge of passive motor learning is limited. To clarify the effects of passive motor experience on human motor learning, we performed arm reaching experiments guided by a robotic manipulandum. The results showed that the passive motor experience had an anterograde transfer effect on the subsequent motor execution, whereas no retrograde interference was confirmed in the ABA paradigm experiment. This suggests that the passive experience of the error between visual and proprioceptive sensations leads to the limited but actual compensation of behavior, although it is fragile and cannot be consolidated as a persistent motor memory. PMID:26029091
A Direct Brain-to-Brain Interface in Humans
Rao, Rajesh P. N.; Stocco, Andrea; Bryan, Matthew; Sarma, Devapratim; Youngquist, Tiffany M.; Wu, Joseph; Prat, Chantel S.
2014-01-01
We describe the first direct brain-to-brain interface in humans and present results from experiments involving six different subjects. Our non-invasive interface, demonstrated originally in August 2013, combines electroencephalography (EEG) for recording brain signals with transcranial magnetic stimulation (TMS) for delivering information to the brain. We illustrate our method using a visuomotor task in which two humans must cooperate through direct brain-to-brain communication to achieve a desired goal in a computer game. The brain-to-brain interface detects motor imagery in EEG signals recorded from one subject (the “sender”) and transmits this information over the internet to the motor cortex region of a second subject (the “receiver”). This allows the sender to cause a desired motor response in the receiver (a press on a touchpad) via TMS. We quantify the performance of the brain-to-brain interface in terms of the amount of information transmitted as well as the accuracies attained in (1) decoding the sender’s signals, (2) generating a motor response from the receiver upon stimulation, and (3) achieving the overall goal in the cooperative visuomotor task. Our results provide evidence for a rudimentary form of direct information transmission from one human brain to another using non-invasive means. PMID:25372285
Brain computer interfaces, a review.
Nicolas-Alonso, Luis Fernando; Gomez-Gil, Jaime
2012-01-01
A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or 'locked in' by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices.
Spuler, Martin
2015-08-01
A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.
Brain-computer interface design using alpha wave
NASA Astrophysics Data System (ADS)
Zhao, Hai-bin; Wang, Hong; Liu, Chong; Li, Chun-sheng
2010-01-01
A brain-computer interface (BCI) is a novel communication system that translates brain activity into commands for a computer or other electronic devices. BCI system based on non-invasive scalp electroencephalogram (EEG) has become a hot research area in recent years. BCI technology can help improve the quality of life and restore function for people with severe motor disabilities. In this study, we design a real-time asynchronous BCI system using Alpha wave. The basic theory of this BCI system is alpha wave-block phenomenon. Alpha wave is the most prominent wave in the whole realm of brain activity. This system includes data acquisition, feature selection and classification. The subject can use this system easily and freely choose anyone of four commands with only short-time training. The results of the experiment show that this BCI system has high classification accuracy, and has potential application for clinical engineering and is valuable for further research.
Mundahl, John; Jianjun Meng; He, Jeffrey; Bin He
2016-08-01
Brain-computer interface (BCI) systems allow users to directly control computers and other machines by modulating their brain waves. In the present study, we investigated the effect of soft drinks on resting state (RS) EEG signals and BCI control. Eight healthy human volunteers each participated in three sessions of BCI cursor tasks and resting state EEG. During each session, the subjects drank an unlabeled soft drink with either sugar, caffeine, or neither ingredient. A comparison of resting state spectral power shows a substantial decrease in alpha and beta power after caffeine consumption relative to control. Despite attenuation of the frequency range used for the control signal, caffeine average BCI performance was the same as control. Our work provides a useful characterization of caffeine, the world's most popular stimulant, on brain signal frequencies and their effect on BCI performance.
Designing Interactive Learning Systems.
ERIC Educational Resources Information Center
Barker, Philip
1990-01-01
Describes multimedia, computer-based interactive learning systems that support various forms of individualized study. Highlights include design models; user interfaces; design guidelines; media utilization paradigms, including hypermedia and learner-controlled models; metaphors and myths; authoring tools; optical media; workstations; four case…
Norton, James J S; Lee, Dong Sup; Lee, Jung Woo; Lee, Woosik; Kwon, Ohjin; Won, Phillip; Jung, Sung-Young; Cheng, Huanyu; Jeong, Jae-Woong; Akce, Abdullah; Umunna, Stephen; Na, Ilyoun; Kwon, Yong Ho; Wang, Xiao-Qi; Liu, ZhuangJian; Paik, Ungyu; Huang, Yonggang; Bretl, Timothy; Yeo, Woon-Hong; Rogers, John A
2015-03-31
Recent advances in electrodes for noninvasive recording of electroencephalograms expand opportunities collecting such data for diagnosis of neurological disorders and brain-computer interfaces. Existing technologies, however, cannot be used effectively in continuous, uninterrupted modes for more than a few days due to irritation and irreversible degradation in the electrical and mechanical properties of the skin interface. Here we introduce a soft, foldable collection of electrodes in open, fractal mesh geometries that can mount directly and chronically on the complex surface topology of the auricle and the mastoid, to provide high-fidelity and long-term capture of electroencephalograms in ways that avoid any significant thermal, electrical, or mechanical loading of the skin. Experimental and computational studies establish the fundamental aspects of the bending and stretching mechanics that enable this type of intimate integration on the highly irregular and textured surfaces of the auricle. Cell level tests and thermal imaging studies establish the biocompatibility and wearability of such systems, with examples of high-quality measurements over periods of 2 wk with devices that remain mounted throughout daily activities including vigorous exercise, swimming, sleeping, and bathing. Demonstrations include a text speller with a steady-state visually evoked potential-based brain-computer interface and elicitation of an event-related potential (P300 wave).
A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.
Lo, Chi-Chun; Chien, Tsung-Yi; Chen, Yu-Chun; Tsai, Shang-Ho; Fang, Wai-Chi; Lin, Bor-Shyh
2016-02-06
Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype.
Optimizing the Usability of Brain-Computer Interfaces.
Zhang, Yin; Chase, Steve M
2018-05-01
Brain-computer interfaces are in the process of moving from the laboratory to the clinic. These devices act by reading neural activity and using it to directly control a device, such as a cursor on a computer screen. An open question in the field is how to map neural activity to device movement in order to achieve the most proficient control. This question is complicated by the fact that learning, especially the long-term skill learning that accompanies weeks of practice, can allow subjects to improve performance over time. Typical approaches to this problem attempt to maximize the biomimetic properties of the device in order to limit the need for extensive training. However, it is unclear if this approach would ultimately be superior to performance that might be achieved with a nonbiomimetic device once the subject has engaged in extended practice and learned how to use it. Here we approach this problem using ideas from optimal control theory. Under the assumption that the brain acts as an optimal controller, we present a formal definition of the usability of a device and show that the optimal postlearning mapping can be written as the solution of a constrained optimization problem. We then derive the optimal mappings for particular cases common to most brain-computer interfaces. Our results suggest that the common approach of creating biomimetic interfaces may not be optimal when learning is taken into account. More broadly, our method provides a blueprint for optimal device design in general control-theoretic contexts.
Rattanatamrong, Prapaporn; Matsunaga, Andrea; Raiturkar, Pooja; Mesa, Diego; Zhao, Ming; Mahmoudi, Babak; Digiovanna, Jack; Principe, Jose; Figueiredo, Renato; Sanchez, Justin; Fortes, Jose
2010-01-01
The CyberWorkstation (CW) is an advanced cyber-infrastructure for Brain-Machine Interface (BMI) research. It allows the development, configuration and execution of BMI computational models using high-performance computing resources. The CW's concept is implemented using a software structure in which an "experiment engine" is used to coordinate all software modules needed to capture, communicate and process brain signals and motor-control commands. A generic BMI-model template, which specifies a common interface to the CW's experiment engine, and a common communication protocol enable easy addition, removal or replacement of models without disrupting system operation. This paper reviews the essential components of the CW and shows how templates can facilitate the processes of BMI model development, testing and incorporation into the CW. It also discusses the ongoing work towards making this process infrastructure independent.
Brain-Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Perspectives
Yuan, Han; He, Bin
2014-01-01
Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e. the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g. electroencephalography (EEG), and have demonstrated the capability of multi-dimensional prosthesis control. This article reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications are reviewed. Lastly, limitations of SMR-BCIs and future outlooks are also discussed. PMID:24759276
Evolution of brain-computer interfaces: going beyond classic motor physiology
Leuthardt, Eric C.; Schalk, Gerwin; Roland, Jarod; Rouse, Adam; Moran, Daniel W.
2010-01-01
The notion that a computer can decode brain signals to infer the intentions of a human and then enact those intentions directly through a machine is becoming a realistic technical possibility. These types of devices are known as brain-computer interfaces (BCIs). The evolution of these neuroprosthetic technologies could have significant implications for patients with motor disabilities by enhancing their ability to interact and communicate with their environment. The cortical physiology most investigated and used for device control has been brain signals from the primary motor cortex. To date, this classic motor physiology has been an effective substrate for demonstrating the potential efficacy of BCI-based control. However, emerging research now stands to further enhance our understanding of the cortical physiology underpinning human intent and provide further signals for more complex brain-derived control. In this review, the authors report the current status of BCIs and detail the emerging research trends that stand to augment clinical applications in the future. PMID:19569892
Bång, Magnus; Larsson, Anders; Eriksson, Henrik
2003-01-01
In this paper, we present a new approach to clinical workplace computerization that departs from the window-based user interface paradigm. NOSTOS is an experimental computer-augmented work environment designed to support data capture and teamwork in an emergency room. NOSTOS combines multiple technologies, such as digital pens, walk-up displays, headsets, a smart desk, and sensors to enhance an existing paper-based practice with computer power. The physical interfaces allow clinicians to retain mobile paper-based collaborative routines and still benefit from computer technology. The requirements for the system were elicited from situated workplace studies. We discuss the advantages and disadvantages of augmenting a paper-based clinical work environment.
Chronic, Wireless Recordings of Large Scale Brain Activity in Freely Moving Rhesus Monkeys
Schwarz, David A.; Lebedev, Mikhail A.; Hanson, Timothy L.; Dimitrov, Dragan F.; Lehew, Gary; Meloy, Jim; Rajangam, Sankaranarayani; Subramanian, Vivek; Ifft, Peter J.; Li, Zheng; Ramakrishnan, Arjun; Tate, Andrew; Zhuang, Katie; Nicolelis, Miguel A.L.
2014-01-01
Advances in techniques for recording large-scale brain activity contribute to both the elucidation of neurophysiological principles and the development of brain-machine interfaces (BMIs). Here we describe a neurophysiological paradigm for performing tethered and wireless large-scale recordings based on movable volumetric three-dimensional (3D) multielectrode implants. This approach allowed us to isolate up to 1,800 units per animal and simultaneously record the extracellular activity of close to 500 cortical neurons, distributed across multiple cortical areas, in freely behaving rhesus monkeys. The method is expandable, in principle, to thousands of simultaneously recorded channels. It also allows increased recording longevity (5 consecutive years), and recording of a broad range of behaviors, e.g. social interactions, and BMI paradigms in freely moving primates. We propose that wireless large-scale recordings could have a profound impact on basic primate neurophysiology research, while providing a framework for the development and testing of clinically relevant neuroprostheses. PMID:24776634
Designing a Hands-On Brain Computer Interface Laboratory Course
Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima
2017-01-01
Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI. PMID:28268946
Hemispheric dissociation of reward processing in humans: insights from deep brain stimulation.
Palminteri, Stefano; Serra, Giulia; Buot, Anne; Schmidt, Liane; Welter, Marie-Laure; Pessiglione, Mathias
2013-01-01
Rewards have various effects on human behavior and multiple representations in the human brain. Behaviorally, rewards notably enhance response vigor in incentive motivation paradigms and bias subsequent choices in instrumental learning paradigms. Neurally, rewards affect activity in different fronto-striatal regions attached to different motor effectors, for instance in left and right hemispheres for the two hands. Here we address the question of whether manipulating reward-related brain activity has local or general effects, with respect to behavioral paradigms and motor effectors. Neuronal activity was manipulated in a single hemisphere using unilateral deep brain stimulation (DBS) in patients with Parkinson's disease. Results suggest that DBS amplifies the representation of reward magnitude within the targeted hemisphere, so as to affect the behavior of the contralateral hand specifically. These unilateral DBS effects on behavior include both boosting incentive motivation and biasing instrumental choices. Furthermore, using computational modeling we show that DBS effects on incentive motivation can predict DBS effects on instrumental learning (or vice versa). Thus, we demonstrate the feasibility of causally manipulating reward-related neuronal activity in humans, in a manner that is specific to a class of motor effectors but that generalizes to different computational processes. As these findings proved independent from therapeutic effects on parkinsonian motor symptoms, they might provide insight into DBS impact on non-motor disorders, such as apathy or hypomania. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kinney-Lang, E.; Auyeung, B.; Escudero, J.
2016-12-01
Rehabilitation applications using brain-computer interfaces (BCI) have recently shown encouraging results for motor recovery. Effective BCI neurorehabilitation has been shown to exploit neuroplastic properties of the brain through mental imagery tasks. However, these applications and results are currently restricted to adults. A systematic search reveals there is essentially no literature describing motor rehabilitative BCI applications that use electroencephalograms (EEG) in children, despite advances in such applications with adults. Further inspection highlights limited literature pursuing research in the field, especially outside of neurofeedback paradigms. Then the question naturally arises, do current literature trends indicate that EEG based BCI motor rehabilitation applications could be translated to children? To provide further evidence beyond the available literature for this particular topic, we present an exploratory survey examining some of the indirect literature related to motor rehabilitation BCI in children. Our goal is to establish if evidence in the related literature supports research on this topic and if the related studies can help explain the dearth of current research in this area. The investigation found positive literature trends in the indirect studies which support translating these BCI applications to children and provide insight into potential pitfalls perhaps responsible for the limited literature. Careful consideration of these pitfalls in conjunction with support from the literature emphasize that fully realized motor rehabilitation BCI applications for children are feasible and would be beneficial. • BCI intervention has improved motor recovery in adult patients and offer supplementary rehabilitation options to patients. • A systematic literature search revealed that essentially no research has been conducted bringing motor rehabilitation BCI applications to children, despite advances in BCI. • Indirect studies discovered from the systematic literature search, i.e. neurorehabilitation in children via BCI for autism spectrum disorder, provide insight into translating motor rehabilitation BCI applications to children. • Translating BCI applications to children is a relevant, important area of research which is relatively barren.
Kinney-Lang, E; Auyeung, B; Escudero, J
2016-12-01
Rehabilitation applications using brain-computer interfaces (BCI) have recently shown encouraging results for motor recovery. Effective BCI neurorehabilitation has been shown to exploit neuroplastic properties of the brain through mental imagery tasks. However, these applications and results are currently restricted to adults. A systematic search reveals there is essentially no literature describing motor rehabilitative BCI applications that use electroencephalograms (EEG) in children, despite advances in such applications with adults. Further inspection highlights limited literature pursuing research in the field, especially outside of neurofeedback paradigms. Then the question naturally arises, do current literature trends indicate that EEG based BCI motor rehabilitation applications could be translated to children? To provide further evidence beyond the available literature for this particular topic, we present an exploratory survey examining some of the indirect literature related to motor rehabilitation BCI in children. Our goal is to establish if evidence in the related literature supports research on this topic and if the related studies can help explain the dearth of current research in this area. The investigation found positive literature trends in the indirect studies which support translating these BCI applications to children and provide insight into potential pitfalls perhaps responsible for the limited literature. Careful consideration of these pitfalls in conjunction with support from the literature emphasize that fully realized motor rehabilitation BCI applications for children are feasible and would be beneficial. • BCI intervention has improved motor recovery in adult patients and offer supplementary rehabilitation options to patients. • A systematic literature search revealed that essentially no research has been conducted bringing motor rehabilitation BCI applications to children, despite advances in BCI. • Indirect studies discovered from the systematic literature search, i.e. neurorehabilitation in children via BCI for autism spectrum disorder, provide insight into translating motor rehabilitation BCI applications to children. • Translating BCI applications to children is a relevant, important area of research which is relatively barren.
Bashashati, Ali; Fatourechi, Mehrdad; Ward, Rabab K; Birch, Gary E
2007-06-01
Brain-computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using the electroencephalographic activity or other electrophysiological measures of the brain function. An essential factor in the successful operation of BCI systems is the methods used to process the brain signals. In the BCI literature, however, there is no comprehensive review of the signal processing techniques used. This work presents the first such comprehensive survey of all BCI designs using electrical signal recordings published prior to January 2006. Detailed results from this survey are presented and discussed. The following key research questions are addressed: (1) what are the key signal processing components of a BCI, (2) what signal processing algorithms have been used in BCIs and (3) which signal processing techniques have received more attention?
NASA Astrophysics Data System (ADS)
Bashashati, Ali; Fatourechi, Mehrdad; Ward, Rabab K.; Birch, Gary E.
2007-06-01
Brain computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using the electroencephalographic activity or other electrophysiological measures of the brain function. An essential factor in the successful operation of BCI systems is the methods used to process the brain signals. In the BCI literature, however, there is no comprehensive review of the signal processing techniques used. This work presents the first such comprehensive survey of all BCI designs using electrical signal recordings published prior to January 2006. Detailed results from this survey are presented and discussed. The following key research questions are addressed: (1) what are the key signal processing components of a BCI, (2) what signal processing algorithms have been used in BCIs and (3) which signal processing techniques have received more attention?
Brain-computer interface devices for patients with paralysis and amputation: a meeting report
NASA Astrophysics Data System (ADS)
Bowsher, K.; Civillico, E. F.; Coburn, J.; Collinger, J.; Contreras-Vidal, J. L.; Denison, T.; Donoghue, J.; French, J.; Getzoff, N.; Hochberg, L. R.; Hoffmann, M.; Judy, J.; Kleitman, N.; Knaack, G.; Krauthamer, V.; Ludwig, K.; Moynahan, M.; Pancrazio, J. J.; Peckham, P. H.; Pena, C.; Pinto, V.; Ryan, T.; Saha, D.; Scharen, H.; Shermer, S.; Skodacek, K.; Takmakov, P.; Tyler, D.; Vasudevan, S.; Wachrathit, K.; Weber, D.; Welle, C. G.; Ye, M.
2016-04-01
Objective. The Food and Drug Administration’s (FDA) Center for Devices and Radiological Health (CDRH) believes it is important to help stakeholders (e.g., manufacturers, health-care professionals, patients, patient advocates, academia, and other government agencies) navigate the regulatory landscape for medical devices. For innovative devices involving brain-computer interfaces, this is particularly important. Approach. Towards this goal, on 21 November, 2014, CDRH held an open public workshop on its White Oak, MD campus with the aim of fostering an open discussion on the scientific and clinical considerations associated with the development of brain-computer interface (BCI) devices, defined for the purposes of this workshop as neuroprostheses that interface with the central or peripheral nervous system to restore lost motor or sensory capabilities. Main results. This paper summarizes the presentations and discussions from that workshop. Significance. CDRH plans to use this information to develop regulatory considerations that will promote innovation while maintaining appropriate patient protections. FDA plans to build on advances in regulatory science and input provided in this workshop to develop guidance that provides recommendations for premarket submissions for BCI devices. These proceedings will be a resource for the BCI community during the development of medical devices for consumers.
Brain-computer interface devices for patients with paralysis and amputation: a meeting report.
Bowsher, K; Civillico, E F; Coburn, J; Collinger, J; Contreras-Vidal, J L; Denison, T; Donoghue, J; French, J; Getzoff, N; Hochberg, L R; Hoffmann, M; Judy, J; Kleitman, N; Knaack, G; Krauthamer, V; Ludwig, K; Moynahan, M; Pancrazio, J J; Peckham, P H; Pena, C; Pinto, V; Ryan, T; Saha, D; Scharen, H; Shermer, S; Skodacek, K; Takmakov, P; Tyler, D; Vasudevan, S; Wachrathit, K; Weber, D; Welle, C G; Ye, M
2016-04-01
The Food and Drug Administration's (FDA) Center for Devices and Radiological Health (CDRH) believes it is important to help stakeholders (e.g., manufacturers, health-care professionals, patients, patient advocates, academia, and other government agencies) navigate the regulatory landscape for medical devices. For innovative devices involving brain-computer interfaces, this is particularly important. Towards this goal, on 21 November, 2014, CDRH held an open public workshop on its White Oak, MD campus with the aim of fostering an open discussion on the scientific and clinical considerations associated with the development of brain-computer interface (BCI) devices, defined for the purposes of this workshop as neuroprostheses that interface with the central or peripheral nervous system to restore lost motor or sensory capabilities. This paper summarizes the presentations and discussions from that workshop. CDRH plans to use this information to develop regulatory considerations that will promote innovation while maintaining appropriate patient protections. FDA plans to build on advances in regulatory science and input provided in this workshop to develop guidance that provides recommendations for premarket submissions for BCI devices. These proceedings will be a resource for the BCI community during the development of medical devices for consumers.
A brain computer interface-based explorer.
Bai, Lijuan; Yu, Tianyou; Li, Yuanqing
2015-04-15
In recent years, various applications of brain computer interfaces (BCIs) have been studied. In this paper, we present a hybrid BCI combining P300 and motor imagery to operate an explorer. Our system is mainly composed of a BCI mouse, a BCI speller and an explorer. Through this system, the user can access his computer and manipulate (open, close, copy, paste, and delete) files such as documents, pictures, music, movies and so on. The system has been tested with five subjects, and the experimental results show that the explorer can be successfully operated according to subjects' intentions. Copyright © 2014 Elsevier B.V. All rights reserved.
The paradigm compiler: Mapping a functional language for the connection machine
NASA Technical Reports Server (NTRS)
Dennis, Jack B.
1989-01-01
The Paradigm Compiler implements a new approach to compiling programs written in high level languages for execution on highly parallel computers. The general approach is to identify the principal data structures constructed by the program and to map these structures onto the processing elements of the target machine. The mapping is chosen to maximize performance as determined through compile time global analysis of the source program. The source language is Sisal, a functional language designed for scientific computations, and the target language is Paris, the published low level interface to the Connection Machine. The data structures considered are multidimensional arrays whose dimensions are known at compile time. Computations that build such arrays usually offer opportunities for highly parallel execution; they are data parallel. The Connection Machine is an attractive target for these computations, and the parallel for construct of the Sisal language is a convenient high level notation for data parallel algorithms. The principles and organization of the Paradigm Compiler are discussed.
Wang, Nancy X. R.; Olson, Jared D.; Ojemann, Jeffrey G.; Rao, Rajesh P. N.; Brunton, Bingni W.
2016-01-01
Fully automated decoding of human activities and intentions from direct neural recordings is a tantalizing challenge in brain-computer interfacing. Implementing Brain Computer Interfaces (BCIs) outside carefully controlled experiments in laboratory settings requires adaptive and scalable strategies with minimal supervision. Here we describe an unsupervised approach to decoding neural states from naturalistic human brain recordings. We analyzed continuous, long-term electrocorticography (ECoG) data recorded over many days from the brain of subjects in a hospital room, with simultaneous audio and video recordings. We discovered coherent clusters in high-dimensional ECoG recordings using hierarchical clustering and automatically annotated them using speech and movement labels extracted from audio and video. To our knowledge, this represents the first time techniques from computer vision and speech processing have been used for natural ECoG decoding. Interpretable behaviors were decoded from ECoG data, including moving, speaking and resting; the results were assessed by comparison with manual annotation. Discovered clusters were projected back onto the brain revealing features consistent with known functional areas, opening the door to automated functional brain mapping in natural settings. PMID:27148018
Software platform for rapid prototyping of NIRS brain computer interfacing techniques.
Matthews, Fiachra; Soraghan, Christopher; Ward, Tomas E; Markham, Charles; Pearlmutter, Barak A
2008-01-01
This paper describes the control system of a next-generation optical brain-computer interface (BCI). Using functional near-infrared spectroscopy (fNIRS) as a BCI modality is a relatively new concept, and research has only begun to explore approaches for its implementation. It is necessary to have a system by which it is possible to investigate the signal processing and classification techniques available in the BCI community. Most importantly, these techniques must be easily testable in real-time applications. The system we describe was built using LABVIEW, a graphical programming language designed for interaction with National Instruments hardware. This platform allows complete configurability from hardware control and regulation, testing and filtering in a graphical interface environment.
A practical VEP-based brain-computer interface.
Wang, Yijun; Wang, Ruiping; Gao, Xiaorong; Hong, Bo; Gao, Shangkai
2006-06-01
This paper introduces the development of a practical brain-computer interface at Tsinghua University. The system uses frequency-coded steady-state visual evoked potentials to determine the gaze direction of the user. To ensure more universal applicability of the system, approaches for reducing user variation on system performance have been proposed. The information transfer rate (ITR) has been evaluated both in the laboratory and at the Rehabilitation Center of China, respectively. The system has been proved to be applicable to > 90% of people with a high ITR in living environments.
On the use of interaction error potentials for adaptive brain computer interfaces.
Llera, A; van Gerven, M A J; Gómez, V; Jensen, O; Kappen, H J
2011-12-01
We propose an adaptive classification method for the Brain Computer Interfaces (BCI) which uses Interaction Error Potentials (IErrPs) as a reinforcement signal and adapts the classifier parameters when an error is detected. We analyze the quality of the proposed approach in relation to the misclassification of the IErrPs. In addition we compare static versus adaptive classification performance using artificial and MEG data. We show that the proposed adaptive framework significantly improves the static classification methods. Copyright © 2011 Elsevier Ltd. All rights reserved.
Portable non-invasive brain-computer interface: challenges and opportunities of optical modalities
NASA Astrophysics Data System (ADS)
Scholl, Clara A.; Hendrickson, Scott M.; Swett, Bruce A.; Fitch, Michael J.; Walter, Erich C.; McLoughlin, Michael P.; Chevillet, Mark A.; Blodgett, David W.; Hwang, Grace M.
2017-05-01
The development of portable non-invasive brain computer interface technologies with higher spatio-temporal resolution has been motivated by the tremendous success seen with implanted devices. This talk will discuss efforts to overcome several major obstacles to viability including approaches that promise to improve spatial and temporal resolution. Optical approaches in particular will be highlighted and the potential benefits of both Blood-Oxygen Level Dependent (BOLD) and Fast Optical Signal (FOS) will be discussed. Early-stage research into the correlations between neural activity and FOS will be explored.
Renaud, Patrice; Joyal, Christian; Stoleru, Serge; Goyette, Mathieu; Weiskopf, Nikolaus; Birbaumer, Niels
2011-01-01
This chapter proposes a prospective view on using a real-time functional magnetic imaging (rt-fMRI) brain-computer interface (BCI) application as a new treatment for pedophilia. Neurofeedback mediated by interactive virtual stimuli is presented as the key process in this new BCI application. Results on the diagnostic discriminant power of virtual characters depicting sexual stimuli relevant to pedophilia are given. Finally, practical and ethical implications are briefly addressed. Copyright © 2011 Elsevier B.V. All rights reserved.
[Research of controlling of smart home system based on P300 brain-computer interface].
Wang, Jinjia; Yang, Chengjie
2014-08-01
Using electroencephalogram (EEG) signal to control external devices has always been the research focus in the field of brain-computer interface (BCI). This is especially significant for those disabilities who have lost capacity of movements. In this paper, the P300-based BCI and the microcontroller-based wireless radio frequency (RF) technology are utilized to design a smart home control system, which can be used to control household appliances, lighting system, and security devices directly. Experiment results showed that the system was simple, reliable and easy to be populirised.
