Sample records for brain-computer interface performance

  1. Brain-Computer Interfaces in Medicine

    PubMed Central

    Shih, Jerry J.; Krusienski, Dean J.; Wolpaw, Jonathan R.

    2012-01-01

    Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroencephalography-based spelling and single-neuron-based device control, researchers have gone on to use electroencephalographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function. PMID:22325364

  2. An adaptive brain actuated system for augmenting rehabilitation

    PubMed Central

    Roset, Scott A.; Gant, Katie; Prasad, Abhishek; Sanchez, Justin C.

    2014-01-01

    For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days. PMID:25565945

  3. Brain-computer interfaces in medicine.

    PubMed

    Shih, Jerry J; Krusienski, Dean J; Wolpaw, Jonathan R

    2012-03-01

    Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroencephalography-based spelling and single-neuron-based device control, researchers have gone on to use electroencephalographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function. Copyright © 2012 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  4. Are we there yet? Evaluating commercial grade brain-computer interface for control of computer applications by individuals with cerebral palsy.

    PubMed

    Taherian, Sarvnaz; Selitskiy, Dmitry; Pau, James; Claire Davies, T

    2017-02-01

    Using a commercial electroencephalography (EEG)-based brain-computer interface (BCI), the training and testing protocol for six individuals with spastic quadriplegic cerebral palsy (GMFCS and MACS IV and V) was evaluated. A customised, gamified training paradigm was employed. Over three weeks, the participants spent two sessions exploring the system, and up to six sessions playing the game which focussed on EEG feedback of left and right arm motor imagery. The participants showed variable inconclusive results in the ability to produce two distinct EEG patterns. Participant performance was influenced by physical illness, motivation, fatigue and concentration. The results from this case study highlight the infancy of BCIs as a form of assistive technology for people with cerebral palsy. Existing commercial BCIs are not designed according to the needs of end-users. Implications for Rehabilitation Mood, fatigue, physical illness and motivation influence the usability of a brain-computer interface. Commercial brain-computer interfaces are not designed for practical assistive technology use for people with cerebral palsy. Practical brain-computer interface assistive technologies may need to be flexible to suit individual needs.

  5. Control-display mapping in brain-computer interfaces.

    PubMed

    Thurlings, Marieke E; van Erp, Jan B F; Brouwer, Anne-Marie; Blankertz, Benjamin; Werkhoven, Peter

    2012-01-01

    Event-related potential (ERP) based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. When using a tactile ERP-BCI for navigation, mapping is required between navigation directions on a visual display and unambiguously corresponding tactile stimuli (tactors) from a tactile control device: control-display mapping (CDM). We investigated the effect of congruent (both display and control horizontal or both vertical) and incongruent (vertical display, horizontal control) CDMs on task performance, the ERP and potential BCI performance. Ten participants attended to a target (determined via CDM), in a stream of sequentially vibrating tactors. We show that congruent CDM yields best task performance, enhanced the P300 and results in increased estimated BCI performance. This suggests a reduced availability of attentional resources when operating an ERP-BCI with incongruent CDM. Additionally, we found an enhanced N2 for incongruent CDM, which indicates a conflict between visual display and tactile control orientations. Incongruency in control-display mapping reduces task performance. In this study, brain responses, task and system performance are related to (in)congruent mapping of command options and the corresponding stimuli in a brain-computer interface (BCI). Directional congruency reduces task errors, increases available attentional resources, improves BCI performance and thus facilitates human-computer interaction.

  6. Brain-computer interface training combined with transcranial direct current stimulation in patients with chronic severe hemiparesis: Proof of concept study.

    PubMed

    Kasashima-Shindo, Yuko; Fujiwara, Toshiyuki; Ushiba, Junichi; Matsushika, Yayoi; Kamatani, Daiki; Oto, Misa; Ono, Takashi; Nishimoto, Atsuko; Shindo, Keiichiro; Kawakami, Michiyuki; Tsuji, Tetsuya; Liu, Meigen

    2015-04-01

    Brain-computer interface technology has been applied to stroke patients to improve their motor function. Event-related desynchronization during motor imagery, which is used as a brain-computer interface trigger, is sometimes difficult to detect in stroke patients. Anodal transcranial direct current stimulation (tDCS) is known to increase event-related desynchronization. This study investigated the adjunctive effect of anodal tDCS for brain-computer interface training in patients with severe hemiparesis. Eighteen patients with chronic stroke. A non-randomized controlled study. Subjects were divided between a brain-computer interface group and a tDCS- brain-computer interface group and participated in a 10-day brain-computer interface training. Event-related desynchronization was detected in the affected hemisphere during motor imagery of the affected fingers. The tDCS-brain-computer interface group received anodal tDCS before brain-computer interface training. Event-related desynchronization was evaluated before and after the intervention. The Fugl-Meyer Assessment upper extremity motor score (FM-U) was assessed before, immediately after, and 3 months after, the intervention. Event-related desynchronization was significantly increased in the tDCS- brain-computer interface group. The FM-U was significantly increased in both groups. The FM-U improvement was maintained at 3 months in the tDCS-brain-computer interface group. Anodal tDCS can be a conditioning tool for brain-computer interface training in patients with severe hemiparetic stroke.

  7. Modulation of Posterior Alpha Activity by Spatial Attention Allows for Controlling A Continuous Brain-Computer Interface.

    PubMed

    Horschig, Jörn M; Oosterheert, Wouter; Oostenveld, Robert; Jensen, Ole

    2015-11-01

    Here we report that the modulation of alpha activity by covert attention can be used as a control signal in an online brain-computer interface, that it is reliable, and that it is robust. Subjects were instructed to orient covert visual attention to the left or right hemifield. We decoded the direction of attention from the magnetoencephalogram by a template matching classifier and provided the classification outcome to the subject in real-time using a novel graphical user interface. Training data for the templates were obtained from a Posner-cueing task conducted just before the BCI task. Eleven subjects participated in four sessions each. Eight of the subjects achieved classification rates significantly above chance level. Subjects were able to significantly increase their performance from the first to the second session. Individual patterns of posterior alpha power remained stable throughout the four sessions and did not change with increased performance. We conclude that posterior alpha power can successfully be used as a control signal in brain-computer interfaces. We also discuss several ideas for further improving the setup and propose future research based on solid hypotheses about behavioral consequences of modulating neuronal oscillations by brain computer interfacing.

  8. Connections that Count: Brain-Computer Interface Enables the Profoundly Paralyzed to Communicate

    MedlinePlus

    ... Home Current Issue Past Issues Connections that Count: Brain-Computer Interface Enables the Profoundly Paralyzed to Communicate ... of this page please turn Javascript on. A brain-computer interface (BCI) system This brain-computer interface ( ...

  9. A review of classification algorithms for EEG-based brain-computer interfaces.

    PubMed

    Lotte, F; Congedo, M; Lécuyer, A; Lamarche, F; Arnaldi, B

    2007-06-01

    In this paper we review classification algorithms used to design brain-computer interface (BCI) systems based on electroencephalography (EEG). We briefly present the commonly employed algorithms and describe their critical properties. Based on the literature, we compare them in terms of performance and provide guidelines to choose the suitable classification algorithm(s) for a specific BCI.

  10. A comparative study: use of a Brain-computer Interface (BCI) device by people with cerebral palsy in interaction with computers.

    PubMed

    Heidrich, Regina O; Jensen, Emely; Rebelo, Francisco; Oliveira, Tiago

    2015-01-01

    This article presents a comparative study among people with cerebral palsy and healthy controls, of various ages, using a Brain-computer Interface (BCI) device. The research is qualitative in its approach. Researchers worked with Observational Case Studies. People with cerebral palsy and healthy controls were evaluated in Portugal and in Brazil. The study aimed to develop a study for product evaluation in order to perceive whether people with cerebral palsy could interact with the computer and compare whether their performance is similar to that of healthy controls when using the Brain-computer Interface. Ultimately, it was found that there are no significant differences between people with cerebral palsy in the two countries, as well as between populations without cerebral palsy (healthy controls).

  11. Robot Control Through Brain Computer Interface For Patterns Generation

    NASA Astrophysics Data System (ADS)

    Belluomo, P.; Bucolo, M.; Fortuna, L.; Frasca, M.

    2011-09-01

    A Brain Computer Interface (BCI) system processes and translates neuronal signals, that mainly comes from EEG instruments, into commands for controlling electronic devices. This system can allow people with motor disabilities to control external devices through the real-time modulation of their brain waves. In this context an EEG-based BCI system that allows creative luminous artistic representations is here presented. The system that has been designed and realized in our laboratory interfaces the BCI2000 platform performing real-time analysis of EEG signals with a couple of moving luminescent twin robots. Experiments are also presented.

  12. A Procedure for Measuring Latencies in Brain-Computer Interfaces

    PubMed Central

    Wilson, J. Adam; Mellinger, Jürgen; Schalk, Gerwin; Williams, Justin

    2011-01-01

    Brain-computer interface (BCI) systems must process neural signals with consistent timing in order to support adequate system performance. Thus, it is important to have the capability to determine whether a particular BCI configuration (i.e., hardware, software) provides adequate timing performance for a particular experiment. This report presents a method of measuring and quantifying different aspects of system timing in several typical BCI experiments across a range of settings, and presents comprehensive measures of expected overall system latency for each experimental configuration. PMID:20403781

  13. Soft drink effects on sensorimotor rhythm brain computer interface performance and resting-state spectral power.

    PubMed

    Mundahl, John; Jianjun Meng; He, Jeffrey; Bin He

    2016-08-01

    Brain-computer interface (BCI) systems allow users to directly control computers and other machines by modulating their brain waves. In the present study, we investigated the effect of soft drinks on resting state (RS) EEG signals and BCI control. Eight healthy human volunteers each participated in three sessions of BCI cursor tasks and resting state EEG. During each session, the subjects drank an unlabeled soft drink with either sugar, caffeine, or neither ingredient. A comparison of resting state spectral power shows a substantial decrease in alpha and beta power after caffeine consumption relative to control. Despite attenuation of the frequency range used for the control signal, caffeine average BCI performance was the same as control. Our work provides a useful characterization of caffeine, the world's most popular stimulant, on brain signal frequencies and their effect on BCI performance.

  14. A covert attention P300-based brain-computer interface: Geospell.

    PubMed

    Aloise, Fabio; Aricò, Pietro; Schettini, Francesca; Riccio, Angela; Salinari, Serenella; Mattia, Donatella; Babiloni, Fabio; Cincotti, Febo

    2012-01-01

    The Farwell and Donchin P300 speller interface is one of the most widely used brain-computer interface (BCI) paradigms for writing text. Recent studies have shown that the recognition accuracy of the P300 speller decreases significantly when eye movement is impaired. This report introduces the GeoSpell interface (Geometric Speller), which implements a stimulation framework for a P300-based BCI that has been optimised for operation in covert visual attention. We compared the Geospell with the P300 speller interface under overt attention conditions with regard to effectiveness, efficiency and user satisfaction. Ten healthy subjects participated in the study. The performance of the GeoSpell interface in covert attention was comparable with that of the P300 speller in overt attention. As expected, the effectiveness of the spelling decreased with the new interface in covert attention. The NASA task load index (TLX) for workload assessment did not differ significantly between the two modalities. This study introduces and evaluates a gaze-independent, P300-based brain-computer interface, the efficacy and user satisfaction of which were comparable with those off the classical P300 speller. Despite a decrease in effectiveness due to the use of covert attention, the performance of the GeoSpell far exceeded the threshold of accuracy with regard to effective spelling.

  15. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.

    PubMed

    Lo, Chi-Chun; Chien, Tsung-Yi; Chen, Yu-Chun; Tsai, Shang-Ho; Fang, Wai-Chi; Lin, Bor-Shyh

    2016-02-06

    Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype.

  16. Training leads to increased auditory brain-computer interface performance of end-users with motor impairments.

    PubMed

    Halder, S; Käthner, I; Kübler, A

    2016-02-01

    Auditory brain-computer interfaces are an assistive technology that can restore communication for motor impaired end-users. Such non-visual brain-computer interface paradigms are of particular importance for end-users that may lose or have lost gaze control. We attempted to show that motor impaired end-users can learn to control an auditory speller on the basis of event-related potentials. Five end-users with motor impairments, two of whom with additional visual impairments, participated in five sessions. We applied a newly developed auditory brain-computer interface paradigm with natural sounds and directional cues. Three of five end-users learned to select symbols using this method. Averaged over all five end-users the information transfer rate increased by more than 1800% from the first session (0.17 bits/min) to the last session (3.08 bits/min). The two best end-users achieved information transfer rates of 5.78 bits/min and accuracies of 92%. Our results show that an auditory BCI with a combination of natural sounds and directional cues, can be controlled by end-users with motor impairment. Training improves the performance of end-users to the level of healthy controls. To our knowledge, this is the first time end-users with motor impairments controlled an auditory brain-computer interface speller with such high accuracy and information transfer rates. Further, our results demonstrate that operating a BCI with event-related potentials benefits from training and specifically end-users may require more than one session to develop their full potential. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game

    PubMed Central

    de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares

    2018-01-01

    This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named “Get Coins,” through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user. PMID:29849549

  18. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game.

    PubMed

    Leite, Harlei Miguel de Arruda; de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares

    2018-01-01

    This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named "Get Coins," through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user.

  19. Examining sensory ability, feature matching and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential.

    PubMed

    Brumberg, Jonathan S; Nguyen, Anh; Pitt, Kevin M; Lorenz, Sean D

    2018-01-31

    We investigated how overt visual attention and oculomotor control influence successful use of a visual feedback brain-computer interface (BCI) for accessing augmentative and alternative communication (AAC) devices in a heterogeneous population of individuals with profound neuromotor impairments. BCIs are often tested within a single patient population limiting generalization of results. This study focuses on examining individual sensory abilities with an eye toward possible interface adaptations to improve device performance. Five individuals with a range of neuromotor disorders participated in four-choice BCI control task involving the steady state visually evoked potential. The BCI graphical interface was designed to simulate a commercial AAC device to examine whether an integrated device could be used successfully by individuals with neuromotor impairment. All participants were able to interact with the BCI and highest performance was found for participants able to employ an overt visual attention strategy. For participants with visual deficits to due to impaired oculomotor control, effective performance increased after accounting for mismatches between the graphical layout and participant visual capabilities. As BCIs are translated from research environments to clinical applications, the assessment of BCI-related skills will help facilitate proper device selection and provide individuals who use BCI the greatest likelihood of immediate and long term communicative success. Overall, our results indicate that adaptations can be an effective strategy to reduce barriers and increase access to BCI technology. These efforts should be directed by comprehensive assessments for matching individuals to the most appropriate device to support their complex communication needs. Implications for Rehabilitation Brain computer interfaces using the steady state visually evoked potential can be integrated with an augmentative and alternative communication device to provide access to language and literacy for individuals with neuromotor impairment. Comprehensive assessments are needed to fully understand the sensory, motor, and cognitive abilities of individuals who may use brain-computer interfaces for proper feature matching as selection of the most appropriate device including optimization device layouts and control paradigms. Oculomotor impairments negatively impact brain-computer interfaces that use the steady state visually evoked potential, but modifications to place interface stimuli and communication items in the intact visual field can improve successful outcomes.

  20. Training to use a commercial brain-computer interface as access technology: a case study.

    PubMed

    Taherian, Sarvnaz; Selitskiy, Dmitry; Pau, James; Davies, T Claire; Owens, R Glynn

    2016-01-01

    This case study describes how an individual with spastic quadriplegic cerebral palsy was trained over a period of four weeks to use a commercial electroencephalography (EEG)-based brain-computer interface (BCI). The participant spent three sessions exploring the system, and seven sessions playing a game focused on EEG feedback training of left and right arm motor imagery and a customised, training game paradigm was employed. The participant showed improvement in the production of two distinct EEG patterns. The participant's performance was influenced by motivation, fatigue and concentration. Six weeks post-training the participant could still control the BCI and used this to type a sentence using an augmentative and alternative communication application on a wirelessly linked device. The results from this case study highlight the importance of creating a dynamic, relevant and engaging training environment for BCIs. Implications for Rehabilitation Customising a training paradigm to suit the users' interests can influence adherence to assistive technology training. Mood, fatigue, physical illness and motivation influence the usability of a brain-computer interface. Commercial brain-computer interfaces, which require little set up time, may be used as access technology for individuals with severe disabilities.

  1. Implanted Miniaturized Antenna for Brain Computer Interface Applications: Analysis and Design

    PubMed Central

    Zhao, Yujuan; Rennaker, Robert L.; Hutchens, Chris; Ibrahim, Tamer S.

    2014-01-01

    Implantable Brain Computer Interfaces (BCIs) are designed to provide real-time control signals for prosthetic devices, study brain function, and/or restore sensory information lost as a result of injury or disease. Using Radio Frequency (RF) to wirelessly power a BCI could widely extend the number of applications and increase chronic in-vivo viability. However, due to the limited size and the electromagnetic loss of human brain tissues, implanted miniaturized antennas suffer low radiation efficiency. This work presents simulations, analysis and designs of implanted antennas for a wireless implantable RF-powered brain computer interface application. The results show that thin (on the order of 100 micrometers thickness) biocompatible insulating layers can significantly impact the antenna performance. The proper selection of the dielectric properties of the biocompatible insulating layers and the implantation position inside human brain tissues can facilitate efficient RF power reception by the implanted antenna. While the results show that the effects of the human head shape on implanted antenna performance is somewhat negligible, the constitutive properties of the brain tissues surrounding the implanted antenna can significantly impact the electrical characteristics (input impedance, and operational frequency) of the implanted antenna. Three miniaturized antenna designs are simulated and demonstrate that maximum RF power of up to 1.8 milli-Watts can be received at 2 GHz when the antenna implanted around the dura, without violating the Specific Absorption Rate (SAR) limits. PMID:25079941

  2. Performance variation in motor imagery brain-computer interface: a brief review.

    PubMed

    Ahn, Minkyu; Jun, Sung Chan

    2015-03-30

    Brain-computer interface (BCI) technology has attracted significant attention over recent decades, and has made remarkable progress. However, BCI still faces a critical hurdle, in that performance varies greatly across and even within subjects, an obstacle that degrades the reliability of BCI systems. Understanding the causes of these problems is important if we are to create more stable systems. In this short review, we report the most recent studies and findings on performance variation, especially in motor imagery-based BCI, which has found that low-performance groups have a less-developed brain network that is incapable of motor imagery. Further, psychological and physiological states influence performance variation within subjects. We propose a possible strategic approach to deal with this variation, which may contribute to improving the reliability of BCI. In addition, the limitations of current work and opportunities for future studies are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Neuroanatomical correlates of brain-computer interface performance.

    PubMed

    Kasahara, Kazumi; DaSalla, Charles Sayo; Honda, Manabu; Hanakawa, Takashi

    2015-04-15

    Brain-computer interfaces (BCIs) offer a potential means to replace or restore lost motor function. However, BCI performance varies considerably between users, the reasons for which are poorly understood. Here we investigated the relationship between sensorimotor rhythm (SMR)-based BCI performance and brain structure. Participants were instructed to control a computer cursor using right- and left-hand motor imagery, which primarily modulated their left- and right-hemispheric SMR powers, respectively. Although most participants were able to control the BCI with success rates significantly above chance level even at the first encounter, they also showed substantial inter-individual variability in BCI success rate. Participants also underwent T1-weighted three-dimensional structural magnetic resonance imaging (MRI). The MRI data were subjected to voxel-based morphometry using BCI success rate as an independent variable. We found that BCI performance correlated with gray matter volume of the supplementary motor area, supplementary somatosensory area, and dorsal premotor cortex. We suggest that SMR-based BCI performance is associated with development of non-primary somatosensory and motor areas. Advancing our understanding of BCI performance in relation to its neuroanatomical correlates may lead to better customization of BCIs based on individual brain structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Improved Targeting Through Collaborative Decision-Making and Brain Computer Interfaces

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Barrero, David F.; McDonald-Maier, Klaus

    2013-01-01

    This paper reports a first step toward a brain-computer interface (BCI) for collaborative targeting. Specifically, we explore, from a broad perspective, how the collaboration of a group of people can increase the performance on a simple target identification task. To this end, we requested a group of people to identify the location and color of a sequence of targets appearing on the screen and measured the time and accuracy of the response. The individual results are compared to a collective identification result determined by simple majority voting, with random choice in case of drawn. The results are promising, as the identification becomes significantly more reliable even with this simple voting and a small number of people (either odd or even number) involved in the decision. In addition, the paper briefly analyzes the role of brain-computer interfaces in collaborative targeting, extending the targeting task by using a BCI instead of a mechanical response.

  5. Brain computer interface for operating a robot

    NASA Astrophysics Data System (ADS)

    Nisar, Humaira; Balasubramaniam, Hari Chand; Malik, Aamir Saeed

    2013-10-01

    A Brain-Computer Interface (BCI) is a hardware/software based system that translates the Electroencephalogram (EEG) signals produced by the brain activity to control computers and other external devices. In this paper, we will present a non-invasive BCI system that reads the EEG signals from a trained brain activity using a neuro-signal acquisition headset and translates it into computer readable form; to control the motion of a robot. The robot performs the actions that are instructed to it in real time. We have used the cognitive states like Push, Pull to control the motion of the robot. The sensitivity and specificity of the system is above 90 percent. Subjective results show a mixed trend of the difficulty level of the training activities. The quantitative EEG data analysis complements the subjective results. This technology may become very useful for the rehabilitation of disabled and elderly people.

  6. Real-World Neuroimaging Technologies

    DTIC Science & Technology

    2013-05-10

    system enables long-term wear of up to 10 consecutive hours of operation time. The system’s wireless technologies, light weight (200g), and dry sensor ...biomarkers, body sensor networks , brain computer interactionbrain, computer interfaces, data acquisition, electroencephalography monitoring, translational...brain activity in real-world scenarios. INDEX TERMS Behavioral science, biomarkers, body sensor networks , brain computer interfaces, brain computer

  7. Biased feedback in brain-computer interfaces.

    PubMed

    Barbero, Alvaro; Grosse-Wentrup, Moritz

    2010-07-27

    Even though feedback is considered to play an important role in learning how to operate a brain-computer interface (BCI), to date no significant influence of feedback design on BCI-performance has been reported in literature. In this work, we adapt a standard motor-imagery BCI-paradigm to study how BCI-performance is affected by biasing the belief subjects have on their level of control over the BCI system. Our findings indicate that subjects already capable of operating a BCI are impeded by inaccurate feedback, while subjects normally performing on or close to chance level may actually benefit from an incorrect belief on their performance level. Our results imply that optimal feedback design in BCIs should take into account a subject's current skill level.

  8. Optimizing the Usability of Brain-Computer Interfaces.

    PubMed

    Zhang, Yin; Chase, Steve M

    2018-05-01

    Brain-computer interfaces are in the process of moving from the laboratory to the clinic. These devices act by reading neural activity and using it to directly control a device, such as a cursor on a computer screen. An open question in the field is how to map neural activity to device movement in order to achieve the most proficient control. This question is complicated by the fact that learning, especially the long-term skill learning that accompanies weeks of practice, can allow subjects to improve performance over time. Typical approaches to this problem attempt to maximize the biomimetic properties of the device in order to limit the need for extensive training. However, it is unclear if this approach would ultimately be superior to performance that might be achieved with a nonbiomimetic device once the subject has engaged in extended practice and learned how to use it. Here we approach this problem using ideas from optimal control theory. Under the assumption that the brain acts as an optimal controller, we present a formal definition of the usability of a device and show that the optimal postlearning mapping can be written as the solution of a constrained optimization problem. We then derive the optimal mappings for particular cases common to most brain-computer interfaces. Our results suggest that the common approach of creating biomimetic interfaces may not be optimal when learning is taken into account. More broadly, our method provides a blueprint for optimal device design in general control-theoretic contexts.

  9. Brain-computer interfaces in the continuum of consciousness.

    PubMed

    Kübler, Andrea; Kotchoubey, Boris

    2007-12-01

    To summarize recent developments and look at important future aspects of brain-computer interfaces. Recent brain-computer interface studies are largely targeted at helping severely or even completely paralysed patients. The former are only able to communicate yes or no via a single muscle twitch, and the latter are totally nonresponsive. Such patients can control brain-computer interfaces and use them to select letters, words or items on a computer screen, for neuroprosthesis control or for surfing the Internet. This condition of motor paralysis, in which cognition and consciousness appear to be unaffected, is traditionally opposed to nonresponsiveness due to disorders of consciousness. Although these groups of patients may appear to be very alike, numerous transition states between them are demonstrated by recent studies. All nonresponsive patients can be regarded on a continuum of consciousness which may vary even within short time periods. As overt behaviour is lacking, cognitive functions in such patients can only be investigated using neurophysiological methods. We suggest that brain-computer interfaces may provide a new tool to investigate cognition in disorders of consciousness, and propose a hierarchical procedure entailing passive stimulation, active instructions, volitional paradigms, and brain-computer interface operation.

  10. Tactile event-related potentials in amyotrophic lateral sclerosis (ALS): Implications for brain-computer interface.

    PubMed

    Silvoni, S; Konicar, L; Prats-Sedano, M A; Garcia-Cossio, E; Genna, C; Volpato, C; Cavinato, M; Paggiaro, A; Veser, S; De Massari, D; Birbaumer, N

    2016-01-01

    We investigated neurophysiological brain responses elicited by a tactile event-related potential paradigm in a sample of ALS patients. Underlying cognitive processes and neurophysiological signatures for brain-computer interface (BCI) are addressed. We stimulated the palm of the hand in a group of fourteen ALS patients and a control group of ten healthy participants and recorded electroencephalographic signals in eyes-closed condition. Target and non-target brain responses were analyzed and classified offline. Classification errors served as the basis for neurophysiological brain response sub-grouping. A combined behavioral and quantitative neurophysiological analysis of sub-grouped data showed neither significant between-group differences, nor significant correlations between classification performance and the ALS patients' clinical state. Taking sequential effects of stimuli presentation into account, analyses revealed mean classification errors of 19.4% and 24.3% in healthy participants and ALS patients respectively. Neurophysiological correlates of tactile stimuli presentation are not altered by ALS. Tactile event-related potentials can be used to monitor attention level and task performance in ALS and may constitute a viable basis for future BCIs. Implications for brain-computer interface implementation of the proposed method for patients in critical conditions, such as the late stage of ALS and the (completely) locked-in state, are discussed. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Encoder-Decoder Optimization for Brain-Computer Interfaces

    PubMed Central

    Merel, Josh; Pianto, Donald M.; Cunningham, John P.; Paninski, Liam

    2015-01-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages. PMID:26029919

  12. Encoder-decoder optimization for brain-computer interfaces.

    PubMed

    Merel, Josh; Pianto, Donald M; Cunningham, John P; Paninski, Liam

    2015-06-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.

  13. Concept of software interface for BCI systems

    NASA Astrophysics Data System (ADS)

    Svejda, Jaromir; Zak, Roman; Jasek, Roman

    2016-06-01

    Brain Computer Interface (BCI) technology is intended to control external system by brain activity. One of main part of such system is software interface, which carries about clear communication between brain and either computer or additional devices connected to computer. This paper is organized as follows. Firstly, current knowledge about human brain is briefly summarized to points out its complexity. Secondly, there is described a concept of BCI system, which is then used to build an architecture of proposed software interface. Finally, there are mentioned disadvantages of sensing technology discovered during sensing part of our research.

  14. Addition of visual noise boosts evoked potential-based brain-computer interface.

    PubMed

    Xie, Jun; Xu, Guanghua; Wang, Jing; Zhang, Sicong; Zhang, Feng; Li, Yeping; Han, Chengcheng; Li, Lili

    2014-05-14

    Although noise has a proven beneficial role in brain functions, there have not been any attempts on the dedication of stochastic resonance effect in neural engineering applications, especially in researches of brain-computer interfaces (BCIs). In our study, a steady-state motion visual evoked potential (SSMVEP)-based BCI with periodic visual stimulation plus moderate spatiotemporal noise can achieve better offline and online performance due to enhancement of periodic components in brain responses, which was accompanied by suppression of high harmonics. Offline results behaved with a bell-shaped resonance-like functionality and 7-36% online performance improvements can be achieved when identical visual noise was adopted for different stimulation frequencies. Using neural encoding modeling, these phenomena can be explained as noise-induced input-output synchronization in human sensory systems which commonly possess a low-pass property. Our work demonstrated that noise could boost BCIs in addressing human needs.

  15. A practical VEP-based brain-computer interface.

    PubMed

    Wang, Yijun; Wang, Ruiping; Gao, Xiaorong; Hong, Bo; Gao, Shangkai

    2006-06-01

    This paper introduces the development of a practical brain-computer interface at Tsinghua University. The system uses frequency-coded steady-state visual evoked potentials to determine the gaze direction of the user. To ensure more universal applicability of the system, approaches for reducing user variation on system performance have been proposed. The information transfer rate (ITR) has been evaluated both in the laboratory and at the Rehabilitation Center of China, respectively. The system has been proved to be applicable to > 90% of people with a high ITR in living environments.

  16. On the use of interaction error potentials for adaptive brain computer interfaces.

    PubMed

    Llera, A; van Gerven, M A J; Gómez, V; Jensen, O; Kappen, H J

    2011-12-01

    We propose an adaptive classification method for the Brain Computer Interfaces (BCI) which uses Interaction Error Potentials (IErrPs) as a reinforcement signal and adapts the classifier parameters when an error is detected. We analyze the quality of the proposed approach in relation to the misclassification of the IErrPs. In addition we compare static versus adaptive classification performance using artificial and MEG data. We show that the proposed adaptive framework significantly improves the static classification methods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Prediction of brain-computer interface aptitude from individual brain structure.

    PubMed

    Halder, S; Varkuti, B; Bogdan, M; Kübler, A; Rosenstiel, W; Sitaram, R; Birbaumer, N

    2013-01-01

    Brain-computer interface (BCI) provide a non-muscular communication channel for patients with impairments of the motor system. A significant number of BCI users is unable to obtain voluntary control of a BCI-system in proper time. This makes methods that can be used to determine the aptitude of a user necessary. We hypothesized that integrity and connectivity of involved white matter connections may serve as a predictor of individual BCI-performance. Therefore, we analyzed structural data from anatomical scans and DTI of motor imagery BCI-users differentiated into high and low BCI-aptitude groups based on their overall performance. Using a machine learning classification method we identified discriminating structural brain trait features and correlated the best features with a continuous measure of individual BCI-performance. Prediction of the aptitude group of each participant was possible with near perfect accuracy (one error). Tissue volumetric analysis yielded only poor classification results. In contrast, the structural integrity and myelination quality of deep white matter structures such as the Corpus Callosum, Cingulum, and Superior Fronto-Occipital Fascicle were positively correlated with individual BCI-performance. This confirms that structural brain traits contribute to individual performance in BCI use.

  18. Prediction of brain-computer interface aptitude from individual brain structure

    PubMed Central

    Halder, S.; Varkuti, B.; Bogdan, M.; Kübler, A.; Rosenstiel, W.; Sitaram, R.; Birbaumer, N.

    2013-01-01

    Objective: Brain-computer interface (BCI) provide a non-muscular communication channel for patients with impairments of the motor system. A significant number of BCI users is unable to obtain voluntary control of a BCI-system in proper time. This makes methods that can be used to determine the aptitude of a user necessary. Methods: We hypothesized that integrity and connectivity of involved white matter connections may serve as a predictor of individual BCI-performance. Therefore, we analyzed structural data from anatomical scans and DTI of motor imagery BCI-users differentiated into high and low BCI-aptitude groups based on their overall performance. Results: Using a machine learning classification method we identified discriminating structural brain trait features and correlated the best features with a continuous measure of individual BCI-performance. Prediction of the aptitude group of each participant was possible with near perfect accuracy (one error). Conclusions: Tissue volumetric analysis yielded only poor classification results. In contrast, the structural integrity and myelination quality of deep white matter structures such as the Corpus Callosum, Cingulum, and Superior Fronto-Occipital Fascicle were positively correlated with individual BCI-performance. Significance: This confirms that structural brain traits contribute to individual performance in BCI use. PMID:23565083

  19. Neuroprosthetic Decoder Training as Imitation Learning.

    PubMed

    Merel, Josh; Carlson, David; Paninski, Liam; Cunningham, John P

    2016-05-01

    Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user's intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user's intended movement. Here we show that training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger), can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy) for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector.

  20. Model development, testing and experimentation in a CyberWorkstation for Brain-Machine Interface research.

    PubMed

    Rattanatamrong, Prapaporn; Matsunaga, Andrea; Raiturkar, Pooja; Mesa, Diego; Zhao, Ming; Mahmoudi, Babak; Digiovanna, Jack; Principe, Jose; Figueiredo, Renato; Sanchez, Justin; Fortes, Jose

    2010-01-01

    The CyberWorkstation (CW) is an advanced cyber-infrastructure for Brain-Machine Interface (BMI) research. It allows the development, configuration and execution of BMI computational models using high-performance computing resources. The CW's concept is implemented using a software structure in which an "experiment engine" is used to coordinate all software modules needed to capture, communicate and process brain signals and motor-control commands. A generic BMI-model template, which specifies a common interface to the CW's experiment engine, and a common communication protocol enable easy addition, removal or replacement of models without disrupting system operation. This paper reviews the essential components of the CW and shows how templates can facilitate the processes of BMI model development, testing and incorporation into the CW. It also discusses the ongoing work towards making this process infrastructure independent.

  1. Programmable neural processing on a smartdust for brain-computer interfaces.

    PubMed

    Yuwen Sun; Shimeng Huang; Oresko, Joseph J; Cheng, Allen C

    2010-10-01

    Brain-computer interfaces (BCIs) offer tremendous promise for improving the quality of life for disabled individuals. BCIs use spike sorting to identify the source of each neural firing. To date, spike sorting has been performed by either using off-chip analysis, which requires a wired connection penetrating the skull to a bulky external power/processing unit, or via custom application-specific integrated circuits that lack the programmability to perform different algorithms and upgrades. In this research, we propose and test the feasibility of performing on-chip, real-time spike sorting on a programmable smartdust, including feature extraction, classification, compression, and wireless transmission. A detailed power/performance tradeoff analysis using DVFS is presented. Our experimental results show that the execution time and power density meet the requirements to perform real-time spike sorting and wireless transmission on a single neural channel.

  2. Mental workload during brain-computer interface training.

    PubMed

    Felton, Elizabeth A; Williams, Justin C; Vanderheiden, Gregg C; Radwin, Robert G

    2012-01-01

    It is not well understood how people perceive the difficulty of performing brain-computer interface (BCI) tasks, which specific aspects of mental workload contribute the most, and whether there is a difference in perceived workload between participants who are able-bodied and disabled. This study evaluated mental workload using the NASA Task Load Index (TLX), a multi-dimensional rating procedure with six subscales: Mental Demands, Physical Demands, Temporal Demands, Performance, Effort, and Frustration. Able-bodied and motor disabled participants completed the survey after performing EEG-based BCI Fitts' law target acquisition and phrase spelling tasks. The NASA-TLX scores were similar for able-bodied and disabled participants. For example, overall workload scores (range 0-100) for 1D horizontal tasks were 48.5 (SD = 17.7) and 46.6 (SD 10.3), respectively. The TLX can be used to inform the design of BCIs that will have greater usability by evaluating subjective workload between BCI tasks, participant groups, and control modalities. Mental workload of brain-computer interfaces (BCI) can be evaluated with the NASA Task Load Index (TLX). The TLX is an effective tool for comparing subjective workload between BCI tasks, participant groups (able-bodied and disabled), and control modalities. The data can inform the design of BCIs that will have greater usability.

  3. Brain-computer interface analysis of a dynamic visuo-motor task.

    PubMed

    Logar, Vito; Belič, Aleš

    2011-01-01

    The area of brain-computer interfaces (BCIs) represents one of the more interesting fields in neurophysiological research, since it investigates the development of the machines that perform different transformations of the brain's "thoughts" to certain pre-defined actions. Experimental studies have reported some successful implementations of BCIs; however, much of the field still remains unexplored. According to some recent reports the phase coding of informational content is an important mechanism in the brain's function and cognition, and has the potential to explain various mechanisms of the brain's data transfer, but it has yet to be scrutinized in the context of brain-computer interface. Therefore, if the mechanism of phase coding is plausible, one should be able to extract the phase-coded content, carried by brain signals, using appropriate signal-processing methods. In our previous studies we have shown that by using a phase-demodulation-based signal-processing approach it is possible to decode some relevant information on the current motor action in the brain from electroencephalographic (EEG) data. In this paper the authors would like to present a continuation of their previous work on the brain-information-decoding analysis of visuo-motor (VM) tasks. The present study shows that EEG data measured during more complex, dynamic visuo-motor (dVM) tasks carries enough information about the currently performed motor action to be successfully extracted by using the appropriate signal-processing and identification methods. The aim of this paper is therefore to present a mathematical model, which by means of the EEG measurements as its inputs predicts the course of the wrist movements as applied by each subject during the task in simulated or real time (BCI analysis). However, several modifications to the existing methodology are needed to achieve optimal decoding results and a real-time, data-processing ability. The information extracted from the EEG could, therefore, be further used for the development of a closed-loop, non-invasive, brain-computer interface. For the case of this study two types of measurements were performed, i.e., the electroencephalographic (EEG) signals and the wrist movements were measured simultaneously, during the subject's performance of a dynamic visuo-motor task. Wrist-movement predictions were computed by using the EEG data-processing methodology of double brain-rhythm filtering, double phase demodulation and double principal component analyses (PCA), each with a separate set of parameters. For the movement-prediction model a fuzzy inference system was used. The results have shown that the EEG signals measured during the dVM tasks carry enough information about the subjects' wrist movements for them to be successfully decoded using the presented methodology. Reasonably high values of the correlation coefficients suggest that the validation of the proposed approach is satisfactory. Moreover, since the causality of the rhythm filtering and the PCA transformation has been achieved, we have shown that these methods can also be used in a real-time, brain-computer interface. The study revealed that using non-causal, optimized methods yields better prediction results in comparison with the causal, non-optimized methodology; however, taking into account that the causality of these methods allows real-time processing, the minor decrease in prediction quality is acceptable. The study suggests that the methodology that was proposed in our previous studies is also valid for identifying the EEG-coded content during dVM tasks, albeit with various modifications, which allow better prediction results and real-time data processing. The results have shown that wrist movements can be predicted in simulated or real time; however, the results of the non-causal, optimized methodology (simulated) are slightly better. Nevertheless, the study has revealed that these methods should be suitable for use in the development of a non-invasive, brain-computer interface. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke.

    PubMed

    Mukaino, Masahiko; Ono, Takashi; Shindo, Keiichiro; Fujiwara, Toshiyuki; Ota, Tetsuo; Kimura, Akio; Liu, Meigen; Ushiba, Junichi

    2014-04-01

    Brain computer interface technology is of great interest to researchers as a potential therapeutic measure for people with severe neurological disorders. The aim of this study was to examine the efficacy of brain computer interface, by comparing conventional neuromuscular electrical stimulation and brain computer interface-driven neuromuscular electrical stimulation, using an A-B-A-B withdrawal single-subject design. A 38-year-old male with severe hemiplegia due to a putaminal haemorrhage participated in this study. The design involved 2 epochs. In epoch A, the patient attempted to open his fingers during the application of neuromuscular electrical stimulation, irrespective of his actual brain activity. In epoch B, neuromuscular electrical stimulation was applied only when a significant motor-related cortical potential was observed in the electroencephalogram. The subject initially showed diffuse functional magnetic resonance imaging activation and small electro-encephalogram responses while attempting finger movement. Epoch A was associated with few neurological or clinical signs of improvement. Epoch B, with a brain computer interface, was associated with marked lateralization of electroencephalogram (EEG) and blood oxygenation level dependent responses. Voluntary electromyogram (EMG) activity, with significant EEG-EMG coherence, was also prompted. Clinical improvement in upper-extremity function and muscle tone was observed. These results indicate that self-directed training with a brain computer interface may induce activity- dependent cortical plasticity and promote functional recovery. This preliminary clinical investigation encourages further research using a controlled design.

  5. Review of wireless and wearable electroencephalogram systems and brain-computer interfaces--a mini-review.

    PubMed

    Lin, Chin-Teng; Ko, Li-Wei; Chang, Meng-Hsiu; Duann, Jeng-Ren; Chen, Jing-Ying; Su, Tung-Ping; Jung, Tzyy-Ping

    2010-01-01

    Biomedical signal monitoring systems have rapidly advanced in recent years, propelled by significant advances in electronic and information technologies. Brain-computer interface (BCI) is one of the important research branches and has become a hot topic in the study of neural engineering, rehabilitation, and brain science. Traditionally, most BCI systems use bulky, wired laboratory-oriented sensing equipments to measure brain activity under well-controlled conditions within a confined space. Using bulky sensing equipments not only is uncomfortable and inconvenient for users, but also impedes their ability to perform routine tasks in daily operational environments. Furthermore, owing to large data volumes, signal processing of BCI systems is often performed off-line using high-end personal computers, hindering the applications of BCI in real-world environments. To be practical for routine use by unconstrained, freely-moving users, BCI systems must be noninvasive, nonintrusive, lightweight and capable of online signal processing. This work reviews recent online BCI systems, focusing especially on wearable, wireless and real-time systems. Copyright 2009 S. Karger AG, Basel.

  6. An Efficient ERP-Based Brain-Computer Interface Using Random Set Presentation and Face Familiarity

    PubMed Central

    Müller, Klaus-Robert; Lee, Seong-Whan

    2014-01-01

    Event-related potential (ERP)-based P300 spellers are commonly used in the field of brain-computer interfaces as an alternative channel of communication for people with severe neuro-muscular diseases. This study introduces a novel P300 based brain-computer interface (BCI) stimulus paradigm using a random set presentation pattern and exploiting the effects of face familiarity. The effect of face familiarity is widely studied in the cognitive neurosciences and has recently been addressed for the purpose of BCI. In this study we compare P300-based BCI performances of a conventional row-column (RC)-based paradigm with our approach that combines a random set presentation paradigm with (non-) self-face stimuli. Our experimental results indicate stronger deflections of the ERPs in response to face stimuli, which are further enhanced when using the self-face images, and thereby improving P300-based spelling performance. This lead to a significant reduction of stimulus sequences required for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-based BCI setup. PMID:25384045

  7. An efficient ERP-based brain-computer interface using random set presentation and face familiarity.

    PubMed

    Yeom, Seul-Ki; Fazli, Siamac; Müller, Klaus-Robert; Lee, Seong-Whan

    2014-01-01

    Event-related potential (ERP)-based P300 spellers are commonly used in the field of brain-computer interfaces as an alternative channel of communication for people with severe neuro-muscular diseases. This study introduces a novel P300 based brain-computer interface (BCI) stimulus paradigm using a random set presentation pattern and exploiting the effects of face familiarity. The effect of face familiarity is widely studied in the cognitive neurosciences and has recently been addressed for the purpose of BCI. In this study we compare P300-based BCI performances of a conventional row-column (RC)-based paradigm with our approach that combines a random set presentation paradigm with (non-) self-face stimuli. Our experimental results indicate stronger deflections of the ERPs in response to face stimuli, which are further enhanced when using the self-face images, and thereby improving P300-based spelling performance. This lead to a significant reduction of stimulus sequences required for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-based BCI setup.

  8. Towards SSVEP-based, portable, responsive Brain-Computer Interface.

    PubMed

    Kaczmarek, Piotr; Salomon, Pawel

    2015-08-01

    A Brain-Computer Interface in motion control application requires high system responsiveness and accuracy. SSVEP interface consisted of 2-8 stimuli and 2 channel EEG amplifier was presented in this paper. The observed stimulus is recognized based on a canonical correlation calculated in 1 second window, ensuring high interface responsiveness. A threshold classifier with hysteresis (T-H) was proposed for recognition purposes. Obtained results suggest that T-H classifier enables to significantly increase classifier performance (resulting in accuracy of 76%, while maintaining average false positive detection rate of stimulus different then observed one between 2-13%, depending on stimulus frequency). It was shown that the parameters of T-H classifier, maximizing true positive rate, can be estimated by gradient-based search since the single maximum was observed. Moreover the preliminary results, performed on a test group (N=4), suggest that for T-H classifier exists a certain set of parameters for which the system accuracy is similar to accuracy obtained for user-trained classifier.

  9. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.

    PubMed

    Chiarelli, Antonio Maria; Croce, Pierpaolo; Merla, Arcangelo; Zappasodi, Filippo

    2018-06-01

    Brain-computer interface (BCI) refers to procedures that link the central nervous system to a device. BCI was historically performed using electroencephalography (EEG). In the last years, encouraging results were obtained by combining EEG with other neuroimaging technologies, such as functional near infrared spectroscopy (fNIRS). A crucial step of BCI is brain state classification from recorded signal features. Deep artificial neural networks (DNNs) recently reached unprecedented complex classification outcomes. These performances were achieved through increased computational power, efficient learning algorithms, valuable activation functions, and restricted or back-fed neurons connections. By expecting significant overall BCI performances, we investigated the capabilities of combining EEG and fNIRS recordings with state-of-the-art deep learning procedures. We performed a guided left and right hand motor imagery task on 15 subjects with a fixed classification response time of 1 s and overall experiment length of 10 min. Left versus right classification accuracy of a DNN in the multi-modal recording modality was estimated and it was compared to standalone EEG and fNIRS and other classifiers. At a group level we obtained significant increase in performance when considering multi-modal recordings and DNN classifier with synergistic effect. BCI performances can be significantly improved by employing multi-modal recordings that provide electrical and hemodynamic brain activity information, in combination with advanced non-linear deep learning classification procedures.

  10. Automated selection of brain regions for real-time fMRI brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Lührs, Michael; Sorger, Bettina; Goebel, Rainer; Esposito, Fabrizio

    2017-02-01

    Objective. Brain-computer interfaces (BCIs) implemented with real-time functional magnetic resonance imaging (rt-fMRI) use fMRI time-courses from predefined regions of interest (ROIs). To reach best performances, localizer experiments and on-site expert supervision are required for ROI definition. To automate this step, we developed two unsupervised computational techniques based on the general linear model (GLM) and independent component analysis (ICA) of rt-fMRI data, and compared their performances on a communication BCI. Approach. 3 T fMRI data of six volunteers were re-analyzed in simulated real-time. During a localizer run, participants performed three mental tasks following visual cues. During two communication runs, a letter-spelling display guided the subjects to freely encode letters by performing one of the mental tasks with a specific timing. GLM- and ICA-based procedures were used to decode each letter, respectively using compact ROIs and whole-brain distributed spatio-temporal patterns of fMRI activity, automatically defined from subject-specific or group-level maps. Main results. Letter-decoding performances were comparable to supervised methods. In combination with a similarity-based criterion, GLM- and ICA-based approaches successfully decoded more than 80% (average) of the letters. Subject-specific maps yielded optimal performances. Significance. Automated solutions for ROI selection may help accelerating the translation of rt-fMRI BCIs from research to clinical applications.

  11. Preprocessing and meta-classification for brain-computer interfaces.

    PubMed

    Hammon, Paul S; de Sa, Virginia R

    2007-03-01

    A brain-computer interface (BCI) is a system which allows direct translation of brain states into actions, bypassing the usual muscular pathways. A BCI system works by extracting user brain signals, applying machine learning algorithms to classify the user's brain state, and performing a computer-controlled action. Our goal is to improve brain state classification. Perhaps the most obvious way to improve classification performance is the selection of an advanced learning algorithm. However, it is now well known in the BCI community that careful selection of preprocessing steps is crucial to the success of any classification scheme. Furthermore, recent work indicates that combining the output of multiple classifiers (meta-classification) leads to improved classification rates relative to single classifiers (Dornhege et al., 2004). In this paper, we develop an automated approach which systematically analyzes the relative contributions of different preprocessing and meta-classification approaches. We apply this procedure to three data sets drawn from BCI Competition 2003 (Blankertz et al., 2004) and BCI Competition III (Blankertz et al., 2006), each of which exhibit very different characteristics. Our final classification results compare favorably with those from past BCI competitions. Additionally, we analyze the relative contributions of individual preprocessing and meta-classification choices and discuss which types of BCI data benefit most from specific algorithms.

  12. A Direct Brain-to-Brain Interface in Humans

    PubMed Central

    Rao, Rajesh P. N.; Stocco, Andrea; Bryan, Matthew; Sarma, Devapratim; Youngquist, Tiffany M.; Wu, Joseph; Prat, Chantel S.

    2014-01-01

    We describe the first direct brain-to-brain interface in humans and present results from experiments involving six different subjects. Our non-invasive interface, demonstrated originally in August 2013, combines electroencephalography (EEG) for recording brain signals with transcranial magnetic stimulation (TMS) for delivering information to the brain. We illustrate our method using a visuomotor task in which two humans must cooperate through direct brain-to-brain communication to achieve a desired goal in a computer game. The brain-to-brain interface detects motor imagery in EEG signals recorded from one subject (the “sender”) and transmits this information over the internet to the motor cortex region of a second subject (the “receiver”). This allows the sender to cause a desired motor response in the receiver (a press on a touchpad) via TMS. We quantify the performance of the brain-to-brain interface in terms of the amount of information transmitted as well as the accuracies attained in (1) decoding the sender’s signals, (2) generating a motor response from the receiver upon stimulation, and (3) achieving the overall goal in the cooperative visuomotor task. Our results provide evidence for a rudimentary form of direct information transmission from one human brain to another using non-invasive means. PMID:25372285

  13. Neuroprosthetic Decoder Training as Imitation Learning

    PubMed Central

    Merel, Josh; Paninski, Liam; Cunningham, John P.

    2016-01-01

    Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user’s intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user’s intended movement. Here we show that training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger), can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy) for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector. PMID:27191387

  14. Write, read and answer emails with a dry 'n' wireless brain-computer interface system.

    PubMed

    Pinegger, Andreas; Deckert, Lisa; Halder, Sebastian; Barry, Norbert; Faller, Josef; Käthner, Ivo; Hintermüller, Christoph; Wriessnegger, Selina C; Kübler, Andrea; Müller-Putz, Gernot R

    2014-01-01

    Brain-computer interface (BCI) users can control very complex applications such as multimedia players or even web browsers. Therefore, different biosignal acquisition systems are available to noninvasively measure the electrical activity of the brain, the electroencephalogram (EEG). To make BCIs more practical, hardware and software are nowadays designed more user centered and user friendly. In this paper we evaluated one of the latest innovations in the area of BCI: A wireless EEG amplifier with dry electrode technology combined with a web browser which enables BCI users to use standard webmail. With this system ten volunteers performed a daily life task: Write, read and answer an email. Experimental results of this study demonstrate the power of the introduced BCI system.

  15. Brain-Computer Interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients?

    PubMed Central

    Kübler, A.; Birbaumer, N.

    2008-01-01

    Objective To investigate the relationship between physical impairment and brain-computer interface (BCI) performance. Method We present a meta-analysis of 29 patients with amyotrophic lateral sclerosis and 6 with other severe neurological diseases in different stages of physical impairment who were trained with a BCI. In most cases voluntary regulation of slow cortical potentials has been used as input signal for BCI control. More recently sensorimotor rhythms and the P300 event-related brain potential were recorded. Results A strong correlation has been found between physical impairment and BCI performance, indicating that performance worsens as impairment increases. Seven patients were in the complete locked-in state (CLIS) with no communication possible. After removal of these patients from the analysis, the relationship between physical impairment and BCI performance disappeared. The lack of a relation between physical impairment and BCI performance was confirmed when adding BCI data of patients from other BCI research groups. Conclusions Basic communication (yes/no) was not restored in any of the CLIS patients with a BCI. Whether locked-in patients can transfer learned brain control to the CLIS remains an open empirical question. Significance Voluntary brain regulation for communication is possible in all stages of paralysis except the CLIS. PMID:18824406

  16. Engineering brain-computer interfaces: past, present and future.

    PubMed

    Hughes, M A

    2014-06-01

    Electricity governs the function of both nervous systems and computers. Whilst ions move in polar fluids to depolarize neuronal membranes, electrons move in the solid-state lattices of microelectronic semiconductors. Joining these two systems together, to create an iono-electric brain-computer interface, is an immense challenge. However, such interfaces offer (and in select clinical contexts have already delivered) a method of overcoming disability caused by neurological or musculoskeletal pathology. To fulfill their theoretical promise, several specific challenges demand consideration. Rate-limiting steps cover a diverse range of disciplines including microelectronics, neuro-informatics, engineering, and materials science. As those who work at the tangible interface between brain and outside world, neurosurgeons are well placed to contribute to, and inform, this cutting edge area of translational research. This article explores the historical background, status quo, and future of brain-computer interfaces; and outlines the challenges to progress and opportunities available to the clinical neurosciences community.

  17. Brain computer interfaces, a review.

    PubMed

    Nicolas-Alonso, Luis Fernando; Gomez-Gil, Jaime

    2012-01-01

    A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or 'locked in' by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices.

  18. Effects of Soft Drinks on Resting State EEG and Brain-Computer Interface Performance.

    PubMed

    Meng, Jianjun; Mundahl, John; Streitz, Taylor; Maile, Kaitlin; Gulachek, Nicholas; He, Jeffrey; He, Bin

    2017-01-01

    Motor imagery-based (MI based) brain-computer interface (BCI) using electroencephalography (EEG) allows users to directly control a computer or external device by modulating and decoding the brain waves. A variety of factors could potentially affect the performance of BCI such as the health status of subjects or the environment. In this study, we investigated the effects of soft drinks and regular coffee on EEG signals under resting state and on the performance of MI based BCI. Twenty-six healthy human subjects participated in three or four BCI sessions with a resting period in each session. During each session, the subjects drank an unlabeled soft drink with either sugar (Caffeine Free Coca-Cola), caffeine (Diet Coke), neither ingredient (Caffeine Free Diet Coke), or a regular coffee if there was a fourth session. The resting state spectral power in each condition was compared; the analysis showed that power in alpha and beta band after caffeine consumption were decreased substantially compared to control and sugar condition. Although the attenuation of powers in the frequency range used for the online BCI control signal was shown, group averaged BCI online performance after consuming caffeine was similar to those of other conditions. This work, for the first time, shows the effect of caffeine, sugar intake on the online BCI performance and resting state brain signal.

  19. Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future.

    PubMed

    Huggins, Jane E; Guger, Christoph; Allison, Brendan; Anderson, Charles W; Batista, Aaron; Brouwer, Anne-Marie A-M; Brunner, Clemens; Chavarriaga, Ricardo; Fried-Oken, Melanie; Gunduz, Aysegul; Gupta, Disha; Kübler, Andrea; Leeb, Robert; Lotte, Fabien; Miller, Lee E; Müller-Putz, Gernot; Rutkowski, Tomasz; Tangermann, Michael; Thompson, David Edward

    2014-01-01

    The Fifth International Brain-Computer Interface (BCI) Meeting met June 3-7 th , 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in BCIs applications, and future BCI directions. BCI research is well established and transitioning to practical use to benefit people with physical impairments. At the same time, new applications are being explored, both for people with physical impairments and beyond. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and high-lighting important issues for future research and development.

  20. Incorporating modern neuroscience findings to improve brain-computer interfaces: tracking auditory attention.

    PubMed

    Wronkiewicz, Mark; Larson, Eric; Lee, Adrian Kc

    2016-10-01

    Brain-computer interface (BCI) technology allows users to generate actions based solely on their brain signals. However, current non-invasive BCIs generally classify brain activity recorded from surface electroencephalography (EEG) electrodes, which can hinder the application of findings from modern neuroscience research. In this study, we use source imaging-a neuroimaging technique that projects EEG signals onto the surface of the brain-in a BCI classification framework. This allowed us to incorporate prior research from functional neuroimaging to target activity from a cortical region involved in auditory attention. Classifiers trained to detect attention switches performed better with source imaging projections than with EEG sensor signals. Within source imaging, including subject-specific anatomical MRI information (instead of using a generic head model) further improved classification performance. This source-based strategy also reduced accuracy variability across three dimensionality reduction techniques-a major design choice in most BCIs. Our work shows that source imaging provides clear quantitative and qualitative advantages to BCIs and highlights the value of incorporating modern neuroscience knowledge and methods into BCI systems.

  1. Physiological properties of brain-machine interface input signals.

    PubMed

    Slutzky, Marc W; Flint, Robert D

    2017-08-01

    Brain-machine interfaces (BMIs), also called brain-computer interfaces (BCIs), decode neural signals and use them to control some type of external device. Despite many experimental successes and terrific demonstrations in animals and humans, a high-performance, clinically viable device has not yet been developed for widespread usage. There are many factors that impact clinical viability and BMI performance. Arguably, the first of these is the selection of brain signals used to control BMIs. In this review, we summarize the physiological characteristics and performance-including movement-related information, longevity, and stability-of multiple types of input signals that have been used in invasive BMIs to date. These include intracortical spikes as well as field potentials obtained inside the cortex, at the surface of the cortex (electrocorticography), and at the surface of the dura mater (epidural signals). We also discuss the potential for future enhancements in input signal performance, both by improving hardware and by leveraging the knowledge of the physiological characteristics of these signals to improve decoding and stability. Copyright © 2017 the American Physiological Society.

  2. Non-invasive transmission of sensorimotor information in humans using an EEG/focused ultrasound brain-to-brain interface

    PubMed Central

    Lee, Wonhye; Kim, Suji; Kim, Byeongnam; Lee, Chungki; Chung, Yong An; Kim, Laehyun; Yoo, Seung-Schik

    2017-01-01

    We present non-invasive means that detect unilateral hand motor brain activity from one individual and subsequently stimulate the somatosensory area of another individual, thus, enabling the remote hemispheric link between each brain hemisphere in humans. Healthy participants were paired as a sender and a receiver. A sender performed a motor imagery task of either right or left hand, and associated changes in the electroencephalogram (EEG) mu rhythm (8–10 Hz) originating from either hemisphere were programmed to move a computer cursor to a target that appeared in either left or right of the computer screen. When the cursor reaches its target, the outcome was transmitted to another computer over the internet, and actuated the focused ultrasound (FUS) devices that selectively and non-invasively stimulated either the right or left hand somatosensory area of the receiver. Small FUS transducers effectively allowed for the independent administration of stimulatory ultrasonic waves to somatosensory areas. The stimulation elicited unilateral tactile sensation of the hand from the receiver, thus establishing the hemispheric brain-to-brain interface (BBI). Although there was a degree of variability in task accuracy, six pairs of volunteers performed the BBI task in high accuracy, transferring approximately eight commands per minute. Linkage between the hemispheric brain activities among individuals suggests the possibility for expansion of the information bandwidth in the context of BBI. PMID:28598972

  3. Flashing characters with famous faces improves ERP-based brain-computer interface performance

    NASA Astrophysics Data System (ADS)

    Kaufmann, T.; Schulz, S. M.; Grünzinger, C.; Kübler, A.

    2011-10-01

    Currently, the event-related potential (ERP)-based spelling device, often referred to as P300-Speller, is the most commonly used brain-computer interface (BCI) for enhancing communication of patients with impaired speech or motor function. Among numerous improvements, a most central feature has received little attention, namely optimizing the stimulus used for eliciting ERPs. Therefore we compared P300-Speller performance with the standard stimulus (flashing characters) against performance with stimuli known for eliciting particularly strong ERPs due to their psychological salience, i.e. flashing familiar faces transparently superimposed on characters. Our results not only indicate remarkably increased ERPs in response to familiar faces but also improved P300-Speller performance due to a significant reduction of stimulus sequences needed for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-Speller.

  4. Low-power hardware implementation of movement decoding for brain computer interface with reduced-resolution discrete cosine transform.

    PubMed

    Minho Won; Albalawi, Hassan; Xin Li; Thomas, Donald E

    2014-01-01

    This paper describes a low-power hardware implementation for movement decoding of brain computer interface. Our proposed hardware design is facilitated by two novel ideas: (i) an efficient feature extraction method based on reduced-resolution discrete cosine transform (DCT), and (ii) a new hardware architecture of dual look-up table to perform discrete cosine transform without explicit multiplication. The proposed hardware implementation has been validated for movement decoding of electrocorticography (ECoG) signal by using a Xilinx FPGA Zynq-7000 board. It achieves more than 56× energy reduction over a reference design using band-pass filters for feature extraction.

  5. Orientation-modulated attention effect on visual evoked potential: Application for PIN system using brain-computer interface.

    PubMed

    Wilaiprasitporn, Theerawit; Yagi, Tohru

    2015-01-01

    This research demonstrates the orientation-modulated attention effect on visual evoked potential. We combined this finding with our previous findings about the motion-modulated attention effect and used the result to develop novel visual stimuli for a personal identification number (PIN) application based on a brain-computer interface (BCI) framework. An electroencephalography amplifier with a single electrode channel was sufficient for our application. A computationally inexpensive algorithm and small datasets were used in processing. Seven healthy volunteers participated in experiments to measure offline performance. Mean accuracy was 83.3% at 13.9 bits/min. Encouraged by these results, we plan to continue developing the BCI-based personal identification application toward real-time systems.

  6. Distance-constrained orthogonal Latin squares for brain-computer interface.

    PubMed

    Luo, Gang; Min, Wanli

    2012-02-01

    The P300 brain-computer interface (BCI) using electroencephalogram (EEG) signals can allow amyotrophic lateral sclerosis (ALS) patients to instruct computers to perform tasks. To strengthen the P300 response and increase classification accuracy, we proposed an experimental design where characters are intensified according to orthogonal Latin square pairs. These orthogonal Latin square pairs satisfy certain distance constraint so that neighboring characters are not intensified simultaneously. However, it is unknown whether such distance-constrained, orthogonal Latin square pairs actually exist. In this paper, we show that for every matrix size commonly used in P300 BCI, thousands to millions of such distance-constrained, orthogonal Latin square pairs can be systematically and efficiently constructed and are sufficient for the purpose of being used in P300 BCI.