Ron-Angevin, Ricardo; Velasco-Álvarez, Francisco; Fernández-Rodríguez, Álvaro; Díaz-Estrella, Antonio; Blanca-Mena, María José; Vizcaíno-Martín, Francisco Javier
2017-05-30
Certain diseases affect brain areas that control the movements of the patients' body, thereby limiting their autonomy and communication capacity. Research in the field of Brain-Computer Interfaces aims to provide patients with an alternative communication channel not based on muscular activity, but on the processing of brain signals. Through these systems, subjects can control external devices such as spellers to communicate, robotic prostheses to restore limb movements, or domotic systems. The present work focus on the non-muscular control of a robotic wheelchair. A proposal to control a wheelchair through a Brain-Computer Interface based on the discrimination of only two mental tasks is presented in this study. The wheelchair displacement is performed with discrete movements. The control signals used are sensorimotor rhythms modulated through a right-hand motor imagery task or mental idle state. The peculiarity of the control system is that it is based on a serial auditory interface that provides the user with four navigation commands. The use of two mental tasks to select commands may facilitate control and reduce error rates compared to other endogenous control systems for wheelchairs. Seventeen subjects initially participated in the study; nine of them completed the three sessions of the proposed protocol. After the first calibration session, seven subjects were discarded due to a low control of their electroencephalographic signals; nine out of ten subjects controlled a virtual wheelchair during the second session; these same nine subjects achieved a medium accuracy level above 0.83 on the real wheelchair control session. The results suggest that more extensive training with the proposed control system can be an effective and safe option that will allow the displacement of a wheelchair in a controlled environment for potential users suffering from some types of motor neuron diseases.
Prediction of P300 BCI Aptitude in Severe Motor Impairment
Halder, Sebastian; Ruf, Carolin Anne; Furdea, Adrian; Pasqualotto, Emanuele; De Massari, Daniele; van der Heiden, Linda; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels; Kübler, Andrea; Matuz, Tamara
2013-01-01
Brain-computer interfaces (BCIs) provide a non-muscular communication channel for persons with severe motor impairments. Previous studies have shown that the aptitude with which a BCI can be controlled varies from person to person. A reliable predictor of performance could facilitate selection of a suitable BCI paradigm. Eleven severely motor impaired participants performed three sessions of a P300 BCI web browsing task. Before each session auditory oddball data were collected to predict the BCI aptitude of the participants exhibited in the current session. We found a strong relationship of early positive and negative potentials around 200 ms (elicited with the auditory oddball task) with performance. The amplitude of the P2 (r = −0.77) and of the N2 (r = −0.86) had the strongest correlations. Aptitude prediction using an auditory oddball was successful. The finding that the N2 amplitude is a stronger predictor of performance than P3 amplitude was reproduced after initially showing this effect with a healthy sample of BCI users. This will reduce strain on the end-users by minimizing the time needed to find suitable paradigms and inspire new approaches to improve performance. PMID:24204597
NASA Astrophysics Data System (ADS)
Power, Sarah D.; Falk, Tiago H.; Chau, Tom
2010-04-01
Near-infrared spectroscopy (NIRS) has recently been investigated as a non-invasive brain-computer interface (BCI). In particular, previous research has shown that NIRS signals recorded from the motor cortex during left- and right-hand imagery can be distinguished, providing a basis for a two-choice NIRS-BCI. In this study, we investigated the feasibility of an alternative two-choice NIRS-BCI paradigm based on the classification of prefrontal activity due to two cognitive tasks, specifically mental arithmetic and music imagery. Deploying a dual-wavelength frequency domain near-infrared spectrometer, we interrogated nine sites around the frontopolar locations (International 10-20 System) while ten able-bodied adults performed mental arithmetic and music imagery within a synchronous shape-matching paradigm. With the 18 filtered AC signals, we created task- and subject-specific maximum likelihood classifiers using hidden Markov models. Mental arithmetic and music imagery were classified with an average accuracy of 77.2% ± 7.0 across participants, with all participants significantly exceeding chance accuracies. The results suggest the potential of a two-choice NIRS-BCI based on cognitive rather than motor tasks.
Novel semi-dry electrodes for brain-computer interface applications
NASA Astrophysics Data System (ADS)
Wang, Fei; Li, Guangli; Chen, Jingjing; Duan, Yanwen; Zhang, Dan
2016-08-01
Objectives. Modern applications of brain-computer interfaces (BCIs) based on electroencephalography rely heavily on the so-called wet electrodes (e.g. Ag/AgCl electrodes) which require gel application and skin preparation to operate properly. Recently, alternative ‘dry’ electrodes have been developed to increase ease of use, but they often suffer from higher electrode-skin impedance and signal instability. In the current paper, we have proposed a novel porous ceramic-based ‘semi-dry’ electrode. The key feature of the semi-dry electrodes is that their tips can slowly and continuously release a tiny amount of electrolyte liquid to the scalp, which provides an ionic conducting path for detecting neural signals. Approach. The performance of the proposed electrode was evaluated by simultaneous recording of the wet and semi-dry electrodes pairs in five classical BCI paradigms: eyes open/closed, the motor imagery BCI, the P300 speller, the N200 speller and the steady-state visually evoked potential-based BCI. Main results. The grand-averaged temporal cross-correlation was 0.95 ± 0.07 across the subjects and the nine recording positions, and these cross-correlations were stable throughout the whole experimental protocol. In the spectral domain, the semi-dry/wet coherence was greater than 0.80 at all frequencies and greater than 0.90 at frequencies above 10 Hz, with the exception of a dip around 50 Hz (i.e. the powerline noise). More importantly, the BCI classification accuracies were also comparable between the two types of electrodes. Significance. Overall, these results indicate that the proposed semi-dry electrode can effectively capture the electrophysiological responses and is a feasible alternative to the conventional dry electrode in BCI applications.
Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke
NASA Astrophysics Data System (ADS)
Johnson, N. N.; Carey, J.; Edelman, B. J.; Doud, A.; Grande, A.; Lakshminarayan, K.; He, B.
2018-02-01
Objective. Combining repetitive transcranial magnetic stimulation (rTMS) with brain-computer interface (BCI) training can address motor impairment after stroke by down-regulating exaggerated inhibition from the contralesional hemisphere and encouraging ipsilesional activation. The objective was to evaluate the efficacy of combined rTMS + BCI, compared to sham rTMS + BCI, on motor recovery after stroke in subjects with lasting motor paresis. Approach. Three stroke subjects approximately one year post-stroke participated in three weeks of combined rTMS (real or sham) and BCI, followed by three weeks of BCI alone. Behavioral and electrophysiological differences were evaluated at baseline, after three weeks, and after six weeks of treatment. Main results. Motor improvements were observed in both real rTMS + BCI and sham groups, but only the former showed significant alterations in inter-hemispheric inhibition in the desired direction and increased relative ipsilesional cortical activation from fMRI. In addition, significant improvements in BCI performance over time and adequate control of the virtual reality BCI paradigm were observed only in the former group. Significance. When combined, the results highlight the feasibility and efficacy of combined rTMS + BCI for motor recovery, demonstrated by increased ipsilesional motor activity and improvements in behavioral function for the real rTMS + BCI condition in particular. Our findings also demonstrate the utility of BCI training alone, as shown by behavioral improvements for the sham rTMS + BCI condition. This study is the first to evaluate combined rTMS and BCI training for motor rehabilitation and provides a foundation for continued work to evaluate the potential of both rTMS and virtual reality BCI training for motor recovery after stroke.
Heo, Jeong; Baek, Hyun Jae; Hong, Seunghyeok; Chang, Min Hye; Lee, Jeong Su; Park, Kwang Suk
2017-05-01
Patients with total locked-in syndrome are conscious; however, they cannot express themselves because most of their voluntary muscles are paralyzed, and many of these patients have lost their eyesight. To improve the quality of life of these patients, there is an increasing need for communication-supporting technologies that leverage the remaining senses of the patient along with physiological signals. The auditory steady-state response (ASSR) is an electro-physiologic response to auditory stimulation that is amplitude-modulated by a specific frequency. By leveraging the phenomenon whereby ASSR is modulated by mind concentration, a brain-computer interface paradigm was proposed to classify the selective attention of the patient. In this paper, we propose an auditory stimulation method to minimize auditory stress by replacing the monotone carrier with familiar music and natural sounds for an ergonomic system. Piano and violin instrumentals were employed in the music sessions; the sounds of water streaming and cicadas singing were used in the natural sound sessions. Six healthy subjects participated in the experiment. Electroencephalograms were recorded using four electrodes (Cz, Oz, T7 and T8). Seven sessions were performed using different stimuli. The spectral power at 38 and 42Hz and their ratio for each electrode were extracted as features. Linear discriminant analysis was utilized to classify the selections for each subject. In offline analysis, the average classification accuracies with a modulation index of 1.0 were 89.67% and 87.67% using music and natural sounds, respectively. In online experiments, the average classification accuracies were 88.3% and 80.0% using music and natural sounds, respectively. Using the proposed method, we obtained significantly higher user-acceptance scores, while maintaining a high average classification accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hübner, David; Verhoeven, Thibault; Schmid, Konstantin; Müller, Klaus-Robert; Tangermann, Michael; Kindermans, Pieter-Jan
2017-01-01
Using traditional approaches, a brain-computer interface (BCI) requires the collection of calibration data for new subjects prior to online use. Calibration time can be reduced or eliminated e.g., by subject-to-subject transfer of a pre-trained classifier or unsupervised adaptive classification methods which learn from scratch and adapt over time. While such heuristics work well in practice, none of them can provide theoretical guarantees. Our objective is to modify an event-related potential (ERP) paradigm to work in unison with the machine learning decoder, and thus to achieve a reliable unsupervised calibrationless decoding with a guarantee to recover the true class means. We introduce learning from label proportions (LLP) to the BCI community as a new unsupervised, and easy-to-implement classification approach for ERP-based BCIs. The LLP estimates the mean target and non-target responses based on known proportions of these two classes in different groups of the data. We present a visual ERP speller to meet the requirements of LLP. For evaluation, we ran simulations on artificially created data sets and conducted an online BCI study with 13 subjects performing a copy-spelling task. Theoretical considerations show that LLP is guaranteed to minimize the loss function similar to a corresponding supervised classifier. LLP performed well in simulations and in the online application, where 84.5% of characters were spelled correctly on average without prior calibration. The continuously adapting LLP classifier is the first unsupervised decoder for ERP BCIs guaranteed to find the optimal decoder. This makes it an ideal solution to avoid tedious calibration sessions. Additionally, LLP works on complementary principles compared to existing unsupervised methods, opening the door for their further enhancement when combined with LLP.
Verhoeven, Thibault; Schmid, Konstantin; Müller, Klaus-Robert; Tangermann, Michael; Kindermans, Pieter-Jan
2017-01-01
Objective Using traditional approaches, a brain-computer interface (BCI) requires the collection of calibration data for new subjects prior to online use. Calibration time can be reduced or eliminated e.g., by subject-to-subject transfer of a pre-trained classifier or unsupervised adaptive classification methods which learn from scratch and adapt over time. While such heuristics work well in practice, none of them can provide theoretical guarantees. Our objective is to modify an event-related potential (ERP) paradigm to work in unison with the machine learning decoder, and thus to achieve a reliable unsupervised calibrationless decoding with a guarantee to recover the true class means. Method We introduce learning from label proportions (LLP) to the BCI community as a new unsupervised, and easy-to-implement classification approach for ERP-based BCIs. The LLP estimates the mean target and non-target responses based on known proportions of these two classes in different groups of the data. We present a visual ERP speller to meet the requirements of LLP. For evaluation, we ran simulations on artificially created data sets and conducted an online BCI study with 13 subjects performing a copy-spelling task. Results Theoretical considerations show that LLP is guaranteed to minimize the loss function similar to a corresponding supervised classifier. LLP performed well in simulations and in the online application, where 84.5% of characters were spelled correctly on average without prior calibration. Significance The continuously adapting LLP classifier is the first unsupervised decoder for ERP BCIs guaranteed to find the optimal decoder. This makes it an ideal solution to avoid tedious calibration sessions. Additionally, LLP works on complementary principles compared to existing unsupervised methods, opening the door for their further enhancement when combined with LLP. PMID:28407016
A brain-computer interface with vibrotactile biofeedback for haptic information.
Chatterjee, Aniruddha; Aggarwal, Vikram; Ramos, Ander; Acharya, Soumyadipta; Thakor, Nitish V
2007-10-17
It has been suggested that Brain-Computer Interfaces (BCI) may one day be suitable for controlling a neuroprosthesis. For closed-loop operation of BCI, a tactile feedback channel that is compatible with neuroprosthetic applications is desired. Operation of an EEG-based BCI using only vibrotactile feedback, a commonly used method to convey haptic senses of contact and pressure, is demonstrated with a high level of accuracy. A Mu-rhythm based BCI using a motor imagery paradigm was used to control the position of a virtual cursor. The cursor position was shown visually as well as transmitted haptically by modulating the intensity of a vibrotactile stimulus to the upper limb. A total of six subjects operated the BCI in a two-stage targeting task, receiving only vibrotactile biofeedback of performance. The location of the vibration was also systematically varied between the left and right arms to investigate location-dependent effects on performance. Subjects are able to control the BCI using only vibrotactile feedback with an average accuracy of 56% and as high as 72%. These accuracies are significantly higher than the 15% predicted by random chance if the subject had no voluntary control of their Mu-rhythm. The results of this study demonstrate that vibrotactile feedback is an effective biofeedback modality to operate a BCI using motor imagery. In addition, the study shows that placement of the vibrotactile stimulation on the biceps ipsilateral or contralateral to the motor imagery introduces a significant bias in the BCI accuracy. This bias is consistent with a drop in performance generated by stimulation of the contralateral limb. Users demonstrated the capability to overcome this bias with training.
Novel semi-dry electrodes for brain-computer interface applications.
Wang, Fei; Li, Guangli; Chen, Jingjing; Duan, Yanwen; Zhang, Dan
2016-08-01
Modern applications of brain-computer interfaces (BCIs) based on electroencephalography rely heavily on the so-called wet electrodes (e.g. Ag/AgCl electrodes) which require gel application and skin preparation to operate properly. Recently, alternative 'dry' electrodes have been developed to increase ease of use, but they often suffer from higher electrode-skin impedance and signal instability. In the current paper, we have proposed a novel porous ceramic-based 'semi-dry' electrode. The key feature of the semi-dry electrodes is that their tips can slowly and continuously release a tiny amount of electrolyte liquid to the scalp, which provides an ionic conducting path for detecting neural signals. The performance of the proposed electrode was evaluated by simultaneous recording of the wet and semi-dry electrodes pairs in five classical BCI paradigms: eyes open/closed, the motor imagery BCI, the P300 speller, the N200 speller and the steady-state visually evoked potential-based BCI. The grand-averaged temporal cross-correlation was 0.95 ± 0.07 across the subjects and the nine recording positions, and these cross-correlations were stable throughout the whole experimental protocol. In the spectral domain, the semi-dry/wet coherence was greater than 0.80 at all frequencies and greater than 0.90 at frequencies above 10 Hz, with the exception of a dip around 50 Hz (i.e. the powerline noise). More importantly, the BCI classification accuracies were also comparable between the two types of electrodes. Overall, these results indicate that the proposed semi-dry electrode can effectively capture the electrophysiological responses and is a feasible alternative to the conventional dry electrode in BCI applications.
Hardware enhance of brain computer interfaces
NASA Astrophysics Data System (ADS)
Wu, Jerry; Szu, Harold; Chen, Yuechen; Guo, Ran; Gu, Xixi
2015-05-01
The history of brain-computer interfaces (BCIs) starts with Hans Berger's discovery of the electrical activity of the human brain and the development of electroencephalography (EEG). Recent years, BCI researches are focused on Invasive, Partially invasive, and Non-invasive BCI. Furthermore, EEG can be also applied to telepathic communication which could provide the basis for brain-based communication using imagined speech. It is possible to use EEG signals to discriminate the vowels and consonants embedded in spoken and in imagined words and apply to military product. In this report, we begin with an example of using high density EEG with high electrode density and analysis the results by using BCIs. The BCIs in this work is enhanced by A field-programmable gate array (FPGA) board with optimized two dimension (2D) image Fast Fourier Transform (FFT) analysis.
A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature
NASA Astrophysics Data System (ADS)
Xu, Minpeng; Qi, Hongzhi; Wan, Baikun; Yin, Tao; Liu, Zhipeng; Ming, Dong
2013-04-01
Objective. Hybrid brain-computer interfaces (BCIs) have been proved to be more effective in mental control by combining another channel of physiologic control signals. Among those studies, little attention has been paid to the combined use of a steady-state visual evoked potential (SSVEP) and P300 potential, both providing the fastest and the most reliable EEG based BCIs. In this paper, a novel hybrid BCI speller is developed to elicit P300 potential and SSVEP blocking (SSVEP-B) distinctly and simultaneously with the same target stimulus. Approach. Twelve subjects were involved in the study and every one performed offline spelling twice in succession with two different speller paradigms for comparison: hybrid speller and control P300-speller. Feature analysis was adopted from the view of time domain, frequency domain and spatial distribution; the performances were evaluated by character accuracy and information transfer rate (ITR). Main results. Signal analysis of the hybrid paradigm shows that SSVEPs are an evident EEG component during the nontarget phase but are dismissed and replaced by P300 potentials after target stimuli. The absence of an SSVEP, called SSVEP-B, mostly appearing in channel Oz, presents a sharp distinction between target responses and nontarget responses. The r2 value of SSVEP-B in channel Oz is comparable to that of P300 in channel Cz. Compared with the control P300-speller, the hybrid speller achieves significantly higher accuracy and ITR with combined features. Significance. The results indicate that the combination of P300 with an SSVEP-B improves target discrimination greatly; the proposed hybrid paradigm is superior to the control paradigm in spelling performance. Thus, our findings provide a new approach to improve BCI performances.
Behavioural and computational varieties of response inhibition in eye movements.
Cutsuridis, Vassilis
2017-04-19
Response inhibition is the ability to override a planned or an already initiated response. It is the hallmark of executive control as its deficits favour impulsive behaviours, which may be detrimental to an individual's life. This article reviews behavioural and computational guises of response inhibition. It focuses only on inhibition of oculomotor responses. It first reviews behavioural paradigms of response inhibition in eye movement research, namely the countermanding and antisaccade paradigms, both proven to be useful tools for the study of response inhibition in cognitive neuroscience and psychopathology. Then, it briefly reviews the neural mechanisms of response inhibition in these two behavioural paradigms. Computational models that embody a hypothesis and/or a theory of mechanisms underlying performance in both behavioural paradigms as well as provide a critical analysis of strengths and weaknesses of these models are discussed. All models assume the race of decision processes. The decision process in each paradigm that wins the race depends on different mechanisms. It has been shown that response latency is a stochastic process and has been proven to be an important measure of the cognitive control processes involved in response stopping in healthy and patient groups. Then, the inhibitory deficits in different brain diseases are reviewed, including schizophrenia and obsessive-compulsive disorder. Finally, new directions are suggested to improve the performance of models of response inhibition by drawing inspiration from successes of models in other domains.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'. © 2017 The Author(s).
LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin
2013-01-01
Objective At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional physical space using noninvasive scalp EEG in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that operation of a real world device has on subjects’ control with comparison to a two-dimensional virtual cursor task. Approach Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a three-dimensional physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m/s. Significance Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user’s ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in the three-dimensional physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG based BCI systems to accomplish complex control in three-dimensional physical space. The present study may serve as a framework for the investigation of multidimensional non-invasive brain-computer interface control in a physical environment using telepresence robotics. PMID:23735712
Brain Computer Interfaces, a Review
Nicolas-Alonso, Luis Fernando; Gomez-Gil, Jaime
2012-01-01
A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices. PMID:22438708
The Berlin Brain-Computer Interface: Progress Beyond Communication and Control
Blankertz, Benjamin; Acqualagna, Laura; Dähne, Sven; Haufe, Stefan; Schultze-Kraft, Matthias; Sturm, Irene; Ušćumlic, Marija; Wenzel, Markus A.; Curio, Gabriel; Müller, Klaus-Robert
2016-01-01
The combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability. While we assume we are still a long way away from integrating Brain-Computer Interface (BCI) technology in general interaction with computers, or from implementing neurotechnological measures in safety-critical workplaces, results have already now been obtained involving a BCI as research tool. In this article, we discuss the reasons why, in some of the prospective application domains, considerable effort is still required to make the systems ready to deal with the full complexity of the real world. PMID:27917107
The Berlin Brain-Computer Interface: Progress Beyond Communication and Control.
Blankertz, Benjamin; Acqualagna, Laura; Dähne, Sven; Haufe, Stefan; Schultze-Kraft, Matthias; Sturm, Irene; Ušćumlic, Marija; Wenzel, Markus A; Curio, Gabriel; Müller, Klaus-Robert
2016-01-01
The combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability. While we assume we are still a long way away from integrating Brain-Computer Interface (BCI) technology in general interaction with computers, or from implementing neurotechnological measures in safety-critical workplaces, results have already now been obtained involving a BCI as research tool. In this article, we discuss the reasons why, in some of the prospective application domains, considerable effort is still required to make the systems ready to deal with the full complexity of the real world.
Encoder-Decoder Optimization for Brain-Computer Interfaces
Merel, Josh; Pianto, Donald M.; Cunningham, John P.; Paninski, Liam
2015-01-01
Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages. PMID:26029919
Encoder-decoder optimization for brain-computer interfaces.
Merel, Josh; Pianto, Donald M; Cunningham, John P; Paninski, Liam
2015-06-01
Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.
EEG Event-Related Desynchronization of patients with stroke during motor imagery of hand movement
NASA Astrophysics Data System (ADS)
Tabernig, Carolina B.; Carrere, Lucía C.; Lopez, Camila A.; Ballario, Carlos
2016-04-01
Brain Computer Interfaces (BCI) can be used for therapeutic purposes to improve voluntary motor control that has been affected post stroke. For this purpose, desynchronization of sensorimotor rhythms of the electroencephalographic signal (EEG) can be used. But it is necessary to study what happens in the affected motor cortex of this people. In this article, we analyse EEG recordings of hemiplegic stroke patients to determine if it is possible to detect desynchronization in the affected motor cortex during the imagination of movements of the affected hand. Six patients were included in the study; four evidenced desynchronization in the affected hemisphere, one of them showed no results and the EEG recordings of the last patient presented high noise level. These results suggest that we could use the desynchronization of sensorimotor rhythms of the EEG signal as a BCI paradigm in a rehabilitation programme.
Neuroprosthetic Decoder Training as Imitation Learning.
Merel, Josh; Carlson, David; Paninski, Liam; Cunningham, John P
2016-05-01
Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user's intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user's intended movement. Here we show that training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger), can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy) for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector.
Neural control of finger movement via intracortical brain-machine interface
NASA Astrophysics Data System (ADS)
Irwin, Z. T.; Schroeder, K. E.; Vu, P. P.; Bullard, A. J.; Tat, D. M.; Nu, C. S.; Vaskov, A.; Nason, S. R.; Thompson, D. E.; Bentley, J. N.; Patil, P. G.; Chestek, C. A.
2017-12-01
Objective. Intracortical brain-machine interfaces (BMIs) are a promising source of prosthesis control signals for individuals with severe motor disabilities. Previous BMI studies have primarily focused on predicting and controlling whole-arm movements; precise control of hand kinematics, however, has not been fully demonstrated. Here, we investigate the continuous decoding of precise finger movements in rhesus macaques. Approach. In order to elicit precise and repeatable finger movements, we have developed a novel behavioral task paradigm which requires the subject to acquire virtual fingertip position targets. In the physical control condition, four rhesus macaques performed this task by moving all four fingers together in order to acquire a single target. This movement was equivalent to controlling the aperture of a power grasp. During this task performance, we recorded neural spikes from intracortical electrode arrays in primary motor cortex. Main results. Using a standard Kalman filter, we could reconstruct continuous finger movement offline with an average correlation of ρ = 0.78 between actual and predicted position across four rhesus macaques. For two of the monkeys, this movement prediction was performed in real-time to enable direct brain control of the virtual hand. Compared to physical control, neural control performance was slightly degraded; however, the monkeys were still able to successfully perform the task with an average target acquisition rate of 83.1%. The monkeys’ ability to arbitrarily specify fingertip position was also quantified using an information throughput metric. During brain control task performance, the monkeys achieved an average 1.01 bits s-1 throughput, similar to that achieved in previous studies which decoded upper-arm movements to control computer cursors using a standard Kalman filter. Significance. This is, to our knowledge, the first demonstration of brain control of finger-level fine motor skills. We believe that these results represent an important step towards full and dexterous control of neural prosthetic devices.
A brain-computer interface to support functional recovery.
Kjaer, Troels W; Sørensen, Helge B
2013-01-01
Brain-computer interfaces (BCI) register changes in brain activity and utilize this to control computers. The most widely used method is based on registration of electrical signals from the cerebral cortex using extracranially placed electrodes also called electroencephalography (EEG). The features extracted from the EEG may, besides controlling the computer, also be fed back to the patient for instance as visual input. This facilitates a learning process. BCI allow us to utilize brain activity in the rehabilitation of patients after stroke. The activity of the cerebral cortex varies with the type of movement we imagine, and by letting the patient know the type of brain activity best associated with the intended movement the rehabilitation process may be faster and more efficient. The focus of BCI utilization in medicine has changed in recent years. While we previously focused on devices facilitating communication in the rather few patients with locked-in syndrome, much interest is now devoted to the therapeutic use of BCI in rehabilitation. For this latter group of patients, the device is not intended to be a lifelong assistive companion but rather a 'teacher' during the rehabilitation period. Copyright © 2013 S. Karger AG, Basel.
Rothschild, Ryan Mark
2010-01-01
The main focus of this review is to provide a holistic amalgamated overview of the most recent human in vivo techniques for implementing brain–computer interfaces (BCIs), bidirectional interfaces, and neuroprosthetics. Neuroengineering is providing new methods for tackling current difficulties; however neuroprosthetics have been studied for decades. Recent progresses are permitting the design of better systems with higher accuracies, repeatability, and system robustness. Bidirectional interfaces integrate recording and the relaying of information from and to the brain for the development of BCIs. The concepts of non-invasive and invasive recording of brain activity are introduced. This includes classical and innovative techniques like electroencephalography and near-infrared spectroscopy. Then the problem of gliosis and solutions for (semi-) permanent implant biocompatibility such as innovative implant coatings, materials, and shapes are discussed. Implant power and the transmission of their data through implanted pulse generators and wireless telemetry are taken into account. How sensation can be relayed back to the brain to increase integration of the neuroengineered systems with the body by methods such as micro-stimulation and transcranial magnetic stimulation are then addressed. The neuroprosthetic section discusses some of the various types and how they operate. Visual prosthetics are discussed and the three types, dependant on implant location, are examined. Auditory prosthetics, being cochlear or cortical, are then addressed. Replacement hand and limb prosthetics are then considered. These are followed by sections concentrating on the control of wheelchairs, computers and robotics directly from brain activity as recorded by non-invasive and invasive techniques. PMID:21060801
Metal oxide resistive random access memory based synaptic devices for brain-inspired computing
NASA Astrophysics Data System (ADS)
Gao, Bin; Kang, Jinfeng; Zhou, Zheng; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan
2016-04-01
The traditional Boolean computing paradigm based on the von Neumann architecture is facing great challenges for future information technology applications such as big data, the Internet of Things (IoT), and wearable devices, due to the limited processing capability issues such as binary data storage and computing, non-parallel data processing, and the buses requirement between memory units and logic units. The brain-inspired neuromorphic computing paradigm is believed to be one of the promising solutions for realizing more complex functions with a lower cost. To perform such brain-inspired computing with a low cost and low power consumption, novel devices for use as electronic synapses are needed. Metal oxide resistive random access memory (ReRAM) devices have emerged as the leading candidate for electronic synapses. This paper comprehensively addresses the recent work on the design and optimization of metal oxide ReRAM-based synaptic devices. A performance enhancement methodology and optimized operation scheme to achieve analog resistive switching and low-energy training behavior are provided. A three-dimensional vertical synapse network architecture is proposed for high-density integration and low-cost fabrication. The impacts of the ReRAM synaptic device features on the performances of neuromorphic systems are also discussed on the basis of a constructed neuromorphic visual system with a pattern recognition function. Possible solutions to achieve the high recognition accuracy and efficiency of neuromorphic systems are presented.
The flight telerobotic servicer: From functional architecture to computer architecture
NASA Technical Reports Server (NTRS)
Lumia, Ronald; Fiala, John
1989-01-01
After a brief tutorial on the NASA/National Bureau of Standards Standard Reference Model for Telerobot Control System Architecture (NASREM) functional architecture, the approach to its implementation is shown. First, interfaces must be defined which are capable of supporting the known algorithms. This is illustrated by considering the interfaces required for the SERVO level of the NASREM functional architecture. After interface definition, the specific computer architecture for the implementation must be determined. This choice is obviously technology dependent. An example illustrating one possible mapping of the NASREM functional architecture to a particular set of computers which implements it is shown. The result of choosing the NASREM functional architecture is that it provides a technology independent paradigm which can be mapped into a technology dependent implementation capable of evolving with technology in the laboratory and in space.
Schuettler, Martin; Kohler, Fabian; Ordonez, Juan S; Stieglitz, Thomas
2012-01-01
Future brain-computer-interfaces (BCIs) for severely impaired patients are implanted to electrically contact the brain tissue. Avoiding percutaneous cables requires amplifier and telemetry electronics to be implanted too. We developed a hermetic package that protects the electronic circuitry of a BCI from body moisture while permitting infrared communication through the package wall made from alumina ceramic. The ceramic package is casted in medical grade silicone adhesive, for which we identified MED2-4013 as a promising candidate.
Towards Effective Non-Invasive Brain-Computer Interfaces Dedicated to Gait Rehabilitation Systems
Castermans, Thierry; Duvinage, Matthieu; Cheron, Guy; Dutoit, Thierry
2014-01-01
In the last few years, significant progress has been made in the field of walk rehabilitation. Motor cortex signals in bipedal monkeys have been interpreted to predict walk kinematics. Epidural electrical stimulation in rats and in one young paraplegic has been realized to partially restore motor control after spinal cord injury. However, these experimental trials are far from being applicable to all patients suffering from motor impairments. Therefore, it is thought that more simple rehabilitation systems are desirable in the meanwhile. The goal of this review is to describe and summarize the progress made in the development of non-invasive brain-computer interfaces dedicated to motor rehabilitation systems. In the first part, the main principles of human locomotion control are presented. The paper then focuses on the mechanisms of supra-spinal centers active during gait, including results from electroencephalography, functional brain imaging technologies [near-infrared spectroscopy (NIRS), functional magnetic resonance imaging (fMRI), positron-emission tomography (PET), single-photon emission-computed tomography (SPECT)] and invasive studies. The first brain-computer interface (BCI) applications to gait rehabilitation are then presented, with a discussion about the different strategies developed in the field. The challenges to raise for future systems are identified and discussed. Finally, we present some proposals to address these challenges, in order to contribute to the improvement of BCI for gait rehabilitation. PMID:24961699
Designing Guiding Systems for Brain-Computer Interfaces
Kosmyna, Nataliya; Lécuyer, Anatole
2017-01-01
Brain–Computer Interface (BCI) community has focused the majority of its research efforts on signal processing and machine learning, mostly neglecting the human in the loop. Guiding users on how to use a BCI is crucial in order to teach them to produce stable brain patterns. In this work, we explore the instructions and feedback for BCIs in order to provide a systematic taxonomy to describe the BCI guiding systems. The purpose of our work is to give necessary clues to the researchers and designers in Human–Computer Interaction (HCI) in making the fusion between BCIs and HCI more fruitful but also to better understand the possibilities BCIs can provide to them. PMID:28824400
Brain-computer interface analysis of a dynamic visuo-motor task.
Logar, Vito; Belič, Aleš
2011-01-01
The area of brain-computer interfaces (BCIs) represents one of the more interesting fields in neurophysiological research, since it investigates the development of the machines that perform different transformations of the brain's "thoughts" to certain pre-defined actions. Experimental studies have reported some successful implementations of BCIs; however, much of the field still remains unexplored. According to some recent reports the phase coding of informational content is an important mechanism in the brain's function and cognition, and has the potential to explain various mechanisms of the brain's data transfer, but it has yet to be scrutinized in the context of brain-computer interface. Therefore, if the mechanism of phase coding is plausible, one should be able to extract the phase-coded content, carried by brain signals, using appropriate signal-processing methods. In our previous studies we have shown that by using a phase-demodulation-based signal-processing approach it is possible to decode some relevant information on the current motor action in the brain from electroencephalographic (EEG) data. In this paper the authors would like to present a continuation of their previous work on the brain-information-decoding analysis of visuo-motor (VM) tasks. The present study shows that EEG data measured during more complex, dynamic visuo-motor (dVM) tasks carries enough information about the currently performed motor action to be successfully extracted by using the appropriate signal-processing and identification methods. The aim of this paper is therefore to present a mathematical model, which by means of the EEG measurements as its inputs predicts the course of the wrist movements as applied by each subject during the task in simulated or real time (BCI analysis). However, several modifications to the existing methodology are needed to achieve optimal decoding results and a real-time, data-processing ability. The information extracted from the EEG could, therefore, be further used for the development of a closed-loop, non-invasive, brain-computer interface. For the case of this study two types of measurements were performed, i.e., the electroencephalographic (EEG) signals and the wrist movements were measured simultaneously, during the subject's performance of a dynamic visuo-motor task. Wrist-movement predictions were computed by using the EEG data-processing methodology of double brain-rhythm filtering, double phase demodulation and double principal component analyses (PCA), each with a separate set of parameters. For the movement-prediction model a fuzzy inference system was used. The results have shown that the EEG signals measured during the dVM tasks carry enough information about the subjects' wrist movements for them to be successfully decoded using the presented methodology. Reasonably high values of the correlation coefficients suggest that the validation of the proposed approach is satisfactory. Moreover, since the causality of the rhythm filtering and the PCA transformation has been achieved, we have shown that these methods can also be used in a real-time, brain-computer interface. The study revealed that using non-causal, optimized methods yields better prediction results in comparison with the causal, non-optimized methodology; however, taking into account that the causality of these methods allows real-time processing, the minor decrease in prediction quality is acceptable. The study suggests that the methodology that was proposed in our previous studies is also valid for identifying the EEG-coded content during dVM tasks, albeit with various modifications, which allow better prediction results and real-time data processing. The results have shown that wrist movements can be predicted in simulated or real time; however, the results of the non-causal, optimized methodology (simulated) are slightly better. Nevertheless, the study has revealed that these methods should be suitable for use in the development of a non-invasive, brain-computer interface. Copyright © 2010 Elsevier B.V. All rights reserved.
Bång, Magnus; Larsson, Anders; Eriksson, Henrik
2003-01-01
In this paper, we present a new approach to clinical workplace computerization that departs from the window–based user interface paradigm. NOSTOS is an experimental computer–augmented work environment designed to support data capture and teamwork in an emergency room. NOSTOS combines multiple technologies, such as digital pens, walk–up displays, headsets, a smart desk, and sensors to enhance an existing paper–based practice with computer power. The physical interfaces allow clinicians to retain mobile paper–based collaborative routines and still benefit from computer technology. The requirements for the system were elicited from situated workplace studies. We discuss the advantages and disadvantages of augmenting a paper–based clinical work environment. PMID:14728131
Evaluation of induced and evoked changes in EEG during selective attention to verbal stimuli.
Horki, P; Bauernfeind, G; Schippinger, W; Pichler, G; Müller-Putz, G R
2016-09-01
Two challenges need to be addressed before bringing non-motor mental tasks for brain-computer interface (BCI) control to persons in a minimally conscious state (MCS), who can be behaviorally unresponsive even when proven to be consciously aware: first, keeping the cognitive demands as low as possible so that they could be fulfilled by persons with MCS. Second, increasing the control of experimental protocol (i.e. type and timing of the task performance). The goal of this study is twofold: first goal is to develop an experimental paradigm that can facilitate the performance of brain-teasers (e.g. mental subtraction and word generation) on the one hand, and can increase the control of experimental protocol on the other hand. The second goal of this study is to exploit the similar findings for mentally attending to someone else's verbal performance of brain-teaser tasks and self-performing the same tasks to setup an online BCI, and to compare it in healthy participants to the current "state-of-the-art" motor imagery (MI, sports). The response accuracies for the best performing healthy participants indicate that selective attention to verbal performance of mental subtraction (SUB) is a viable alternative to the MI. Time-frequency analysis of the SUB task in one participant with MCS did not reveal any significant (p<0.05) EEG changes, whereas imagined performance of one sport of participants' choice (SPORT) revealed task-related EEG changes over neurophysiological plausible cortical areas. We found that mentally attending to someone else's verbal performance of brain-teaser tasks leads to similar results as in self-performing the same tasks. In this work we demonstrated that a single auditory selective attention task (i.e. mentally attending to someone else's verbal performance of mental subtraction) can modulate both induced and evoked changes in EEG, and be used for yes/no communication in an auditory scanning paradigm. Copyright © 2016 Elsevier B.V. All rights reserved.
Concurrent EEG And NIRS Tomographic Imaging Based on Wearable Electro-Optodes
2014-04-13
Interfaces ( BCIs ), and other systems in the same computational framework. Figure 11 below shows...Improving Brain-‐Computer Interfaces Using Independent Component Analysis, In: Towards Future BCIs , 2012
Multi-class ERP-based BCI data analysis using a discriminant space self-organizing map.
Onishi, Akinari; Natsume, Kiyohisa
2014-01-01
Emotional or non-emotional image stimulus is recently applied to event-related potential (ERP) based brain computer interfaces (BCI). Though the classification performance is over 80% in a single trial, a discrimination between those ERPs has not been considered. In this research we tried to clarify the discriminability of four-class ERP-based BCI target data elicited by desk, seal, spider images and letter intensifications. A conventional self organizing map (SOM) and newly proposed discriminant space SOM (ds-SOM) were applied, then the discriminabilites were visualized. We also classify all pairs of those ERPs by stepwise linear discriminant analysis (SWLDA) and verify the visualization of discriminabilities. As a result, the ds-SOM showed understandable visualization of the data with a shorter computational time than the traditional SOM. We also confirmed the clear boundary between the letter cluster and the other clusters. The result was coherent with the classification performances by SWLDA. The method might be helpful not only for developing a new BCI paradigm, but also for the big data analysis.
A development architecture for serious games using BCI (brain computer interface) sensors.
Sung, Yunsick; Cho, Kyungeun; Um, Kyhyun
2012-11-12
Games that use brainwaves via brain-computer interface (BCI) devices, to improve brain functions are known as BCI serious games. Due to the difficulty of developing BCI serious games, various BCI engines and authoring tools are required, and these reduce the development time and cost. However, it is desirable to reduce the amount of technical knowledge of brain functions and BCI devices needed by game developers. Moreover, a systematic BCI serious game development process is required. In this paper, we present a methodology for the development of BCI serious games. We describe an architecture, authoring tools, and development process of the proposed methodology, and apply it to a game development approach for patients with mild cognitive impairment as an example. This application demonstrates that BCI serious games can be developed on the basis of expert-verified theories.
Brumberg, Jonathan S; Lorenz, Sean D; Galbraith, Byron V; Guenther, Frank H
2012-01-01
In this paper we present a framework for reducing the development time needed for creating applications for use in non-invasive brain-computer interfaces (BCI). Our framework is primarily focused on facilitating rapid software "app" development akin to current efforts in consumer portable computing (e.g. smart phones and tablets). This is accomplished by handling intermodule communication without direct user or developer implementation, instead relying on a core subsystem for communication of standard, internal data formats. We also provide a library of hardware interfaces for common mobile EEG platforms for immediate use in BCI applications. A use-case example is described in which a user with amyotrophic lateral sclerosis participated in an electroencephalography-based BCI protocol developed using the proposed framework. We show that our software environment is capable of running in real-time with updates occurring 50-60 times per second with limited computational overhead (5 ms system lag) while providing accurate data acquisition and signal analysis.
Using real-time fMRI brain-computer interfacing to treat eating disorders.
Sokunbi, Moses O
2018-05-15
Real-time functional magnetic resonance imaging based brain-computer interfacing (fMRI neurofeedback) has shown encouraging outcomes in the treatment of psychiatric and behavioural disorders. However, its use in the treatment of eating disorders is very limited. Here, we give a brief overview of how to design and implement fMRI neurofeedback intervention for the treatment of eating disorders, considering the basic and essential components. We also attempt to develop potential adaptations of fMRI neurofeedback intervention for the treatment of anorexia nervosa, bulimia nervosa and binge eating disorder. Copyright © 2018 Elsevier B.V. All rights reserved.
Hybrid EEG-EOG brain-computer interface system for practical machine control.
Punsawad, Yunyong; Wongsawat, Yodchanan; Parnichkun, Manukid
2010-01-01
Practical issues such as accuracy with various subjects, number of sensors, and time for training are important problems of existing brain-computer interface (BCI) systems. In this paper, we propose a hybrid framework for the BCI system that can make machine control more practical. The electrooculogram (EOG) is employed to control the machine in the left and right directions while the electroencephalogram (EEG) is employed to control the forword, no action, and complete stop motions of the machine. By using only 2-channel biosignals, the average classification accuracy of more than 95% can be achieved.
Brain-computer interface on the basis of EEG system Encephalan
NASA Astrophysics Data System (ADS)
Maksimenko, Vladimir; Badarin, Artem; Nedaivozov, Vladimir; Kirsanov, Daniil; Hramov, Alexander
2018-04-01
We have proposed brain-computer interface (BCI) for the estimation of the brain response on the presented visual tasks. Proposed BCI is based on the EEG recorder Encephalan-EEGR-19/26 (Medicom MTD, Russia) supplemented by a special home-made developed acquisition software. BCI is tested during experimental session while subject is perceiving the bistable visual stimuli and classifying them according to the interpretation. We have subjected the participant to the different external conditions and observed the significant decrease in the response, associated with the perceiving the bistable visual stimuli, during the presence of distraction. Based on the obtained results we have proposed possibility to use of BCI for estimation of the human alertness during solving the tasks required substantial visual attention.
Write, read and answer emails with a dry 'n' wireless brain-computer interface system.
Pinegger, Andreas; Deckert, Lisa; Halder, Sebastian; Barry, Norbert; Faller, Josef; Käthner, Ivo; Hintermüller, Christoph; Wriessnegger, Selina C; Kübler, Andrea; Müller-Putz, Gernot R
2014-01-01
Brain-computer interface (BCI) users can control very complex applications such as multimedia players or even web browsers. Therefore, different biosignal acquisition systems are available to noninvasively measure the electrical activity of the brain, the electroencephalogram (EEG). To make BCIs more practical, hardware and software are nowadays designed more user centered and user friendly. In this paper we evaluated one of the latest innovations in the area of BCI: A wireless EEG amplifier with dry electrode technology combined with a web browser which enables BCI users to use standard webmail. With this system ten volunteers performed a daily life task: Write, read and answer an email. Experimental results of this study demonstrate the power of the introduced BCI system.
Granular computing with multiple granular layers for brain big data processing.
Wang, Guoyin; Xu, Ji
2014-12-01
Big data is the term for a collection of datasets so huge and complex that it becomes difficult to be processed using on-hand theoretical models and technique tools. Brain big data is one of the most typical, important big data collected using powerful equipments of functional magnetic resonance imaging, multichannel electroencephalography, magnetoencephalography, Positron emission tomography, near infrared spectroscopic imaging, as well as other various devices. Granular computing with multiple granular layers, referred to as multi-granular computing (MGrC) for short hereafter, is an emerging computing paradigm of information processing, which simulates the multi-granular intelligent thinking model of human brain. It concerns the processing of complex information entities called information granules, which arise in the process of data abstraction and derivation of information and even knowledge from data. This paper analyzes three basic mechanisms of MGrC, namely granularity optimization, granularity conversion, and multi-granularity joint computation, and discusses the potential of introducing MGrC into intelligent processing of brain big data.
Li, Yuanqing; Pan, Jiahui; He, Yanbin; Wang, Fei; Laureys, Steven; Xie, Qiuyou; Yu, Ronghao
2015-12-15
For patients with disorders of consciousness such as coma, a vegetative state or a minimally conscious state, one challenge is to detect and assess the residual cognitive functions in their brains. Number processing and mental calculation are important brain functions but are difficult to detect in patients with disorders of consciousness using motor response-based clinical assessment scales such as the Coma Recovery Scale-Revised due to the patients' motor impairments and inability to provide sufficient motor responses for number- and calculation-based communication. In this study, we presented a hybrid brain-computer interface that combines P300 and steady state visual evoked potentials to detect number processing and mental calculation in Han Chinese patients with disorders of consciousness. Eleven patients with disorders of consciousness who were in a vegetative state (n = 6) or in a minimally conscious state (n = 3) or who emerged from a minimally conscious state (n = 2) participated in the brain-computer interface-based experiment. During the experiment, the patients with disorders of consciousness were instructed to perform three tasks, i.e., number recognition, number comparison, and mental calculation, including addition and subtraction. In each experimental trial, an arithmetic problem was first presented. Next, two number buttons, only one of which was the correct answer to the problem, flickered at different frequencies to evoke steady state visual evoked potentials, while the frames of the two buttons flashed in a random order to evoke P300 potentials. The patients needed to focus on the target number button (the correct answer). Finally, the brain-computer interface system detected P300 and steady state visual evoked potentials to determine the button to which the patients attended, further presenting the results as feedback. Two of the six patients who were in a vegetative state, one of the three patients who were in a minimally conscious state, and the two patients that emerged from a minimally conscious state achieved accuracies significantly greater than the chance level. Furthermore, P300 potentials and steady state visual evoked potentials were observed in the electroencephalography signals from the five patients. Number processing and arithmetic abilities as well as command following were demonstrated in the five patients. Furthermore, our results suggested that through brain-computer interface systems, many cognitive experiments may be conducted in patients with disorders of consciousness, although they cannot provide sufficient behavioral responses.
Rautenberg, Philipp L.; Kumaraswamy, Ajayrama; Tejero-Cantero, Alvaro; Doblander, Christoph; Norouzian, Mohammad R.; Kai, Kazuki; Jacobsen, Hans-Arno; Ai, Hiroyuki; Wachtler, Thomas; Ikeno, Hidetoshi
2014-01-01
Neuroscience today deals with a “data deluge” derived from the availability of high-throughput sensors of brain structure and brain activity, and increased computational resources for detailed simulations with complex output. We report here (1) a novel approach to data sharing between collaborating scientists that brings together file system tools and cloud technologies, (2) a service implementing this approach, called NeuronDepot, and (3) an example application of the service to a complex use case in the neurosciences. The main drivers for our approach are to facilitate collaborations with a transparent, automated data flow that shields scientists from having to learn new tools or data structuring paradigms. Using NeuronDepot is simple: one-time data assignment from the originator and cloud based syncing—thus making experimental and modeling data available across the collaboration with minimum overhead. Since data sharing is cloud based, our approach opens up the possibility of using new software developments and hardware scalabitliy which are associated with elastic cloud computing. We provide an implementation that relies on existing synchronization services and is usable from all devices via a reactive web interface. We are motivating our solution by solving the practical problems of the GinJang project, a collaboration of three universities across eight time zones with a complex workflow encompassing data from electrophysiological recordings, imaging, morphological reconstructions, and simulations. PMID:24971059
Rautenberg, Philipp L; Kumaraswamy, Ajayrama; Tejero-Cantero, Alvaro; Doblander, Christoph; Norouzian, Mohammad R; Kai, Kazuki; Jacobsen, Hans-Arno; Ai, Hiroyuki; Wachtler, Thomas; Ikeno, Hidetoshi
2014-01-01
Neuroscience today deals with a "data deluge" derived from the availability of high-throughput sensors of brain structure and brain activity, and increased computational resources for detailed simulations with complex output. We report here (1) a novel approach to data sharing between collaborating scientists that brings together file system tools and cloud technologies, (2) a service implementing this approach, called NeuronDepot, and (3) an example application of the service to a complex use case in the neurosciences. The main drivers for our approach are to facilitate collaborations with a transparent, automated data flow that shields scientists from having to learn new tools or data structuring paradigms. Using NeuronDepot is simple: one-time data assignment from the originator and cloud based syncing-thus making experimental and modeling data available across the collaboration with minimum overhead. Since data sharing is cloud based, our approach opens up the possibility of using new software developments and hardware scalabitliy which are associated with elastic cloud computing. We provide an implementation that relies on existing synchronization services and is usable from all devices via a reactive web interface. We are motivating our solution by solving the practical problems of the GinJang project, a collaboration of three universities across eight time zones with a complex workflow encompassing data from electrophysiological recordings, imaging, morphological reconstructions, and simulations.
Prototype of an auto-calibrating, context-aware, hybrid brain-computer interface.
Faller, J; Torrellas, S; Miralles, F; Holzner, C; Kapeller, C; Guger, C; Bund, J; Müller-Putz, G R; Scherer, R
2012-01-01
We present the prototype of a context-aware framework that allows users to control smart home devices and to access internet services via a Hybrid BCI system of an auto-calibrating sensorimotor rhythm (SMR) based BCI and another assistive device (Integra Mouse mouth joystick). While there is extensive literature that describes the merit of Hybrid BCIs, auto-calibrating and co-adaptive ERD BCI training paradigms, specialized BCI user interfaces, context-awareness and smart home control, there is up to now, no system that includes all these concepts in one integrated easy-to-use framework that can truly benefit individuals with severe functional disabilities by increasing independence and social inclusion. Here we integrate all these technologies in a prototype framework that does not require expert knowledge or excess time for calibration. In a first pilot-study, 3 healthy volunteers successfully operated the system using input signals from an ERD BCI and an Integra Mouse and reached average positive predictive values (PPV) of 72 and 98% respectively. Based on what we learned here we are planning to improve the system for a test with a larger number of healthy volunteers so we can soon bring the system to benefit individuals with severe functional disability.
Brain-controlled body movement assistance devices and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leuthardt, Eric C.; Love, Lonnie J.; Coker, Rob
Methods, devices, systems, and apparatus, including computer programs encoded on a computer storage medium, for brain-controlled body movement assistance devices. In one aspect, a device includes a brain-controlled body movement assistance device with a brain-computer interface (BCI) component adapted to be mounted to a user, a body movement assistance component operably connected to the BCI component and adapted to be worn by the user, and a feedback mechanism provided in connection with at least one of the BCI component and the body movement assistance component, the feedback mechanism being configured to output information relating to a usage session of themore » brain-controlled body movement assistance device.« less
Neuroprosthetic Decoder Training as Imitation Learning
Merel, Josh; Paninski, Liam; Cunningham, John P.
2016-01-01
Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user’s intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user’s intended movement. Here we show that training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger), can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy) for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector. PMID:27191387
Advances in Parallel Computing and Databases for Digital Pathology in Cancer Research
2016-11-13
these technologies and how we have used them in the past. We are interested in learning more about the needs of clinical pathologists as we continue to...such as image processing and correlation. Further, High Performance Computing (HPC) paradigms such as the Message Passing Interface (MPI) have been...Defense for Research and Engineering. such as pMatlab [4], or bcMPI [5] can significantly reduce the need for deep knowledge of parallel computing. In
Parallel multiscale simulations of a brain aneurysm
Grinberg, Leopold; Fedosov, Dmitry A.; Karniadakis, George Em
2012-01-01
Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multi-scale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier-Stokes solver εκ αr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers ( εκ αr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in future work. PMID:23734066
Parallel multiscale simulations of a brain aneurysm.
Grinberg, Leopold; Fedosov, Dmitry A; Karniadakis, George Em
2013-07-01
Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multi-scale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier-Stokes solver εκ αr . The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers ( εκ αr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in future work.
Parallel multiscale simulations of a brain aneurysm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grinberg, Leopold; Fedosov, Dmitry A.; Karniadakis, George Em, E-mail: george_karniadakis@brown.edu
2013-07-01
Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multiscale simulations of platelet depositions on the wall of a brain aneurysm.more » The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier–Stokes solver NεκTαr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers (NεκTαr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300 K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in future work.« less
Wilaiprasitporn, Theerawit; Yagi, Tohru
2015-01-01
This research demonstrates the orientation-modulated attention effect on visual evoked potential. We combined this finding with our previous findings about the motion-modulated attention effect and used the result to develop novel visual stimuli for a personal identification number (PIN) application based on a brain-computer interface (BCI) framework. An electroencephalography amplifier with a single electrode channel was sufficient for our application. A computationally inexpensive algorithm and small datasets were used in processing. Seven healthy volunteers participated in experiments to measure offline performance. Mean accuracy was 83.3% at 13.9 bits/min. Encouraged by these results, we plan to continue developing the BCI-based personal identification application toward real-time systems.
Distance-constrained orthogonal Latin squares for brain-computer interface.
Luo, Gang; Min, Wanli
2012-02-01
The P300 brain-computer interface (BCI) using electroencephalogram (EEG) signals can allow amyotrophic lateral sclerosis (ALS) patients to instruct computers to perform tasks. To strengthen the P300 response and increase classification accuracy, we proposed an experimental design where characters are intensified according to orthogonal Latin square pairs. These orthogonal Latin square pairs satisfy certain distance constraint so that neighboring characters are not intensified simultaneously. However, it is unknown whether such distance-constrained, orthogonal Latin square pairs actually exist. In this paper, we show that for every matrix size commonly used in P300 BCI, thousands to millions of such distance-constrained, orthogonal Latin square pairs can be systematically and efficiently constructed and are sufficient for the purpose of being used in P300 BCI.
Ludwig, Simone A; Kong, Jun
2017-12-01
Innovative methods and new technologies have significantly improved the quality of our daily life. However, disabled people, for example those that cannot use their arms and legs anymore, often cannot benefit from these developments, since they cannot use their hands to interact with traditional interaction methods (such as mouse or keyboard) to communicate with a computer system. A brain-computer interface (BCI) system allows such a disabled person to control an external device via brain waves. Past research mostly dealt with static interfaces, which limit users to a stationary location. However, since we are living in a world that is highly mobile, this paper evaluates a speller interface on a mobile phone used in a moving condition. The spelling experiments were conducted with 14 able-bodied subjects using visual flashes as the stimulus to spell 47 alphanumeric characters (38 letters and 9 numbers). This data was then used for the classification experiments. In par- ticular, two research directions are pursued. The first investigates the impact of different classification algorithms, and the second direction looks at the channel configuration, i.e., which channels are most beneficial in terms of achieving the highest classification accuracy. The evaluation results indicate that the Bayesian Linear Discriminant Analysis algorithm achieves the best accuracy. Also, the findings of the investigation on the channel configuration, which can potentially reduce the amount of data processing on a mobile device with limited computing capacity, is especially useful in mobile BCIs.