  7. Design and Evaluation of Fusion Approach for Combining Brain and Gaze Inputs for Target Selection

    PubMed Central

    Évain, Andéol; Argelaguet, Ferran; Casiez, Géry; Roussel, Nicolas; Lécuyer, Anatole

    2016-01-01

    Gaze-based interfaces and Brain-Computer Interfaces (BCIs) allow for hands-free human–computer interaction. In this paper, we investigate the combination of gaze and BCIs. We propose a novel selection technique for 2D target acquisition based on input fusion. This new approach combines the probabilistic models for each input, in order to better estimate the intent of the user. We evaluated its performance against the existing gaze and brain–computer interaction techniques. Twelve participants took part in our study, in which they had to search and select 2D targets with each of the evaluated techniques. Our fusion-based hybrid interaction technique was found to be more reliable than the previous gaze and BCI hybrid interaction techniques for 10 participants over 12, while being 29% faster on average. However, similarly to what has been observed in hybrid gaze-and-speech interaction, gaze-only interaction technique still provides the best performance. Our results should encourage the use of input fusion, as opposed to sequential interaction, in order to design better hybrid interfaces. PMID:27774048

  8. Single-Trial Classification of Multi-User P300-Based Brain-Computer Interface Using Riemannian Geometry.

    PubMed

    Korczowski, L; Congedo, M; Jutten, C

    2015-08-01

    The classification of electroencephalographic (EEG) data recorded from multiple users simultaneously is an important challenge in the field of Brain-Computer Interface (BCI). In this paper we compare different approaches for classification of single-trials Event-Related Potential (ERP) on two subjects playing a collaborative BCI game. The minimum distance to mean (MDM) classifier in a Riemannian framework is extended to use the diversity of the inter-subjects spatio-temporal statistics (MDM-hyper) or to merge multiple classifiers (MDM-multi). We show that both these classifiers outperform significantly the mean performance of the two users and analogous classifiers based on the step-wise linear discriminant analysis. More importantly, the MDM-multi outperforms the performance of the best player within the pair.

  9. Short progressive muscle relaxation or motor coordination training does not increase performance in a brain-computer interface based on sensorimotor rhythms (SMR).

    PubMed

    Botrel, L; Acqualagna, L; Blankertz, B; Kübler, A

    2017-11-01

    Brain computer interfaces (BCIs) allow for controlling devices through modulation of sensorimotor rhythms (SMR), yet a profound number of users is unable to achieve sufficient accuracy. Here, we investigated if visuo-motor coordination (VMC) training or Jacobsen's progressive muscle relaxation (PMR) prior to BCI use would increase later performance compared to a control group who performed a reading task (CG). Running the study in two different BCI-labs, we achieved a joint sample size of N=154 naïve participants. No significant effect of either intervention (VMC, PMR, control) was found on resulting BCI performance. Relaxation level and visuo-motor performance were associated with later BCI performance in one BCI-lab but not in the other. These mixed results do not indicate a strong potential of VMC or PMR for boosting performance. Yet further research with different training parameters or experimental designs is needed to complete the picture. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future

    PubMed Central

    Huggins, Jane E.; Guger, Christoph; Allison, Brendan; Anderson, Charles W.; Batista, Aaron; Brouwer, Anne-Marie (A.-M.); Brunner, Clemens; Chavarriaga, Ricardo; Fried-Oken, Melanie; Gunduz, Aysegul; Gupta, Disha; Kübler, Andrea; Leeb, Robert; Lotte, Fabien; Miller, Lee E.; Müller-Putz, Gernot; Rutkowski, Tomasz; Tangermann, Michael; Thompson, David Edward

    2014-01-01

    The Fifth International Brain-Computer Interface (BCI) Meeting met June 3–7th, 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in BCIs applications, and future BCI directions. BCI research is well established and transitioning to practical use to benefit people with physical impairments. At the same time, new applications are being explored, both for people with physical impairments and beyond. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and high-lighting important issues for future research and development. PMID:25485284

  11. Design of an online EEG based neurofeedback game for enhancing attention and memory.

    PubMed

    Thomas, Kavitha P; Vinod, A P; Guan, Cuntai

    2013-01-01

    Brain-Computer Interface (BCI) is an alternative communication and control channel between brain and computer which finds applications in neuroprosthetics, brain wave controlled computer games etc. This paper proposes an Electroencephalogram (EEG) based neurofeedback computer game that allows the player to control the game with the help of attention based brain signals. The proposed game protocol requires the player to memorize a set of numbers in a matrix, and to correctly fill the matrix using his attention. The attention level of the player is quantified using sample entropy features of EEG. The statistically significant performance improvement of five healthy subjects after playing a number of game sessions demonstrates the effectiveness of the proposed game in enhancing their concentration and memory skills.

  12. Ownership and Agency of an Independent Supernumerary Hand Induced by an Imitation Brain-Computer Interface.

    PubMed

    Bashford, Luke; Mehring, Carsten

    2016-01-01

    To study body ownership and control, illusions that elicit these feelings in non-body objects are widely used. Classically introduced with the Rubber Hand Illusion, these illusions have been replicated more recently in virtual reality and by using brain-computer interfaces. Traditionally these illusions investigate the replacement of a body part by an artificial counterpart, however as brain-computer interface research develops it offers us the possibility to explore the case where non-body objects are controlled in addition to movements of our own limbs. Therefore we propose a new illusion designed to test the feeling of ownership and control of an independent supernumerary hand. Subjects are under the impression they control a virtual reality hand via a brain-computer interface, but in reality there is no causal connection between brain activity and virtual hand movement but correct movements are observed with 80% probability. These imitation brain-computer interface trials are interspersed with movements in both the subjects' real hands, which are in view throughout the experiment. We show that subjects develop strong feelings of ownership and control over the third hand, despite only receiving visual feedback with no causal link to the actual brain signals. Our illusion is crucially different from previously reported studies as we demonstrate independent ownership and control of the third hand without loss of ownership in the real hands.

  13. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain

    PubMed Central

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain. PMID:26982717

  14. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    PubMed

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain.

  15. Spatial Brain Control Interface using Optical and Electrophysiological Measures

    DTIC Science & Technology

    2013-08-27

    appropriate for implementing a reliable brain-computer interface ( BCI ). The LSVM method 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 27-08-2013 13...Machine (LSVM) was the most appropriate for implementing a reliable brain-computer interface ( BCI ). The LSVM method was applied to the imaging data...local field potentials proved to be fast and strongly tuned for the spatial parameters of the task. Thus, a reliable BCI that can predict upcoming

  16. A comparison study of visually stimulated brain-computer and eye-tracking interfaces

    NASA Astrophysics Data System (ADS)

    Suefusa, Kaori; Tanaka, Toshihisa

    2017-06-01

    Objective. Brain-computer interfacing (BCI) based on visual stimuli detects the target on a screen on which a user is focusing. The detection of the gazing target can be achieved by tracking gaze positions with a video camera, which is called eye-tracking or eye-tracking interfaces (ETIs). The two types of interface have been developed in different communities. Thus, little work on a comprehensive comparison between these two types of interface has been reported. This paper quantitatively compares the performance of these two interfaces on the same experimental platform. Specifically, our study is focused on two major paradigms of BCI and ETI: steady-state visual evoked potential-based BCIs and dwelling-based ETIs. Approach. Recognition accuracy and the information transfer rate were measured by giving subjects the task of selecting one of four targets by gazing at it. The targets were displayed in three different sizes (with sides 20, 40 and 60 mm long) to evaluate performance with respect to the target size. Main results. The experimental results showed that the BCI was comparable to the ETI in terms of accuracy and the information transfer rate. In particular, when the size of a target was relatively small, the BCI had significantly better performance than the ETI. Significance. The results on which of the two interfaces works better in different situations would not only enable us to improve the design of the interfaces but would also allow for the appropriate choice of interface based on the situation. Specifically, one can choose an interface based on the size of the screen that displays the targets.

  17. Brain Computer Interfaces, a Review

    PubMed Central

    Nicolas-Alonso, Luis Fernando; Gomez-Gil, Jaime

    2012-01-01

    A brain-computer interface (BCI) is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices. PMID:22438708

  18. "Enheduanna-A Manifesto of Falling" Live Brain-Computer Cinema Performance: Performer and Audience Participation, Cognition and Emotional Engagement Using Multi-Brain BCI Interaction.

    PubMed

    Zioga, Polina; Pollick, Frank; Ma, Minhua; Chapman, Paul; Stefanov, Kristian

    2018-01-01

    The fields of neural prosthetic technologies and Brain-Computer Interfaces (BCIs) have witnessed in the past 15 years an unprecedented development, bringing together theories and methods from different scientific fields, digital media, and the arts. More in particular, artists have been amongst the pioneers of the design of relevant applications since their emergence in the 1960s, pushing the boundaries of applications in real-life contexts. With the new research, advancements, and since 2007, the new low-cost commercial-grade wireless devices, there is a new increasing number of computer games, interactive installations, and performances that involve the use of these interfaces, combining scientific, and creative methodologies. The vast majority of these works use the brain-activity of a single participant. However, earlier, as well as recent examples, involve the simultaneous interaction of more than one participants or performers with the use of Electroencephalography (EEG)-based multi-brain BCIs. In this frame, we discuss and evaluate "Enheduanna-A Manifesto of Falling," a live brain-computer cinema performance that enables for the first time the simultaneous real-time multi-brain interaction of more than two participants, including a performer and members of the audience, using a passive EEG-based BCI system in the context of a mixed-media performance. The performance was realised as a neuroscientific study conducted in a real-life setting. The raw EEG data of seven participants, one performer and two different members of the audience for each performance, were simultaneously recorded during three live events. The results reveal that the majority of the participants were able to successfully identify whether their brain-activity was interacting with the live video projections or not. A correlation has been found between their answers to the questionnaires, the elements of the performance that they identified as most special, and the audience's indicators of attention and emotional engagement. Also, the results obtained from the performer's data analysis are consistent with the recall of working memory representations and the increase of cognitive load. Thus, these results prove the efficiency of the interaction design, as well as the importance of the directing strategy, dramaturgy and narrative structure on the audience's perception, cognitive state, and engagement.

  19. “Enheduanna—A Manifesto of Falling” Live Brain-Computer Cinema Performance: Performer and Audience Participation, Cognition and Emotional Engagement Using Multi-Brain BCI Interaction

    PubMed Central

    Zioga, Polina; Pollick, Frank; Ma, Minhua; Chapman, Paul; Stefanov, Kristian

    2018-01-01

    The fields of neural prosthetic technologies and Brain-Computer Interfaces (BCIs) have witnessed in the past 15 years an unprecedented development, bringing together theories and methods from different scientific fields, digital media, and the arts. More in particular, artists have been amongst the pioneers of the design of relevant applications since their emergence in the 1960s, pushing the boundaries of applications in real-life contexts. With the new research, advancements, and since 2007, the new low-cost commercial-grade wireless devices, there is a new increasing number of computer games, interactive installations, and performances that involve the use of these interfaces, combining scientific, and creative methodologies. The vast majority of these works use the brain-activity of a single participant. However, earlier, as well as recent examples, involve the simultaneous interaction of more than one participants or performers with the use of Electroencephalography (EEG)-based multi-brain BCIs. In this frame, we discuss and evaluate “Enheduanna—A Manifesto of Falling,” a live brain-computer cinema performance that enables for the first time the simultaneous real-time multi-brain interaction of more than two participants, including a performer and members of the audience, using a passive EEG-based BCI system in the context of a mixed-media performance. The performance was realised as a neuroscientific study conducted in a real-life setting. The raw EEG data of seven participants, one performer and two different members of the audience for each performance, were simultaneously recorded during three live events. The results reveal that the majority of the participants were able to successfully identify whether their brain-activity was interacting with the live video projections or not. A correlation has been found between their answers to the questionnaires, the elements of the performance that they identified as most special, and the audience's indicators of attention and emotional engagement. Also, the results obtained from the performer's data analysis are consistent with the recall of working memory representations and the increase of cognitive load. Thus, these results prove the efficiency of the interaction design, as well as the importance of the directing strategy, dramaturgy and narrative structure on the audience's perception, cognitive state, and engagement. PMID:29666566

  20. Brain-Computer Interface with Inhibitory Neurons Reveals Subtype-Specific Strategies.

    PubMed

    Mitani, Akinori; Dong, Mingyuan; Komiyama, Takaki

    2018-01-08

    Brain-computer interfaces have seen an increase in popularity due to their potential for direct neuroprosthetic applications for amputees and disabled individuals. Supporting this promise, animals-including humans-can learn even arbitrary mapping between the activity of cortical neurons and movement of prosthetic devices [1-4]. However, the performance of neuroprosthetic device control has been nowhere near that of limb control in healthy individuals, presenting a dire need to improve the performance. One potential limitation is the fact that previous work has not distinguished diverse cell types in the neocortex, even though different cell types possess distinct functions in cortical computations [5-7] and likely distinct capacities to control brain-computer interfaces. Here, we made a first step in addressing this issue by tracking the plastic changes of three major types of cortical inhibitory neurons (INs) during a neuron-pair operant conditioning task using two-photon imaging of IN subtypes expressing GCaMP6f. Mice were rewarded when the activity of the positive target neuron (N+) exceeded that of the negative target neuron (N-) beyond a set threshold. Mice improved performance with all subtypes, but the strategies were subtype specific. When parvalbumin (PV)-expressing INs were targeted, the activity of N- decreased. However, targeting of somatostatin (SOM)- and vasoactive intestinal peptide (VIP)-expressing INs led to an increase of the N+ activity. These results demonstrate that INs can be individually modulated in a subtype-specific manner and highlight the versatility of neural circuits in adapting to new demands by using cell-type-specific strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Brain-Computer Interface application: auditory serial interface to control a two-class motor-imagery-based wheelchair.

    PubMed

    Ron-Angevin, Ricardo; Velasco-Álvarez, Francisco; Fernández-Rodríguez, Álvaro; Díaz-Estrella, Antonio; Blanca-Mena, María José; Vizcaíno-Martín, Francisco Javier

    2017-05-30

    Certain diseases affect brain areas that control the movements of the patients' body, thereby limiting their autonomy and communication capacity. Research in the field of Brain-Computer Interfaces aims to provide patients with an alternative communication channel not based on muscular activity, but on the processing of brain signals. Through these systems, subjects can control external devices such as spellers to communicate, robotic prostheses to restore limb movements, or domotic systems. The present work focus on the non-muscular control of a robotic wheelchair. A proposal to control a wheelchair through a Brain-Computer Interface based on the discrimination of only two mental tasks is presented in this study. The wheelchair displacement is performed with discrete movements. The control signals used are sensorimotor rhythms modulated through a right-hand motor imagery task or mental idle state. The peculiarity of the control system is that it is based on a serial auditory interface that provides the user with four navigation commands. The use of two mental tasks to select commands may facilitate control and reduce error rates compared to other endogenous control systems for wheelchairs. Seventeen subjects initially participated in the study; nine of them completed the three sessions of the proposed protocol. After the first calibration session, seven subjects were discarded due to a low control of their electroencephalographic signals; nine out of ten subjects controlled a virtual wheelchair during the second session; these same nine subjects achieved a medium accuracy level above 0.83 on the real wheelchair control session. The results suggest that more extensive training with the proposed control system can be an effective and safe option that will allow the displacement of a wheelchair in a controlled environment for potential users suffering from some types of motor neuron diseases.

  2. Affective Aspects of Perceived Loss of Control and Potential Implications for Brain-Computer Interfaces.

    PubMed

    Grissmann, Sebastian; Zander, Thorsten O; Faller, Josef; Brönstrup, Jonas; Kelava, Augustin; Gramann, Klaus; Gerjets, Peter

    2017-01-01

    Most brain-computer interfaces (BCIs) focus on detecting single aspects of user states (e.g., motor imagery) in the electroencephalogram (EEG) in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC) was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios.

  3. Affective Aspects of Perceived Loss of Control and Potential Implications for Brain-Computer Interfaces

    PubMed Central

    Grissmann, Sebastian; Zander, Thorsten O.; Faller, Josef; Brönstrup, Jonas; Kelava, Augustin; Gramann, Klaus; Gerjets, Peter

    2017-01-01

    Most brain-computer interfaces (BCIs) focus on detecting single aspects of user states (e.g., motor imagery) in the electroencephalogram (EEG) in order to use these aspects as control input for external systems. This communication can be effective, but unaccounted mental processes can interfere with signals used for classification and thereby introduce changes in the signal properties which could potentially impede BCI classification performance. To improve BCI performance, we propose deploying an approach that potentially allows to describe different mental states that could influence BCI performance. To test this approach, we analyzed neural signatures of potential affective states in data collected in a paradigm where the complex user state of perceived loss of control (LOC) was induced. In this article, source localization methods were used to identify brain dynamics with source located outside but affecting the signal of interest originating from the primary motor areas, pointing to interfering processes in the brain during natural human-machine interaction. In particular, we found affective correlates which were related to perceived LOC. We conclude that additional context information about the ongoing user state might help to improve the applicability of BCIs to real-world scenarios. PMID:28769776

  4. Classifying EEG for Brain-Computer Interface: Learning Optimal Filters for Dynamical System Features

    PubMed Central

    Song, Le; Epps, Julien

    2007-01-01

    Classification of multichannel EEG recordings during motor imagination has been exploited successfully for brain-computer interfaces (BCI). In this paper, we consider EEG signals as the outputs of a networked dynamical system (the cortex), and exploit synchronization features from the dynamical system for classification. Herein, we also propose a new framework for learning optimal filters automatically from the data, by employing a Fisher ratio criterion. Experimental evaluations comparing the proposed dynamical system features with the CSP and the AR features reveal their competitive performance during classification. Results also show the benefits of employing the spatial and the temporal filters optimized using the proposed learning approach. PMID:18364986

  5. Toward a model-based predictive controller design in brain-computer interfaces.

    PubMed

    Kamrunnahar, M; Dias, N S; Schiff, S J

    2011-05-01

    A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.

  6. Towards Development of a 3-State Self-Paced Brain-Computer Interface

    PubMed Central

    Bashashati, Ali; Ward, Rabab K.; Birch, Gary E.

    2007-01-01

    Most existing brain-computer interfaces (BCIs) detect specific mental activity in a so-called synchronous paradigm. Unlike synchronous systems which are operational at specific system-defined periods, self-paced (asynchronous) interfaces have the advantage of being operational at all times. The low-frequency asynchronous switch design (LF-ASD) is a 2-state self-paced BCI that detects the presence of a specific finger movement in the ongoing EEG. Recent evaluations of the 2-state LF-ASD show an average true positive rate of 41% at the fixed false positive rate of 1%. This paper proposes two designs for a 3-state self-paced BCI that is capable of handling idle brain state. The two proposed designs aim at detecting right- and left-hand extensions from the ongoing EEG. They are formed of two consecutive detectors. The first detects the presence of a right- or a left-hand movement and the second classifies the detected movement as a right or a left one. In an offline analysis of the EEG data collected from four able-bodied individuals, the 3-state brain-computer interface shows a comparable performance with a 2-state system and significant performance improvement if used as a 2-state BCI, that is, in detecting the presence of a right- or a left-hand movement (regardless of the type of movement). It has an average true positive rate of 37.5% and 42.8% (at false positives rate of 1%) in detecting right- and left-hand extensions, respectively, in the context of a 3-state self-paced BCI and average detection rate of 58.1% (at false positive rate of 1%) in the context of a 2-state self-paced BCI. PMID:18288260

  7. Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface

    PubMed Central

    Khan, M. Jawad; Hong, Melissa Jiyoun; Hong, Keum-Shik

    2014-01-01

    The hybrid brain-computer interface (BCI)'s multimodal technology enables precision brain-signal classification that can be used in the formulation of control commands. In the present study, an experimental hybrid near-infrared spectroscopy-electroencephalography (NIRS-EEG) technique was used to extract and decode four different types of brain signals. The NIRS setup was positioned over the prefrontal brain region, and the EEG over the left and right motor cortex regions. Twelve subjects participating in the experiment were shown four direction symbols, namely, “forward,” “backward,” “left,” and “right.” The control commands for forward and backward movement were estimated by performing arithmetic mental tasks related to oxy-hemoglobin (HbO) changes. The left and right directions commands were associated with right and left hand tapping, respectively. The high classification accuracies achieved showed that the four different control signals can be accurately estimated using the hybrid NIRS-EEG technology. PMID:24808844

  8. Preliminary results of BRAVO project: brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks.

    PubMed

    Bergamasco, Massimo; Frisoli, Antonio; Fontana, Marco; Loconsole, Claudio; Leonardis, Daniele; Troncossi, Marco; Foumashi, Mohammad Mozaffari; Parenti-Castelli, Vincenzo

    2011-01-01

    This paper presents the preliminary results of the project BRAVO (Brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks). The objective of this project is to define a new approach to the development of assistive and rehabilitative robots for motor impaired users to perform complex visuomotor tasks that require a sequence of reaches, grasps and manipulations of objects. BRAVO aims at developing new robotic interfaces and HW/SW architectures for rehabilitation and regain/restoration of motor function in patients with upper limb sensorimotor impairment through extensive rehabilitation therapy and active assistance in the execution of Activities of Daily Living. The final system developed within this project will include a robotic arm exoskeleton and a hand orthosis that will be integrated together for providing force assistance. The main novelty that BRAVO introduces is the control of the robotic assistive device through the active prediction of intention/action. The system will actually integrate the information about the movement carried out by the user with a prediction of the performed action through an interpretation of current gaze of the user (measured through eye-tracking), brain activation (measured through BCI) and force sensor measurements. © 2011 IEEE

  9. Quadcopter control in three-dimensional space using a noninvasive motor imagery based brain-computer interface

    PubMed Central

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-01-01

    Objective At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional physical space using noninvasive scalp EEG in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that operation of a real world device has on subjects’ control with comparison to a two-dimensional virtual cursor task. Approach Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a three-dimensional physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m/s. Significance Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user’s ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in the three-dimensional physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG based BCI systems to accomplish complex control in three-dimensional physical space. The present study may serve as a framework for the investigation of multidimensional non-invasive brain-computer interface control in a physical environment using telepresence robotics. PMID:23735712

  10. Toward brain-actuated car applications: Self-paced control with a motor imagery-based brain-computer interface.

    PubMed

    Yu, Yang; Zhou, Zongtan; Yin, Erwei; Jiang, Jun; Tang, Jingsheng; Liu, Yadong; Hu, Dewen

    2016-10-01

    This study presented a paradigm for controlling a car using an asynchronous electroencephalogram (EEG)-based brain-computer interface (BCI) and presented the experimental results of a simulation performed in an experimental environment outside the laboratory. This paradigm uses two distinct MI tasks, imaginary left- and right-hand movements, to generate a multi-task car control strategy consisting of starting the engine, moving forward, turning left, turning right, moving backward, and stopping the engine. Five healthy subjects participated in the online car control experiment, and all successfully controlled the car by following a previously outlined route. Subject S1 exhibited the most satisfactory BCI-based performance, which was comparable to the manual control-based performance. We hypothesize that the proposed self-paced car control paradigm based on EEG signals could potentially be used in car control applications, and we provide a complementary or alternative way for individuals with locked-in disorders to achieve more mobility in the future, as well as providing a supplementary car-driving strategy to assist healthy people in driving a car. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A Review of EEG-Based Brain-Computer Interfaces as Access Pathways for Individuals with Severe Disabilities

    ERIC Educational Resources Information Center

    Moghimi, Saba; Kushki, Azadeh; Guerguerian, Anne Marie; Chau, Tom

    2013-01-01

    Electroencephalography (EEG) is a non-invasive method for measuring brain activity and is a strong candidate for brain-computer interface (BCI) development. While BCIs can be used as a means of communication for individuals with severe disabilities, the majority of existing studies have reported BCI evaluations by able-bodied individuals.…

  12. Biosensor Technologies for Augmented Brain-Computer Interfaces in the Next Decades

    DTIC Science & Technology

    2012-05-13

    Research Triangle Park, NC 27709-2211 Augmented brain–computer interface (ABCI);biosensor; cognitive-state monitoring; electroencephalogram( EEG ); human...biosensor; cognitive-state monitoring; electroencephalogram ( EEG ); human brain imaging Manuscript received November 28, 2011; accepted December 20...magnetic reso- nance imaging (fMRI) [1], positron emission tomography (PET) [2], electroencephalograms ( EEGs ) and optical brain imaging techniques (i.e

  13. A square root ensemble Kalman filter application to a motor-imagery brain-computer interface.

    PubMed

    Kamrunnahar, M; Schiff, S J

    2011-01-01

    We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%-90% for the hand movements and 70%-90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models.

  14. Practical Designs of Brain-Computer Interfaces Based on the Modulation of EEG Rhythms

    NASA Astrophysics Data System (ADS)

    Wang, Yijun; Gao, Xiaorong; Hong, Bo; Gao, Shangkai

    A brain-computer interface (BCI) is a communication channel which does not depend on the brain's normal output pathways of peripheral nerves and muscles [1-3]. It supplies paralyzed patients with a new approach to communicate with the environment. Among various brain monitoring methods employed in current BCI research, electroencephalogram (EEG) is the main interest due to its advantages of low cost, convenient operation and non-invasiveness. In present-day EEG-based BCIs, the following signals have been paid much attention: visual evoked potential (VEP), sensorimotor mu/beta rhythms, P300 evoked potential, slow cortical potential (SCP), and movement-related cortical potential (MRCP). Details about these signals can be found in chapter "Brain Signals for Brain-Computer Interfaces". These systems offer some practical solutions (e.g., cursor movement and word processing) for patients with motor disabilities.

  15. A hybrid brain-computer interface-based mail client.

    PubMed

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng

    2013-01-01

    Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method.

  16. A Hybrid Brain-Computer Interface-Based Mail Client

    PubMed Central

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng

    2013-01-01

    Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method. PMID:23690880

  17. Enhanced inter-subject brain computer interface with associative sensorimotor oscillations.

    PubMed

    Saha, Simanto; Ahmed, Khawza I; Mostafa, Raqibul; Khandoker, Ahsan H; Hadjileontiadis, Leontios

    2017-02-01

    Electroencephalography (EEG) captures electrophysiological signatures of cortical events from the scalp with high-dimensional electrode montages. Usually, excessive sources produce outliers and potentially affect the actual event related sources. Besides, EEG manifests inherent inter-subject variability of the brain dynamics, at the resting state and/or under the performance of task(s), caused probably due to the instantaneous fluctuation of psychophysiological states. A wavelet coherence (WC) analysis for optimally selecting associative inter-subject channels is proposed here and is being used to boost performances of motor imagery (MI)-based inter-subject brain computer interface (BCI). The underlying hypothesis is that optimally associative inter-subject channels can reduce the effects of outliers and, thus, eliminate dissimilar cortical patterns. The proposed approach has been tested on the dataset IVa from BCI competition III, including EEG data acquired from five healthy subjects who were given visual cues to perform 280 trials of MI for the right hand and right foot. Experimental results have shown increased classification accuracy (81.79%) using the WC-based selected 16 channels compared to the one (56.79%) achieved using all the available 118 channels. The associative channels lie mostly around the sensorimotor regions of the brain, reinforced by the previous literature, describing spatial brain dynamics during sensorimotor oscillations. Apparently, the proposed approach paves the way for optimised EEG channel selection that could boost further the efficiency and real-time performance of BCI systems.

  18. Brain-Computer Interfaces: A Neuroscience Paradigm of Social Interaction? A Matter of Perspective

    PubMed Central

    Mattout, Jérémie

    2012-01-01

    A number of recent studies have put human subjects in true social interactions, with the aim of better identifying the psychophysiological processes underlying social cognition. Interestingly, this emerging Neuroscience of Social Interactions (NSI) field brings up challenges which resemble important ones in the field of Brain-Computer Interfaces (BCI). Importantly, these challenges go beyond common objectives such as the eventual use of BCI and NSI protocols in the clinical domain or common interests pertaining to the use of online neurophysiological techniques and algorithms. Common fundamental challenges are now apparent and one can argue that a crucial one is to develop computational models of brain processes relevant to human interactions with an adaptive agent, whether human or artificial. Coupled with neuroimaging data, such models have proved promising in revealing the neural basis and mental processes behind social interactions. Similar models could help BCI to move from well-performing but offline static machines to reliable online adaptive agents. This emphasizes a social perspective to BCI, which is not limited to a computational challenge but extends to all questions that arise when studying the brain in interaction with its environment. PMID:22675291

  19. A Novel Multilayer Correlation Maximization Model for Improving CCA-Based Frequency Recognition in SSVEP Brain-Computer Interface.

    PubMed

    Jiao, Yong; Zhang, Yu; Wang, Yu; Wang, Bei; Jin, Jing; Wang, Xingyu

    2018-05-01

    Multiset canonical correlation analysis (MsetCCA) has been successfully applied to optimize the reference signals by extracting common features from multiple sets of electroencephalogram (EEG) for steady-state visual evoked potential (SSVEP) recognition in brain-computer interface application. To avoid extracting the possible noise components as common features, this study proposes a sophisticated extension of MsetCCA, called multilayer correlation maximization (MCM) model for further improving SSVEP recognition accuracy. MCM combines advantages of both CCA and MsetCCA by carrying out three layers of correlation maximization processes. The first layer is to extract the stimulus frequency-related information in using CCA between EEG samples and sine-cosine reference signals. The second layer is to learn reference signals by extracting the common features with MsetCCA. The third layer is to re-optimize the reference signals set in using CCA with sine-cosine reference signals again. Experimental study is implemented to validate effectiveness of the proposed MCM model in comparison with the standard CCA and MsetCCA algorithms. Superior performance of MCM demonstrates its promising potential for the development of an improved SSVEP-based brain-computer interface.

  20. Quantum neural network-based EEG filtering for a brain-computer interface.

    PubMed

    Gandhi, Vaibhav; Prasad, Girijesh; Coyle, Damien; Behera, Laxmidhar; McGinnity, Thomas Martin

    2014-02-01

    A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics. The results from a number of benchmark tests show that simple signals such as dc, staircase dc, and sinusoidal signals embedded within high noise can be accurately filtered and particle swarm optimization can be employed to select model parameters. The RQNN filtering procedure is applied in a two-class motor imagery-based brain-computer interface where the objective was to filter electroencephalogram (EEG) signals before feature extraction and classification to increase signal separability. A two-step inner-outer fivefold cross-validation approach is utilized to select the algorithm parameters subject-specifically for nine subjects. It is shown that the subject-specific RQNN EEG filtering significantly improves brain-computer interface performance compared to using only the raw EEG or Savitzky-Golay filtered EEG across multiple sessions.

  1. Eyes-closed hybrid brain-computer interface employing frontal brain activation.

    PubMed

    Shin, Jaeyoung; Müller, Klaus-Robert; Hwang, Han-Jeong

    2018-01-01

    Brain-computer interfaces (BCIs) have been studied extensively in order to establish a non-muscular communication channel mainly for patients with impaired motor functions. However, many limitations remain for BCIs in clinical use. In this study, we propose a hybrid BCI that is based on only frontal brain areas and can be operated in an eyes-closed state for end users with impaired motor and declining visual functions. In our experiment, electroencephalography (EEG) and near-infrared spectroscopy (NIRS) were simultaneously measured while 12 participants performed mental arithmetic (MA) and remained relaxed (baseline state: BL). To evaluate the feasibility of the hybrid BCI, we classified MA- from BL-related brain activation. We then compared classification accuracies using two unimodal BCIs (EEG and NIRS) and the hybrid BCI in an offline mode. The classification accuracy of the hybrid BCI (83.9 ± 10.3%) was shown to be significantly higher than those of unimodal EEG-based (77.3 ± 15.9%) and NIRS-based BCI (75.9 ± 6.3%). The analytical results confirmed performance improvement with the hybrid BCI, particularly for only frontal brain areas. Our study shows that an eyes-closed hybrid BCI approach based on frontal areas could be applied to neurodegenerative patients who lost their motor functions, including oculomotor functions.

  2. Workshops of the Sixth International Brain-Computer Interface Meeting: brain-computer interfaces past, present, and future.

    PubMed

    Huggins, Jane E; Guger, Christoph; Ziat, Mounia; Zander, Thorsten O; Taylor, Denise; Tangermann, Michael; Soria-Frisch, Aureli; Simeral, John; Scherer, Reinhold; Rupp, Rüdiger; Ruffini, Giulio; Robinson, Douglas K R; Ramsey, Nick F; Nijholt, Anton; Müller-Putz, Gernot; McFarland, Dennis J; Mattia, Donatella; Lance, Brent J; Kindermans, Pieter-Jan; Iturrate, Iñaki; Herff, Christian; Gupta, Disha; Do, An H; Collinger, Jennifer L; Chavarriaga, Ricardo; Chase, Steven M; Bleichner, Martin G; Batista, Aaron; Anderson, Charles W; Aarnoutse, Erik J

    2017-01-01

    The Sixth International Brain-Computer Interface (BCI) Meeting was held 30 May-3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain-machine interface research. Topics included BCI for specific populations or applications, advancing BCI research through use of specific signals or technological advances, and translational and commercial issues to bring both implanted and non-invasive BCIs to market. BCI research is growing and expanding in the breadth of its applications, the depth of knowledge it can produce, and the practical benefit it can provide both for those with physical impairments and the general public. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and highlighting important issues and calls for action to support future research and development.

  3. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task

    NASA Astrophysics Data System (ADS)

    Revechkis, Boris; Aflalo, Tyson NS; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A.

    2014-12-01

    Objective. To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. Approach. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like ‘Face in a Crowd’ task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the ‘Crowd’) using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a ‘Crowd Off’ condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Main results. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Significance. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet computers.

  4. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task.

    PubMed

    Revechkis, Boris; Aflalo, Tyson N S; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A

    2014-12-01

    To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like 'Face in a Crowd' task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the 'Crowd') using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a 'Crowd Off' condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet computers.

  5. Adaptive-projection intrinsically transformed multivariate empirical mode decomposition in cooperative brain-computer interface applications.

    PubMed

    Hemakom, Apit; Goverdovsky, Valentin; Looney, David; Mandic, Danilo P

    2016-04-13

    An extension to multivariate empirical mode decomposition (MEMD), termed adaptive-projection intrinsically transformed MEMD (APIT-MEMD), is proposed to cater for power imbalances and inter-channel correlations in real-world multichannel data. It is shown that the APIT-MEMD exhibits similar or better performance than MEMD for a large number of projection vectors, whereas it outperforms MEMD for the critical case of a small number of projection vectors within the sifting algorithm. We also employ the noise-assisted APIT-MEMD within our proposed intrinsic multiscale analysis framework and illustrate the advantages of such an approach in notoriously noise-dominated cooperative brain-computer interface (BCI) based on the steady-state visual evoked potentials and the P300 responses. Finally, we show that for a joint cognitive BCI task, the proposed intrinsic multiscale analysis framework improves system performance in terms of the information transfer rate. © 2016 The Author(s).

  6. Approximation-based common principal component for feature extraction in multi-class brain-computer interfaces.

    PubMed

    Hoang, Tuan; Tran, Dat; Huang, Xu

    2013-01-01

    Common Spatial Pattern (CSP) is a state-of-the-art method for feature extraction in Brain-Computer Interface (BCI) systems. However it is designed for 2-class BCI classification problems. Current extensions of this method to multiple classes based on subspace union and covariance matrix similarity do not provide a high performance. This paper presents a new approach to solving multi-class BCI classification problems by forming a subspace resembled from original subspaces and the proposed method for this approach is called Approximation-based Common Principal Component (ACPC). We perform experiments on Dataset 2a used in BCI Competition IV to evaluate the proposed method. This dataset was designed for motor imagery classification with 4 classes. Preliminary experiments show that the proposed ACPC feature extraction method when combining with Support Vector Machines outperforms CSP-based feature extraction methods on the experimental dataset.

  7. A square root ensemble Kalman filter application to a motor-imagery brain-computer interface

    PubMed Central

    Kamrunnahar, M.; Schiff, S. J.

    2017-01-01

    We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%–90% for the hand movements and 70%–90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models. PMID:22255799

  8. Using EEG/MEG Data of Cognitive Processes in Brain-Computer Interfaces

    NASA Astrophysics Data System (ADS)

    Gutiérrez, David

    2008-08-01

    Brain-computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using electroencephalographic (EEG) and, more recently, magnetoencephalographic (MEG) measurements of the brain function. Most of the current implementations of BCIs rely on EEG/MEG data of motor activities as such neural processes are well characterized, while the use of data related to cognitive activities has been neglected due to its intrinsic complexity. However, cognitive data usually has larger amplitude, lasts longer and, in some cases, cognitive brain signals are easier to control at will than motor signals. This paper briefy reviews the use of EEG/MEG data of cognitive processes in the implementation of BCIs. Specifically, this paper reviews some of the neuromechanisms, signal features, and processing methods involved. This paper also refers to some of the author's work in the area of detection and classifcation of cognitive signals for BCIs using variability enhancement, parametric modeling, and spatial fltering, as well as recent developments in BCI performance evaluation.

  9. Multimodal 2D Brain Computer Interface.

    PubMed

    Almajidy, Rand K; Boudria, Yacine; Hofmann, Ulrich G; Besio, Walter; Mankodiya, Kunal

    2015-08-01

    In this work we used multimodal, non-invasive brain signal recording systems, namely Near Infrared Spectroscopy (NIRS), disc electrode electroencephalography (EEG) and tripolar concentric ring electrodes (TCRE) electroencephalography (tEEG). 7 healthy subjects participated in our experiments to control a 2-D Brain Computer Interface (BCI). Four motor imagery task were performed, imagery motion of the left hand, the right hand, both hands and both feet. The signal slope (SS) of the change in oxygenated hemoglobin concentration measured by NIRS was used for feature extraction while the power spectrum density (PSD) of both EEG and tEEG in the frequency band 8-30Hz was used for feature extraction. Linear Discriminant Analysis (LDA) was used to classify different combinations of the aforementioned features. The highest classification accuracy (85.2%) was achieved by using features from all the three brain signals recording modules. The improvement in classification accuracy was highly significant (p = 0.0033) when using the multimodal signals features as compared to pure EEG features.

  10. Using EEG/MEG Data of Cognitive Processes in Brain-Computer Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, David

    2008-08-11

    Brain-computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using electroencephalographic (EEG) and, more recently, magnetoencephalographic (MEG) measurements of the brain function. Most of the current implementations of BCIs rely on EEG/MEG data of motor activities as such neural processes are well characterized, while the use of data related to cognitive activities has been neglected due to its intrinsic complexity. However, cognitive data usually has larger amplitude, lasts longer and, in some cases, cognitive brain signals are easier to control at will than motor signals. This paper briefy reviews the use of EEG/MEGmore » data of cognitive processes in the implementation of BCIs. Specifically, this paper reviews some of the neuromechanisms, signal features, and processing methods involved. This paper also refers to some of the author's work in the area of detection and classifcation of cognitive signals for BCIs using variability enhancement, parametric modeling, and spatial fltering, as well as recent developments in BCI performance evaluation.« less

  11. Parallel multiscale simulations of a brain aneurysm

    PubMed Central

    Grinberg, Leopold; Fedosov, Dmitry A.; Karniadakis, George Em

    2012-01-01

    Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multi-scale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier-Stokes solver εκ αr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers ( εκ αr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in future work. PMID:23734066

  12. Parallel multiscale simulations of a brain aneurysm.

    PubMed

    Grinberg, Leopold; Fedosov, Dmitry A; Karniadakis, George Em

    2013-07-01

    Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multi-scale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier-Stokes solver εκ αr . The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers ( εκ αr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in future work.

  13. Parallel multiscale simulations of a brain aneurysm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinberg, Leopold; Fedosov, Dmitry A.; Karniadakis, George Em, E-mail: george_karniadakis@brown.edu

    2013-07-01

    Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multiscale simulations of platelet depositions on the wall of a brain aneurysm.more » The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier–Stokes solver NεκTαr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers (NεκTαr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300 K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in future work.« less

  14. Mental Workload during Brain-Computer Interface Training

    PubMed Central

    Felton, Elizabeth A.; Williams, Justin C.; Vanderheiden, Gregg C.; Radwin, Robert G.

    2012-01-01

    It is not well understood how people perceive the difficulty of performing brain-computer interface (BCI) tasks, which specific aspects of mental workload contribute the most, and whether there is a difference in perceived workload between participants who are able-bodied and disabled. This study evaluated mental workload using the NASA Task Load Index (TLX), a multi-dimensional rating procedure with six subscales: Mental Demands, Physical Demands, Temporal Demands, Performance, Effort, and Frustration. Able-bodied and motor disabled participants completed the survey after performing EEG-based BCI Fitts’ law target acquisition and phrase spelling tasks. The NASA-TLX scores were similar for able-bodied and disabled participants. For example, overall workload scores (range 0 – 100) for 1D horizontal tasks were 48.5 (SD = 17.7) and 46.6 (SD 10.3), respectively. The TLX can be used to inform the design of BCIs that will have greater usability by evaluating subjective workload between BCI tasks, participant groups, and control modalities. PMID:22506483

  15. Utilizing gamma band to improve mental task based brain-computer interface design.

    PubMed

    Palaniappan, Ramaswamy

    2006-09-01

    A common method for designing brain-computer Interface (BCI) is to use electroencephalogram (EEG) signals extracted during mental tasks. In these BCI designs, features from EEG such as power and asymmetry ratios from delta, theta, alpha, and beta bands have been used in classifying different mental tasks. In this paper, the performance of the mental task based BCI design is improved by using spectral power and asymmetry ratios from gamma (24-37 Hz) band in addition to the lower frequency bands. In the experimental study, EEG signals extracted during five mental tasks from four subjects were used. Elman neural network (ENN) trained by the resilient backpropagation algorithm was used to classify the power and asymmetry ratios from EEG into different combinations of two mental tasks. The results indicated that ((1) the classification performance and training time of the BCI design were improved through the use of additional gamma band features; (2) classification performances were nearly invariant to the number of ENN hidden units or feature extraction method.

  16. Performance improvement of ERP-based brain-computer interface via varied geometric patterns.

    PubMed

    Ma, Zheng; Qiu, Tianshuang

    2017-12-01

    Recently, many studies have been focusing on optimizing the stimulus of an event-related potential (ERP)-based brain-computer interface (BCI). However, little is known about the effectiveness when increasing the stimulus unpredictability. We investigated a new stimulus type of varied geometric pattern where both complexity and unpredictability of the stimulus are increased. The proposed and classical paradigms were compared in within-subject experiments with 16 healthy participants. Results showed that the BCI performance was significantly improved for the proposed paradigm, with an average online written symbol rate increasing by 138% comparing with that of the classical paradigm. Amplitudes of primary ERP components, such as N1, P2a, P2b, N2, were also found to be significantly enhanced with the proposed paradigm. In this paper, a novel ERP BCI paradigm with a new stimulus type of varied geometric pattern is proposed. By jointly increasing the complexity and unpredictability of the stimulus, the performance of an ERP BCI could be considerably improved.

  17. An auditory brain-computer interface evoked by natural speech

    NASA Astrophysics Data System (ADS)

    Lopez-Gordo, M. A.; Fernandez, E.; Romero, S.; Pelayo, F.; Prieto, Alberto

    2012-06-01

    Brain-computer interfaces (BCIs) are mainly intended for people unable to perform any muscular movement, such as patients in a complete locked-in state. The majority of BCIs interact visually with the user, either in the form of stimulation or biofeedback. However, visual BCIs challenge their ultimate use because they require the subjects to gaze, explore and shift eye-gaze using their muscles, thus excluding patients in a complete locked-in state or under the condition of the unresponsive wakefulness syndrome. In this study, we present a novel fully auditory EEG-BCI based on a dichotic listening paradigm using human voice for stimulation. This interface has been evaluated with healthy volunteers, achieving an average information transmission rate of 1.5 bits min-1 in full-length trials and 2.7 bits min-1 using the optimal length of trials, recorded with only one channel and without formal training. This novel technique opens the door to a more natural communication with users unable to use visual BCIs, with promising results in terms of performance, usability, training and cognitive effort.

  18. Effect of a combination of flip and zooming stimuli on the performance of a visual brain-computer interface for spelling.

    PubMed

    Cheng, Jiao; Jin, Jing; Daly, Ian; Zhang, Yu; Wang, Bei; Wang, Xingyu; Cichocki, Andrzej

    2018-02-13

    Brain-computer interface (BCI) systems can allow their users to communicate with the external world by recognizing intention directly from their brain activity without the assistance of the peripheral motor nervous system. The P300-speller is one of the most widely used visual BCI applications. In previous studies, a flip stimulus (rotating the background area of the character) that was based on apparent motion, suffered from less refractory effects. However, its performance was not improved significantly. In addition, a presentation paradigm that used a "zooming" action (changing the size of the symbol) has been shown to evoke relatively higher P300 amplitudes and obtain a better BCI performance. To extend this method of stimuli presentation within a BCI and, consequently, to improve BCI performance, we present a new paradigm combining both the flip stimulus with a zooming action. This new presentation modality allowed BCI users to focus their attention more easily. We investigated whether such an action could combine the advantages of both types of stimuli presentation to bring a significant improvement in performance compared to the conventional flip stimulus. The experimental results showed that the proposed paradigm could obtain significantly higher classification accuracies and bit rates than the conventional flip paradigm (p<0.01).

  19. Brain-computer interfacing under distraction: an evaluation study

    NASA Astrophysics Data System (ADS)

    Brandl, Stephanie; Frølich, Laura; Höhne, Johannes; Müller, Klaus-Robert; Samek, Wojciech

    2016-10-01

    Objective. While motor-imagery based brain-computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach. This paper systematically investigates BCI performance under 6 types of distractions that mimic out-of-lab environments. Main results. We report results of 16 participants and show that the performance of the standard common spatial patterns (CSP) + regularized linear discriminant analysis classification pipeline drops significantly in this ‘simulated’ out-of-lab setting. We then investigate three methods for improving the performance: (1) artifact removal, (2) ensemble classification, and (3) a 2-step classification approach. While artifact removal does not enhance the BCI performance significantly, both ensemble classification and the 2-step classification combined with CSP significantly improve the performance compared to the standard procedure. Significance. Systematically analyzing out-of-lab scenarios is crucial when bringing BCI into everyday life. Algorithms must be adapted to overcome nonstationary environments in order to tackle real-world challenges.

  20. Performance predictors of brain-computer interfaces in patients with amyotrophic lateral sclerosis

    NASA Astrophysics Data System (ADS)

    Geronimo, A.; Simmons, Z.; Schiff, S. J.

    2016-04-01

    Objective. Patients with amyotrophic lateral sclerosis (ALS) may benefit from brain-computer interfaces (BCI), but the utility of such devices likely will have to account for the functional, cognitive, and behavioral heterogeneity of this neurodegenerative disorder. Approach. In this study, a heterogeneous group of patients with ALS participated in a study on BCI based on the P300 event related potential and motor-imagery. Results. The presence of cognitive impairment in these patients significantly reduced the quality of the control signals required to use these communication systems, subsequently impairing performance, regardless of progression of physical symptoms. Loss in performance among the cognitively impaired was accompanied by a decrease in the signal-to-noise ratio of task-relevant EEG band power. There was also evidence that behavioral dysfunction negatively affects P300 speller performance. Finally, older participants achieved better performance on the P300 system than the motor-imagery system, indicating a preference of BCI paradigm with age. Significance. These findings highlight the importance of considering the heterogeneity of disease when designing BCI augmentative and alternative communication devices for clinical applications.

  1. Treatment effectiveness of brain-computer interface training for patients with focal hand dystonia: A double-case study.

    PubMed

    Hashimoto, Yasunari; Ota, Tetsuo; Mukaino, Masahiko; Ushiba, Junichi

    2013-01-01

    Neuronal mechanism underlying dystonia is poorly understood. Dystonia can be treated with botulinum toxin injections or deep brain stimulation but these methods are not available for every patient therefore we need to consider other methods Our study aimed to develop a novel rehabilitation training using brain-computer interface system that decreases neural overexcitation in the sensorimotor cortex by bypassing brain and external world without the normal neuromuscular pathway. To achieve this purpose, we recorded electroencephalograms (10 channels) and forearm electromyograms (3 channels) from 2 patients with the diagnosis of writer's cramp and healthy control participants as a preliminary experiment. The patients were trained to control amplitude of their electroencephalographic signal using feedback from the brain-computer interface for 1 hour a day and then continued the training twice a month. After the 5-month training, a patient clearly showed reduction of dystonic movement during writing.

  2. A hybrid brain-computer interface based on the fusion of electroencephalographic and electromyographic activities

    NASA Astrophysics Data System (ADS)

    Leeb, Robert; Sagha, Hesam; Chavarriaga, Ricardo; Millán, José del R.

    2011-04-01

    Hybrid brain-computer interfaces (BCIs) are representing a recent approach to develop practical BCIs. In such a system disabled users are able to use all their remaining functionalities as control possibilities in parallel with the BCI. Sometimes these people have residual activity of their muscles. Therefore, in the presented hybrid BCI framework we want to explore the parallel usage of electroencephalographic (EEG) and electromyographic (EMG) activity, whereby the control abilities of both channels are fused. Results showed that the participants could achieve a good control of their hybrid BCI independently of their level of muscular fatigue. Thereby the multimodal fusion approach of muscular and brain activity yielded better and more stable performance compared to the single conditions. Even in the case of an increasing muscular fatigue a good control (moderate and graceful degradation of the performance compared to the non-fatigued case) and a smooth handover could be achieved. Therefore, such systems allow the users a very reliable hybrid BCI control although they are getting more and more exhausted or fatigued during the day.

  3. PET Mapping for Brain-Computer Interface Stimulation of the Ventroposterior Medial Nucleus of the Thalamus in Rats with Implanted Electrodes.

    PubMed

    Zhu, Yunqi; Xu, Kedi; Xu, Caiyun; Zhang, Jiacheng; Ji, Jianfeng; Zheng, Xiaoxiang; Zhang, Hong; Tian, Mei

    2016-07-01

    Brain-computer interface (BCI) technology has great potential for improving the quality of life for neurologic patients. This study aimed to use PET mapping for BCI-based stimulation in a rat model with electrodes implanted in the ventroposterior medial (VPM) nucleus of the thalamus. PET imaging studies were conducted before and after stimulation of the right VPM. Stimulation induced significant orienting performance. (18)F-FDG uptake increased significantly in the paraventricular thalamic nucleus, septohippocampal nucleus, olfactory bulb, left crus II of the ansiform lobule of the cerebellum, and bilaterally in the lateral septum, amygdala, piriform cortex, endopiriform nucleus, and insular cortex, but it decreased in the right secondary visual cortex, right simple lobule of the cerebellum, and bilaterally in the somatosensory cortex. This study demonstrated that PET mapping after VPM stimulation can identify specific brain regions associated with orienting performance. PET molecular imaging may be an important approach for BCI-based research and its clinical applications. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  4. Exploring differences between left and right hand motor imagery via spatio-temporal EEG microstate.

    PubMed

    Liu, Weifeng; Liu, Xiaoming; Dai, Ruomeng; Tang, Xiaoying

    2017-12-01

    EEG-based motor imagery is very useful in brain-computer interface. How to identify the imaging movement is still being researched. Electroencephalography (EEG) microstates reflect the spatial configuration of quasi-stable electrical potential topographies. Different microstates represent different brain functions. In this paper, microstate method was used to process the EEG-based motor imagery to obtain microstate. The single-trial EEG microstate sequences differences between two motor imagery tasks - imagination of left and right hand movement were investigated. The microstate parameters - duration, time coverage and occurrence per second as well as the transition probability of the microstate sequences were obtained with spatio-temporal microstate analysis. The results were shown significant differences (P < 0.05) with paired t-test between the two tasks. Then these microstate parameters were used as features and a linear support vector machine (SVM) was utilized to classify the two tasks with mean accuracy 89.17%, superior performance compared to the other methods. These indicate that the microstate can be a promising feature to improve the performance of the brain-computer interface classification.

  5. [The current state of the brain-computer interface problem].

    PubMed

    Shurkhay, V A; Aleksandrova, E V; Potapov, A A; Goryainov, S A

    2015-01-01

    It was only 40 years ago that the first PC appeared. Over this period, rather short in historical terms, we have witnessed the revolutionary changes in lives of individuals and the entire society. Computer technologies are tightly connected with any field, either directly or indirectly. We can currently claim that computers are manifold superior to a human mind in terms of a number of parameters; however, machines lack the key feature: they are incapable of independent thinking (like a human). However, the key to successful development of humankind is collaboration between the brain and the computer rather than competition. Such collaboration when a computer broadens, supplements, or replaces some brain functions is known as the brain-computer interface. Our review focuses on real-life implementation of this collaboration.

  6. Review of Sparse Representation-Based Classification Methods on EEG Signal Processing for Epilepsy Detection, Brain-Computer Interface and Cognitive Impairment

    PubMed Central

    Wen, Dong; Jia, Peilei; Lian, Qiusheng; Zhou, Yanhong; Lu, Chengbiao

    2016-01-01

    At present, the sparse representation-based classification (SRC) has become an important approach in electroencephalograph (EEG) signal analysis, by which the data is sparsely represented on the basis of a fixed dictionary or learned dictionary and classified based on the reconstruction criteria. SRC methods have been used to analyze the EEG signals of epilepsy, cognitive impairment and brain computer interface (BCI), which made rapid progress including the improvement in computational accuracy, efficiency and robustness. However, these methods have deficiencies in real-time performance, generalization ability and the dependence of labeled sample in the analysis of the EEG signals. This mini review described the advantages and disadvantages of the SRC methods in the EEG signal analysis with the expectation that these methods can provide the better tools for analyzing EEG signals. PMID:27458376

  7. Active tactile exploration using a brain-machine-brain interface.

    PubMed

    O'Doherty, Joseph E; Lebedev, Mikhail A; Ifft, Peter J; Zhuang, Katie Z; Shokur, Solaiman; Bleuler, Hannes; Nicolelis, Miguel A L

    2011-10-05

    Brain-machine interfaces use neuronal activity recorded from the brain to establish direct communication with external actuators, such as prosthetic arms. It is hoped that brain-machine interfaces can be used to restore the normal sensorimotor functions of the limbs, but so far they have lacked tactile sensation. Here we report the operation of a brain-machine-brain interface (BMBI) that both controls the exploratory reaching movements of an actuator and allows signalling of artificial tactile feedback through intracortical microstimulation (ICMS) of the primary somatosensory cortex. Monkeys performed an active exploration task in which an actuator (a computer cursor or a virtual-reality arm) was moved using a BMBI that derived motor commands from neuronal ensemble activity recorded in the primary motor cortex. ICMS feedback occurred whenever the actuator touched virtual objects. Temporal patterns of ICMS encoded the artificial tactile properties of each object. Neuronal recordings and ICMS epochs were temporally multiplexed to avoid interference. Two monkeys operated this BMBI to search for and distinguish one of three visually identical objects, using the virtual-reality arm to identify the unique artificial texture associated with each. These results suggest that clinical motor neuroprostheses might benefit from the addition of ICMS feedback to generate artificial somatic perceptions associated with mechanical, robotic or even virtual prostheses.

  8. Application of a brain-computer interface for person authentication using EEG responses to photo stimuli.

    PubMed

    Mu, Zhendong; Yin, Jinhai; Hu, Jianfeng

    2018-01-01

    In this paper, a person authentication system that can effectively identify individuals by generating unique electroencephalogram signal features in response to self-face and non-self-face photos is presented. In order to achieve a good stability performance, the sequence of self-face photo including first-occurrence position and non-first-occurrence position are taken into account in the serial occurrence of visual stimuli. In addition, a Fisher linear classification method and event-related potential technique for feature analysis is adapted to yield remarkably better outcomes than that by most of the existing methods in the field. The results have shown that the EEG-based person authentications via brain-computer interface can be considered as a suitable approach for biometric authentication system.

  9. Collaborative Brain-Computer Interface for Aiding Decision-Making

    PubMed Central

    Poli, Riccardo; Valeriani, Davide; Cinel, Caterina

    2014-01-01

    We look at the possibility of integrating the percepts from multiple non-communicating observers as a means of achieving better joint perception and better group decisions. Our approach involves the combination of a brain-computer interface with human behavioural responses. To test ideas in controlled conditions, we asked observers to perform a simple matching task involving the rapid sequential presentation of pairs of visual patterns and the subsequent decision as whether the two patterns in a pair were the same or different. We recorded the response times of observers as well as a neural feature which predicts incorrect decisions and, thus, indirectly indicates the confidence of the decisions made by the observers. We then built a composite neuro-behavioural feature which optimally combines the two measures. For group decisions, we uses a majority rule and three rules which weigh the decisions of each observer based on response times and our neural and neuro-behavioural features. Results indicate that the integration of behavioural responses and neural features can significantly improve accuracy when compared with the majority rule. An analysis of event-related potentials indicates that substantial differences are present in the proximity of the response for correct and incorrect trials, further corroborating the idea of using hybrids of brain-computer interfaces and traditional strategies for improving decision making. PMID:25072739

  10. Effects of training and motivation on auditory P300 brain-computer interface performance.

    PubMed

    Baykara, E; Ruf, C A; Fioravanti, C; Käthner, I; Simon, N; Kleih, S C; Kübler, A; Halder, S

    2016-01-01

    Brain-computer interface (BCI) technology aims at helping end-users with severe motor paralysis to communicate with their environment without using the natural output pathways of the brain. For end-users in complete paralysis, loss of gaze control may necessitate non-visual BCI systems. The present study investigated the effect of training on performance with an auditory P300 multi-class speller paradigm. For half of the participants, spatial cues were added to the auditory stimuli to see whether performance can be further optimized. The influence of motivation, mood and workload on performance and P300 component was also examined. In five sessions, 16 healthy participants were instructed to spell several words by attending to animal sounds representing the rows and columns of a 5 × 5 letter matrix. 81% of the participants achieved an average online accuracy of ⩾ 70%. From the first to the fifth session information transfer rates increased from 3.72 bits/min to 5.63 bits/min. Motivation significantly influenced P300 amplitude and online ITR. No significant facilitative effect of spatial cues on performance was observed. Training improves performance in an auditory BCI paradigm. Motivation influences performance and P300 amplitude. The described auditory BCI system may help end-users to communicate independently of gaze control with their environment. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Detecting number processing and mental calculation in patients with disorders of consciousness using a hybrid brain-computer interface system.

    PubMed

    Li, Yuanqing; Pan, Jiahui; He, Yanbin; Wang, Fei; Laureys, Steven; Xie, Qiuyou; Yu, Ronghao

    2015-12-15

    For patients with disorders of consciousness such as coma, a vegetative state or a minimally conscious state, one challenge is to detect and assess the residual cognitive functions in their brains. Number processing and mental calculation are important brain functions but are difficult to detect in patients with disorders of consciousness using motor response-based clinical assessment scales such as the Coma Recovery Scale-Revised due to the patients' motor impairments and inability to provide sufficient motor responses for number- and calculation-based communication. In this study, we presented a hybrid brain-computer interface that combines P300 and steady state visual evoked potentials to detect number processing and mental calculation in Han Chinese patients with disorders of consciousness. Eleven patients with disorders of consciousness who were in a vegetative state (n = 6) or in a minimally conscious state (n = 3) or who emerged from a minimally conscious state (n = 2) participated in the brain-computer interface-based experiment. During the experiment, the patients with disorders of consciousness were instructed to perform three tasks, i.e., number recognition, number comparison, and mental calculation, including addition and subtraction. In each experimental trial, an arithmetic problem was first presented. Next, two number buttons, only one of which was the correct answer to the problem, flickered at different frequencies to evoke steady state visual evoked potentials, while the frames of the two buttons flashed in a random order to evoke P300 potentials. The patients needed to focus on the target number button (the correct answer). Finally, the brain-computer interface system detected P300 and steady state visual evoked potentials to determine the button to which the patients attended, further presenting the results as feedback. Two of the six patients who were in a vegetative state, one of the three patients who were in a minimally conscious state, and the two patients that emerged from a minimally conscious state achieved accuracies significantly greater than the chance level. Furthermore, P300 potentials and steady state visual evoked potentials were observed in the electroencephalography signals from the five patients. Number processing and arithmetic abilities as well as command following were demonstrated in the five patients. Furthermore, our results suggested that through brain-computer interface systems, many cognitive experiments may be conducted in patients with disorders of consciousness, although they cannot provide sufficient behavioral responses.

  12. Mental Task Evaluation for Hybrid NIRS-EEG Brain-Computer Interfaces

    PubMed Central

    Gupta, Rishabh; Falk, Tiago H.

    2017-01-01

    Based on recent electroencephalography (EEG) and near-infrared spectroscopy (NIRS) studies that showed that tasks such as motor imagery and mental arithmetic induce specific neural response patterns, we propose a hybrid brain-computer interface (hBCI) paradigm in which EEG and NIRS data are fused to improve binary classification performance. We recorded simultaneous NIRS-EEG data from nine participants performing seven mental tasks (word generation, mental rotation, subtraction, singing and navigation, and motor and face imagery). Classifiers were trained for each possible pair of tasks using (1) EEG features alone, (2) NIRS features alone, and (3) EEG and NIRS features combined, to identify the best task pairs and assess the usefulness of a multimodal approach. The NIRS-EEG approach led to an average increase in peak kappa of 0.03 when using features extracted from one-second windows (equivalent to an increase of 1.5% in classification accuracy for balanced classes). The increase was much stronger (0.20, corresponding to an 10% accuracy increase) when focusing on time windows of high NIRS performance. The EEG and NIRS analyses further unveiled relevant brain regions and important feature types. This work provides a basis for future NIRS-EEG hBCI studies aiming to improve classification performance toward more efficient and flexible BCIs. PMID:29181021

  13. Group Augmentation in Realistic Visual-Search Decisions via a Hybrid Brain-Computer Interface.

    PubMed

    Valeriani, Davide; Cinel, Caterina; Poli, Riccardo

    2017-08-10

    Groups have increased sensing and cognition capabilities that typically allow them to make better decisions. However, factors such as communication biases and time constraints can lead to less-than-optimal group decisions. In this study, we use a hybrid Brain-Computer Interface (hBCI) to improve the performance of groups undertaking a realistic visual-search task. Our hBCI extracts neural information from EEG signals and combines it with response times to build an estimate of the decision confidence. This is used to weigh individual responses, resulting in improved group decisions. We compare the performance of hBCI-assisted groups with the performance of non-BCI groups using standard majority voting, and non-BCI groups using weighted voting based on reported decision confidence. We also investigate the impact on group performance of a computer-mediated form of communication between members. Results across three experiments suggest that the hBCI provides significant advantages over non-BCI decision methods in all cases. We also found that our form of communication increases individual error rates by almost 50% compared to non-communicating observers, which also results in worse group performance. Communication also makes reported confidence uncorrelated with the decision correctness, thereby nullifying its value in weighing votes. In summary, best decisions are achieved by hBCI-assisted, non-communicating groups.

  14. A Gaussian mixture model based adaptive classifier for fNIRS brain-computer interfaces and its testing via simulation

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Jiang, Yi-han; Duan, Lian; Zhu, Chao-zhe

    2017-08-01

    Objective. Functional near infra-red spectroscopy (fNIRS) is a promising brain imaging technology for brain-computer interfaces (BCI). Future clinical uses of fNIRS will likely require operation over long time spans, during which neural activation patterns may change. However, current decoders for fNIRS signals are not designed to handle changing activation patterns. The objective of this study is to test via simulations a new adaptive decoder for fNIRS signals, the Gaussian mixture model adaptive classifier (GMMAC). Approach. GMMAC can simultaneously classify and track activation pattern changes without the need for ground-truth labels. This adaptive classifier uses computationally efficient variational Bayesian inference to label new data points and update mixture model parameters, using the previous model parameters as priors. We test GMMAC in simulations in which neural activation patterns change over time and compare to static decoders and unsupervised adaptive linear discriminant analysis classifiers. Main results. Our simulation experiments show GMMAC can accurately decode under time-varying activation patterns: shifts of activation region, expansions of activation region, and combined contractions and shifts of activation region. Furthermore, the experiments show the proposed method can track the changing shape of the activation region. Compared to prior work, GMMAC performed significantly better than the other unsupervised adaptive classifiers on a difficult activation pattern change simulation: 99% versus  <54% in two-choice classification accuracy. Significance. We believe GMMAC will be useful for clinical fNIRS-based brain-computer interfaces, including neurofeedback training systems, where operation over long time spans is required.

  15. Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users.

    PubMed

    Rutkowski, Tomasz M; Mori, Hiromu

    2015-04-15

    The paper presents a report on the recently developed BCI alternative for users suffering from impaired vision (lack of focus or eye-movements) or from the so-called "ear-blocking-syndrome" (limited hearing). We report on our recent studies of the extents to which vibrotactile stimuli delivered to the head of a user can serve as a platform for a brain computer interface (BCI) paradigm. In the proposed tactile and bone-conduction auditory BCI novel multiple head positions are used to evoke combined somatosensory and auditory (via the bone conduction effect) P300 brain responses, in order to define a multimodal tactile and bone-conduction auditory brain computer interface (tbcaBCI). In order to further remove EEG interferences and to improve P300 response classification synchrosqueezing transform (SST) is applied. SST outperforms the classical time-frequency analysis methods of the non-linear and non-stationary signals such as EEG. The proposed method is also computationally more effective comparing to the empirical mode decomposition. The SST filtering allows for online EEG preprocessing application which is essential in the case of BCI. Experimental results with healthy BCI-naive users performing online tbcaBCI, validate the paradigm, while the feasibility of the concept is illuminated through information transfer rate case studies. We present a comparison of the proposed SST-based preprocessing method, combined with a logistic regression (LR) classifier, together with classical preprocessing and LDA-based classification BCI techniques. The proposed tbcaBCI paradigm together with data-driven preprocessing methods are a step forward in robust BCI applications research. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery from stroke: updates and advances.

    PubMed

    Boninger, Michael L; Wechsler, Lawrence R; Stein, Joel

    2014-11-01

    The aim of this study was to describe the current state and latest advances in robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery for stroke. The authors of this summary recently reviewed this work as part of a national presentation. The article represents the information included in each area. Each area has seen great advances and challenges as products move to market and experiments are ongoing. Robotics, stem cells, and brain-computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial.

  17. Robotics, Stem Cells and Brain Computer Interfaces in Rehabilitation and Recovery from Stroke; Updates and Advances

    PubMed Central

    Boninger, Michael L; Wechsler, Lawrence R.; Stein, Joel

    2014-01-01

    Objective To describe the current state and latest advances in robotics, stem cells, and brain computer interfaces in rehabilitation and recovery for stroke. Design The authors of this summary recently reviewed this work as part of a national presentation. The paper represents the information included in each area. Results Each area has seen great advances and challenges as products move to market and experiments are ongoing. Conclusion Robotics, stem cells, and brain computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial PMID:25313662

  18. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.

    PubMed

    Spüler, Martin; Rosenstiel, Wolfgang; Bogdan, Martin

    2012-01-01

    The goal of a Brain-Computer Interface (BCI) is to control a computer by pure brain activity. Recently, BCIs based on code-modulated visual evoked potentials (c-VEPs) have shown great potential to establish high-performance communication. In this paper we present a c-VEP BCI that uses online adaptation of the classifier to reduce calibration time and increase performance. We compare two different approaches for online adaptation of the system: an unsupervised method and a method that uses the detection of error-related potentials. Both approaches were tested in an online study, in which an average accuracy of 96% was achieved with adaptation based on error-related potentials. This accuracy corresponds to an average information transfer rate of 144 bit/min, which is the highest bitrate reported so far for a non-invasive BCI. In a free-spelling mode, the subjects were able to write with an average of 21.3 error-free letters per minute, which shows the feasibility of the BCI system in a normal-use scenario. In addition we show that a calibration of the BCI system solely based on the detection of error-related potentials is possible, without knowing the true class labels.

  19. Brain Computer Interfaces for Enhanced Interaction with Mobile Robot Agents

    DTIC Science & Technology

    2016-07-27

    synergistic and complementary way. This project focused on acquiring a mobile robotic agent platform that can be used to explore these interfaces...providing a test environment where the human control of a robot agent can be experimentally validated in 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...Distribution Unlimited UU UU UU UU 27-07-2016 17-Sep-2013 16-Sep-2014 Final Report: Brain Computer Interfaces for Enhanced Interactions with Mobile Robot

  20. Fully Implanted Brain-Computer Interface in a Locked-In Patient with ALS.

    PubMed

    Vansteensel, Mariska J; Pels, Elmar G M; Bleichner, Martin G; Branco, Mariana P; Denison, Timothy; Freudenburg, Zachary V; Gosselaar, Peter; Leinders, Sacha; Ottens, Thomas H; Van Den Boom, Max A; Van Rijen, Peter C; Aarnoutse, Erik J; Ramsey, Nick F

    2016-11-24

    Options for people with severe paralysis who have lost the ability to communicate orally are limited. We describe a method for communication in a patient with late-stage amyotrophic lateral sclerosis (ALS), involving a fully implanted brain-computer interface that consists of subdural electrodes placed over the motor cortex and a transmitter placed subcutaneously in the left side of the thorax. By attempting to move the hand on the side opposite the implanted electrodes, the patient accurately and independently controlled a computer typing program 28 weeks after electrode placement, at the equivalent of two letters per minute. The brain-computer interface offered autonomous communication that supplemented and at times supplanted the patient's eye-tracking device. (Funded by the Government of the Netherlands and the European Union; ClinicalTrials.gov number, NCT02224469 .).

  1. PAGANI Toolkit: Parallel graph-theoretical analysis package for brain network big data.

    PubMed

    Du, Haixiao; Xia, Mingrui; Zhao, Kang; Liao, Xuhong; Yang, Huazhong; Wang, Yu; He, Yong

    2018-05-01

    The recent collection of unprecedented quantities of neuroimaging data with high spatial resolution has led to brain network big data. However, a toolkit for fast and scalable computational solutions is still lacking. Here, we developed the PArallel Graph-theoretical ANalysIs (PAGANI) Toolkit based on a hybrid central processing unit-graphics processing unit (CPU-GPU) framework with a graphical user interface to facilitate the mapping and characterization of high-resolution brain networks. Specifically, the toolkit provides flexible parameters for users to customize computations of graph metrics in brain network analyses. As an empirical example, the PAGANI Toolkit was applied to individual voxel-based brain networks with ∼200,000 nodes that were derived from a resting-state fMRI dataset of 624 healthy young adults from the Human Connectome Project. Using a personal computer, this toolbox completed all computations in ∼27 h for one subject, which is markedly less than the 118 h required with a single-thread implementation. The voxel-based functional brain networks exhibited prominent small-world characteristics and densely connected hubs, which were mainly located in the medial and lateral fronto-parietal cortices. Moreover, the female group had significantly higher modularity and nodal betweenness centrality mainly in the medial/lateral fronto-parietal and occipital cortices than the male group. Significant correlations between the intelligence quotient and nodal metrics were also observed in several frontal regions. Collectively, the PAGANI Toolkit shows high computational performance and good scalability for analyzing connectome big data and provides a friendly interface without the complicated configuration of computing environments, thereby facilitating high-resolution connectomics research in health and disease. © 2018 Wiley Periodicals, Inc.

  2. Implementation of an Embedded Web Server Application for Wireless Control of Brain Computer Interface Based Home Environments.

    PubMed

    Aydın, Eda Akman; Bay, Ömer Faruk; Güler, İnan

    2016-01-01

    Brain Computer Interface (BCI) based environment control systems could facilitate life of people with neuromuscular diseases, reduces dependence on their caregivers, and improves their quality of life. As well as easy usage, low-cost, and robust system performance, mobility is an important functionality expected from a practical BCI system in real life. In this study, in order to enhance users' mobility, we propose internet based wireless communication between BCI system and home environment. We designed and implemented a prototype of an embedded low-cost, low power, easy to use web server which is employed in internet based wireless control of a BCI based home environment. The embedded web server provides remote access to the environmental control module through BCI and web interfaces. While the proposed system offers to BCI users enhanced mobility, it also provides remote control of the home environment by caregivers as well as the individuals in initial stages of neuromuscular disease. The input of BCI system is P300 potentials. We used Region Based Paradigm (RBP) as stimulus interface. Performance of the BCI system is evaluated on data recorded from 8 non-disabled subjects. The experimental results indicate that the proposed web server enables internet based wireless control of electrical home appliances successfully through BCIs.

  3. The Self-Paced Graz Brain-Computer Interface: Methods and Applications

    PubMed Central

    Scherer, Reinhold; Schloegl, Alois; Lee, Felix; Bischof, Horst; Janša, Janez; Pfurtscheller, Gert

    2007-01-01

    We present the self-paced 3-class Graz brain-computer interface (BCI) which is based on the detection of sensorimotor electroencephalogram (EEG) rhythms induced by motor imagery. Self-paced operation means that the BCI is able to determine whether the ongoing brain activity is intended as control signal (intentional control) or not (non-control state). The presented system is able to automatically reduce electrooculogram (EOG) artifacts, to detect electromyographic (EMG) activity, and uses only three bipolar EEG channels. Two applications are presented: the freeSpace virtual environment (VE) and the Brainloop interface. The freeSpace is a computer-game-like application where subjects have to navigate through the environment and collect coins by autonomously selecting navigation commands. Three subjects participated in these feedback experiments and each learned to navigate through the VE and collect coins. Two out of the three succeeded in collecting all three coins. The Brainloop interface provides an interface between the Graz-BCI and Google Earth. PMID:18350133

  4. Detecting Mental States by Machine Learning Techniques: The Berlin Brain-Computer Interface

    NASA Astrophysics Data System (ADS)

    Blankertz, Benjamin; Tangermann, Michael; Vidaurre, Carmen; Dickhaus, Thorsten; Sannelli, Claudia; Popescu, Florin; Fazli, Siamac; Danóczy, Márton; Curio, Gabriel; Müller, Klaus-Robert

    The Berlin Brain-Computer Interface Brain-Computer Interface (BBCI) uses a machine learning approach to extract user-specific patterns from high-dimensional EEG-features optimized for revealing the user's mental state. Classical BCI applications are brain actuated tools for patients such as prostheses (see Section 4.1) or mental text entry systems ([1] and see [2-5] for an overview on BCI). In these applications, the BBCI uses natural motor skills of the users and specifically tailored pattern recognition algorithms for detecting the user's intent. But beyond rehabilitation, there is a wide range of possible applications in which BCI technology is used to monitor other mental states, often even covert ones (see also [6] in the fMRI realm). While this field is still largely unexplored, two examples from our studies are exemplified in Sections 4.3 and 4.4.

  5. Toward a brain-computer interface for Alzheimer's disease patients by combining classical conditioning and brain state classification.

    PubMed

    Liberati, Giulia; Dalboni da Rocha, Josué Luiz; van der Heiden, Linda; Raffone, Antonino; Birbaumer, Niels; Olivetti Belardinelli, Marta; Sitaram, Ranganatha

    2012-01-01

    Brain-computer interfaces (BCIs) provide alternative methods for communicating and acting on the world, since messages or commands are conveyed from the brain to an external device without using the normal output pathways of peripheral nerves and muscles. Alzheimer's disease (AD) patients in the most advanced stages, who have lost the ability to communicate verbally, could benefit from a BCI that may allow them to convey basic thoughts (e.g., "yes" and "no") and emotions. There is currently no report of such research, mostly because the cognitive deficits in AD patients pose serious limitations to the use of traditional BCIs, which are normally based on instrumental learning and require users to self-regulate their brain activation. Recent studies suggest that not only self-regulated brain signals, but also involuntary signals, for instance related to emotional states, may provide useful information about the user, opening up the path for so-called "affective BCIs". These interfaces do not necessarily require users to actively perform a cognitive task, and may therefore be used with patients who are cognitively challenged. In the present hypothesis paper, we propose a paradigm shift from instrumental learning to classical conditioning, with the aim of discriminating "yes" and "no" thoughts after associating them to positive and negative emotional stimuli respectively. This would represent a first step in the development of a BCI that could be used by AD patients, lending a new direction not only for communication, but also for rehabilitation and diagnosis.

  6. A Genetic-Based Feature Selection Approach in the Identification of Left/Right Hand Motor Imagery for a Brain-Computer Interface

    PubMed Central

    Yaacoub, Charles; Mhanna, Georges; Rihana, Sandy

    2017-01-01

    Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5%) while improving the accuracy, sensitivity, specificity, and precision of the classifier. PMID:28124985

  7. A Genetic-Based Feature Selection Approach in the Identification of Left/Right Hand Motor Imagery for a Brain-Computer Interface.

    PubMed

    Yaacoub, Charles; Mhanna, Georges; Rihana, Sandy

    2017-01-23

    Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method that improves left/right hand movement identification of a motor imagery brain-computer interface, based on genetic algorithms and artificial neural networks used as classifiers. Raw electroencephalography signals are first preprocessed using appropriate filtering. Feature extraction is carried out afterwards, based on spectral and temporal signal components, and thus a feature vector is constructed. As various features might be inaccurate and mislead the classifier, thus degrading the overall system performance, the proposed approach identifies a subset of features from a large feature space, such that the classifier error rate is reduced. Experimental results show that the proposed method is able to reduce the number of features to as low as 0.5% (i.e., the number of ignored features can reach 99.5%) while improving the accuracy, sensitivity, specificity, and precision of the classifier.

  8. Evaluation of a modified Fitts law brain-computer interface target acquisition task in able and motor disabled individuals

    NASA Astrophysics Data System (ADS)

    Felton, E. A.; Radwin, R. G.; Wilson, J. A.; Williams, J. C.

    2009-10-01

    A brain-computer interface (BCI) is a communication system that takes recorded brain signals and translates them into real-time actions, in this case movement of a cursor on a computer screen. This work applied Fitts' law to the evaluation of performance on a target acquisition task during sensorimotor rhythm-based BCI training. Fitts' law, which has been used as a predictor of movement time in studies of human movement, was used here to determine the information transfer rate, which was based on target acquisition time and target difficulty. The information transfer rate was used to make comparisons between control modalities and subject groups on the same task. Data were analyzed from eight able-bodied and five motor disabled participants who wore an electrode cap that recorded and translated their electroencephalogram (EEG) signals into computer cursor movements. Direct comparisons were made between able-bodied and disabled subjects, and between EEG and joystick cursor control in able-bodied subjects. Fitts' law aptly described the relationship between movement time and index of difficulty for each task movement direction when evaluated separately and averaged together. This study showed that Fitts' law can be successfully applied to computer cursor movement controlled by neural signals.

  9. The PennBMBI: Design of a General Purpose Wireless Brain-Machine-Brain Interface System.

    PubMed

    Liu, Xilin; Zhang, Milin; Subei, Basheer; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan

    2015-04-01

    In this paper, a general purpose wireless Brain-Machine-Brain Interface (BMBI) system is presented. The system integrates four battery-powered wireless devices for the implementation of a closed-loop sensorimotor neural interface, including a neural signal analyzer, a neural stimulator, a body-area sensor node and a graphic user interface implemented on the PC end. The neural signal analyzer features a four channel analog front-end with configurable bandpass filter, gain stage, digitization resolution, and sampling rate. The target frequency band is configurable from EEG to single unit activity. A noise floor of 4.69 μVrms is achieved over a bandwidth from 0.05 Hz to 6 kHz. Digital filtering, neural feature extraction, spike detection, sensing-stimulating modulation, and compressed sensing measurement are realized in a central processing unit integrated in the analyzer. A flash memory card is also integrated in the analyzer. A 2-channel neural stimulator with a compliance voltage up to ± 12 V is included. The stimulator is capable of delivering unipolar or bipolar, charge-balanced current pulses with programmable pulse shape, amplitude, width, pulse train frequency and latency. A multi-functional sensor node, including an accelerometer, a temperature sensor, a flexiforce sensor and a general sensor extension port has been designed. A computer interface is designed to monitor, control and configure all aforementioned devices via a wireless link, according to a custom designed communication protocol. Wireless closed-loop operation between the sensory devices, neural stimulator, and neural signal analyzer can be configured. The proposed system was designed to link two sites in the brain, bridging the brain and external hardware, as well as creating new sensory and motor pathways for clinical practice. Bench test and in vivo experiments are performed to verify the functions and performances of the system.

  10. Bigger data for big data: from Twitter to brain-computer interfaces.

    PubMed

    Roesch, Etienne B; Stahl, Frederic; Gaber, Mohamed Medhat

    2014-02-01

    We are sympathetic with Bentley et al.'s attempt to encompass the wisdom of crowds in a generative model, but posit that a successful attempt at using big data will include more sensitive measurements, more varied sources of information, and will also build from the indirect information available through technology, from ancillary technical features to data from brain-computer interfaces.

  11. Effect of mindfulness meditation on brain-computer interface performance.

    PubMed

    Tan, Lee-Fan; Dienes, Zoltan; Jansari, Ashok; Goh, Sing-Yau

    2014-01-01

    Electroencephalogram based brain-computer interfaces (BCIs) enable stroke and motor neuron disease patients to communicate and control devices. Mindfulness meditation has been claimed to enhance metacognitive regulation. The current study explores whether mindfulness meditation training can thus improve the performance of BCI users. To eliminate the possibility of expectation of improvement influencing the results, we introduced a music training condition. A norming study found that both meditation and music interventions elicited clear expectations for improvement on the BCI task, with the strength of expectation being closely matched. In the main 12 week intervention study, seventy-six healthy volunteers were randomly assigned to three groups: a meditation training group; a music training group; and a no treatment control group. The mindfulness meditation training group obtained a significantly higher BCI accuracy compared to both the music training and no-treatment control groups after the intervention, indicating effects of meditation above and beyond expectancy effects. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Lateralized responses during covert attention are modulated by target eccentricity.

    PubMed

    Bahramisharif, Ali; Heskes, Tom; Jensen, Ole; van Gerven, Marcel A J

    2011-03-10

    Various studies have demonstrated that covert attention to different locations in the visual field can be used as a control signal for brain computer interfacing. It is well known that when covert attention is directed to the left visual hemifield, posterior alpha activity decreases in the right hemisphere while simultaneously increasing in the left hemisphere and vice versa. However, it remains unknown if and how the classical lateralization pattern depends on the eccentricity of the locations to which one attends. In this paper we study the effect of target eccentricity on the performance of a brain computer interface system that is driven by covert attention. Results show that the lateralization pattern becomes more pronounced as target eccentricity increases and suggest that in the current design the minimum eccentricity for having an acceptable classification performance for two targets at equal distance from fixation in opposite hemifields is about 6° of visual angle. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. BMI cyberworkstation: enabling dynamic data-driven brain-machine interface research through cyberinfrastructure.

    PubMed

    Zhao, Ming; Rattanatamrong, Prapaporn; DiGiovanna, Jack; Mahmoudi, Babak; Figueiredo, Renato J; Sanchez, Justin C; Príncipe, José C; Fortes, José A B

    2008-01-01

    Dynamic data-driven brain-machine interfaces (DDDBMI) have great potential to advance the understanding of neural systems and improve the design of brain-inspired rehabilitative systems. This paper presents a novel cyberinfrastructure that couples in vivo neurophysiology experimentation with massive computational resources to provide seamless and efficient support of DDDBMI research. Closed-loop experiments can be conducted with in vivo data acquisition, reliable network transfer, parallel model computation, and real-time robot control. Behavioral experiments with live animals are supported with real-time guarantees. Offline studies can be performed with various configurations for extensive analysis and training. A Web-based portal is also provided to allow users to conveniently interact with the cyberinfrastructure, conducting both experimentation and analysis. New motor control models are developed based on this approach, which include recursive least square based (RLS) and reinforcement learning based (RLBMI) algorithms. The results from an online RLBMI experiment shows that the cyberinfrastructure can successfully support DDDBMI experiments and meet the desired real-time requirements.

  14. Manipulating attention via mindfulness induction improves P300-based brain-computer interface performance

    NASA Astrophysics Data System (ADS)

    Lakey, Chad E.; Berry, Daniel R.; Sellers, Eric W.

    2011-04-01

    In this study, we examined the effects of a short mindfulness meditation induction (MMI) on the performance of a P300-based brain-computer interface (BCI) task. We expected that MMI would harness present-moment attentional resources, resulting in two positive consequences for P300-based BCI use. Specifically, we believed that MMI would facilitate increases in task accuracy and promote the production of robust P300 amplitudes. Sixteen-channel electroencephalographic data were recorded from 18 subjects using a row/column speller task paradigm. Nine subjects participated in a 6 min MMI and an additional nine subjects served as a control group. Subjects were presented with a 6 × 6 matrix of alphanumeric characters on a computer monitor. Stimuli were flashed at a stimulus onset asynchrony (SOA) of 125 ms. Calibration data were collected on 21 items without providing feedback. These data were used to derive a stepwise linear discriminate analysis classifier that was applied to an additional 14 items to evaluate accuracy. Offline performance analyses revealed that MMI subjects were significantly more accurate than control subjects. Likewise, MMI subjects produced significantly larger P300 amplitudes than control subjects at Cz and PO7. The discussion focuses on the potential attentional benefits of MMI for P300-based BCI performance.

  15. Bipolar electrode selection for a motor imagery based brain computer interface

    NASA Astrophysics Data System (ADS)

    Lou, Bin; Hong, Bo; Gao, Xiaorong; Gao, Shangkai

    2008-09-01

    A motor imagery based brain-computer interface (BCI) provides a non-muscular communication channel that enables people with paralysis to control external devices using their motor imagination. Reducing the number of electrodes is critical to improving the portability and practicability of the BCI system. A novel method is proposed to reduce the number of electrodes to a total of four by finding the optimal positions of two bipolar electrodes. Independent component analysis (ICA) is applied to find the source components of mu and alpha rhythms, and optimal electrodes are chosen by comparing the projection weights of sources on each channel. The results of eight subjects demonstrate the better classification performance of the optimal layout compared with traditional layouts, and the stability of this optimal layout over a one week interval was further verified.

  16. The investigation of brain-computer interface for motor imagery and execution using functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Jiao, Xuejun; Xu, Fengang; Jiang, Jin; Yang, Hanjun; Cao, Yong; Fu, Jiahao

    2017-01-01

    Functional near-infrared spectroscopy (fNIRS), which can measure cortex hemoglobin activity, has been widely adopted in brain-computer interface (BCI). To explore the feasibility of recognizing motor imagery (MI) and motor execution (ME) in the same motion. We measured changes of oxygenated hemoglobin (HBO) and deoxygenated hemoglobin (HBR) on PFC and Motor Cortex (MC) when 15 subjects performing hand extension and finger tapping tasks. The mean, slope, quadratic coefficient and approximate entropy features were extracted from HBO as the input of support vector machine (SVM). For the four-class fNIRS-BCI classifiers, we realized 87.65% and 87.58% classification accuracy corresponding to hand extension and finger tapping tasks. In conclusion, it is effective for fNIRS-BCI to recognize MI and ME in the same motion.

  17. Brain-computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms.

    PubMed

    McFarland, Dennis J; Krusienski, Dean J; Wolpaw, Jonathan R

    2006-01-01

    The Wadsworth brain-computer interface (BCI), based on mu and beta sensorimotor rhythms, uses one- and two-dimensional cursor movement tasks and relies on user training. This is a real-time closed-loop system. Signal processing consists of channel selection, spatial filtering, and spectral analysis. Feature translation uses a regression approach and normalization. Adaptation occurs at several points in this process on the basis of different criteria and methods. It can use either feedforward (e.g., estimating the signal mean for normalization) or feedback control (e.g., estimating feature weights for the prediction equation). We view this process as the interaction between a dynamic user and a dynamic system that coadapt over time. Understanding the dynamics of this interaction and optimizing its performance represent a major challenge for BCI research.

  18. Building an organic computing device with multiple interconnected brains

    PubMed Central

    Pais-Vieira, Miguel; Chiuffa, Gabriela; Lebedev, Mikhail; Yadav, Amol; Nicolelis, Miguel A. L.

    2015-01-01

    Recently, we proposed that Brainets, i.e. networks formed by multiple animal brains, cooperating and exchanging information in real time through direct brain-to-brain interfaces, could provide the core of a new type of computing device: an organic computer. Here, we describe the first experimental demonstration of such a Brainet, built by interconnecting four adult rat brains. Brainets worked by concurrently recording the extracellular electrical activity generated by populations of cortical neurons distributed across multiple rats chronically implanted with multi-electrode arrays. Cortical neuronal activity was recorded and analyzed in real time, and then delivered to the somatosensory cortices of other animals that participated in the Brainet using intracortical microstimulation (ICMS). Using this approach, different Brainet architectures solved a number of useful computational problems, such as discrete classification, image processing, storage and retrieval of tactile information, and even weather forecasting. Brainets consistently performed at the same or higher levels than single rats in these tasks. Based on these findings, we propose that Brainets could be used to investigate animal social behaviors as well as a test bed for exploring the properties and potential applications of organic computers. PMID:26158615

  19. Performance assessment in brain-computer interface-based augmentative and alternative communication

    PubMed Central

    2013-01-01

    A large number of incommensurable metrics are currently used to report the performance of brain-computer interfaces (BCI) used for augmentative and alterative communication (AAC). The lack of standard metrics precludes the comparison of different BCI-based AAC systems, hindering rapid growth and development of this technology. This paper presents a review of the metrics that have been used to report performance of BCIs used for AAC from January 2005 to January 2012. We distinguish between Level 1 metrics used to report performance at the output of the BCI Control Module, which translates brain signals into logical control output, and Level 2 metrics at the Selection Enhancement Module, which translates logical control to semantic control. We recommend that: (1) the commensurate metrics Mutual Information or Information Transfer Rate (ITR) be used to report Level 1 BCI performance, as these metrics represent information throughput, which is of interest in BCIs for AAC; 2) the BCI-Utility metric be used to report Level 2 BCI performance, as it is capable of handling all current methods of improving BCI performance; (3) these metrics should be supplemented by information specific to each unique BCI configuration; and (4) studies involving Selection Enhancement Modules should report performance at both Level 1 and Level 2 in the BCI system. Following these recommendations will enable efficient comparison between both BCI Control and Selection Enhancement Modules, accelerating research and development of BCI-based AAC systems. PMID:23680020

  20. Effects of brain-computer interface-based functional electrical stimulation on brain activation in stroke patients: a pilot randomized controlled trial.

    PubMed

    Chung, EunJung; Kim, Jung-Hee; Park, Dae-Sung; Lee, Byoung-Hee

    2015-03-01

    [Purpose] This study sought to determine the effects of brain-computer interface-based functional electrical stimulation (BCI-FES) on brain activation in patients with stroke. [Subjects] The subjects were randomized to in a BCI-FES group (n=5) and a functional electrical stimulation (FES) group (n=5). [Methods] Patients in the BCI-FES group received ankle dorsiflexion training with FES for 30 minutes per day, 5 times under the brain-computer interface-based program. The FES group received ankle dorsiflexion training with FES for the same amount of time. [Results] The BCI-FES group demonstrated significant differences in the frontopolar regions 1 and 2 attention indexes, and frontopolar 1 activation index. The FES group demonstrated no significant differences. There were significant differences in the frontopolar 1 region activation index between the two groups after the interventions. [Conclusion] The results of this study suggest that BCI-FES training may be more effective in stimulating brain activation than only FES training in patients recovering from stroke.

  1. Student teaching and research laboratory focusing on brain-computer interface paradigms--A creative environment for computer science students.

    PubMed

    Rutkowski, Tomasz M

    2015-08-01

    This paper presents an applied concept of a brain-computer interface (BCI) student research laboratory (BCI-LAB) at the Life Science Center of TARA, University of Tsukuba, Japan. Several successful case studies of the student projects are reviewed together with the BCI Research Award 2014 winner case. The BCI-LAB design and project-based teaching philosophy is also explained. Future teaching and research directions summarize the review.

  2. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array

    NASA Astrophysics Data System (ADS)

    Simeral, J. D.; Kim, S.-P.; Black, M. J.; Donoghue, J. P.; Hochberg, L. R.

    2011-04-01

    The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point-and-click control of a computer interface to an individual with tetraplegia 1000 days after implantation of this sensor.

  3. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array

    PubMed Central

    Simeral, J D; Kim, S-P; Black, M J; Donoghue, J P; Hochberg, L R

    2013-01-01

    The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point-and-click control of a computer interface to an individual with tetraplegia 1000 days after implantation of this sensor. PMID:21436513

  4. Researching and Reducing the Health Burden of Stroke

    MedlinePlus

    ... the result of continuing research to map the brain and interface it with a computer to enable stroke patients to regain function. How important is the new effort to map the human brain? The brain is more complex than any computer ...

  5. Analogue mouse pointer control via an online steady state visual evoked potential (SSVEP) brain-computer interface

    NASA Astrophysics Data System (ADS)

    Wilson, John J.; Palaniappan, Ramaswamy

    2011-04-01

    The steady state visual evoked protocol has recently become a popular paradigm in brain-computer interface (BCI) applications. Typically (regardless of function) these applications offer the user a binary selection of targets that perform correspondingly discrete actions. Such discrete control systems are appropriate for applications that are inherently isolated in nature, such as selecting numbers from a keypad to be dialled or letters from an alphabet to be spelled. However motivation exists for users to employ proportional control methods in intrinsically analogue tasks such as the movement of a mouse pointer. This paper introduces an online BCI in which control of a mouse pointer is directly proportional to a user's intent. Performance is measured over a series of pointer movement tasks and compared to the traditional discrete output approach. Analogue control allowed subjects to move the pointer faster to the cued target location compared to discrete output but suffers more undesired movements overall. Best performance is achieved when combining the threshold to movement of traditional discrete techniques with the range of movement offered by proportional control.

  6. Visual stimuli for the P300 brain-computer interface: a comparison of white/gray and green/blue flicker matrices.

    PubMed

    Takano, Kouji; Komatsu, Tomoaki; Hata, Naoki; Nakajima, Yasoichi; Kansaku, Kenji

    2009-08-01

    The white/gray flicker matrix has been used as a visual stimulus for the so-called P300 brain-computer interface (BCI), but the white/gray flash stimuli might induce discomfort. In this study, we investigated the effectiveness of green/blue flicker matrices as visual stimuli. Ten able-bodied, non-trained subjects performed Alphabet Spelling (Japanese Alphabet: Hiragana) using an 8 x 10 matrix with three types of intensification/rest flicker combinations (L, luminance; C, chromatic; LC, luminance and chromatic); both online and offline performances were evaluated. The accuracy rate under the online LC condition was 80.6%. Offline analysis showed that the LC condition was associated with significantly higher accuracy than was the L or C condition (Tukey-Kramer, p < 0.05). No significant difference was observed between L and C conditions. The LC condition, which used the green/blue flicker matrix was associated with better performances in the P300 BCI. The green/blue chromatic flicker matrix can be an efficient tool for practical BCI application.

  7. Deep learning for hybrid EEG-fNIRS brain–computer interface: application to motor imagery classification

    NASA Astrophysics Data System (ADS)

    Chiarelli, Antonio Maria; Croce, Pierpaolo; Merla, Arcangelo; Zappasodi, Filippo

    2018-06-01

    Objective. Brain–computer interface (BCI) refers to procedures that link the central nervous system to a device. BCI was historically performed using electroencephalography (EEG). In the last years, encouraging results were obtained by combining EEG with other neuroimaging technologies, such as functional near infrared spectroscopy (fNIRS). A crucial step of BCI is brain state classification from recorded signal features. Deep artificial neural networks (DNNs) recently reached unprecedented complex classification outcomes. These performances were achieved through increased computational power, efficient learning algorithms, valuable activation functions, and restricted or back-fed neurons connections. By expecting significant overall BCI performances, we investigated the capabilities of combining EEG and fNIRS recordings with state-of-the-art deep learning procedures. Approach. We performed a guided left and right hand motor imagery task on 15 subjects with a fixed classification response time of 1 s and overall experiment length of 10 min. Left versus right classification accuracy of a DNN in the multi-modal recording modality was estimated and it was compared to standalone EEG and fNIRS and other classifiers. Main results. At a group level we obtained significant increase in performance when considering multi-modal recordings and DNN classifier with synergistic effect. Significance. BCI performances can be significantly improved by employing multi-modal recordings that provide electrical and hemodynamic brain activity information, in combination with advanced non-linear deep learning classification procedures.

  8. Overlapped Partitioning for Ensemble Classifiers of P300-Based Brain-Computer Interfaces

    PubMed Central

    Onishi, Akinari; Natsume, Kiyohisa

    2014-01-01

    A P300-based brain-computer interface (BCI) enables a wide range of people to control devices that improve their quality of life. Ensemble classifiers with naive partitioning were recently applied to the P300-based BCI and these classification performances were assessed. However, they were usually trained on a large amount of training data (e.g., 15300). In this study, we evaluated ensemble linear discriminant analysis (LDA) classifiers with a newly proposed overlapped partitioning method using 900 training data. In addition, the classification performances of the ensemble classifier with naive partitioning and a single LDA classifier were compared. One of three conditions for dimension reduction was applied: the stepwise method, principal component analysis (PCA), or none. The results show that an ensemble stepwise LDA (SWLDA) classifier with overlapped partitioning achieved a better performance than the commonly used single SWLDA classifier and an ensemble SWLDA classifier with naive partitioning. This result implies that the performance of the SWLDA is improved by overlapped partitioning and the ensemble classifier with overlapped partitioning requires less training data than that with naive partitioning. This study contributes towards reducing the required amount of training data and achieving better classification performance. PMID:24695550

  9. Overlapped partitioning for ensemble classifiers of P300-based brain-computer interfaces.

    PubMed

    Onishi, Akinari; Natsume, Kiyohisa

    2014-01-01

    A P300-based brain-computer interface (BCI) enables a wide range of people to control devices that improve their quality of life. Ensemble classifiers with naive partitioning were recently applied to the P300-based BCI and these classification performances were assessed. However, they were usually trained on a large amount of training data (e.g., 15300). In this study, we evaluated ensemble linear discriminant analysis (LDA) classifiers with a newly proposed overlapped partitioning method using 900 training data. In addition, the classification performances of the ensemble classifier with naive partitioning and a single LDA classifier were compared. One of three conditions for dimension reduction was applied: the stepwise method, principal component analysis (PCA), or none. The results show that an ensemble stepwise LDA (SWLDA) classifier with overlapped partitioning achieved a better performance than the commonly used single SWLDA classifier and an ensemble SWLDA classifier with naive partitioning. This result implies that the performance of the SWLDA is improved by overlapped partitioning and the ensemble classifier with overlapped partitioning requires less training data than that with naive partitioning. This study contributes towards reducing the required amount of training data and achieving better classification performance.

  10. Near infrared spectroscopy based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Ranganatha, Sitaram; Hoshi, Yoko; Guan, Cuntai

    2005-04-01

    A brain-computer interface (BCI) provides users with an alternative output channel other than the normal output path of the brain. BCI is being given much attention recently as an alternate mode of communication and control for the disabled, such as patients suffering from Amyotrophic Lateral Sclerosis (ALS) or "locked-in". BCI may also find applications in military, education and entertainment. Most of the existing BCI systems which rely on the brain's electrical activity use scalp EEG signals. The scalp EEG is an inherently noisy and non-linear signal. The signal is detrimentally affected by various artifacts such as the EOG, EMG, ECG and so forth. EEG is cumbersome to use in practice, because of the need for applying conductive gel, and the need for the subject to be immobile. There is an urgent need for a more accessible interface that uses a more direct measure of cognitive function to control an output device. The optical response of Near Infrared Spectroscopy (NIRS) denoting brain activation can be used as an alternative to electrical signals, with the intention of developing a more practical and user-friendly BCI. In this paper, a new method of brain-computer interface (BCI) based on NIRS is proposed. Preliminary results of our experiments towards developing this system are reported.

  11. Optimization of SSVEP brain responses with application to eight-command Brain-Computer Interface.

    PubMed

    Bakardjian, Hovagim; Tanaka, Toshihisa; Cichocki, Andrzej

    2010-01-18

    This study pursues the optimization of the brain responses to small reversing patterns in a Steady-State Visual Evoked Potentials (SSVEP) paradigm, which could be used to maximize the efficiency of applications such as Brain-Computer Interfaces (BCI). We investigated the SSVEP frequency response for 32 frequencies (5-84 Hz), and the time dynamics of the brain response at 8, 14 and 28 Hz, to aid the definition of the optimal neurophysiological parameters and to outline the onset-delay and other limitations of SSVEP stimuli in applications such as our previously described four-command BCI system. Our results showed that the 5.6-15.3 Hz pattern reversal stimulation evoked the strongest responses, peaking at 12 Hz, and exhibiting weaker local maxima at 28 and 42 Hz. After stimulation onset, the long-term SSVEP response was highly non-stationary and the dynamics, including the first peak, was frequency-dependent. The evaluation of the performance of a frequency-optimized eight-command BCI system with dynamic neurofeedback showed a mean success rate of 98%, and a time delay of 3.4s. Robust BCI performance was achieved by all subjects even when using numerous small patterns clustered very close to each other and moving rapidly in 2D space. These results emphasize the need for SSVEP applications to optimize not only the analysis algorithms but also the stimuli in order to maximize the brain responses they rely on. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  12. Brain-computer interfaces in neurological rehabilitation.

    PubMed

    Daly, Janis J; Wolpaw, Jonathan R

    2008-11-01

    Recent advances in analysis of brain signals, training patients to control these signals, and improved computing capabilities have enabled people with severe motor disabilities to use their brain signals for communication and control of objects in their environment, thereby bypassing their impaired neuromuscular system. Non-invasive, electroencephalogram (EEG)-based brain-computer interface (BCI) technologies can be used to control a computer cursor or a limb orthosis, for word processing and accessing the internet, and for other functions such as environmental control or entertainment. By re-establishing some independence, BCI technologies can substantially improve the lives of people with devastating neurological disorders such as advanced amyotrophic lateral sclerosis. BCI technology might also restore more effective motor control to people after stroke or other traumatic brain disorders by helping to guide activity-dependent brain plasticity by use of EEG brain signals to indicate to the patient the current state of brain activity and to enable the user to subsequently lower abnormal activity. Alternatively, by use of brain signals to supplement impaired muscle control, BCIs might increase the efficacy of a rehabilitation protocol and thus improve muscle control for the patient.

  13. Prediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model.

    PubMed

    Wang, Fang; Han, Yong; Wang, Bingyu; Peng, Qian; Huang, Xiaoqun; Miller, Karol; Wittek, Adam

    2018-05-12

    In this study, we investigate the effects of modelling choices for the brain-skull interface (layers of tissues between the brain and skull that determine boundary conditions for the brain) and the constitutive model of brain parenchyma on the brain responses under violent impact as predicted using computational biomechanics model. We used the head/brain model from Total HUman Model for Safety (THUMS)-extensively validated finite element model of the human body that has been applied in numerous injury biomechanics studies. The computations were conducted using a well-established nonlinear explicit dynamics finite element code LS-DYNA. We employed four approaches for modelling the brain-skull interface and four constitutive models for the brain tissue in the numerical simulations of the experiments on post-mortem human subjects exposed to violent impacts reported in the literature. The brain-skull interface models included direct representation of the brain meninges and cerebrospinal fluid, outer brain surface rigidly attached to the skull, frictionless sliding contact between the brain and skull, and a layer of spring-type cohesive elements between the brain and skull. We considered Ogden hyperviscoelastic, Mooney-Rivlin hyperviscoelastic, neo-Hookean hyperviscoelastic and linear viscoelastic constitutive models of the brain tissue. Our study indicates that the predicted deformations within the brain and related brain injury criteria are strongly affected by both the approach of modelling the brain-skull interface and the constitutive model of the brain parenchyma tissues. The results suggest that accurate prediction of deformations within the brain and risk of brain injury due to violent impact using computational biomechanics models may require representation of the meninges and subarachnoidal space with cerebrospinal fluid in the model and application of hyperviscoelastic (preferably Ogden-type) constitutive model for the brain tissue.

  14. Evaluating brain-computer interface performance using color in the P300 checkerboard speller.

    PubMed

    Ryan, D B; Townsend, G; Gates, N A; Colwell, K; Sellers, E W

    2017-10-01

    Current Brain-Computer Interface (BCI) systems typically flash an array of items from grey to white (GW). The objective of this study was to evaluate BCI performance using uniquely colored stimuli. In addition to the GW stimuli, the current study tested two types of color stimuli (grey to color [GC] and color intensification [CI]). The main hypotheses were that in a checkboard paradigm, unique color stimuli will: (1) increase BCI performance over the standard GW paradigm; (2) elicit larger event-related potentials (ERPs); and, (3) improve offline performance with an electrode selection algorithm (i.e., Jumpwise). Online results (n=36) showed that GC provides higher accuracy and information transfer rate than the CI and GW conditions. Waveform analysis showed that GC produced higher amplitude ERPs than CI and GW. Information transfer rate was improved by the Jumpwise-selected channel locations in all conditions. Unique color stimuli (GC) improved BCI performance and enhanced ERPs. Jumpwise-selected electrode locations improved offline performance. These results show that in a checkerboard paradigm, unique color stimuli increase BCI performance, are preferred by participants, and are important to the design of end-user applications; thus, could lead to an increase in end-user performance and acceptance of BCI technology. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.

  15. A cell-phone-based brain-computer interface for communication in daily life

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping

    2011-04-01

    Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.

  16. Nonlinear dimensionality reduction of electroencephalogram (EEG) for Brain Computer interfaces.

    PubMed

    Teli, Mohammad Nayeem; Anderson, Charles

    2009-01-01

    Patterns in electroencephalogram (EEG) signals are analyzed for a Brain Computer Interface (BCI). An important aspect of this analysis is the work on transformations of high dimensional EEG data to low dimensional spaces in which we can classify the data according to mental tasks being performed. In this research we investigate how a Neural Network (NN) in an auto-encoder with bottleneck configuration can find such a transformation. We implemented two approximate second-order methods to optimize the weights of these networks, because the more common first-order methods are very slow to converge for networks like these with more than three layers of computational units. The resulting non-linear projections of time embedded EEG signals show interesting separations that are related to tasks. The bottleneck networks do indeed discover nonlinear transformations to low-dimensional spaces that capture much of the information present in EEG signals. However, the resulting low-dimensional representations do not improve classification rates beyond what is possible using Quadratic Discriminant Analysis (QDA) on the original time-lagged EEG.

  17. A cell-phone-based brain-computer interface for communication in daily life.

    PubMed

    Wang, Yu-Te; Wang, Yijun; Jung, Tzyy-Ping

    2011-04-01

    Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.

  18. Brain computer interfaces for neurorehabilitation – its current status as a rehabilitation strategy post-stroke.

    PubMed

    van Dokkum, L E H; Ward, T; Laffont, I

    2015-02-01

    The idea of using brain computer interfaces (BCI) for rehabilitation emerged relatively recently. Basically, BCI for neurorehabilitation involves the recording and decoding of local brain signals generated by the patient, as he/her tries to perform a particular task (even if imperfect), or during a mental imagery task. The main objective is to promote the recruitment of selected brain areas involved and to facilitate neural plasticity. The recorded signal can be used in several ways: (i) to objectify and strengthen motor imagery-based training, by providing the patient feedback on the imagined motor task, for example, in a virtual environment; (ii) to generate a desired motor task via functional electrical stimulation or rehabilitative robotic orthoses attached to the patient's limb – encouraging and optimizing task execution as well as "closing" the disrupted sensorimotor loop by giving the patient the appropriate sensory feedback; (iii) to understand cerebral reorganizations after lesion, in order to influence or even quantify plasticity-induced changes in brain networks. For example, applying cerebral stimulation to re-equilibrate inter-hemispheric imbalance as shown by functional recording of brain activity during movement may help recovery. Its potential usefulness for a patient population has been demonstrated on various levels and its diverseness in interface applications makes it adaptable to a large population. The position and status of these very new rehabilitation systems should now be considered with respect to our current and more or less validated traditional methods, as well as in the light of the wide range of possible brain damage. The heterogeneity in post-damage expression inevitably complicates the decoding of brain signals and thus their use in pathological conditions, asking for controlled clinical trials. Copyright © 2015. Published by Elsevier Masson SAS.

  19. Brain-computer interface control along instructed paths

    NASA Astrophysics Data System (ADS)

    Sadtler, P. T.; Ryu, S. I.; Tyler-Kabara, E. C.; Yu, B. M.; Batista, A. P.

    2015-02-01

    Objective. Brain-computer interfaces (BCIs) are being developed to assist paralyzed people and amputees by translating neural activity into movements of a computer cursor or prosthetic limb. Here we introduce a novel BCI task paradigm, intended to help accelerate improvements to BCI systems. Through this task, we can push the performance limits of BCI systems, we can quantify more accurately how well a BCI system captures the user’s intent, and we can increase the richness of the BCI movement repertoire. Approach. We have implemented an instructed path task, wherein the user must drive a cursor along a visible path. The instructed path task provides a versatile framework to increase the difficulty of the task and thereby push the limits of performance. Relative to traditional point-to-point tasks, the instructed path task allows more thorough analysis of decoding performance and greater richness of movement kinematics. Main results. We demonstrate that monkeys are able to perform the instructed path task in a closed-loop BCI setting. We further investigate how the performance under BCI control compares to native arm control, whether users can decrease their movement variability in the face of a more demanding task, and how the kinematic richness is enhanced in this task. Significance. The use of the instructed path task has the potential to accelerate the development of BCI systems and their clinical translation.

  20. Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP

    NASA Astrophysics Data System (ADS)

    Yi, Weibo; Qiu, Shuang; Wang, Kun; Qi, Hongzhi; Zhao, Xin; He, Feng; Zhou, Peng; Yang, Jiajia; Ming, Dong

    2017-04-01

    Objective. We proposed a novel simultaneous hybrid brain-computer interface (BCI) by incorporating electrical stimulation into a motor imagery (MI) based BCI system. The goal of this study was to enhance the overall performance of an MI-based BCI. In addition, the brain oscillatory pattern in the hybrid task was also investigated. Approach. 64-channel electroencephalographic (EEG) data were recorded during MI, selective attention (SA) and hybrid tasks in fourteen healthy subjects. In the hybrid task, subjects performed MI with electrical stimulation which was applied to bilateral median nerve on wrists simultaneously. Main results. The hybrid task clearly presented additional steady-state somatosensory evoked potential (SSSEP) induced by electrical stimulation with MI-induced event-related desynchronization (ERD). By combining ERD and SSSEP features, the performance in the hybrid task was significantly better than in both MI and SA tasks, achieving a ~14% improvement in total relative to the MI task alone and reaching ~89% in mean classification accuracy. On the contrary, there was no significant enhancement obtained in performance while separate ERD feature was utilized in the hybrid task. In terms of the hybrid task, the performance using combined feature was significantly better than using separate ERD or SSSEP feature. Significance. The results in this work validate the feasibility of our proposed approach to form a novel MI-SSSEP hybrid BCI outperforming a conventional MI-based BCI through combing MI with electrical stimulation.

  1. Probabilistic co-adaptive brain-computer interfacing

    NASA Astrophysics Data System (ADS)

    Bryan, Matthew J.; Martin, Stefan A.; Cheung, Willy; Rao, Rajesh P. N.

    2013-12-01

    Objective. Brain-computer interfaces (BCIs) are confronted with two fundamental challenges: (a) the uncertainty associated with decoding noisy brain signals, and (b) the need for co-adaptation between the brain and the interface so as to cooperatively achieve a common goal in a task. We seek to mitigate these challenges. Approach. We introduce a new approach to brain-computer interfacing based on partially observable Markov decision processes (POMDPs). POMDPs provide a principled approach to handling uncertainty and achieving co-adaptation in the following manner: (1) Bayesian inference is used to compute posterior probability distributions (‘beliefs’) over brain and environment state, and (2) actions are selected based on entire belief distributions in order to maximize total expected reward; by employing methods from reinforcement learning, the POMDP’s reward function can be updated over time to allow for co-adaptive behaviour. Main results. We illustrate our approach using a simple non-invasive BCI which optimizes the speed-accuracy trade-off for individual subjects based on the signal-to-noise characteristics of their brain signals. We additionally demonstrate that the POMDP BCI can automatically detect changes in the user’s control strategy and can co-adaptively switch control strategies on-the-fly to maximize expected reward. Significance. Our results suggest that the framework of POMDPs offers a promising approach for designing BCIs that can handle uncertainty in neural signals and co-adapt with the user on an ongoing basis. The fact that the POMDP BCI maintains a probability distribution over the user’s brain state allows a much more powerful form of decision making than traditional BCI approaches, which have typically been based on the output of classifiers or regression techniques. Furthermore, the co-adaptation of the system allows the BCI to make online improvements to its behaviour, adjusting itself automatically to the user’s changing circumstances.

  2. Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution.

    PubMed

    Trakoolwilaiwan, Thanawin; Behboodi, Bahareh; Lee, Jaeseok; Kim, Kyungsoo; Choi, Ji-Woong

    2018-01-01

    The aim of this work is to develop an effective brain-computer interface (BCI) method based on functional near-infrared spectroscopy (fNIRS). In order to improve the performance of the BCI system in terms of accuracy, the ability to discriminate features from input signals and proper classification are desired. Previous studies have mainly extracted features from the signal manually, but proper features need to be selected carefully. To avoid performance degradation caused by manual feature selection, we applied convolutional neural networks (CNNs) as the automatic feature extractor and classifier for fNIRS-based BCI. In this study, the hemodynamic responses evoked by performing rest, right-, and left-hand motor execution tasks were measured on eight healthy subjects to compare performances. Our CNN-based method provided improvements in classification accuracy over conventional methods employing the most commonly used features of mean, peak, slope, variance, kurtosis, and skewness, classified by support vector machine (SVM) and artificial neural network (ANN). Specifically, up to 6.49% and 3.33% improvement in classification accuracy was achieved by CNN compared with SVM and ANN, respectively.

  3. Motivation modulates the P300 amplitude during brain-computer interface use.

    PubMed

    Kleih, S C; Nijboer, F; Halder, S; Kübler, A

    2010-07-01

    This study examined the effect of motivation as a possible psychological influencing variable on P300 amplitude and performance in a brain-computer interface (BCI) controlled by event-related potentials (ERP). Participants were instructed to copy spell a sentence by attending to cells of a randomly flashing 7*7 matrix. Motivation was manipulated by monetary reward. In two experimental groups participants received 25 (N=11) or 50 (N=11) Euro cent for each correctly selected character; the control group (N=11) was not rewarded. BCI performance was defined as the overall percentage of correctly selected characters (correct response rate=CRR). Participants performed at an average of 99%. At electrode location Cz the P300 amplitude was positively correlated to self-rated motivation. The P300 amplitude of the most motivated participants was significantly higher than that of the least motivated participants. Highly motivated participants were able to communicate correctly faster with the ERP-BCI than less motivated participants. Motivation modulates the P300 amplitude in an ERP-BCI. Motivation may contribute to variance in BCI performance and should be monitored in BCI settings. Copyright 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research

    PubMed Central

    Sherif, Tarek; Rioux, Pierre; Rousseau, Marc-Etienne; Kassis, Nicolas; Beck, Natacha; Adalat, Reza; Das, Samir; Glatard, Tristan; Evans, Alan C.

    2014-01-01

    The Canadian Brain Imaging Research Platform (CBRAIN) is a web-based collaborative research platform developed in response to the challenges raised by data-heavy, compute-intensive neuroimaging research. CBRAIN offers transparent access to remote data sources, distributed computing sites, and an array of processing and visualization tools within a controlled, secure environment. Its web interface is accessible through any modern browser and uses graphical interface idioms to reduce the technical expertise required to perform large-scale computational analyses. CBRAIN's flexible meta-scheduling has allowed the incorporation of a wide range of heterogeneous computing sites, currently including nine national research High Performance Computing (HPC) centers in Canada, one in Korea, one in Germany, and several local research servers. CBRAIN leverages remote computing cycles and facilitates resource-interoperability in a transparent manner for the end-user. Compared with typical grid solutions available, our architecture was designed to be easily extendable and deployed on existing remote computing sites with no tool modification, administrative intervention, or special software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread across 53 cities in 17 countries. The platform is built as a generic framework that can accept data and analysis tools from any discipline. However, its current focus is primarily on neuroimaging research and studies of neurological diseases such as Autism, Parkinson's and Alzheimer's diseases, Multiple Sclerosis as well as on normal brain structure and development. This technical report presents the CBRAIN Platform, its current deployment and usage and future direction. PMID:24904400

  5. CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research.

    PubMed

    Sherif, Tarek; Rioux, Pierre; Rousseau, Marc-Etienne; Kassis, Nicolas; Beck, Natacha; Adalat, Reza; Das, Samir; Glatard, Tristan; Evans, Alan C

    2014-01-01

    The Canadian Brain Imaging Research Platform (CBRAIN) is a web-based collaborative research platform developed in response to the challenges raised by data-heavy, compute-intensive neuroimaging research. CBRAIN offers transparent access to remote data sources, distributed computing sites, and an array of processing and visualization tools within a controlled, secure environment. Its web interface is accessible through any modern browser and uses graphical interface idioms to reduce the technical expertise required to perform large-scale computational analyses. CBRAIN's flexible meta-scheduling has allowed the incorporation of a wide range of heterogeneous computing sites, currently including nine national research High Performance Computing (HPC) centers in Canada, one in Korea, one in Germany, and several local research servers. CBRAIN leverages remote computing cycles and facilitates resource-interoperability in a transparent manner for the end-user. Compared with typical grid solutions available, our architecture was designed to be easily extendable and deployed on existing remote computing sites with no tool modification, administrative intervention, or special software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread across 53 cities in 17 countries. The platform is built as a generic framework that can accept data and analysis tools from any discipline. However, its current focus is primarily on neuroimaging research and studies of neurological diseases such as Autism, Parkinson's and Alzheimer's diseases, Multiple Sclerosis as well as on normal brain structure and development. This technical report presents the CBRAIN Platform, its current deployment and usage and future direction.

  6. Simple adaptive sparse representation based classification schemes for EEG based brain-computer interface applications.

    PubMed

    Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No

    2015-11-01

    One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A Benchmark Dataset for SSVEP-Based Brain-Computer Interfaces.

    PubMed

    Wang, Yijun; Chen, Xiaogang; Gao, Xiaorong; Gao, Shangkai

    2017-10-01

    This paper presents a benchmark steady-state visual evoked potential (SSVEP) dataset acquired with a 40-target brain- computer interface (BCI) speller. The dataset consists of 64-channel Electroencephalogram (EEG) data from 35 healthy subjects (8 experienced and 27 naïve) while they performed a cue-guided target selecting task. The virtual keyboard of the speller was composed of 40 visual flickers, which were coded using a joint frequency and phase modulation (JFPM) approach. The stimulation frequencies ranged from 8 Hz to 15.8 Hz with an interval of 0.2 Hz. The phase difference between two adjacent frequencies was . For each subject, the data included six blocks of 40 trials corresponding to all 40 flickers indicated by a visual cue in a random order. The stimulation duration in each trial was five seconds. The dataset can be used as a benchmark dataset to compare the methods for stimulus coding and target identification in SSVEP-based BCIs. Through offline simulation, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data. The dataset also provides high-quality data for computational modeling of SSVEPs. The dataset is freely available fromhttp://bci.med.tsinghua.edu.cn/download.html.

  8. Benchmarking Brain-Computer Interfaces Outside the Laboratory: The Cybathlon 2016

    PubMed Central

    Novak, Domen; Sigrist, Roland; Gerig, Nicolas J.; Wyss, Dario; Bauer, René; Götz, Ulrich; Riener, Robert

    2018-01-01

    This paper presents a new approach to benchmarking brain-computer interfaces (BCIs) outside the lab. A computer game was created that mimics a real-world application of assistive BCIs, with the main outcome metric being the time needed to complete the game. This approach was used at the Cybathlon 2016, a competition for people with disabilities who use assistive technology to achieve tasks. The paper summarizes the technical challenges of BCIs, describes the design of the benchmarking game, then describes the rules for acceptable hardware, software and inclusion of human pilots in the BCI competition at the Cybathlon. The 11 participating teams, their approaches, and their results at the Cybathlon are presented. Though the benchmarking procedure has some limitations (for instance, we were unable to identify any factors that clearly contribute to BCI performance), it can be successfully used to analyze BCI performance in realistic, less structured conditions. In the future, the parameters of the benchmarking game could be modified to better mimic different applications (e.g., the need to use some commands more frequently than others). Furthermore, the Cybathlon has the potential to showcase such devices to the general public. PMID:29375294

  9. Paralyzed subject controls telepresence mobile robot using novel sEMG brain-computer interface: case study.

    PubMed

    Lyons, Kenneth R; Joshi, Sanjay S

    2013-06-01

    Here we demonstrate the use of a new singlesignal surface electromyography (sEMG) brain-computer interface (BCI) to control a mobile robot in a remote location. Previous work on this BCI has shown that users are able to perform cursor-to-target tasks in two-dimensional space using only a single sEMG signal by continuously modulating the signal power in two frequency bands. Using the cursor-to-target paradigm, targets are shown on the screen of a tablet computer so that the user can select them, commanding the robot to move in different directions for a fixed distance/angle. A Wifi-enabled camera transmits video from the robot's perspective, giving the user feedback about robot motion. Current results show a case study with a C3-C4 spinal cord injury (SCI) subject using a single auricularis posterior muscle site to navigate a simple obstacle course. Performance metrics for operation of the BCI as well as completion of the telerobotic command task are developed. It is anticipated that this noninvasive and mobile system will open communication opportunities for the severely paralyzed, possibly using only a single sensor.

  10. DARPA-funded efforts in the development of novel brain-computer interface technologies.

    PubMed

    Miranda, Robbin A; Casebeer, William D; Hein, Amy M; Judy, Jack W; Krotkov, Eric P; Laabs, Tracy L; Manzo, Justin E; Pankratz, Kent G; Pratt, Gill A; Sanchez, Justin C; Weber, Douglas J; Wheeler, Tracey L; Ling, Geoffrey S F

    2015-04-15

    The Defense Advanced Research Projects Agency (DARPA) has funded innovative scientific research and technology developments in the field of brain-computer interfaces (BCI) since the 1970s. This review highlights some of DARPA's major advances in the field of BCI, particularly those made in recent years. Two broad categories of DARPA programs are presented with respect to the ultimate goals of supporting the nation's warfighters: (1) BCI efforts aimed at restoring neural and/or behavioral function, and (2) BCI efforts aimed at improving human training and performance. The programs discussed are synergistic and complementary to one another, and, moreover, promote interdisciplinary collaborations among researchers, engineers, and clinicians. Finally, this review includes a summary of some of the remaining challenges for the field of BCI, as well as the goals of new DARPA efforts in this domain. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Control of a nursing bed based on a hybrid brain-computer interface.

    PubMed

    Nengneng Peng; Rui Zhang; Haihua Zeng; Fei Wang; Kai Li; Yuanqing Li; Xiaobin Zhuang

    2016-08-01

    In this paper, we propose an intelligent nursing bed system which is controlled by a hybrid brain-computer interface (BCI) involving steady-state visual evoked potential (SSVEP) and P300. Specifically, the hybrid BCI includes an asynchronous brain switch based on SSVEP and P300, and a P300-based BCI. The brain switch is used to turn on/off the control system of the electric nursing bed through idle/control state detection, whereas the P300-based BCI is for operating the nursing bed. At the beginning, the user may focus on one group of flashing buttons in the graphic user interface (GUI) of the brain switch, which can simultaneously evoke SSVEP and P300, to switch on the control system. Here, the combination of SSVEP and P300 is used for improving the performance of the brain switch. Next, the user can control the nursing bed using the P300-based BCI. The GUI of the P300-based BCI includes 10 flashing buttons, which correspond to 10 functional operations, namely, left-side up, left-side down, back up, back down, bedpan open, bedpan close, legs up, legs down, right-side up, and right-side down. For instance, he/she can focus on the flashing button "back up" in the GUI of the P300-based BCI to activate the corresponding control such that the nursing bed is adjusted up. Eight healthy subjects participated in our experiment, and obtained an average accuracy of 93.75% and an average false positive rate (FPR) of 0.15 event/min. The effectiveness of our system was thus demonstrated.