Biryukova, E V; Pavlova, O G; Kurganskaya, M E; Bobrov, P D; Turbina, L G; Frolov, A A; Davydov, V I; Sil'tchenko, A V; Mokienko, O A
2016-01-01
We studied the dynamics of motor function recovery in a patient with severe brain damage in the course of neurorehabilitation using hand exoskeleton controlled by brain-computer interface. For estimating the motor function of paretic arm, we used the biomechanical analysis of movements registered during the course of rehabilitation. After 15 weekly sessions of hand exoskeleton control, the following results were obtained: a) the velocity profile of goal-directed movements of paretic hand became bell-shaped, b) the patient began to extend and abduct the hand which was flexed and adducted in the beginning of rehabilitation, and c) the patient began to supinate the forearm which was pronated in the beginning of rehabilitation. The first result is an evidence of the general improvement of the quality of motor control, while the second and third results prove that the spasticity of paretic arm has decreased.
fMRI Brain-Computer Interface: A Tool for Neuroscientific Research and Treatment
Sitaram, Ranganatha; Caria, Andrea; Veit, Ralf; Gaber, Tilman; Rota, Giuseppina; Kuebler, Andrea; Birbaumer, Niels
2007-01-01
Brain-computer interfaces based on functional magnetic resonance imaging (fMRI-BCI) allow volitional control of anatomically specific regions of the brain. Technological advancement in higher field MRI scanners, fast data acquisition sequences, preprocessing algorithms, and robust statistical analysis are anticipated to make fMRI-BCI more widely available and applicable. This noninvasive technique could potentially complement the traditional neuroscientific experimental methods by varying the activity of the neural substrates of a region of interest as an independent variable to study its effects on behavior. If the neurobiological basis of a disorder (e.g., chronic pain, motor diseases, psychopathy, social phobia, depression) is known in terms of abnormal activity in certain regions of the brain, fMRI-BCI can be targeted to modify activity in those regions with high specificity for treatment. In this paper, we review recent results of the application of fMRI-BCI to neuroscientific research and psychophysiological treatment. PMID:18274615
Friedenberg, David A; Bouton, Chad E; Annetta, Nicholas V; Skomrock, Nicholas; Mingming Zhang; Schwemmer, Michael; Bockbrader, Marcia A; Mysiw, W Jerry; Rezai, Ali R; Bresler, Herbert S; Sharma, Gaurav
2016-08-01
Recent advances in Brain Computer Interfaces (BCIs) have created hope that one day paralyzed patients will be able to regain control of their paralyzed limbs. As part of an ongoing clinical study, we have implanted a 96-electrode Utah array in the motor cortex of a paralyzed human. The array generates almost 3 million data points from the brain every second. This presents several big data challenges towards developing algorithms that should not only process the data in real-time (for the BCI to be responsive) but are also robust to temporal variations and non-stationarities in the sensor data. We demonstrate an algorithmic approach to analyze such data and present a novel method to evaluate such algorithms. We present our methodology with examples of decoding human brain data in real-time to inform a BCI.
Addition of visual noise boosts evoked potential-based brain-computer interface.
Xie, Jun; Xu, Guanghua; Wang, Jing; Zhang, Sicong; Zhang, Feng; Li, Yeping; Han, Chengcheng; Li, Lili
2014-05-14
Although noise has a proven beneficial role in brain functions, there have not been any attempts on the dedication of stochastic resonance effect in neural engineering applications, especially in researches of brain-computer interfaces (BCIs). In our study, a steady-state motion visual evoked potential (SSMVEP)-based BCI with periodic visual stimulation plus moderate spatiotemporal noise can achieve better offline and online performance due to enhancement of periodic components in brain responses, which was accompanied by suppression of high harmonics. Offline results behaved with a bell-shaped resonance-like functionality and 7-36% online performance improvements can be achieved when identical visual noise was adopted for different stimulation frequencies. Using neural encoding modeling, these phenomena can be explained as noise-induced input-output synchronization in human sensory systems which commonly possess a low-pass property. Our work demonstrated that noise could boost BCIs in addressing human needs.
A novel stimulation method for multi-class SSVEP-BCI using intermodulation frequencies
NASA Astrophysics Data System (ADS)
Chen, Xiaogang; Wang, Yijun; Zhang, Shangen; Gao, Shangkai; Hu, Yong; Gao, Xiaorong
2017-04-01
Objective. Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has been widely investigated because of its easy system configuration, high information transfer rate (ITR) and little user training. However, due to the limitations of brain responses and the refresh rate of a monitor, the available stimulation frequencies for practical BCI application are generally restricted. Approach. This study introduced a novel stimulation method using intermodulation frequencies for SSVEP-BCIs that had targets flickering at the same frequency but with different additional modulation frequencies. The additional modulation frequencies were generated on the basis of choosing desired flickering frequencies. The conventional frame-based ‘on/off’ stimulation method was used to realize the desired flickering frequencies. All visual stimulation was present on a conventional LCD screen. A 9-target SSVEP-BCI based on intermodulation frequencies was implemented for performance evaluation. To optimize the stimulation design, three approaches (C: chromatic; L: luminance; CL: chromatic and luminance) were evaluated by online testing and offline analysis. Main results. SSVEP-BCIs with different paradigms (C, L, and CL) enabled us not only to encode more targets, but also to reliably evoke intermodulation frequencies. The online accuracies for the three paradigms were 91.67% (C), 93.98% (L), and 96.41% (CL). The CL condition achieved the highest classification performance. Significance. These results demonstrated the efficacy of three approaches (C, L, and CL) for eliciting intermodulation frequencies for multi-class SSVEP-BCIs. The combination of chromatic and luminance characteristics of the visual stimuli is the most efficient way for the intermodulation frequency coding method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Conrad D.; Schiess, Adrian B.; Howell, Jamie
2013-10-01
The human brain (volume=1200cm3) consumes 20W and is capable of performing > 10^16 operations/s. Current supercomputer technology has reached 1015 operations/s, yet it requires 1500m^3 and 3MW, giving the brain a 10^12 advantage in operations/s/W/cm^3. Thus, to reach exascale computation, two achievements are required: 1) improved understanding of computation in biological tissue, and 2) a paradigm shift towards neuromorphic computing where hardware circuits mimic properties of neural tissue. To address 1), we will interrogate corticostriatal networks in mouse brain tissue slices, specifically with regard to their frequency filtering capabilities as a function of input stimulus. To address 2), we willmore » instantiate biological computing characteristics such as multi-bit storage into hardware devices with future computational and memory applications. Resistive memory devices will be modeled, designed, and fabricated in the MESA facility in consultation with our internal and external collaborators.« less
Fernández-Soto, Alicia; Martínez-Rodrigo, Arturo; Moncho-Bogani, José; Latorre, José Miguel; Fernández-Caballero, Antonio
2018-06-01
For the sake of establishing the neural correlates of phrase quadrature perception in harmonic rhythm, a musical experiment has been designed to induce music-evoked stimuli related to one important aspect of harmonic rhythm, namely the phrase quadrature. Brain activity is translated to action through electroencephalography (EEG) by using a brain-computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. The results of processing the acquired signals are in line with previous studies that use different musical parameters to induce emotions. Indeed, our experiment shows statistical differences in theta and alpha bands between the fulfillment and break of phrase quadrature, an important cue of harmonic rhythm, in two classical sonatas.
Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface
Khan, M. Jawad; Hong, Melissa Jiyoun; Hong, Keum-Shik
2014-01-01
The hybrid brain-computer interface (BCI)'s multimodal technology enables precision brain-signal classification that can be used in the formulation of control commands. In the present study, an experimental hybrid near-infrared spectroscopy-electroencephalography (NIRS-EEG) technique was used to extract and decode four different types of brain signals. The NIRS setup was positioned over the prefrontal brain region, and the EEG over the left and right motor cortex regions. Twelve subjects participating in the experiment were shown four direction symbols, namely, “forward,” “backward,” “left,” and “right.” The control commands for forward and backward movement were estimated by performing arithmetic mental tasks related to oxy-hemoglobin (HbO) changes. The left and right directions commands were associated with right and left hand tapping, respectively. The high classification accuracies achieved showed that the four different control signals can be accurately estimated using the hybrid NIRS-EEG technology. PMID:24808844
The brain-computer interface cycle.
van Gerven, Marcel; Farquhar, Jason; Schaefer, Rebecca; Vlek, Rutger; Geuze, Jeroen; Nijholt, Anton; Ramsey, Nick; Haselager, Pim; Vuurpijl, Louis; Gielen, Stan; Desain, Peter
2009-08-01
Brain-computer interfaces (BCIs) have attracted much attention recently, triggered by new scientific progress in understanding brain function and by impressive applications. The aim of this review is to give an overview of the various steps in the BCI cycle, i.e., the loop from the measurement of brain activity, classification of data, feedback to the subject and the effect of feedback on brain activity. In this article we will review the critical steps of the BCI cycle, the present issues and state-of-the-art results. Moreover, we will develop a vision on how recently obtained results may contribute to new insights in neurocognition and, in particular, in the neural representation of perceived stimuli, intended actions and emotions. Now is the right time to explore what can be gained by embracing real-time, online BCI and by adding it to the set of experimental tools already available to the cognitive neuroscientist. We close by pointing out some unresolved issues and present our view on how BCI could become an important new tool for probing human cognition.
Brain-computer interface after nervous system injury.
Burns, Alexis; Adeli, Hojjat; Buford, John A
2014-12-01
Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders. © The Author(s) 2014.
Minho Won; Albalawi, Hassan; Xin Li; Thomas, Donald E
2014-01-01
This paper describes a low-power hardware implementation for movement decoding of brain computer interface. Our proposed hardware design is facilitated by two novel ideas: (i) an efficient feature extraction method based on reduced-resolution discrete cosine transform (DCT), and (ii) a new hardware architecture of dual look-up table to perform discrete cosine transform without explicit multiplication. The proposed hardware implementation has been validated for movement decoding of electrocorticography (ECoG) signal by using a Xilinx FPGA Zynq-7000 board. It achieves more than 56× energy reduction over a reference design using band-pass filters for feature extraction.
Jiao, Yong; Zhang, Yu; Wang, Yu; Wang, Bei; Jin, Jing; Wang, Xingyu
2018-05-01
Multiset canonical correlation analysis (MsetCCA) has been successfully applied to optimize the reference signals by extracting common features from multiple sets of electroencephalogram (EEG) for steady-state visual evoked potential (SSVEP) recognition in brain-computer interface application. To avoid extracting the possible noise components as common features, this study proposes a sophisticated extension of MsetCCA, called multilayer correlation maximization (MCM) model for further improving SSVEP recognition accuracy. MCM combines advantages of both CCA and MsetCCA by carrying out three layers of correlation maximization processes. The first layer is to extract the stimulus frequency-related information in using CCA between EEG samples and sine-cosine reference signals. The second layer is to learn reference signals by extracting the common features with MsetCCA. The third layer is to re-optimize the reference signals set in using CCA with sine-cosine reference signals again. Experimental study is implemented to validate effectiveness of the proposed MCM model in comparison with the standard CCA and MsetCCA algorithms. Superior performance of MCM demonstrates its promising potential for the development of an improved SSVEP-based brain-computer interface.
Quantum neural network-based EEG filtering for a brain-computer interface.
Gandhi, Vaibhav; Prasad, Girijesh; Coyle, Damien; Behera, Laxmidhar; McGinnity, Thomas Martin
2014-02-01
A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics. The results from a number of benchmark tests show that simple signals such as dc, staircase dc, and sinusoidal signals embedded within high noise can be accurately filtered and particle swarm optimization can be employed to select model parameters. The RQNN filtering procedure is applied in a two-class motor imagery-based brain-computer interface where the objective was to filter electroencephalogram (EEG) signals before feature extraction and classification to increase signal separability. A two-step inner-outer fivefold cross-validation approach is utilized to select the algorithm parameters subject-specifically for nine subjects. It is shown that the subject-specific RQNN EEG filtering significantly improves brain-computer interface performance compared to using only the raw EEG or Savitzky-Golay filtered EEG across multiple sessions.
Feasibility of Equivalent Dipole Models for Electroencephalogram-Based Brain Computer Interfaces.
Schimpf, Paul H
2017-09-15
This article examines the localization errors of equivalent dipolar sources inverted from the surface electroencephalogram in order to determine the feasibility of using their location as classification parameters for non-invasive brain computer interfaces. Inverse localization errors are examined for two head models: a model represented by four concentric spheres and a realistic model based on medical imagery. It is shown that the spherical model results in localization ambiguity such that a number of dipolar sources, with different azimuths and varying orientations, provide a near match to the electroencephalogram of the best equivalent source. No such ambiguity exists for the elevation of inverted sources, indicating that for spherical head models, only the elevation of inverted sources (and not the azimuth) can be expected to provide meaningful classification parameters for brain-computer interfaces. In a realistic head model, all three parameters of the inverted source location are found to be reliable, providing a more robust set of parameters. In both cases, the residual error hypersurfaces demonstrate local minima, indicating that a search for the best-matching sources should be global. Source localization error vs. signal-to-noise ratio is also demonstrated for both head models.
An oculomotor and computational study of a patient with diagonistic dyspraxia.
Pouget, Pierre; Pradat-Diehl, Pascale; Rivaud-Péchoux, Sophie; Wattiez, Nicolas; Gaymard, Bertrand
2011-04-01
Diagonistic dyspraxia (DD) is a behavioural disorder encountered in split-brain subjects in which the left arm acts against the subject's will, deliberately counteracting what the right arm does. We report here an oculomotor and computational study of a patient with a long lasting form of DD. A first series of oculomotor paradigms revealed marked and unprecedented saccade impairments. We used a computational model in order to provide information about the impaired decision-making process: the analysis of saccade latencies revealed that variations of decision times were explained by adjustments of response criterion. This result and paradoxical impairments observed in additional oculomotor paradigms allowed to propose that this adjustment of the criterion level resulted from the co-existence of counteracting oculomotor programs, consistent with the existence of antagonist programs in homotopic cortical areas. In the intact brain, trans-hemispheric inhibition would allow suppression of these counter programs. Depending on the topography of the disconnected areas, various motor and/or behavioural impairments would arise in split-brain subjects. In motor systems, such conflict would result in increased criteria for desired movement execution (oculomotor system) or in simultaneous execution of counteracting movements (skeletal motor system). At higher cognitive levels, it may result in conflict of intentions. Copyright © 2010 Elsevier Srl. All rights reserved.
Integrating robotic action with biologic perception: A brain-machine symbiosis theory
NASA Astrophysics Data System (ADS)
Mahmoudi, Babak
In patients with motor disability the natural cyclic flow of information between the brain and external environment is disrupted by their limb impairment. Brain-Machine Interfaces (BMIs) aim to provide new communication channels between the brain and environment by direct translation of brain's internal states into actions. For enabling the user in a wide range of daily life activities, the challenge is designing neural decoders that autonomously adapt to different tasks, environments, and to changes in the pattern of neural activity. In this dissertation, a novel decoding framework for BMIs is developed in which a computational agent autonomously learns how to translate neural states into action based on maximization of a measure of shared goal between user and the agent. Since the agent and brain share the same goal, a symbiotic relationship between them will evolve therefore this decoding paradigm is called a Brain-Machine Symbiosis (BMS) framework. A decoding agent was implemented within the BMS framework based on the Actor-Critic method of Reinforcement Learning. The rule of the Actor as a neural decoder was to find mapping between the neural representation of motor states in the primary motor cortex (MI) and robot actions in order to solve reaching tasks. The Actor learned the optimal control policy using an evaluative feedback that was estimated by the Critic directly from the user's neural activity of the Nucleus Accumbens (NAcc). Through a series of computational neuroscience studies in a cohort of rats it was demonstrated that NAcc could provide a useful evaluative feedback by predicting the increase or decrease in the probability of earning reward based on the environmental conditions. Using a closed-loop BMI simulator it was demonstrated the Actor-Critic decoding architecture was able to adapt to different tasks as well as changes in the pattern of neural activity. The custom design of a dual micro-wire array enabled simultaneous implantation of MI and NAcc for the development of a full closed-loop system. The Actor-Critic decoding architecture was able to solve the brain-controlled reaching task using a robotic arm by capturing the interdependency between the simultaneous action representation in MI and reward expectation in NAcc.
Design of an online EEG based neurofeedback game for enhancing attention and memory.
Thomas, Kavitha P; Vinod, A P; Guan, Cuntai
2013-01-01
Brain-Computer Interface (BCI) is an alternative communication and control channel between brain and computer which finds applications in neuroprosthetics, brain wave controlled computer games etc. This paper proposes an Electroencephalogram (EEG) based neurofeedback computer game that allows the player to control the game with the help of attention based brain signals. The proposed game protocol requires the player to memorize a set of numbers in a matrix, and to correctly fill the matrix using his attention. The attention level of the player is quantified using sample entropy features of EEG. The statistically significant performance improvement of five healthy subjects after playing a number of game sessions demonstrates the effectiveness of the proposed game in enhancing their concentration and memory skills.
A Brain-Based Communication and Orientation System
2014-10-06
Review of the BCI Competition IV, Frontiers in Neuroscience, ( 2012): 0. doi: 10.3389/fnins.2012.00055 Eric C. Leuthardt, Xiao-Mei Pei, Jonathan...hardware and software for brain– computer interfaces ( BCIs ), Journal of Neural Engineering, (04 2011): 1. doi: 10.1088/1741-2560/8/2/025001...Cincotti, G. Schalk, Peter Brunner. Current Trends in Brain–Computer Interface ( BCI ) Research and Development, Journal of Neural Engineering, (3 2011
Training set extension for SVM ensemble in P300-speller with familiar face paradigm.
Li, Qi; Shi, Kaiyang; Gao, Ning; Li, Jian; Bai, Ou
2018-03-27
P300-spellers are brain-computer interface (BCI)-based character input systems. Support vector machine (SVM) ensembles are trained with large-scale training sets and used as classifiers in these systems. However, the required large-scale training data necessitate a prolonged collection time for each subject, which results in data collected toward the end of the period being contaminated by the subject's fatigue. This study aimed to develop a method for acquiring more training data based on a collected small training set. A new method was developed in which two corresponding training datasets in two sequences are superposed and averaged to extend the training set. The proposed method was tested offline on a P300-speller with the familiar face paradigm. The SVM ensemble with extended training set achieved 85% classification accuracy for the averaged results of four sequences, and 100% for 11 sequences in the P300-speller. In contrast, the conventional SVM ensemble with non-extended training set achieved only 65% accuracy for four sequences, and 92% for 11 sequences. The SVM ensemble with extended training set achieves higher classification accuracies than the conventional SVM ensemble, which verifies that the proposed method effectively improves the classification performance of BCI P300-spellers, thus enhancing their practicality.
Lin, Chin-Teng; Ko, Li-Wei; Chang, Meng-Hsiu; Duann, Jeng-Ren; Chen, Jing-Ying; Su, Tung-Ping; Jung, Tzyy-Ping
2010-01-01
Biomedical signal monitoring systems have rapidly advanced in recent years, propelled by significant advances in electronic and information technologies. Brain-computer interface (BCI) is one of the important research branches and has become a hot topic in the study of neural engineering, rehabilitation, and brain science. Traditionally, most BCI systems use bulky, wired laboratory-oriented sensing equipments to measure brain activity under well-controlled conditions within a confined space. Using bulky sensing equipments not only is uncomfortable and inconvenient for users, but also impedes their ability to perform routine tasks in daily operational environments. Furthermore, owing to large data volumes, signal processing of BCI systems is often performed off-line using high-end personal computers, hindering the applications of BCI in real-world environments. To be practical for routine use by unconstrained, freely-moving users, BCI systems must be noninvasive, nonintrusive, lightweight and capable of online signal processing. This work reviews recent online BCI systems, focusing especially on wearable, wireless and real-time systems. Copyright 2009 S. Karger AG, Basel.
Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events.
Wu, Yingying; Li, Man; Wang, Jing
2016-07-26
Steady-state visually evoked potentials (SSVEPs) can be elicited by repetitive stimuli and extracted in the frequency domain with satisfied performance. However, the temporal information of such stimulus is often ignored. In this study, we utilized repetitive visual stimuli with missing events to present a novel hybrid BCI paradigm based on SSVEP and omitted stimulus potential (OSP). Four discs flickering from black to white with missing flickers served as visual stimulators to simultaneously elicit subject's SSVEPs and OSPs. Key parameters in the new paradigm, including flicker frequency, optimal electrodes, missing flicker duration and intervals of missing events were qualitatively discussed with offline data. Two omitted flicker patterns including missing black/white disc were proposed and compared. Averaging times were optimized with Information Transfer Rate (ITR) in online experiments, where SSVEPs and OSPs were identified using Canonical Correlation Analysis in the frequency domain and Support Vector Machine (SVM)-Bayes fusion in the time domain, respectively. The online accuracy and ITR (mean ± standard deviation) over nine healthy subjects were 79.29 ± 18.14 % and 19.45 ± 11.99 bits/min with missing black disc pattern, and 86.82 ± 12.91 % and 24.06 ± 10.95 bits/min with missing white disc pattern, respectively. The proposed BCI paradigm, for the first time, demonstrated that SSVEPs and OSPs can be simultaneously elicited in single visual stimulus pattern and recognized in real-time with satisfied performance. Besides the frequency features such as SSVEP elicited by repetitive stimuli, we found a new feature (OSP) in the time domain to design a novel hybrid BCI paradigm by adding missing events in repetitive stimuli.
EDITORIAL: Focus on the neural interface Focus on the neural interface
NASA Astrophysics Data System (ADS)
Durand, Dominique M.
2009-10-01
The possibility of an effective connection between neural tissue and computers has inspired scientists and engineers to develop new ways of controlling and obtaining information from the nervous system. These applications range from `brain hacking' to neural control of artificial limbs with brain signals. Notwithstanding the significant advances in neural prosthetics in the last few decades and the success of some stimulation devices such as cochlear prosthesis, neurotechnology remains below its potential for restoring neural function in patients with nervous system disorders. One of the reasons for this limited impact can be found at the neural interface and close attention to the integration between electrodes and tissue should improve the possibility of successful outcomes. The neural interfaces research community consists of investigators working in areas such as deep brain stimulation, functional neuromuscular/electrical stimulation, auditory prostheses, cortical prostheses, neuromodulation, microelectrode array technology, brain-computer/machine interfaces. Following the success of previous neuroprostheses and neural interfaces workshops, funding (from NIH) was obtained to establish a biennial conference in the area of neural interfaces. The first Neural Interfaces Conference took place in Cleveland, OH in 2008 and several topics from this conference have been selected for publication in this special section of the Journal of Neural Engineering. Three `perspectives' review the areas of neural regeneration (Corredor and Goldberg), cochlear implants (O'Leary et al) and neural prostheses (Anderson). Seven articles focus on various aspects of neural interfacing. One of the most popular of these areas is the field of brain-computer interfaces. Fraser et al, report on a method to generate robust control with simple signal processing algorithms of signals obtained with electrodes implanted in the brain. One problem with implanted electrode arrays, however, is that they can fail to record reliably neural signals for long periods of time. McConnell et al show that by measuring the impedance of the tissue, one can evaluate the extent of the tissue response to the presence of the electrode. Another problem with the neural interface is the mismatch of the mechanical properties between electrode and tissue. Basinger et al use finite element modeling to analyze this mismatch in retinal prostheses and guide the design of new implantable devices. Electrical stimulation has been the method of choice to activate externally the nervous system. However, Zhang et al show that a novel dual hybrid device integrating electrical and optical stimulation can provide an effective interface for simultaneous recording and stimulation. By interfacing an EMG recording system and a movement detection system, Johnson and Fuglevand develop a model capable of predicting muscle activity during movement that could be important for the development of motor prostheses. Sensory restoration is another unsolved problem in neural prostheses. By developing a novel interface between the dorsal root ganglia and electrodes arrays, Gaunt et al show that it is possible to recruit afferent fibers for sensory substitution. Finally, by interfacing directly with muscles, Jung and colleagues show that stimulation of muscles involved in locomotion following spinal cord damage in rats can provide an effective treatment modality for incomplete spinal cord injury. This series of articles clearly shows that the interface is indeed one of the keys to successful therapeutic neural devices. The next Neural Interfaces Conference will take place in Los Angeles, CA in June 2010 and one can expect to see new developments in neural engineering obtained by focusing on the neural interface.
Execution environment for intelligent real-time control systems
NASA Technical Reports Server (NTRS)
Sztipanovits, Janos
1987-01-01
Modern telerobot control technology requires the integration of symbolic and non-symbolic programming techniques, different models of parallel computations, and various programming paradigms. The Multigraph Architecture, which has been developed for the implementation of intelligent real-time control systems is described. The layered architecture includes specific computational models, integrated execution environment and various high-level tools. A special feature of the architecture is the tight coupling between the symbolic and non-symbolic computations. It supports not only a data interface, but also the integration of the control structures in a parallel computing environment.
Preprocessing and meta-classification for brain-computer interfaces.
Hammon, Paul S; de Sa, Virginia R
2007-03-01
A brain-computer interface (BCI) is a system which allows direct translation of brain states into actions, bypassing the usual muscular pathways. A BCI system works by extracting user brain signals, applying machine learning algorithms to classify the user's brain state, and performing a computer-controlled action. Our goal is to improve brain state classification. Perhaps the most obvious way to improve classification performance is the selection of an advanced learning algorithm. However, it is now well known in the BCI community that careful selection of preprocessing steps is crucial to the success of any classification scheme. Furthermore, recent work indicates that combining the output of multiple classifiers (meta-classification) leads to improved classification rates relative to single classifiers (Dornhege et al., 2004). In this paper, we develop an automated approach which systematically analyzes the relative contributions of different preprocessing and meta-classification approaches. We apply this procedure to three data sets drawn from BCI Competition 2003 (Blankertz et al., 2004) and BCI Competition III (Blankertz et al., 2006), each of which exhibit very different characteristics. Our final classification results compare favorably with those from past BCI competitions. Additionally, we analyze the relative contributions of individual preprocessing and meta-classification choices and discuss which types of BCI data benefit most from specific algorithms.
TheBrain Technologies Corporation: Collapsing the Time to Knowledge.
ERIC Educational Resources Information Center
Misek, Marla
2003-01-01
TheBrain was created to take advantage of the most powerful information processor in existence - the human mind. Explains products of TheBrain Technologies Corporation,, which has developed computer interfaces to help individual users and corporations organize information in ways that make sense to them in the proper context. Describes a…
Evolvix BEST Names for semantic reproducibility across code2brain interfaces
Scheuer, Katherine S.; Keel, Seth A.; Vyas, Vaibhav; Liblit, Ben; Hanlon, Bret; Ferris, Michael C.; Yin, John; Dutra, Inês; Pietsch, Anthony; Javid, Christine G.; Moog, Cecilia L.; Meyer, Jocelyn; Dresel, Jerdon; McLoone, Brian; Loberger, Sonya; Movaghar, Arezoo; Gilchrist‐Scott, Morgaine; Sabri, Yazeed; Sescleifer, Dave; Pereda‐Zorrilla, Ivan; Zietlow, Andrew; Smith, Rodrigo; Pietenpol, Samantha; Goldfinger, Jacob; Atzen, Sarah L.; Freiberg, Erika; Waters, Noah P.; Nusbaum, Claire; Nolan, Erik; Hotz, Alyssa; Kliman, Richard M.; Mentewab, Ayalew; Fregien, Nathan; Loewe, Martha
2016-01-01
Names in programming are vital for understanding the meaning of code and big data. We define code2brain (C2B) interfaces as maps in compilers and brains between meaning and naming syntax, which help to understand executable code. While working toward an Evolvix syntax for general‐purpose programming that makes accurate modeling easy for biologists, we observed how names affect C2B quality. To protect learning and coding investments, C2B interfaces require long‐term backward compatibility and semantic reproducibility (accurate reproduction of computational meaning from coder‐brains to reader‐brains by code alone). Semantic reproducibility is often assumed until confusing synonyms degrade modeling in biology to deciphering exercises. We highlight empirical naming priorities from diverse individuals and roles of names in different modes of computing to show how naming easily becomes impossibly difficult. We present the Evolvix BEST (Brief, Explicit, Summarizing, Technical) Names concept for reducing naming priority conflicts, test it on a real challenge by naming subfolders for the Project Organization Stabilizing Tool system, and provide naming questionnaires designed to facilitate C2B debugging by improving names used as keywords in a stabilizing programming language. Our experiences inspired us to develop Evolvix using a flipped programming language design approach with some unexpected features and BEST Names at its core. PMID:27918836
Hiremath, Shivayogi V; Chen, Weidong; Wang, Wei; Foldes, Stephen; Yang, Ying; Tyler-Kabara, Elizabeth C; Collinger, Jennifer L; Boninger, Michael L
2015-01-01
A brain-computer interface (BCI) system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.
Lee, Wonhye; Kim, Suji; Kim, Byeongnam; Lee, Chungki; Chung, Yong An; Kim, Laehyun; Yoo, Seung-Schik
2017-01-01
We present non-invasive means that detect unilateral hand motor brain activity from one individual and subsequently stimulate the somatosensory area of another individual, thus, enabling the remote hemispheric link between each brain hemisphere in humans. Healthy participants were paired as a sender and a receiver. A sender performed a motor imagery task of either right or left hand, and associated changes in the electroencephalogram (EEG) mu rhythm (8–10 Hz) originating from either hemisphere were programmed to move a computer cursor to a target that appeared in either left or right of the computer screen. When the cursor reaches its target, the outcome was transmitted to another computer over the internet, and actuated the focused ultrasound (FUS) devices that selectively and non-invasively stimulated either the right or left hand somatosensory area of the receiver. Small FUS transducers effectively allowed for the independent administration of stimulatory ultrasonic waves to somatosensory areas. The stimulation elicited unilateral tactile sensation of the hand from the receiver, thus establishing the hemispheric brain-to-brain interface (BBI). Although there was a degree of variability in task accuracy, six pairs of volunteers performed the BBI task in high accuracy, transferring approximately eight commands per minute. Linkage between the hemispheric brain activities among individuals suggests the possibility for expansion of the information bandwidth in the context of BBI. PMID:28598972
[Brain-computer interfaces, Locked-In syndrome, and disorders of consciousness].
Lesenfants, Damien; Chatelle, Camille; Laureys, Steven; Noirhomme, Quentin
2015-10-01
Detecting signs of consciousness in patients with severe brain injury constitutes a real challenge for clinicians. The current gold standard in clinical diagnosis is the behavioral scale relying on motor abilities, which are often impaired or nonexistent in these patients. In this context, brain-computer interfaces (BCIs) could offer a potential complementary tool to detect signs of consciousness whilst bypassing the usual motor pathway. In addition to complementing behavioral assessments and potentially reducing error rate, BCIs could also serve as a communication tool for paralyzed but conscious patients, e.g., suffering from Locked-In Syndrome. In this paper, we report on recent work conducted by the Coma Science Group on BCI technology, aiming to optimize diagnosis and communication in patients with disorders of consciousness and Locked-In syndrome. © 2015 médecine/sciences – Inserm.
A square root ensemble Kalman filter application to a motor-imagery brain-computer interface.
Kamrunnahar, M; Schiff, S J
2011-01-01
We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%-90% for the hand movements and 70%-90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models.
A Development Architecture for Serious Games Using BCI (Brain Computer Interface) Sensors
Sung, Yunsick; Cho, Kyungeun; Um, Kyhyun
2012-01-01
Games that use brainwaves via brain–computer interface (BCI) devices, to improve brain functions are known as BCI serious games. Due to the difficulty of developing BCI serious games, various BCI engines and authoring tools are required, and these reduce the development time and cost. However, it is desirable to reduce the amount of technical knowledge of brain functions and BCI devices needed by game developers. Moreover, a systematic BCI serious game development process is required. In this paper, we present a methodology for the development of BCI serious games. We describe an architecture, authoring tools, and development process of the proposed methodology, and apply it to a game development approach for patients with mild cognitive impairment as an example. This application demonstrates that BCI serious games can be developed on the basis of expert-verified theories. PMID:23202227
Sutiono, Agung Budi; Suwa, Hirohiko; Ohta, Toshizumi; Arifin, Muh Zafrullah; Kitamura, Yohei; Yoshida, Kazunari; Merdika, Daduk; Qiantori, Andri; Iskandar
2012-12-01
Disasters bring consequences of negative impacts on the environment and human life. One of the common cause of critical condition is traumatic brain injury (TBI), namely, epidural (EDH) and subdural hematoma (SDH), due to downfall hard things during earthquake. We proposed and analyzed the user response, namely neurosurgeon, general doctor/surgeon and nurse when they interacted with TBI computer interface. The communication systems was supported by TBI web based applications using emergency broadband access network with tethered balloon and simulated in the field trial to evaluate the coverage area. The interface consisted of demography data and multi tabs for anamnesis, treatment, follow up and teleconference interfaces. The interface allows neurosurgeon, surgeon/general doctors and nurses to entry the EDH and SDH patient's data during referring them on the emergency simulation and evaluated based on time needs and their understanding. The average time needed was obtained after simulated by Lenovo T500 notebook using mouse; 8-10 min for neurosurgeons, 12-15 min for surgeons/general doctors and 15-19 min for nurses. By using Think Pad X201 Tablet, the time needed for entry data was 5-7 min for neurosurgeon, 7-10 min for surgeons/general doctors and 12-16 min for nurses. We observed that the time difference was depending on the computer type and user literacy qualification as well as their understanding on traumatic brain injury, particularly for the nurses. In conclusion, there are five data classification for simply TBI GUI, namely, 1) demography, 2) specific anamnesis for EDH and SDH, 3) treatment action and medicine of TBI, 4) follow up data display and 5) teleneurosurgery for streaming video consultation. The type of computer, particularly tablet PC was more convenient and faster for entry data, compare to that computer mouse touched pad. Emergency broadband access network using tethered balloon is possible to be employed to cover the communications systems in disaster area.
Towards SSVEP-based, portable, responsive Brain-Computer Interface.
Kaczmarek, Piotr; Salomon, Pawel
2015-08-01
A Brain-Computer Interface in motion control application requires high system responsiveness and accuracy. SSVEP interface consisted of 2-8 stimuli and 2 channel EEG amplifier was presented in this paper. The observed stimulus is recognized based on a canonical correlation calculated in 1 second window, ensuring high interface responsiveness. A threshold classifier with hysteresis (T-H) was proposed for recognition purposes. Obtained results suggest that T-H classifier enables to significantly increase classifier performance (resulting in accuracy of 76%, while maintaining average false positive detection rate of stimulus different then observed one between 2-13%, depending on stimulus frequency). It was shown that the parameters of T-H classifier, maximizing true positive rate, can be estimated by gradient-based search since the single maximum was observed. Moreover the preliminary results, performed on a test group (N=4), suggest that for T-H classifier exists a certain set of parameters for which the system accuracy is similar to accuracy obtained for user-trained classifier.
Alonso-Valerdi, Luz María
2016-01-01
A brain-computer interface (BCI) aims to establish communication between the human brain and a computing system so as to enable the interaction between an individual and his environment without using the brain output pathways. Individuals control a BCI system by modulating their brain signals through mental tasks (e.g., motor imagery or mental calculation) or sensory stimulation (e.g., auditory, visual, or tactile). As users modulate their brain signals at different frequencies and at different levels, the appropriate characterization of those signals is necessary. The modulation of brain signals through mental tasks is furthermore a skill that requires training. Unfortunately, not all the users acquire such skill. A practical solution to this problem is to assess the user probability of controlling a BCI system. Another possible solution is to set the bandwidth of the brain oscillations, which is highly sensitive to the users' age, sex and anatomy. With this in mind, NeuroIndex, a Python executable script, estimates a neurophysiological prediction index and the individual alpha frequency (IAF) of the user in question. These two parameters are useful to characterize the user EEG signals, and decide how to go through the complex process of adapting the human brain and the computing system on the basis of previously proposed methods. NeuroIndeX is not only the implementation of those methods, but it also complements the methods each other and provides an alternative way to obtain the prediction parameter. However, an important limitation of this application is its dependency on the IAF value, and some results should be interpreted with caution. The script along with some electroencephalographic datasets are available on a GitHub repository in order to corroborate the functionality and usability of this application.
Alonso-Valerdi, Luz María
2016-01-01
A brain-computer interface (BCI) aims to establish communication between the human brain and a computing system so as to enable the interaction between an individual and his environment without using the brain output pathways. Individuals control a BCI system by modulating their brain signals through mental tasks (e.g., motor imagery or mental calculation) or sensory stimulation (e.g., auditory, visual, or tactile). As users modulate their brain signals at different frequencies and at different levels, the appropriate characterization of those signals is necessary. The modulation of brain signals through mental tasks is furthermore a skill that requires training. Unfortunately, not all the users acquire such skill. A practical solution to this problem is to assess the user probability of controlling a BCI system. Another possible solution is to set the bandwidth of the brain oscillations, which is highly sensitive to the users' age, sex and anatomy. With this in mind, NeuroIndex, a Python executable script, estimates a neurophysiological prediction index and the individual alpha frequency (IAF) of the user in question. These two parameters are useful to characterize the user EEG signals, and decide how to go through the complex process of adapting the human brain and the computing system on the basis of previously proposed methods. NeuroIndeX is not only the implementation of those methods, but it also complements the methods each other and provides an alternative way to obtain the prediction parameter. However, an important limitation of this application is its dependency on the IAF value, and some results should be interpreted with caution. The script along with some electroencephalographic datasets are available on a GitHub repository in order to corroborate the functionality and usability of this application. PMID:27445783
[The P300-based brain-computer interface: presentation of the complex "flash + movement" stimuli].
Ganin, I P; Kaplan, A Ia
2014-01-01
The P300 based brain-computer interface requires the detection of P300 wave of brain event-related potentials. Most of its users learn the BCI control in several minutes and after the short classifier training they can type a text on the computer screen or assemble an image of separate fragments in simple BCI-based video games. Nevertheless, insufficient attractiveness for users and conservative stimuli organization in this BCI may restrict its integration into real information processes control. At the same time initial movement of object (motion-onset stimuli) may be an independent factor that induces P300 wave. In current work we checked the hypothesis that complex "flash + movement" stimuli together with drastic and compact stimuli organization on the computer screen may be much more attractive for user while operating in P300 BCI. In 20 subjects research we showed the effectiveness of our interface. Both accuracy and P300 amplitude were higher for flashing stimuli and complex "flash + movement" stimuli compared to motion-onset stimuli. N200 amplitude was maximal for flashing stimuli, while for "flash + movement" stimuli and motion-onset stimuli it was only a half of it. Similar BCI with complex stimuli may be embedded into compact control systems requiring high level of user attention under impact of negative external effects obstructing the BCI control.
PAGANI Toolkit: Parallel graph-theoretical analysis package for brain network big data.
Du, Haixiao; Xia, Mingrui; Zhao, Kang; Liao, Xuhong; Yang, Huazhong; Wang, Yu; He, Yong
2018-05-01
The recent collection of unprecedented quantities of neuroimaging data with high spatial resolution has led to brain network big data. However, a toolkit for fast and scalable computational solutions is still lacking. Here, we developed the PArallel Graph-theoretical ANalysIs (PAGANI) Toolkit based on a hybrid central processing unit-graphics processing unit (CPU-GPU) framework with a graphical user interface to facilitate the mapping and characterization of high-resolution brain networks. Specifically, the toolkit provides flexible parameters for users to customize computations of graph metrics in brain network analyses. As an empirical example, the PAGANI Toolkit was applied to individual voxel-based brain networks with ∼200,000 nodes that were derived from a resting-state fMRI dataset of 624 healthy young adults from the Human Connectome Project. Using a personal computer, this toolbox completed all computations in ∼27 h for one subject, which is markedly less than the 118 h required with a single-thread implementation. The voxel-based functional brain networks exhibited prominent small-world characteristics and densely connected hubs, which were mainly located in the medial and lateral fronto-parietal cortices. Moreover, the female group had significantly higher modularity and nodal betweenness centrality mainly in the medial/lateral fronto-parietal and occipital cortices than the male group. Significant correlations between the intelligence quotient and nodal metrics were also observed in several frontal regions. Collectively, the PAGANI Toolkit shows high computational performance and good scalability for analyzing connectome big data and provides a friendly interface without the complicated configuration of computing environments, thereby facilitating high-resolution connectomics research in health and disease. © 2018 Wiley Periodicals, Inc.
A Multi-purpose Brain-Computer Interface Output Device
Thompson, David E; Huggins, Jane E
2012-01-01
While brain-computer interfaces (BCIs) are a promising alternative access pathway for individuals with severe motor impairments, many BCI systems are designed as standalone communication and control systems, rather than as interfaces to existing systems built for these purposes. While an individual communication and control system may be powerful or flexible, no single system can compete with the variety of options available in the commercial assistive technology (AT) market. BCIs could instead be used as an interface to these existing AT devices and products, which are designed for improving access and agency of people with disabilities and are highly configurable to individual user needs. However, interfacing with each AT device and program requires significant time and effort on the part of researchers and clinicians. This work presents the Multi-Purpose BCI Output Device (MBOD), a tool to help researchers and clinicians provide BCI control of many forms of AT in a plug-and-play fashion, i.e. without the installation of drivers or software on the AT device, and a proof-of-concept of the practicality of such an approach. The MBOD was designed to meet the goals of target device compatibility, BCI input device compatibility, convenience, and intuitive command structure. The MBOD was successfully used to interface a BCI with multiple AT devices (including two wheelchair seating systems), as well as computers running Windows (XP and 7), Mac and Ubuntu Linux operating systems. PMID:22208120
A multi-purpose brain-computer interface output device.
Thompson, David E; Huggins, Jane E
2011-10-01
While brain-computer interfaces (BCIs) are a promising alternative access pathway for individuals with severe motor impairments, many BCI systems are designed as stand-alone communication and control systems, rather than as interfaces to existing systems built for these purposes. An individual communication and control system may be powerful or flexible, but no single system can compete with the variety of options available in the commercial assistive technology (AT) market. BCls could instead be used as an interface to these existing AT devices and products, which are designed for improving access and agency of people with disabilities and are highly configurable to individual user needs. However, interfacing with each AT device and program requires significant time and effort on the part of researchers and clinicians. This work presents the Multi-Purpose BCI Output Device (MBOD), a tool to help researchers and clinicians provide BCI control of many forms of AT in a plug-and-play fashion, i.e., without the installation of drivers or software on the AT device, and a proof-of-concept of the practicality of such an approach. The MBOD was designed to meet the goals of target device compatibility, BCI input device compatibility, convenience, and intuitive command structure. The MBOD was successfully used to interface a BCI with multiple AT devices (including two wheelchair seating systems), as well as computers running Windows (XP and 7), Mac and Ubuntu Linux operating systems.
NASA Astrophysics Data System (ADS)
Li, Zheng; Jiang, Yi-han; Duan, Lian; Zhu, Chao-zhe
2017-08-01
Objective. Functional near infra-red spectroscopy (fNIRS) is a promising brain imaging technology for brain-computer interfaces (BCI). Future clinical uses of fNIRS will likely require operation over long time spans, during which neural activation patterns may change. However, current decoders for fNIRS signals are not designed to handle changing activation patterns. The objective of this study is to test via simulations a new adaptive decoder for fNIRS signals, the Gaussian mixture model adaptive classifier (GMMAC). Approach. GMMAC can simultaneously classify and track activation pattern changes without the need for ground-truth labels. This adaptive classifier uses computationally efficient variational Bayesian inference to label new data points and update mixture model parameters, using the previous model parameters as priors. We test GMMAC in simulations in which neural activation patterns change over time and compare to static decoders and unsupervised adaptive linear discriminant analysis classifiers. Main results. Our simulation experiments show GMMAC can accurately decode under time-varying activation patterns: shifts of activation region, expansions of activation region, and combined contractions and shifts of activation region. Furthermore, the experiments show the proposed method can track the changing shape of the activation region. Compared to prior work, GMMAC performed significantly better than the other unsupervised adaptive classifiers on a difficult activation pattern change simulation: 99% versus <54% in two-choice classification accuracy. Significance. We believe GMMAC will be useful for clinical fNIRS-based brain-computer interfaces, including neurofeedback training systems, where operation over long time spans is required.
Classifying EEG for Brain-Computer Interface: Learning Optimal Filters for Dynamical System Features
Song, Le; Epps, Julien
2007-01-01
Classification of multichannel EEG recordings during motor imagination has been exploited successfully for brain-computer interfaces (BCI). In this paper, we consider EEG signals as the outputs of a networked dynamical system (the cortex), and exploit synchronization features from the dynamical system for classification. Herein, we also propose a new framework for learning optimal filters automatically from the data, by employing a Fisher ratio criterion. Experimental evaluations comparing the proposed dynamical system features with the CSP and the AR features reveal their competitive performance during classification. Results also show the benefits of employing the spatial and the temporal filters optimized using the proposed learning approach. PMID:18364986
Real time system design of motor imagery brain-computer interface based on multi band CSP and SVM
NASA Astrophysics Data System (ADS)
Zhao, Li; Li, Xiaoqin; Bian, Yan
2018-04-01
Motion imagery (MT) is an effective method to promote the recovery of limbs in patients after stroke. Though an online MT brain computer interface (BCT) system, which apply MT, can enhance the patient's participation and accelerate their recovery process. The traditional method deals with the electroencephalogram (EEG) induced by MT by common spatial pattern (CSP), which is used to extract information from a frequency band. Tn order to further improve the classification accuracy of the system, information of two characteristic frequency bands is extracted. The effectiveness of the proposed feature extraction method is verified by off-line analysis of competition data and the analysis of online system.
Learner-Content-Interface as an Approach for Self-Reliant and Student-Centered Learning
ERIC Educational Resources Information Center
Nicolay, Robin; Schwennigcke, Bastian; Sahl, Sarah; Martens, Alke
2015-01-01
Conceptualization and implementation of computer supported teaching and training is currently not tailored to the paradigm of learner centration. Many technical solutions lack transparency and consistency regarding the supported learner activities. An insight into learners activities correlated to learning tasks is needed. In this paper we outline…
Modular, bluetooth enabled, wireless electroencephalograph (EEG) platform.
Lovelace, Joseph A; Witt, Tyler S; Beyette, Fred R
2013-01-01
A design for a modular, compact, and accurate wireless electroencephalograph (EEG) system is proposed. EEG is the only non-invasive measure for neuronal function of the brain. Using a number of digital signal processing (DSP) techniques, this neuronal function can be acquired and processed into meaningful representations of brain activity. The system described here utilizes Bluetooth to wirelessly transmit the digitized brain signal for an end application use. In this way, the system is portable, and modular in terms of the device to which it can interface. Brain Computer Interface (BCI) has become a popular extension of EEG systems in modern research. This design serves as a platform for applications using BCI capability.
Wei, Qingguo; Liu, Yonghui; Gao, Xiaorong; Wang, Yijun; Yang, Chen; Lu, Zongwu; Gong, Huayuan
2018-06-01
In an existing brain-computer interface (BCI) based on code modulated visual evoked potentials (c-VEP), a method with which to increase the number of targets without increasing code length has not yet been established. In this paper, a novel c-VEP BCI paradigm, namely, grouping modulation with different codes that have good autocorrelation and crosscorrelation properties, is presented to increase the number of targets and information transfer rate (ITR). All stimulus targets are divided into several groups and each group of targets are modulated by a distinct pseudorandom binary code and its circularly shifting codes. Canonical correlation analysis is applied to each group for yielding a spatial filter and templates for all targets in a group are constructed based on spatially filtered signals. Template matching is applied to each group and the attended target is recognized by finding the maximal correlation coefficients of all groups. Based on the paradigm, a BCI with a total of 48 targets divided into three groups was implemented; 12 and 10 subjects participated in an off-line and a simulated online experiments, respectively. Data analysis of the offline experiment showed that the paradigm can massively increase the number of targets from 16 to 48 at the cost of slight compromise in accuracy (95.49% vs. 92.85%). Results of the simulated online experiment suggested that although the averaged accuracy across subjects of all three groups of targets was lower than that of a single group of targets (91.67% vs. 94.9%), the average ITR of the former was substantially higher than that of the later (181 bits/min vs. 135.6 bit/min) due to the large increase of the number of targets. The proposed paradigm significantly improves the performance of the c-VEP BCI, and thereby facilitates its practical applications such as high-speed spelling.
Jin, Jing; Allison, Brendan Z; Kaufmann, Tobias; Kübler, Andrea; Zhang, Yu; Wang, Xingyu; Cichocki, Andrzej
2012-01-01
One of the most common types of brain-computer interfaces (BCIs) is called a P300 BCI, since it relies on the P300 and other event-related potentials (ERPs). In the canonical P300 BCI approach, items on a monitor flash briefly to elicit the necessary ERPs. Very recent work has shown that this approach may yield lower performance than alternate paradigms in which the items do not flash but instead change in other ways, such as moving, changing colour or changing to characters overlaid with faces. The present study sought to extend this research direction by parametrically comparing different ways to change items in a P300 BCI. Healthy subjects used a P300 BCI across six different conditions. Three conditions were similar to our prior work, providing the first direct comparison of characters flashing, moving, and changing to faces. Three new conditions also explored facial motion and emotional expression. The six conditions were compared across objective measures such as classification accuracy and bit rate as well as subjective measures such as perceived difficulty. In line with recent studies, our results indicated that the character flash condition resulted in the lowest accuracy and bit rate. All four face conditions (mean accuracy >91%) yielded significantly better performance than the flash condition (mean accuracy = 75%). Objective results reaffirmed that the face paradigm is superior to the canonical flash approach that has dominated P300 BCIs for over 20 years. The subjective reports indicated that the conditions that yielded better performance were not considered especially burdensome. Therefore, although further work is needed to identify which face paradigm is best, it is clear that the canonical flash approach should be replaced with a face paradigm when aiming at increasing bit rate. However, the face paradigm has to be further explored with practical applications particularly with locked-in patients.
Using the Detectability Index to Predict P300 Speller Performance
Mainsah, B.O.; Collins, L.M.; Throckmorton, C.S.
2017-01-01
Objective The P300 speller is a popular brain-computer interface (BCI) system that has been investigated as a potential communication alternative for individuals with severe neuromuscular limitations. To achieve acceptable accuracy levels for communication, the system requires repeated data measurements in a given signal condition to enhance the signal-to-noise ratio of elicited brain responses. These elicited brain responses, which are used as control signals, are embedded in noisy electroencephalography (EEG) data. The discriminability between target and non-target EEG responses defines a user’s performance with the system. A previous P300 speller model has been proposed to estimate system accuracy given a certain amount of data collection. However, the approach was limited to a static stopping algorithm, i.e. averaging over a fixed number of measurements, and the row-column paradigm. A generalized method that is also applicable to dynamic stopping algorithms and other stimulus paradigms is desirable. Approach We developed a new probabilistic model-based approach to predicting BCI performance, where performance functions can be derived analytically or via Monte Carlo methods. Within this framework, we introduce a new model for the P300 speller with the Bayesian dynamic stopping (DS) algorithm, by simplifying a multi-hypothesis to a binary hypothesis problem using the likelihood ratio test. Under a normality assumption, the performance functions for the Bayesian algorithm can be parameterized with the detectability index, a measure which quantifies the discriminability between target and non-target EEG responses. Main results Simulations with synthetic and empirical data provided initial verification of the proposed method of estimating performance with Bayesian DS using the detectability index. Analysis of results from previous online studies validated the proposed method. Significance The proposed method could serve as a useful tool to initially asses BCI performance without extensive online testing, in order to estimate the amount of data required to achieve a desired accuracy level. PMID:27705956
Using the detectability index to predict P300 speller performance
NASA Astrophysics Data System (ADS)
Mainsah, B. O.; Collins, L. M.; Throckmorton, C. S.
2016-12-01
Objective. The P300 speller is a popular brain-computer interface (BCI) system that has been investigated as a potential communication alternative for individuals with severe neuromuscular limitations. To achieve acceptable accuracy levels for communication, the system requires repeated data measurements in a given signal condition to enhance the signal-to-noise ratio of elicited brain responses. These elicited brain responses, which are used as control signals, are embedded in noisy electroencephalography (EEG) data. The discriminability between target and non-target EEG responses defines a user’s performance with the system. A previous P300 speller model has been proposed to estimate system accuracy given a certain amount of data collection. However, the approach was limited to a static stopping algorithm, i.e. averaging over a fixed number of measurements, and the row-column paradigm. A generalized method that is also applicable to dynamic stopping (DS) algorithms and other stimulus paradigms is desirable. Approach. We developed a new probabilistic model-based approach to predicting BCI performance, where performance functions can be derived analytically or via Monte Carlo methods. Within this framework, we introduce a new model for the P300 speller with the Bayesian DS algorithm, by simplifying a multi-hypothesis to a binary hypothesis problem using the likelihood ratio test. Under a normality assumption, the performance functions for the Bayesian algorithm can be parameterized with the detectability index, a measure which quantifies the discriminability between target and non-target EEG responses. Main results. Simulations with synthetic and empirical data provided initial verification of the proposed method of estimating performance with Bayesian DS using the detectability index. Analysis of results from previous online studies validated the proposed method. Significance. The proposed method could serve as a useful tool to initially assess BCI performance without extensive online testing, in order to estimate the amount of data required to achieve a desired accuracy level.
Active tactile exploration using a brain-machine-brain interface.
O'Doherty, Joseph E; Lebedev, Mikhail A; Ifft, Peter J; Zhuang, Katie Z; Shokur, Solaiman; Bleuler, Hannes; Nicolelis, Miguel A L
2011-10-05
Brain-machine interfaces use neuronal activity recorded from the brain to establish direct communication with external actuators, such as prosthetic arms. It is hoped that brain-machine interfaces can be used to restore the normal sensorimotor functions of the limbs, but so far they have lacked tactile sensation. Here we report the operation of a brain-machine-brain interface (BMBI) that both controls the exploratory reaching movements of an actuator and allows signalling of artificial tactile feedback through intracortical microstimulation (ICMS) of the primary somatosensory cortex. Monkeys performed an active exploration task in which an actuator (a computer cursor or a virtual-reality arm) was moved using a BMBI that derived motor commands from neuronal ensemble activity recorded in the primary motor cortex. ICMS feedback occurred whenever the actuator touched virtual objects. Temporal patterns of ICMS encoded the artificial tactile properties of each object. Neuronal recordings and ICMS epochs were temporally multiplexed to avoid interference. Two monkeys operated this BMBI to search for and distinguish one of three visually identical objects, using the virtual-reality arm to identify the unique artificial texture associated with each. These results suggest that clinical motor neuroprostheses might benefit from the addition of ICMS feedback to generate artificial somatic perceptions associated with mechanical, robotic or even virtual prostheses.
EEG character identification using stimulus sequences designed to maximize mimimal hamming distance.
Fukami, Tadanori; Shimada, Takamasa; Forney, Elliott; Anderson, Charles W
2012-01-01
In this study, we have improved upon the P300 speller Brain-Computer Interface paradigm by introducing a new character encoding method. Our concept in detection of the intended character is not based on a classification of target and nontarget responses, but based on an identifaction of the character which maximize the difference between P300 amplitudes in target and nontarget stimuli. Each bit included in the code corresponds to flashing character, '1', and non-flashing, '0'. Here, the codes were constructed in order to maximize the minimum hamming distance between the characters. Electroencephalography was used to identify the characters using a waveform calculated by adding and subtracting the response of the target and non-target stimulus according the codes respectively. This stimulus presentation method was applied to a 3×3 character matrix, and the results were compared with that of a conventional P300 speller of the same size. Our method reduced the time until the correct character was obtained by 24%.
Using EEG/MEG Data of Cognitive Processes in Brain-Computer Interfaces
NASA Astrophysics Data System (ADS)
Gutiérrez, David
2008-08-01
Brain-computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using electroencephalographic (EEG) and, more recently, magnetoencephalographic (MEG) measurements of the brain function. Most of the current implementations of BCIs rely on EEG/MEG data of motor activities as such neural processes are well characterized, while the use of data related to cognitive activities has been neglected due to its intrinsic complexity. However, cognitive data usually has larger amplitude, lasts longer and, in some cases, cognitive brain signals are easier to control at will than motor signals. This paper briefy reviews the use of EEG/MEG data of cognitive processes in the implementation of BCIs. Specifically, this paper reviews some of the neuromechanisms, signal features, and processing methods involved. This paper also refers to some of the author's work in the area of detection and classifcation of cognitive signals for BCIs using variability enhancement, parametric modeling, and spatial fltering, as well as recent developments in BCI performance evaluation.
Multimodal 2D Brain Computer Interface.