  12. Virtual reality and brain computer interface in neurorehabilitation

    PubMed Central

    Dahdah, Marie; Driver, Simon; Parsons, Thomas D.; Richter, Kathleen M.

    2016-01-01

    The potential benefit of technology to enhance recovery after central nervous system injuries is an area of increasing interest and exploration. The primary emphasis to date has been motor recovery/augmentation and communication. This paper introduces two original studies to demonstrate how advanced technology may be integrated into subacute rehabilitation. The first study addresses the feasibility of brain computer interface with patients on an inpatient spinal cord injury unit. The second study explores the validity of two virtual environments with acquired brain injury as part of an intensive outpatient neurorehabilitation program. These preliminary studies support the feasibility of advanced technologies in the subacute stage of neurorehabilitation. These modalities were well tolerated by participants and could be incorporated into patients' inpatient and outpatient rehabilitation regimens without schedule disruptions. This paper expands the limited literature base regarding the use of advanced technologies in the early stages of recovery for neurorehabilitation populations and speaks favorably to the potential integration of brain computer interface and virtual reality technologies as part of a multidisciplinary treatment program. PMID:27034541

  13. An SSVEP-Based Brain-Computer Interface for Text Spelling With Adaptive Queries That Maximize Information Gain Rates.

    PubMed

    Akce, Abdullah; Norton, James J S; Bretl, Timothy

    2015-09-01

    This paper presents a brain-computer interface for text entry using steady-state visually evoked potentials (SSVEP). Like other SSVEP-based spellers, ours identifies the desired input character by posing questions (or queries) to users through a visual interface. Each query defines a mapping from possible characters to steady-state stimuli. The user responds by attending to one of these stimuli. Unlike other SSVEP-based spellers, ours chooses from a much larger pool of possible queries-on the order of ten thousand instead of ten. The larger query pool allows our speller to adapt more effectively to the inherent structure of what is being typed and to the input performance of the user, both of which make certain queries provide more information than others. In particular, our speller chooses queries from this pool that maximize the amount of information to be received per unit of time, a measure of mutual information that we call information gain rate. To validate our interface, we compared it with two other state-of-the-art SSVEP-based spellers, which were re-implemented to use the same input mechanism. Results showed that our interface, with the larger query pool, allowed users to spell multiple-word texts nearly twice as fast as they could with the compared spellers.

  14. Improved signal processing approaches in an offline simulation of a hybrid brain–computer interface

    PubMed Central

    Brunner, Clemens; Allison, Brendan Z.; Krusienski, Dean J.; Kaiser, Vera; Müller-Putz, Gernot R.; Pfurtscheller, Gert; Neuper, Christa

    2012-01-01

    In a conventional brain–computer interface (BCI) system, users perform mental tasks that yield specific patterns of brain activity. A pattern recognition system determines which brain activity pattern a user is producing and thereby infers the user’s mental task, allowing users to send messages or commands through brain activity alone. Unfortunately, despite extensive research to improve classification accuracy, BCIs almost always exhibit errors, which are sometimes so severe that effective communication is impossible. We recently introduced a new idea to improve accuracy, especially for users with poor performance. In an offline simulation of a “hybrid” BCI, subjects performed two mental tasks independently and then simultaneously. This hybrid BCI could use two different types of brain signals common in BCIs – event-related desynchronization (ERD) and steady-state evoked potentials (SSEPs). This study suggested that such a hybrid BCI is feasible. Here, we re-analyzed the data from our initial study. We explored eight different signal processing methods that aimed to improve classification and further assess both the causes and the extent of the benefits of the hybrid condition. Most analyses showed that the improved methods described here yielded a statistically significant improvement over our initial study. Some of these improvements could be relevant to conventional BCIs as well. Moreover, the number of illiterates could be reduced with the hybrid condition. Results are also discussed in terms of dual task interference and relevance to protocol design in hybrid BCIs. PMID:20153371

  15. Performance monitoring for brain-computer-interface actions.

    PubMed

    Schurger, Aaron; Gale, Steven; Gozel, Olivia; Blanke, Olaf

    2017-02-01

    When presented with a difficult perceptual decision, human observers are able to make metacognitive judgements of subjective certainty. Such judgements can be made independently of and prior to any overt response to a sensory stimulus, presumably via internal monitoring. Retrospective judgements about one's own task performance, on the other hand, require first that the subject perform a task and thus could potentially be made based on motor processes, proprioceptive, and other sensory feedback rather than internal monitoring. With this dichotomy in mind, we set out to study performance monitoring using a brain-computer interface (BCI), with which subjects could voluntarily perform an action - moving a cursor on a computer screen - without any movement of the body, and thus without somatosensory feedback. Real-time visual feedback was available to subjects during training, but not during the experiment where the true final position of the cursor was only revealed after the subject had estimated where s/he thought it had ended up after 6s of BCI-based cursor control. During the first half of the experiment subjects based their assessments primarily on the prior probability of the end position of the cursor on previous trials. However, during the second half of the experiment subjects' judgements moved significantly closer to the true end position of the cursor, and away from the prior. This suggests that subjects can monitor task performance when the task is performed without overt movement of the body. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A qualitative study adopting a user-centered approach to design and validate a brain computer interface for cognitive rehabilitation for people with brain injury.

    PubMed

    Martin, Suzanne; Armstrong, Elaine; Thomson, Eileen; Vargiu, Eloisa; Solà, Marc; Dauwalder, Stefan; Miralles, Felip; Daly Lynn, Jean

    2017-07-14

    Cognitive rehabilitation is established as a core intervention within rehabilitation programs following a traumatic brain injury (TBI). Digitally enabled assistive technologies offer opportunities for clinicians to increase remote access to rehabilitation supporting transition into home. Brain Computer Interface (BCI) systems can harness the residual abilities of individuals with limited function to gain control over computers through their brain waves. This paper presents an online cognitive rehabilitation application developed with therapists, to work remotely with people who have TBI, who will use BCI at home to engage in the therapy. A qualitative research study was completed with people who are community dwellers post brain injury (end users), and a cohort of therapists involved in cognitive rehabilitation. A user-centered approach over three phases in the development, design and feasibility testing of this cognitive rehabilitation application included two tasks (Find-a-Category and a Memory Card task). The therapist could remotely prescribe activity with different levels of difficulty. The service user had a home interface which would present the therapy activities. This novel work was achieved by an international consortium of academics, business partners and service users.

  17. A Real-Time Magnetoencephalography Brain-Computer Interface Using Interactive 3D Visualization and the Hadoop Ecosystem.

    PubMed

    McClay, Wilbert A; Yadav, Nancy; Ozbek, Yusuf; Haas, Andy; Attias, Hagaii T; Nagarajan, Srikantan S

    2015-09-30

    Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI) for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG) brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user's intent for specific keyboard strikes or mouse button presses. The BCI's data analytics OPEN ACCESS Brain. Sci. 2015, 5 420 of a subject's MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse.

  18. Towards Zero Training for Brain-Computer Interfacing

    PubMed Central

    Krauledat, Matthias; Tangermann, Michael; Blankertz, Benjamin; Müller, Klaus-Robert

    2008-01-01

    Electroencephalogram (EEG) signals are highly subject-specific and vary considerably even between recording sessions of the same user within the same experimental paradigm. This challenges a stable operation of Brain-Computer Interface (BCI) systems. The classical approach is to train users by neurofeedback to produce fixed stereotypical patterns of brain activity. In the machine learning approach, a widely adapted method for dealing with those variances is to record a so called calibration measurement on the beginning of each session in order to optimize spatial filters and classifiers specifically for each subject and each day. This adaptation of the system to the individual brain signature of each user relieves from the need of extensive user training. In this paper we suggest a new method that overcomes the requirement of these time-consuming calibration recordings for long-term BCI users. The method takes advantage of knowledge collected in previous sessions: By a novel technique, prototypical spatial filters are determined which have better generalization properties compared to single-session filters. In particular, they can be used in follow-up sessions without the need to recalibrate the system. This way the calibration periods can be dramatically shortened or even completely omitted for these ‘experienced’ BCI users. The feasibility of our novel approach is demonstrated with a series of online BCI experiments. Although performed without any calibration measurement at all, no loss of classification performance was observed. PMID:18698427

  19. An Investment Behavior Analysis using by Brain Computer Interface

    NASA Astrophysics Data System (ADS)

    Suzuki, Kyoko; Kinoshita, Kanta; Miyagawa, Kazuhiro; Shiomi, Shinichi; Misawa, Tadanobu; Shimokawa, Tetsuya

    In this paper, we will construct a new Brain Computer Interface (BCI), for the purpose of analyzing human's investment decision makings. The BCI is made up of three functional parts which take roles of, measuring brain information, determining market price in an artificial market, and specifying investment decision model, respectively. When subjects make decisions, their brain information is conveyed to the part of specifying investment decision model through the part of measuring brain information, whereas, their decisions of investment order are sent to the part of artificial market to form market prices. Both the support vector machine and the 3 layered perceptron are used to assess the investment decision model. In order to evaluate our BCI, we conduct an experiment in which subjects and a computer trader agent trade shares of stock in the artificial market and test how the computer trader agent can forecast market price formation and investment decision makings from the brain information of subjects. The result of the experiment shows that the brain information can improve the accuracy of forecasts, and so the computer trader agent can supply market liquidity to stabilize market volatility without his loss.

  20. Workload measurement in a communication application operated through a P300-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Riccio, A.; Leotta, F.; Bianchi, L.; Aloise, F.; Zickler, C.; Hoogerwerf, E.-J.; Kübler, A.; Mattia, D.; Cincotti, F.

    2011-04-01

    Advancing the brain-computer interface (BCI) towards practical applications in technology-based assistive solutions for people with disabilities requires coping with problems of accessibility and usability to increase user acceptance and satisfaction. The main objective of this study was to introduce a usability-oriented approach in the assessment of BCI technology development by focusing on evaluation of the user's subjective workload and satisfaction. The secondary aim was to compare two applications for a P300-based BCI. Eight healthy subjects were asked to use an assistive technology solution which integrates the P300-based BCI with commercially available software under two conditions—visual stimuli needed to evoke the P300 response were either overlaid onto the application's graphical user interface or presented on a separate screen. The two conditions were compared for effectiveness (level of performance), efficiency (subjective workload measured by means of NASA-TXL) and satisfaction of the user. Although no significant difference in usability could be detected between the two conditions, the methodology proved to be an effective tool to highlight weaknesses in the technical solution.

  1. Feasibility of approaches combining sensor and source features in brain-computer interface.

    PubMed

    Ahn, Minkyu; Hong, Jun Hee; Jun, Sung Chan

    2012-02-15

    Brain-computer interface (BCI) provides a new channel for communication between brain and computers through brain signals. Cost-effective EEG provides good temporal resolution, but its spatial resolution is poor and sensor information is blurred by inherent noise. To overcome these issues, spatial filtering and feature extraction techniques have been developed. Source imaging, transformation of sensor signals into the source space through source localizer, has gained attention as a new approach for BCI. It has been reported that the source imaging yields some improvement of BCI performance. However, there exists no thorough investigation on how source imaging information overlaps with, and is complementary to, sensor information. Information (visible information) from the source space may overlap as well as be exclusive to information from the sensor space is hypothesized. Therefore, we can extract more information from the sensor and source spaces if our hypothesis is true, thereby contributing to more accurate BCI systems. In this work, features from each space (sensor or source), and two strategies combining sensor and source features are assessed. The information distribution among the sensor, source, and combined spaces is discussed through a Venn diagram for 18 motor imagery datasets. Additional 5 motor imagery datasets from the BCI Competition III site were examined. The results showed that the addition of source information yielded about 3.8% classification improvement for 18 motor imagery datasets and showed an average accuracy of 75.56% for BCI Competition data. Our proposed approach is promising, and improved performance may be possible with better head model. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Neuroengineering tools/applications for bidirectional interfaces, brain-computer interfaces, and neuroprosthetic implants - a review of recent progress.

    PubMed

    Rothschild, Ryan Mark

    2010-01-01

    The main focus of this review is to provide a holistic amalgamated overview of the most recent human in vivo techniques for implementing brain-computer interfaces (BCIs), bidirectional interfaces, and neuroprosthetics. Neuroengineering is providing new methods for tackling current difficulties; however neuroprosthetics have been studied for decades. Recent progresses are permitting the design of better systems with higher accuracies, repeatability, and system robustness. Bidirectional interfaces integrate recording and the relaying of information from and to the brain for the development of BCIs. The concepts of non-invasive and invasive recording of brain activity are introduced. This includes classical and innovative techniques like electroencephalography and near-infrared spectroscopy. Then the problem of gliosis and solutions for (semi-) permanent implant biocompatibility such as innovative implant coatings, materials, and shapes are discussed. Implant power and the transmission of their data through implanted pulse generators and wireless telemetry are taken into account. How sensation can be relayed back to the brain to increase integration of the neuroengineered systems with the body by methods such as micro-stimulation and transcranial magnetic stimulation are then addressed. The neuroprosthetic section discusses some of the various types and how they operate. Visual prosthetics are discussed and the three types, dependant on implant location, are examined. Auditory prosthetics, being cochlear or cortical, are then addressed. Replacement hand and limb prosthetics are then considered. These are followed by sections concentrating on the control of wheelchairs, computers and robotics directly from brain activity as recorded by non-invasive and invasive techniques.

  3. Brain communication in the locked-in state.

    PubMed

    De Massari, Daniele; Ruf, Carolin A; Furdea, Adrian; Matuz, Tamara; van der Heiden, Linda; Halder, Sebastian; Silvoni, Stefano; Birbaumer, Niels

    2013-06-01

    Patients in the completely locked-in state have no means of communication and they represent the target population for brain-computer interface research in the last 15 years. Although different paradigms have been tested and different physiological signals used, to date no sufficiently documented completely locked-in state patient was able to control a brain-computer interface over an extended time period. We introduce Pavlovian semantic conditioning to enable basic communication in completely locked-in state. This novel paradigm is based on semantic conditioning for online classification of neuroelectric or any other physiological signals to discriminate between covert (cognitive) 'yes' and 'no' responses. The paradigm comprised the presentation of affirmative and negative statements used as conditioned stimuli, while the unconditioned stimulus consisted of electrical stimulation of the skin paired with affirmative statements. Three patients with advanced amyotrophic lateral sclerosis participated over an extended time period, one of which was in a completely locked-in state, the other two in the locked-in state. The patients' level of vigilance was assessed through auditory oddball procedures to study the correlation between vigilance level and the classifier's performance. The average online classification accuracies of slow cortical components of electroencephalographic signals were around chance level for all the patients. The use of a non-linear classifier in the offline classification procedure resulted in a substantial improvement of the accuracy in one locked-in state patient achieving 70% correct classification. A reliable level of performance in the completely locked-in state patient was not achieved uniformly throughout the 37 sessions despite intact cognitive processing capacity, but in some sessions communication accuracies up to 70% were achieved. Paradigm modifications are proposed. Rapid drop of vigilance was detected suggesting attentional variations or variations of circadian period as important factors in brain-computer interface communication with locked-in state and completely locked-in state.

  4. A brain-computer interface controlled mail client.

    PubMed

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Wang, Cong

    2013-01-01

    In this paper, we propose a brain-computer interface (BCI) based mail client. This system is controlled by hybrid features extracted from scalp-recorded electroencephalographic (EEG). We emulate the computer mouse by the motor imagery-based mu rhythm and the P300 potential. Furthermore, an adaptive P300 speller is included to provide text input function. With this BCI mail client, users can receive, read, write mails, as well as attach files in mail writing. The system has been tested on 3 subjects. Experimental results show that mail communication with this system is feasible.

  5. On the role of cost-sensitive learning in multi-class brain-computer interfaces.

    PubMed

    Devlaminck, Dieter; Waegeman, Willem; Wyns, Bart; Otte, Georges; Santens, Patrick

    2010-06-01

    Brain-computer interfaces (BCIs) present an alternative way of communication for people with severe disabilities. One of the shortcomings in current BCI systems, recently put forward in the fourth BCI competition, is the asynchronous detection of motor imagery versus resting state. We investigated this extension to the three-class case, in which the resting state is considered virtually lying between two motor classes, resulting in a large penalty when one motor task is misclassified into the other motor class. We particularly focus on the behavior of different machine-learning techniques and on the role of multi-class cost-sensitive learning in such a context. To this end, four different kernel methods are empirically compared, namely pairwise multi-class support vector machines (SVMs), two cost-sensitive multi-class SVMs and kernel-based ordinal regression. The experimental results illustrate that ordinal regression performs better than the other three approaches when a cost-sensitive performance measure such as the mean-squared error is considered. By contrast, multi-class cost-sensitive learning enables us to control the number of large errors made between two motor tasks.

  6. Evaluation of various mental task combinations for near-infrared spectroscopy-based brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Hwang, Han-Jeong; Lim, Jeong-Hwan; Kim, Do-Won; Im, Chang-Hwan

    2014-07-01

    A number of recent studies have demonstrated that near-infrared spectroscopy (NIRS) is a promising neuroimaging modality for brain-computer interfaces (BCIs). So far, most NIRS-based BCI studies have focused on enhancing the accuracy of the classification of different mental tasks. In the present study, we evaluated the performances of a variety of mental task combinations in order to determine the mental task pairs that are best suited for customized NIRS-based BCIs. To this end, we recorded event-related hemodynamic responses while seven participants performed eight different mental tasks. Classification accuracies were then estimated for all possible pairs of the eight mental tasks (C=28). Based on this analysis, mental task combinations with relatively high classification accuracies frequently included the following three mental tasks: "mental multiplication," "mental rotation," and "right-hand motor imagery." Specifically, mental task combinations consisting of two of these three mental tasks showed the highest mean classification accuracies. It is expected that our results will be a useful reference to reduce the time needed for preliminary tests when discovering individual-specific mental task combinations.

  7. Investigating the effects of visual distractors on the performance of a motor imagery brain-computer interface.

    PubMed

    Emami, Zahra; Chau, Tom

    2018-06-01

    Brain-computer interfaces (BCIs) allow users to operate a device or application by means of cognitive activity. This technology will ultimately be used in real-world environments which include the presence of distractors. The purpose of the study was to determine the effect of visual distractors on BCI performance. Sixteen able-bodied participants underwent neurofeedback training to achieve motor imagery-guided BCI control in an online paradigm using electroencephalography (EEG) to measure neural signals. Participants then completed two sessions of the motor imagery EEG-BCI protocol in the presence of infrequent, small visual distractors. BCI performance was determined based on classification accuracy. The presence of distractors was found to affect motor imagery-specific patterns in mu and beta power. However, the distractors did not significantly affect the BCI classification accuracy; across participants, the mean classification accuracy was 81.5 ± 14% for non-distractor trials, and 78.3 ± 17% for distractor trials. This minimal consequence suggests that the BCI was robust to distractor effects, despite motor imagery-related brain activity being attenuated amid distractors. A BCI system that mitigates distraction-related effects may improve the ease of its use and ultimately facilitate the effective translation of the technology from the lab to the home. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  8. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.

    PubMed

    Zander, Thorsten O; Kothe, Christian

    2011-04-01

    Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.

  9. Amyotrophic lateral sclerosis progression and stability of brain-computer interface communication.

    PubMed

    Silvoni, Stefano; Cavinato, Marianna; Volpato, Chiara; Ruf, Carolin A; Birbaumer, Niels; Piccione, Francesco

    2013-09-01

    Our objective was to investigate the relationship between brain-computer interface (BCI) communication skill and disease progression in amyotrophic lateral sclerosis (ALS). We sought also to assess stability of BCI communication performance over time and whether it is related to the progression of neurological impairment before entering the locked-in state. A three years follow-up, BCI evaluation in a group of ALS patients (n = 24) was conducted. For a variety of reasons only three patients completed the three years follow-up. BCI communication skill and disability level, using the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised, were assessed at admission and at each of the three follow-ups. Multiple non-parametric statistical methods were used to ensure reliability of the dependent variables: correlations, paired test and factor analysis of variance. Results demonstrated no significant relationship between BCI communication skill (BCI-CS) and disease evolution. The patients who performed the follow-up evaluations preserved their BCI-CS over time. Patients' age at admission correlated positively with the ability to achieve control over a BCI. In conclusion, disease evolution in ALS does not affect the ability to control a BCI for communication. BCI performance can be maintained in the different stages of the illness.

  10. Evaluating Brain-Computer Interface Performance in an ALS Population: Checkerboard and Color Paradigms.

    PubMed

    Ryan, David B; Colwell, Kenneth A; Throckmorton, Chandra S; Collins, Leslie M; Caves, Kevin; Sellers, Eric W

    2018-03-01

    The objective of this study was to investigate the performance of 3 brain-computer interface (BCI) paradigms in an amyotrophic lateral sclerosis (ALS) population (n = 11). Using a repeated-measures design, participants completed 3 BCI conditions: row/column (RCW), checkerboard (CBW), and gray-to-color (CBC). Based on previous studies, it is hypothesized that the CBC and CBW conditions will result in higher accuracy, information transfer rate, waveform amplitude, and user preference over the RCW condition. An offline dynamic stopping simulation will also increase information transfer rate. Higher mean accuracy was observed in the CBC condition (89.7%), followed by the CBW (84.3%) condition, and lowest in the RCW condition (78.7%); however, these differences did not reach statistical significance ( P = .062). Eight of the eleven participants preferred the CBC and the remaining three preferred the CBW conditions. The offline dynamic stopping simulation significantly increased information transfer rate ( P = .005) and decreased accuracy ( P < .000). The findings of this study suggest that color stimuli provide a modest improvement in performance and that participants prefer color stimuli over monochromatic stimuli. Given these findings, BCI paradigms that use color stimuli should be considered for individuals who have ALS.

  11. A brain-spine interface alleviating gait deficits after spinal cord injury in primates.

    PubMed

    Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire

    2016-11-10

    Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain-computer interfaces have directly linked cortical activity to electrical stimulation of muscles, and have thus restored grasping abilities after hand paralysis. Theoretically, this strategy could also restore control over leg muscle activity for walking. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges. Recently, it was shown in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion. Here we interface leg motor cortex activity with epidural electrical stimulation protocols to establish a brain-spine interface that alleviated gait deficits after a spinal cord injury in non-human primates. Rhesus monkeys (Macaca mulatta) were implanted with an intracortical microelectrode array in the leg area of the motor cortex and with a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain-spine interface in intact (uninjured) monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain-spine interface restored weight-bearing locomotion of the paralysed leg on a treadmill and overground. The implantable components integrated in the brain-spine interface have all been approved for investigational applications in similar human research, suggesting a practical translational pathway for proof-of-concept studies in people with spinal cord injury.

  12. My thoughts through a robot's eyes: an augmented reality-brain-machine interface.

    PubMed

    Kansaku, Kenji; Hata, Naoki; Takano, Kouji

    2010-02-01

    A brain-machine interface (BMI) uses neurophysiological signals from the brain to control external devices, such as robot arms or computer cursors. Combining augmented reality with a BMI, we show that the user's brain signals successfully controlled an agent robot and operated devices in the robot's environment. The user's thoughts became reality through the robot's eyes, enabling the augmentation of real environments outside the anatomy of the human body.

  13. The Human Factors and Ergonomics of P300-Based Brain-Computer Interfaces

    PubMed Central

    Powers, J. Clark; Bieliaieva, Kateryna; Wu, Shuohao; Nam, Chang S.

    2015-01-01

    Individuals with severe neuromuscular impairments face many challenges in communication and manipulation of the environment. Brain-computer interfaces (BCIs) show promise in presenting real-world applications that can provide such individuals with the means to interact with the world using only brain waves. Although there has been a growing body of research in recent years, much relates only to technology, and not to technology in use—i.e., real-world assistive technology employed by users. This review examined the literature to highlight studies that implicate the human factors and ergonomics (HFE) of P300-based BCIs. We assessed 21 studies on three topics to speak directly to improving the HFE of these systems: (1) alternative signal evocation methods within the oddball paradigm; (2) environmental interventions to improve user performance and satisfaction within the constraints of current BCI systems; and (3) measures and methods of measuring user acceptance. We found that HFE is central to the performance of P300-based BCI systems, although researchers do not often make explicit this connection. Incorporation of measures of user acceptance and rigorous usability evaluations, increased engagement of disabled users as test participants, and greater realism in testing will help progress the advancement of P300-based BCI systems in assistive applications. PMID:26266424

  14. Post-acute stroke patients use brain-computer interface to activate electrical stimulation.

    PubMed

    Tan, H G; Kong, K H; Shee, C Y; Wang, C C; Guan, C T; Ang, W T

    2010-01-01

    Through certain mental actions, our electroencephalogram (EEG) can be regulated to operate a brain-computer interface (BCI), which translates the EEG patterns into commands that can be used to operate devices such as prostheses. This allows paralyzed persons to gain direct brain control of the paretic limb, which could open up many possibilities for rehabilitative and assistive applications. When using a BCI neuroprosthesis in stroke, one question that has surfaced is whether stroke patients are able to produce a sufficient change in EEG that can be used as a control signal to operate a prosthesis.

  15. A Brain-Computer Interface Project Applied in Computer Engineering

    ERIC Educational Resources Information Center

    Katona, Jozsef; Kovari, Attila

    2016-01-01

    Keeping up with novel methods and keeping abreast of new applications are crucial issues in engineering education. In brain research, one of the most significant research areas in recent decades, many developments have application in both modern engineering technology and education. New measurement methods in the observation of brain activity open…

  16. Geometry aware Stationary Subspace Analysis

    DTIC Science & Technology

    2016-11-22

    approach to handling non-stationarity is to remove or minimize it before attempting to analyze the data. In the context of brain computer interface ( BCI ...context of brain computer interface ( BCI ) data analysis, two such note-worthy methods are stationary subspace analysis (SSA) (von Bünau et al., 2009a... BCI systems, is sCSP. Its goal is to project the data onto a subspace in which the various data classes are more separable. The sCSP method directs

  17. Brain-computer interface for alertness estimation and improving

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander; Maksimenko, Vladimir; Hramova, Marina

    2018-02-01

    Using wavelet analysis of the signals of electrical brain activity (EEG), we study the processes of neural activity, associated with perception of visual stimuli. We demonstrate that the brain can process visual stimuli in two scenarios: (i) perception is characterized by destruction of the alpha-waves and increase in the high-frequency (beta) activity, (ii) the beta-rhythm is not well pronounced, while the alpha-wave energy remains unchanged. The special experiments show that the motivation factor initiates the first scenario, explained by the increasing alertness. Based on the obtained results we build the brain-computer interface and demonstrate how the degree of the alertness can be estimated and controlled in real experiment.

  18. A Semisupervised Support Vector Machines Algorithm for BCI Systems

    PubMed Central

    Qin, Jianzhao; Li, Yuanqing; Sun, Wei

    2007-01-01

    As an emerging technology, brain-computer interfaces (BCIs) bring us new communication interfaces which translate brain activities into control signals for devices like computers, robots, and so forth. In this study, we propose a semisupervised support vector machine (SVM) algorithm for brain-computer interface (BCI) systems, aiming at reducing the time-consuming training process. In this algorithm, we apply a semisupervised SVM for translating the features extracted from the electrical recordings of brain into control signals. This SVM classifier is built from a small labeled data set and a large unlabeled data set. Meanwhile, to reduce the time for training semisupervised SVM, we propose a batch-mode incremental learning method, which can also be easily applied to the online BCI systems. Additionally, it is suggested in many studies that common spatial pattern (CSP) is very effective in discriminating two different brain states. However, CSP needs a sufficient labeled data set. In order to overcome the drawback of CSP, we suggest a two-stage feature extraction method for the semisupervised learning algorithm. We apply our algorithm to two BCI experimental data sets. The offline data analysis results demonstrate the effectiveness of our algorithm. PMID:18368141

  19. Conscious brain-to-brain communication in humans using non-invasive technologies.

    PubMed

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  20. Conscious Brain-to-Brain Communication in Humans Using Non-Invasive Technologies

    PubMed Central

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L.; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues. PMID:25137064

  1. EEG correlates of P300-based brain-computer interface (BCI) performance in people with amyotrophic lateral sclerosis

    NASA Astrophysics Data System (ADS)

    Mak, Joseph N.; McFarland, Dennis J.; Vaughan, Theresa M.; McCane, Lynn M.; Tsui, Phillippa Z.; Zeitlin, Debra J.; Sellers, Eric W.; Wolpaw, Jonathan R.

    2012-04-01

    The purpose of this study was to identify electroencephalography (EEG) features that correlate with P300-based brain-computer interface (P300 BCI) performance in people with amyotrophic lateral sclerosis (ALS). Twenty people with ALS used a P300 BCI spelling application in copy-spelling mode. Three types of EEG features were found to be good predictors of P300 BCI performance: (1) the root-mean-square amplitude and (2) the negative peak amplitude of the event-related potential to target stimuli (target ERP) at Fz, Cz, P3, Pz, and P4; and (3) EEG theta frequency (4.5-8 Hz) power at Fz, Cz, P3, Pz, P4, PO7, PO8 and Oz. A statistical prediction model that used a subset of these features accounted for >60% of the variance in copy-spelling performance (p < 0.001, mean R2 = 0.6175). The correlations reflected between-subject, rather than within-subject, effects. The results enhance understanding of performance differences among P300 BCI users. The predictors found in this study might help in: (1) identifying suitable candidates for long-term P300 BCI operation; (2) assessing performance online. Further work on within-subject effects needs to be done to establish whether P300 BCI user performance could be improved by optimizing one or more of these EEG features.

  2. Designing a hands-on brain computer interface laboratory course.

    PubMed

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2016-08-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.

  3. Design and Implementation of a Brain Computer Interface System for Controlling a Robotic Claw

    NASA Astrophysics Data System (ADS)

    Angelakis, D.; Zoumis, S.; Asvestas, P.

    2017-11-01

    The aim of this paper is to present the design and implementation of a brain-computer interface (BCI) system that can control a robotic claw. The system is based on the Emotiv Epoc headset, which provides the capability of simultaneous recording of 14 EEG channels, as well as wireless connectivity by means of the Bluetooth protocol. The system is initially trained to decode what user thinks to properly formatted data. The headset communicates with a personal computer, which runs a dedicated software application, implemented under the Processing integrated development environment. The application acquires the data from the headset and invokes suitable commands to an Arduino Uno board. The board decodes the received commands and produces corresponding signals to a servo motor that controls the position of the robotic claw. The system was tested successfully on a healthy, male subject, aged 28 years. The results are promising, taking into account that no specialized hardware was used. However, tests on a larger number of users is necessary in order to draw solid conclusions regarding the performance of the proposed system.

  4. Near-infrared spectroscopy (NIRS)-based eyes-closed brain-computer interface (BCI) using prefrontal cortex activation due to mental arithmetic

    PubMed Central

    Shin, Jaeyoung; Müller, Klaus-R; Hwang, Han-Jeong

    2016-01-01

    We propose a near-infrared spectroscopy (NIRS)-based brain-computer interface (BCI) that can be operated in eyes-closed (EC) state. To evaluate the feasibility of NIRS-based EC BCIs, we compared the performance of an eye-open (EO) BCI paradigm and an EC BCI paradigm with respect to hemodynamic response and classification accuracy. To this end, subjects performed either mental arithmetic or imagined vocalization of the English alphabet as a baseline task with very low cognitive loading. The performances of two linear classifiers were compared; resulting in an advantage of shrinkage linear discriminant analysis (LDA). The classification accuracy of EC paradigm (75.6 ± 7.3%) was observed to be lower than that of EO paradigm (77.0 ± 9.2%), which was statistically insignificant (p = 0.5698). Subjects reported they felt it more comfortable (p = 0.057) and easier (p < 0.05) to perform the EC BCI tasks. The different task difficulty may become a cause of the slightly lower classification accuracy of EC data. From the analysis results, we could confirm the feasibility of NIRS-based EC BCIs, which can be a BCI option that may ultimately be of use for patients who cannot keep their eyes open consistently. PMID:27824089

  5. Near-infrared spectroscopy (NIRS)-based eyes-closed brain-computer interface (BCI) using prefrontal cortex activation due to mental arithmetic.

    PubMed

    Shin, Jaeyoung; Müller, Klaus-R; Hwang, Han-Jeong

    2016-11-08

    We propose a near-infrared spectroscopy (NIRS)-based brain-computer interface (BCI) that can be operated in eyes-closed (EC) state. To evaluate the feasibility of NIRS-based EC BCIs, we compared the performance of an eye-open (EO) BCI paradigm and an EC BCI paradigm with respect to hemodynamic response and classification accuracy. To this end, subjects performed either mental arithmetic or imagined vocalization of the English alphabet as a baseline task with very low cognitive loading. The performances of two linear classifiers were compared; resulting in an advantage of shrinkage linear discriminant analysis (LDA). The classification accuracy of EC paradigm (75.6 ± 7.3%) was observed to be lower than that of EO paradigm (77.0 ± 9.2%), which was statistically insignificant (p = 0.5698). Subjects reported they felt it more comfortable (p = 0.057) and easier (p < 0.05) to perform the EC BCI tasks. The different task difficulty may become a cause of the slightly lower classification accuracy of EC data. From the analysis results, we could confirm the feasibility of NIRS-based EC BCIs, which can be a BCI option that may ultimately be of use for patients who cannot keep their eyes open consistently.

  6. Rapid prototyping of an EEG-based brain-computer interface (BCI).

    PubMed

    Guger, C; Schlögl, A; Neuper, C; Walterspacher, D; Strein, T; Pfurtscheller, G

    2001-03-01

    The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional digital signal processor (DSP) board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive (AAR) model and linear discriminant analysis (LDA).

  7. The effect of monitor raster latency on VEPs, ERPs and Brain-Computer Interface performance.

    PubMed

    Nagel, Sebastian; Dreher, Werner; Rosenstiel, Wolfgang; Spüler, Martin

    2018-02-01

    Visual neuroscience experiments and Brain-Computer Interface (BCI) control often require strict timings in a millisecond scale. As most experiments are performed using a personal computer (PC), the latencies that are introduced by the setup should be taken into account and be corrected. As a standard computer monitor uses a rastering to update each line of the image sequentially, this causes a monitor raster latency which depends on the position, on the monitor and the refresh rate. We technically measured the raster latencies of different monitors and present the effects on visual evoked potentials (VEPs) and event-related potentials (ERPs). Additionally we present a method for correcting the monitor raster latency and analyzed the performance difference of a code-modulated VEP BCI speller by correcting the latency. There are currently no other methods validating the effects of monitor raster latency on VEPs and ERPs. The timings of VEPs and ERPs are directly affected by the raster latency. Furthermore, correcting the raster latency resulted in a significant reduction of the target prediction error from 7.98% to 4.61% and also in a more reliable classification of targets by significantly increasing the distance between the most probable and the second most probable target by 18.23%. The monitor raster latency affects the timings of VEPs and ERPs, and correcting resulted in a significant error reduction of 42.23%. It is recommend to correct the raster latency for an increased BCI performance and methodical correctness. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Implantable brain computer interface: challenges to neurotechnology translation.

    PubMed

    Konrad, Peter; Shanks, Todd

    2010-06-01

    This article reviews three concepts related to implantable brain computer interface (BCI) devices being designed for human use: neural signal extraction primarily for motor commands, signal insertion to restore sensation, and technological challenges that remain. A significant body of literature has occurred over the past four decades regarding motor cortex signal extraction for upper extremity movement or computer interface. However, little is discussed regarding postural or ambulation command signaling. Auditory prosthesis research continues to represent the majority of literature on BCI signal insertion. Significant hurdles continue in the technological translation of BCI implants. These include developing a stable neural interface, significantly increasing signal processing capabilities, and methods of data transfer throughout the human body. The past few years, however, have provided extraordinary human examples of BCI implant potential. Despite technological hurdles, proof-of-concept animal and human studies provide significant encouragement that BCI implants may well find their way into mainstream medical practice in the foreseeable future.

  9. Using Brain–Computer Interfaces and Brain-State Dependent Stimulation as Tools in Cognitive Neuroscience

    PubMed Central

    Jensen, Ole; Bahramisharif, Ali; Oostenveld, Robert; Klanke, Stefan; Hadjipapas, Avgis; Okazaki, Yuka O.; van Gerven, Marcel A. J.

    2011-01-01

    Large efforts are currently being made to develop and improve online analysis of brain activity which can be used, e.g., for brain–computer interfacing (BCI). A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for aiding the disabled and for augmenting human performance. While technical developments obviously are important, we will here argue that new insight gained from cognitive neuroscience can be used to identify signatures of neural activation which reliably can be modulated by the subject at will. This review will focus mainly on oscillatory activity in the alpha band which is strongly modulated by changes in covert attention. Besides developing BCIs for their traditional purpose, they might also be used as a research tool for cognitive neuroscience. There is currently a strong interest in how brain-state fluctuations impact cognition. These state fluctuations are partly reflected by ongoing oscillatory activity. The functional role of the brain state can be investigated by introducing stimuli in real-time to subjects depending on the actual state of the brain. This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior. In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development. These approaches are amongst others informed by new insight gained from electroencephalography/magnetoencephalography studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work. PMID:21687463

  10. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-08-01

    Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Approach. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Main results. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s-1. Significance. Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.

  11. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface.

    PubMed

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-08-01

    At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s(-1). Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.

  12. A Real-Time Magnetoencephalography Brain-Computer Interface Using Interactive 3D Visualization and the Hadoop Ecosystem

    PubMed Central

    McClay, Wilbert A.; Yadav, Nancy; Ozbek, Yusuf; Haas, Andy; Attias, Hagaii T.; Nagarajan, Srikantan S.

    2015-01-01

    Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI) for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG) brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user’s intent for specific keyboard strikes or mouse button presses. The BCI’s data analytics of a subject’s MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse. PMID:26437432

  13. A Comparison of Independent Event-Related Desynchronization Responses in Motor-Related Brain Areas to Movement Execution, Movement Imagery, and Movement Observation.

    PubMed

    Duann, Jeng-Ren; Chiou, Jin-Chern

    2016-01-01

    Electroencephalographic (EEG) event-related desynchronization (ERD) induced by movement imagery or by observing biological movements performed by someone else has recently been used extensively for brain-computer interface-based applications, such as applications used in stroke rehabilitation training and motor skill learning. However, the ERD responses induced by the movement imagery and observation might not be as reliable as the ERD responses induced by movement execution. Given that studies on the reliability of the EEG ERD responses induced by these activities are still lacking, here we conducted an EEG experiment with movement imagery, movement observation, and movement execution, performed multiple times each in a pseudorandomized order in the same experimental runs. Then, independent component analysis (ICA) was applied to the EEG data to find the common motor-related EEG source activity shared by the three motor tasks. Finally, conditional EEG ERD responses associated with the three movement conditions were computed and compared. Among the three motor conditions, the EEG ERD responses induced by motor execution revealed the alpha power suppression with highest strengths and longest durations. The ERD responses of the movement imagery and movement observation only partially resembled the ERD pattern of the movement execution condition, with slightly better detectability for the ERD responses associated with the movement imagery and faster ERD responses for movement observation. This may indicate different levels of involvement in the same motor-related brain circuits during different movement conditions. In addition, because the resulting conditional EEG ERD responses from the ICA preprocessing came with minimal contamination from the non-related and/or artifactual noisy components, this result can play a role of the reference for devising a brain-computer interface using the EEG ERD features of movement imagery or observation.

  14. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.

    PubMed

    Spuler, Martin

    2015-08-01

    A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.

  15. Brain-computer interface design using alpha wave

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-bin; Wang, Hong; Liu, Chong; Li, Chun-sheng

    2010-01-01

    A brain-computer interface (BCI) is a novel communication system that translates brain activity into commands for a computer or other electronic devices. BCI system based on non-invasive scalp electroencephalogram (EEG) has become a hot research area in recent years. BCI technology can help improve the quality of life and restore function for people with severe motor disabilities. In this study, we design a real-time asynchronous BCI system using Alpha wave. The basic theory of this BCI system is alpha wave-block phenomenon. Alpha wave is the most prominent wave in the whole realm of brain activity. This system includes data acquisition, feature selection and classification. The subject can use this system easily and freely choose anyone of four commands with only short-time training. The results of the experiment show that this BCI system has high classification accuracy, and has potential application for clinical engineering and is valuable for further research.

  16. Influence of P300 latency jitter on event related potential-based brain-computer interface performance

    NASA Astrophysics Data System (ADS)

    Aricò, P.; Aloise, F.; Schettini, F.; Salinari, S.; Mattia, D.; Cincotti, F.

    2014-06-01

    Objective. Several ERP-based brain-computer interfaces (BCIs) that can be controlled even without eye movements (covert attention) have been recently proposed. However, when compared to similar systems based on overt attention, they displayed significantly lower accuracy. In the current interpretation, this is ascribed to the absence of the contribution of short-latency visual evoked potentials (VEPs) in the tasks performed in the covert attention modality. This study aims to investigate if this decrement (i) is fully explained by the lack of VEP contribution to the classification accuracy; (ii) correlates with lower temporal stability of the single-trial P300 potentials elicited in the covert attention modality. Approach. We evaluated the latency jitter of P300 evoked potentials in three BCI interfaces exploiting either overt or covert attention modalities in 20 healthy subjects. The effect of attention modality on the P300 jitter, and the relative contribution of VEPs and P300 jitter to the classification accuracy have been analyzed. Main results. The P300 jitter is higher when the BCI is controlled in covert attention. Classification accuracy negatively correlates with jitter. Even disregarding short-latency VEPs, overt-attention BCI yields better accuracy than covert. When the latency jitter is compensated offline, the difference between accuracies is not significant. Significance. The lower temporal stability of the P300 evoked potential generated during the tasks performed in covert attention modality should be regarded as the main contributing explanation of lower accuracy of covert-attention ERP-based BCIs.

  17. The impact of loss of control on movement BCIs.

    PubMed

    Reuderink, Boris; Poel, Mannes; Nijholt, Anton

    2011-12-01

    Brain-computer interfaces (BCIs) are known to suffer from spontaneous changes in the brain activity. If changes in the mental state of the user are reflected in the brain signals used for control, the behavior of a BCI is directly influenced by these states. We investigate the influence of a state of loss of control in a variant of Pacman on the performance of BCIs based on motor control. To study the effect a temporal loss of control has on the BCI performance, BCI classifiers were trained on electroencephalography (EEG) recorded during the normal control condition, and the classification performance on segments of EEG from the normal and loss of control condition was compared. Classifiers based on event-related desynchronization unexpectedly performed significantly better during the loss of control condition; for the event-related potential classifiers there was no significant difference in performance.

  18. A Fuzzy Integral Ensemble Method in Visual P300 Brain-Computer Interface.

    PubMed

    Cavrini, Francesco; Bianchi, Luigi; Quitadamo, Lucia Rita; Saggio, Giovanni

    2016-01-01

    We evaluate the possibility of application of combination of classifiers using fuzzy measures and integrals to Brain-Computer Interface (BCI) based on electroencephalography. In particular, we present an ensemble method that can be applied to a variety of systems and evaluate it in the context of a visual P300-based BCI. Offline analysis of data relative to 5 subjects lets us argue that the proposed classification strategy is suitable for BCI. Indeed, the achieved performance is significantly greater than the average of the base classifiers and, broadly speaking, similar to that of the best one. Thus the proposed methodology allows realizing systems that can be used by different subjects without the need for a preliminary configuration phase in which the best classifier for each user has to be identified. Moreover, the ensemble is often capable of detecting uncertain situations and turning them from misclassifications into abstentions, thereby improving the level of safety in BCI for environmental or device control.

  19. Critical issues using brain-computer interfaces for augmentative and alternative communication.

    PubMed

    Hill, Katya; Kovacs, Thomas; Shin, Sangeun

    2015-03-01

    Brain-computer interfaces (BCIs) may potentially be of significant practical value to patients in advanced stages of amyotrophic lateral sclerosis and locked-in syndrome for whom conventional augmentative and alternative communication (AAC) systems, which require some measure of consistent voluntary muscle control, are not satisfactory options. However, BCIs have primarily been used for communication in laboratory research settings. This article discusses 4 critical issues that should be addressed as BCIs are translated out of laboratory settings to become fully functional BCI/AAC systems that may be implemented clinically. These issues include (1) identification of primary, secondary, and tertiary system features; (2) integrating BCI/AAC systems in the World Health Organization's International Classification of Functioning, Disability and Health framework; (3) implementing language-based assessment and intervention; and (4) performance measurement. A clinical demonstration project is presented as an example of research beginning to address these critical issues. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Effect of instructive visual stimuli on neurofeedback training for motor imagery-based brain-computer interface.

    PubMed

    Kondo, Toshiyuki; Saeki, Midori; Hayashi, Yoshikatsu; Nakayashiki, Kosei; Takata, Yohei

    2015-10-01

    Event-related desynchronization (ERD) of the electroencephalogram (EEG) from the motor cortex is associated with execution, observation, and mental imagery of motor tasks. Generation of ERD by motor imagery (MI) has been widely used for brain-computer interfaces (BCIs) linked to neuroprosthetics and other motor assistance devices. Control of MI-based BCIs can be acquired by neurofeedback training to reliably induce MI-associated ERD. To develop more effective training conditions, we investigated the effect of static and dynamic visual representations of target movements (a picture of forearms or a video clip of hand grasping movements) during the BCI neurofeedback training. After 4 consecutive training days, the group that performed MI while viewing the video showed significant improvement in generating MI-associated ERD compared with the group that viewed the static image. This result suggests that passively observing the target movement during MI would improve the associated mental imagery and enhance MI-based BCIs skills. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Evaluation of a Compact Hybrid Brain-Computer Interface System

    PubMed Central

    Müller, Klaus-Robert; Schmitz, Christoph H.

    2017-01-01

    We realized a compact hybrid brain-computer interface (BCI) system by integrating a portable near-infrared spectroscopy (NIRS) device with an economical electroencephalography (EEG) system. The NIRS array was located on the subjects' forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA) and baseline (BL) tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG) with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation. PMID:28373984

  2. Evaluation of a Compact Hybrid Brain-Computer Interface System.

    PubMed

    Shin, Jaeyoung; Müller, Klaus-Robert; Schmitz, Christoph H; Kim, Do-Won; Hwang, Han-Jeong

    2017-01-01

    We realized a compact hybrid brain-computer interface (BCI) system by integrating a portable near-infrared spectroscopy (NIRS) device with an economical electroencephalography (EEG) system. The NIRS array was located on the subjects' forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA) and baseline (BL) tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG) with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation.

  3. Lingual electrotactile stimulation as an alternative sensory feedback pathway for brain-computer interface applications

    NASA Astrophysics Data System (ADS)

    Wilson, J. Adam; Walton, Léo M.; Tyler, Mitch; Williams, Justin

    2012-08-01

    This article describes a new method of providing feedback during a brain-computer interface movement task using a non-invasive, high-resolution electrotactile vision substitution system. We compared the accuracy and movement times during a center-out cursor movement task, and found that the task performance with tactile feedback was comparable to visual feedback for 11 participants. These subjects were able to modulate the chosen BCI EEG features during both feedback modalities, indicating that the type of feedback chosen does not matter provided that the task information is clearly conveyed through the chosen medium. In addition, we tested a blind subject with the tactile feedback system, and found that the training time, accuracy, and movement times were indistinguishable from results obtained from subjects using visual feedback. We believe that BCI systems with alternative feedback pathways should be explored, allowing individuals with severe motor disabilities and accompanying reduced visual and sensory capabilities to effectively use a BCI.

  4. Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface.

    PubMed

    Norton, James J S; Lee, Dong Sup; Lee, Jung Woo; Lee, Woosik; Kwon, Ohjin; Won, Phillip; Jung, Sung-Young; Cheng, Huanyu; Jeong, Jae-Woong; Akce, Abdullah; Umunna, Stephen; Na, Ilyoun; Kwon, Yong Ho; Wang, Xiao-Qi; Liu, ZhuangJian; Paik, Ungyu; Huang, Yonggang; Bretl, Timothy; Yeo, Woon-Hong; Rogers, John A

    2015-03-31

    Recent advances in electrodes for noninvasive recording of electroencephalograms expand opportunities collecting such data for diagnosis of neurological disorders and brain-computer interfaces. Existing technologies, however, cannot be used effectively in continuous, uninterrupted modes for more than a few days due to irritation and irreversible degradation in the electrical and mechanical properties of the skin interface. Here we introduce a soft, foldable collection of electrodes in open, fractal mesh geometries that can mount directly and chronically on the complex surface topology of the auricle and the mastoid, to provide high-fidelity and long-term capture of electroencephalograms in ways that avoid any significant thermal, electrical, or mechanical loading of the skin. Experimental and computational studies establish the fundamental aspects of the bending and stretching mechanics that enable this type of intimate integration on the highly irregular and textured surfaces of the auricle. Cell level tests and thermal imaging studies establish the biocompatibility and wearability of such systems, with examples of high-quality measurements over periods of 2 wk with devices that remain mounted throughout daily activities including vigorous exercise, swimming, sleeping, and bathing. Demonstrations include a text speller with a steady-state visually evoked potential-based brain-computer interface and elicitation of an event-related potential (P300 wave).

  5. Engineering incremental resistive switching in TaOx based memristors for brain-inspired computing

    NASA Astrophysics Data System (ADS)

    Wang, Zongwei; Yin, Minghui; Zhang, Teng; Cai, Yimao; Wang, Yangyuan; Yang, Yuchao; Huang, Ru

    2016-07-01

    Brain-inspired neuromorphic computing is expected to revolutionize the architecture of conventional digital computers and lead to a new generation of powerful computing paradigms, where memristors with analog resistive switching are considered to be potential solutions for synapses. Here we propose and demonstrate a novel approach to engineering the analog switching linearity in TaOx based memristors, that is, by homogenizing the filament growth/dissolution rate via the introduction of an ion diffusion limiting layer (DLL) at the TiN/TaOx interface. This has effectively mitigated the commonly observed two-regime conductance modulation behavior and led to more uniform filament growth (dissolution) dynamics with time, therefore significantly improving the conductance modulation linearity that is desirable in neuromorphic systems. In addition, the introduction of the DLL also served to reduce the power consumption of the memristor, and important synaptic learning rules in biological brains such as spike timing dependent plasticity were successfully implemented using these optimized devices. This study could provide general implications for continued optimizations of memristor performance for neuromorphic applications, by carefully tuning the dynamics involved in filament growth and dissolution.Brain-inspired neuromorphic computing is expected to revolutionize the architecture of conventional digital computers and lead to a new generation of powerful computing paradigms, where memristors with analog resistive switching are considered to be potential solutions for synapses. Here we propose and demonstrate a novel approach to engineering the analog switching linearity in TaOx based memristors, that is, by homogenizing the filament growth/dissolution rate via the introduction of an ion diffusion limiting layer (DLL) at the TiN/TaOx interface. This has effectively mitigated the commonly observed two-regime conductance modulation behavior and led to more uniform filament growth (dissolution) dynamics with time, therefore significantly improving the conductance modulation linearity that is desirable in neuromorphic systems. In addition, the introduction of the DLL also served to reduce the power consumption of the memristor, and important synaptic learning rules in biological brains such as spike timing dependent plasticity were successfully implemented using these optimized devices. This study could provide general implications for continued optimizations of memristor performance for neuromorphic applications, by carefully tuning the dynamics involved in filament growth and dissolution. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00476h

  6. Brain-Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Perspectives

    PubMed Central

    Yuan, Han; He, Bin

    2014-01-01

    Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e. the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g. electroencephalography (EEG), and have demonstrated the capability of multi-dimensional prosthesis control. This article reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications are reviewed. Lastly, limitations of SMR-BCIs and future outlooks are also discussed. PMID:24759276

  7. Evolution of brain-computer interfaces: going beyond classic motor physiology

    PubMed Central

    Leuthardt, Eric C.; Schalk, Gerwin; Roland, Jarod; Rouse, Adam; Moran, Daniel W.

    2010-01-01

    The notion that a computer can decode brain signals to infer the intentions of a human and then enact those intentions directly through a machine is becoming a realistic technical possibility. These types of devices are known as brain-computer interfaces (BCIs). The evolution of these neuroprosthetic technologies could have significant implications for patients with motor disabilities by enhancing their ability to interact and communicate with their environment. The cortical physiology most investigated and used for device control has been brain signals from the primary motor cortex. To date, this classic motor physiology has been an effective substrate for demonstrating the potential efficacy of BCI-based control. However, emerging research now stands to further enhance our understanding of the cortical physiology underpinning human intent and provide further signals for more complex brain-derived control. In this review, the authors report the current status of BCIs and detail the emerging research trends that stand to augment clinical applications in the future. PMID:19569892

  8. Papers from the Fifth International Brain-Computer Interface Meeting

    NASA Astrophysics Data System (ADS)

    Huggins, Jane E.; Wolpaw, Jonathan R.

    2014-06-01

    Brain-computer interfaces (BCIs), also known as brain-machine interfaces (BMIs), translate brain activity into new outputs that replace, restore, enhance, supplement or improve natural brain outputs. BCI research and development has grown rapidly for the past two decades. It is beginning to provide useful communication and control capacities to people with severe neuromuscular disabilities; and it is expanding into new areas such as neurorehabilitation that may greatly increase its clinical impact. At the same time, significant challenges remain, particularly in regard to translating laboratory advances into clinical use. The papers in this special section report some of the work presented at the Fifth International BCI Meeting held on 3-7 June 2013 at the Asilomar Conference Center in Pacific Grove, California, USA. Like its predecessors over the past 15 years, this meeting was supported by the National Institutes of Health, the National Science Foundation, and a variety of other governmental and private sponsors [1]. This fifth meeting was organized and managed by a program committee of BCI researchers from throughout the world [2]. It retained the distinctive retreat-style format developed by the Wadsworth Center researchers who organized and managed the first four meetings. The 301 attendees came from 165 research groups in 29 countries; 37% were students or postdoctoral fellows. Of more than 200 extended abstracts submitted for peer review, 25 were selected for oral presentation [3], and 181 were presented as posters [4] and published in the open-access conference proceedings [5]. The meeting featured 19 highly interactive workshops [6] covering the broad spectrum of BCI research and development, as well as many demonstrations of BCI systems and associated technology. Like the first four meetings, this one included attendees and embraced topics from across the broad spectrum of disciplines essential to effective BCI research and development, including neuroscience, engineering, applied mathematics, computer science, psychology and rehabilitation. In addition, this fifth meeting extended the spectrum in two very important ways. For the first time, presentations were given by several people who could potentially benefit from current BCI technology-people with severe disabilities who need assistive technology for communication. One presented in person and one remotely. A Virtual BCI User's Forum allowed these presenters and other potential BCI users to speak directly to the BCI research community about the advantages and disadvantages of current BCIs and important directions for future study (see [7]). Their personal experiences and desires can help guide BCI research and development. Their active participation, particularly in regard to the selection of goals and the evaluation and optimization of new methods and systems, is essential if BCIs are to become clinically valuable and widely used technology. The second major innovation in this meeting was the strong emphasis on ethical issues related to BCI development and use. The meeting opened with a keynote presentation entitled 'Neuroethics, BCIs and the Cyborg Myth' by Dr Joseph Fins, a noted authority on neuroethics from the Weill Cornell Medical College and the Rockefeller University. He focused on the ability of BCIs to relieve suffering and restore function, while cautioning against applications that take intentional control away from the user. Ethical issues were also addressed in several of the workshops, and arose on multiple occasions and in multiple contexts over the course of the meeting. Their prominence reflected the growing importance and difficulty of ethical issues as BCI capacities and applications grow and extend to potentially enhancing or supplementing normal nervous system function. The 16 articles in this special section reflect the breadth, depth, growing maturity and future directions of BCI research. The first paper presents a tutorial on best practices in BCI performance measurement [8]. The following eight papers focus on specific BCI applications and on methods for increasing their usefulness for people with severe disabilities. The next two examine how brain activity and BCI use affect each other. The final five studies investigate brain signals and evaluate new signal processing algorithms in order to improve BCI performance and broaden its possible applications in some of the newest areas of BCI research, including the direct interpretation of speech from electrocorticographic (ECoG) activity [9]. Together, these papers span many aspects of BCI research, including different recording modalities (i.e. electroencephalogram (EEG), ECoG, functional magnetic resonance imaging (fMRI)) and signal types (e.g. P300 event-related potentials (ERPs), sensorimotor rhythms, steady-state visual evoked potentials (SSVEPs)). Furthermore, additional clinically related studies that were presented at the meeting but were considered to be outside the scope of the Journal of Neural Engineering will appear in a special issue of the Archives of Physical Medicine and Rehabilitation . With a theme of 'Defining the Future' the Fifth International BCI Meeting tackled the issues of a rapidly growing multidisciplinary research and development enterprise that is now entering clinical use. Important new areas that received attention included the need for active involvement of the people with severe disabilities who are the primary initial users of BCI technology and the growing importance and difficulty of the multiple ethical questions raised by BCIs and their potential applications. The meeting also marked the launching of the new journal Brain--Computer Interfaces , dedicated to BCI research and development, and initiated the establishment of the Brain--Computer Interface Society, which will organize and manage the Sixth International BCI Meeting to be held in 2016. References [1] http://bcimeeting.org/2013/sponsors.html [2] http://bcimeeting.org/2013/meetinginfo.html [3] http://bcimeeting.org/2013/researchsessions.html (indexes individual abstracts) [4] http://bcimeeting.org/2013/posters.html (indexes individual abstracts) [5] http://castor.tugraz.at/doku/BCIMeeting2013/BCIMeeting2013_all.pdf [6] Huggins J E et al 2014 Workshops of the Fifth International Brain--Computer Interface Meeting: Defining the Future Brain--Computer Interface J. 1 27-49 [7] Peters B, Bieker G, Heckman S M, Huggins J E, Wolf C, Zeitlin D and Fried-Oken M 2014 Brain--computer interface users speak up: the Virtual Users' Forum at the 2013 International BCI Meeting Archives of Physical Medicine and Rehabilitation vol 95 fall supplement at press [8] Thompson D E et al 2014 Performance measurement for brain-computer or brain-machine interfaces: a tutorial J. Neural Eng. 11 035001 [9] Mugler E, Patton J, Flint R, Wright Z, Schuele S, Rosenow J, Shih J, Krusienski D and Slutzky M 2014 Direct classification of all American English phonemes using signals from functional speech motor cortex J. Neural Eng. 11 035015

  9. EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone

    PubMed Central

    Debener, Stefan; Emkes, Reiner; Volkening, Nils; Fudickar, Sebastian; Bleichner, Martin G.

    2017-01-01

    Objective Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. Approach In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. Main Results We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. Significance We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms. PMID:29349070

  10. Turbo-Satori: a neurofeedback and brain-computer interface toolbox for real-time functional near-infrared spectroscopy.

    PubMed

    Lührs, Michael; Goebel, Rainer

    2017-10-01

    Turbo-Satori is a neurofeedback and brain-computer interface (BCI) toolbox for real-time functional near-infrared spectroscopy (fNIRS). It incorporates multiple pipelines from real-time preprocessing and analysis to neurofeedback and BCI applications. The toolbox is designed with a focus in usability, enabling a fast setup and execution of real-time experiments. Turbo-Satori uses an incremental recursive least-squares procedure for real-time general linear model calculation and support vector machine classifiers for advanced BCI applications. It communicates directly with common NIRx fNIRS hardware and was tested extensively ensuring that the calculations can be performed in real time without a significant change in calculation times for all sampling intervals during ongoing experiments of up to 6 h of recording. Enabling immediate access to advanced processing features also allows the use of this toolbox for students and nonexperts in the field of fNIRS data acquisition and processing. Flexible network interfaces allow third party stimulus applications to access the processed data and calculated statistics in real time so that this information can be easily incorporated in neurofeedback or BCI presentations.

  11. Language Model Applications to Spelling with Brain-Computer Interfaces

    PubMed Central

    Mora-Cortes, Anderson; Manyakov, Nikolay V.; Chumerin, Nikolay; Van Hulle, Marc M.

    2014-01-01

    Within the Ambient Assisted Living (AAL) community, Brain-Computer Interfaces (BCIs) have raised great hopes as they provide alternative communication means for persons with disabilities bypassing the need for speech and other motor activities. Although significant advancements have been realized in the last decade, applications of language models (e.g., word prediction, completion) have only recently started to appear in BCI systems. The main goal of this article is to review the language model applications that supplement non-invasive BCI-based communication systems by discussing their potential and limitations, and to discern future trends. First, a brief overview of the most prominent BCI spelling systems is given, followed by an in-depth discussion of the language models applied to them. These language models are classified according to their functionality in the context of BCI-based spelling: the static/dynamic nature of the user interface, the use of error correction and predictive spelling, and the potential to improve their classification performance by using language models. To conclude, the review offers an overview of the advantages and challenges when implementing language models in BCI-based communication systems when implemented in conjunction with other AAL technologies. PMID:24675760

  12. EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone.

    PubMed

    Blum, Sarah; Debener, Stefan; Emkes, Reiner; Volkening, Nils; Fudickar, Sebastian; Bleichner, Martin G

    2017-01-01

    Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms.

  13. Designing a Hands-On Brain Computer Interface Laboratory Course

    PubMed Central

    Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima

    2017-01-01

    Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI. PMID:28268946

  14. Brain-computer interface based on detection of movement intention as a means of brain wave modulation enhancement

    NASA Astrophysics Data System (ADS)

    Pulido Castro, Sergio D.; López López, Juan M.

    2017-11-01

    Movement intention (MI) is the mental state in which it is desired to make an action that implies movement. There are certain signals that are directly related with MI; mainly obtained in the primary motor cortex. These signals can be used in a brain-computer interface (BCI). BCIs have a wide variety of applications for the general population, classified in two groups: optimization of conventional neuromuscular performances and enhancement of conventional neuromuscular performances beyond normal capacities. The main goal of this project is to analyze if neural rhythm modulation enhancement could be achieved by practicing, through a BCI based on MI detection, which was designed in a previous study. A six-session experiment was made with eight healthy subjects. Each session was composed by two stages: a training stage and a testing stage, which allowed control of a videogame. The scores in the game were recorded and analyzed. Changes in alpha and beta bands were also analyzed in order to observe if attention could in fact be enhanced. The obtained results were partially satisfactory, as most subjects showed a clear improvement in performance at some point in the trials. As well, the alpha to beta wave ratio of all the tasks was analyzed to observe if there are changes as the experiment progresses. The results are promising, and a different protocol must be implemented to assess the impact of the BCI on the attention span, which can be analyzed with the alpha and beta waves.

  15. Interactions between pre-processing and classification methods for event-related-potential classification: best-practice guidelines for brain-computer interfacing.

    PubMed

    Farquhar, J; Hill, N J

    2013-04-01

    Detecting event related potentials (ERPs) from single trials is critical to the operation of many stimulus-driven brain computer interface (BCI) systems. The low strength of the ERP signal compared to the noise (due to artifacts and BCI irrelevant brain processes) makes this a challenging signal detection problem. Previous work has tended to focus on how best to detect a single ERP type (such as the visual oddball response). However, the underlying ERP detection problem is essentially the same regardless of stimulus modality (e.g., visual or tactile), ERP component (e.g., P300 oddball response, or the error-potential), measurement system or electrode layout. To investigate whether a single ERP detection method might work for a wider range of ERP BCIs we compare detection performance over a large corpus of more than 50 ERP BCI datasets whilst systematically varying the electrode montage, spectral filter, spatial filter and classifier training methods. We identify an interesting interaction between spatial whitening and regularised classification which made detection performance independent of the choice of spectral filter low-pass frequency. Our results show that pipeline consisting of spectral filtering, spatial whitening, and regularised classification gives near maximal performance in all cases. Importantly, this pipeline is simple to implement and completely automatic with no expert feature selection or parameter tuning required. Thus, we recommend this combination as a "best-practice" method for ERP detection problems.

  16. An embedded implementation based on adaptive filter bank for brain-computer interface systems.

    PubMed

    Belwafi, Kais; Romain, Olivier; Gannouni, Sofien; Ghaffari, Fakhreddine; Djemal, Ridha; Ouni, Bouraoui

    2018-07-15

    Brain-computer interface (BCI) is a new communication pathway for users with neurological deficiencies. The implementation of a BCI system requires complex electroencephalography (EEG) signal processing including filtering, feature extraction and classification algorithms. Most of current BCI systems are implemented on personal computers. Therefore, there is a great interest in implementing BCI on embedded platforms to meet system specifications in terms of time response, cost effectiveness, power consumption, and accuracy. This article presents an embedded-BCI (EBCI) system based on a Stratix-IV field programmable gate array. The proposed system relays on the weighted overlap-add (WOLA) algorithm to perform dynamic filtering of EEG-signals by analyzing the event-related desynchronization/synchronization (ERD/ERS). The EEG-signals are classified, using the linear discriminant analysis algorithm, based on their spatial features. The proposed system performs fast classification within a time delay of 0.430 s/trial, achieving an average accuracy of 76.80% according to an offline approach and 80.25% using our own recording. The estimated power consumption of the prototype is approximately 0.7 W. Results show that the proposed EBCI system reduces the overall classification error rate for the three datasets of the BCI-competition by 5% compared to other similar implementations. Moreover, experiment shows that the proposed system maintains a high accuracy rate with a short processing time, a low power consumption, and a low cost. Performing dynamic filtering of EEG-signals using WOLA increases the recognition rate of ERD/ERS patterns of motor imagery brain activity. This approach allows to develop a complete prototype of a EBCI system that achieves excellent accuracy rates. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. User-customized brain computer interfaces using Bayesian optimization

    NASA Astrophysics Data System (ADS)

    Bashashati, Hossein; Ward, Rabab K.; Bashashati, Ali

    2016-04-01

    Objective. The brain characteristics of different people are not the same. Brain computer interfaces (BCIs) should thus be customized for each individual person. In motor-imagery based synchronous BCIs, a number of parameters (referred to as hyper-parameters) including the EEG frequency bands, the channels and the time intervals from which the features are extracted should be pre-determined based on each subject’s brain characteristics. Approach. To determine the hyper-parameter values, previous work has relied on manual or semi-automatic methods that are not applicable to high-dimensional search spaces. In this paper, we propose a fully automatic, scalable and computationally inexpensive algorithm that uses Bayesian optimization to tune these hyper-parameters. We then build different classifiers trained on the sets of hyper-parameter values proposed by the Bayesian optimization. A final classifier aggregates the results of the different classifiers. Main Results. We have applied our method to 21 subjects from three BCI competition datasets. We have conducted rigorous statistical tests, and have shown the positive impact of hyper-parameter optimization in improving the accuracy of BCIs. Furthermore, We have compared our results to those reported in the literature. Significance. Unlike the best reported results in the literature, which are based on more sophisticated feature extraction and classification methods, and rely on prestudies to determine the hyper-parameter values, our method has the advantage of being fully automated, uses less sophisticated feature extraction and classification methods, and yields similar or superior results compared to the best performing designs in the literature.

  18. A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals.

    PubMed

    Bashashati, Ali; Fatourechi, Mehrdad; Ward, Rabab K; Birch, Gary E

    2007-06-01

    Brain-computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using the electroencephalographic activity or other electrophysiological measures of the brain function. An essential factor in the successful operation of BCI systems is the methods used to process the brain signals. In the BCI literature, however, there is no comprehensive review of the signal processing techniques used. This work presents the first such comprehensive survey of all BCI designs using electrical signal recordings published prior to January 2006. Detailed results from this survey are presented and discussed. The following key research questions are addressed: (1) what are the key signal processing components of a BCI, (2) what signal processing algorithms have been used in BCIs and (3) which signal processing techniques have received more attention?

  19. TOPICAL REVIEW: A survey of signal processing algorithms in brain computer interfaces based on electrical brain signals

    NASA Astrophysics Data System (ADS)

    Bashashati, Ali; Fatourechi, Mehrdad; Ward, Rabab K.; Birch, Gary E.

    2007-06-01

    Brain computer interfaces (BCIs) aim at providing a non-muscular channel for sending commands to the external world using the electroencephalographic activity or other electrophysiological measures of the brain function. An essential factor in the successful operation of BCI systems is the methods used to process the brain signals. In the BCI literature, however, there is no comprehensive review of the signal processing techniques used. This work presents the first such comprehensive survey of all BCI designs using electrical signal recordings published prior to January 2006. Detailed results from this survey are presented and discussed. The following key research questions are addressed: (1) what are the key signal processing components of a BCI, (2) what signal processing algorithms have been used in BCIs and (3) which signal processing techniques have received more attention?

  20. A Novel Audiovisual Brain-Computer Interface and Its Application in Awareness Detection.

    PubMed

    Wang, Fei; He, Yanbin; Pan, Jiahui; Xie, Qiuyou; Yu, Ronghao; Zhang, Rui; Li, Yuanqing

    2015-06-30

    Currently, detecting awareness in patients with disorders of consciousness (DOC) is a challenging task, which is commonly addressed through behavioral observation scales such as the JFK Coma Recovery Scale-Revised. Brain-computer interfaces (BCIs) provide an alternative approach to detect awareness in patients with DOC. However, these patients have a much lower capability of using BCIs compared to healthy individuals. This study proposed a novel BCI using temporally, spatially, and semantically congruent audiovisual stimuli involving numbers (i.e., visual and spoken numbers). Subjects were instructed to selectively attend to the target stimuli cued by instruction. Ten healthy subjects first participated in the experiment to evaluate the system. The results indicated that the audiovisual BCI system outperformed auditory-only and visual-only systems. Through event-related potential analysis, we observed audiovisual integration effects for target stimuli, which enhanced the discriminability between brain responses for target and nontarget stimuli and thus improved the performance of the audiovisual BCI. This system was then applied to detect the awareness of seven DOC patients, five of whom exhibited command following as well as number recognition. Thus, this audiovisual BCI system may be used as a supportive bedside tool for awareness detection in patients with DOC.

  1. A Novel Audiovisual Brain-Computer Interface and Its Application in Awareness Detection

    PubMed Central

    Wang, Fei; He, Yanbin; Pan, Jiahui; Xie, Qiuyou; Yu, Ronghao; Zhang, Rui; Li, Yuanqing

    2015-01-01

    Currently, detecting awareness in patients with disorders of consciousness (DOC) is a challenging task, which is commonly addressed through behavioral observation scales such as the JFK Coma Recovery Scale-Revised. Brain-computer interfaces (BCIs) provide an alternative approach to detect awareness in patients with DOC. However, these patients have a much lower capability of using BCIs compared to healthy individuals. This study proposed a novel BCI using temporally, spatially, and semantically congruent audiovisual stimuli involving numbers (i.e., visual and spoken numbers). Subjects were instructed to selectively attend to the target stimuli cued by instruction. Ten healthy subjects first participated in the experiment to evaluate the system. The results indicated that the audiovisual BCI system outperformed auditory-only and visual-only systems. Through event-related potential analysis, we observed audiovisual integration effects for target stimuli, which enhanced the discriminability between brain responses for target and nontarget stimuli and thus improved the performance of the audiovisual BCI. This system was then applied to detect the awareness of seven DOC patients, five of whom exhibited command following as well as number recognition. Thus, this audiovisual BCI system may be used as a supportive bedside tool for awareness detection in patients with DOC. PMID:26123281

  2. A chronic generalized bi-directional brain-machine interface.

    PubMed

    Rouse, A G; Stanslaski, S R; Cong, P; Jensen, R M; Afshar, P; Ullestad, D; Gupta, R; Molnar, G F; Moran, D W; Denison, T J

    2011-06-01

    A bi-directional neural interface (NI) system was designed and prototyped by incorporating a novel neural recording and processing subsystem into a commercial neural stimulator architecture. The NI system prototype leverages the system infrastructure from an existing neurostimulator to ensure reliable operation in a chronic implantation environment. In addition to providing predicate therapy capabilities, the device adds key elements to facilitate chronic research, such as four channels of electrocortigram/local field potential amplification and spectral analysis, a three-axis accelerometer, algorithm processing, event-based data logging, and wireless telemetry for data uploads and algorithm/configuration updates. The custom-integrated micropower sensor and interface circuits facilitate extended operation in a power-limited device. The prototype underwent significant verification testing to ensure reliability, and meets the requirements for a class CF instrument per IEC-60601 protocols. The ability of the device system to process and aid in classifying brain states was preclinically validated using an in vivo non-human primate model for brain control of a computer cursor (i.e. brain-machine interface or BMI). The primate BMI model was chosen for its ability to quantitatively measure signal decoding performance from brain activity that is similar in both amplitude and spectral content to other biomarkers used to detect disease states (e.g. Parkinson's disease). A key goal of this research prototype is to help broaden the clinical scope and acceptance of NI techniques, particularly real-time brain state detection. These techniques have the potential to be generalized beyond motor prosthesis, and are being explored for unmet needs in other neurological conditions such as movement disorders, stroke and epilepsy.

  3. Brain-computer interface devices for patients with paralysis and amputation: a meeting report

    NASA Astrophysics Data System (ADS)

    Bowsher, K.; Civillico, E. F.; Coburn, J.; Collinger, J.; Contreras-Vidal, J. L.; Denison, T.; Donoghue, J.; French, J.; Getzoff, N.; Hochberg, L. R.; Hoffmann, M.; Judy, J.; Kleitman, N.; Knaack, G.; Krauthamer, V.; Ludwig, K.; Moynahan, M.; Pancrazio, J. J.; Peckham, P. H.; Pena, C.; Pinto, V.; Ryan, T.; Saha, D.; Scharen, H.; Shermer, S.; Skodacek, K.; Takmakov, P.; Tyler, D.; Vasudevan, S.; Wachrathit, K.; Weber, D.; Welle, C. G.; Ye, M.

    2016-04-01

    Objective. The Food and Drug Administration’s (FDA) Center for Devices and Radiological Health (CDRH) believes it is important to help stakeholders (e.g., manufacturers, health-care professionals, patients, patient advocates, academia, and other government agencies) navigate the regulatory landscape for medical devices. For innovative devices involving brain-computer interfaces, this is particularly important. Approach. Towards this goal, on 21 November, 2014, CDRH held an open public workshop on its White Oak, MD campus with the aim of fostering an open discussion on the scientific and clinical considerations associated with the development of brain-computer interface (BCI) devices, defined for the purposes of this workshop as neuroprostheses that interface with the central or peripheral nervous system to restore lost motor or sensory capabilities. Main results. This paper summarizes the presentations and discussions from that workshop. Significance. CDRH plans to use this information to develop regulatory considerations that will promote innovation while maintaining appropriate patient protections. FDA plans to build on advances in regulatory science and input provided in this workshop to develop guidance that provides recommendations for premarket submissions for BCI devices. These proceedings will be a resource for the BCI community during the development of medical devices for consumers.

  4. Brain-computer interface devices for patients with paralysis and amputation: a meeting report.

    PubMed

    Bowsher, K; Civillico, E F; Coburn, J; Collinger, J; Contreras-Vidal, J L; Denison, T; Donoghue, J; French, J; Getzoff, N; Hochberg, L R; Hoffmann, M; Judy, J; Kleitman, N; Knaack, G; Krauthamer, V; Ludwig, K; Moynahan, M; Pancrazio, J J; Peckham, P H; Pena, C; Pinto, V; Ryan, T; Saha, D; Scharen, H; Shermer, S; Skodacek, K; Takmakov, P; Tyler, D; Vasudevan, S; Wachrathit, K; Weber, D; Welle, C G; Ye, M

    2016-04-01

    The Food and Drug Administration's (FDA) Center for Devices and Radiological Health (CDRH) believes it is important to help stakeholders (e.g., manufacturers, health-care professionals, patients, patient advocates, academia, and other government agencies) navigate the regulatory landscape for medical devices. For innovative devices involving brain-computer interfaces, this is particularly important. Towards this goal, on 21 November, 2014, CDRH held an open public workshop on its White Oak, MD campus with the aim of fostering an open discussion on the scientific and clinical considerations associated with the development of brain-computer interface (BCI) devices, defined for the purposes of this workshop as neuroprostheses that interface with the central or peripheral nervous system to restore lost motor or sensory capabilities. This paper summarizes the presentations and discussions from that workshop. CDRH plans to use this information to develop regulatory considerations that will promote innovation while maintaining appropriate patient protections. FDA plans to build on advances in regulatory science and input provided in this workshop to develop guidance that provides recommendations for premarket submissions for BCI devices. These proceedings will be a resource for the BCI community during the development of medical devices for consumers.

  5. A brain computer interface-based explorer.

    PubMed

    Bai, Lijuan; Yu, Tianyou; Li, Yuanqing

    2015-04-15

    In recent years, various applications of brain computer interfaces (BCIs) have been studied. In this paper, we present a hybrid BCI combining P300 and motor imagery to operate an explorer. Our system is mainly composed of a BCI mouse, a BCI speller and an explorer. Through this system, the user can access his computer and manipulate (open, close, copy, paste, and delete) files such as documents, pictures, music, movies and so on. The system has been tested with five subjects, and the experimental results show that the explorer can be successfully operated according to subjects' intentions. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Unsupervised Decoding of Long-Term, Naturalistic Human Neural Recordings with Automated Video and Audio Annotations

    PubMed Central

    Wang, Nancy X. R.; Olson, Jared D.; Ojemann, Jeffrey G.; Rao, Rajesh P. N.; Brunton, Bingni W.

    2016-01-01

    Fully automated decoding of human activities and intentions from direct neural recordings is a tantalizing challenge in brain-computer interfacing. Implementing Brain Computer Interfaces (BCIs) outside carefully controlled experiments in laboratory settings requires adaptive and scalable strategies with minimal supervision. Here we describe an unsupervised approach to decoding neural states from naturalistic human brain recordings. We analyzed continuous, long-term electrocorticography (ECoG) data recorded over many days from the brain of subjects in a hospital room, with simultaneous audio and video recordings. We discovered coherent clusters in high-dimensional ECoG recordings using hierarchical clustering and automatically annotated them using speech and movement labels extracted from audio and video. To our knowledge, this represents the first time techniques from computer vision and speech processing have been used for natural ECoG decoding. Interpretable behaviors were decoded from ECoG data, including moving, speaking and resting; the results were assessed by comparison with manual annotation. Discovered clusters were projected back onto the brain revealing features consistent with known functional areas, opening the door to automated functional brain mapping in natural settings. PMID:27148018

  7. Sequenced subjective accents for brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Vlek, R. J.; Schaefer, R. S.; Gielen, C. C. A. M.; Farquhar, J. D. R.; Desain, P.

    2011-06-01

    Subjective accenting is a cognitive process in which identical auditory pulses at an isochronous rate turn into the percept of an accenting pattern. This process can be voluntarily controlled, making it a candidate for communication from human user to machine in a brain-computer interface (BCI) system. In this study we investigated whether subjective accenting is a feasible paradigm for BCI and how its time-structured nature can be exploited for optimal decoding from non-invasive EEG data. Ten subjects perceived and imagined different metric patterns (two-, three- and four-beat) superimposed on a steady metronome. With an offline classification paradigm, we classified imagined accented from non-accented beats on a single trial (0.5 s) level with an average accuracy of 60.4% over all subjects. We show that decoding of imagined accents is also possible with a classifier trained on perception data. Cyclic patterns of accents and non-accents were successfully decoded with a sequence classification algorithm. Classification performances were compared by means of bit rate. Performance in the best scenario translates into an average bit rate of 4.4 bits min-1 over subjects, which makes subjective accenting a promising paradigm for an online auditory BCI.

  8. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.

    PubMed

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2015-11-30

    Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Spatial-temporal discriminant analysis for ERP-based brain-computer interface.

    PubMed

    Zhang, Yu; Zhou, Guoxu; Zhao, Qibin; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2013-03-01

    Linear discriminant analysis (LDA) has been widely adopted to classify event-related potential (ERP) in brain-computer interface (BCI). Good classification performance of the ERP-based BCI usually requires sufficient data recordings for effective training of the LDA classifier, and hence a long system calibration time which however may depress the system practicability and cause the users resistance to the BCI system. In this study, we introduce a spatial-temporal discriminant analysis (STDA) to ERP classification. As a multiway extension of the LDA, the STDA method tries to maximize the discriminant information between target and nontarget classes through finding two projection matrices from spatial and temporal dimensions collaboratively, which reduces effectively the feature dimensionality in the discriminant analysis, and hence decreases significantly the number of required training samples. The proposed STDA method was validated with dataset II of the BCI Competition III and dataset recorded from our own experiments, and compared to the state-of-the-art algorithms for ERP classification. Online experiments were additionally implemented for the validation. The superior classification performance in using few training samples shows that the STDA is effective to reduce the system calibration time and improve the classification accuracy, thereby enhancing the practicability of ERP-based BCI.

  10. A Fully Automated Trial Selection Method for Optimization of Motor Imagery Based Brain-Computer Interface.

    PubMed

    Zhou, Bangyan; Wu, Xiaopei; Lv, Zhao; Zhang, Lei; Guo, Xiaojin

    2016-01-01

    Independent component analysis (ICA) as a promising spatial filtering method can separate motor-related independent components (MRICs) from the multichannel electroencephalogram (EEG) signals. However, the unpredictable burst interferences may significantly degrade the performance of ICA-based brain-computer interface (BCI) system. In this study, we proposed a new algorithm frame to address this issue by combining the single-trial-based ICA filter with zero-training classifier. We developed a two-round data selection method to identify automatically the badly corrupted EEG trials in the training set. The "high quality" training trials were utilized to optimize the ICA filter. In addition, we proposed an accuracy-matrix method to locate the artifact data segments within a single trial and investigated which types of artifacts can influence the performance of the ICA-based MIBCIs. Twenty-six EEG datasets of three-class motor imagery were used to validate the proposed methods, and the classification accuracies were compared with that obtained by frequently used common spatial pattern (CSP) spatial filtering algorithm. The experimental results demonstrated that the proposed optimizing strategy could effectively improve the stability, practicality and classification performance of ICA-based MIBCI. The study revealed that rational use of ICA method may be crucial in building a practical ICA-based MIBCI system.

  11. Dimensionality reduction based on distance preservation to local mean for symmetric positive definite matrices and its application in brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Davoudi, Alireza; Shiry Ghidary, Saeed; Sadatnejad, Khadijeh

    2017-06-01

    Objective. In this paper, we propose a nonlinear dimensionality reduction algorithm for the manifold of symmetric positive definite (SPD) matrices that considers the geometry of SPD matrices and provides a low-dimensional representation of the manifold with high class discrimination in a supervised or unsupervised manner. Approach. The proposed algorithm tries to preserve the local structure of the data by preserving distances to local means (DPLM) and also provides an implicit projection matrix. DPLM is linear in terms of the number of training samples. Main results. We performed several experiments on the multi-class dataset IIa from BCI competition IV and two other datasets from BCI competition III including datasets IIIa and IVa. The results show that our approach as dimensionality reduction technique—leads to superior results in comparison with other competitors in the related literature because of its robustness against outliers and the way it preserves the local geometry of the data. Significance. The experiments confirm that the combination of DPLM with filter geodesic minimum distance to mean as the classifier leads to superior performance compared with the state of the art on brain-computer interface competition IV dataset IIa. Also the statistical analysis shows that our dimensionality reduction method performs significantly better than its competitors.

  12. Electro-encephalogram based brain-computer interface: improved performance by mental practice and concentration skills.

    PubMed

    Mahmoudi, Babak; Erfanian, Abbas

    2006-11-01

    Mental imagination is the essential part of the most EEG-based communication systems. Thus, the quality of mental rehearsal, the degree of imagined effort, and mind controllability should have a major effect on the performance of electro-encephalogram (EEG) based brain-computer interface (BCI). It is now well established that mental practice using motor imagery improves motor skills. The effects of mental practice on motor skill learning are the result of practice on central motor programming. According to this view, it seems logical that mental practice should modify the neuronal activity in the primary sensorimotor areas and consequently change the performance of EEG-based BCI. For developing a practical BCI system, recognizing the resting state with eyes opened and the imagined voluntary movement is important. For this purpose, the mind should be able to focus on a single goal for a period of time, without deviation to another context. In this work, we are going to examine the role of mental practice and concentration skills on the EEG control during imaginative hand movements. The results show that the mental practice and concentration can generally improve the classification accuracy of the EEG patterns. It is found that mental training has a significant effect on the classification accuracy over the primary motor cortex and frontal area.

  13. Software platform for rapid prototyping of NIRS brain computer interfacing techniques.

    PubMed

    Matthews, Fiachra; Soraghan, Christopher; Ward, Tomas E; Markham, Charles; Pearlmutter, Barak A

    2008-01-01

    This paper describes the control system of a next-generation optical brain-computer interface (BCI). Using functional near-infrared spectroscopy (fNIRS) as a BCI modality is a relatively new concept, and research has only begun to explore approaches for its implementation. It is necessary to have a system by which it is possible to investigate the signal processing and classification techniques available in the BCI community. Most importantly, these techniques must be easily testable in real-time applications. The system we describe was built using LABVIEW, a graphical programming language designed for interaction with National Instruments hardware. This platform allows complete configurability from hardware control and regulation, testing and filtering in a graphical interface environment.

  14. Towards a symbiotic brain-computer interface: exploring the application-decoder interaction

    NASA Astrophysics Data System (ADS)

    Verhoeven, T.; Buteneers Wiersema, P., Jr.; Dambre, J.; Kindermans, PJ

    2015-12-01

    Objective. State of the art brain-computer interface (BCI) research focuses on improving individual components such as the application or the decoder that converts the user’s brain activity to control signals. In this study, we investigate the interaction between these components in the P300 speller, a BCI for communication. We introduce a synergistic approach in which the stimulus presentation sequence is modified to enhance the machine learning decoding. In this way we aim for an improved overall BCI performance. Approach. First, a new stimulus presentation paradigm is introduced which provides us flexibility in tuning the sequence of visual stimuli presented to the user. Next, an experimental setup in which this paradigm is compared to other paradigms uncovers the underlying mechanism of the interdependence between the application and the performance of the decoder. Main results. Extensive analysis of the experimental results reveals the changing requirements of the decoder concerning the data recorded during the spelling session. When few data is recorded, the balance in the number of target and non-target stimuli shown to the user is more important than the signal-to-noise rate (SNR) of the recorded response signals. Only when more data has been collected, the SNR becomes the dominant factor. Significance. For BCIs in general, knowing the dominant factor that affects the decoder performance and being able to respond to it is of utmost importance to improve system performance. For the P300 speller, the proposed tunable paradigm offers the possibility to tune the application to the decoder’s needs at any time and, as such, fully exploit this application-decoder interaction.

  15. Portable non-invasive brain-computer interface: challenges and opportunities of optical modalities

    NASA Astrophysics Data System (ADS)

    Scholl, Clara A.; Hendrickson, Scott M.; Swett, Bruce A.; Fitch, Michael J.; Walter, Erich C.; McLoughlin, Michael P.; Chevillet, Mark A.; Blodgett, David W.; Hwang, Grace M.

    2017-05-01

    The development of portable non-invasive brain computer interface technologies with higher spatio-temporal resolution has been motivated by the tremendous success seen with implanted devices. This talk will discuss efforts to overcome several major obstacles to viability including approaches that promise to improve spatial and temporal resolution. Optical approaches in particular will be highlighted and the potential benefits of both Blood-Oxygen Level Dependent (BOLD) and Fast Optical Signal (FOS) will be discussed. Early-stage research into the correlations between neural activity and FOS will be explored.

  16. Real-time functional magnetic imaging-brain-computer interface and virtual reality promising tools for the treatment of pedophilia.

    PubMed

    Renaud, Patrice; Joyal, Christian; Stoleru, Serge; Goyette, Mathieu; Weiskopf, Nikolaus; Birbaumer, Niels

    2011-01-01

    This chapter proposes a prospective view on using a real-time functional magnetic imaging (rt-fMRI) brain-computer interface (BCI) application as a new treatment for pedophilia. Neurofeedback mediated by interactive virtual stimuli is presented as the key process in this new BCI application. Results on the diagnostic discriminant power of virtual characters depicting sexual stimuli relevant to pedophilia are given. Finally, practical and ethical implications are briefly addressed. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. [Research of controlling of smart home system based on P300 brain-computer interface].

    PubMed

    Wang, Jinjia; Yang, Chengjie

    2014-08-01

    Using electroencephalogram (EEG) signal to control external devices has always been the research focus in the field of brain-computer interface (BCI). This is especially significant for those disabilities who have lost capacity of movements. In this paper, the P300-based BCI and the microcontroller-based wireless radio frequency (RF) technology are utilized to design a smart home control system, which can be used to control household appliances, lighting system, and security devices directly. Experiment results showed that the system was simple, reliable and easy to be populirised.

  18. Hardware enhance of brain computer interfaces

    NASA Astrophysics Data System (ADS)

    Wu, Jerry; Szu, Harold; Chen, Yuechen; Guo, Ran; Gu, Xixi

    2015-05-01

    The history of brain-computer interfaces (BCIs) starts with Hans Berger's discovery of the electrical activity of the human brain and the development of electroencephalography (EEG). Recent years, BCI researches are focused on Invasive, Partially invasive, and Non-invasive BCI. Furthermore, EEG can be also applied to telepathic communication which could provide the basis for brain-based communication using imagined speech. It is possible to use EEG signals to discriminate the vowels and consonants embedded in spoken and in imagined words and apply to military product. In this report, we begin with an example of using high density EEG with high electrode density and analysis the results by using BCIs. The BCIs in this work is enhanced by A field-programmable gate array (FPGA) board with optimized two dimension (2D) image Fast Fourier Transform (FFT) analysis.

  19. Communication and control by listening: toward optimal design of a two-class auditory streaming brain-computer interface.

    PubMed

    Hill, N Jeremy; Moinuddin, Aisha; Häuser, Ann-Katrin; Kienzle, Stephan; Schalk, Gerwin

    2012-01-01

    Most brain-computer interface (BCI) systems require users to modulate brain signals in response to visual stimuli. Thus, they may not be useful to people with limited vision, such as those with severe paralysis. One important approach for overcoming this issue is auditory streaming, an approach whereby a BCI system is driven by shifts of attention between two simultaneously presented auditory stimulus streams. Motivated by the long-term goal of translating such a system into a reliable, simple yes-no interface for clinical usage, we aim to answer two main questions. First, we asked which of two previously published variants provides superior performance: a fixed-phase (FP) design in which the streams have equal period and opposite phase, or a drifting-phase (DP) design where the periods are unequal. We found FP to be superior to DP (p = 0.002): average performance levels were 80 and 72% correct, respectively. We were also able to show, in a pilot with one subject, that auditory streaming can support continuous control and neurofeedback applications: by shifting attention between ongoing left and right auditory streams, the subject was able to control the position of a paddle in a computer game. Second, we examined whether the system is dependent on eye movements, since it is known that eye movements and auditory attention may influence each other, and any dependence on the ability to move one's eyes would be a barrier to translation to paralyzed users. We discovered that, despite instructions, some subjects did make eye movements that were indicative of the direction of attention. However, there was no correlation, across subjects, between the reliability of the eye movement signal and the reliability of the BCI system, indicating that our system was configured to work independently of eye movement. Together, these findings are an encouraging step forward toward BCIs that provide practical communication and control options for the most severely paralyzed users.

  20. Cybathlon experiences of the Graz BCI racing team Mirage91 in the brain-computer interface discipline.

    PubMed

    Statthaler, Karina; Schwarz, Andreas; Steyrl, David; Kobler, Reinmar; Höller, Maria Katharina; Brandstetter, Julia; Hehenberger, Lea; Bigga, Marvin; Müller-Putz, Gernot

    2017-12-28

    In this work, we share our experiences made at the world-wide first CYBATHLON, an event organized by the Eidgenössische Technische Hochschule Zürich (ETH Zürich), which took place in Zurich in October 2016. It is a championship for severely motor impaired people using assistive prototype devices to compete against each other. Our team, the Graz BCI Racing Team MIRAGE91 from Graz University of Technology, participated in the discipline "Brain-Computer Interface Race". A brain-computer interface (BCI) is a device facilitating control of applications via the user's thoughts. Prominent applications include assistive technology such as wheelchairs, neuroprostheses or communication devices. In the CYBATHLON BCI Race, pilots compete in a BCI-controlled computer game. We report on setting up our team, the BCI customization to our pilot including long term training and the final BCI system. Furthermore, we describe CYBATHLON participation and analyze our CYBATHLON result. We found that our pilot was compliant over the whole time and that we could significantly reduce the average runtime between start and finish from initially 178 s to 143 s. After the release of the final championship specifications with shorter track length, the average runtime converged to 120 s. We successfully participated in the qualification race at CYBATHLON 2016, but performed notably worse than during training, with a runtime of 196 s. We speculate that shifts in the features, due to the nonstationarities in the electroencephalogram (EEG), but also arousal are possible reasons for the unexpected result. Potential counteracting measures are discussed. The CYBATHLON 2016 was a great opportunity for our student team. We consolidated our theoretical knowledge and turned it into practice, allowing our pilot to play a computer game. However, further research is required to make BCI technology invariant to non-task related changes of the EEG.

  1. The Berlin Brain-Computer Interface: Progress Beyond Communication and Control

    PubMed Central

    Blankertz, Benjamin; Acqualagna, Laura; Dähne, Sven; Haufe, Stefan; Schultze-Kraft, Matthias; Sturm, Irene; Ušćumlic, Marija; Wenzel, Markus A.; Curio, Gabriel; Müller, Klaus-Robert

    2016-01-01

    The combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability. While we assume we are still a long way away from integrating Brain-Computer Interface (BCI) technology in general interaction with computers, or from implementing neurotechnological measures in safety-critical workplaces, results have already now been obtained involving a BCI as research tool. In this article, we discuss the reasons why, in some of the prospective application domains, considerable effort is still required to make the systems ready to deal with the full complexity of the real world. PMID:27917107

  2. The Berlin Brain-Computer Interface: Progress Beyond Communication and Control.

    PubMed

    Blankertz, Benjamin; Acqualagna, Laura; Dähne, Sven; Haufe, Stefan; Schultze-Kraft, Matthias; Sturm, Irene; Ušćumlic, Marija; Wenzel, Markus A; Curio, Gabriel; Müller, Klaus-Robert

    2016-01-01

    The combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability. While we assume we are still a long way away from integrating Brain-Computer Interface (BCI) technology in general interaction with computers, or from implementing neurotechnological measures in safety-critical workplaces, results have already now been obtained involving a BCI as research tool. In this article, we discuss the reasons why, in some of the prospective application domains, considerable effort is still required to make the systems ready to deal with the full complexity of the real world.

  3. The Open Connectome Project Data Cluster: Scalable Analysis and Vision for High-Throughput Neuroscience.

    PubMed

    Burns, Randal; Roncal, William Gray; Kleissas, Dean; Lillaney, Kunal; Manavalan, Priya; Perlman, Eric; Berger, Daniel R; Bock, Davi D; Chung, Kwanghun; Grosenick, Logan; Kasthuri, Narayanan; Weiler, Nicholas C; Deisseroth, Karl; Kazhdan, Michael; Lichtman, Jeff; Reid, R Clay; Smith, Stephen J; Szalay, Alexander S; Vogelstein, Joshua T; Vogelstein, R Jacob

    2013-01-01

    We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes - neural connectivity maps of the brain-using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems-reads to parallel disk arrays and writes to solid-state storage-to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization.

  4. Periodic component analysis as a spatial filter for SSVEP-based brain-computer interface.

    PubMed

    Kiran Kumar, G R; Reddy, M Ramasubba

    2018-06-08

    Traditional Spatial filters used for steady-state visual evoked potential (SSVEP) extraction such as minimum energy combination (MEC) require the estimation of the background electroencephalogram (EEG) noise components. Even though this leads to improved performance in low signal to noise ratio (SNR) conditions, it makes such algorithms slow compared to the standard detection methods like canonical correlation analysis (CCA) due to the additional computational cost. In this paper, Periodic component analysis (πCA) is presented as an alternative spatial filtering approach to extract the SSVEP component effectively without involving extensive modelling of the noise. The πCA can separate out components corresponding to a given frequency of interest from the background electroencephalogram (EEG) by capturing the temporal information and does not generalize SSVEP based on rigid templates. Data from ten test subjects were used to evaluate the proposed method and the results demonstrate that the periodic component analysis acts as a reliable spatial filter for SSVEP extraction. Statistical tests were performed to validate the results. The experimental results show that πCA provides significant improvement in accuracy compared to standard CCA and MEC in low SNR conditions. The results demonstrate that πCA provides better detection accuracy compared to CCA and on par with that of MEC at a lower computational cost. Hence πCA is a reliable and efficient alternative detection algorithm for SSVEP based brain-computer interface (BCI). Copyright © 2018. Published by Elsevier B.V.

  5. A Collaborative Brain-Computer Interface for Improving Human Performance

    PubMed Central

    Wang, Yijun; Jung, Tzyy-Ping

    2011-01-01

    Electroencephalogram (EEG) based brain-computer interfaces (BCI) have been studied since the 1970s. Currently, the main focus of BCI research lies on the clinical use, which aims to provide a new communication channel to patients with motor disabilities to improve their quality of life. However, the BCI technology can also be used to improve human performance for normal healthy users. Although this application has been proposed for a long time, little progress has been made in real-world practices due to technical limits of EEG. To overcome the bottleneck of low single-user BCI performance, this study proposes a collaborative paradigm to improve overall BCI performance by integrating information from multiple users. To test the feasibility of a collaborative BCI, this study quantitatively compares the classification accuracies of collaborative and single-user BCI applied to the EEG data collected from 20 subjects in a movement-planning experiment. This study also explores three different methods for fusing and analyzing EEG data from multiple subjects: (1) Event-related potentials (ERP) averaging, (2) Feature concatenating, and (3) Voting. In a demonstration system using the Voting method, the classification accuracy of predicting movement directions (reaching left vs. reaching right) was enhanced substantially from 66% to 80%, 88%, 93%, and 95% as the numbers of subjects increased from 1 to 5, 10, 15, and 20, respectively. Furthermore, the decision of reaching direction could be made around 100–250 ms earlier than the subject's actual motor response by decoding the ERP activities arising mainly from the posterior parietal cortex (PPC), which are related to the processing of visuomotor transmission. Taken together, these results suggest that a collaborative BCI can effectively fuse brain activities of a group of people to improve the overall performance of natural human behavior. PMID:21655253

  6. Brain-computer interface: changes in performance using virtual reality techniques.

    PubMed

    Ron-Angevin, Ricardo; Díaz-Estrella, Antonio

    2009-01-09

    The ability to control electroencephalographic (EEG) signals when different mental tasks are carried out would provide a method of communication for people with serious motor function problems. This system is known as a brain-computer interface (BCI). Due to the difficulty of controlling one's own EEG signals, a suitable training protocol is required to motivate subjects, as it is necessary to provide some type of visual feedback allowing subjects to see their progress. Conventional systems of feedback are based on simple visual presentations, such as a horizontal bar extension. However, virtual reality is a powerful tool with graphical possibilities to improve BCI-feedback presentation. The objective of the study is to explore the advantages of the use of feedback based on virtual reality techniques compared to conventional systems of feedback. Sixteen untrained subjects, divided into two groups, participated in the experiment. A group of subjects was trained using a BCI system, which uses conventional feedback (bar extension), and another group was trained using a BCI system, which submits subjects to a more familiar environment, such as controlling a car to avoid obstacles. The obtained results suggest that EEG behaviour can be modified via feedback presentation. Significant differences in classification error rates between both interfaces were obtained during the feedback period, confirming that an interface based on virtual reality techniques can improve the feedback control, specifically for untrained subjects.

  7. Improving the Accuracy and Training Speed of Motor Imagery Brain-Computer Interfaces Using Wavelet-Based Combined Feature Vectors and Gaussian Mixture Model-Supervectors.

    PubMed

    Lee, David; Park, Sang-Hoon; Lee, Sang-Goog

    2017-10-07

    In this paper, we propose a set of wavelet-based combined feature vectors and a Gaussian mixture model (GMM)-supervector to enhance training speed and classification accuracy in motor imagery brain-computer interfaces. The proposed method is configured as follows: first, wavelet transforms are applied to extract the feature vectors for identification of motor imagery electroencephalography (EEG) and principal component analyses are used to reduce the dimensionality of the feature vectors and linearly combine them. Subsequently, the GMM universal background model is trained by the expectation-maximization (EM) algorithm to purify the training data and reduce its size. Finally, a purified and reduced GMM-supervector is used to train the support vector machine classifier. The performance of the proposed method was evaluated for three different motor imagery datasets in terms of accuracy, kappa, mutual information, and computation time, and compared with the state-of-the-art algorithms. The results from the study indicate that the proposed method achieves high accuracy with a small amount of training data compared with the state-of-the-art algorithms in motor imagery EEG classification.

  8. Review of real brain-controlled wheelchairs

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, Á.; Velasco-Álvarez, F.; Ron-Angevin, R.

    2016-12-01

    This paper presents a review of the state of the art regarding wheelchairs driven by a brain-computer interface. Using a brain-controlled wheelchair (BCW), disabled users could handle a wheelchair through their brain activity, granting autonomy to move through an experimental environment. A classification is established, based on the characteristics of the BCW, such as the type of electroencephalographic signal used, the navigation system employed by the wheelchair, the task for the participants, or the metrics used to evaluate the performance. Furthermore, these factors are compared according to the type of signal used, in order to clarify the differences among them. Finally, the trend of current research in this field is discussed, as well as the challenges that should be solved in the future.

  9. A brain-computer interface to support functional recovery.

    PubMed

    Kjaer, Troels W; Sørensen, Helge B

    2013-01-01

    Brain-computer interfaces (BCI) register changes in brain activity and utilize this to control computers. The most widely used method is based on registration of electrical signals from the cerebral cortex using extracranially placed electrodes also called electroencephalography (EEG). The features extracted from the EEG may, besides controlling the computer, also be fed back to the patient for instance as visual input. This facilitates a learning process. BCI allow us to utilize brain activity in the rehabilitation of patients after stroke. The activity of the cerebral cortex varies with the type of movement we imagine, and by letting the patient know the type of brain activity best associated with the intended movement the rehabilitation process may be faster and more efficient. The focus of BCI utilization in medicine has changed in recent years. While we previously focused on devices facilitating communication in the rather few patients with locked-in syndrome, much interest is now devoted to the therapeutic use of BCI in rehabilitation. For this latter group of patients, the device is not intended to be a lifelong assistive companion but rather a 'teacher' during the rehabilitation period. Copyright © 2013 S. Karger AG, Basel.

  10. Neuroengineering Tools/Applications for Bidirectional Interfaces, Brain–Computer Interfaces, and Neuroprosthetic Implants – A Review of Recent Progress

    PubMed Central

    Rothschild, Ryan Mark

    2010-01-01

    The main focus of this review is to provide a holistic amalgamated overview of the most recent human in vivo techniques for implementing brain–computer interfaces (BCIs), bidirectional interfaces, and neuroprosthetics. Neuroengineering is providing new methods for tackling current difficulties; however neuroprosthetics have been studied for decades. Recent progresses are permitting the design of better systems with higher accuracies, repeatability, and system robustness. Bidirectional interfaces integrate recording and the relaying of information from and to the brain for the development of BCIs. The concepts of non-invasive and invasive recording of brain activity are introduced. This includes classical and innovative techniques like electroencephalography and near-infrared spectroscopy. Then the problem of gliosis and solutions for (semi-) permanent implant biocompatibility such as innovative implant coatings, materials, and shapes are discussed. Implant power and the transmission of their data through implanted pulse generators and wireless telemetry are taken into account. How sensation can be relayed back to the brain to increase integration of the neuroengineered systems with the body by methods such as micro-stimulation and transcranial magnetic stimulation are then addressed. The neuroprosthetic section discusses some of the various types and how they operate. Visual prosthetics are discussed and the three types, dependant on implant location, are examined. Auditory prosthetics, being cochlear or cortical, are then addressed. Replacement hand and limb prosthetics are then considered. These are followed by sections concentrating on the control of wheelchairs, computers and robotics directly from brain activity as recorded by non-invasive and invasive techniques. PMID:21060801

  11. Credit Assignment in Multiple Goal Embodied Visuomotor Behavior

    PubMed Central

    Rothkopf, Constantin A.; Ballard, Dana H.

    2010-01-01

    The intrinsic complexity of the brain can lead one to set aside issues related to its relationships with the body, but the field of embodied cognition emphasizes that understanding brain function at the system level requires one to address the role of the brain-body interface. It has only recently been appreciated that this interface performs huge amounts of computation that does not have to be repeated by the brain, and thus affords the brain great simplifications in its representations. In effect the brain's abstract states can refer to coded representations of the world created by the body. But even if the brain can communicate with the world through abstractions, the severe speed limitations in its neural circuitry mean that vast amounts of indexing must be performed during development so that appropriate behavioral responses can be rapidly accessed. One way this could happen would be if the brain used a decomposition whereby behavioral primitives could be quickly accessed and combined. This realization motivates our study of independent sensorimotor task solvers, which we call modules, in directing behavior. The issue we focus on herein is how an embodied agent can learn to calibrate such individual visuomotor modules while pursuing multiple goals. The biologically plausible standard for module programming is that of reinforcement given during exploration of the environment. However this formulation contains a substantial issue when sensorimotor modules are used in combination: The credit for their overall performance must be divided amongst them. We show that this problem can be solved and that diverse task combinations are beneficial in learning and not a complication, as usually assumed. Our simulations show that fast algorithms are available that allot credit correctly and are insensitive to measurement noise. PMID:21833235

  12. Task-induced frequency modulation features for brain-computer interfacing.

    PubMed

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects' intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects' intents with an accuracy comparable to task-induced amplitude modulation. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  13. Hermetic electronic packaging of an implantable brain-machine-interface with transcutaneous optical data communication.

    PubMed

    Schuettler, Martin; Kohler, Fabian; Ordonez, Juan S; Stieglitz, Thomas

    2012-01-01

    Future brain-computer-interfaces (BCIs) for severely impaired patients are implanted to electrically contact the brain tissue. Avoiding percutaneous cables requires amplifier and telemetry electronics to be implanted too. We developed a hermetic package that protects the electronic circuitry of a BCI from body moisture while permitting infrared communication through the package wall made from alumina ceramic. The ceramic package is casted in medical grade silicone adhesive, for which we identified MED2-4013 as a promising candidate.

  14. Towards Effective Non-Invasive Brain-Computer Interfaces Dedicated to Gait Rehabilitation Systems

    PubMed Central

    Castermans, Thierry; Duvinage, Matthieu; Cheron, Guy; Dutoit, Thierry

    2014-01-01

    In the last few years, significant progress has been made in the field of walk rehabilitation. Motor cortex signals in bipedal monkeys have been interpreted to predict walk kinematics. Epidural electrical stimulation in rats and in one young paraplegic has been realized to partially restore motor control after spinal cord injury. However, these experimental trials are far from being applicable to all patients suffering from motor impairments. Therefore, it is thought that more simple rehabilitation systems are desirable in the meanwhile. The goal of this review is to describe and summarize the progress made in the development of non-invasive brain-computer interfaces dedicated to motor rehabilitation systems. In the first part, the main principles of human locomotion control are presented. The paper then focuses on the mechanisms of supra-spinal centers active during gait, including results from electroencephalography, functional brain imaging technologies [near-infrared spectroscopy (NIRS), functional magnetic resonance imaging (fMRI), positron-emission tomography (PET), single-photon emission-computed tomography (SPECT)] and invasive studies. The first brain-computer interface (BCI) applications to gait rehabilitation are then presented, with a discussion about the different strategies developed in the field. The challenges to raise for future systems are identified and discussed. Finally, we present some proposals to address these challenges, in order to contribute to the improvement of BCI for gait rehabilitation. PMID:24961699

  15. User's Self-Prediction of Performance in Motor Imagery Brain-Computer Interface.

    PubMed

    Ahn, Minkyu; Cho, Hohyun; Ahn, Sangtae; Jun, Sung C

    2018-01-01

    Performance variation is a critical issue in motor imagery brain-computer interface (MI-BCI), and various neurophysiological, psychological, and anatomical correlates have been reported in the literature. Although the main aim of such studies is to predict MI-BCI performance for the prescreening of poor performers, studies which focus on the user's sense of the motor imagery process and directly estimate MI-BCI performance through the user's self-prediction are lacking. In this study, we first test each user's self-prediction idea regarding motor imagery experimental datasets. Fifty-two subjects participated in a classical, two-class motor imagery experiment and were asked to evaluate their easiness with motor imagery and to predict their own MI-BCI performance. During the motor imagery experiment, an electroencephalogram (EEG) was recorded; however, no feedback on motor imagery was given to subjects. From EEG recordings, the offline classification accuracy was estimated and compared with several questionnaire scores of subjects, as well as with each subject's self-prediction of MI-BCI performance. The subjects' performance predictions during motor imagery task showed a high positive correlation ( r = 0.64, p < 0.01). Interestingly, it was observed that the self-prediction became more accurate as the subjects conducted more motor imagery tasks in the Correlation coefficient (pre-task to 2nd run: r = 0.02 to r = 0.54, p < 0.01) and root mean square error (pre-task to 3rd run: 17.7% to 10%, p < 0.01). We demonstrated that subjects may accurately predict their MI-BCI performance even without feedback information. This implies that the human brain is an active learning system and, by self-experiencing the endogenous motor imagery process, it can sense and adopt the quality of the process. Thus, it is believed that users may be able to predict MI-BCI performance and results may contribute to a better understanding of low performance and advancing BCI.

  16. Co-Adaptive Aiding and Automation Enhance Operator Performance

    DTIC Science & Technology

    2013-03-01

    activation system. There is a close relation between physiologically activated adaptive aiding and brain- computer interfaces ( BCI ). BCI here refers...classification of EEG signals (Farwell & Donchin, 1988). Physiologically activated adaptive aiding is, in a sense, a special case of BCI wherein the...as passive BCI , e.g. Zander, Kothe, Jatzev, & 3 Distribution A: Approved for public release; distribution unlimited. 88 ABW Cleared 05/13/2013

  17. Designing Guiding Systems for Brain-Computer Interfaces

    PubMed Central

    Kosmyna, Nataliya; Lécuyer, Anatole

    2017-01-01

    Brain–Computer Interface (BCI) community has focused the majority of its research efforts on signal processing and machine learning, mostly neglecting the human in the loop. Guiding users on how to use a BCI is crucial in order to teach them to produce stable brain patterns. In this work, we explore the instructions and feedback for BCIs in order to provide a systematic taxonomy to describe the BCI guiding systems. The purpose of our work is to give necessary clues to the researchers and designers in Human–Computer Interaction (HCI) in making the fusion between BCIs and HCI more fruitful but also to better understand the possibilities BCIs can provide to them. PMID:28824400

  18. A two-class self-paced BCI to control a robot in four directions.

    PubMed

    Ron-Angevin, Ricardo; Velasco-Alvarez, Francisco; Sancha-Ros, Salvador; da Silva-Sauer, Leandro

    2011-01-01

    In this work, an electroencephalographic analysis-based, self-paced (asynchronous) brain-computer interface (BCI) is proposed to control a mobile robot using four different navigation commands: turn right, turn left, move forward and move back. In order to reduce the probability of misclassification, the BCI is to be controlled with only two mental tasks (relaxed state versus imagination of right hand movements), using an audio-cued interface. Four healthy subjects participated in the experiment. After two sessions controlling a simulated robot in a virtual environment (which allowed the user to become familiar with the interface), three subjects successfully moved the robot in a real environment. The obtained results show that the proposed interface enables control over the robot, even for subjects with low BCI performance. © 2011 IEEE

  19. Concentration on performance with P300-based BCI systems: a matter of interface features.

    PubMed

    da Silva-Sauer, Leandro; Valero-Aguayo, Luis; de la Torre-Luque, Alejandro; Ron-Angevin, Ricardo; Varona-Moya, Sergio

    2016-01-01

    People who suffer from severe motor disabilities have difficulties to communicate with others or to interact with their environment using natural, i.e., muscular channels. These limitations can be overcome to some extent by using brain-computer interfaces (BCIs), because such systems allow users to communicate on the basis of their brain activity only. Among the several types of BCIs for spelling purposes, those that rely on the P300 event related potential-P300-based spellers-are chosen preferentially due to their high reliability. However, they demand from the user to sustain his/her attention to the desired character over a relatively long period of time. Therefore, the user's capacity to concentrate can affect his/her performance with a P300-based speller. The aim of this study was to test this hypothesis using three different interfaces: one based on the classic P300 speller paradigm, another also based on that speller but including a word predictor, and a third one that was based on the T9 interface developed for mobile phones. User performance was assessed by measuring the time to complete a spelling task and the accuracy of character selection. The d2 test was applied to assess attention and concentration. Sample (N = 14) was divided into two groups basing on of concentration scores. As a result, performance was better with the predictor-enriched interfaces: less time was needed to solve the task and participants made fewer errors (p < .05). There were also significant effects of concentration (p < .05) on performance with the standard P300 speller. In conclusion, the performance of those users with lower concentration level can be improved by providing BCIs with more interactive interfaces. These findings provide substantial evidence in order to highlight the impact of psychological features on BCI performance and should be taken into account for future assistive technology systems. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  20. Key considerations in designing a speech brain-computer interface.

    PubMed

    Bocquelet, Florent; Hueber, Thomas; Girin, Laurent; Chabardès, Stéphan; Yvert, Blaise

    2016-11-01

    Restoring communication in case of aphasia is a key challenge for neurotechnologies. To this end, brain-computer strategies can be envisioned to allow artificial speech synthesis from the continuous decoding of neural signals underlying speech imagination. Such speech brain-computer interfaces do not exist yet and their design should consider three key choices that need to be made: the choice of appropriate brain regions to record neural activity from, the choice of an appropriate recording technique, and the choice of a neural decoding scheme in association with an appropriate speech synthesis method. These key considerations are discussed here in light of (1) the current understanding of the functional neuroanatomy of cortical areas underlying overt and covert speech production, (2) the available literature making use of a variety of brain recording techniques to better characterize and address the challenge of decoding cortical speech signals, and (3) the different speech synthesis approaches that can be considered depending on the level of speech representation (phonetic, acoustic or articulatory) envisioned to be decoded at the core of a speech BCI paradigm. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Concurrent EEG And NIRS Tomographic Imaging Based on Wearable Electro-Optodes

    DTIC Science & Technology

    2014-04-13

    Interfaces   ( BCIs ),   and   other   systems   in   the   same   computational   framework.   Figure   11   below   shows...Improving  Brain-­‐Computer   Interfaces  Using   Independent  Component   Analysis,  In:  Towards  Future   BCIs ,  2012

  2. A development architecture for serious games using BCI (brain computer interface) sensors.

    PubMed

    Sung, Yunsick; Cho, Kyungeun; Um, Kyhyun

    2012-11-12

    Games that use brainwaves via brain-computer interface (BCI) devices, to improve brain functions are known as BCI serious games. Due to the difficulty of developing BCI serious games, various BCI engines and authoring tools are required, and these reduce the development time and cost. However, it is desirable to reduce the amount of technical knowledge of brain functions and BCI devices needed by game developers. Moreover, a systematic BCI serious game development process is required. In this paper, we present a methodology for the development of BCI serious games. We describe an architecture, authoring tools, and development process of the proposed methodology, and apply it to a game development approach for patients with mild cognitive impairment as an example. This application demonstrates that BCI serious games can be developed on the basis of expert-verified theories.

  3. Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks

    NASA Astrophysics Data System (ADS)

    Meng, Jianjun; Zhang, Shuying; Bekyo, Angeliki; Olsoe, Jaron; Baxter, Bryan; He, Bin

    2016-12-01

    Brain-computer interface (BCI) technologies aim to provide a bridge between the human brain and external devices. Prior research using non-invasive BCI to control virtual objects, such as computer cursors and virtual helicopters, and real-world objects, such as wheelchairs and quadcopters, has demonstrated the promise of BCI technologies. However, controlling a robotic arm to complete reach-and-grasp tasks efficiently using non-invasive BCI has yet to be shown. In this study, we found that a group of 13 human subjects could willingly modulate brain activity to control a robotic arm with high accuracy for performing tasks requiring multiple degrees of freedom by combination of two sequential low dimensional controls. Subjects were able to effectively control reaching of the robotic arm through modulation of their brain rhythms within the span of only a few training sessions and maintained the ability to control the robotic arm over multiple months. Our results demonstrate the viability of human operation of prosthetic limbs using non-invasive BCI technology.

  4. Using Fractal and Local Binary Pattern Features for Classification of ECOG Motor Imagery Tasks Obtained from the Right Brain Hemisphere.

    PubMed

    Xu, Fangzhou; Zhou, Weidong; Zhen, Yilin; Yuan, Qi; Wu, Qi

    2016-09-01

    The feature extraction and classification of brain signal is very significant in brain-computer interface (BCI). In this study, we describe an algorithm for motor imagery (MI) classification of electrocorticogram (ECoG)-based BCI. The proposed approach employs multi-resolution fractal measures and local binary pattern (LBP) operators to form a combined feature for characterizing an ECoG epoch recording from the right hemisphere of the brain. A classifier is trained by using the gradient boosting in conjunction with ordinary least squares (OLS) method. The fractal intercept, lacunarity and LBP features are extracted to classify imagined movements of either the left small finger or the tongue. Experimental results on dataset I of BCI competition III demonstrate the superior performance of our method. The cross-validation accuracy and accuracy is 90.6% and 95%, respectively. Furthermore, the low computational burden of this method makes it a promising candidate for real-time BCI systems.

  5. The Unlock Project: a Python-based framework for practical brain-computer interface communication "app" development.

    PubMed

    Brumberg, Jonathan S; Lorenz, Sean D; Galbraith, Byron V; Guenther, Frank H

    2012-01-01

    In this paper we present a framework for reducing the development time needed for creating applications for use in non-invasive brain-computer interfaces (BCI). Our framework is primarily focused on facilitating rapid software "app" development akin to current efforts in consumer portable computing (e.g. smart phones and tablets). This is accomplished by handling intermodule communication without direct user or developer implementation, instead relying on a core subsystem for communication of standard, internal data formats. We also provide a library of hardware interfaces for common mobile EEG platforms for immediate use in BCI applications. A use-case example is described in which a user with amyotrophic lateral sclerosis participated in an electroencephalography-based BCI protocol developed using the proposed framework. We show that our software environment is capable of running in real-time with updates occurring 50-60 times per second with limited computational overhead (5 ms system lag) while providing accurate data acquisition and signal analysis.

  6. Optimizing the stimulus presentation paradigm design for the P300-based brain-computer interface using performance prediction.

    PubMed

    Mainsah, B O; Reeves, G; Collins, L M; Throckmorton, C S

    2017-08-01

    The role of a brain-computer interface (BCI) is to discern a user's intended message or action by extracting and decoding relevant information from brain signals. Stimulus-driven BCIs, such as the P300 speller, rely on detecting event-related potentials (ERPs) in response to a user attending to relevant or target stimulus events. However, this process is error-prone because the ERPs are embedded in noisy electroencephalography (EEG) data, representing a fundamental problem in communication of the uncertainty in the information that is received during noisy transmission. A BCI can be modeled as a noisy communication system and an information-theoretic approach can be exploited to design a stimulus presentation paradigm to maximize the information content that is presented to the user. However, previous methods that focused on designing error-correcting codes failed to provide significant performance improvements due to underestimating the effects of psycho-physiological factors on the P300 ERP elicitation process and a limited ability to predict online performance with their proposed methods. Maximizing the information rate favors the selection of stimulus presentation patterns with increased target presentation frequency, which exacerbates refractory effects and negatively impacts performance within the context of an oddball paradigm. An information-theoretic approach that seeks to understand the fundamental trade-off between information rate and reliability is desirable. We developed a performance-based paradigm (PBP) by tuning specific parameters of the stimulus presentation paradigm to maximize performance while minimizing refractory effects. We used a probabilistic-based performance prediction method as an evaluation criterion to select a final configuration of the PBP. With our PBP, we demonstrate statistically significant improvements in online performance, both in accuracy and spelling rate, compared to the conventional row-column paradigm. By accounting for refractory effects, an information-theoretic approach can be exploited to significantly improve BCI performance across a wide range of performance levels.

  7. Optimizing the stimulus presentation paradigm design for the P300-based brain-computer interface using performance prediction

    NASA Astrophysics Data System (ADS)

    Mainsah, B. O.; Reeves, G.; Collins, L. M.; Throckmorton, C. S.

    2017-08-01

    Objective. The role of a brain-computer interface (BCI) is to discern a user’s intended message or action by extracting and decoding relevant information from brain signals. Stimulus-driven BCIs, such as the P300 speller, rely on detecting event-related potentials (ERPs) in response to a user attending to relevant or target stimulus events. However, this process is error-prone because the ERPs are embedded in noisy electroencephalography (EEG) data, representing a fundamental problem in communication of the uncertainty in the information that is received during noisy transmission. A BCI can be modeled as a noisy communication system and an information-theoretic approach can be exploited to design a stimulus presentation paradigm to maximize the information content that is presented to the user. However, previous methods that focused on designing error-correcting codes failed to provide significant performance improvements due to underestimating the effects of psycho-physiological factors on the P300 ERP elicitation process and a limited ability to predict online performance with their proposed methods. Maximizing the information rate favors the selection of stimulus presentation patterns with increased target presentation frequency, which exacerbates refractory effects and negatively impacts performance within the context of an oddball paradigm. An information-theoretic approach that seeks to understand the fundamental trade-off between information rate and reliability is desirable. Approach. We developed a performance-based paradigm (PBP) by tuning specific parameters of the stimulus presentation paradigm to maximize performance while minimizing refractory effects. We used a probabilistic-based performance prediction method as an evaluation criterion to select a final configuration of the PBP. Main results. With our PBP, we demonstrate statistically significant improvements in online performance, both in accuracy and spelling rate, compared to the conventional row-column paradigm. Significance. By accounting for refractory effects, an information-theoretic approach can be exploited to significantly improve BCI performance across a wide range of performance levels.

  8. Using real-time fMRI brain-computer interfacing to treat eating disorders.

    PubMed

    Sokunbi, Moses O

    2018-05-15

    Real-time functional magnetic resonance imaging based brain-computer interfacing (fMRI neurofeedback) has shown encouraging outcomes in the treatment of psychiatric and behavioural disorders. However, its use in the treatment of eating disorders is very limited. Here, we give a brief overview of how to design and implement fMRI neurofeedback intervention for the treatment of eating disorders, considering the basic and essential components. We also attempt to develop potential adaptations of fMRI neurofeedback intervention for the treatment of anorexia nervosa, bulimia nervosa and binge eating disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Hybrid EEG-EOG brain-computer interface system for practical machine control.

    PubMed

    Punsawad, Yunyong; Wongsawat, Yodchanan; Parnichkun, Manukid

    2010-01-01

    Practical issues such as accuracy with various subjects, number of sensors, and time for training are important problems of existing brain-computer interface (BCI) systems. In this paper, we propose a hybrid framework for the BCI system that can make machine control more practical. The electrooculogram (EOG) is employed to control the machine in the left and right directions while the electroencephalogram (EEG) is employed to control the forword, no action, and complete stop motions of the machine. By using only 2-channel biosignals, the average classification accuracy of more than 95% can be achieved.