Almajidy, Rand K; Boudria, Yacine; Hofmann, Ulrich G; Besio, Walter; Mankodiya, Kunal
2015-08-01
In this work we used multimodal, non-invasive brain signal recording systems, namely Near Infrared Spectroscopy (NIRS), disc electrode electroencephalography (EEG) and tripolar concentric ring electrodes (TCRE) electroencephalography (tEEG). 7 healthy subjects participated in our experiments to control a 2-D Brain Computer Interface (BCI). Four motor imagery task were performed, imagery motion of the left hand, the right hand, both hands and both feet. The signal slope (SS) of the change in oxygenated hemoglobin concentration measured by NIRS was used for feature extraction while the power spectrum density (PSD) of both EEG and tEEG in the frequency band 8-30Hz was used for feature extraction. Linear Discriminant Analysis (LDA) was used to classify different combinations of the aforementioned features. The highest classification accuracy (85.2%) was achieved by using features from all the three brain signals recording modules. The improvement in classification accuracy was highly significant (p = 0.0033) when using the multimodal signals features as compared to pure EEG features.
Using EEG/MEG Data of Cognitive Processes in Brain-Computer Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, David
2008-08-11
Brain-computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using electroencephalographic (EEG) and, more recently, magnetoencephalographic (MEG) measurements of the brain function. Most of the current implementations of BCIs rely on EEG/MEG data of motor activities as such neural processes are well characterized, while the use of data related to cognitive activities has been neglected due to its intrinsic complexity. However, cognitive data usually has larger amplitude, lasts longer and, in some cases, cognitive brain signals are easier to control at will than motor signals. This paper briefy reviews the use of EEG/MEGmore » data of cognitive processes in the implementation of BCIs. Specifically, this paper reviews some of the neuromechanisms, signal features, and processing methods involved. This paper also refers to some of the author's work in the area of detection and classifcation of cognitive signals for BCIs using variability enhancement, parametric modeling, and spatial fltering, as well as recent developments in BCI performance evaluation.« less
Towards a user-friendly brain-computer interface: initial tests in ALS and PLS patients.
Bai, Ou; Lin, Peter; Huang, Dandan; Fei, Ding-Yu; Floeter, Mary Kay
2010-08-01
Patients usually require long-term training for effective EEG-based brain-computer interface (BCI) control due to fatigue caused by the demands for focused attention during prolonged BCI operation. We intended to develop a user-friendly BCI requiring minimal training and less mental load. Testing of BCI performance was investigated in three patients with amyotrophic lateral sclerosis (ALS) and three patients with primary lateral sclerosis (PLS), who had no previous BCI experience. All patients performed binary control of cursor movement. One ALS patient and one PLS patient performed four-directional cursor control in a two-dimensional domain under a BCI paradigm associated with human natural motor behavior using motor execution and motor imagery. Subjects practiced for 5-10min and then participated in a multi-session study of either binary control or four-directional control including online BCI game over 1.5-2h in a single visit. Event-related desynchronization and event-related synchronization in the beta band were observed in all patients during the production of voluntary movement either by motor execution or motor imagery. The online binary control of cursor movement was achieved with an average accuracy about 82.1+/-8.2% with motor execution and about 80% with motor imagery, whereas offline accuracy was achieved with 91.4+/-3.4% with motor execution and 83.3+/-8.9% with motor imagery after optimization. In addition, four-directional cursor control was achieved with an accuracy of 50-60% with motor execution and motor imagery. Patients with ALS or PLS may achieve BCI control without extended training, and fatigue might be reduced during operation of a BCI associated with human natural motor behavior. The development of a user-friendly BCI will promote practical BCI applications in paralyzed patients. Copyright 2010 International Federation of Clinical Neurophysiology. All rights reserved.
Mayaud, L; Congedo, M; Van Laghenhove, A; Orlikowski, D; Figère, M; Azabou, E; Cheliout-Heraut, F
2013-10-01
A brain-computer interface aims at restoring communication and control in severely disabled people by identification and classification of EEG features such as event-related potentials (ERPs). The aim of this study is to compare different modalities of EEG recording for extraction of ERPs. The first comparison evaluates the performance of six disc electrodes with that of the EMOTIV headset, while the second evaluates three different electrode types (disc, needle, and large squared electrode). Ten healthy volunteers gave informed consent and were randomized to try the traditional EEG system (six disc electrodes with gel and skin preparation) or the EMOTIV Headset first. Together with the six disc electrodes, a needle and a square electrode of larger surface were simultaneously recording near lead Cz. Each modality was evaluated over three sessions of auditory P300 separated by one hour. No statically significant effect was found for the electrode type, nor was the interaction between electrode type and session number. There was no statistically significant difference of performance between the EMOTIV and the six traditional EEG disc electrodes, although there was a trend showing worse performance of the EMOTIV headset. However, the modality-session interaction was highly significant (P<0.001) showing that, while the performance of the six disc electrodes stay constant over sessions, the performance of the EMOTIV headset drops dramatically between 2 and 3h of use. Finally, the evaluation of comfort by participants revealed an increasing discomfort with the EMOTIV headset starting with the second hour of use. Our study does not recommend the use of one modality over another based on performance but suggests the choice should be made on more practical considerations such as the expected length of use, the availability of skilled labor for system setup and above all, the patient comfort. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Mental workload during brain-computer interface training.
Felton, Elizabeth A; Williams, Justin C; Vanderheiden, Gregg C; Radwin, Robert G
2012-01-01
It is not well understood how people perceive the difficulty of performing brain-computer interface (BCI) tasks, which specific aspects of mental workload contribute the most, and whether there is a difference in perceived workload between participants who are able-bodied and disabled. This study evaluated mental workload using the NASA Task Load Index (TLX), a multi-dimensional rating procedure with six subscales: Mental Demands, Physical Demands, Temporal Demands, Performance, Effort, and Frustration. Able-bodied and motor disabled participants completed the survey after performing EEG-based BCI Fitts' law target acquisition and phrase spelling tasks. The NASA-TLX scores were similar for able-bodied and disabled participants. For example, overall workload scores (range 0-100) for 1D horizontal tasks were 48.5 (SD = 17.7) and 46.6 (SD 10.3), respectively. The TLX can be used to inform the design of BCIs that will have greater usability by evaluating subjective workload between BCI tasks, participant groups, and control modalities. Mental workload of brain-computer interfaces (BCI) can be evaluated with the NASA Task Load Index (TLX). The TLX is an effective tool for comparing subjective workload between BCI tasks, participant groups (able-bodied and disabled), and control modalities. The data can inform the design of BCIs that will have greater usability.
Collaborative Brain-Computer Interface for Aiding Decision-Making
Poli, Riccardo; Valeriani, Davide; Cinel, Caterina
2014-01-01
We look at the possibility of integrating the percepts from multiple non-communicating observers as a means of achieving better joint perception and better group decisions. Our approach involves the combination of a brain-computer interface with human behavioural responses. To test ideas in controlled conditions, we asked observers to perform a simple matching task involving the rapid sequential presentation of pairs of visual patterns and the subsequent decision as whether the two patterns in a pair were the same or different. We recorded the response times of observers as well as a neural feature which predicts incorrect decisions and, thus, indirectly indicates the confidence of the decisions made by the observers. We then built a composite neuro-behavioural feature which optimally combines the two measures. For group decisions, we uses a majority rule and three rules which weigh the decisions of each observer based on response times and our neural and neuro-behavioural features. Results indicate that the integration of behavioural responses and neural features can significantly improve accuracy when compared with the majority rule. An analysis of event-related potentials indicates that substantial differences are present in the proximity of the response for correct and incorrect trials, further corroborating the idea of using hybrids of brain-computer interfaces and traditional strategies for improving decision making. PMID:25072739
Visual gate for brain-computer interfaces.
Dias, N S; Jacinto, L R; Mendes, P M; Correia, J H
2009-01-01
Brain-Computer Interfaces (BCI) based on event related potentials (ERP) have been successfully developed for applications like virtual spellers and navigation systems. This study tests the use of visual stimuli unbalanced in the subject's field of view to simultaneously cue mental imagery tasks (left vs. right hand movement) and detect subject attention. The responses to unbalanced cues were compared with the responses to balanced cues in terms of classification accuracy. Subject specific ERP spatial filters were calculated for optimal group separation. The unbalanced cues appear to enhance early ERPs related to cue visuospatial processing that improved the classification accuracy (as low as 6%) of ERPs in response to left vs. right cues soon (150-200 ms) after the cue presentation. This work suggests that such visual interface may be of interest in BCI applications as a gate mechanism for attention estimation and validation of control decisions.
Wronkiewicz, Mark; Larson, Eric; Lee, Adrian Kc
2016-10-01
Brain-computer interface (BCI) technology allows users to generate actions based solely on their brain signals. However, current non-invasive BCIs generally classify brain activity recorded from surface electroencephalography (EEG) electrodes, which can hinder the application of findings from modern neuroscience research. In this study, we use source imaging-a neuroimaging technique that projects EEG signals onto the surface of the brain-in a BCI classification framework. This allowed us to incorporate prior research from functional neuroimaging to target activity from a cortical region involved in auditory attention. Classifiers trained to detect attention switches performed better with source imaging projections than with EEG sensor signals. Within source imaging, including subject-specific anatomical MRI information (instead of using a generic head model) further improved classification performance. This source-based strategy also reduced accuracy variability across three dimensionality reduction techniques-a major design choice in most BCIs. Our work shows that source imaging provides clear quantitative and qualitative advantages to BCIs and highlights the value of incorporating modern neuroscience knowledge and methods into BCI systems.
Swann, Nicole C; de Hemptinne, Coralie; Miocinovic, Svjetlana; Qasim, Salman; Ostrem, Jill L; Galifianakis, Nicholas B; Luciano, Marta San; Wang, Sarah S; Ziman, Nathan; Taylor, Robin; Starr, Philip A
2018-02-01
OBJECTIVE Dysfunction of distributed neural networks underlies many brain disorders. The development of neuromodulation therapies depends on a better understanding of these networks. Invasive human brain recordings have a favorable temporal and spatial resolution for the analysis of network phenomena but have generally been limited to acute intraoperative recording or short-term recording through temporarily externalized leads. Here, the authors describe their initial experience with an investigational, first-generation, totally implantable, bidirectional neural interface that allows both continuous therapeutic stimulation and recording of field potentials at multiple sites in a neural network. METHODS Under a physician-sponsored US Food and Drug Administration investigational device exemption, 5 patients with Parkinson's disease were implanted with the Activa PC+S system (Medtronic Inc.). The device was attached to a quadripolar lead placed in the subdural space over motor cortex, for electrocorticography potential recordings, and to a quadripolar lead in the subthalamic nucleus (STN), for both therapeutic stimulation and recording of local field potentials. Recordings from the brain of each patient were performed at multiple time points over a 1-year period. RESULTS There were no serious surgical complications or interruptions in deep brain stimulation therapy. Signals in both the cortex and the STN were relatively stable over time, despite a gradual increase in electrode impedance. Canonical movement-related changes in specific frequency bands in the motor cortex were identified in most but not all recordings. CONCLUSIONS The acquisition of chronic multisite field potentials in humans is feasible. The device performance characteristics described here may inform the design of the next generation of totally implantable neural interfaces. This research tool provides a platform for translating discoveries in brain network dynamics to improved neurostimulation paradigms. Clinical trial registration no.: NCT01934296 (clinicaltrials.gov).
A Novel Mu Rhythm-based Brain Computer Interface Design that uses a Programmable System on Chip.
Joshi, Rohan; Saraswat, Prateek; Gajendran, Rudhram
2012-01-01
This paper describes the system design of a portable and economical mu rhythm based Brain Computer Interface which employs Cypress Semiconductors Programmable System on Chip (PSoC). By carrying out essential processing on the PSoC, the use of an extra computer is eliminated, resulting in considerable cost savings. Microsoft Visual Studio 2005 and PSoC Designer 5.01 are employed in developing the software for the system, the hardware being custom designed. In order to test the usability of the BCI, preliminary testing is carried out by training three subjects who were able to demonstrate control over their electroencephalogram by moving a cursor present at the center of the screen towards the indicated direction with an average accuracy greater than 70% and a bit communication rate of up to 7 bits/min.
Tu, Yiheng; Huang, Gan; Hung, Yeung Sam; Hu, Li; Hu, Yong; Zhang, Zhiguo
2013-01-01
Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.
A Novel Mu Rhythm-based Brain Computer Interface Design that uses a Programmable System on Chip
Joshi, Rohan; Saraswat, Prateek; Gajendran, Rudhram
2012-01-01
This paper describes the system design of a portable and economical mu rhythm based Brain Computer Interface which employs Cypress Semiconductors Programmable System on Chip (PSoC). By carrying out essential processing on the PSoC, the use of an extra computer is eliminated, resulting in considerable cost savings. Microsoft Visual Studio 2005 and PSoC Designer 5.01 are employed in developing the software for the system, the hardware being custom designed. In order to test the usability of the BCI, preliminary testing is carried out by training three subjects who were able to demonstrate control over their electroencephalogram by moving a cursor present at the center of the screen towards the indicated direction with an average accuracy greater than 70% and a bit communication rate of up to 7 bits/min. PMID:23493871
Xu, Ren; Jiang, Ning; Dosen, Strahinja; Lin, Chuang; Mrachacz-Kersting, Natalie; Dremstrup, Kim; Farina, Dario
2016-08-01
In this study, we present a novel multi-class brain-computer interface (BCI) for communication and control. In this system, the information processing is shared by the algorithm (computer) and the user (human). Specifically, an electro-tactile cycle was presented to the user, providing the choice (class) by delivering timely sensory input. The user discriminated these choices by his/her endogenous sensory ability and selected the desired choice with an intuitive motor task. This selection was detected by a fast brain switch based on real-time detection of movement-related cortical potentials from scalp EEG. We demonstrated the feasibility of such a system with a four-class BCI, yielding a true positive rate of ∼ 80% and ∼ 70%, and an information transfer rate of ∼ 7 bits/min and ∼ 5 bits/min, for the movement and imagination selection command, respectively. Furthermore, when the system was extended to eight classes, the throughput of the system was improved, demonstrating the capability of accommodating a large number of classes. Combining the endogenous sensory discrimination with the fast brain switch, the proposed system could be an effective, multi-class, gaze-independent BCI system for communication and control applications.
A brain computer interface using electrocorticographic signals in humans
NASA Astrophysics Data System (ADS)
Leuthardt, Eric C.; Schalk, Gerwin; Wolpaw, Jonathan R.; Ojemann, Jeffrey G.; Moran, Daniel W.
2004-06-01
Brain-computer interfaces (BCIs) enable users to control devices with electroencephalographic (EEG) activity from the scalp or with single-neuron activity from within the brain. Both methods have disadvantages: EEG has limited resolution and requires extensive training, while single-neuron recording entails significant clinical risks and has limited stability. We demonstrate here for the first time that electrocorticographic (ECoG) activity recorded from the surface of the brain can enable users to control a one-dimensional computer cursor rapidly and accurately. We first identified ECoG signals that were associated with different types of motor and speech imagery. Over brief training periods of 3-24 min, four patients then used these signals to master closed-loop control and to achieve success rates of 74-100% in a one-dimensional binary task. In additional open-loop experiments, we found that ECoG signals at frequencies up to 180 Hz encoded substantial information about the direction of two-dimensional joystick movements. Our results suggest that an ECoG-based BCI could provide for people with severe motor disabilities a non-muscular communication and control option that is more powerful than EEG-based BCIs and is potentially more stable and less traumatic than BCIs that use electrodes penetrating the brain. The authors declare that they have no competing financial interests.
2016-01-01
An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain. PMID:26982717
Li, Guangye; Zhang, Dingguo
2016-01-01
An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain.
Assisted closed-loop optimization of SSVEP-BCI efficiency
Fernandez-Vargas, Jacobo; Pfaff, Hanns U.; Rodríguez, Francisco B.; Varona, Pablo
2012-01-01
We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research. PMID:23443214
Assisted closed-loop optimization of SSVEP-BCI efficiency.
Fernandez-Vargas, Jacobo; Pfaff, Hanns U; Rodríguez, Francisco B; Varona, Pablo
2013-01-01
We designed a novel assisted closed-loop optimization protocol to improve the efficiency of brain-computer interfaces (BCI) based on steady state visually evoked potentials (SSVEP). In traditional paradigms, the control over the BCI-performance completely depends on the subjects' ability to learn from the given feedback cues. By contrast, in the proposed protocol both the subject and the machine share information and control over the BCI goal. Generally, the innovative assistance consists in the delivery of online information together with the online adaptation of BCI stimuli properties. In our case, this adaptive optimization process is realized by (1) a closed-loop search for the best set of SSVEP flicker frequencies and (2) feedback of actual SSVEP magnitudes to both the subject and the machine. These closed-loop interactions between subject and machine are evaluated in real-time by continuous measurement of their efficiencies, which are used as online criteria to adapt the BCI control parameters. The proposed protocol aims to compensate for variability in possibly unknown subjects' state and trait dimensions. In a study with N = 18 subjects, we found significant evidence that our protocol outperformed classic SSVEP-BCI control paradigms. Evidence is presented that it takes indeed into account interindividual variabilities: e.g., under the new protocol, baseline resting state EEG measures predict subjects' BCI performances. This paper illustrates the promising potential of assisted closed-loop protocols in BCI systems. Probably their applicability might be expanded to innovative uses, e.g., as possible new diagnostic/therapeutic tools for clinical contexts and as new paradigms for basic research.
Intelligent holographic databases
NASA Astrophysics Data System (ADS)
Barbastathis, George
Memory is a key component of intelligence. In the human brain, physical structure and functionality jointly provide diverse memory modalities at multiple time scales. How could we engineer artificial memories with similar faculties? In this thesis, we attack both hardware and algorithmic aspects of this problem. A good part is devoted to holographic memory architectures, because they meet high capacity and parallelism requirements. We develop and fully characterize shift multiplexing, a novel storage method that simplifies disk head design for holographic disks. We develop and optimize the design of compact refreshable holographic random access memories, showing several ways that 1 Tbit can be stored holographically in volume less than 1 m3, with surface density more than 20 times higher than conventional silicon DRAM integrated circuits. To address the issue of photorefractive volatility, we further develop the two-lambda (dual wavelength) method for shift multiplexing, and combine electrical fixing with angle multiplexing to demonstrate 1,000 multiplexed fixed holograms. Finally, we propose a noise model and an information theoretic metric to optimize the imaging system of a holographic memory, in terms of storage density and error rate. Motivated by the problem of interfacing sensors and memories to a complex system with limited computational resources, we construct a computer game of Desert Survival, built as a high-dimensional non-stationary virtual environment in a competitive setting. The efficacy of episodic learning, implemented as a reinforced Nearest Neighbor scheme, and the probability of winning against a control opponent improve significantly by concentrating the algorithmic effort to the virtual desert neighborhood that emerges as most significant at any time. The generalized computational model combines the autonomous neural network and von Neumann paradigms through a compact, dynamic central representation, which contains the most salient features of the sensory inputs, fused with relevant recollections, reminiscent of the hypothesized cognitive function of awareness. The Declarative Memory is searched both by content and address, suggesting a holographic implementation. The proposed computer architecture may lead to a novel paradigm that solves 'hard' cognitive problems at low cost.
SoftLab: A Soft-Computing Software for Experimental Research with Commercialization Aspects
NASA Technical Reports Server (NTRS)
Akbarzadeh-T, M.-R.; Shaikh, T. S.; Ren, J.; Hubbell, Rob; Kumbla, K. K.; Jamshidi, M
1998-01-01
SoftLab is a software environment for research and development in intelligent modeling/control using soft-computing paradigms such as fuzzy logic, neural networks, genetic algorithms, and genetic programs. SoftLab addresses the inadequacies of the existing soft-computing software by supporting comprehensive multidisciplinary functionalities from management tools to engineering systems. Furthermore, the built-in features help the user process/analyze information more efficiently by a friendly yet powerful interface, and will allow the user to specify user-specific processing modules, hence adding to the standard configuration of the software environment.
Neuroanatomical correlates of brain-computer interface performance.
Kasahara, Kazumi; DaSalla, Charles Sayo; Honda, Manabu; Hanakawa, Takashi
2015-04-15
Brain-computer interfaces (BCIs) offer a potential means to replace or restore lost motor function. However, BCI performance varies considerably between users, the reasons for which are poorly understood. Here we investigated the relationship between sensorimotor rhythm (SMR)-based BCI performance and brain structure. Participants were instructed to control a computer cursor using right- and left-hand motor imagery, which primarily modulated their left- and right-hemispheric SMR powers, respectively. Although most participants were able to control the BCI with success rates significantly above chance level even at the first encounter, they also showed substantial inter-individual variability in BCI success rate. Participants also underwent T1-weighted three-dimensional structural magnetic resonance imaging (MRI). The MRI data were subjected to voxel-based morphometry using BCI success rate as an independent variable. We found that BCI performance correlated with gray matter volume of the supplementary motor area, supplementary somatosensory area, and dorsal premotor cortex. We suggest that SMR-based BCI performance is associated with development of non-primary somatosensory and motor areas. Advancing our understanding of BCI performance in relation to its neuroanatomical correlates may lead to better customization of BCIs based on individual brain structure. Copyright © 2015 Elsevier Inc. All rights reserved.
Brain-computer interfaces for EEG neurofeedback: peculiarities and solutions.
Huster, René J; Mokom, Zacharais N; Enriquez-Geppert, Stefanie; Herrmann, Christoph S
2014-01-01
Neurofeedback training procedures designed to alter a person's brain activity have been in use for nearly four decades now and represent one of the earliest applications of brain-computer interfaces (BCI). The majority of studies using neurofeedback technology relies on recordings of the electroencephalogram (EEG) and applies neurofeedback in clinical contexts, exploring its potential as treatment for psychopathological syndromes. This clinical focus significantly affects the technology behind neurofeedback BCIs. For example, in contrast to other BCI applications, neurofeedback BCIs usually rely on EEG-derived features with only a minimum of additional processing steps being employed. Here, we highlight the peculiarities of EEG-based neurofeedback BCIs and consider their relevance for software implementations. Having reviewed already existing packages for the implementation of BCIs, we introduce our own solution which specifically considers the relevance of multi-subject handling for experimental and clinical trials, for example by implementing ready-to-use solutions for pseudo-/sham-neurofeedback. © 2013.
Sadeghi, Koosha; Junghyo Lee; Banerjee, Ayan; Sohankar, Javad; Gupta, Sandeep K S
2017-07-01
Brain-Computer Interface (BCI) systems use some permanent features of brain signals to recognize their corresponding cognitive states with high accuracy. However, these features are not perfectly permanent, and BCI system should be continuously trained over time, which is tedious and time consuming. Thus, analyzing the permanency of signal features is essential in determining how often to repeat training. In this paper, we monitor electroencephalogram (EEG) signals, and analyze their behavior through continuous and relatively long period of time. In our experiment, we record EEG signals corresponding to rest state (eyes open and closed) from one subject everyday, for three and a half months. The results show that signal features such as auto-regression coefficients remain permanent through time, while others such as power spectral density specifically in 5-7 Hz frequency band are not permanent. In addition, eyes open EEG data shows more permanency than eyes closed data.
Performance variation in motor imagery brain-computer interface: a brief review.
Ahn, Minkyu; Jun, Sung Chan
2015-03-30
Brain-computer interface (BCI) technology has attracted significant attention over recent decades, and has made remarkable progress. However, BCI still faces a critical hurdle, in that performance varies greatly across and even within subjects, an obstacle that degrades the reliability of BCI systems. Understanding the causes of these problems is important if we are to create more stable systems. In this short review, we report the most recent studies and findings on performance variation, especially in motor imagery-based BCI, which has found that low-performance groups have a less-developed brain network that is incapable of motor imagery. Further, psychological and physiological states influence performance variation within subjects. We propose a possible strategic approach to deal with this variation, which may contribute to improving the reliability of BCI. In addition, the limitations of current work and opportunities for future studies are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
A square root ensemble Kalman filter application to a motor-imagery brain-computer interface
Kamrunnahar, M.; Schiff, S. J.
2017-01-01
We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%–90% for the hand movements and 70%–90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models. PMID:22255799
Frolov, A A; Husek, D; Silchenko, A V; Tintera, Y; Rydlo, J
2016-01-01
With the use of functional MRI (fMRI), we studied the changes in brain hemodynamic activity of healthy subjects during motor imagery training with the use brain-computer interface (BCI), which is based on the recognition of EEG patterns of imagined movements. ANOVA dispersion analysis showed there are 14 areas of the brain where statistically sgnificant changes were registered. Detailed analysis of the activity in these areas before and after training (Student's and Mann-Whitney tests) reduced the amount of areas with significantly changed activity to five; these are Brodmann areas 44 and 45, insula, middle frontal gyrus, and anterior cingulate gyrus. We suggest that these changes are caused by the formation of memory traces of those brain activity patterns which are most accurately recognized by BCI classifiers as correspondent with limb movements. We also observed a tendency of increase in the activity of motor imagery after training. The hemodynamic activity in all these 14 areas during real movements was either approximatly the same or significantly higher than during motor imagery; activity during imagined leg movements was higher that that during imagined arm movements, except for the areas of representation of arms.
A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface
Su, Yi; Routhu, Sudhamayee; Moon, Kee S.; Lee, Sung Q.; Youm, WooSub; Ozturk, Yusuf
2016-01-01
All neural information systems (NIS) rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR) by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI) using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI) to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP) oscillation and stimulate the target area at the same time. PMID:27669264
Decoding Onset and Direction of Movements Using Electrocorticographic (ECoG) Signals in Humans
2012-08-08
Institute, Troy, NY, USA 2 J Crayton Pruitt Family Department of Biomed Engineering, University of Florida, Gainesville, FL, USA 3 BCI R&D Program...INTRODUCTION Brain-computer interfaces ( BCIs ) aim to translate a person’s intentions into meaningful computer commands using brain activity alone...applications for those suffering from neuromuscular disorders (Sejnowski et al., 2007; Tan and Nijholt, 2010). For example, a BCI that detects intended move
Girard, Romuald; Zeineddine, Hussein A; Orsbon, Courtney; Tan, Huan; Moore, Thomas; Hobson, Nick; Shenkar, Robert; Lightle, Rhonda; Shi, Changbin; Fam, Maged D; Cao, Ying; Shen, Le; Neander, April I; Rorrer, Autumn; Gallione, Carol; Tang, Alan T; Kahn, Mark L; Marchuk, Douglas A; Luo, Zhe-Xi; Awad, Issam A
2016-09-15
Cerebral cavernous malformations (CCMs) are hemorrhagic brain lesions, where murine models allow major mechanistic discoveries, ushering genetic manipulations and preclinical assessment of therapies. Histology for lesion counting and morphometry is essential yet tedious and time consuming. We herein describe the application and validations of X-ray micro-computed tomography (micro-CT), a non-destructive technique allowing three-dimensional CCM lesion count and volumetric measurements, in transgenic murine brains. We hereby describe a new contrast soaking technique not previously applied to murine models of CCM disease. Volumetric segmentation and image processing paradigm allowed for histologic correlations and quantitative validations not previously reported with the micro-CT technique in brain vascular disease. Twenty-two hyper-dense areas on micro-CT images, identified as CCM lesions, were matched by histology. The inter-rater reliability analysis showed strong consistency in the CCM lesion identification and staging (K=0.89, p<0.0001) between the two techniques. Micro-CT revealed a 29% greater CCM lesion detection efficiency, and 80% improved time efficiency. Serial integrated lesional area by histology showed a strong positive correlation with micro-CT estimated volume (r(2)=0.84, p<0.0001). Micro-CT allows high throughput assessment of lesion count and volume in pre-clinical murine models of CCM. This approach complements histology with improved accuracy and efficiency, and can be applied for lesion burden assessment in other brain diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Design and Evaluation of Fusion Approach for Combining Brain and Gaze Inputs for Target Selection
Évain, Andéol; Argelaguet, Ferran; Casiez, Géry; Roussel, Nicolas; Lécuyer, Anatole
2016-01-01
Gaze-based interfaces and Brain-Computer Interfaces (BCIs) allow for hands-free human–computer interaction. In this paper, we investigate the combination of gaze and BCIs. We propose a novel selection technique for 2D target acquisition based on input fusion. This new approach combines the probabilistic models for each input, in order to better estimate the intent of the user. We evaluated its performance against the existing gaze and brain–computer interaction techniques. Twelve participants took part in our study, in which they had to search and select 2D targets with each of the evaluated techniques. Our fusion-based hybrid interaction technique was found to be more reliable than the previous gaze and BCI hybrid interaction techniques for 10 participants over 12, while being 29% faster on average. However, similarly to what has been observed in hybrid gaze-and-speech interaction, gaze-only interaction technique still provides the best performance. Our results should encourage the use of input fusion, as opposed to sequential interaction, in order to design better hybrid interfaces. PMID:27774048
Engineering and commercialization of human-device interfaces, from bone to brain.