  10. Brain-computer interface on the basis of EEG system Encephalan

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir; Badarin, Artem; Nedaivozov, Vladimir; Kirsanov, Daniil; Hramov, Alexander

    2018-04-01

    We have proposed brain-computer interface (BCI) for the estimation of the brain response on the presented visual tasks. Proposed BCI is based on the EEG recorder Encephalan-EEGR-19/26 (Medicom MTD, Russia) supplemented by a special home-made developed acquisition software. BCI is tested during experimental session while subject is perceiving the bistable visual stimuli and classifying them according to the interpretation. We have subjected the participant to the different external conditions and observed the significant decrease in the response, associated with the perceiving the bistable visual stimuli, during the presence of distraction. Based on the obtained results we have proposed possibility to use of BCI for estimation of the human alertness during solving the tasks required substantial visual attention.

  11. Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses.

    PubMed

    Ramos-Murguialday, Ander; Schürholz, Markus; Caggiano, Vittorio; Wildgruber, Moritz; Caria, Andrea; Hammer, Eva Maria; Halder, Sebastian; Birbaumer, Niels

    2012-01-01

    Brain computer interface (BCI) technology has been proposed for motor neurorehabilitation, motor replacement and assistive technologies. It is an open question whether proprioceptive feedback affects the regulation of brain oscillations and therefore BCI control. We developed a BCI coupled on-line with a robotic hand exoskeleton for flexing and extending the fingers. 24 healthy participants performed five different tasks of closing and opening the hand: (1) motor imagery of the hand movement without any overt movement and without feedback, (2) motor imagery with movement as online feedback (participants see and feel their hand, with the exoskeleton moving according to their brain signals, (3) passive (the orthosis passively opens and closes the hand without imagery) and (4) active (overt) movement of the hand and rest. Performance was defined as the difference in power of the sensorimotor rhythm during motor task and rest and calculated offline for different tasks. Participants were divided in three groups depending on the feedback receiving during task 2 (the other tasks were the same for all participants). Group 1 (n = 9) received contingent positive feedback (participants' sensorimotor rhythm (SMR) desynchronization was directly linked to hand orthosis movements), group 2 (n = 8) contingent "negative" feedback (participants' sensorimotor rhythm synchronization was directly linked to hand orthosis movements) and group 3 (n = 7) sham feedback (no link between brain oscillations and orthosis movements). We observed that proprioceptive feedback (feeling and seeing hand movements) improved BCI performance significantly. Furthermore, in the contingent positive group only a significant motor learning effect was observed enhancing SMR desynchronization during motor imagery without feedback in time. Furthermore, we observed a significantly stronger SMR desynchronization in the contingent positive group compared to the other groups during active and passive movements. To summarize, we demonstrated that the use of contingent positive proprioceptive feedback BCI enhanced SMR desynchronization during motor tasks.

  12. Hybrid Brain-Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review.

    PubMed

    Hong, Keum-Shik; Khan, Muhammad Jawad

    2017-01-01

    In this article, non-invasive hybrid brain-computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain-computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided.

  13. An online hybrid brain-computer interface combining multiple physiological signals for webpage browse.

    PubMed

    Long Chen; Zhongpeng Wang; Feng He; Jiajia Yang; Hongzhi Qi; Peng Zhou; Baikun Wan; Dong Ming

    2015-08-01

    The hybrid brain computer interface (hBCI) could provide higher information transfer rate than did the classical BCIs. It included more than one brain-computer or human-machine interact paradigms, such as the combination of the P300 and SSVEP paradigms. Research firstly constructed independent subsystems of three different paradigms and tested each of them with online experiments. Then we constructed a serial hybrid BCI system which combined these paradigms to achieve the functions of typing letters, moving and clicking cursor, and switching among them for the purpose of browsing webpages. Five subjects were involved in this study. They all successfully realized these functions in the online tests. The subjects could achieve an accuracy above 90% after training, which met the requirement in operating the system efficiently. The results demonstrated that it was an efficient system capable of robustness, which provided an approach for the clinic application.

  14. Brain-Computer Interface Based on Generation of Visual Images

    PubMed Central

    Bobrov, Pavel; Frolov, Alexander; Cantor, Charles; Fedulova, Irina; Bakhnyan, Mikhail; Zhavoronkov, Alexander

    2011-01-01

    This paper examines the task of recognizing EEG patterns that correspond to performing three mental tasks: relaxation and imagining of two types of pictures: faces and houses. The experiments were performed using two EEG headsets: BrainProducts ActiCap and Emotiv EPOC. The Emotiv headset becomes widely used in consumer BCI application allowing for conducting large-scale EEG experiments in the future. Since classification accuracy significantly exceeded the level of random classification during the first three days of the experiment with EPOC headset, a control experiment was performed on the fourth day using ActiCap. The control experiment has shown that utilization of high-quality research equipment can enhance classification accuracy (up to 68% in some subjects) and that the accuracy is independent of the presence of EEG artifacts related to blinking and eye movement. This study also shows that computationally-inexpensive Bayesian classifier based on covariance matrix analysis yields similar classification accuracy in this problem as a more sophisticated Multi-class Common Spatial Patterns (MCSP) classifier. PMID:21695206

  15. The Brainarium: An Interactive Immersive Tool for Brain Education, Art, and Neurotherapy

    PubMed Central

    2016-01-01

    Recent theoretical and technological advances in neuroimaging techniques now allow brain electrical activity to be recorded using affordable and user-friendly equipment for nonscientist end-users. An increasing number of educators and artists have begun using electroencephalogram (EEG) to control multimedia and live artistic contents. In this paper, we introduce a new concept based on brain computer interface (BCI) technologies: the Brainarium. The Brainarium is a new pedagogical and artistic tool, which can deliver and illustrate scientific knowledge, as well as a new framework for scientific exploration. The Brainarium consists of a portable planetarium device that is being used as brain metaphor. This is done by projecting multimedia content on the planetarium dome and displaying EEG data recorded from a subject in real time using Brain Machine Interface (BMI) technologies. The system has been demonstrated through several performances involving an interaction between the subject controlling the BMI, a musician, and the audience during series of exhibitions and workshops in schools. We report here feedback from 134 participants who filled questionnaires to rate their experiences. Our results show improved subjective learning compared to conventional methods, improved entertainment value, improved absorption into the material being presented, and little discomfort. PMID:27698660

  16. The Brainarium: An Interactive Immersive Tool for Brain Education, Art, and Neurotherapy.

    PubMed

    Grandchamp, Romain; Delorme, Arnaud

    2016-01-01

    Recent theoretical and technological advances in neuroimaging techniques now allow brain electrical activity to be recorded using affordable and user-friendly equipment for nonscientist end-users. An increasing number of educators and artists have begun using electroencephalogram (EEG) to control multimedia and live artistic contents. In this paper, we introduce a new concept based on brain computer interface (BCI) technologies: the Brainarium. The Brainarium is a new pedagogical and artistic tool, which can deliver and illustrate scientific knowledge, as well as a new framework for scientific exploration. The Brainarium consists of a portable planetarium device that is being used as brain metaphor. This is done by projecting multimedia content on the planetarium dome and displaying EEG data recorded from a subject in real time using Brain Machine Interface (BMI) technologies. The system has been demonstrated through several performances involving an interaction between the subject controlling the BMI, a musician, and the audience during series of exhibitions and workshops in schools. We report here feedback from 134 participants who filled questionnaires to rate their experiences. Our results show improved subjective learning compared to conventional methods, improved entertainment value, improved absorption into the material being presented, and little discomfort.

  17. Correlation-based model of artificially induced plasticity in motor cortex by a bidirectional brain-computer interface.

    PubMed

    Lajoie, Guillaume; Krouchev, Nedialko I; Kalaska, John F; Fairhall, Adrienne L; Fetz, Eberhard E

    2017-02-01

    Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP) rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity.

  18. Correlation-based model of artificially induced plasticity in motor cortex by a bidirectional brain-computer interface

    PubMed Central

    Lajoie, Guillaume; Kalaska, John F.; Fairhall, Adrienne L.; Fetz, Eberhard E.

    2017-01-01

    Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP) rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity. PMID:28151957

  19. A novel task-oriented optimal design for P300-based brain-computer interfaces.

    PubMed

    Zhou, Zongtan; Yin, Erwei; Liu, Yang; Jiang, Jun; Hu, Dewen

    2014-10-01

    Objective. The number of items of a P300-based brain-computer interface (BCI) should be adjustable in accordance with the requirements of the specific tasks. To address this issue, we propose a novel task-oriented optimal approach aimed at increasing the performance of general P300 BCIs with different numbers of items. Approach. First, we proposed a stimulus presentation with variable dimensions (VD) paradigm as a generalization of the conventional single-character (SC) and row-column (RC) stimulus paradigms. Furthermore, an embedding design approach was employed for any given number of items. Finally, based on the score-P model of each subject, the VD flash pattern was selected by a linear interpolation approach for a certain task. Main results. The results indicate that the optimal BCI design consistently outperforms the conventional approaches, i.e., the SC and RC paradigms. Specifically, there is significant improvement in the practical information transfer rate for a large number of items. Significance. The results suggest that the proposed optimal approach would provide useful guidance in the practical design of general P300-based BCIs.

  20. A user-friendly SSVEP-based brain-computer interface using a time-domain classifier.

    PubMed

    Luo, An; Sullivan, Thomas J

    2010-04-01

    We introduce a user-friendly steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) system. Single-channel EEG is recorded using a low-noise dry electrode. Compared to traditional gel-based multi-sensor EEG systems, a dry sensor proves to be more convenient, comfortable and cost effective. A hardware system was built that displays four LED light panels flashing at different frequencies and synchronizes with EEG acquisition. The visual stimuli have been carefully designed such that potential risk to photosensitive people is minimized. We describe a novel stimulus-locked inter-trace correlation (SLIC) method for SSVEP classification using EEG time-locked to stimulus onsets. We studied how the performance of the algorithm is affected by different selection of parameters. Using the SLIC method, the average light detection rate is 75.8% with very low error rates (an 8.4% false positive rate and a 1.3% misclassification rate). Compared to a traditional frequency-domain-based method, the SLIC method is more robust (resulting in less annoyance to the users) and is also suitable for irregular stimulus patterns.

  1. The advantages of the surface Laplacian in brain-computer interface research.

    PubMed

    McFarland, Dennis J

    2015-09-01

    Brain-computer interface (BCI) systems frequently use signal processing methods, such as spatial filtering, to enhance performance. The surface Laplacian can reduce spatial noise and aid in identification of sources. In BCI research, these two functions of the surface Laplacian correspond to prediction accuracy and signal orthogonality. In the present study, an off-line analysis of data from a sensorimotor rhythm-based BCI task dissociated these functions of the surface Laplacian by comparing nearest-neighbor and next-nearest neighbor Laplacian algorithms. The nearest-neighbor Laplacian produced signals that were more orthogonal while the next-nearest Laplacian produced signals that resulted in better accuracy. Both prediction and signal identification are important for BCI research. Better prediction of user's intent produces increased speed and accuracy of communication and control. Signal identification is important for ruling out the possibility of control by artifacts. Identifying the nature of the control signal is relevant both to understanding exactly what is being studied and in terms of usability for individuals with limited motor control. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Wheelchair control by elderly participants in a virtual environment with a brain-computer interface (BCI) and tactile stimulation.

    PubMed

    Herweg, Andreas; Gutzeit, Julian; Kleih, Sonja; Kübler, Andrea

    2016-12-01

    Tactile event-related potential (ERP) are rarely used as input signal to control brain-computer-interfaces (BCI) due to their low accuracy and speed (information transfer rate, ITR). Age-related loss of tactile sensibility might further decrease their viability for the target population of BCI. In this study we investigated whether training improves tactile ERP-BCI performance within a virtual wheelchair navigation task. Elderly subjects participated in 5 sessions and tactors were placed at legs, abdomen and back. Mean accuracy and ITR increased from 88.43%/4.5bitsmin -1 in the 1st to 92.56%/4.98bitsmin -1 in the last session. The mean P300 amplitude increased from 5.46μV to 9.22μV. In an optional task participants achieved an accuracy of 95,56% and a mean ITR of 20,73bitsmin -1 which is the highest ever achieved with tactile stimulation. Our sample of elderly people further contributed to the external validity of our results. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A novel task-oriented optimal design for P300-based brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Zhou, Zongtan; Yin, Erwei; Liu, Yang; Jiang, Jun; Hu, Dewen

    2014-10-01

    Objective. The number of items of a P300-based brain-computer interface (BCI) should be adjustable in accordance with the requirements of the specific tasks. To address this issue, we propose a novel task-oriented optimal approach aimed at increasing the performance of general P300 BCIs with different numbers of items. Approach. First, we proposed a stimulus presentation with variable dimensions (VD) paradigm as a generalization of the conventional single-character (SC) and row-column (RC) stimulus paradigms. Furthermore, an embedding design approach was employed for any given number of items. Finally, based on the score-P model of each subject, the VD flash pattern was selected by a linear interpolation approach for a certain task. Main results. The results indicate that the optimal BCI design consistently outperforms the conventional approaches, i.e., the SC and RC paradigms. Specifically, there is significant improvement in the practical information transfer rate for a large number of items. Significance. The results suggest that the proposed optimal approach would provide useful guidance in the practical design of general P300-based BCIs.

  4. A new multivariate empirical mode decomposition method for improving the performance of SSVEP-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Feng; Atal, Kiran; Xie, Sheng-Quan; Liu, Quan

    2017-08-01

    Objective. Accurate and efficient detection of steady-state visual evoked potentials (SSVEP) in electroencephalogram (EEG) is essential for the related brain-computer interface (BCI) applications. Approach. Although the canonical correlation analysis (CCA) has been applied extensively and successfully to SSVEP recognition, the spontaneous EEG activities and artifacts that often occur during data recording can deteriorate the recognition performance. Therefore, it is meaningful to extract a few frequency sub-bands of interest to avoid or reduce the influence of unrelated brain activity and artifacts. This paper presents an improved method to detect the frequency component associated with SSVEP using multivariate empirical mode decomposition (MEMD) and CCA (MEMD-CCA). EEG signals from nine healthy volunteers were recorded to evaluate the performance of the proposed method for SSVEP recognition. Main results. We compared our method with CCA and temporally local multivariate synchronization index (TMSI). The results suggest that the MEMD-CCA achieved significantly higher accuracy in contrast to standard CCA and TMSI. It gave the improvements of 1.34%, 3.11%, 3.33%, 10.45%, 15.78%, 18.45%, 15.00% and 14.22% on average over CCA at time windows from 0.5 s to 5 s and 0.55%, 1.56%, 7.78%, 14.67%, 13.67%, 7.33% and 7.78% over TMSI from 0.75 s to 5 s. The method outperformed the filter-based decomposition (FB), empirical mode decomposition (EMD) and wavelet decomposition (WT) based CCA for SSVEP recognition. Significance. The results demonstrate the ability of our proposed MEMD-CCA to improve the performance of SSVEP-based BCI.

  5. Feasibility of an ultra-low power digital signal processor platform as a basis for a fully implantable brain-computer interface system.

    PubMed

    Wang, Po T; Gandasetiawan, Keulanna; McCrimmon, Colin M; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An H

    2016-08-01

    A fully implantable brain-computer interface (BCI) can be a practical tool to restore independence to those affected by spinal cord injury. We envision that such a BCI system will invasively acquire brain signals (e.g. electrocorticogram) and translate them into control commands for external prostheses. The feasibility of such a system was tested by implementing its benchtop analogue, centered around a commercial, ultra-low power (ULP) digital signal processor (DSP, TMS320C5517, Texas Instruments). A suite of signal processing and BCI algorithms, including (de)multiplexing, Fast Fourier Transform, power spectral density, principal component analysis, linear discriminant analysis, Bayes rule, and finite state machine was implemented and tested in the DSP. The system's signal acquisition fidelity was tested and characterized by acquiring harmonic signals from a function generator. In addition, the BCI decoding performance was tested, first with signals from a function generator, and subsequently using human electroencephalogram (EEG) during eyes opening and closing task. On average, the system spent 322 ms to process and analyze 2 s of data. Crosstalk (<;-65 dB) and harmonic distortion (~1%) were minimal. Timing jitter averaged 49 μs per 1000 ms. The online BCI decoding accuracies were 100% for both function generator and EEG data. These results show that a complex BCI algorithm can be executed on an ULP DSP without compromising performance. This suggests that the proposed hardware platform may be used as a basis for future, fully implantable BCI systems.

  6. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface

    DOE PAGES

    Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.; ...

    2016-09-22

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry,STIG),which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIGmore » method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as out perform traditional within-subject calibration techniques when limited data is available. Here, this method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.« less

  7. The Role of Visual Noise in Influencing Mental Load and Fatigue in a Steady-State Motion Visual Evoked Potential-Based Brain-Computer Interface.

    PubMed

    Xie, Jun; Xu, Guanghua; Luo, Ailing; Li, Min; Zhang, Sicong; Han, Chengcheng; Yan, Wenqiang

    2017-08-14

    As a spatial selective attention-based brain-computer interface (BCI) paradigm, steady-state visual evoked potential (SSVEP) BCI has the advantages of high information transfer rate, high tolerance to artifacts, and robust performance across users. However, its benefits come at the cost of mental load and fatigue occurring in the concentration on the visual stimuli. Noise, as a ubiquitous random perturbation with the power of randomness, may be exploited by the human visual system to enhance higher-level brain functions. In this study, a novel steady-state motion visual evoked potential (SSMVEP, i.e., one kind of SSVEP)-based BCI paradigm with spatiotemporal visual noise was used to investigate the influence of noise on the compensation of mental load and fatigue deterioration during prolonged attention tasks. Changes in α , θ , θ + α powers, θ / α ratio, and electroencephalography (EEG) properties of amplitude, signal-to-noise ratio (SNR), and online accuracy, were used to evaluate mental load and fatigue. We showed that presenting a moderate visual noise to participants could reliably alleviate the mental load and fatigue during online operation of visual BCI that places demands on the attentional processes. This demonstrated that noise could provide a superior solution to the implementation of visual attention controlling-based BCI applications.

  8. A Hybrid Brain-Computer Interface Based on the Fusion of P300 and SSVEP Scores.

    PubMed

    Yin, Erwei; Zeyl, Timothy; Saab, Rami; Chau, Tom; Hu, Dewen; Zhou, Zongtan

    2015-07-01

    The present study proposes a hybrid brain-computer interface (BCI) with 64 selectable items based on the fusion of P300 and steady-state visually evoked potential (SSVEP) brain signals. With this approach, row/column (RC) P300 and two-step SSVEP paradigms were integrated to create two hybrid paradigms, which we denote as the double RC (DRC) and 4-D spellers. In each hybrid paradigm, the target is simultaneously detected based on both P300 and SSVEP potentials as measured by the electroencephalogram. We further proposed a maximum-probability estimation (MPE) fusion approach to combine the P300 and SSVEP on a score level and compared this approach to other approaches based on linear discriminant analysis, a naïve Bayes classifier, and support vector machines. The experimental results obtained from thirteen participants indicated that the 4-D hybrid paradigm outperformed the DRC paradigm and that the MPE fusion achieved higher accuracy compared with the other approaches. Importantly, 12 of the 13 participants, using the 4-D paradigm achieved an accuracy of over 90% and the average accuracy was 95.18%. These promising results suggest that the proposed hybrid BCI system could be used in the design of a high-performance BCI-based keyboard.

  9. Pre-frontal control of closed-loop limbic neurostimulation by rodents using a brain-computer interface

    NASA Astrophysics Data System (ADS)

    Widge, Alik S.; Moritz, Chet T.

    2014-04-01

    Objective. There is great interest in closed-loop neurostimulators that sense and respond to a patient's brain state. Such systems may have value for neurological and psychiatric illnesses where symptoms have high intraday variability. Animal models of closed-loop stimulators would aid preclinical testing. We therefore sought to demonstrate that rodents can directly control a closed-loop limbic neurostimulator via a brain-computer interface (BCI). Approach. We trained rats to use an auditory BCI controlled by single units in prefrontal cortex (PFC). The BCI controlled electrical stimulation in the medial forebrain bundle, a limbic structure involved in reward-seeking. Rigorous offline analyses were performed to confirm volitional control of the neurostimulator. Main results. All animals successfully learned to use the BCI and neurostimulator, with closed-loop control of this challenging task demonstrated at 80% of PFC recording locations. Analysis across sessions and animals confirmed statistically robust BCI control and specific, rapid modulation of PFC activity. Significance. Our results provide a preliminary demonstration of a method for emotion-regulating closed-loop neurostimulation. They further suggest that activity in PFC can be used to control a BCI without pre-training on a predicate task. This offers the potential for BCI-based treatments in refractory neurological and mental illness.

  10. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry,STIG),which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIGmore » method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as out perform traditional within-subject calibration techniques when limited data is available. Here, this method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.« less

  11. Relief of neuropathic pain after spinal cord injury by brain-computer interface training.

    PubMed

    Yoshida, Naoki; Hashimoto, Yasunari; Shikota, Mio; Ota, Tetsuo

    2016-01-01

    The aim of this study was to report the effects of brain-computer interface (BCI) training, a neurofeedback rehabilitation technique, on persistent neuropathic pain (NP) after cervical spinal cord injury (SCI). We present the case of a 71-year-old woman with NP in her left upper extremity after SCI (C8). She underwent BCI training as outpatient rehabilitation for 4 months to enhance event-related desynchronization (ERD), which is triggered by the patient's motor intuition. Scalp electroencephalography was recorded to observe the ERD during every BCI training session. The patient's pain was evaluated with the McGill Pain Questionnaire (MPQ) and a visual analog scale (VAS). The MPQ was performed after every BCI training session, and the patient assessed the VAS score on her own, once every few days during the BCI training period. After the BCI training started, the patient's ERD during the BCI training period increased significantly, from 15.6-30.3%. Moreover, her VAS score decreased gradually, from 8 to 5, after the BCI training started, although the MPQ did not change significantly. BCI training has the potential to provide relief for patients with persistent NP via brain plasticity, and to improve their activities of daily living and quality of life.

  12. Brain-controlled body movement assistance devices and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leuthardt, Eric C.; Love, Lonnie J.; Coker, Rob

    Methods, devices, systems, and apparatus, including computer programs encoded on a computer storage medium, for brain-controlled body movement assistance devices. In one aspect, a device includes a brain-controlled body movement assistance device with a brain-computer interface (BCI) component adapted to be mounted to a user, a body movement assistance component operably connected to the BCI component and adapted to be worn by the user, and a feedback mechanism provided in connection with at least one of the BCI component and the body movement assistance component, the feedback mechanism being configured to output information relating to a usage session of themore » brain-controlled body movement assistance device.« less

  13. Comparison of Sensor Selection Mechanisms for an ERP-Based Brain-Computer Interface

    PubMed Central

    Metzen, Jan H.

    2013-01-01

    A major barrier for a broad applicability of brain-computer interfaces (BCIs) based on electroencephalography (EEG) is the large number of EEG sensor electrodes typically used. The necessity for this results from the fact that the relevant information for the BCI is often spread over the scalp in complex patterns that differ depending on subjects and application scenarios. Recently, a number of methods have been proposed to determine an individual optimal sensor selection. These methods have, however, rarely been compared against each other or against any type of baseline. In this paper, we review several selection approaches and propose one additional selection criterion based on the evaluation of the performance of a BCI system using a reduced set of sensors. We evaluate the methods in the context of a passive BCI system that is designed to detect a P300 event-related potential and compare the performance of the methods against randomly generated sensor constellations. For a realistic estimation of the reduced system's performance we transfer sensor constellations found on one experimental session to a different session for evaluation. We identified notable (and unanticipated) differences among the methods and could demonstrate that the best method in our setup is able to reduce the required number of sensors considerably. Though our application focuses on EEG data, all presented algorithms and evaluation schemes can be transferred to any binary classification task on sensor arrays. PMID:23844021

  14. Psychological Predictors of Visual and Auditory P300 Brain-Computer Interface Performance

    PubMed Central

    Hammer, Eva M.; Halder, Sebastian; Kleih, Sonja C.; Kübler, Andrea

    2018-01-01

    Brain-Computer Interfaces (BCIs) provide communication channels independent from muscular control. In the current study we used two versions of the P300-BCI: one based on visual the other on auditory stimulation. Up to now, data on the impact of psychological variables on P300-BCI control are scarce. Hence, our goal was to identify new predictors with a comprehensive psychological test-battery. A total of N = 40 healthy BCI novices took part in a visual and an auditory BCI session. Psychological variables were measured with an electronic test-battery including clinical, personality, and performance tests. The personality factor “emotional stability” was negatively correlated (Spearman's rho = −0.416; p < 0.01) and an output variable of the non-verbal learning test (NVLT), which can be interpreted as ability to learn, correlated positively (Spearman's rho = 0.412; p < 0.01) with visual P300-BCI performance. In a linear regression analysis both independent variables explained 24% of the variance. “Emotional stability” was also negatively related to auditory P300-BCI performance (Spearman's rho = −0.377; p < 0.05), but failed significance in the regression analysis. Psychological parameters seem to play a moderate role in visual P300-BCI performance. “Emotional stability” was identified as a new predictor, indicating that BCI users who characterize themselves as calm and rational showed worse BCI performance. The positive relation of the ability to learn and BCI performance corroborates the notion that also for P300 based BCIs learning may constitute an important factor. Further studies are needed to consolidate or reject the presented predictors. PMID:29867319

  15. Brain computer interface to enhance episodic memory in human participants

    PubMed Central

    Burke, John F.; Merkow, Maxwell B.; Jacobs, Joshua; Kahana, Michael J.

    2015-01-01

    Recent research has revealed that neural oscillations in the theta (4–8 Hz) and alpha (9–14 Hz) bands are predictive of future success in memory encoding. Because these signals occur before the presentation of an upcoming stimulus, they are considered stimulus-independent in that they correlate with enhanced memory encoding independent of the item being encoded. Thus, such stimulus-independent activity has important implications for the neural mechanisms underlying episodic memory as well as the development of cognitive neural prosthetics. Here, we developed a brain computer interface (BCI) to test the ability of such pre-stimulus activity to modulate subsequent memory encoding. We recorded intracranial electroencephalography (iEEG) in neurosurgical patients as they performed a free recall memory task, and detected iEEG theta and alpha oscillations that correlated with optimal memory encoding. We then used these detected oscillatory changes to trigger the presentation of items in the free recall task. We found that item presentation contingent upon the presence of pre-stimulus theta and alpha oscillations modulated memory performance in more sessions than expected by chance. Our results suggest that an electrophysiological signal may be causally linked to a specific behavioral condition, and contingent stimulus presentation has the potential to modulate human memory encoding. PMID:25653605

  16. Transfer Kernel Common Spatial Patterns for Motor Imagery Brain-Computer Interface Classification.

    PubMed

    Dai, Mengxi; Zheng, Dezhi; Liu, Shucong; Zhang, Pengju

    2018-01-01

    Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern (CSP) as preprocessing step before classification. The CSP method is a supervised algorithm. Therefore a lot of time-consuming training data is needed to build the model. To address this issue, one promising approach is transfer learning, which generalizes a learning model can extract discriminative information from other subjects for target classification task. To this end, we propose a transfer kernel CSP (TKCSP) approach to learn a domain-invariant kernel by directly matching distributions of source subjects and target subjects. The dataset IVa of BCI Competition III is used to demonstrate the validity by our proposed methods. In the experiment, we compare the classification performance of the TKCSP against CSP, CSP for subject-to-subject transfer (CSP SJ-to-SJ), regularizing CSP (RCSP), stationary subspace CSP (ssCSP), multitask CSP (mtCSP), and the combined mtCSP and ssCSP (ss + mtCSP) method. The results indicate that the superior mean classification performance of TKCSP can achieve 81.14%, especially in case of source subjects with fewer number of training samples. Comprehensive experimental evidence on the dataset verifies the effectiveness and efficiency of the proposed TKCSP approach over several state-of-the-art methods.

  17. Towards a truly mobile auditory brain-computer interface: exploring the P300 to take away.

    PubMed

    De Vos, Maarten; Gandras, Katharina; Debener, Stefan

    2014-01-01

    In a previous study we presented a low-cost, small, and wireless 14-channel EEG system suitable for field recordings (Debener et al., 2012, psychophysiology). In the present follow-up study we investigated whether a single-trial P300 response can be reliably measured with this system, while subjects freely walk outdoors. Twenty healthy participants performed a three-class auditory oddball task, which included rare target and non-target distractor stimuli presented with equal probabilities of 16%. Data were recorded in a seated (control condition) and in a walking condition, both of which were realized outdoors. A significantly larger P300 event-related potential amplitude was evident for targets compared to distractors (p<.001), but no significant interaction with recording condition emerged. P300 single-trial analysis was performed with regularized stepwise linear discriminant analysis and revealed above chance-level classification accuracies for most participants (19 out of 20 for the seated, 16 out of 20 for the walking condition), with mean classification accuracies of 71% (seated) and 64% (walking). Moreover, the resulting information transfer rates for the seated and walking conditions were comparable to a recently published laboratory auditory brain-computer interface (BCI) study. This leads us to conclude that a truly mobile auditory BCI system is feasible. © 2013.

  18. Transfer Kernel Common Spatial Patterns for Motor Imagery Brain-Computer Interface Classification

    PubMed Central

    Dai, Mengxi; Liu, Shucong; Zhang, Pengju

    2018-01-01

    Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern (CSP) as preprocessing step before classification. The CSP method is a supervised algorithm. Therefore a lot of time-consuming training data is needed to build the model. To address this issue, one promising approach is transfer learning, which generalizes a learning model can extract discriminative information from other subjects for target classification task. To this end, we propose a transfer kernel CSP (TKCSP) approach to learn a domain-invariant kernel by directly matching distributions of source subjects and target subjects. The dataset IVa of BCI Competition III is used to demonstrate the validity by our proposed methods. In the experiment, we compare the classification performance of the TKCSP against CSP, CSP for subject-to-subject transfer (CSP SJ-to-SJ), regularizing CSP (RCSP), stationary subspace CSP (ssCSP), multitask CSP (mtCSP), and the combined mtCSP and ssCSP (ss + mtCSP) method. The results indicate that the superior mean classification performance of TKCSP can achieve 81.14%, especially in case of source subjects with fewer number of training samples. Comprehensive experimental evidence on the dataset verifies the effectiveness and efficiency of the proposed TKCSP approach over several state-of-the-art methods. PMID:29743934

  19. Random forests in non-invasive sensorimotor rhythm brain-computer interfaces: a practical and convenient non-linear classifier.

    PubMed

    Steyrl, David; Scherer, Reinhold; Faller, Josef; Müller-Putz, Gernot R

    2016-02-01

    There is general agreement in the brain-computer interface (BCI) community that although non-linear classifiers can provide better results in some cases, linear classifiers are preferable. Particularly, as non-linear classifiers often involve a number of parameters that must be carefully chosen. However, new non-linear classifiers were developed over the last decade. One of them is the random forest (RF) classifier. Although popular in other fields of science, RFs are not common in BCI research. In this work, we address three open questions regarding RFs in sensorimotor rhythm (SMR) BCIs: parametrization, online applicability, and performance compared to regularized linear discriminant analysis (LDA). We found that the performance of RF is constant over a large range of parameter values. We demonstrate - for the first time - that RFs are applicable online in SMR-BCIs. Further, we show in an offline BCI simulation that RFs statistically significantly outperform regularized LDA by about 3%. These results confirm that RFs are practical and convenient non-linear classifiers for SMR-BCIs. Taking into account further properties of RFs, such as independence from feature distributions, maximum margin behavior, multiclass and advanced data mining capabilities, we argue that RFs should be taken into consideration for future BCIs.

  20. Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface.

    PubMed

    Ng, Kian B; Bradley, Andrew P; Cunnington, Ross

    2012-06-01

    The mechanisms of neural excitation and inhibition when given a visual stimulus are well studied. It has been established that changing stimulus specificity such as luminance contrast or spatial frequency can alter the neuronal activity and thus modulate the visual-evoked response. In this paper, we study the effect that stimulus specificity has on the classification performance of a steady-state visual-evoked potential-based brain-computer interface (SSVEP-BCI). For example, we investigate how closely two visual stimuli can be placed before they compete for neural representation in the cortex and thus influence BCI classification accuracy. We characterize stimulus specificity using the four stimulus parameters commonly encountered in SSVEP-BCI design: temporal frequency, spatial size, number of simultaneously displayed stimuli and their spatial proximity. By varying these quantities and measuring the SSVEP-BCI classification accuracy, we are able to determine the parameters that provide optimal performance. Our results show that superior SSVEP-BCI accuracy is attained when stimuli are placed spatially more than 5° apart, with size that subtends at least 2° of visual angle, when using a tagging frequency of between high alpha and beta band. These findings may assist in deciding the stimulus parameters for optimal SSVEP-BCI design.

  1. Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Ng, Kian B.; Bradley, Andrew P.; Cunnington, Ross

    2012-06-01

    The mechanisms of neural excitation and inhibition when given a visual stimulus are well studied. It has been established that changing stimulus specificity such as luminance contrast or spatial frequency can alter the neuronal activity and thus modulate the visual-evoked response. In this paper, we study the effect that stimulus specificity has on the classification performance of a steady-state visual-evoked potential-based brain-computer interface (SSVEP-BCI). For example, we investigate how closely two visual stimuli can be placed before they compete for neural representation in the cortex and thus influence BCI classification accuracy. We characterize stimulus specificity using the four stimulus parameters commonly encountered in SSVEP-BCI design: temporal frequency, spatial size, number of simultaneously displayed stimuli and their spatial proximity. By varying these quantities and measuring the SSVEP-BCI classification accuracy, we are able to determine the parameters that provide optimal performance. Our results show that superior SSVEP-BCI accuracy is attained when stimuli are placed spatially more than 5° apart, with size that subtends at least 2° of visual angle, when using a tagging frequency of between high alpha and beta band. These findings may assist in deciding the stimulus parameters for optimal SSVEP-BCI design.

  2. Asynchronous P300 classification in a reactive brain-computer interface during an outlier detection task

    NASA Astrophysics Data System (ADS)

    Krumpe, Tanja; Walter, Carina; Rosenstiel, Wolfgang; Spüler, Martin

    2016-08-01

    Objective. In this study, the feasibility of detecting a P300 via an asynchronous classification mode in a reactive EEG-based brain-computer interface (BCI) was evaluated. The P300 is one of the most popular BCI control signals and therefore used in many applications, mostly for active communication purposes (e.g. P300 speller). As the majority of all systems work with a stimulus-locked mode of classification (synchronous), the field of applications is limited. A new approach needs to be applied in a setting in which a stimulus-locked classification cannot be used due to the fact that the presented stimuli cannot be controlled or predicted by the system. Approach. A continuous observation task requiring the detection of outliers was implemented to test such an approach. The study was divided into an offline and an online part. Main results. Both parts of the study revealed that an asynchronous detection of the P300 can successfully be used to detect single events with high specificity. It also revealed that no significant difference in performance was found between the synchronous and the asynchronous approach. Significance. The results encourage the use of an asynchronous classification approach in suitable applications without a potential loss in performance.

  3. Hidden Markov Model and Support Vector Machine based decoding of finger movements using Electrocorticography

    PubMed Central

    Wissel, Tobias; Pfeiffer, Tim; Frysch, Robert; Knight, Robert T.; Chang, Edward F.; Hinrichs, Hermann; Rieger, Jochem W.; Rose, Georg

    2013-01-01

    Objective Support Vector Machines (SVM) have developed into a gold standard for accurate classification in Brain-Computer-Interfaces (BCI). The choice of the most appropriate classifier for a particular application depends on several characteristics in addition to decoding accuracy. Here we investigate the implementation of Hidden Markov Models (HMM)for online BCIs and discuss strategies to improve their performance. Approach We compare the SVM, serving as a reference, and HMMs for classifying discrete finger movements obtained from the Electrocorticograms of four subjects doing a finger tapping experiment. The classifier decisions are based on a subset of low-frequency time domain and high gamma oscillation features. Main results We show that decoding optimization between the two approaches is due to the way features are extracted and selected and less dependent on the classifier. An additional gain in HMM performance of up to 6% was obtained by introducing model constraints. Comparable accuracies of up to 90% were achieved with both SVM and HMM with the high gamma cortical response providing the most important decoding information for both techniques. Significance We discuss technical HMM characteristics and adaptations in the context of the presented data as well as for general BCI applications. Our findings suggest that HMMs and their characteristics are promising for efficient online brain-computer interfaces. PMID:24045504

  4. A practical, intuitive brain-computer interface for communicating ‘yes’ or ‘no’ by listening

    NASA Astrophysics Data System (ADS)

    Hill, N. Jeremy; Ricci, Erin; Haider, Sameah; McCane, Lynn M.; Heckman, Susan; Wolpaw, Jonathan R.; Vaughan, Theresa M.

    2014-06-01

    Objective. Previous work has shown that it is possible to build an EEG-based binary brain-computer interface system (BCI) driven purely by shifts of attention to auditory stimuli. However, previous studies used abrupt, abstract stimuli that are often perceived as harsh and unpleasant, and whose lack of inherent meaning may make the interface unintuitive and difficult for beginners. We aimed to establish whether we could transition to a system based on more natural, intuitive stimuli (spoken words ‘yes’ and ‘no’) without loss of performance, and whether the system could be used by people in the locked-in state. Approach. We performed a counterbalanced, interleaved within-subject comparison between an auditory streaming BCI that used beep stimuli, and one that used word stimuli. Fourteen healthy volunteers performed two sessions each, on separate days. We also collected preliminary data from two subjects with advanced amyotrophic lateral sclerosis (ALS), who used the word-based system to answer a set of simple yes-no questions. Main results. The N1, N2 and P3 event-related potentials elicited by words varied more between subjects than those elicited by beeps. However, the difference between responses to attended and unattended stimuli was more consistent with words than beeps. Healthy subjects’ performance with word stimuli (mean 77% ± 3.3 s.e.) was slightly but not significantly better than their performance with beep stimuli (mean 73% ± 2.8 s.e.). The two subjects with ALS used the word-based BCI to answer questions with a level of accuracy similar to that of the healthy subjects. Significance. Since performance using word stimuli was at least as good as performance using beeps, we recommend that auditory streaming BCI systems be built with word stimuli to make the system more pleasant and intuitive. Our preliminary data show that word-based streaming BCI is a promising tool for communication by people who are locked in.

  5. Investigation of different classifiers and channel configurations of a mobile P300-based brain-computer interface.

    PubMed

    Ludwig, Simone A; Kong, Jun

    2017-12-01

    Innovative methods and new technologies have significantly improved the quality of our daily life. However, disabled people, for example those that cannot use their arms and legs anymore, often cannot benefit from these developments, since they cannot use their hands to interact with traditional interaction methods (such as mouse or keyboard) to communicate with a computer system. A brain-computer interface (BCI) system allows such a disabled person to control an external device via brain waves. Past research mostly dealt with static interfaces, which limit users to a stationary location. However, since we are living in a world that is highly mobile, this paper evaluates a speller interface on a mobile phone used in a moving condition. The spelling experiments were conducted with 14 able-bodied subjects using visual flashes as the stimulus to spell 47 alphanumeric characters (38 letters and 9 numbers). This data was then used for the classification experiments. In par- ticular, two research directions are pursued. The first investigates the impact of different classification algorithms, and the second direction looks at the channel configuration, i.e., which channels are most beneficial in terms of achieving the highest classification accuracy. The evaluation results indicate that the Bayesian Linear Discriminant Analysis algorithm achieves the best accuracy. Also, the findings of the investigation on the channel configuration, which can potentially reduce the amount of data processing on a mobile device with limited computing capacity, is especially useful in mobile BCIs.

  6. [Arm Motor Function Recovery during Rehabilitation with the Use of Hand Exoskeleton Controlled by Brain-Computer Interface: a Patient with Severe Brain Damage].

    PubMed

    Biryukova, E V; Pavlova, O G; Kurganskaya, M E; Bobrov, P D; Turbina, L G; Frolov, A A; Davydov, V I; Sil'tchenko, A V; Mokienko, O A

    2016-01-01

    We studied the dynamics of motor function recovery in a patient with severe brain damage in the course of neurorehabilitation using hand exoskeleton controlled by brain-computer interface. For estimating the motor function of paretic arm, we used the biomechanical analysis of movements registered during the course of rehabilitation. After 15 weekly sessions of hand exoskeleton control, the following results were obtained: a) the velocity profile of goal-directed movements of paretic hand became bell-shaped, b) the patient began to extend and abduct the hand which was flexed and adducted in the beginning of rehabilitation, and c) the patient began to supinate the forearm which was pronated in the beginning of rehabilitation. The first result is an evidence of the general improvement of the quality of motor control, while the second and third results prove that the spasticity of paretic arm has decreased.

  7. fMRI Brain-Computer Interface: A Tool for Neuroscientific Research and Treatment

    PubMed Central

    Sitaram, Ranganatha; Caria, Andrea; Veit, Ralf; Gaber, Tilman; Rota, Giuseppina; Kuebler, Andrea; Birbaumer, Niels

    2007-01-01

    Brain-computer interfaces based on functional magnetic resonance imaging (fMRI-BCI) allow volitional control of anatomically specific regions of the brain. Technological advancement in higher field MRI scanners, fast data acquisition sequences, preprocessing algorithms, and robust statistical analysis are anticipated to make fMRI-BCI more widely available and applicable. This noninvasive technique could potentially complement the traditional neuroscientific experimental methods by varying the activity of the neural substrates of a region of interest as an independent variable to study its effects on behavior. If the neurobiological basis of a disorder (e.g., chronic pain, motor diseases, psychopathy, social phobia, depression) is known in terms of abnormal activity in certain regions of the brain, fMRI-BCI can be targeted to modify activity in those regions with high specificity for treatment. In this paper, we review recent results of the application of fMRI-BCI to neuroscientific research and psychophysiological treatment. PMID:18274615

  8. Big data challenges in decoding cortical activity in a human with quadriplegia to inform a brain computer interface.

    PubMed

    Friedenberg, David A; Bouton, Chad E; Annetta, Nicholas V; Skomrock, Nicholas; Mingming Zhang; Schwemmer, Michael; Bockbrader, Marcia A; Mysiw, W Jerry; Rezai, Ali R; Bresler, Herbert S; Sharma, Gaurav

    2016-08-01

    Recent advances in Brain Computer Interfaces (BCIs) have created hope that one day paralyzed patients will be able to regain control of their paralyzed limbs. As part of an ongoing clinical study, we have implanted a 96-electrode Utah array in the motor cortex of a paralyzed human. The array generates almost 3 million data points from the brain every second. This presents several big data challenges towards developing algorithms that should not only process the data in real-time (for the BCI to be responsive) but are also robust to temporal variations and non-stationarities in the sensor data. We demonstrate an algorithmic approach to analyze such data and present a novel method to evaluate such algorithms. We present our methodology with examples of decoding human brain data in real-time to inform a BCI.

  9. Region based Brain Computer Interface for a home control application.

    PubMed

    Akman Aydin, Eda; Bay, Omer Faruk; Guler, Inan

    2015-08-01

    Environment control is one of the important challenges for disabled people who suffer from neuromuscular diseases. Brain Computer Interface (BCI) provides a communication channel between the human brain and the environment without requiring any muscular activation. The most important expectation for a home control application is high accuracy and reliable control. Region-based paradigm is a stimulus paradigm based on oddball principle and requires selection of a target at two levels. This paper presents an application of region based paradigm for a smart home control application for people with neuromuscular diseases. In this study, a region based stimulus interface containing 49 commands was designed. Five non-disabled subjects were attended to the experiments. Offline analysis results of the experiments yielded 95% accuracy for five flashes. This result showed that region based paradigm can be used to select commands of a smart home control application with high accuracy in the low number of repetitions successfully. Furthermore, a statistically significant difference was not observed between the level accuracies.

  10. Brain-computer interface controlled functional electrical stimulation system for ankle movement.

    PubMed

    Do, An H; Wang, Po T; King, Christine E; Abiri, Ahmad; Nenadic, Zoran

    2011-08-26

    Many neurological conditions, such as stroke, spinal cord injury, and traumatic brain injury, can cause chronic gait function impairment due to foot-drop. Current physiotherapy techniques provide only a limited degree of motor function recovery in these individuals, and therefore novel therapies are needed. Brain-computer interface (BCI) is a relatively novel technology with a potential to restore, substitute, or augment lost motor behaviors in patients with neurological injuries. Here, we describe the first successful integration of a noninvasive electroencephalogram (EEG)-based BCI with a noninvasive functional electrical stimulation (FES) system that enables the direct brain control of foot dorsiflexion in able-bodied individuals. A noninvasive EEG-based BCI system was integrated with a noninvasive FES system for foot dorsiflexion. Subjects underwent computer-cued epochs of repetitive foot dorsiflexion and idling while their EEG signals were recorded and stored for offline analysis. The analysis generated a prediction model that allowed EEG data to be analyzed and classified in real time during online BCI operation. The real-time online performance of the integrated BCI-FES system was tested in a group of five able-bodied subjects who used repetitive foot dorsiflexion to elicit BCI-FES mediated dorsiflexion of the contralateral foot. Five able-bodied subjects performed 10 alternations of idling and repetitive foot dorsifiexion to trigger BCI-FES mediated dorsifiexion of the contralateral foot. The epochs of BCI-FES mediated foot dorsifiexion were highly correlated with the epochs of voluntary foot dorsifiexion (correlation coefficient ranged between 0.59 and 0.77) with latencies ranging from 1.4 sec to 3.1 sec. In addition, all subjects achieved a 100% BCI-FES response (no omissions), and one subject had a single false alarm. This study suggests that the integration of a noninvasive BCI with a lower-extremity FES system is feasible. With additional modifications, the proposed BCI-FES system may offer a novel and effective therapy in the neuro-rehabilitation of individuals with lower extremity paralysis due to neurological injuries.

  11. Neural Correlates of Phrase Quadrature Perception in Harmonic Rhythm: An EEG Study Using a Brain-Computer Interface.

    PubMed

    Fernández-Soto, Alicia; Martínez-Rodrigo, Arturo; Moncho-Bogani, José; Latorre, José Miguel; Fernández-Caballero, Antonio

    2018-06-01

    For the sake of establishing the neural correlates of phrase quadrature perception in harmonic rhythm, a musical experiment has been designed to induce music-evoked stimuli related to one important aspect of harmonic rhythm, namely the phrase quadrature. Brain activity is translated to action through electroencephalography (EEG) by using a brain-computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. The results of processing the acquired signals are in line with previous studies that use different musical parameters to induce emotions. Indeed, our experiment shows statistical differences in theta and alpha bands between the fulfillment and break of phrase quadrature, an important cue of harmonic rhythm, in two classical sonatas.

  12. Individually adapted imagery improves brain-computer interface performance in end-users with disability.

    PubMed

    Scherer, Reinhold; Faller, Josef; Friedrich, Elisabeth V C; Opisso, Eloy; Costa, Ursula; Kübler, Andrea; Müller-Putz, Gernot R

    2015-01-01

    Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage.

  13. Individually Adapted Imagery Improves Brain-Computer Interface Performance in End-Users with Disability

    PubMed Central

    Scherer, Reinhold; Faller, Josef; Friedrich, Elisabeth V. C.; Opisso, Eloy; Costa, Ursula; Kübler, Andrea; Müller-Putz, Gernot R.

    2015-01-01

    Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage. PMID:25992718

  14. EEG-Based Quantification of Cortical Current Density and Dynamic Causal Connectivity Generalized across Subjects Performing BCI-Monitored Cognitive Tasks

    PubMed Central

    Courellis, Hristos; Mullen, Tim; Poizner, Howard; Cauwenberghs, Gert; Iversen, John R.

    2017-01-01

    Quantification of dynamic causal interactions among brain regions constitutes an important component of conducting research and developing applications in experimental and translational neuroscience. Furthermore, cortical networks with dynamic causal connectivity in brain-computer interface (BCI) applications offer a more comprehensive view of brain states implicated in behavior than do individual brain regions. However, models of cortical network dynamics are difficult to generalize across subjects because current electroencephalography (EEG) signal analysis techniques are limited in their ability to reliably localize sources across subjects. We propose an algorithmic and computational framework for identifying cortical networks across subjects in which dynamic causal connectivity is modeled among user-selected cortical regions of interest (ROIs). We demonstrate the strength of the proposed framework using a “reach/saccade to spatial target” cognitive task performed by 10 right-handed individuals. Modeling of causal cortical interactions was accomplished through measurement of cortical activity using (EEG), application of independent component clustering to identify cortical ROIs as network nodes, estimation of cortical current density using cortically constrained low resolution electromagnetic brain tomography (cLORETA), multivariate autoregressive (MVAR) modeling of representative cortical activity signals from each ROI, and quantification of the dynamic causal interaction among the identified ROIs using the Short-time direct Directed Transfer function (SdDTF). The resulting cortical network and the computed causal dynamics among its nodes exhibited physiologically plausible behavior, consistent with past results reported in the literature. This physiological plausibility of the results strengthens the framework's applicability in reliably capturing complex brain functionality, which is required by applications, such as diagnostics and BCI. PMID:28566997

  15. EEG datasets for motor imagery brain-computer interface.

    PubMed

    Cho, Hohyun; Ahn, Minkyu; Ahn, Sangtae; Kwon, Moonyoung; Jun, Sung Chan

    2017-07-01

    Most investigators of brain-computer interface (BCI) research believe that BCI can be achieved through induced neuronal activity from the cortex, but not by evoked neuronal activity. Motor imagery (MI)-based BCI is one of the standard concepts of BCI, in that the user can generate induced activity by imagining motor movements. However, variations in performance over sessions and subjects are too severe to overcome easily; therefore, a basic understanding and investigation of BCI performance variation is necessary to find critical evidence of performance variation. Here we present not only EEG datasets for MI BCI from 52 subjects, but also the results of a psychological and physiological questionnaire, EMG datasets, the locations of 3D EEG electrodes, and EEGs for non-task-related states. We validated our EEG datasets by using the percentage of bad trials, event-related desynchronization/synchronization (ERD/ERS) analysis, and classification analysis. After conventional rejection of bad trials, we showed contralateral ERD and ipsilateral ERS in the somatosensory area, which are well-known patterns of MI. Finally, we showed that 73.08% of datasets (38 subjects) included reasonably discriminative information. Our EEG datasets included the information necessary to determine statistical significance; they consisted of well-discriminated datasets (38 subjects) and less-discriminative datasets. These may provide researchers with opportunities to investigate human factors related to MI BCI performance variation, and may also achieve subject-to-subject transfer by using metadata, including a questionnaire, EEG coordinates, and EEGs for non-task-related states. © The Authors 2017. Published by Oxford University Press.

  16. The brain-computer interface cycle.

    PubMed

    van Gerven, Marcel; Farquhar, Jason; Schaefer, Rebecca; Vlek, Rutger; Geuze, Jeroen; Nijholt, Anton; Ramsey, Nick; Haselager, Pim; Vuurpijl, Louis; Gielen, Stan; Desain, Peter

    2009-08-01

    Brain-computer interfaces (BCIs) have attracted much attention recently, triggered by new scientific progress in understanding brain function and by impressive applications. The aim of this review is to give an overview of the various steps in the BCI cycle, i.e., the loop from the measurement of brain activity, classification of data, feedback to the subject and the effect of feedback on brain activity. In this article we will review the critical steps of the BCI cycle, the present issues and state-of-the-art results. Moreover, we will develop a vision on how recently obtained results may contribute to new insights in neurocognition and, in particular, in the neural representation of perceived stimuli, intended actions and emotions. Now is the right time to explore what can be gained by embracing real-time, online BCI and by adding it to the set of experimental tools already available to the cognitive neuroscientist. We close by pointing out some unresolved issues and present our view on how BCI could become an important new tool for probing human cognition.

  17. Classification of mouth movements using 7 T fMRI.

    PubMed

    Bleichner, M G; Jansma, J M; Salari, E; Freudenburg, Z V; Raemaekers, M; Ramsey, N F

    2015-12-01

    A brain-computer interface (BCI) is an interface that uses signals from the brain to control a computer. BCIs will likely become important tools for severely paralyzed patients to restore interaction with the environment. The sensorimotor cortex is a promising target brain region for a BCI due to the detailed topography and minimal functional interference with other important brain processes. Previous studies have shown that attempted movements in paralyzed people generate neural activity that strongly resembles actual movements. Hence decodability for BCI applications can be studied in able-bodied volunteers with actual movements. In this study we tested whether mouth movements provide adequate signals in the sensorimotor cortex for a BCI. The study was executed using fMRI at 7 T to ensure relevance for BCI with cortical electrodes, as 7 T measurements have been shown to correlate well with electrocortical measurements. Twelve healthy volunteers executed four mouth movements (lip protrusion, tongue movement, teeth clenching, and the production of a larynx activating sound) while in the scanner. Subjects performed a training and a test run. Single trials were classified based on the Pearson correlation values between the activation patterns per trial type in the training run and single trials in the test run in a 'winner-takes-all' design. Single trial mouth movements could be classified with 90% accuracy. The classification was based on an area with a volume of about 0.5 cc, located on the sensorimotor cortex. If voxels were limited to the surface, which is accessible for electrode grids, classification accuracy was still very high (82%). Voxels located on the precentral cortex performed better (87%) than the postcentral cortex (72%). The high reliability of decoding mouth movements suggests that attempted mouth movements are a promising candidate for BCI in paralyzed people.

  18. Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Abbott, W. W.; Faisal, A. A.

    2012-08-01

    Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s-1, more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark—the control of the video arcade game ‘Pong’.

  19. Future developments in brain-machine interface research.

    PubMed

    Lebedev, Mikhail A; Tate, Andrew J; Hanson, Timothy L; Li, Zheng; O'Doherty, Joseph E; Winans, Jesse A; Ifft, Peter J; Zhuang, Katie Z; Fitzsimmons, Nathan A; Schwarz, David A; Fuller, Andrew M; An, Je Hi; Nicolelis, Miguel A L

    2011-01-01

    Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL) Center for Neuroprosthetics, to bring this new technology to clinical fruition.

  20. Brain-computer interface after nervous system injury.

    PubMed

    Burns, Alexis; Adeli, Hojjat; Buford, John A

    2014-12-01

    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders. © The Author(s) 2014.

  1. Feasibility of Equivalent Dipole Models for Electroencephalogram-Based Brain Computer Interfaces.

    PubMed

    Schimpf, Paul H

    2017-09-15

    This article examines the localization errors of equivalent dipolar sources inverted from the surface electroencephalogram in order to determine the feasibility of using their location as classification parameters for non-invasive brain computer interfaces. Inverse localization errors are examined for two head models: a model represented by four concentric spheres and a realistic model based on medical imagery. It is shown that the spherical model results in localization ambiguity such that a number of dipolar sources, with different azimuths and varying orientations, provide a near match to the electroencephalogram of the best equivalent source. No such ambiguity exists for the elevation of inverted sources, indicating that for spherical head models, only the elevation of inverted sources (and not the azimuth) can be expected to provide meaningful classification parameters for brain-computer interfaces. In a realistic head model, all three parameters of the inverted source location are found to be reliable, providing a more robust set of parameters. In both cases, the residual error hypersurfaces demonstrate local minima, indicating that a search for the best-matching sources should be global. Source localization error vs. signal-to-noise ratio is also demonstrated for both head models.

  2. Task-induced frequency modulation features for brain-computer interfacing

    NASA Astrophysics Data System (ADS)

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Objective. Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects’ intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects’ intents with an accuracy comparable to task-induced amplitude modulation. Approach. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. Main results. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Significance. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  3. Decoding of intended saccade direction in an oculomotor brain-computer interface

    NASA Astrophysics Data System (ADS)

    Jia, Nan; Brincat, Scott L.; Salazar-Gómez, Andrés F.; Panko, Mikhail; Guenther, Frank H.; Miller, Earl K.

    2017-08-01

    Objective. To date, invasive brain-computer interface (BCI) research has largely focused on replacing lost limb functions using signals from the hand/arm areas of motor cortex. However, the oculomotor system may be better suited to BCI applications involving rapid serial selection from spatial targets, such as choosing from a set of possible words displayed on a computer screen in an augmentative and alternative communication (AAC) application. Here we aimed to demonstrate the feasibility of a BCI utilizing the oculomotor system. Approach. We developed a chronic intracortical BCI in monkeys to decode intended saccadic eye movement direction using activity from multiple frontal cortical areas. Main results. Intended saccade direction could be decoded in real time with high accuracy, particularly at contralateral locations. Accurate decoding was evident even at the beginning of the BCI session; no extensive BCI experience was necessary. High-frequency (80-500 Hz) local field potential magnitude provided the best performance, even over spiking activity, thus simplifying future BCI applications. Most of the information came from the frontal and supplementary eye fields, with relatively little contribution from dorsolateral prefrontal cortex. Significance. Our results support the feasibility of high-accuracy intracortical oculomotor BCIs that require little or no practice to operate and may be ideally suited for ‘point and click’ computer operation as used in most current AAC systems.

  4. A Brain-Based Communication and Orientation System

    DTIC Science & Technology

    2014-10-06

    Review of the BCI Competition IV, Frontiers in Neuroscience, ( 2012): 0. doi: 10.3389/fnins.2012.00055 Eric C. Leuthardt, Xiao-Mei Pei, Jonathan...hardware and software for brain– computer interfaces ( BCIs ), Journal of Neural Engineering, (04 2011): 1. doi: 10.1088/1741-2560/8/2/025001...Cincotti, G. Schalk, Peter Brunner. Current Trends in Brain–Computer Interface ( BCI ) Research and Development, Journal of Neural Engineering, (3 2011

  5. Composing only by thought: Novel application of the P300 brain-computer interface.

    PubMed

    Pinegger, Andreas; Hiebel, Hannah; Wriessnegger, Selina C; Müller-Putz, Gernot R

    2017-01-01

    The P300 event-related potential is a well-known pattern in the electroencephalogram (EEG). This kind of brain signal is used for many different brain-computer interface (BCI) applications, e.g., spellers, environmental controllers, web browsers, or for painting. In recent times, BCI systems are mature enough to leave the laboratories to be used by the end-users, namely severely disabled people. Therefore, new challenges arise and the systems should be implemented and evaluated according to user-centered design (USD) guidelines. We developed and implemented a new system that utilizes the P300 pattern to compose music. Our Brain Composing system consists of three parts: the EEG acquisition device, the P300-based BCI, and the music composing software. Seventeen musical participants and one professional composer performed a copy-spelling, a copy-composing, and a free-composing task with the system. According to the USD guidelines, we investigated the efficiency, the effectiveness and subjective criteria in terms of satisfaction, enjoyment, frustration, and attractiveness. The musical participants group achieved high average accuracies: 88.24% (copy-spelling), 88.58% (copy-composing), and 76.51% (free-composing). The professional composer achieved also high accuracies: 100% (copy-spelling), 93.62% (copy-composing), and 98.20% (free-composing). General results regarding the subjective criteria evaluation were that the participants enjoyed the usage of the Brain Composing system and were highly satisfied with the system. Showing very positive results with healthy people in this study, this was the first step towards a music composing system for severely disabled people.

  6. Composing only by thought: Novel application of the P300 brain-computer interface

    PubMed Central

    Hiebel, Hannah; Wriessnegger, Selina C.; Müller-Putz, Gernot R.

    2017-01-01

    The P300 event-related potential is a well-known pattern in the electroencephalogram (EEG). This kind of brain signal is used for many different brain-computer interface (BCI) applications, e.g., spellers, environmental controllers, web browsers, or for painting. In recent times, BCI systems are mature enough to leave the laboratories to be used by the end-users, namely severely disabled people. Therefore, new challenges arise and the systems should be implemented and evaluated according to user-centered design (USD) guidelines. We developed and implemented a new system that utilizes the P300 pattern to compose music. Our Brain Composing system consists of three parts: the EEG acquisition device, the P300-based BCI, and the music composing software. Seventeen musical participants and one professional composer performed a copy-spelling, a copy-composing, and a free-composing task with the system. According to the USD guidelines, we investigated the efficiency, the effectiveness and subjective criteria in terms of satisfaction, enjoyment, frustration, and attractiveness. The musical participants group achieved high average accuracies: 88.24% (copy-spelling), 88.58% (copy-composing), and 76.51% (free-composing). The professional composer achieved also high accuracies: 100% (copy-spelling), 93.62% (copy-composing), and 98.20% (free-composing). General results regarding the subjective criteria evaluation were that the participants enjoyed the usage of the Brain Composing system and were highly satisfied with the system. Showing very positive results with healthy people in this study, this was the first step towards a music composing system for severely disabled people. PMID:28877175

  7. EDITORIAL: Focus on the neural interface Focus on the neural interface

    NASA Astrophysics Data System (ADS)

    Durand, Dominique M.