Knothe Tate, Melissa L; Detamore, Michael; Capadona, Jeffrey R; Woolley, Andrew; Knothe, Ulf
2016-07-01
Cutting edge developments in engineering of tissues, implants and devices allow for guidance and control of specific physiological structure-function relationships. Yet the engineering of functionally appropriate human-device interfaces represents an intractable challenge in the field. This leading opinion review outlines a set of current approaches as well as hurdles to design of interfaces that modulate transfer of information, i.a. forces, electrical potentials, chemical gradients and haptotactic paths, between endogenous and engineered body parts or tissues. The compendium is designed to bridge across currently separated disciplines by highlighting specific commonalities between seemingly disparate systems, e.g. musculoskeletal and nervous systems. We focus on specific examples from our own laboratories, demonstrating that the seemingly disparate musculoskeletal and nervous systems share common paradigms which can be harnessed to inspire innovative interface design solutions. Functional barrier interfaces that control molecular and biophysical traffic between tissue compartments of joints are addressed in an example of the knee. Furthermore, we describe the engineering of gradients for interfaces between endogenous and engineered tissues as well as between electrodes that physically and electrochemically couple the nervous and musculoskeletal systems. Finally, to promote translation of newly developed technologies into products, protocols, and treatments that benefit the patients who need them most, regulatory and technical challenges and opportunities are addressed on hand from an example of an implant cum delivery device that can be used to heal soft and hard tissues, from brain to bone. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
[Design and implementation of controlling smart car systems using P300 brain-computer interface].
Wang, Jinjia; Yang, Chengjie; Hu, Bei
2013-04-01
Using human electroencephalogram (EEG) to control external devices in order to achieve a variety of functions has been focus of the field of brain-computer interface (BCI) research. P300 is experiments which stimulate the eye to produce EEG by using letters flashing, and then identify the corresponding letters. In this paper, some improvements based on the P300 experiments were made??. Firstly, the matrix of flashing letters were modified into words which represent a certain sense. Secondly, the BCI2000 procedures were added with the corresponding source code. Thirdly, the smart car systems were designed using the radiofrequency signal. Finally it was realized that the evoked potentials were used to control the state of the smart car.
Cho, Woosang; Sabathiel, Nikolaus; Ortner, Rupert; Lechner, Alexander; Irimia, Danut C; Allison, Brendan Z; Edlinger, Guenter; Guger, Christoph
2016-06-13
Conventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. Paired associative stimulation (PAS) uses brain-computer interface (BCI) technology to monitor patients' movement imagery in real-time, and utilizes the information to control functional electrical stimulation (FES) and bar feedback for complete sensorimotor closed loop. To realize this approach, we introduce the recoveriX system, a hardware and software platform for PAS. After 10 sessions of recoveriX training, one stroke patient partially regained control of dorsiflexion in her paretic wrist. A controlled group study is planned with a new version of the recoveriX system, which will use a new FES system and an avatar instead of bar feedback.
schwimmbad: A uniform interface to parallel processing pools in Python
NASA Astrophysics Data System (ADS)
Price-Whelan, Adrian M.; Foreman-Mackey, Daniel
2017-09-01
Many scientific and computing problems require doing some calculation on all elements of some data set. If the calculations can be executed in parallel (i.e. without any communication between calculations), these problems are said to be perfectly parallel. On computers with multiple processing cores, these tasks can be distributed and executed in parallel to greatly improve performance. A common paradigm for handling these distributed computing problems is to use a processing "pool": the "tasks" (the data) are passed in bulk to the pool, and the pool handles distributing the tasks to a number of worker processes when available. schwimmbad provides a uniform interface to parallel processing pools and enables switching easily between local development (e.g., serial processing or with multiprocessing) and deployment on a cluster or supercomputer (via, e.g., MPI or JobLib).
An Interface for Biomedical Big Data Processing on the Tianhe-2 Supercomputer.
Yang, Xi; Wu, Chengkun; Lu, Kai; Fang, Lin; Zhang, Yong; Li, Shengkang; Guo, Guixin; Du, YunFei
2017-12-01
Big data, cloud computing, and high-performance computing (HPC) are at the verge of convergence. Cloud computing is already playing an active part in big data processing with the help of big data frameworks like Hadoop and Spark. The recent upsurge of high-performance computing in China provides extra possibilities and capacity to address the challenges associated with big data. In this paper, we propose Orion-a big data interface on the Tianhe-2 supercomputer-to enable big data applications to run on Tianhe-2 via a single command or a shell script. Orion supports multiple users, and each user can launch multiple tasks. It minimizes the effort needed to initiate big data applications on the Tianhe-2 supercomputer via automated configuration. Orion follows the "allocate-when-needed" paradigm, and it avoids the idle occupation of computational resources. We tested the utility and performance of Orion using a big genomic dataset and achieved a satisfactory performance on Tianhe-2 with very few modifications to existing applications that were implemented in Hadoop/Spark. In summary, Orion provides a practical and economical interface for big data processing on Tianhe-2.
NASA Astrophysics Data System (ADS)
Xiao, Jun; Xie, Qiuyou; He, Yanbin; Yu, Tianyou; Lu, Shenglin; Huang, Ningmeng; Yu, Ronghao; Li, Yuanqing
2016-09-01
The Coma Recovery Scale-Revised (CRS-R) is a consistent and sensitive behavioral assessment standard for disorders of consciousness (DOC) patients. However, the CRS-R has limitations due to its dependence on behavioral markers, which has led to a high rate of misdiagnosis. Brain-computer interfaces (BCIs), which directly detect brain activities without any behavioral expression, can be used to evaluate a patient’s state. In this study, we explored the application of BCIs in assisting CRS-R assessments of DOC patients. Specifically, an auditory passive EEG-based BCI system with an oddball paradigm was proposed to facilitate the evaluation of one item of the auditory function scale in the CRS-R - the auditory startle. The results obtained from five healthy subjects validated the efficacy of the BCI system. Nineteen DOC patients participated in the CRS-R and BCI assessments, of which three patients exhibited no responses in the CRS-R assessment but were responsive to auditory startle in the BCI assessment. These results revealed that a proportion of DOC patients who have no behavioral responses in the CRS-R assessment can generate neural responses, which can be detected by our BCI system. Therefore, the proposed BCI may provide more sensitive results than the CRS-R and thus assist CRS-R behavioral assessments.
Xiao, Jun; Xie, Qiuyou; He, Yanbin; Yu, Tianyou; Lu, Shenglin; Huang, Ningmeng; Yu, Ronghao; Li, Yuanqing
2016-09-13
The Coma Recovery Scale-Revised (CRS-R) is a consistent and sensitive behavioral assessment standard for disorders of consciousness (DOC) patients. However, the CRS-R has limitations due to its dependence on behavioral markers, which has led to a high rate of misdiagnosis. Brain-computer interfaces (BCIs), which directly detect brain activities without any behavioral expression, can be used to evaluate a patient's state. In this study, we explored the application of BCIs in assisting CRS-R assessments of DOC patients. Specifically, an auditory passive EEG-based BCI system with an oddball paradigm was proposed to facilitate the evaluation of one item of the auditory function scale in the CRS-R - the auditory startle. The results obtained from five healthy subjects validated the efficacy of the BCI system. Nineteen DOC patients participated in the CRS-R and BCI assessments, of which three patients exhibited no responses in the CRS-R assessment but were responsive to auditory startle in the BCI assessment. These results revealed that a proportion of DOC patients who have no behavioral responses in the CRS-R assessment can generate neural responses, which can be detected by our BCI system. Therefore, the proposed BCI may provide more sensitive results than the CRS-R and thus assist CRS-R behavioral assessments.
Novel near infrared sensors for hybrid BCI applications
NASA Astrophysics Data System (ADS)
Almajidy, Rand K.; Le, Khang S.; Hofmann, Ulrich G.
2015-07-01
This study's goal is to develop a low cost, portable, accurate and comfortable NIRS module that can be used simultaneously with EEG in a dual modality system for brain computer interface (BCI). The sensing modules consist of electroencephalography (EEG) electrodes (at the positions Fp1, Fpz and Fp2 in the international 10-20 system) with eight custom made functional near infrared spectroscopy (fNIRS) channels, positioned on the prefrontal cortex area with two extra channels to measure and eliminate extra-cranial oxygenation. The NIRS sensors were designed to guarantee good sensor-skin contact, without causing subject discomfort, using springs to press them to the skin instead of pressing them by cap fixture. Two open source software packages were modified to carry out dual modality hybrid BCI experiments. The experimental paradigm consisted of a mental task (arithmetic task or text reading) and a resting period. Both oxygenated hemoglobin concentration changes (HbO), and EEG signals showed an increase during the mental task, but the onset, period and amount of that increase depends on each modality's characteristics. The subject's degree of attention played an important role especially during online sessions. The sensors can be easily used to acquire brain signals from different cerebral cortex parts. The system serves as a simple technological test bed and will be used for stroke patient rehabilitation purposes.
Envisioning future cognitive telerehabilitation technologies: a co-design process with clinicians.
How, Tuck-Voon; Hwang, Amy S; Green, Robin E A; Mihailidis, Alex
2017-04-01
Purpose Cognitive telerehabilitation is the concept of delivering cognitive assessment, feedback, or therapeutic intervention at a distance through technology. With the increase of mobile devices, wearable sensors, and novel human-computer interfaces, new possibilities are emerging to expand the cognitive telerehabilitation paradigm. This research aims to: (1) explore design opportunities and considerations when applying emergent pervasive computing technologies to cognitive telerehabilitation and (2) develop a generative co-design process for use with rehabilitation clinicians. Methods We conducted a custom co-design process that used design cards, probes, and design sessions with traumatic brain injury (TBI) clinicians. All field notes and transcripts were analyzed qualitatively. Results Potential opportunities for TBI cognitive telerehabilitation exist in the areas of communication competency, executive functioning, emotional regulation, energy management, assessment, and skill training. Designers of TBI cognitive telerehabilitation technologies should consider how technologies are adapted to a patient's physical/cognitive/emotional state, their changing rehabilitation trajectory, and their surrounding life context (e.g. social considerations). Clinicians were receptive to our co-design approach. Conclusion Pervasive computing offers new opportunities for life-situated cognitive telerehabilitation. Convivial design methods, such as this co-design process, are a helpful way to explore new design opportunities and an important space for further methodological development. Implications for Rehabilitation Designers of rehabilitation technologies should consider how to extend current design methods in order to facilitate the creative contribution of rehabilitation stakeholders. This co-design approach enables a fuller participation from rehabilitation clinicians at the front-end of design. Pervasive computing has the potential to: extend the duration and intensity of cognitive telerehabilitation training (including the delivery of 'booster' sessions or maintenance therapies); provide assessment and treatment in the context of a traumatic brain injury (TBI) patient's everyday life (thereby enhancing generalization); and permit time-sensitive interventions. Long-term use of pervasive computing for TBI cognitive telerehabilitation should take into account a patient's changing recovery trajectory, their meaningful goals, and their journey from loss to redefinition.
The theory of constructed emotion: an active inference account of interoception and categorization
2017-01-01
Abstract The science of emotion has been using folk psychology categories derived from philosophy to search for the brain basis of emotion. The last two decades of neuroscience research have brought us to the brink of a paradigm shift in understanding the workings of the brain, however, setting the stage to revolutionize our understanding of what emotions are and how they work. In this article, we begin with the structure and function of the brain, and from there deduce what the biological basis of emotions might be. The answer is a brain-based, computational account called the theory of constructed emotion. PMID:27798257
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Housner, Jerrold M.
1993-01-01
Recent advances in computer technology that are likely to impact structural analysis and design of flight vehicles are reviewed. A brief summary is given of the advances in microelectronics, networking technologies, and in the user-interface hardware and software. The major features of new and projected computing systems, including high performance computers, parallel processing machines, and small systems, are described. Advances in programming environments, numerical algorithms, and computational strategies for new computing systems are reviewed. The impact of the advances in computer technology on structural analysis and the design of flight vehicles is described. A scenario for future computing paradigms is presented, and the near-term needs in the computational structures area are outlined.
Cyber-workstation for computational neuroscience.
Digiovanna, Jack; Rattanatamrong, Prapaporn; Zhao, Ming; Mahmoudi, Babak; Hermer, Linda; Figueiredo, Renato; Principe, Jose C; Fortes, Jose; Sanchez, Justin C
2010-01-01
A Cyber-Workstation (CW) to study in vivo, real-time interactions between computational models and large-scale brain subsystems during behavioral experiments has been designed and implemented. The design philosophy seeks to directly link the in vivo neurophysiology laboratory with scalable computing resources to enable more sophisticated computational neuroscience investigation. The architecture designed here allows scientists to develop new models and integrate them with existing models (e.g. recursive least-squares regressor) by specifying appropriate connections in a block-diagram. Then, adaptive middleware transparently implements these user specifications using the full power of remote grid-computing hardware. In effect, the middleware deploys an on-demand and flexible neuroscience research test-bed to provide the neurophysiology laboratory extensive computational power from an outside source. The CW consolidates distributed software and hardware resources to support time-critical and/or resource-demanding computing during data collection from behaving animals. This power and flexibility is important as experimental and theoretical neuroscience evolves based on insights gained from data-intensive experiments, new technologies and engineering methodologies. This paper describes briefly the computational infrastructure and its most relevant components. Each component is discussed within a systematic process of setting up an in vivo, neuroscience experiment. Furthermore, a co-adaptive brain machine interface is implemented on the CW to illustrate how this integrated computational and experimental platform can be used to study systems neurophysiology and learning in a behavior task. We believe this implementation is also the first remote execution and adaptation of a brain-machine interface.
Cyber-Workstation for Computational Neuroscience
DiGiovanna, Jack; Rattanatamrong, Prapaporn; Zhao, Ming; Mahmoudi, Babak; Hermer, Linda; Figueiredo, Renato; Principe, Jose C.; Fortes, Jose; Sanchez, Justin C.
2009-01-01
A Cyber-Workstation (CW) to study in vivo, real-time interactions between computational models and large-scale brain subsystems during behavioral experiments has been designed and implemented. The design philosophy seeks to directly link the in vivo neurophysiology laboratory with scalable computing resources to enable more sophisticated computational neuroscience investigation. The architecture designed here allows scientists to develop new models and integrate them with existing models (e.g. recursive least-squares regressor) by specifying appropriate connections in a block-diagram. Then, adaptive middleware transparently implements these user specifications using the full power of remote grid-computing hardware. In effect, the middleware deploys an on-demand and flexible neuroscience research test-bed to provide the neurophysiology laboratory extensive computational power from an outside source. The CW consolidates distributed software and hardware resources to support time-critical and/or resource-demanding computing during data collection from behaving animals. This power and flexibility is important as experimental and theoretical neuroscience evolves based on insights gained from data-intensive experiments, new technologies and engineering methodologies. This paper describes briefly the computational infrastructure and its most relevant components. Each component is discussed within a systematic process of setting up an in vivo, neuroscience experiment. Furthermore, a co-adaptive brain machine interface is implemented on the CW to illustrate how this integrated computational and experimental platform can be used to study systems neurophysiology and learning in a behavior task. We believe this implementation is also the first remote execution and adaptation of a brain-machine interface. PMID:20126436
van Dokkum, L E H; Ward, T; Laffont, I
2015-02-01
The idea of using brain computer interfaces (BCI) for rehabilitation emerged relatively recently. Basically, BCI for neurorehabilitation involves the recording and decoding of local brain signals generated by the patient, as he/her tries to perform a particular task (even if imperfect), or during a mental imagery task. The main objective is to promote the recruitment of selected brain areas involved and to facilitate neural plasticity. The recorded signal can be used in several ways: (i) to objectify and strengthen motor imagery-based training, by providing the patient feedback on the imagined motor task, for example, in a virtual environment; (ii) to generate a desired motor task via functional electrical stimulation or rehabilitative robotic orthoses attached to the patient's limb – encouraging and optimizing task execution as well as "closing" the disrupted sensorimotor loop by giving the patient the appropriate sensory feedback; (iii) to understand cerebral reorganizations after lesion, in order to influence or even quantify plasticity-induced changes in brain networks. For example, applying cerebral stimulation to re-equilibrate inter-hemispheric imbalance as shown by functional recording of brain activity during movement may help recovery. Its potential usefulness for a patient population has been demonstrated on various levels and its diverseness in interface applications makes it adaptable to a large population. The position and status of these very new rehabilitation systems should now be considered with respect to our current and more or less validated traditional methods, as well as in the light of the wide range of possible brain damage. The heterogeneity in post-damage expression inevitably complicates the decoding of brain signals and thus their use in pathological conditions, asking for controlled clinical trials. Copyright © 2015. Published by Elsevier Masson SAS.
NASA Astrophysics Data System (ADS)
Felton, E. A.; Radwin, R. G.; Wilson, J. A.; Williams, J. C.
2009-10-01
A brain-computer interface (BCI) is a communication system that takes recorded brain signals and translates them into real-time actions, in this case movement of a cursor on a computer screen. This work applied Fitts' law to the evaluation of performance on a target acquisition task during sensorimotor rhythm-based BCI training. Fitts' law, which has been used as a predictor of movement time in studies of human movement, was used here to determine the information transfer rate, which was based on target acquisition time and target difficulty. The information transfer rate was used to make comparisons between control modalities and subject groups on the same task. Data were analyzed from eight able-bodied and five motor disabled participants who wore an electrode cap that recorded and translated their electroencephalogram (EEG) signals into computer cursor movements. Direct comparisons were made between able-bodied and disabled subjects, and between EEG and joystick cursor control in able-bodied subjects. Fitts' law aptly described the relationship between movement time and index of difficulty for each task movement direction when evaluated separately and averaged together. This study showed that Fitts' law can be successfully applied to computer cursor movement controlled by neural signals.
Wen, Dong; Jia, Peilei; Lian, Qiusheng; Zhou, Yanhong; Lu, Chengbiao
2016-01-01
At present, the sparse representation-based classification (SRC) has become an important approach in electroencephalograph (EEG) signal analysis, by which the data is sparsely represented on the basis of a fixed dictionary or learned dictionary and classified based on the reconstruction criteria. SRC methods have been used to analyze the EEG signals of epilepsy, cognitive impairment and brain computer interface (BCI), which made rapid progress including the improvement in computational accuracy, efficiency and robustness. However, these methods have deficiencies in real-time performance, generalization ability and the dependence of labeled sample in the analysis of the EEG signals. This mini review described the advantages and disadvantages of the SRC methods in the EEG signal analysis with the expectation that these methods can provide the better tools for analyzing EEG signals. PMID:27458376
NASA Astrophysics Data System (ADS)
Tezuka, Miwa; Kanno, Kazutaka; Bunsen, Masatoshi
2016-08-01
Reservoir computing is a machine-learning paradigm based on information processing in the human brain. We numerically demonstrate reservoir computing with a slowly modulated mask signal for preprocessing by using a mutually coupled optoelectronic system. The performance of our system is quantitatively evaluated by a chaotic time series prediction task. Our system can produce comparable performance with reservoir computing with a single feedback system and a fast modulated mask signal. We showed that it is possible to slow down the modulation speed of the mask signal by using the mutually coupled system in reservoir computing.
Lord, Louis-David; Stevner, Angus B.; Kringelbach, Morten L.
2017-01-01
To survive in an ever-changing environment, the brain must seamlessly integrate a rich stream of incoming information into coherent internal representations that can then be used to efficiently plan for action. The brain must, however, balance its ability to integrate information from various sources with a complementary capacity to segregate information into modules which perform specialized computations in local circuits. Importantly, evidence suggests that imbalances in the brain's ability to bind together and/or segregate information over both space and time is a common feature of several neuropsychiatric disorders. Most studies have, however, until recently strictly attempted to characterize the principles of integration and segregation in static (i.e. time-invariant) representations of human brain networks, hence disregarding the complex spatio-temporal nature of these processes. In the present Review, we describe how the emerging discipline of whole-brain computational connectomics may be used to study the causal mechanisms of the integration and segregation of information on behaviourally relevant timescales. We emphasize how novel methods from network science and whole-brain computational modelling can expand beyond traditional neuroimaging paradigms and help to uncover the neurobiological determinants of the abnormal integration and segregation of information in neuropsychiatric disorders. This article is part of the themed issue ‘Mathematical methods in medicine: neuroscience, cardiology and pathology’. PMID:28507228
Bergamasco, Massimo; Frisoli, Antonio; Fontana, Marco; Loconsole, Claudio; Leonardis, Daniele; Troncossi, Marco; Foumashi, Mohammad Mozaffari; Parenti-Castelli, Vincenzo
2011-01-01
This paper presents the preliminary results of the project BRAVO (Brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks). The objective of this project is to define a new approach to the development of assistive and rehabilitative robots for motor impaired users to perform complex visuomotor tasks that require a sequence of reaches, grasps and manipulations of objects. BRAVO aims at developing new robotic interfaces and HW/SW architectures for rehabilitation and regain/restoration of motor function in patients with upper limb sensorimotor impairment through extensive rehabilitation therapy and active assistance in the execution of Activities of Daily Living. The final system developed within this project will include a robotic arm exoskeleton and a hand orthosis that will be integrated together for providing force assistance. The main novelty that BRAVO introduces is the control of the robotic assistive device through the active prediction of intention/action. The system will actually integrate the information about the movement carried out by the user with a prediction of the performed action through an interpretation of current gaze of the user (measured through eye-tracking), brain activation (measured through BCI) and force sensor measurements. © 2011 IEEE
Neuromodulation, agency and autonomy.
Glannon, Walter
2014-01-01
Neuromodulation consists in altering brain activity to restore mental and physical functions in individuals with neuropsychiatric disorders and brain and spinal cord injuries. This can be achieved by delivering electrical stimulation that excites or inhibits neural tissue, by using electrical signals in the brain to move computer cursors or robotic arms, or by displaying brain activity to subjects who regulate that activity by their own responses to it. As enabling prostheses, deep-brain stimulation and brain-computer interfaces (BCIs) are forms of extended embodiment that become integrated into the individual's conception of himself as an autonomous agent. In BCIs and neurofeedback, the success or failure of the techniques depends on the interaction between the learner and the trainer. The restoration of agency and autonomy through neuromodulation thus involves neurophysiological, psychological and social factors.
NASA Astrophysics Data System (ADS)
Pichiorri, F.; De Vico Fallani, F.; Cincotti, F.; Babiloni, F.; Molinari, M.; Kleih, S. C.; Neuper, C.; Kübler, A.; Mattia, D.
2011-04-01
The main purpose of electroencephalography (EEG)-based brain-computer interface (BCI) technology is to provide an alternative channel to support communication and control when motor pathways are interrupted. Despite the considerable amount of research focused on the improvement of EEG signal detection and translation into output commands, little is known about how learning to operate a BCI device may affect brain plasticity. This study investigated if and how sensorimotor rhythm-based BCI training would induce persistent functional changes in motor cortex, as assessed with transcranial magnetic stimulation (TMS) and high-density EEG. Motor imagery (MI)-based BCI training in naïve participants led to a significant increase in motor cortical excitability, as revealed by post-training TMS mapping of the hand muscle's cortical representation; peak amplitude and volume of the motor evoked potentials recorded from the opponens pollicis muscle were significantly higher only in those subjects who develop a MI strategy based on imagination of hand grasping to successfully control a computer cursor. Furthermore, analysis of the functional brain networks constructed using a connectivity matrix between scalp electrodes revealed a significant decrease in the global efficiency index for the higher-beta frequency range (22-29 Hz), indicating that the brain network changes its topology with practice of hand grasping MI. Our findings build the neurophysiological basis for the use of non-invasive BCI technology for monitoring and guidance of motor imagery-dependent brain plasticity and thus may render BCI a viable tool for post-stroke rehabilitation.
Yaacoub, Charles; Mhanna, Georges; Rihana, Sandy
2017-01-01
Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5%) while improving the accuracy, sensitivity, specificity, and precision of the classifier. PMID:28124985
Yaacoub, Charles; Mhanna, Georges; Rihana, Sandy
2017-01-23
Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5%) while improving the accuracy, sensitivity, specificity, and precision of the classifier.
Friedrich, Elisabeth V C; Suttie, Neil; Sivanathan, Aparajithan; Lim, Theodore; Louchart, Sandy; Pineda, Jaime A
2014-01-01
Individuals with autism spectrum disorder (ASD) show deficits in social and communicative skills, including imitation, empathy, and shared attention, as well as restricted interests and repetitive patterns of behaviors. Evidence for and against the idea that dysfunctions in the mirror neuron system are involved in imitation and could be one underlying cause for ASD is discussed in this review. Neurofeedback interventions have reduced symptoms in children with ASD by self-regulation of brain rhythms. However, cortical deficiencies are not the only cause of these symptoms. Peripheral physiological activity, such as the heart rate and its variability, is closely linked to neurophysiological signals and associated with social engagement. Therefore, a combined approach targeting the interplay between brain, body, and behavior could be more effective. Brain-computer interface applications for combined neurofeedback and biofeedback treatment for children with ASD are currently nonexistent. To facilitate their use, we have designed an innovative game that includes social interactions and provides neural- and body-based feedback that corresponds directly to the underlying significance of the trained signals as well as to the behavior that is reinforced.
Control of a nursing bed based on a hybrid brain-computer interface.
Nengneng Peng; Rui Zhang; Haihua Zeng; Fei Wang; Kai Li; Yuanqing Li; Xiaobin Zhuang
2016-08-01
In this paper, we propose an intelligent nursing bed system which is controlled by a hybrid brain-computer interface (BCI) involving steady-state visual evoked potential (SSVEP) and P300. Specifically, the hybrid BCI includes an asynchronous brain switch based on SSVEP and P300, and a P300-based BCI. The brain switch is used to turn on/off the control system of the electric nursing bed through idle/control state detection, whereas the P300-based BCI is for operating the nursing bed. At the beginning, the user may focus on one group of flashing buttons in the graphic user interface (GUI) of the brain switch, which can simultaneously evoke SSVEP and P300, to switch on the control system. Here, the combination of SSVEP and P300 is used for improving the performance of the brain switch. Next, the user can control the nursing bed using the P300-based BCI. The GUI of the P300-based BCI includes 10 flashing buttons, which correspond to 10 functional operations, namely, left-side up, left-side down, back up, back down, bedpan open, bedpan close, legs up, legs down, right-side up, and right-side down. For instance, he/she can focus on the flashing button "back up" in the GUI of the P300-based BCI to activate the corresponding control such that the nursing bed is adjusted up. Eight healthy subjects participated in our experiment, and obtained an average accuracy of 93.75% and an average false positive rate (FPR) of 0.15 event/min. The effectiveness of our system was thus demonstrated.
Prediction of brain-computer interface aptitude from individual brain structure.
Halder, S; Varkuti, B; Bogdan, M; Kübler, A; Rosenstiel, W; Sitaram, R; Birbaumer, N
2013-01-01
Brain-computer interface (BCI) provide a non-muscular communication channel for patients with impairments of the motor system. A significant number of BCI users is unable to obtain voluntary control of a BCI-system in proper time. This makes methods that can be used to determine the aptitude of a user necessary. We hypothesized that integrity and connectivity of involved white matter connections may serve as a predictor of individual BCI-performance. Therefore, we analyzed structural data from anatomical scans and DTI of motor imagery BCI-users differentiated into high and low BCI-aptitude groups based on their overall performance. Using a machine learning classification method we identified discriminating structural brain trait features and correlated the best features with a continuous measure of individual BCI-performance. Prediction of the aptitude group of each participant was possible with near perfect accuracy (one error). Tissue volumetric analysis yielded only poor classification results. In contrast, the structural integrity and myelination quality of deep white matter structures such as the Corpus Callosum, Cingulum, and Superior Fronto-Occipital Fascicle were positively correlated with individual BCI-performance. This confirms that structural brain traits contribute to individual performance in BCI use.