    2009-10-01

    The possibility of an effective connection between neural tissue and computers has inspired scientists and engineers to develop new ways of controlling and obtaining information from the nervous system. These applications range from `brain hacking' to neural control of artificial limbs with brain signals. Notwithstanding the significant advances in neural prosthetics in the last few decades and the success of some stimulation devices such as cochlear prosthesis, neurotechnology remains below its potential for restoring neural function in patients with nervous system disorders. One of the reasons for this limited impact can be found at the neural interface and close attention to the integration between electrodes and tissue should improve the possibility of successful outcomes. The neural interfaces research community consists of investigators working in areas such as deep brain stimulation, functional neuromuscular/electrical stimulation, auditory prostheses, cortical prostheses, neuromodulation, microelectrode array technology, brain-computer/machine interfaces. Following the success of previous neuroprostheses and neural interfaces workshops, funding (from NIH) was obtained to establish a biennial conference in the area of neural interfaces. The first Neural Interfaces Conference took place in Cleveland, OH in 2008 and several topics from this conference have been selected for publication in this special section of the Journal of Neural Engineering. Three `perspectives' review the areas of neural regeneration (Corredor and Goldberg), cochlear implants (O'Leary et al) and neural prostheses (Anderson). Seven articles focus on various aspects of neural interfacing. One of the most popular of these areas is the field of brain-computer interfaces. Fraser et al, report on a method to generate robust control with simple signal processing algorithms of signals obtained with electrodes implanted in the brain. One problem with implanted electrode arrays, however, is that they can fail to record reliably neural signals for long periods of time. McConnell et al show that by measuring the impedance of the tissue, one can evaluate the extent of the tissue response to the presence of the electrode. Another problem with the neural interface is the mismatch of the mechanical properties between electrode and tissue. Basinger et al use finite element modeling to analyze this mismatch in retinal prostheses and guide the design of new implantable devices. Electrical stimulation has been the method of choice to activate externally the nervous system. However, Zhang et al show that a novel dual hybrid device integrating electrical and optical stimulation can provide an effective interface for simultaneous recording and stimulation. By interfacing an EMG recording system and a movement detection system, Johnson and Fuglevand develop a model capable of predicting muscle activity during movement that could be important for the development of motor prostheses. Sensory restoration is another unsolved problem in neural prostheses. By developing a novel interface between the dorsal root ganglia and electrodes arrays, Gaunt et al show that it is possible to recruit afferent fibers for sensory substitution. Finally, by interfacing directly with muscles, Jung and colleagues show that stimulation of muscles involved in locomotion following spinal cord damage in rats can provide an effective treatment modality for incomplete spinal cord injury. This series of articles clearly shows that the interface is indeed one of the keys to successful therapeutic neural devices. The next Neural Interfaces Conference will take place in Los Angeles, CA in June 2010 and one can expect to see new developments in neural engineering obtained by focusing on the neural interface.

  8. Pervasive brain monitoring and data sharing based on multi-tier distributed computing and linked data technology

    PubMed Central

    Zao, John K.; Gan, Tchin-Tze; You, Chun-Kai; Chung, Cheng-En; Wang, Yu-Te; Rodríguez Méndez, Sergio José; Mullen, Tim; Yu, Chieh; Kothe, Christian; Hsiao, Ching-Teng; Chu, San-Liang; Shieh, Ce-Kuen; Jung, Tzyy-Ping

    2014-01-01

    EEG-based Brain-computer interfaces (BCI) are facing basic challenges in real-world applications. The technical difficulties in developing truly wearable BCI systems that are capable of making reliable real-time prediction of users' cognitive states in dynamic real-life situations may seem almost insurmountable at times. Fortunately, recent advances in miniature sensors, wireless communication and distributed computing technologies offered promising ways to bridge these chasms. In this paper, we report an attempt to develop a pervasive on-line EEG-BCI system using state-of-art technologies including multi-tier Fog and Cloud Computing, semantic Linked Data search, and adaptive prediction/classification models. To verify our approach, we implement a pilot system by employing wireless dry-electrode EEG headsets and MEMS motion sensors as the front-end devices, Android mobile phones as the personal user interfaces, compact personal computers as the near-end Fog Servers and the computer clusters hosted by the Taiwan National Center for High-performance Computing (NCHC) as the far-end Cloud Servers. We succeeded in conducting synchronous multi-modal global data streaming in March and then running a multi-player on-line EEG-BCI game in September, 2013. We are currently working with the ARL Translational Neuroscience Branch to use our system in real-life personal stress monitoring and the UCSD Movement Disorder Center to conduct in-home Parkinson's disease patient monitoring experiments. We shall proceed to develop the necessary BCI ontology and introduce automatic semantic annotation and progressive model refinement capability to our system. PMID:24917804

  9. Pervasive brain monitoring and data sharing based on multi-tier distributed computing and linked data technology.

    PubMed

    Zao, John K; Gan, Tchin-Tze; You, Chun-Kai; Chung, Cheng-En; Wang, Yu-Te; Rodríguez Méndez, Sergio José; Mullen, Tim; Yu, Chieh; Kothe, Christian; Hsiao, Ching-Teng; Chu, San-Liang; Shieh, Ce-Kuen; Jung, Tzyy-Ping

    2014-01-01

    EEG-based Brain-computer interfaces (BCI) are facing basic challenges in real-world applications. The technical difficulties in developing truly wearable BCI systems that are capable of making reliable real-time prediction of users' cognitive states in dynamic real-life situations may seem almost insurmountable at times. Fortunately, recent advances in miniature sensors, wireless communication and distributed computing technologies offered promising ways to bridge these chasms. In this paper, we report an attempt to develop a pervasive on-line EEG-BCI system using state-of-art technologies including multi-tier Fog and Cloud Computing, semantic Linked Data search, and adaptive prediction/classification models. To verify our approach, we implement a pilot system by employing wireless dry-electrode EEG headsets and MEMS motion sensors as the front-end devices, Android mobile phones as the personal user interfaces, compact personal computers as the near-end Fog Servers and the computer clusters hosted by the Taiwan National Center for High-performance Computing (NCHC) as the far-end Cloud Servers. We succeeded in conducting synchronous multi-modal global data streaming in March and then running a multi-player on-line EEG-BCI game in September, 2013. We are currently working with the ARL Translational Neuroscience Branch to use our system in real-life personal stress monitoring and the UCSD Movement Disorder Center to conduct in-home Parkinson's disease patient monitoring experiments. We shall proceed to develop the necessary BCI ontology and introduce automatic semantic annotation and progressive model refinement capability to our system.

  10. Improved Volitional Recall of Motor-Imagery-Related Brain Activation Patterns Using Real-Time Functional MRI-Based Neurofeedback.

    PubMed

    Bagarinao, Epifanio; Yoshida, Akihiro; Ueno, Mika; Terabe, Kazunori; Kato, Shohei; Isoda, Haruo; Nakai, Toshiharu

    2018-01-01

    Motor imagery (MI), a covert cognitive process where an action is mentally simulated but not actually performed, could be used as an effective neurorehabilitation tool for motor function improvement or recovery. Recent approaches employing brain-computer/brain-machine interfaces to provide online feedback of the MI during rehabilitation training have promising rehabilitation outcomes. In this study, we examined whether participants could volitionally recall MI-related brain activation patterns when guided using neurofeedback (NF) during training. The participants' performance was compared to that without NF. We hypothesized that participants would be able to consistently generate the relevant activation pattern associated with the MI task during training with NF compared to that without NF. To assess activation consistency, we used the performance of classifiers trained to discriminate MI-related brain activation patterns. Our results showed significantly higher predictive values of MI-related activation patterns during training with NF. Additionally, this improvement in the classification performance tends to be associated with the activation of middle temporal gyrus/inferior occipital gyrus, a region associated with visual motion processing, suggesting the importance of performance monitoring during MI task training. Taken together, these findings suggest that the efficacy of MI training, in terms of generating consistent brain activation patterns relevant to the task, can be enhanced by using NF as a mechanism to enable participants to volitionally recall task-related brain activation patterns.

  11. TheBrain Technologies Corporation: Collapsing the Time to Knowledge.

    ERIC Educational Resources Information Center

    Misek, Marla

    2003-01-01

    TheBrain was created to take advantage of the most powerful information processor in existence - the human mind. Explains products of TheBrain Technologies Corporation,, which has developed computer interfaces to help individual users and corporations organize information in ways that make sense to them in the proper context. Describes a…

  12. A New Statistical Model of Electroencephalogram Noise Spectra for Real-Time Brain-Computer Interfaces.

    PubMed

    Paris, Alan; Atia, George K; Vosoughi, Azadeh; Berman, Stephen A

    2017-08-01

    A characteristic of neurological signal processing is high levels of noise from subcellular ion channels up to whole-brain processes. In this paper, we propose a new model of electroencephalogram (EEG) background periodograms, based on a family of functions which we call generalized van der Ziel-McWhorter (GVZM) power spectral densities (PSDs). To the best of our knowledge, the GVZM PSD function is the only EEG noise model that has relatively few parameters, matches recorded EEG PSD's with high accuracy from 0 to over 30 Hz, and has approximately 1/f θ behavior in the midfrequencies without infinities. We validate this model using three approaches. First, we show how GVZM PSDs can arise in a population of ion channels at maximum entropy equilibrium. Second, we present a class of mixed autoregressive models, which simulate brain background noise and whose periodograms are asymptotic to the GVZM PSD. Third, we present two real-time estimation algorithms for steady-state visual evoked potential (SSVEP) frequencies, and analyze their performance statistically. In pairwise comparisons, the GVZM-based algorithms showed statistically significant accuracy improvement over two well-known and widely used SSVEP estimators. The GVZM noise model can be a useful and reliable technique for EEG signal processing. Understanding EEG noise is essential for EEG-based neurology and applications such as real-time brain-computer interfaces, which must make accurate control decisions from very short data epochs. The GVZM approach represents a successful new paradigm for understanding and managing this neurological noise.

  13. Evolvix BEST Names for semantic reproducibility across code2brain interfaces

    PubMed Central

    Scheuer, Katherine S.; Keel, Seth A.; Vyas, Vaibhav; Liblit, Ben; Hanlon, Bret; Ferris, Michael C.; Yin, John; Dutra, Inês; Pietsch, Anthony; Javid, Christine G.; Moog, Cecilia L.; Meyer, Jocelyn; Dresel, Jerdon; McLoone, Brian; Loberger, Sonya; Movaghar, Arezoo; Gilchrist‐Scott, Morgaine; Sabri, Yazeed; Sescleifer, Dave; Pereda‐Zorrilla, Ivan; Zietlow, Andrew; Smith, Rodrigo; Pietenpol, Samantha; Goldfinger, Jacob; Atzen, Sarah L.; Freiberg, Erika; Waters, Noah P.; Nusbaum, Claire; Nolan, Erik; Hotz, Alyssa; Kliman, Richard M.; Mentewab, Ayalew; Fregien, Nathan; Loewe, Martha

    2016-01-01

    Names in programming are vital for understanding the meaning of code and big data. We define code2brain (C2B) interfaces as maps in compilers and brains between meaning and naming syntax, which help to understand executable code. While working toward an Evolvix syntax for general‐purpose programming that makes accurate modeling easy for biologists, we observed how names affect C2B quality. To protect learning and coding investments, C2B interfaces require long‐term backward compatibility and semantic reproducibility (accurate reproduction of computational meaning from coder‐brains to reader‐brains by code alone). Semantic reproducibility is often assumed until confusing synonyms degrade modeling in biology to deciphering exercises. We highlight empirical naming priorities from diverse individuals and roles of names in different modes of computing to show how naming easily becomes impossibly difficult. We present the Evolvix BEST (Brief, Explicit, Summarizing, Technical) Names concept for reducing naming priority conflicts, test it on a real challenge by naming subfolders for the Project Organization Stabilizing Tool system, and provide naming questionnaires designed to facilitate C2B debugging by improving names used as keywords in a stabilizing programming language. Our experiences inspired us to develop Evolvix using a flipped programming language design approach with some unexpected features and BEST Names at its core. PMID:27918836

  14. Decoding the individual finger movements from single-trial functional magnetic resonance imaging recordings of human brain activity.

    PubMed

    Shen, Guohua; Zhang, Jing; Wang, Mengxing; Lei, Du; Yang, Guang; Zhang, Shanmin; Du, Xiaoxia

    2014-06-01

    Multivariate pattern classification analysis (MVPA) has been applied to functional magnetic resonance imaging (fMRI) data to decode brain states from spatially distributed activation patterns. Decoding upper limb movements from non-invasively recorded human brain activation is crucial for implementing a brain-machine interface that directly harnesses an individual's thoughts to control external devices or computers. The aim of this study was to decode the individual finger movements from fMRI single-trial data. Thirteen healthy human subjects participated in a visually cued delayed finger movement task, and only one slight button press was performed in each trial. Using MVPA, the decoding accuracy (DA) was computed separately for the different motor-related regions of interest. For the construction of feature vectors, the feature vectors from two successive volumes in the image series for a trial were concatenated. With these spatial-temporal feature vectors, we obtained a 63.1% average DA (84.7% for the best subject) for the contralateral primary somatosensory cortex and a 46.0% average DA (71.0% for the best subject) for the contralateral primary motor cortex; both of these values were significantly above the chance level (20%). In addition, we implemented searchlight MVPA to search for informative regions in an unbiased manner across the whole brain. Furthermore, by applying searchlight MVPA to each volume of a trial, we visually demonstrated the information for decoding, both spatially and temporally. The results suggest that the non-invasive fMRI technique may provide informative features for decoding individual finger movements and the potential of developing an fMRI-based brain-machine interface for finger movement. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.

    PubMed

    Siuly; Li, Yan; Paul Wen, Peng

    2014-03-01

    Motor imagery (MI) tasks classification provides an important basis for designing brain-computer interface (BCI) systems. If the MI tasks are reliably distinguished through identifying typical patterns in electroencephalography (EEG) data, a motor disabled people could communicate with a device by composing sequences of these mental states. In our earlier study, we developed a cross-correlation based logistic regression (CC-LR) algorithm for the classification of MI tasks for BCI applications, but its performance was not satisfactory. This study develops a modified version of the CC-LR algorithm exploring a suitable feature set that can improve the performance. The modified CC-LR algorithm uses the C3 electrode channel (in the international 10-20 system) as a reference channel for the cross-correlation (CC) technique and applies three diverse feature sets separately, as the input to the logistic regression (LR) classifier. The present algorithm investigates which feature set is the best to characterize the distribution of MI tasks based EEG data. This study also provides an insight into how to select a reference channel for the CC technique with EEG signals considering the anatomical structure of the human brain. The proposed algorithm is compared with eight of the most recently reported well-known methods including the BCI III Winner algorithm. The findings of this study indicate that the modified CC-LR algorithm has potential to improve the identification performance of MI tasks in BCI systems. The results demonstrate that the proposed technique provides a classification improvement over the existing methods tested. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. On the tip of the tongue: learning typing and pointing with an intra-oral computer interface.

    PubMed

    Caltenco, Héctor A; Breidegard, Björn; Struijk, Lotte N S Andreasen

    2014-07-01

    To evaluate typing and pointing performance and improvement over time of four able-bodied participants using an intra-oral tongue-computer interface for computer control. A physically disabled individual may lack the ability to efficiently control standard computer input devices. There have been several efforts to produce and evaluate interfaces that provide individuals with physical disabilities the possibility to control personal computers. Training with the intra-oral tongue-computer interface was performed by playing games over 18 sessions. Skill improvement was measured through typing and pointing exercises at the end of each training session. Typing throughput improved from averages of 2.36 to 5.43 correct words per minute. Pointing throughput improved from averages of 0.47 to 0.85 bits/s. Target tracking performance, measured as relative time on target, improved from averages of 36% to 47%. Path following throughput improved from averages of 0.31 to 0.83 bits/s and decreased to 0.53 bits/s with more difficult tasks. Learning curves support the notion that the tongue can rapidly learn novel motor tasks. Typing and pointing performance of the tongue-computer interface is comparable to performances of other proficient assistive devices, which makes the tongue a feasible input organ for computer control. Intra-oral computer interfaces could provide individuals with severe upper-limb mobility impairments the opportunity to control computers and automatic equipment. Typing and pointing performance of the tongue-computer interface is comparable to performances of other proficient assistive devices, but does not cause fatigue easily and might be invisible to other people, which is highly prioritized by assistive device users. Combination of visual and auditory feedback is vital for a good performance of an intra-oral computer interface and helps to reduce involuntary or erroneous activations.

  17. Augmenting intracortical brain-machine interface with neurally driven error detectors

    NASA Astrophysics Data System (ADS)

    Even-Chen, Nir; Stavisky, Sergey D.; Kao, Jonathan C.; Ryu, Stephen I.; Shenoy, Krishna V.

    2017-12-01

    Objective. Making mistakes is inevitable, but identifying them allows us to correct or adapt our behavior to improve future performance. Current brain-machine interfaces (BMIs) make errors that need to be explicitly corrected by the user, thereby consuming time and thus hindering performance. We hypothesized that neural correlates of the user perceiving the mistake could be used by the BMI to automatically correct errors. However, it was unknown whether intracortical outcome error signals were present in the premotor and primary motor cortices, brain regions successfully used for intracortical BMIs. Approach. We report here for the first time a putative outcome error signal in spiking activity within these cortices when rhesus macaques performed an intracortical BMI computer cursor task. Main results. We decoded BMI trial outcomes shortly after and even before a trial ended with 96% and 84% accuracy, respectively. This led us to develop and implement in real-time a first-of-its-kind intracortical BMI error ‘detect-and-act’ system that attempts to automatically ‘undo’ or ‘prevent’ mistakes. The detect-and-act system works independently and in parallel to a kinematic BMI decoder. In a challenging task that resulted in substantial errors, this approach improved the performance of a BMI employing two variants of the ubiquitous Kalman velocity filter, including a state-of-the-art decoder (ReFIT-KF). Significance. Detecting errors in real-time from the same brain regions that are commonly used to control BMIs should improve the clinical viability of BMIs aimed at restoring motor function to people with paralysis.

  18. Brain computer interface learning for systems based on electrocorticography and intracortical microelectrode arrays.

    PubMed

    Hiremath, Shivayogi V; Chen, Weidong; Wang, Wei; Foldes, Stephen; Yang, Ying; Tyler-Kabara, Elizabeth C; Collinger, Jennifer L; Boninger, Michael L

    2015-01-01

    A brain-computer interface (BCI) system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.

  19. Design of an EEG-based brain-computer interface (BCI) from standard components running in real-time under Windows.

    PubMed

    Guger, C; Schlögl, A; Walterspacher, D; Pfurtscheller, G

    1999-01-01

    An EEG-based brain-computer interface (BCI) is a direct connection between the human brain and the computer. Such a communication system is needed by patients with severe motor impairments (e.g. late stage of Amyotrophic Lateral Sclerosis) and has to operate in real-time. This paper describes the selection of the appropriate components to construct such a BCI and focuses also on the selection of a suitable programming language and operating system. The multichannel system runs under Windows 95, equipped with a real-time Kernel expansion to obtain reasonable real-time operations on a standard PC. Matlab controls the data acquisition and the presentation of the experimental paradigm, while Simulink is used to calculate the recursive least square (RLS) algorithm that describes the current state of the EEG in real-time. First results of the new low-cost BCI show that the accuracy of differentiating imagination of left and right hand movement is around 95%.

  20. [Brain-computer interfaces, Locked-In syndrome, and disorders of consciousness].

    PubMed

    Lesenfants, Damien; Chatelle, Camille; Laureys, Steven; Noirhomme, Quentin

    2015-10-01

    Detecting signs of consciousness in patients with severe brain injury constitutes a real challenge for clinicians. The current gold standard in clinical diagnosis is the behavioral scale relying on motor abilities, which are often impaired or nonexistent in these patients. In this context, brain-computer interfaces (BCIs) could offer a potential complementary tool to detect signs of consciousness whilst bypassing the usual motor pathway. In addition to complementing behavioral assessments and potentially reducing error rate, BCIs could also serve as a communication tool for paralyzed but conscious patients, e.g., suffering from Locked-In Syndrome. In this paper, we report on recent work conducted by the Coma Science Group on BCI technology, aiming to optimize diagnosis and communication in patients with disorders of consciousness and Locked-In syndrome. © 2015 médecine/sciences – Inserm.

  1. A Development Architecture for Serious Games Using BCI (Brain Computer Interface) Sensors

    PubMed Central

    Sung, Yunsick; Cho, Kyungeun; Um, Kyhyun

    2012-01-01

    Games that use brainwaves via brain–computer interface (BCI) devices, to improve brain functions are known as BCI serious games. Due to the difficulty of developing BCI serious games, various BCI engines and authoring tools are required, and these reduce the development time and cost. However, it is desirable to reduce the amount of technical knowledge of brain functions and BCI devices needed by game developers. Moreover, a systematic BCI serious game development process is required. In this paper, we present a methodology for the development of BCI serious games. We describe an architecture, authoring tools, and development process of the proposed methodology, and apply it to a game development approach for patients with mild cognitive impairment as an example. This application demonstrates that BCI serious games can be developed on the basis of expert-verified theories. PMID:23202227

  2. Development traumatic brain injury computer user interface for disaster area in Indonesia supported by emergency broadband access network.

    PubMed

    Sutiono, Agung Budi; Suwa, Hirohiko; Ohta, Toshizumi; Arifin, Muh Zafrullah; Kitamura, Yohei; Yoshida, Kazunari; Merdika, Daduk; Qiantori, Andri; Iskandar

    2012-12-01

    Disasters bring consequences of negative impacts on the environment and human life. One of the common cause of critical condition is traumatic brain injury (TBI), namely, epidural (EDH) and subdural hematoma (SDH), due to downfall hard things during earthquake. We proposed and analyzed the user response, namely neurosurgeon, general doctor/surgeon and nurse when they interacted with TBI computer interface. The communication systems was supported by TBI web based applications using emergency broadband access network with tethered balloon and simulated in the field trial to evaluate the coverage area. The interface consisted of demography data and multi tabs for anamnesis, treatment, follow up and teleconference interfaces. The interface allows neurosurgeon, surgeon/general doctors and nurses to entry the EDH and SDH patient's data during referring them on the emergency simulation and evaluated based on time needs and their understanding. The average time needed was obtained after simulated by Lenovo T500 notebook using mouse; 8-10 min for neurosurgeons, 12-15 min for surgeons/general doctors and 15-19 min for nurses. By using Think Pad X201 Tablet, the time needed for entry data was 5-7 min for neurosurgeon, 7-10 min for surgeons/general doctors and 12-16 min for nurses. We observed that the time difference was depending on the computer type and user literacy qualification as well as their understanding on traumatic brain injury, particularly for the nurses. In conclusion, there are five data classification for simply TBI GUI, namely, 1) demography, 2) specific anamnesis for EDH and SDH, 3) treatment action and medicine of TBI, 4) follow up data display and 5) teleneurosurgery for streaming video consultation. The type of computer, particularly tablet PC was more convenient and faster for entry data, compare to that computer mouse touched pad. Emergency broadband access network using tethered balloon is possible to be employed to cover the communications systems in disaster area.

  3. Asynchronous P300-based brain-computer interface to control a virtual environment: initial tests on end users.

    PubMed

    Aloise, Fabio; Schettini, Francesca; Aricò, Pietro; Salinari, Serenella; Guger, Christoph; Rinsma, Johanna; Aiello, Marco; Mattia, Donatella; Cincotti, Febo

    2011-10-01

    Motor disability and/or ageing can prevent individuals from fully enjoying home facilities, thus worsening their quality of life. Advances in the field of accessible user interfaces for domotic appliances can represent a valuable way to improve the independence of these persons. An asynchronous P300-based Brain-Computer Interface (BCI) system was recently validated with the participation of healthy young volunteers for environmental control. In this study, the asynchronous P300-based BCI for the interaction with a virtual home environment was tested with the participation of potential end-users (clients of a Frisian home care organization) with limited autonomy due to ageing and/or motor disabilities. System testing revealed that the minimum number of stimulation sequences needed to achieve correct classification had a higher intra-subject variability in potential end-users with respect to what was previously observed in young controls. Here we show that the asynchronous modality performed significantly better as compared to the synchronous mode in continuously adapting its speed to the users' state. Furthermore, the asynchronous system modality confirmed its reliability in avoiding misclassifications and false positives, as previously shown in young healthy subjects. The asynchronous modality may contribute to filling the usability gap between BCI systems and traditional input devices, representing an important step towards their use in the activities of daily living.

  4. P300 Chinese input system based on Bayesian LDA.

    PubMed

    Jin, Jing; Allison, Brendan Z; Brunner, Clemens; Wang, Bei; Wang, Xingyu; Zhang, Jianhua; Neuper, Christa; Pfurtscheller, Gert

    2010-02-01

    A brain-computer interface (BCI) is a new communication channel between humans and computers that translates brain activity into recognizable command and control signals. Attended events can evoke P300 potentials in the electroencephalogram. Hence, the P300 has been used in BCI systems to spell, control cursors or robotic devices, and other tasks. This paper introduces a novel P300 BCI to communicate Chinese characters. To improve classification accuracy, an optimization algorithm (particle swarm optimization, PSO) is used for channel selection (i.e., identifying the best electrode configuration). The effects of different electrode configurations on classification accuracy were tested by Bayesian linear discriminant analysis offline. The offline results from 11 subjects show that this new P300 BCI can effectively communicate Chinese characters and that the features extracted from the electrodes obtained by PSO yield good performance.

  5. Python Executable Script for Estimating Two Effective Parameters to Individualize Brain-Computer Interfaces: Individual Alpha Frequency and Neurophysiological Predictor.

    PubMed

    Alonso-Valerdi, Luz María

    2016-01-01

    A brain-computer interface (BCI) aims to establish communication between the human brain and a computing system so as to enable the interaction between an individual and his environment without using the brain output pathways. Individuals control a BCI system by modulating their brain signals through mental tasks (e.g., motor imagery or mental calculation) or sensory stimulation (e.g., auditory, visual, or tactile). As users modulate their brain signals at different frequencies and at different levels, the appropriate characterization of those signals is necessary. The modulation of brain signals through mental tasks is furthermore a skill that requires training. Unfortunately, not all the users acquire such skill. A practical solution to this problem is to assess the user probability of controlling a BCI system. Another possible solution is to set the bandwidth of the brain oscillations, which is highly sensitive to the users' age, sex and anatomy. With this in mind, NeuroIndex, a Python executable script, estimates a neurophysiological prediction index and the individual alpha frequency (IAF) of the user in question. These two parameters are useful to characterize the user EEG signals, and decide how to go through the complex process of adapting the human brain and the computing system on the basis of previously proposed methods. NeuroIndeX is not only the implementation of those methods, but it also complements the methods each other and provides an alternative way to obtain the prediction parameter. However, an important limitation of this application is its dependency on the IAF value, and some results should be interpreted with caution. The script along with some electroencephalographic datasets are available on a GitHub repository in order to corroborate the functionality and usability of this application.

  6. Python Executable Script for Estimating Two Effective Parameters to Individualize Brain-Computer Interfaces: Individual Alpha Frequency and Neurophysiological Predictor

    PubMed Central

    Alonso-Valerdi, Luz María

    2016-01-01

    A brain-computer interface (BCI) aims to establish communication between the human brain and a computing system so as to enable the interaction between an individual and his environment without using the brain output pathways. Individuals control a BCI system by modulating their brain signals through mental tasks (e.g., motor imagery or mental calculation) or sensory stimulation (e.g., auditory, visual, or tactile). As users modulate their brain signals at different frequencies and at different levels, the appropriate characterization of those signals is necessary. The modulation of brain signals through mental tasks is furthermore a skill that requires training. Unfortunately, not all the users acquire such skill. A practical solution to this problem is to assess the user probability of controlling a BCI system. Another possible solution is to set the bandwidth of the brain oscillations, which is highly sensitive to the users' age, sex and anatomy. With this in mind, NeuroIndex, a Python executable script, estimates a neurophysiological prediction index and the individual alpha frequency (IAF) of the user in question. These two parameters are useful to characterize the user EEG signals, and decide how to go through the complex process of adapting the human brain and the computing system on the basis of previously proposed methods. NeuroIndeX is not only the implementation of those methods, but it also complements the methods each other and provides an alternative way to obtain the prediction parameter. However, an important limitation of this application is its dependency on the IAF value, and some results should be interpreted with caution. The script along with some electroencephalographic datasets are available on a GitHub repository in order to corroborate the functionality and usability of this application. PMID:27445783

  7. Toward a hybrid brain-computer interface based on imagined movement and visual attention

    NASA Astrophysics Data System (ADS)

    Allison, B. Z.; Brunner, C.; Kaiser, V.; Müller-Putz, G. R.; Neuper, C.; Pfurtscheller, G.

    2010-04-01

    Brain-computer interface (BCI) systems do not work for all users. This article introduces a novel combination of tasks that could inspire BCI systems that are more accurate than conventional BCIs, especially for users who cannot attain accuracy adequate for effective communication. Subjects performed tasks typically used in two BCI approaches, namely event-related desynchronization (ERD) and steady state visual evoked potential (SSVEP), both individually and in a 'hybrid' condition that combines both tasks. Electroencephalographic (EEG) data were recorded across three conditions. Subjects imagined moving the left or right hand (ERD), focused on one of the two oscillating visual stimuli (SSVEP), and then simultaneously performed both tasks. Accuracy and subjective measures were assessed. Offline analyses suggested that half of the subjects did not produce brain patterns that could be accurately discriminated in response to at least one of the two tasks. If these subjects produced comparable EEG patterns when trying to use a BCI, these subjects would not be able to communicate effectively because the BCI would make too many errors. Results also showed that switching to a different task used in BCIs could improve accuracy in some of these users. Switching to a hybrid approach eliminated this problem completely, and subjects generally did not consider the hybrid condition more difficult. Results validate this hybrid approach and suggest that subjects who cannot use a BCI should consider switching to a different BCI approach, especially a hybrid BCI. Subjects proficient with both approaches might combine them to increase information throughput by improving accuracy, reducing selection time, and/or increasing the number of possible commands.

  8. Adaptive Automation Triggered by EEG-Based Mental Workload Index: A Passive Brain-Computer Interface Application in Realistic Air Traffic Control Environment.

    PubMed

    Aricò, Pietro; Borghini, Gianluca; Di Flumeri, Gianluca; Colosimo, Alfredo; Bonelli, Stefano; Golfetti, Alessia; Pozzi, Simone; Imbert, Jean-Paul; Granger, Géraud; Benhacene, Raïlane; Babiloni, Fabio

    2016-01-01

    Adaptive Automation (AA) is a promising approach to keep the task workload demand within appropriate levels in order to avoid both the under - and over-load conditions, hence enhancing the overall performance and safety of the human-machine system. The main issue on the use of AA is how to trigger the AA solutions without affecting the operative task. In this regard, passive Brain-Computer Interface (pBCI) systems are a good candidate to activate automation, since they are able to gather information about the covert behavior (e.g., mental workload) of a subject by analyzing its neurophysiological signals (i.e., brain activity), and without interfering with the ongoing operational activity. We proposed a pBCI system able to trigger AA solutions integrated in a realistic Air Traffic Management (ATM) research simulator developed and hosted at ENAC (É cole Nationale de l'Aviation Civile of Toulouse, France). Twelve Air Traffic Controller (ATCO) students have been involved in the experiment and they have been asked to perform ATM scenarios with and without the support of the AA solutions. Results demonstrated the effectiveness of the proposed pBCI system, since it enabled the AA mostly during the high-demanding conditions (i.e., overload situations) inducing a reduction of the mental workload under which the ATCOs were operating. On the contrary, as desired, the AA was not activated when workload level was under the threshold, to prevent too low demanding conditions that could bring the operator's workload level toward potentially dangerous conditions of underload.

  9. Adaptive Automation Triggered by EEG-Based Mental Workload Index: A Passive Brain-Computer Interface Application in Realistic Air Traffic Control Environment

    PubMed Central

    Aricò, Pietro; Borghini, Gianluca; Di Flumeri, Gianluca; Colosimo, Alfredo; Bonelli, Stefano; Golfetti, Alessia; Pozzi, Simone; Imbert, Jean-Paul; Granger, Géraud; Benhacene, Raïlane; Babiloni, Fabio

    2016-01-01

    Adaptive Automation (AA) is a promising approach to keep the task workload demand within appropriate levels in order to avoid both the under- and over-load conditions, hence enhancing the overall performance and safety of the human-machine system. The main issue on the use of AA is how to trigger the AA solutions without affecting the operative task. In this regard, passive Brain-Computer Interface (pBCI) systems are a good candidate to activate automation, since they are able to gather information about the covert behavior (e.g., mental workload) of a subject by analyzing its neurophysiological signals (i.e., brain activity), and without interfering with the ongoing operational activity. We proposed a pBCI system able to trigger AA solutions integrated in a realistic Air Traffic Management (ATM) research simulator developed and hosted at ENAC (École Nationale de l'Aviation Civile of Toulouse, France). Twelve Air Traffic Controller (ATCO) students have been involved in the experiment and they have been asked to perform ATM scenarios with and without the support of the AA solutions. Results demonstrated the effectiveness of the proposed pBCI system, since it enabled the AA mostly during the high-demanding conditions (i.e., overload situations) inducing a reduction of the mental workload under which the ATCOs were operating. On the contrary, as desired, the AA was not activated when workload level was under the threshold, to prevent too low demanding conditions that could bring the operator's workload level toward potentially dangerous conditions of underload. PMID:27833542

  10. Toward using alpha and theta brain waves to quantify programmer expertise.

    PubMed

    Crk, Igor; Kluthe, Timothy

    2014-01-01

    Empirical studies of programming language learnability and usability have thus far depended on indirect measures of human cognitive performance, attempting to capture what is at its essence a purely cognitive exercise through various indicators of comprehension, such as the correctness of coding tasks or the time spent working out the meaning of code and producing acceptable solutions. Understanding program comprehension is essential to understanding the inherent complexity of programming languages, and ultimately, having a measure of mental effort based on direct observation of the brain at work will illuminate the nature of the work of programming. We provide evidence of direct observation of the cognitive effort associated with programming tasks, through a carefully constructed empirical study using a cross-section of undergraduate computer science students and an inexpensive, off-the-shelf brain-computer interface device. This study presents a link between expertise and programming language comprehension, draws conclusions about the observed indicators of cognitive effort using recent cognitive theories, and proposes directions for future work that is now possible.

  11. [The P300-based brain-computer interface: presentation of the complex "flash + movement" stimuli].

    PubMed

    Ganin, I P; Kaplan, A Ia

    2014-01-01

    The P300 based brain-computer interface requires the detection of P300 wave of brain event-related potentials. Most of its users learn the BCI control in several minutes and after the short classifier training they can type a text on the computer screen or assemble an image of separate fragments in simple BCI-based video games. Nevertheless, insufficient attractiveness for users and conservative stimuli organization in this BCI may restrict its integration into real information processes control. At the same time initial movement of object (motion-onset stimuli) may be an independent factor that induces P300 wave. In current work we checked the hypothesis that complex "flash + movement" stimuli together with drastic and compact stimuli organization on the computer screen may be much more attractive for user while operating in P300 BCI. In 20 subjects research we showed the effectiveness of our interface. Both accuracy and P300 amplitude were higher for flashing stimuli and complex "flash + movement" stimuli compared to motion-onset stimuli. N200 amplitude was maximal for flashing stimuli, while for "flash + movement" stimuli and motion-onset stimuli it was only a half of it. Similar BCI with complex stimuli may be embedded into compact control systems requiring high level of user attention under impact of negative external effects obstructing the BCI control.

  12. A Multi-purpose Brain-Computer Interface Output Device

    PubMed Central

    Thompson, David E; Huggins, Jane E

    2012-01-01

    While brain-computer interfaces (BCIs) are a promising alternative access pathway for individuals with severe motor impairments, many BCI systems are designed as standalone communication and control systems, rather than as interfaces to existing systems built for these purposes. While an individual communication and control system may be powerful or flexible, no single system can compete with the variety of options available in the commercial assistive technology (AT) market. BCIs could instead be used as an interface to these existing AT devices and products, which are designed for improving access and agency of people with disabilities and are highly configurable to individual user needs. However, interfacing with each AT device and program requires significant time and effort on the part of researchers and clinicians. This work presents the Multi-Purpose BCI Output Device (MBOD), a tool to help researchers and clinicians provide BCI control of many forms of AT in a plug-and-play fashion, i.e. without the installation of drivers or software on the AT device, and a proof-of-concept of the practicality of such an approach. The MBOD was designed to meet the goals of target device compatibility, BCI input device compatibility, convenience, and intuitive command structure. The MBOD was successfully used to interface a BCI with multiple AT devices (including two wheelchair seating systems), as well as computers running Windows (XP and 7), Mac and Ubuntu Linux operating systems. PMID:22208120

  13. A multi-purpose brain-computer interface output device.

    PubMed

    Thompson, David E; Huggins, Jane E

    2011-10-01

    While brain-computer interfaces (BCIs) are a promising alternative access pathway for individuals with severe motor impairments, many BCI systems are designed as stand-alone communication and control systems, rather than as interfaces to existing systems built for these purposes. An individual communication and control system may be powerful or flexible, but no single system can compete with the variety of options available in the commercial assistive technology (AT) market. BCls could instead be used as an interface to these existing AT devices and products, which are designed for improving access and agency of people with disabilities and are highly configurable to individual user needs. However, interfacing with each AT device and program requires significant time and effort on the part of researchers and clinicians. This work presents the Multi-Purpose BCI Output Device (MBOD), a tool to help researchers and clinicians provide BCI control of many forms of AT in a plug-and-play fashion, i.e., without the installation of drivers or software on the AT device, and a proof-of-concept of the practicality of such an approach. The MBOD was designed to meet the goals of target device compatibility, BCI input device compatibility, convenience, and intuitive command structure. The MBOD was successfully used to interface a BCI with multiple AT devices (including two wheelchair seating systems), as well as computers running Windows (XP and 7), Mac and Ubuntu Linux operating systems.

  14. A Discussion of Possibility of Reinforcement Learning Using Event-Related Potential in BCI

    NASA Astrophysics Data System (ADS)

    Yamagishi, Yuya; Tsubone, Tadashi; Wada, Yasuhiro

    Recently, Brain computer interface (BCI) which is a direct connecting pathway an external device such as a computer or a robot and a human brain have gotten a lot of attention. Since BCI can control the machines as robots by using the brain activity without using the voluntary muscle, the BCI may become a useful communication tool for handicapped persons, for instance, amyotrophic lateral sclerosis patients. However, in order to realize the BCI system which can perform precise tasks on various environments, it is necessary to design the control rules to adapt to the dynamic environments. Reinforcement learning is one approach of the design of the control rule. If this reinforcement leaning can be performed by the brain activity, it leads to the attainment of BCI that has general versatility. In this research, we paid attention to P300 of event-related potential as an alternative signal of the reward of reinforcement learning. We discriminated between the success and the failure trials from P300 of the EEG of the single trial by using the proposed discrimination algorithm based on Support vector machine. The possibility of reinforcement learning was examined from the viewpoint of the number of discriminated trials. It was shown that there was a possibility to be able to learn in most subjects.

  15. Improving the Performance of an Auditory Brain-Computer Interface Using Virtual Sound Sources by Shortening Stimulus Onset Asynchrony

    PubMed Central

    Sugi, Miho; Hagimoto, Yutaka; Nambu, Isao; Gonzalez, Alejandro; Takei, Yoshinori; Yano, Shohei; Hokari, Haruhide; Wada, Yasuhiro

    2018-01-01

    Recently, a brain-computer interface (BCI) using virtual sound sources has been proposed for estimating user intention via electroencephalogram (EEG) in an oddball task. However, its performance is still insufficient for practical use. In this study, we examine the impact that shortening the stimulus onset asynchrony (SOA) has on this auditory BCI. While very short SOA might improve its performance, sound perception and task performance become difficult, and event-related potentials (ERPs) may not be induced if the SOA is too short. Therefore, we carried out behavioral and EEG experiments to determine the optimal SOA. In the experiments, participants were instructed to direct attention to one of six virtual sounds (target direction). We used eight different SOA conditions: 200, 300, 400, 500, 600, 700, 800, and 1,100 ms. In the behavioral experiment, we recorded participant behavioral responses to target direction and evaluated recognition performance of the stimuli. In all SOA conditions, recognition accuracy was over 85%, indicating that participants could recognize the target stimuli correctly. Next, using a silent counting task in the EEG experiment, we found significant differences between target and non-target sound directions in all but the 200-ms SOA condition. When we calculated an identification accuracy using Fisher discriminant analysis (FDA), the SOA could be shortened by 400 ms without decreasing the identification accuracies. Thus, improvements in performance (evaluated by BCI utility) could be achieved. On average, higher BCI utilities were obtained in the 400 and 500-ms SOA conditions. Thus, auditory BCI performance can be optimized for both behavioral and neurophysiological responses by shortening the SOA. PMID:29535602

  16. Future developments in brain-machine interface research

    PubMed Central

    Lebedev, Mikhail A; Tate, Andrew J; Hanson, Timothy L; Li, Zheng; O'Doherty, Joseph E; Winans, Jesse A; Ifft, Peter J; Zhuang, Katie Z; Fitzsimmons, Nathan A; Schwarz, David A; Fuller, Andrew M; An, Je Hi; Nicolelis, Miguel A L

    2011-01-01

    Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL) Center for Neuroprosthetics, to bring this new technology to clinical fruition. PMID:21779720

  17. Massively Parallel Signal Processing using the Graphics Processing Unit for Real-Time Brain-Computer Interface Feature Extraction.

    PubMed

    Wilson, J Adam; Williams, Justin C

    2009-01-01

    The clock speeds of modern computer processors have nearly plateaued in the past 5 years. Consequently, neural prosthetic systems that rely on processing large quantities of data in a short period of time face a bottleneck, in that it may not be possible to process all of the data recorded from an electrode array with high channel counts and bandwidth, such as electrocorticographic grids or other implantable systems. Therefore, in this study a method of using the processing capabilities of a graphics card [graphics processing unit (GPU)] was developed for real-time neural signal processing of a brain-computer interface (BCI). The NVIDIA CUDA system was used to offload processing to the GPU, which is capable of running many operations in parallel, potentially greatly increasing the speed of existing algorithms. The BCI system records many channels of data, which are processed and translated into a control signal, such as the movement of a computer cursor. This signal processing chain involves computing a matrix-matrix multiplication (i.e., a spatial filter), followed by calculating the power spectral density on every channel using an auto-regressive method, and finally classifying appropriate features for control. In this study, the first two computationally intensive steps were implemented on the GPU, and the speed was compared to both the current implementation and a central processing unit-based implementation that uses multi-threading. Significant performance gains were obtained with GPU processing: the current implementation processed 1000 channels of 250 ms in 933 ms, while the new GPU method took only 27 ms, an improvement of nearly 35 times.

  18. Real time system design of motor imagery brain-computer interface based on multi band CSP and SVM

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Li, Xiaoqin; Bian, Yan

    2018-04-01

    Motion imagery (MT) is an effective method to promote the recovery of limbs in patients after stroke. Though an online MT brain computer interface (BCT) system, which apply MT, can enhance the patient's participation and accelerate their recovery process. The traditional method deals with the electroencephalogram (EEG) induced by MT by common spatial pattern (CSP), which is used to extract information from a frequency band. Tn order to further improve the classification accuracy of the system, information of two characteristic frequency bands is extracted. The effectiveness of the proposed feature extraction method is verified by off-line analysis of competition data and the analysis of online system.

  19. Functional near-infrared spectroscopy for adaptive human-computer interfaces

    NASA Astrophysics Data System (ADS)

    Yuksel, Beste F.; Peck, Evan M.; Afergan, Daniel; Hincks, Samuel W.; Shibata, Tomoki; Kainerstorfer, Jana; Tgavalekos, Kristen; Sassaroli, Angelo; Fantini, Sergio; Jacob, Robert J. K.

    2015-03-01

    We present a brain-computer interface (BCI) that detects, analyzes and responds to user cognitive state in real-time using machine learning classifications of functional near-infrared spectroscopy (fNIRS) data. Our work is aimed at increasing the narrow communication bandwidth between the human and computer by implicitly measuring users' cognitive state without any additional effort on the part of the user. Traditionally, BCIs have been designed to explicitly send signals as the primary input. However, such systems are usually designed for people with severe motor disabilities and are too slow and inaccurate for the general population. In this paper, we demonstrate with previous work1 that a BCI that implicitly measures cognitive workload can improve user performance and awareness compared to a control condition by adapting to user cognitive state in real-time. We also discuss some of the other applications we have used in this field to measure and respond to cognitive states such as cognitive workload, multitasking, and user preference.

  20. Modular, bluetooth enabled, wireless electroencephalograph (EEG) platform.

    PubMed

    Lovelace, Joseph A; Witt, Tyler S; Beyette, Fred R

    2013-01-01

    A design for a modular, compact, and accurate wireless electroencephalograph (EEG) system is proposed. EEG is the only non-invasive measure for neuronal function of the brain. Using a number of digital signal processing (DSP) techniques, this neuronal function can be acquired and processed into meaningful representations of brain activity. The system described here utilizes Bluetooth to wirelessly transmit the digitized brain signal for an end application use. In this way, the system is portable, and modular in terms of the device to which it can interface. Brain Computer Interface (BCI) has become a popular extension of EEG systems in modern research. This design serves as a platform for applications using BCI capability.

  1. Demonstration of a Semi-Autonomous Hybrid Brain-Machine Interface using Human Intracranial EEG, Eye Tracking, and Computer Vision to Control a Robotic Upper Limb Prosthetic

    PubMed Central

    McMullen, David P.; Hotson, Guy; Katyal, Kapil D.; Wester, Brock A.; Fifer, Matthew S.; McGee, Timothy G.; Harris, Andrew; Johannes, Matthew S.; Vogelstein, R. Jacob; Ravitz, Alan D.; Anderson, William S.; Thakor, Nitish V.; Crone, Nathan E.

    2014-01-01

    To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p < 0.05). After BMI-based initiation, the MPL completed the entire task 100% (one object) and 70% (three objects) of the time. The MPL took approximately 12.2 seconds for task completion after system improvements implemented for the second subject. Our hybrid-BMI design prevented all but one baseline false positive from initiating the system. The novel approach demonstrated in this proof-of-principle study, using hybrid input, supervisory control, and intelligent robotics, addresses limitations of current BMIs. PMID:24760914

  2. Demonstration of a semi-autonomous hybrid brain-machine interface using human intracranial EEG, eye tracking, and computer vision to control a robotic upper limb prosthetic.

    PubMed

    McMullen, David P; Hotson, Guy; Katyal, Kapil D; Wester, Brock A; Fifer, Matthew S; McGee, Timothy G; Harris, Andrew; Johannes, Matthew S; Vogelstein, R Jacob; Ravitz, Alan D; Anderson, William S; Thakor, Nitish V; Crone, Nathan E

    2014-07-01

    To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p < 0.05). After BMI-based initiation, the MPL completed the entire task 100% (one object) and 70% (three objects) of the time. The MPL took approximately 12.2 s for task completion after system improvements implemented for the second subject. Our hybrid-BMI design prevented all but one baseline false positive from initiating the system. The novel approach demonstrated in this proof-of-principle study, using hybrid input, supervisory control, and intelligent robotics, addresses limitations of current BMIs.

  3. Adaptive Offset Correction for Intracortical Brain Computer Interfaces

    PubMed Central

    Homer, Mark L.; Perge, János A.; Black, Michael J.; Harrison, Matthew T.; Cash, Sydney S.; Hochberg, Leigh R.

    2014-01-01

    Intracortical brain computer interfaces (iBCIs) decode intended movement from neural activity for the control of external devices such as a robotic arm. Standard approaches include a calibration phase to estimate decoding parameters. During iBCI operation, the statistical properties of the neural activity can depart from those observed during calibration, sometimes hindering a user’s ability to control the iBCI. To address this problem, we adaptively correct the offset terms within a Kalman filter decoder via penalized maximum likelihood estimation. The approach can handle rapid shifts in neural signal behavior (on the order of seconds) and requires no knowledge of the intended movement. The algorithm, called MOCA, was tested using simulated neural activity and evaluated retrospectively using data collected from two people with tetraplegia operating an iBCI. In 19 clinical research test cases, where a nonadaptive Kalman filter yielded relatively high decoding errors, MOCA significantly reduced these errors (10.6 ±10.1%; p<0.05, pairwise t-test). MOCA did not significantly change the error in the remaining 23 cases where a nonadaptive Kalman filter already performed well. These results suggest that MOCA provides more robust decoding than the standard Kalman filter for iBCIs. PMID:24196868

  4. Adaptive offset correction for intracortical brain-computer interfaces.

    PubMed

    Homer, Mark L; Perge, Janos A; Black, Michael J; Harrison, Matthew T; Cash, Sydney S; Hochberg, Leigh R

    2014-03-01

    Intracortical brain-computer interfaces (iBCIs) decode intended movement from neural activity for the control of external devices such as a robotic arm. Standard approaches include a calibration phase to estimate decoding parameters. During iBCI operation, the statistical properties of the neural activity can depart from those observed during calibration, sometimes hindering a user's ability to control the iBCI. To address this problem, we adaptively correct the offset terms within a Kalman filter decoder via penalized maximum likelihood estimation. The approach can handle rapid shifts in neural signal behavior (on the order of seconds) and requires no knowledge of the intended movement. The algorithm, called multiple offset correction algorithm (MOCA), was tested using simulated neural activity and evaluated retrospectively using data collected from two people with tetraplegia operating an iBCI. In 19 clinical research test cases, where a nonadaptive Kalman filter yielded relatively high decoding errors, MOCA significantly reduced these errors ( 10.6 ± 10.1% ; p < 0.05, pairwise t-test). MOCA did not significantly change the error in the remaining 23 cases where a nonadaptive Kalman filter already performed well. These results suggest that MOCA provides more robust decoding than the standard Kalman filter for iBCIs.

  5. A reductionist approach to the analysis of learning in brain-computer interfaces.

    PubMed

    Danziger, Zachary

    2014-04-01

    The complexity and scale of brain-computer interface (BCI) studies limit our ability to investigate how humans learn to use BCI systems. It also limits our capacity to develop adaptive algorithms needed to assist users with their control. Adaptive algorithm development is forced offline and typically uses static data sets. But this is a poor substitute for the online, dynamic environment where algorithms are ultimately deployed and interact with an adapting user. This work evaluates a paradigm that simulates the control problem faced by human subjects when controlling a BCI, but which avoids the many complications associated with full-scale BCI studies. Biological learners can be studied in a reductionist way as they solve BCI-like control problems, and machine learning algorithms can be developed and tested in closed loop with the subjects before being translated to full BCIs. The method is to map 19 joint angles of the hand (representing neural signals) to the position of a 2D cursor which must be piloted to displayed targets (a typical BCI task). An investigation is presented on how closely the joint angle method emulates BCI systems; a novel learning algorithm is evaluated, and a performance difference between genders is discussed.

  6. Vibrotactile Feedback for Brain-Computer Interface Operation

    PubMed Central

    Cincotti, Febo; Kauhanen, Laura; Aloise, Fabio; Palomäki, Tapio; Caporusso, Nicholas; Jylänki, Pasi; Mattia, Donatella; Babiloni, Fabio; Vanacker, Gerolf; Nuttin, Marnix; Marciani, Maria Grazia; Millán, José del R.

    2007-01-01

    To be correctly mastered, brain-computer interfaces (BCIs) need an uninterrupted flow of feedback to the user. This feedback is usually delivered through the visual channel. Our aim was to explore the benefits of vibrotactile feedback during users' training and control of EEG-based BCI applications. A protocol for delivering vibrotactile feedback, including specific hardware and software arrangements, was specified. In three studies with 33 subjects (including 3 with spinal cord injury), we compared vibrotactile and visual feedback, addressing: (I) the feasibility of subjects' training to master their EEG rhythms using tactile feedback; (II) the compatibility of this form of feedback in presence of a visual distracter; (III) the performance in presence of a complex visual task on the same (visual) or different (tactile) sensory channel. The stimulation protocol we developed supports a general usage of the tactors; preliminary experimentations. All studies indicated that the vibrotactile channel can function as a valuable feedback modality with reliability comparable to the classical visual feedback. Advantages of using a vibrotactile feedback emerged when the visual channel was highly loaded by a complex task. In all experiments, vibrotactile feedback felt, after some training, more natural for both controls and SCI users. PMID:18354734

  7. A binary motor imagery tasks based brain-computer interface for two-dimensional movement control

    NASA Astrophysics Data System (ADS)

    Xia, Bin; Cao, Lei; Maysam, Oladazimi; Li, Jie; Xie, Hong; Su, Caixia; Birbaumer, Niels

    2017-12-01

    Objective. Two-dimensional movement control is a popular issue in brain-computer interface (BCI) research and has many applications in the real world. In this paper, we introduce a combined control strategy to a binary class-based BCI system that allows the user to move a cursor in a two-dimensional (2D) plane. Users focus on a single moving vector to control 2D movement instead of controlling vertical and horizontal movement separately. Approach. Five participants took part in a fixed-target experiment and random-target experiment to verify the effectiveness of the combination control strategy under the fixed and random routine conditions. Both experiments were performed in a virtual 2D dimensional environment and visual feedback was provided on the screen. Main results. The five participants achieved an average hit rate of 98.9% and 99.4% for the fixed-target experiment and the random-target experiment, respectively. Significance. The results demonstrate that participants could move the cursor in the 2D plane effectively. The proposed control strategy is based only on a basic two-motor imagery BCI, which enables more people to use it in real-life applications.

  8. The Effect of a Transcranial Channel as a Skull/Brain Interface in High-Definition Transcranial Direct Current Stimulation—A Computational Study

    NASA Astrophysics Data System (ADS)

    Seo, Hyeon; Kim, Hyoung-Ihl; Jun, Sung Chan

    2017-01-01

    A transcranial channel is an interface between the skull and brain; it consists of a biocompatible and highly conductive material that helps convey the current induced by transcranial direct current stimulation (tDCS) to the target area. However, it has been proposed only conceptually, and there has been no concrete study of its efficacy. In this work, we conducted a computational investigation of this conceptual transcranial model with high-definition tDCS, inducing focalized neuromodulation to determine whether inclusion of a transcranial channel performs effectively. To do so, we constructed an anatomically realistic head model and compartmental pyramidal neuronal models. We analyzed membrane polarization by extracellular stimulation and found that the inclusion of a transcranial channel induced polarization at the target area 11 times greater than conventional HD-tDCS without the transcranial channel. Furthermore, the stimulation effect of the transcranial channel persisted up to approximately 80%, even when the stimulus electrodes were displaced approximately 5 mm from the target area. We investigated the efficacy of the transcranial channel and found that greatly improved stimulation intensity and focality may be achieved. Thus, the use of these channels may be promising for clinical treatment.

  9. The Effect of a Transcranial Channel as a Skull/Brain Interface in High-Definition Transcranial Direct Current Stimulation-A Computational Study.

    PubMed

    Seo, Hyeon; Kim, Hyoung-Ihl; Jun, Sung Chan

    2017-01-13

    A transcranial channel is an interface between the skull and brain; it consists of a biocompatible and highly conductive material that helps convey the current induced by transcranial direct current stimulation (tDCS) to the target area. However, it has been proposed only conceptually, and there has been no concrete study of its efficacy. In this work, we conducted a computational investigation of this conceptual transcranial model with high-definition tDCS, inducing focalized neuromodulation to determine whether inclusion of a transcranial channel performs effectively. To do so, we constructed an anatomically realistic head model and compartmental pyramidal neuronal models. We analyzed membrane polarization by extracellular stimulation and found that the inclusion of a transcranial channel induced polarization at the target area 11 times greater than conventional HD-tDCS without the transcranial channel. Furthermore, the stimulation effect of the transcranial channel persisted up to approximately 80%, even when the stimulus electrodes were displaced approximately 5 mm from the target area. We investigated the efficacy of the transcranial channel and found that greatly improved stimulation intensity and focality may be achieved. Thus, the use of these channels may be promising for clinical treatment.

  10. Extracting alpha band modulation during visual spatial attention without flickering stimuli using common spatial pattern.

    PubMed

    Fujisawa, Junya; Touyama, Hideaki; Hirose, Michitaka

    2008-01-01

    In this paper, alpha band modulation during visual spatial attention without visual stimuli was focused. Visual spatial attention has been expected to provide a new channel of non-invasive independent brain computer interface (BCI), but little work has been done on the new interfacing method. The flickering stimuli used in previous work cause a decline of independency and have difficulties in a practical use. Therefore we investigated whether visual spatial attention could be detected without such stimuli. Further, the common spatial patterns (CSP) were for the first time applied to the brain states during visual spatial attention. The performance evaluation was based on three brain states of left, right and center direction attention. The 30-channel scalp electroencephalographic (EEG) signals over occipital cortex were recorded for five subjects. Without CSP, the analyses made 66.44 (range 55.42 to 72.27) % of average classification performance in discriminating left and right attention classes. With CSP, the averaged classification accuracy was 75.39 (range 63.75 to 86.13) %. It is suggested that CSP is useful in the context of visual spatial attention, and the alpha band modulation during visual spatial attention without flickering stimuli has the possibility of a new channel for independent BCI as well as motor imagery.

  11. Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces.

    PubMed

    Lu, Jun; McFarland, Dennis J; Wolpaw, Jonathan R

    2013-02-01

    Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an 'adaptive Laplacian (ALAP) filter', can provide better performance for SMR-based BCIs. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.

  12. Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Lu, Jun; McFarland, Dennis J.; Wolpaw, Jonathan R.

    2013-02-01

    Objective. Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an ‘adaptive Laplacian (ALAP) filter’, can provide better performance for SMR-based BCIs. Approach. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Main results. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Significance. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.

  13. Neural control of finger movement via intracortical brain-machine interface

    NASA Astrophysics Data System (ADS)

    Irwin, Z. T.; Schroeder, K. E.; Vu, P. P.; Bullard, A. J.; Tat, D. M.; Nu, C. S.; Vaskov, A.; Nason, S. R.; Thompson, D. E.; Bentley, J. N.; Patil, P. G.; Chestek, C. A.

    2017-12-01

    Objective. Intracortical brain-machine interfaces (BMIs) are a promising source of prosthesis control signals for individuals with severe motor disabilities. Previous BMI studies have primarily focused on predicting and controlling whole-arm movements; precise control of hand kinematics, however, has not been fully demonstrated. Here, we investigate the continuous decoding of precise finger movements in rhesus macaques. Approach. In order to elicit precise and repeatable finger movements, we have developed a novel behavioral task paradigm which requires the subject to acquire virtual fingertip position targets. In the physical control condition, four rhesus macaques performed this task by moving all four fingers together in order to acquire a single target. This movement was equivalent to controlling the aperture of a power grasp. During this task performance, we recorded neural spikes from intracortical electrode arrays in primary motor cortex. Main results. Using a standard Kalman filter, we could reconstruct continuous finger movement offline with an average correlation of ρ  =  0.78 between actual and predicted position across four rhesus macaques. For two of the monkeys, this movement prediction was performed in real-time to enable direct brain control of the virtual hand. Compared to physical control, neural control performance was slightly degraded; however, the monkeys were still able to successfully perform the task with an average target acquisition rate of 83.1%. The monkeys’ ability to arbitrarily specify fingertip position was also quantified using an information throughput metric. During brain control task performance, the monkeys achieved an average 1.01 bits s-1 throughput, similar to that achieved in previous studies which decoded upper-arm movements to control computer cursors using a standard Kalman filter. Significance. This is, to our knowledge, the first demonstration of brain control of finger-level fine motor skills. We believe that these results represent an important step towards full and dexterous control of neural prosthetic devices.

  14. Control of a brain-computer interface using stereotactic depth electrodes in and adjacent to the hippocampus

    NASA Astrophysics Data System (ADS)

    Krusienski, D. J.; Shih, J. J.

    2011-04-01

    A brain-computer interface (BCI) is a device that enables severely disabled people to communicate and interact with their environments using their brain waves. Most research investigating BCI in humans has used scalp-recorded electroencephalography or intracranial electrocorticography. The use of brain signals obtained directly from stereotactic depth electrodes to control a BCI has not previously been explored. In this study, event-related potentials (ERPs) recorded from bilateral stereotactic depth electrodes implanted in and adjacent to the hippocampus were used to control a P300 Speller paradigm. The ERPs were preprocessed and used to train a linear classifier to subsequently predict the intended target letters. The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in the two subjects tested. Our results demonstrate that ERPs from hippocampal and hippocampal adjacent depth electrodes can be used to reliably control the P300 Speller BCI paradigm.

  15. sw-SVM: sensor weighting support vector machines for EEG-based brain-computer interfaces.

    PubMed

    Jrad, N; Congedo, M; Phlypo, R; Rousseau, S; Flamary, R; Yger, F; Rakotomamonjy, A

    2011-10-01

    In many machine learning applications, like brain-computer interfaces (BCI), high-dimensional sensor array data are available. Sensor measurements are often highly correlated and signal-to-noise ratio is not homogeneously spread across sensors. Thus, collected data are highly variable and discrimination tasks are challenging. In this work, we focus on sensor weighting as an efficient tool to improve the classification procedure. We present an approach integrating sensor weighting in the classification framework. Sensor weights are considered as hyper-parameters to be learned by a support vector machine (SVM). The resulting sensor weighting SVM (sw-SVM) is designed to satisfy a margin criterion, that is, the generalization error. Experimental studies on two data sets are presented, a P300 data set and an error-related potential (ErrP) data set. For the P300 data set (BCI competition III), for which a large number of trials is available, the sw-SVM proves to perform equivalently with respect to the ensemble SVM strategy that won the competition. For the ErrP data set, for which a small number of trials are available, the sw-SVM shows superior performances as compared to three state-of-the art approaches. Results suggest that the sw-SVM promises to be useful in event-related potentials classification, even with a small number of training trials.

  16. A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns

    PubMed Central

    Townsend, G.; LaPallo, B.K.; Boulay, C.B.; Krusienski, D.J.; Frye, G.E.; Hauser, C.K.; Schwartz, N.E.; Vaughan, T.M.; Wolpaw, J.R.; Sellers, E.W.