Prediction of brain-computer interface aptitude from individual brain structure
Halder, S.; Varkuti, B.; Bogdan, M.; Kübler, A.; Rosenstiel, W.; Sitaram, R.; Birbaumer, N.
2013-01-01
Objective: Brain-computer interface (BCI) provide a non-muscular communication channel for patients with impairments of the motor system. A significant number of BCI users is unable to obtain voluntary control of a BCI-system in proper time. This makes methods that can be used to determine the aptitude of a user necessary. Methods: We hypothesized that integrity and connectivity of involved white matter connections may serve as a predictor of individual BCI-performance. Therefore, we analyzed structural data from anatomical scans and DTI of motor imagery BCI-users differentiated into high and low BCI-aptitude groups based on their overall performance. Results: Using a machine learning classification method we identified discriminating structural brain trait features and correlated the best features with a continuous measure of individual BCI-performance. Prediction of the aptitude group of each participant was possible with near perfect accuracy (one error). Conclusions: Tissue volumetric analysis yielded only poor classification results. In contrast, the structural integrity and myelination quality of deep white matter structures such as the Corpus Callosum, Cingulum, and Superior Fronto-Occipital Fascicle were positively correlated with individual BCI-performance. Significance: This confirms that structural brain traits contribute to individual performance in BCI use. PMID:23565083
2017-09-10
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services , Directorate for Information Operations and...covered in the conference: 1) Wearable Mobile Brain-Body Imaging (MoBI) technologies (both hardware and software developments); 2) Cognitive and Brain...the state of the art and challenges in cognitive and affective brain-computer interfaces, and their deployment in the service of the arts and the
Evolvix BEST Names for semantic reproducibility across code2brain interfaces.
Loewe, Laurence; Scheuer, Katherine S; Keel, Seth A; Vyas, Vaibhav; Liblit, Ben; Hanlon, Bret; Ferris, Michael C; Yin, John; Dutra, Inês; Pietsch, Anthony; Javid, Christine G; Moog, Cecilia L; Meyer, Jocelyn; Dresel, Jerdon; McLoone, Brian; Loberger, Sonya; Movaghar, Arezoo; Gilchrist-Scott, Morgaine; Sabri, Yazeed; Sescleifer, Dave; Pereda-Zorrilla, Ivan; Zietlow, Andrew; Smith, Rodrigo; Pietenpol, Samantha; Goldfinger, Jacob; Atzen, Sarah L; Freiberg, Erika; Waters, Noah P; Nusbaum, Claire; Nolan, Erik; Hotz, Alyssa; Kliman, Richard M; Mentewab, Ayalew; Fregien, Nathan; Loewe, Martha
2017-01-01
Names in programming are vital for understanding the meaning of code and big data. We define code2brain (C2B) interfaces as maps in compilers and brains between meaning and naming syntax, which help to understand executable code. While working toward an Evolvix syntax for general-purpose programming that makes accurate modeling easy for biologists, we observed how names affect C2B quality. To protect learning and coding investments, C2B interfaces require long-term backward compatibility and semantic reproducibility (accurate reproduction of computational meaning from coder-brains to reader-brains by code alone). Semantic reproducibility is often assumed until confusing synonyms degrade modeling in biology to deciphering exercises. We highlight empirical naming priorities from diverse individuals and roles of names in different modes of computing to show how naming easily becomes impossibly difficult. We present the Evolvix BEST (Brief, Explicit, Summarizing, Technical) Names concept for reducing naming priority conflicts, test it on a real challenge by naming subfolders for the Project Organization Stabilizing Tool system, and provide naming questionnaires designed to facilitate C2B debugging by improving names used as keywords in a stabilizing programming language. Our experiences inspired us to develop Evolvix using a flipped programming language design approach with some unexpected features and BEST Names at its core. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.
Carmichael, Clare; Carmichael, Patrick
2014-01-01
This paper highlights aspects related to current research and thinking about ethical issues in relation to Brain Computer Interface (BCI) and Brain-Neuronal Computer Interfaces (BNCI) research through the experience of one particular project, BrainAble, which is exploring and developing the potential of these technologies to enable people with complex disabilities to control computers. It describes how ethical practice has been developed both within the multidisciplinary research team and with participants. The paper presents findings in which participants shared their views of the project prototypes, of the potential of BCI/BNCI systems as an assistive technology, and of their other possible applications. This draws attention to the importance of ethical practice in projects where high expectations of technologies, and representations of "ideal types" of disabled users may reinforce stereotypes or drown out participant "voices". Ethical frameworks for research and development in emergent areas such as BCI/BNCI systems should be based on broad notions of a "duty of care" while being sufficiently flexible that researchers can adapt project procedures according to participant needs. They need to be frequently revisited, not only in the light of experience, but also to ensure they reflect new research findings and ever more complex and powerful technologies.
[Neural engineering and neural prostheses].
Gao, Shang-Kai; Zhang, Zhi-Guang; Gao, Xiao-Rong; Hong, Bo; Yang, Fu-Sheng
2006-03-01
The motivation of the brain-computer interface (BCI) research and its potential applications are introduced in this paper. Some of the problems in BCI-based medical device developments are also discussed.
Mugler, Emily M; Ruf, Carolin A; Halder, Sebastian; Bensch, Michael; Kubler, Andrea
2010-12-01
An electroencephalographic (EEG) brain-computer interface (BCI) internet browser was designed and evaluated with 10 healthy volunteers and three individuals with advanced amyotrophic lateral sclerosis (ALS), all of whom were given tasks to execute on the internet using the browser. Participants with ALS achieved an average accuracy of 73% and a subsequent information transfer rate (ITR) of 8.6 bits/min and healthy participants with no prior BCI experience over 90% accuracy and an ITR of 14.4 bits/min. We define additional criteria for unrestricted internet access for evaluation of the presented and future internet browsers, and we provide a review of the existing browsers in the literature. The P300-based browser provides unrestricted access and enables free web surfing for individuals with paralysis.
Korczowski, L; Congedo, M; Jutten, C
2015-08-01
The classification of electroencephalographic (EEG) data recorded from multiple users simultaneously is an important challenge in the field of Brain-Computer Interface (BCI). In this paper we compare different approaches for classification of single-trials Event-Related Potential (ERP) on two subjects playing a collaborative BCI game. The minimum distance to mean (MDM) classifier in a Riemannian framework is extended to use the diversity of the inter-subjects spatio-temporal statistics (MDM-hyper) or to merge multiple classifiers (MDM-multi). We show that both these classifiers outperform significantly the mean performance of the two users and analogous classifiers based on the step-wise linear discriminant analysis. More importantly, the MDM-multi outperforms the performance of the best player within the pair.
Mu, Zhendong; Yin, Jinhai; Hu, Jianfeng
2018-01-01
In this paper, a person authentication system that can effectively identify individuals by generating unique electroencephalogram signal features in response to self-face and non-self-face photos is presented. In order to achieve a good stability performance, the sequence of self-face photo including first-occurrence position and non-first-occurrence position are taken into account in the serial occurrence of visual stimuli. In addition, a Fisher linear classification method and event-related potential technique for feature analysis is adapted to yield remarkably better outcomes than that by most of the existing methods in the field. The results have shown that the EEG-based person authentications via brain-computer interface can be considered as a suitable approach for biometric authentication system.
Münßinger, Jana I.; Halder, Sebastian; Kleih, Sonja C.; Furdea, Adrian; Raco, Valerio; Hösle, Adi; Kübler, Andrea
2010-01-01
Brain–computer interfaces (BCIs) enable paralyzed patients to communicate; however, up to date, no creative expression was possible. The current study investigated the accuracy and user-friendliness of P300-Brain Painting, a new BCI application developed to paint pictures using brain activity only. Two different versions of the P300-Brain Painting application were tested: A colored matrix tested by a group of ALS-patients (n = 3) and healthy participants (n = 10), and a black and white matrix tested by healthy participants (n = 10). The three ALS-patients achieved high accuracies; two of them reaching above 89% accuracy. In healthy subjects, a comparison between the P300-Brain Painting application (colored matrix) and the P300-Spelling application revealed significantly lower accuracy and P300 amplitudes for the P300-Brain Painting application. This drop in accuracy and P300 amplitudes was not found when comparing the P300-Spelling application to an adapted, black and white matrix of the P300-Brain Painting application. By employing a black and white matrix, the accuracy of the P300-Brain Painting application was significantly enhanced and reached the accuracy of the P300-Spelling application. ALS-patients greatly enjoyed P300-Brain Painting and were able to use the application with the same accuracy as healthy subjects. P300-Brain Painting enables paralyzed patients to express themselves creatively and to participate in the prolific society through exhibitions. PMID:21151375
Wakunuma, Kutoma; Rainey, Stephen; Hansen, Christian
2017-01-01
Research on Brain Computer Interfaces (BCI) often aims to provide solutions for vulnerable populations, such as individuals with diseases, conditions or disabilities that keep them from using traditional interfaces. Such research thereby contributes to the public good. This contribution to the public good corresponds to a broader drive of research and funding policy that focuses on promoting beneficial societal impact. One way of achieving this is to engage with the public. In practical terms this can be done by integrating civil society organisations (CSOs) in research. The open question at the heart of this paper is whether and how such CSO integration can transform the research and contribute to the public good. To answer this question the paper describes five detailed qualitative case studies of research projects including CSOs. The paper finds that transformative impact of CSO integration is possible but by no means assured. It provides recommendations on how transformative impact can be promoted. PMID:28207882
Mobility, Emotion, and Universality in Future Collaboration
NASA Astrophysics Data System (ADS)
Chignell, Mark; Hosono, Naotsune; Fels, Deborah; Lottridge, Danielle; Waterworth, John
The Graphical user interface has traditionally supported personal productivity, efficiency, and usability. With computer supported cooperative work, the focus has been on typical people, doing typical work in a highly rational model of interaction. Recent trends towards mobility, and emotional and universal design are extending the user interface paradigm beyond the routine. As computing moves into the hand and away from the desktop, there is a greater need for dealing with emotions and distractions. Busy and distracted people represent a new kind of disability, but one that will be increasingly prevalent. In this panel we examine the current state of the art, and prospects for future collaboration in non-normative computing requirements. This panel draws together researchers who are studying the problems of mobility, emotion and universality. The goal of the panel is to discuss how progress in these areas will change the nature of future collaboration.
Ebner, Christian; Schroll, Henning; Winther, Gesche; Niedeggen, Michael; Hamker, Fred H
2015-09-01
How the brain decides which information to process 'consciously' has been debated over for decades without a simple explanation at hand. While most experiments manipulate the perceptual energy of presented stimuli, the distractor-induced blindness task is a prototypical paradigm to investigate gating of information into consciousness without or with only minor visual manipulation. In this paradigm, subjects are asked to report intervals of coherent dot motion in a rapid serial visual presentation (RSVP) stream, whenever these are preceded by a particular color stimulus in a different RSVP stream. If distractors (i.e., intervals of coherent dot motion prior to the color stimulus) are shown, subjects' abilities to perceive and report intervals of target dot motion decrease, particularly with short delays between intervals of target color and target motion. We propose a biologically plausible neuro-computational model of how the brain controls access to consciousness to explain how distractor-induced blindness originates from information processing in the cortex and basal ganglia. The model suggests that conscious perception requires reverberation of activity in cortico-subcortical loops and that basal-ganglia pathways can either allow or inhibit this reverberation. In the distractor-induced blindness paradigm, inadequate distractor-induced response tendencies are suppressed by the inhibitory 'hyperdirect' pathway of the basal ganglia. If a target follows such a distractor closely, temporal aftereffects of distractor suppression prevent target identification. The model reproduces experimental data on how delays between target color and target motion affect the probability of target detection. Copyright © 2015 Elsevier Inc. All rights reserved.
Building an organic computing device with multiple interconnected brains
Pais-Vieira, Miguel; Chiuffa, Gabriela; Lebedev, Mikhail; Yadav, Amol; Nicolelis, Miguel A. L.
2015-01-01
Recently, we proposed that Brainets, i.e. networks formed by multiple animal brains, cooperating and exchanging information in real time through direct brain-to-brain interfaces, could provide the core of a new type of computing device: an organic computer. Here, we describe the first experimental demonstration of such a Brainet, built by interconnecting four adult rat brains. Brainets worked by concurrently recording the extracellular electrical activity generated by populations of cortical neurons distributed across multiple rats chronically implanted with multi-electrode arrays. Cortical neuronal activity was recorded and analyzed in real time, and then delivered to the somatosensory cortices of other animals that participated in the Brainet using intracortical microstimulation (ICMS). Using this approach, different Brainet architectures solved a number of useful computational problems, such as discrete classification, image processing, storage and retrieval of tactile information, and even weather forecasting. Brainets consistently performed at the same or higher levels than single rats in these tasks. Based on these findings, we propose that Brainets could be used to investigate animal social behaviors as well as a test bed for exploring the properties and potential applications of organic computers. PMID:26158615
A brain-spine interface alleviating gait deficits after spinal cord injury in primates.
Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire
2016-11-10
Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain-computer interfaces have directly linked cortical activity to electrical stimulation of muscles, and have thus restored grasping abilities after hand paralysis. Theoretically, this strategy could also restore control over leg muscle activity for walking. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges. Recently, it was shown in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion. Here we interface leg motor cortex activity with epidural electrical stimulation protocols to establish a brain-spine interface that alleviated gait deficits after a spinal cord injury in non-human primates. Rhesus monkeys (Macaca mulatta) were implanted with an intracortical microelectrode array in the leg area of the motor cortex and with a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain-spine interface in intact (uninjured) monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain-spine interface restored weight-bearing locomotion of the paralysed leg on a treadmill and overground. The implantable components integrated in the brain-spine interface have all been approved for investigational applications in similar human research, suggesting a practical translational pathway for proof-of-concept studies in people with spinal cord injury.
A subject-independent pattern-based Brain-Computer Interface
Ray, Andreas M.; Sitaram, Ranganatha; Rana, Mohit; Pasqualotto, Emanuele; Buyukturkoglu, Korhan; Guan, Cuntai; Ang, Kai-Keng; Tejos, Cristián; Zamorano, Francisco; Aboitiz, Francisco; Birbaumer, Niels; Ruiz, Sergio
2015-01-01
While earlier Brain-Computer Interface (BCI) studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method for real-time pattern classification and neurofeedback of brain states from electroencephalographic (EEG) signals. It involves the creation of a fused classification model based on the method of Common Spatial Patterns (CSPs) from data of several healthy individuals. The subject-independent model is then used to classify EEG data in real-time and provide feedback to new individuals. In a series of offline experiments involving training and testing of the classifier with individual data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved, demonstrating that the classification system at hand can reliably decode two types of imagery used in our experiments, i.e., happy emotional imagery and motor imagery. In a subsequent experiment it is shown that the classifier can be used to provide neurofeedback to new subjects, and that these subjects learn to “match” their brain pattern to that of the fused classification model in a few days of neurofeedback training. This finding can have important implications for future studies on neurofeedback and its clinical applications on neuropsychiatric disorders. PMID:26539089
Eyes-closed hybrid brain-computer interface employing frontal brain activation.
Shin, Jaeyoung; Müller, Klaus-Robert; Hwang, Han-Jeong
2018-01-01
Brain-computer interfaces (BCIs) have been studied extensively in order to establish a non-muscular communication channel mainly for patients with impaired motor functions. However, many limitations remain for BCIs in clinical use. In this study, we propose a hybrid BCI that is based on only frontal brain areas and can be operated in an eyes-closed state for end users with impaired motor and declining visual functions. In our experiment, electroencephalography (EEG) and near-infrared spectroscopy (NIRS) were simultaneously measured while 12 participants performed mental arithmetic (MA) and remained relaxed (baseline state: BL). To evaluate the feasibility of the hybrid BCI, we classified MA- from BL-related brain activation. We then compared classification accuracies using two unimodal BCIs (EEG and NIRS) and the hybrid BCI in an offline mode. The classification accuracy of the hybrid BCI (83.9 ± 10.3%) was shown to be significantly higher than those of unimodal EEG-based (77.3 ± 15.9%) and NIRS-based BCI (75.9 ± 6.3%). The analytical results confirmed performance improvement with the hybrid BCI, particularly for only frontal brain areas. Our study shows that an eyes-closed hybrid BCI approach based on frontal areas could be applied to neurodegenerative patients who lost their motor functions, including oculomotor functions.
Movement Anticipation and EEG: Implications for BCI-Contingent Robot Therapy
Norman, Sumner L.; Dennison, Mark; Wolbrecht, Eric; Cramer, Steven C.; Srinivasan, Ramesh; Reinkensmeyer, David J.
2017-01-01
Brain-computer interfacing is a technology that has the potential to improve patient engagement in robot-assisted rehabilitation therapy. For example, movement intention reduces mu (8-13 Hz) oscillation amplitude over the sensorimotor cortex, a phenomenon referred to as event-related desynchronization (ERD). In an ERD-contingent assistance paradigm, initial BCI-enhanced robotic therapy studies have used ERD to provide robotic assistance for movement. Here we investigated how ERD changed as a function of audio-visual stimuli, overt movement from the participant, and robotic assistance. Twelve unimpaired subjects played a computer game designed for rehabilitation therapy with their fingers using the FINGER robotic exoskeleton. In the game, the participant and robot matched movement timing to audio-visual stimuli in the form of notes approaching a target on the screen set to the consistent beat of popular music. The audio-visual stimulation of the game alone did not cause ERD, before or after training. In contrast, overt movement by the subject caused ERD, whether or not the robot assisted the finger movement. Notably, ERD was also present when the subjects remained passive and the robot moved their fingers to play the game. This ERD occurred in anticipation of the passive finger movement with similar onset timing as for the overt movement conditions. These results demonstrate that ERD can be contingent on expectation of robotic assistance; that is, the brain generates an anticipatory ERD in expectation of a robot-imposed but predictable movement. This is a caveat that should be considered in designing BCIs for enhancing patient effort in roboticallyassisted therapy. PMID:26891487
Automatic classification of artifactual ICA-components for artifact removal in EEG signals.
Winkler, Irene; Haufe, Stefan; Tangermann, Michael
2011-08-02
Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods. Existing ICA-based removal strategies depend on explicit recordings of an individual's artifacts or have not been shown to reliably identify muscle artifacts. We propose an automatic method for the classification of general artifactual source components. They are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on 640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n = 80) that used data with different channel setups and from new subjects. Based on six features only, the optimized linear classifier performed on level with the inter-expert disagreement (<10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most artifactual source components. We propose a universal and efficient classifier of ICA components for the subject independent removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of different EEG studies.
Lee, Jun-Hak; Lim, Jeong-Hwan; Hwang, Han-Jeong; Im, Chang-Hwan
2013-01-01
The main goal of this study was to develop a hybrid mental spelling system combining a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) technology and a webcam-based eye-tracker, which utilizes information from the brain electrical activity and eye gaze direction at the same time. In the hybrid mental spelling system, a character decoded using SSVEP was not typed if the position of the selected character was not matched with the eye direction information ('left' or 'right') obtained from the eye-tracker. Thus, the users did not need to correct a misspelled character using a 'BACKSPACE' key. To verify the feasibility of the developed hybrid mental spelling system, we conducted online experiments with ten healthy participants. Each participant was asked to type 15 English words consisting of 68 characters. As a result, 16.6 typing errors could be prevented on average, demonstrating that the implemented hybrid mental spelling system could enhance the practicality of our mental spelling system.
Alonso-Valerdi, Luz Maria; Salido-Ruiz, Ricardo Antonio; Ramirez-Mendoza, Ricardo A
2015-12-01
When the sensory-motor integration system is malfunctioning provokes a wide variety of neurological disorders, which in many cases cannot be treated with conventional medication, or via existing therapeutic technology. A brain-computer interface (BCI) is a tool that permits to reintegrate the sensory-motor loop, accessing directly to brain information. A potential, promising and quite investigated application of BCI has been in the motor rehabilitation field. It is well-known that motor deficits are the major disability wherewith the worldwide population lives. Therefore, this paper aims to specify the foundation of motor rehabilitation BCIs, as well as to review the recent research conducted so far (specifically, from 2007 to date), in order to evaluate the suitability and reliability of this technology. Although BCI for post-stroke rehabilitation is still in its infancy, the tendency is towards the development of implantable devices that encompass a BCI module plus a stimulation system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhao, Ming; Rattanatamrong, Prapaporn; DiGiovanna, Jack; Mahmoudi, Babak; Figueiredo, Renato J; Sanchez, Justin C; Príncipe, José C; Fortes, José A B
2008-01-01
Dynamic data-driven brain-machine interfaces (DDDBMI) have great potential to advance the understanding of neural systems and improve the design of brain-inspired rehabilitative systems. This paper presents a novel cyberinfrastructure that couples in vivo neurophysiology experimentation with massive computational resources to provide seamless and efficient support of DDDBMI research. Closed-loop experiments can be conducted with in vivo data acquisition, reliable network transfer, parallel model computation, and real-time robot control. Behavioral experiments with live animals are supported with real-time guarantees. Offline studies can be performed with various configurations for extensive analysis and training. A Web-based portal is also provided to allow users to conveniently interact with the cyberinfrastructure, conducting both experimentation and analysis. New motor control models are developed based on this approach, which include recursive least square based (RLS) and reinforcement learning based (RLBMI) algorithms. The results from an online RLBMI experiment shows that the cyberinfrastructure can successfully support DDDBMI experiments and meet the desired real-time requirements.
Wang, Jinjia; Liu, Yuan
2015-04-01
This paper presents a feature extraction method based on multivariate empirical mode decomposition (MEMD) combining with the power spectrum feature, and the method aims at the non-stationary electroencephalogram (EEG) or magnetoencephalogram (MEG) signal in brain-computer interface (BCI) system. Firstly, we utilized MEMD algorithm to decompose multichannel brain signals into a series of multiple intrinsic mode function (IMF), which was proximate stationary and with multi-scale. Then we extracted and reduced the power characteristic from each IMF to a lower dimensions using principal component analysis (PCA). Finally, we classified the motor imagery tasks by linear discriminant analysis classifier. The experimental verification showed that the correct recognition rates of the two-class and four-class tasks of the BCI competition III and competition IV reached 92.0% and 46.2%, respectively, which were superior to the winner of the BCI competition. The experimental proved that the proposed method was reasonably effective and stable and it would provide a new way for feature extraction.
Pires, Gabriel; Nunes, Urbano; Castelo-Branco, Miguel
2012-06-01
Non-invasive brain-computer interface (BCI) based on electroencephalography (EEG) offers a new communication channel for people suffering from severe motor disorders. This paper presents a novel P300-based speller called lateral single-character (LSC). The LSC performance is compared to that of the standard row-column (RC) speller. We developed LSC, a single-character paradigm comprising all letters of the alphabet following an event strategy that significantly reduces the time for symbol selection, and explores the intrinsic hemispheric asymmetries in visual perception to improve the performance of the BCI. RC and LSC paradigms were tested by 10 able-bodied participants, seven participants with amyotrophic lateral sclerosis (ALS), five participants with cerebral palsy (CP), one participant with Duchenne muscular dystrophy (DMD), and one participant with spinal cord injury (SCI). The averaged results, taking into account all participants who were able to control the BCI online, were significantly higher for LSC, 26.11 bit/min and 89.90% accuracy, than for RC, 21.91 bit/min and 88.36% accuracy. The two paradigms produced different waveforms and the signal-to-noise ratio was significantly higher for LSC. Finally, the novel LSC also showed new discriminative features. The results suggest that LSC is an effective alternative to RC, and that LSC still has a margin for potential improvement in bit rate and accuracy. The high bit rates and accuracy of LSC are a step forward for the effective use of BCI in clinical applications. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Brain-computer interface technology: a review of the Second International Meeting.
Vaughan, Theresa M; Heetderks, William J; Trejo, Leonard J; Rymer, William Z; Weinrich, Michael; Moore, Melody M; Kübler, Andrea; Dobkin, Bruce H; Birbaumer, Niels; Donchin, Emanuel; Wolpaw, Elizabeth Winter; Wolpaw, Jonathan R
2003-06-01
This paper summarizes the Brain-Computer Interfaces for Communication and Control, The Second International Meeting, held in Rensselaerville, NY, in June 2002. Sponsored by the National Institutes of Health and organized by the Wadsworth Center of the New York State Department of Health, the meeting addressed current work and future plans in brain-computer interface (BCI) research. Ninety-two researchers representing 38 different research groups from the United States, Canada, Europe, and China participated. The BCIs discussed at the meeting use electroencephalographic activity recorded from the scalp or single-neuron activity recorded within cortex to control cursor movement, select letters or icons, or operate neuroprostheses. The central element in each BCI is a translation algorithm that converts electrophysiological input from the user into output that controls external devices. BCI operation depends on effective interaction between two adaptive controllers, the user who encodes his or her commands in the electrophysiological input provided to the BCI, and the BCI that recognizes the commands contained in the input and expresses them in device control. Current BCIs have maximum information transfer rates of up to 25 b/min. Achievement of greater speed and accuracy requires improvements in signal acquisition and processing, in translation algorithms, and in user training. These improvements depend on interdisciplinary cooperation among neuroscientists, engineers, computer programmers, psychologists, and rehabilitation specialists, and on adoption and widespread application of objective criteria for evaluating alternative methods. The practical use of BCI technology will be determined by the development of appropriate applications and identification of appropriate user groups, and will require careful attention to the needs and desires of individual users.
Brain-Computer Interface with Inhibitory Neurons Reveals Subtype-Specific Strategies.
Mitani, Akinori; Dong, Mingyuan; Komiyama, Takaki
2018-01-08
Brain-computer interfaces have seen an increase in popularity due to their potential for direct neuroprosthetic applications for amputees and disabled individuals. Supporting this promise, animals-including humans-can learn even arbitrary mapping between the activity of cortical neurons and movement of prosthetic devices [1-4]. However, the performance of neuroprosthetic device control has been nowhere near that of limb control in healthy individuals, presenting a dire need to improve the performance. One potential limitation is the fact that previous work has not distinguished diverse cell types in the neocortex, even though different cell types possess distinct functions in cortical computations [5-7] and likely distinct capacities to control brain-computer interfaces. Here, we made a first step in addressing this issue by tracking the plastic changes of three major types of cortical inhibitory neurons (INs) during a neuron-pair operant conditioning task using two-photon imaging of IN subtypes expressing GCaMP6f. Mice were rewarded when the activity of the positive target neuron (N+) exceeded that of the negative target neuron (N-) beyond a set threshold. Mice improved performance with all subtypes, but the strategies were subtype specific. When parvalbumin (PV)-expressing INs were targeted, the activity of N- decreased. However, targeting of somatostatin (SOM)- and vasoactive intestinal peptide (VIP)-expressing INs led to an increase of the N+ activity. These results demonstrate that INs can be individually modulated in a subtype-specific manner and highlight the versatility of neural circuits in adapting to new demands by using cell-type-specific strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.
How Prediction Errors Shape Perception, Attention, and Motivation
den Ouden, Hanneke E. M.; Kok, Peter; de Lange, Floris P.
2012-01-01
Prediction errors (PE) are a central notion in theoretical models of reinforcement learning, perceptual inference, decision-making and cognition, and prediction error signals have been reported across a wide range of brain regions and experimental paradigms. Here, we will make an attempt to see the forest for the trees and consider the commonalities and differences of reported PE signals in light of recent suggestions that the computation of PE forms a fundamental mode of brain function. We discuss where different types of PE are encoded, how they are generated, and the different functional roles they fulfill. We suggest that while encoding of PE is a common computation across brain regions, the content and function of these error signals can be very different and are determined by the afferent and efferent connections within the neural circuitry in which they arise. PMID:23248610