    2010-01-01

    Objective An electroencephalographic brain-computer interface (BCI) can provide a non-muscular means of communication for people with amyotrophic lateral sclerosis (ALS) or other neuromuscular disorders. We present a novel P300-based BCI stimulus presentation – the checkerboard paradigm (CBP). CBP performance is compared to that of the standard row/column paradigm (RCP) introduced by Farwell and Donchin (1988). Methods Using an 8×9 matrix of alphanumeric characters and keyboard commands, 18 participants used the CBP and RCP in counter-balanced fashion. With approximately 9 – 12 minutes of calibration data, we used a stepwise linear discriminant analysis for online classification of subsequent data. Results Mean online accuracy was significantly higher for the CBP, 92%, than for the RCP, 77%. Correcting for extra selections due to errors, mean bit rate was also significantly higher for the CBP, 23 bits/min, than for the RCP, 17 bits/min. Moreover, the two paradigms produced significantly different waveforms. Initial tests with three advanced ALS participants produced similar results. Furthermore, these individuals preferred the CBP to the RCP. Conclusions These results suggest that the CBP is markedly superior to the RCP in performance and user acceptability. Significance The CBP has the potential to provide a substantially more effective BCI than the RCP. This is especially important for people with severe neuromuscular disabilities. PMID:20347387

  17. Brain-computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis.

    PubMed

    McCane, Lynn M; Sellers, Eric W; McFarland, Dennis J; Mak, Joseph N; Carmack, C Steve; Zeitlin, Debra; Wolpaw, Jonathan R; Vaughan, Theresa M

    2014-06-01

    Brain-computer interfaces (BCIs) might restore communication to people severely disabled by amyotrophic lateral sclerosis (ALS) or other disorders. We sought to: 1) define a protocol for determining whether a person with ALS can use a visual P300-based BCI; 2) determine what proportion of this population can use the BCI; and 3) identify factors affecting BCI performance. Twenty-five individuals with ALS completed an evaluation protocol using a standard 6 × 6 matrix and parameters selected by stepwise linear discrimination. With an 8-channel EEG montage, the subjects fell into two groups in BCI accuracy (chance accuracy 3%). Seventeen averaged 92 (± 3)% (range 71-100%), which is adequate for communication (G70 group). Eight averaged 12 (± 6)% (range 0-36%), inadequate for communication (L40 subject group). Performance did not correlate with disability: 11/17 (65%) of G70 subjects were severely disabled (i.e. ALSFRS-R < 5). All L40 subjects had visual impairments (e.g. nystagmus, diplopia, ptosis). P300 was larger and more anterior in G70 subjects. A 16-channel montage did not significantly improve accuracy. In conclusion, most people severely disabled by ALS could use a visual P300-based BCI for communication. In those who could not, visual impairment was the principal obstacle. For these individuals, auditory P300-based BCIs might be effective.

  18. Visual gate for brain-computer interfaces.

    PubMed

    Dias, N S; Jacinto, L R; Mendes, P M; Correia, J H

    2009-01-01

    Brain-Computer Interfaces (BCI) based on event related potentials (ERP) have been successfully developed for applications like virtual spellers and navigation systems. This study tests the use of visual stimuli unbalanced in the subject's field of view to simultaneously cue mental imagery tasks (left vs. right hand movement) and detect subject attention. The responses to unbalanced cues were compared with the responses to balanced cues in terms of classification accuracy. Subject specific ERP spatial filters were calculated for optimal group separation. The unbalanced cues appear to enhance early ERPs related to cue visuospatial processing that improved the classification accuracy (as low as 6%) of ERPs in response to left vs. right cues soon (150-200 ms) after the cue presentation. This work suggests that such visual interface may be of interest in BCI applications as a gate mechanism for attention estimation and validation of control decisions.

  19. Brain-computer interface controlled functional electrical stimulation device for foot drop due to stroke.

    PubMed

    Do, An H; Wang, Po T; King, Christine E; Schombs, Andrew; Cramer, Steven C; Nenadic, Zoran

    2012-01-01

    Gait impairment due to foot drop is a common outcome of stroke, and current physiotherapy provides only limited restoration of gait function. Gait function can also be aided by orthoses, but these devices may be cumbersome and their benefits disappear upon removal. Hence, new neuro-rehabilitative therapies are being sought to generate permanent improvements in motor function beyond those of conventional physiotherapies through positive neural plasticity processes. Here, the authors describe an electroencephalogram (EEG) based brain-computer interface (BCI) controlled functional electrical stimulation (FES) system that enabled a stroke subject with foot drop to re-establish foot dorsiflexion. To this end, a prediction model was generated from EEG data collected as the subject alternated between periods of idling and attempted foot dorsiflexion. This prediction model was then used to classify online EEG data into either "idling" or "dorsiflexion" states, and this information was subsequently used to control an FES device to elicit effective foot dorsiflexion. The performance of the system was assessed in online sessions, where the subject was prompted by a computer to alternate between periods of idling and dorsiflexion. The subject demonstrated purposeful operation of the BCI-FES system, with an average cross-correlation between instructional cues and BCI-FES response of 0.60 over 3 sessions. In addition, analysis of the prediction model indicated that non-classical brain areas were activated in the process, suggesting post-stroke cortical re-organization. In the future, these systems may be explored as a potential therapeutic tool that can help promote positive plasticity and neural repair in chronic stroke patients.

  20. A Bidirectional Brain-Machine Interface Algorithm That Approximates Arbitrary Force-Fields

    PubMed Central

    Semprini, Marianna; Mussa-Ivaldi, Ferdinando A.; Panzeri, Stefano

    2014-01-01

    We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field) applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop. PMID:24626393

  1. Towards a real-time interface between a biomimetic model of sensorimotor cortex and a robotic arm

    PubMed Central

    Dura-Bernal, Salvador; Chadderdon, George L; Neymotin, Samuel A; Francis, Joseph T; Lytton, William W

    2015-01-01

    Brain-machine interfaces can greatly improve the performance of prosthetics. Utilizing biomimetic neuronal modeling in brain machine interfaces (BMI) offers the possibility of providing naturalistic motor-control algorithms for control of a robotic limb. This will allow finer control of a robot, while also giving us new tools to better understand the brain’s use of electrical signals. However, the biomimetic approach presents challenges in integrating technologies across multiple hardware and software platforms, so that the different components can communicate in real-time. We present the first steps in an ongoing effort to integrate a biomimetic spiking neuronal model of motor learning with a robotic arm. The biomimetic model (BMM) was used to drive a simple kinematic two-joint virtual arm in a motor task requiring trial-and-error convergence on a single target. We utilized the output of this model in real time to drive mirroring motion of a Barrett Technology WAM robotic arm through a user datagram protocol (UDP) interface. The robotic arm sent back information on its joint positions, which was then used by a visualization tool on the remote computer to display a realistic 3D virtual model of the moving robotic arm in real time. This work paves the way towards a full closed-loop biomimetic brain-effector system that can be incorporated in a neural decoder for prosthetic control, to be used as a platform for developing biomimetic learning algorithms for controlling real-time devices. PMID:26709323

  2. A Novel Mu Rhythm-based Brain Computer Interface Design that uses a Programmable System on Chip.

    PubMed

    Joshi, Rohan; Saraswat, Prateek; Gajendran, Rudhram

    2012-01-01

    This paper describes the system design of a portable and economical mu rhythm based Brain Computer Interface which employs Cypress Semiconductors Programmable System on Chip (PSoC). By carrying out essential processing on the PSoC, the use of an extra computer is eliminated, resulting in considerable cost savings. Microsoft Visual Studio 2005 and PSoC Designer 5.01 are employed in developing the software for the system, the hardware being custom designed. In order to test the usability of the BCI, preliminary testing is carried out by training three subjects who were able to demonstrate control over their electroencephalogram by moving a cursor present at the center of the screen towards the indicated direction with an average accuracy greater than 70% and a bit communication rate of up to 7 bits/min.

  3. Turning Shortcomings into Challenges: Brain-Computer Interfaces for Games

    NASA Astrophysics Data System (ADS)

    Nijholt, Anton; Reuderink, Boris; Oude Bos, Danny

    In recent years we have seen a rising interest in brain-computer interfacing for human-computer interaction and potential game applications. Until now, however, we have almost only seen attempts where BCI is used to measure the affective state of the user or in neurofeedback games. There have hardly been any attempts to design BCI games where BCI is considered to be one of the possible input modalities that can be used to control the game. One reason may be that research still follows the paradigms of the traditional, medically oriented, BCI approaches. In this paper we discuss current BCI research from the viewpoint of games and game design. It is hoped that this survey will make clear that we need to design different games than we used to, but that such games can nevertheless be interesting and exciting.

  4. Single-trial detection of visual evoked potentials by common spatial patterns and wavelet filtering for brain-computer interface.

    PubMed

    Tu, Yiheng; Huang, Gan; Hung, Yeung Sam; Hu, Li; Hu, Yong; Zhang, Zhiguo

    2013-01-01

    Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.

  5. A Novel Mu Rhythm-based Brain Computer Interface Design that uses a Programmable System on Chip

    PubMed Central

    Joshi, Rohan; Saraswat, Prateek; Gajendran, Rudhram

    2012-01-01

    This paper describes the system design of a portable and economical mu rhythm based Brain Computer Interface which employs Cypress Semiconductors Programmable System on Chip (PSoC). By carrying out essential processing on the PSoC, the use of an extra computer is eliminated, resulting in considerable cost savings. Microsoft Visual Studio 2005 and PSoC Designer 5.01 are employed in developing the software for the system, the hardware being custom designed. In order to test the usability of the BCI, preliminary testing is carried out by training three subjects who were able to demonstrate control over their electroencephalogram by moving a cursor present at the center of the screen towards the indicated direction with an average accuracy greater than 70% and a bit communication rate of up to 7 bits/min. PMID:23493871

  6. Endogenous Sensory Discrimination and Selection by a Fast Brain Switch for a High Transfer Rate Brain-Computer Interface.

    PubMed

    Xu, Ren; Jiang, Ning; Dosen, Strahinja; Lin, Chuang; Mrachacz-Kersting, Natalie; Dremstrup, Kim; Farina, Dario

    2016-08-01

    In this study, we present a novel multi-class brain-computer interface (BCI) for communication and control. In this system, the information processing is shared by the algorithm (computer) and the user (human). Specifically, an electro-tactile cycle was presented to the user, providing the choice (class) by delivering timely sensory input. The user discriminated these choices by his/her endogenous sensory ability and selected the desired choice with an intuitive motor task. This selection was detected by a fast brain switch based on real-time detection of movement-related cortical potentials from scalp EEG. We demonstrated the feasibility of such a system with a four-class BCI, yielding a true positive rate of  ∼ 80% and  ∼ 70%, and an information transfer rate of  ∼ 7 bits/min and  ∼ 5 bits/min, for the movement and imagination selection command, respectively. Furthermore, when the system was extended to eight classes, the throughput of the system was improved, demonstrating the capability of accommodating a large number of classes. Combining the endogenous sensory discrimination with the fast brain switch, the proposed system could be an effective, multi-class, gaze-independent BCI system for communication and control applications.

  7. Simultaneous detection of P300 and steady-state visually evoked potentials for hybrid brain-computer interface.

    PubMed

    Combaz, Adrien; Van Hulle, Marc M

    2015-01-01

    We study the feasibility of a hybrid Brain-Computer Interface (BCI) combining simultaneous visual oddball and Steady-State Visually Evoked Potential (SSVEP) paradigms, where both types of stimuli are superimposed on a computer screen. Potentially, such a combination could result in a system being able to operate faster than a purely P300-based BCI and encode more targets than a purely SSVEP-based BCI. We analyse the interactions between the brain responses of the two paradigms, and assess the possibility to detect simultaneously the brain activity evoked by both paradigms, in a series of 3 experiments where EEG data are analysed offline. Despite differences in the shape of the P300 response between pure oddball and hybrid condition, we observe that the classification accuracy of this P300 response is not affected by the SSVEP stimulation. We do not observe either any effect of the oddball stimulation on the power of the SSVEP response in the frequency of stimulation. Finally results from the last experiment show the possibility of detecting both types of brain responses simultaneously and suggest not only the feasibility of such hybrid BCI but also a gain over pure oddball- and pure SSVEP-based BCIs in terms of communication rate.

  8. A brain computer interface using electrocorticographic signals in humans

    NASA Astrophysics Data System (ADS)

    Leuthardt, Eric C.; Schalk, Gerwin; Wolpaw, Jonathan R.; Ojemann, Jeffrey G.; Moran, Daniel W.

    2004-06-01

    Brain-computer interfaces (BCIs) enable users to control devices with electroencephalographic (EEG) activity from the scalp or with single-neuron activity from within the brain. Both methods have disadvantages: EEG has limited resolution and requires extensive training, while single-neuron recording entails significant clinical risks and has limited stability. We demonstrate here for the first time that electrocorticographic (ECoG) activity recorded from the surface of the brain can enable users to control a one-dimensional computer cursor rapidly and accurately. We first identified ECoG signals that were associated with different types of motor and speech imagery. Over brief training periods of 3-24 min, four patients then used these signals to master closed-loop control and to achieve success rates of 74-100% in a one-dimensional binary task. In additional open-loop experiments, we found that ECoG signals at frequencies up to 180 Hz encoded substantial information about the direction of two-dimensional joystick movements. Our results suggest that an ECoG-based BCI could provide for people with severe motor disabilities a non-muscular communication and control option that is more powerful than EEG-based BCIs and is potentially more stable and less traumatic than BCIs that use electrodes penetrating the brain. The authors declare that they have no competing financial interests.

  9. Performance Assessment of a Custom, Portable, and Low-Cost Brain-Computer Interface Platform.

    PubMed

    McCrimmon, Colin M; Fu, Jonathan Lee; Wang, Ming; Lopes, Lucas Silva; Wang, Po T; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An Hong

    2017-10-01

    Conventional brain-computer interfaces (BCIs) are often expensive, complex to operate, and lack portability, which confines their use to laboratory settings. Portable, inexpensive BCIs can mitigate these problems, but it remains unclear whether their low-cost design compromises their performance. Therefore, we developed a portable, low-cost BCI and compared its performance to that of a conventional BCI. The BCI was assembled by integrating a custom electroencephalogram (EEG) amplifier with an open-source microcontroller and a touchscreen. The function of the amplifier was first validated against a commercial bioamplifier, followed by a head-to-head comparison between the custom BCI (using four EEG channels) and a conventional 32-channel BCI. Specifically, five able-bodied subjects were cued to alternate between hand opening/closing and remaining motionless while the BCI decoded their movement state in real time and provided visual feedback through a light emitting diode. Subjects repeated the above task for a total of 10 trials, and were unaware of which system was being used. The performance in each trial was defined as the temporal correlation between the cues and the decoded states. The EEG data simultaneously acquired with the custom and commercial amplifiers were visually similar and highly correlated ( ρ = 0.79). The decoding performances of the custom and conventional BCIs averaged across trials and subjects were 0.70 ± 0.12 and 0.68 ± 0.10, respectively, and were not significantly different. The performance of our portable, low-cost BCI is comparable to that of the conventional BCIs. Platforms, such as the one developed here, are suitable for BCI applications outside of a laboratory.

  10. Applying dynamic data collection to improve dry electrode system performance for a P300-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Clements, J. M.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Collins, L. M.; Throckmorton, C. S.

    2016-12-01

    Objective. Dry electrodes have an advantage over gel-based ‘wet’ electrodes by providing quicker set-up time for electroencephalography recording; however, the potentially poorer contact can result in noisier recordings. We examine the impact that this may have on brain-computer interface communication and potential approaches for mitigation. Approach. We present a performance comparison of wet and dry electrodes for use with the P300 speller system in both healthy participants and participants with communication disabilities (ALS and PLS), and investigate the potential for a data-driven dynamic data collection algorithm to compensate for the lower signal-to-noise ratio (SNR) in dry systems. Main results. Performance results from sixteen healthy participants obtained in the standard static data collection environment demonstrate a substantial loss in accuracy with the dry system. Using a dynamic stopping algorithm, performance may have been improved by collecting more data in the dry system for ten healthy participants and eight participants with communication disabilities; however, the algorithm did not fully compensate for the lower SNR of the dry system. An analysis of the wet and dry system recordings revealed that delta and theta frequency band power (0.1-4 Hz and 4-8 Hz, respectively) are consistently higher in dry system recordings across participants, indicating that transient and drift artifacts may be an issue for dry systems. Significance. Using dry electrodes is desirable for reduced set-up time; however, this study demonstrates that online performance is significantly poorer than for wet electrodes for users with and without disabilities. We test a new application of dynamic stopping algorithms to compensate for poorer SNR. Dynamic stopping improved dry system performance; however, further signal processing efforts are likely necessary for full mitigation.

  11. Programming an offline-analyzer of motor imagery signals via python language.

    PubMed

    Alonso-Valerdi, Luz María; Sepulveda, Francisco

    2011-01-01

    Brain Computer Interface (BCI) systems control the user's environment via his/her brain signals. Brain signals related to motor imagery (MI) have become a widespread method employed by the BCI community. Despite the large number of references describing the MI signal treatment, there is not enough information related to the available programming languages that could be suitable to develop a specific-purpose MI-based BCI. The present paper describes the development of an offline-analysis system based on MI-EEG signals via open-source programming languages, and the assessment of the system using electrical activity recorded from three subjects. The analyzer recognized at least 63% of the MI signals corresponding to three classes. The results of the offline analysis showed a promising performance considering that the subjects have never undergone MI trainings.

  12. Improvement of Information Transfer Rates Using a Hybrid EEG-NIRS Brain-Computer Interface with a Short Trial Length: Offline and Pseudo-Online Analyses.

    PubMed

    Shin, Jaeyoung; Kim, Do-Won; Müller, Klaus-Robert; Hwang, Han-Jeong

    2018-06-05

    Electroencephalography (EEG) and near-infrared spectroscopy (NIRS) are non-invasive neuroimaging methods that record the electrical and metabolic activity of the brain, respectively. Hybrid EEG-NIRS brain-computer interfaces (hBCIs) that use complementary EEG and NIRS information to enhance BCI performance have recently emerged to overcome the limitations of existing unimodal BCIs, such as vulnerability to motion artifacts for EEG-BCI or low temporal resolution for NIRS-BCI. However, with respect to NIRS-BCI, in order to fully induce a task-related brain activation, a relatively long trial length (≥10 s) is selected owing to the inherent hemodynamic delay that lowers the information transfer rate (ITR; bits/min). To alleviate the ITR degradation, we propose a more practical hBCI operated by intuitive mental tasks, such as mental arithmetic (MA) and word chain (WC) tasks, performed within a short trial length (5 s). In addition, the suitability of the WC as a BCI task was assessed, which has so far rarely been used in the BCI field. In this experiment, EEG and NIRS data were simultaneously recorded while participants performed MA and WC tasks without preliminary training and remained relaxed (baseline; BL). Each task was performed for 5 s, which was a shorter time than previous hBCI studies. Subsequently, a classification was performed to discriminate MA-related or WC-related brain activations from BL-related activations. By using hBCI in the offline/pseudo-online analyses, average classification accuracies of 90.0 ± 7.1/85.5 ± 8.1% and 85.8 ± 8.6/79.5 ± 13.4% for MA vs. BL and WC vs. BL, respectively, were achieved. These were significantly higher than those of the unimodal EEG- or NIRS-BCI in most cases. Given the short trial length and improved classification accuracy, the average ITRs were improved by more than 96.6% for MA vs. BL and 87.1% for WC vs. BL, respectively, compared to those reported in previous studies. The suitability of implementing a more practical hBCI based on intuitive mental tasks without preliminary training and with a shorter trial length was validated when compared to previous studies.

  13. An optical brain computer interface for environmental control.

    PubMed

    Ayaz, Hasan; Shewokis, Patricia A; Bunce, Scott; Onaral, Banu

    2011-01-01

    A brain computer interface (BCI) is a system that translates neurophysiological signals detected from the brain to supply input to a computer or to control a device. Volitional control of neural activity and its real-time detection through neuroimaging modalities are key constituents of BCI systems. The purpose of this study was to develop and test a new BCI design that utilizes intention-related cognitive activity within the dorsolateral prefrontal cortex using functional near infrared (fNIR) spectroscopy. fNIR is a noninvasive, safe, portable and affordable optical technique with which to monitor hemodynamic changes, in the brain's cerebral cortex. Because of its portability and ease of use, fNIR is amenable to deployment in ecologically valid natural working environments. We integrated a control paradigm in a computerized 3D virtual environment to augment interactivity. Ten healthy participants volunteered for a two day study in which they navigated a virtual environment with keyboard inputs, but were required to use the fNIR-BCI for interaction with virtual objects. Results showed that participants consistently utilized the fNIR-BCI with an overall success rate of 84% and volitionally increased their cerebral oxygenation level to trigger actions within the virtual environment.

  14. Brain-computer interfaces for EEG neurofeedback: peculiarities and solutions.

    PubMed

    Huster, René J; Mokom, Zacharais N; Enriquez-Geppert, Stefanie; Herrmann, Christoph S

    2014-01-01

    Neurofeedback training procedures designed to alter a person's brain activity have been in use for nearly four decades now and represent one of the earliest applications of brain-computer interfaces (BCI). The majority of studies using neurofeedback technology relies on recordings of the electroencephalogram (EEG) and applies neurofeedback in clinical contexts, exploring its potential as treatment for psychopathological syndromes. This clinical focus significantly affects the technology behind neurofeedback BCIs. For example, in contrast to other BCI applications, neurofeedback BCIs usually rely on EEG-derived features with only a minimum of additional processing steps being employed. Here, we highlight the peculiarities of EEG-based neurofeedback BCIs and consider their relevance for software implementations. Having reviewed already existing packages for the implementation of BCIs, we introduce our own solution which specifically considers the relevance of multi-subject handling for experimental and clinical trials, for example by implementing ready-to-use solutions for pseudo-/sham-neurofeedback. © 2013.

  15. Permanency analysis on human electroencephalogram signals for pervasive Brain-Computer Interface systems.

    PubMed

    Sadeghi, Koosha; Junghyo Lee; Banerjee, Ayan; Sohankar, Javad; Gupta, Sandeep K S

    2017-07-01

    Brain-Computer Interface (BCI) systems use some permanent features of brain signals to recognize their corresponding cognitive states with high accuracy. However, these features are not perfectly permanent, and BCI system should be continuously trained over time, which is tedious and time consuming. Thus, analyzing the permanency of signal features is essential in determining how often to repeat training. In this paper, we monitor electroencephalogram (EEG) signals, and analyze their behavior through continuous and relatively long period of time. In our experiment, we record EEG signals corresponding to rest state (eyes open and closed) from one subject everyday, for three and a half months. The results show that signal features such as auto-regression coefficients remain permanent through time, while others such as power spectral density specifically in 5-7 Hz frequency band are not permanent. In addition, eyes open EEG data shows more permanency than eyes closed data.

  16. Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces

    PubMed Central

    Wang, Deng; Miao, Duoqian; Blohm, Gunnar

    2012-01-01

    Recent studies show that scalp electroencephalography (EEG) as a non-invasive interface has great potential for brain-computer interfaces (BCIs). However, one factor that has limited practical applications for EEG-based BCI so far is the difficulty to decode brain signals in a reliable and efficient way. This paper proposes a new robust processing framework for decoding of multi-class motor imagery (MI) that is based on five main processing steps. (i) Raw EEG segmentation without the need of visual artifact inspection. (ii) Considering that EEG recordings are often contaminated not just by electrooculography (EOG) but also other types of artifacts, we propose to first implement an automatic artifact correction method that combines regression analysis with independent component analysis for recovering the original source signals. (iii) The significant difference between frequency components based on event-related (de-) synchronization and sample entropy is then used to find non-contiguous discriminating rhythms. After spectral filtering using the discriminating rhythms, a channel selection algorithm is used to select only relevant channels. (iv) Feature vectors are extracted based on the inter-class diversity and time-varying dynamic characteristics of the signals. (v) Finally, a support vector machine is employed for four-class classification. We tested our proposed algorithm on experimental data that was obtained from dataset 2a of BCI competition IV (2008). The overall four-class kappa values (between 0.41 and 0.80) were comparable to other models but without requiring any artifact-contaminated trial removal. The performance showed that multi-class MI tasks can be reliably discriminated using artifact-contaminated EEG recordings from a few channels. This may be a promising avenue for online robust EEG-based BCI applications. PMID:23087607

  17. Spatiotemporal Beamforming: A Transparent and Unified Decoding Approach to Synchronous Visual Brain-Computer Interfacing.

    PubMed

    Wittevrongel, Benjamin; Van Hulle, Marc M

    2017-01-01

    Brain-Computer Interfaces (BCIs) decode brain activity with the aim to establish a direct communication channel with an external device. Albeit they have been hailed to (re-)establish communication in persons suffering from severe motor- and/or communication disabilities, only recently BCI applications have been challenging other assistive technologies. Owing to their considerably increased performance and the advent of affordable technological solutions, BCI technology is expected to trigger a paradigm shift not only in assistive technology but also in the way we will interface with technology. However, the flipside of the quest for accuracy and speed is most evident in EEG-based visual BCI where it has led to a gamut of increasingly complex classifiers, tailored to the needs of specific stimulation paradigms and use contexts. In this contribution, we argue that spatiotemporal beamforming can serve several synchronous visual BCI paradigms. We demonstrate this for three popular visual paradigms even without attempting to optimizing their electrode sets. For each selectable target, a spatiotemporal beamformer is applied to assess whether the corresponding signal-of-interest is present in the preprocessed multichannel EEG signals. The target with the highest beamformer output is then selected by the decoder (maximum selection). In addition to this simple selection rule, we also investigated whether interactions between beamformer outputs could be employed to increase accuracy by combining the outputs for all targets into a feature vector and applying three common classification algorithms. The results show that the accuracy of spatiotemporal beamforming with maximum selection is at par with that of the classification algorithms and interactions between beamformer outputs do not further improve that accuracy.

  18. An online semi-supervised brain-computer interface.

    PubMed

    Gu, Zhenghui; Yu, Zhuliang; Shen, Zhifang; Li, Yuanqing

    2013-09-01

    Practical brain-computer interface (BCI) systems should require only low training effort for the user, and the algorithms used to classify the intent of the user should be computationally efficient. However, due to inter- and intra-subject variations in EEG signal, intermittent training/calibration is often unavoidable. In this paper, we present an online semi-supervised P300 BCI speller system. After a short initial training (around or less than 1 min in our experiments), the system is switched to a mode where the user can input characters through selective attention. In this mode, a self-training least squares support vector machine (LS-SVM) classifier is gradually enhanced in back end with the unlabeled EEG data collected online after every character input. In this way, the classifier is gradually enhanced. Even though the user may experience some errors in input at the beginning due to the small initial training dataset, the accuracy approaches that of fully supervised method in a few minutes. The algorithm based on LS-SVM and its sequential update has low computational complexity; thus, it is suitable for online applications. The effectiveness of the algorithm has been validated through data analysis on BCI Competition III dataset II (P300 speller BCI data). The performance of the online system was evaluated through experimental results on eight healthy subjects, where all of them achieved the spelling accuracy of 85 % or above within an average online semi-supervised learning time of around 3 min.

  19. Towards Intelligent Environments: An Augmented Reality–Brain–Machine Interface Operated with a See-Through Head-Mount Display

    PubMed Central

    Takano, Kouji; Hata, Naoki; Kansaku, Kenji

    2011-01-01

    The brain–machine interface (BMI) or brain–computer interface is a new interface technology that uses neurophysiological signals from the brain to control external machines or computers. This technology is expected to support daily activities, especially for persons with disabilities. To expand the range of activities enabled by this type of interface, here, we added augmented reality (AR) to a P300-based BMI. In this new system, we used a see-through head-mount display (HMD) to create control panels with flicker visual stimuli to support the user in areas close to controllable devices. When the attached camera detects an AR marker, the position and orientation of the marker are calculated, and the control panel for the pre-assigned appliance is created by the AR system and superimposed on the HMD. The participants were required to control system-compatible devices, and they successfully operated them without significant training. Online performance with the HMD was not different from that using an LCD monitor. Posterior and lateral (right or left) channel selections contributed to operation of the AR–BMI with both the HMD and LCD monitor. Our results indicate that AR–BMI systems operated with a see-through HMD may be useful in building advanced intelligent environments. PMID:21541307

  20. [The Changes in the Hemodynamic Activity of the Brain during Moroe Imagery Training with the Use of Brain-Computer Interface].

    PubMed

    Frolov, A A; Husek, D; Silchenko, A V; Tintera, Y; Rydlo, J

    2016-01-01

    With the use of functional MRI (fMRI), we studied the changes in brain hemodynamic activity of healthy subjects during motor imagery training with the use brain-computer interface (BCI), which is based on the recognition of EEG patterns of imagined movements. ANOVA dispersion analysis showed there are 14 areas of the brain where statistically sgnificant changes were registered. Detailed analysis of the activity in these areas before and after training (Student's and Mann-Whitney tests) reduced the amount of areas with significantly changed activity to five; these are Brodmann areas 44 and 45, insula, middle frontal gyrus, and anterior cingulate gyrus. We suggest that these changes are caused by the formation of memory traces of those brain activity patterns which are most accurately recognized by BCI classifiers as correspondent with limb movements. We also observed a tendency of increase in the activity of motor imagery after training. The hemodynamic activity in all these 14 areas during real movements was either approximatly the same or significantly higher than during motor imagery; activity during imagined leg movements was higher that that during imagined arm movements, except for the areas of representation of arms.

  1. A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface

    PubMed Central

    Su, Yi; Routhu, Sudhamayee; Moon, Kee S.; Lee, Sung Q.; Youm, WooSub; Ozturk, Yusuf

    2016-01-01

    All neural information systems (NIS) rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR) by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI) using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI) to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP) oscillation and stimulate the target area at the same time. PMID:27669264

  2. The application of integrated knowledge-based systems for the Biomedical Risk Assessment Intelligent Network (BRAIN)

    NASA Technical Reports Server (NTRS)

    Loftin, Karin C.; Ly, Bebe; Webster, Laurie; Verlander, James; Taylor, Gerald R.; Riley, Gary; Culbert, Chris

    1992-01-01

    One of NASA's goals for long duration space flight is to maintain acceptable levels of crew health, safety, and performance. One way of meeting this goal is through BRAIN, an integrated network of both human and computer elements. BRAIN will function as an advisor to mission managers by assessing the risk of inflight biomedical problems and recommending appropriate countermeasures. Described here is a joint effort among various NASA elements to develop BRAIN and the Infectious Disease Risk Assessment (IDRA) prototype. The implementation of this effort addresses the technological aspects of knowledge acquisition, integration of IDRA components, the use of expert systems to automate the biomedical prediction process, development of a user friendly interface, and integration of IDRA and ExerCISys systems. Because C language, CLIPS and the X-Window System are portable and easily integrated, they were chosen ss the tools for the initial IDRA prototype.

  3. Decoding Onset and Direction of Movements Using Electrocorticographic (ECoG) Signals in Humans

    DTIC Science & Technology

    2012-08-08

    Institute, Troy, NY, USA 2 J Crayton Pruitt Family Department of Biomed Engineering, University of Florida, Gainesville, FL, USA 3 BCI R&D Program...INTRODUCTION Brain-computer interfaces ( BCIs ) aim to translate a person’s intentions into meaningful computer commands using brain activity alone...applications for those suffering from neuromuscular disorders (Sejnowski et al., 2007; Tan and Nijholt, 2010). For example, a BCI that detects intended move

  4. Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain-computer interface.

    PubMed

    Naseer, Noman; Hong, Keum-Shik

    2013-10-11

    This paper presents a study on functional near-infrared spectroscopy (fNIRS) indicating that the hemodynamic responses of the right- and left-wrist motor imageries have distinct patterns that can be classified using a linear classifier for the purpose of developing a brain-computer interface (BCI). Ten healthy participants were instructed to imagine kinesthetically the right- or left-wrist flexion indicated on a computer screen. Signals from the right and left primary motor cortices were acquired simultaneously using a multi-channel continuous-wave fNIRS system. Using two distinct features (the mean and the slope of change in the oxygenated hemoglobin concentration), the linear discriminant analysis classifier was used to classify the right- and left-wrist motor imageries resulting in average classification accuracies of 73.35% and 83.0%, respectively, during the 10s task period. Moreover, when the analysis time was confined to the 2-7s span within the overall 10s task period, the average classification accuracies were improved to 77.56% and 87.28%, respectively. These results demonstrate the feasibility of an fNIRS-based BCI and the enhanced performance of the classifier by removing the initial 2s span and/or the time span after the peak value. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Brain-computer interface with language model-electroencephalography fusion for locked-in syndrome.

    PubMed

    Oken, Barry S; Orhan, Umut; Roark, Brian; Erdogmus, Deniz; Fowler, Andrew; Mooney, Aimee; Peters, Betts; Miller, Meghan; Fried-Oken, Melanie B

    2014-05-01

    Some noninvasive brain-computer interface (BCI) systems are currently available for locked-in syndrome (LIS) but none have incorporated a statistical language model during text generation. To begin to address the communication needs of individuals with LIS using a noninvasive BCI that involves rapid serial visual presentation (RSVP) of symbols and a unique classifier with electroencephalography (EEG) and language model fusion. The RSVP Keyboard was developed with several unique features. Individual letters are presented at 2.5 per second. Computer classification of letters as targets or nontargets based on EEG is performed using machine learning that incorporates a language model for letter prediction via Bayesian fusion enabling targets to be presented only 1 to 4 times. Nine participants with LIS and 9 healthy controls were enrolled. After screening, subjects first calibrated the system, and then completed a series of balanced word generation mastery tasks that were designed with 5 incremental levels of difficulty, which increased by selecting phrases for which the utility of the language model decreased naturally. Six participants with LIS and 9 controls completed the experiment. All LIS participants successfully mastered spelling at level 1 and one subject achieved level 5. Six of 9 control participants achieved level 5. Individuals who have incomplete LIS may benefit from an EEG-based BCI system, which relies on EEG classification and a statistical language model. Steps to further improve the system are discussed.

  6. Toward more intuitive brain-computer interfacing: classification of binary covert intentions using functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hwang, Han-Jeong; Choi, Han; Kim, Jeong-Youn; Chang, Won-Du; Kim, Do-Won; Kim, Kiwoong; Jo, Sungho; Im, Chang-Hwan

    2016-09-01

    In traditional brain-computer interface (BCI) studies, binary communication systems have generally been implemented using two mental tasks arbitrarily assigned to "yes" or "no" intentions (e.g., mental arithmetic calculation for "yes"). A recent pilot study performed with one paralyzed patient showed the possibility of a more intuitive paradigm for binary BCI communications, in which the patient's internal yes/no intentions were directly decoded from functional near-infrared spectroscopy (fNIRS). We investigated whether such an "fNIRS-based direct intention decoding" paradigm can be reliably used for practical BCI communications. Eight healthy subjects participated in this study, and each participant was administered 70 disjunctive questions. Brain hemodynamic responses were recorded using a multichannel fNIRS device, while the participants were internally expressing "yes" or "no" intentions to each question. Different feature types, feature numbers, and time window sizes were tested to investigate optimal conditions for classifying the internal binary intentions. About 75% of the answers were correctly classified when the individual best feature set was employed (75.89% ±1.39 and 74.08% ±2.87 for oxygenated and deoxygenated hemoglobin responses, respectively), which was significantly higher than a random chance level (68.57% for p<0.001). The kurtosis feature showed the highest mean classification accuracy among all feature types. The grand-averaged hemodynamic responses showed that wide brain regions are associated with the processing of binary implicit intentions. Our experimental results demonstrated that direct decoding of internal binary intention has the potential to be used for implementing more intuitive and user-friendly communication systems for patients with motor disabilities.

  7. True Zero-Training Brain-Computer Interfacing – An Online Study

    PubMed Central

    Kindermans, Pieter-Jan; Schreuder, Martijn; Schrauwen, Benjamin; Müller, Klaus-Robert; Tangermann, Michael

    2014-01-01

    Despite several approaches to realize subject-to-subject transfer of pre-trained classifiers, the full performance of a Brain-Computer Interface (BCI) for a novel user can only be reached by presenting the BCI system with data from the novel user. In typical state-of-the-art BCI systems with a supervised classifier, the labeled data is collected during a calibration recording, in which the user is asked to perform a specific task. Based on the known labels of this recording, the BCI's classifier can learn to decode the individual's brain signals. Unfortunately, this calibration recording consumes valuable time. Furthermore, it is unproductive with respect to the final BCI application, e.g. text entry. Therefore, the calibration period must be reduced to a minimum, which is especially important for patients with a limited concentration ability. The main contribution of this manuscript is an online study on unsupervised learning in an auditory event-related potential (ERP) paradigm. Our results demonstrate that the calibration recording can be bypassed by utilizing an unsupervised trained classifier, that is initialized randomly and updated during usage. Initially, the unsupervised classifier tends to make decoding mistakes, as the classifier might not have seen enough data to build a reliable model. Using a constant re-analysis of the previously spelled symbols, these initially misspelled symbols can be rectified posthoc when the classifier has learned to decode the signals. We compare the spelling performance of our unsupervised approach and of the unsupervised posthoc approach to the standard supervised calibration-based dogma for n = 10 healthy users. To assess the learning behavior of our approach, it is unsupervised trained from scratch three times per user. Even with the relatively low SNR of an auditory ERP paradigm, the results show that after a limited number of trials (30 trials), the unsupervised approach performs comparably to a classic supervised model. PMID:25068464

  8. Steady-State Somatosensory Evoked Potential for Brain-Computer Interface—Present and Future

    PubMed Central

    Ahn, Sangtae; Kim, Kiwoong; Jun, Sung Chan

    2016-01-01

    Brain-computer interface (BCI) performance has achieved continued improvement over recent decades, and sensorimotor rhythm-based BCIs that use motor function have been popular subjects of investigation. However, it remains problematic to introduce them to the public market because of their low reliability. As an alternative resolution to this issue, visual-based BCIs that use P300 or steady-state visually evoked potentials (SSVEPs) seem promising; however, the inherent visual fatigue that occurs with these BCIs may be unavoidable. For these reasons, steady-state somatosensory evoked potential (SSSEP) BCIs, which are based on tactile selective attention, have gained increasing attention recently. These may reduce the fatigue induced by visual attention and overcome the low reliability of motor activity. In this literature survey, recent findings on SSSEP and its methodological uses in BCI are reviewed. Further, existing limitations of SSSEP BCI and potential future directions for the technique are discussed. PMID:26834611

  9. [Design and implementation of controlling smart car systems using P300 brain-computer interface].

    PubMed

    Wang, Jinjia; Yang, Chengjie; Hu, Bei

    2013-04-01

    Using human electroencephalogram (EEG) to control external devices in order to achieve a variety of functions has been focus of the field of brain-computer interface (BCI) research. P300 is experiments which stimulate the eye to produce EEG by using letters flashing, and then identify the corresponding letters. In this paper, some improvements based on the P300 experiments were made??. Firstly, the matrix of flashing letters were modified into words which represent a certain sense. Secondly, the BCI2000 procedures were added with the corresponding source code. Thirdly, the smart car systems were designed using the radiofrequency signal. Finally it was realized that the evoked potentials were used to control the state of the smart car.

  10. Comparison of Classification Methods for P300 Brain-Computer Interface on Disabled Subjects

    PubMed Central

    Manyakov, Nikolay V.; Chumerin, Nikolay; Combaz, Adrien; Van Hulle, Marc M.

    2011-01-01

    We report on tests with a mind typing paradigm based on a P300 brain-computer interface (BCI) on a group of amyotrophic lateral sclerosis (ALS), middle cerebral artery (MCA) stroke, and subarachnoid hemorrhage (SAH) patients, suffering from motor and speech disabilities. We investigate the achieved typing accuracy given the individual patient's disorder, and how it correlates with the type of classifier used. We considered 7 types of classifiers, linear as well as nonlinear ones, and found that, overall, one type of linear classifier yielded a higher classification accuracy. In addition to the selection of the classifier, we also suggest and discuss a number of recommendations to be considered when building a P300-based typing system for disabled subjects. PMID:21941530

  11. Motor prediction in Brain-Computer Interfaces for controlling mobile robots.

    PubMed

    Geng, Tao; Gan, John Q

    2008-01-01

    EEG-based Brain-Computer Interface (BCI) can be regarded as a new channel for motor control except that it does not involve muscles. Normal neuromuscular motor control has two fundamental components: (1) to control the body, and (2) to predict the consequences of the control command, which is called motor prediction. In this study, after training with a specially designed BCI paradigm based on motor imagery, two subjects learnt to predict the time course of some features of the EEG signals. It is shown that, with this newly-obtained motor prediction skill, subjects can use motor imagery of feet to directly control a mobile robot to avoid obstacles and reach a small target in a time-critical scenario.

  12. Paired Associative Stimulation Using Brain-Computer Interfaces for Stroke Rehabilitation: A Pilot Study.

    PubMed

    Cho, Woosang; Sabathiel, Nikolaus; Ortner, Rupert; Lechner, Alexander; Irimia, Danut C; Allison, Brendan Z; Edlinger, Guenter; Guger, Christoph

    2016-06-13

    Conventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. Paired associative stimulation (PAS) uses brain-computer interface (BCI) technology to monitor patients' movement imagery in real-time, and utilizes the information to control functional electrical stimulation (FES) and bar feedback for complete sensorimotor closed loop. To realize this approach, we introduce the recoveriX system, a hardware and software platform for PAS. After 10 sessions of recoveriX training, one stroke patient partially regained control of dorsiflexion in her paretic wrist. A controlled group study is planned with a new version of the recoveriX system, which will use a new FES system and an avatar instead of bar feedback.

  13. Fast attainment of computer cursor control with noninvasively acquired brain signals

    NASA Astrophysics Data System (ADS)

    Bradberry, Trent J.; Gentili, Rodolphe J.; Contreras-Vidal, José L.

    2011-06-01

    Brain-computer interface (BCI) systems are allowing humans and non-human primates to drive prosthetic devices such as computer cursors and artificial arms with just their thoughts. Invasive BCI systems acquire neural signals with intracranial or subdural electrodes, while noninvasive BCI systems typically acquire neural signals with scalp electroencephalography (EEG). Some drawbacks of invasive BCI systems are the inherent risks of surgery and gradual degradation of signal integrity. A limitation of noninvasive BCI systems for two-dimensional control of a cursor, in particular those based on sensorimotor rhythms, is the lengthy training time required by users to achieve satisfactory performance. Here we describe a novel approach to continuously decoding imagined movements from EEG signals in a BCI experiment with reduced training time. We demonstrate that, using our noninvasive BCI system and observational learning, subjects were able to accomplish two-dimensional control of a cursor with performance levels comparable to those of invasive BCI systems. Compared to other studies of noninvasive BCI systems, training time was substantially reduced, requiring only a single session of decoder calibration (~20 min) and subject practice (~20 min). In addition, we used standardized low-resolution brain electromagnetic tomography to reveal that the neural sources that encoded observed cursor movement may implicate a human mirror neuron system. These findings offer the potential to continuously control complex devices such as robotic arms with one's mind without lengthy training or surgery.

  14. Self-paced brain-computer interface control of ambulation in a virtual reality environment.

    PubMed

    Wang, Po T; King, Christine E; Chui, Luis A; Do, An H; Nenadic, Zoran

    2012-10-01

    Spinal cord injury (SCI) often leaves affected individuals unable to ambulate. Electroencephalogram (EEG) based brain-computer interface (BCI) controlled lower extremity prostheses may restore intuitive and able-body-like ambulation after SCI. To test its feasibility, the authors developed and tested a novel EEG-based, data-driven BCI system for intuitive and self-paced control of the ambulation of an avatar within a virtual reality environment (VRE). Eight able-bodied subjects and one with SCI underwent the following 10-min training session: subjects alternated between idling and walking kinaesthetic motor imageries (KMI) while their EEG were recorded and analysed to generate subject-specific decoding models. Subjects then performed a goal-oriented online task, repeated over five sessions, in which they utilized the KMI to control the linear ambulation of an avatar and make ten sequential stops at designated points within the VRE. The average offline training performance across subjects was 77.2 ± 11.0%, ranging from 64.3% (p = 0.001 76) to 94.5% (p = 6.26 × 10(-23)), with chance performance being 50%. The average online performance was 8.5 ± 1.1 (out of 10) successful stops and 303 ± 53 s completion time (perfect = 211 s). All subjects achieved performances significantly different than those of random walk (p < 0.05) in 44 of the 45 online sessions. By using a data-driven machine learning approach to decode users' KMI, this BCI-VRE system enabled intuitive and purposeful self-paced control of ambulation after only 10 minutes training. The ability to achieve such BCI control with minimal training indicates that the implementation of future BCI-lower extremity prosthesis systems may be feasible.

  15. High performance communication by people with paralysis using an intracortical brain-computer interface.

    PubMed

    Pandarinath, Chethan; Nuyujukian, Paul; Blabe, Christine H; Sorice, Brittany L; Saab, Jad; Willett, Francis R; Hochberg, Leigh R; Shenoy, Krishna V; Henderson, Jaimie M

    2017-02-21

    Brain-computer interfaces (BCIs) have the potential to restore communication for people with tetraplegia and anarthria by translating neural activity into control signals for assistive communication devices. While previous pre-clinical and clinical studies have demonstrated promising proofs-of-concept (Serruya et al., 2002; Simeral et al., 2011; Bacher et al., 2015; Nuyujukian et al., 2015; Aflalo et al., 2015; Gilja et al., 2015; Jarosiewicz et al., 2015; Wolpaw et al., 1998; Hwang et al., 2012; Spüler et al., 2012; Leuthardt et al., 2004; Taylor et al., 2002; Schalk et al., 2008; Moran, 2010; Brunner et al., 2011; Wang et al., 2013; Townsend and Platsko, 2016; Vansteensel et al., 2016; Nuyujukian et al., 2016; Carmena et al., 2003; Musallam et al., 2004; Santhanam et al., 2006; Hochberg et al., 2006; Ganguly et al., 2011; O'Doherty et al., 2011; Gilja et al., 2012), the performance of human clinical BCI systems is not yet high enough to support widespread adoption by people with physical limitations of speech. Here we report a high-performance intracortical BCI (iBCI) for communication, which was tested by three clinical trial participants with paralysis. The system leveraged advances in decoder design developed in prior pre-clinical and clinical studies (Gilja et al., 2015; Kao et al., 2016; Gilja et al., 2012). For all three participants, performance exceeded previous iBCIs (Bacher et al., 2015; Jarosiewicz et al., 2015) as measured by typing rate (by a factor of 1.4-4.2) and information throughput (by a factor of 2.2-4.0). This high level of performance demonstrates the potential utility of iBCIs as powerful assistive communication devices for people with limited motor function.Clinical Trial No: NCT00912041.

  16. A high performance sensorimotor beta rhythm-based brain computer interface associated with human natural motor behavior

    NASA Astrophysics Data System (ADS)

    Bai, Ou; Lin, Peter; Vorbach, Sherry; Floeter, Mary Kay; Hattori, Noriaki; Hallett, Mark

    2008-03-01

    To explore the reliability of a high performance brain-computer interface (BCI) using non-invasive EEG signals associated with human natural motor behavior does not require extensive training. We propose a new BCI method, where users perform either sustaining or stopping a motor task with time locking to a predefined time window. Nine healthy volunteers, one stroke survivor with right-sided hemiparesis and one patient with amyotrophic lateral sclerosis (ALS) participated in this study. Subjects did not receive BCI training before participating in this study. We investigated tasks of both physical movement and motor imagery. The surface Laplacian derivation was used for enhancing EEG spatial resolution. A model-free threshold setting method was used for the classification of motor intentions. The performance of the proposed BCI was validated by an online sequential binary-cursor-control game for two-dimensional cursor movement. Event-related desynchronization and synchronization were observed when subjects sustained or stopped either motor execution or motor imagery. Feature analysis showed that EEG beta band activity over sensorimotor area provided the largest discrimination. With simple model-free classification of beta band EEG activity from a single electrode (with surface Laplacian derivation), the online classifications of the EEG activity with motor execution/motor imagery were: >90%/~80% for six healthy volunteers, >80%/~80% for the stroke patient and ~90%/~80% for the ALS patient. The EEG activities of the other three healthy volunteers were not classifiable. The sensorimotor beta rhythm of EEG associated with human natural motor behavior can be used for a reliable and high performance BCI for both healthy subjects and patients with neurological disorders. Significance: The proposed new non-invasive BCI method highlights a practical BCI for clinical applications, where the user does not require extensive training.

  17. Cyber-workstation for computational neuroscience.

    PubMed

    Digiovanna, Jack; Rattanatamrong, Prapaporn; Zhao, Ming; Mahmoudi, Babak; Hermer, Linda; Figueiredo, Renato; Principe, Jose C; Fortes, Jose; Sanchez, Justin C

    2010-01-01

    A Cyber-Workstation (CW) to study in vivo, real-time interactions between computational models and large-scale brain subsystems during behavioral experiments has been designed and implemented. The design philosophy seeks to directly link the in vivo neurophysiology laboratory with scalable computing resources to enable more sophisticated computational neuroscience investigation. The architecture designed here allows scientists to develop new models and integrate them with existing models (e.g. recursive least-squares regressor) by specifying appropriate connections in a block-diagram. Then, adaptive middleware transparently implements these user specifications using the full power of remote grid-computing hardware. In effect, the middleware deploys an on-demand and flexible neuroscience research test-bed to provide the neurophysiology laboratory extensive computational power from an outside source. The CW consolidates distributed software and hardware resources to support time-critical and/or resource-demanding computing during data collection from behaving animals. This power and flexibility is important as experimental and theoretical neuroscience evolves based on insights gained from data-intensive experiments, new technologies and engineering methodologies. This paper describes briefly the computational infrastructure and its most relevant components. Each component is discussed within a systematic process of setting up an in vivo, neuroscience experiment. Furthermore, a co-adaptive brain machine interface is implemented on the CW to illustrate how this integrated computational and experimental platform can be used to study systems neurophysiology and learning in a behavior task. We believe this implementation is also the first remote execution and adaptation of a brain-machine interface.

  18. Cyber-Workstation for Computational Neuroscience

    PubMed Central

    DiGiovanna, Jack; Rattanatamrong, Prapaporn; Zhao, Ming; Mahmoudi, Babak; Hermer, Linda; Figueiredo, Renato; Principe, Jose C.; Fortes, Jose; Sanchez, Justin C.

    2009-01-01

    A Cyber-Workstation (CW) to study in vivo, real-time interactions between computational models and large-scale brain subsystems during behavioral experiments has been designed and implemented. The design philosophy seeks to directly link the in vivo neurophysiology laboratory with scalable computing resources to enable more sophisticated computational neuroscience investigation. The architecture designed here allows scientists to develop new models and integrate them with existing models (e.g. recursive least-squares regressor) by specifying appropriate connections in a block-diagram. Then, adaptive middleware transparently implements these user specifications using the full power of remote grid-computing hardware. In effect, the middleware deploys an on-demand and flexible neuroscience research test-bed to provide the neurophysiology laboratory extensive computational power from an outside source. The CW consolidates distributed software and hardware resources to support time-critical and/or resource-demanding computing during data collection from behaving animals. This power and flexibility is important as experimental and theoretical neuroscience evolves based on insights gained from data-intensive experiments, new technologies and engineering methodologies. This paper describes briefly the computational infrastructure and its most relevant components. Each component is discussed within a systematic process of setting up an in vivo, neuroscience experiment. Furthermore, a co-adaptive brain machine interface is implemented on the CW to illustrate how this integrated computational and experimental platform can be used to study systems neurophysiology and learning in a behavior task. We believe this implementation is also the first remote execution and adaptation of a brain-machine interface. PMID:20126436

  19. Application of BCI systems in neurorehabilitation: a scoping review.

    PubMed

    Bamdad, Mahdi; Zarshenas, Homayoon; Auais, Mohammad A

    2015-01-01

    To review various types of electroencephalographic activities of the brain and present an overview of brain-computer interface (BCI) systems' history and their applications in rehabilitation. A scoping review of published English literature on BCI application in the field of rehabilitation was undertaken. IEEE Xplore, ScienceDirect, Google Scholar and Scopus databases were searched since inception up to August 2012. All experimental studies published in English and discussed complete cycle of the BCI process was included in the review. In total, 90 articles met the inclusion criteria and were reviewed. Various approaches that improve the accuracy and performance of BCI systems were discussed. Based on BCI's clinical application, reviewed articles were categorized into three groups: motion rehabilitation, speech rehabilitation and virtual reality control (VRC). Almost half of the reviewed papers (48%) concentrated on VRC. Speech rehabilitation and motion rehabilitation made up 33% and 19% of the reviewed papers, respectively. Among different types of electroencephalography signals, P300, steady state visual evoked potentials and motor imagery signals were the most common. This review discussed various applications of BCI in rehabilitation and showed how BCI can be used to improve the quality of life for people with neurological disabilities. It will develop and promote new models of communication and finally, will create an accurate, reliable, online communication between human brain and computer and reduces the negative effects of external stimuli on BCI performance. Implications for Rehabilitation The field of brain-computer interfaces (BCI) is rapidly advancing and it is expected to fulfill a critical role in rehabilitation of neurological disorders and in movement restoration in the forthcoming years. In the near future, BCI has notable potential to become a major tool used by people with disabilities to control locomotion and communicate with surrounding environment and, consequently, improve the quality of life for many affected persons. Electrical field recording at the scalp (i.e. electroencephalography) is the most likely method to be of practical value for clinical use as it is simple and non-invasive. However, some aspects need future improvements, such as the ability to separate close imagery signal (motion of extremities and phalanges that are close together).

  20. Using the Electrocorticographic Speech Network to Control a Brain-Computer Interface in Humans

    PubMed Central

    Leuthardt, Eric C.; Gaona, Charles; Sharma, Mohit; Szrama, Nicholas; Roland, Jarod; Freudenberg, Zac; Solis, Jamie; Breshears, Jonathan; Schalk, Gerwin

    2013-01-01

    Electrocorticography (ECoG) has emerged as a new signal platform for brain-computer interface (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been brain signals from sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the speech network, could be used to further improve on or complement existing motor-based control paradigms. We demonstrate here for the first time that ECoG signals associated with different overt and imagined phoneme articulation can enable invasively monitored human patients to control a one-dimensional computer cursor rapidly and accurately. This phonetic content was distinguishable within higher gamma frequency oscillations and enabled users to achieve final target accuracies between 68 and 91% within 15 minutes. Additionally, one of the patients achieved robust control using recordings from a microarray consisting of 1 mm spaced microwires. These findings suggest that the cortical network associated with speech could provide an additional cognitive and physiologic substrate for BCI operation and that these signals can be acquired from a cortical array that is small and minimally invasive. PMID:21471638

  1. Estimating the Intended Sound Direction of the User: Toward an Auditory Brain-Computer Interface Using Out-of-Head Sound Localization

    PubMed Central

    Nambu, Isao; Ebisawa, Masashi; Kogure, Masumi; Yano, Shohei; Hokari, Haruhide; Wada, Yasuhiro

    2013-01-01

    The auditory Brain-Computer Interface (BCI) using electroencephalograms (EEG) is a subject of intensive study. As a cue, auditory BCIs can deal with many of the characteristics of stimuli such as tone, pitch, and voices. Spatial information on auditory stimuli also provides useful information for a BCI. However, in a portable system, virtual auditory stimuli have to be presented spatially through earphones or headphones, instead of loudspeakers. We investigated the possibility of an auditory BCI using the out-of-head sound localization technique, which enables us to present virtual auditory stimuli to users from any direction, through earphones. The feasibility of a BCI using this technique was evaluated in an EEG oddball experiment and offline analysis. A virtual auditory stimulus was presented to the subject from one of six directions. Using a support vector machine, we were able to classify whether the subject attended the direction of a presented stimulus from EEG signals. The mean accuracy across subjects was 70.0% in the single-trial classification. When we used trial-averaged EEG signals as inputs to the classifier, the mean accuracy across seven subjects reached 89.5% (for 10-trial averaging). Further analysis showed that the P300 event-related potential responses from 200 to 500 ms in central and posterior regions of the brain contributed to the classification. In comparison with the results obtained from a loudspeaker experiment, we confirmed that stimulus presentation by out-of-head sound localization achieved similar event-related potential responses and classification performances. These results suggest that out-of-head sound localization enables us to provide a high-performance and loudspeaker-less portable BCI system. PMID:23437338

  2. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.

    PubMed

    Iturrate, I; Montesano, L; Minguez, J

    2013-04-01

    A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user's mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.

  3. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Iturrate, I.; Montesano, L.; Minguez, J.

    2013-04-01

    Objective. A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user’s mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials.Approach. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance.Results and significance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.

  4. Adaptive estimation of hand movement trajectory in an EEG based brain-computer interface system

    NASA Astrophysics Data System (ADS)

    Robinson, Neethu; Guan, Cuntai; Vinod, A. P.

    2015-12-01

    Objective. The various parameters that define a hand movement such as its trajectory, speed, etc, are encoded in distinct brain activities. Decoding this information from neurophysiological recordings is a less explored area of brain-computer interface (BCI) research. Applying non-invasive recordings such as electroencephalography (EEG) for decoding makes the problem more challenging, as the encoding is assumed to be deep within the brain and not easily accessible by scalp recordings. Approach. EEG based BCI systems can be developed to identify the neural features underlying movement parameters that can be further utilized to provide a detailed and well defined control command set to a BCI output device. A real-time continuous control is better suited for practical BCI systems, and can be achieved by continuous adaptive reconstruction of movement trajectory than discrete brain activity classifications. In this work, we adaptively reconstruct/estimate the parameters of two-dimensional hand movement trajectory, namely movement speed and position, from multi-channel EEG recordings. The data for analysis is collected by performing an experiment that involved center-out right-hand movement tasks in four different directions at two different speeds in random order. We estimate movement trajectory using a Kalman filter that models the relation between brain activity and recorded parameters based on a set of defined predictors. We propose a method to define these predictor variables that includes spatial, spectral and temporally localized neural information and to select optimally informative variables. Main results. The proposed method yielded correlation of (0.60 ± 0.07) between recorded and estimated data. Further, incorporating the proposed predictor subset selection, the correlation achieved is (0.57 ± 0.07, p {\\lt }0.004) with significant gain in stability of the system, as well as dramatic reduction in number of predictors (76%) for the savings of computational time. Significance. The proposed system provides a real time movement control system using EEG-BCI with control over movement speed and position. These results are higher and statistically significant compared to existing techniques in EEG based systems and thus promise the applicability of the proposed method for efficient estimation of movement parameters and for continuous motor control.

  5. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study.

    PubMed

    Jeunet, Camille; Jahanpour, Emilie; Lotte, Fabien

    2016-06-01

    While promising, electroencephaloraphy based brain-computer interfaces (BCIs) are barely used due to their lack of reliability: 15% to 30% of users are unable to control a BCI. Standard training protocols may be partly responsible as they do not satisfy recommendations from psychology. Our main objective was to determine in practice to what extent standard training protocols impact users' motor imagery based BCI (MI-BCI) control performance. We performed two experiments. The first consisted in evaluating the efficiency of a standard BCI training protocol for the acquisition of non-BCI related skills in a BCI-free context, which enabled us to rule out the possible impact of BCIs on the training outcome. Thus, participants (N = 54) were asked to perform simple motor tasks. The second experiment was aimed at measuring the correlations between motor tasks and MI-BCI performance. The ten best and ten worst performers of the first study were recruited for an MI-BCI experiment during which they had to learn to perform two MI tasks. We also assessed users' spatial ability and pre-training μ rhythm amplitude, as both have been related to MI-BCI performance in the literature. Around 17% of the participants were unable to learn to perform the motor tasks, which is close to the BCI illiteracy rate. This suggests that standard training protocols are suboptimal for skill teaching. No correlation was found between motor tasks and MI-BCI performance. However, spatial ability played an important role in MI-BCI performance. In addition, once the spatial ability covariable had been controlled for, using an ANCOVA, it appeared that participants who faced difficulty during the first experiment improved during the second while the others did not. These studies suggest that (1) standard MI-BCI training protocols are suboptimal for skill teaching, (2) spatial ability is confirmed as impacting on MI-BCI performance, and (3) when faced with difficult pre-training, subjects seemed to explore more strategies and therefore learn better.

  6. Control of a visual keyboard using an electrocorticographic brain-computer interface.

    PubMed

    Krusienski, Dean J; Shih, Jerry J

    2011-05-01

    Brain-computer interfaces (BCIs) are devices that enable severely disabled people to communicate and interact with their environments using their brain waves. Most studies investigating BCI in humans have used scalp EEG as the source of electrical signals and focused on motor control of prostheses or computer cursors on a screen. The authors hypothesize that the use of brain signals obtained directly from the cortical surface will more effectively control a communication/spelling task compared to scalp EEG. A total of 6 patients with medically intractable epilepsy were tested for the ability to control a visual keyboard using electrocorticographic (ECOG) signals. ECOG data collected during a P300 visual task paradigm were preprocessed and used to train a linear classifier to subsequently predict the intended target letters. The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in 5 of the 6 people tested. ECOG data from electrodes outside the language cortex contributed to the classifier and enabled participants to write words on a visual keyboard. This is a novel finding because previous invasive BCI research in humans used signals exclusively from the motor cortex to control a computer cursor or prosthetic device. These results demonstrate that ECOG signals from electrodes both overlying and outside the language cortex can reliably control a visual keyboard to generate language output without voice or limb movements.

  7. Computing Arm Movements with a Monkey Brainet.

    PubMed

    Ramakrishnan, Arjun; Ifft, Peter J; Pais-Vieira, Miguel; Byun, Yoon Woo; Zhuang, Katie Z; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2015-07-09

    Traditionally, brain-machine interfaces (BMIs) extract motor commands from a single brain to control the movements of artificial devices. Here, we introduce a Brainet that utilizes very-large-scale brain activity (VLSBA) from two (B2) or three (B3) nonhuman primates to engage in a common motor behaviour. A B2 generated 2D movements of an avatar arm where each monkey contributed equally to X and Y coordinates; or one monkey fully controlled the X-coordinate and the other controlled the Y-coordinate. A B3 produced arm movements in 3D space, while each monkey generated movements in 2D subspaces (X-Y, Y-Z, or X-Z). With long-term training we observed increased coordination of behavior, increased correlations in neuronal activity between different brains, and modifications to neuronal representation of the motor plan. Overall, performance of the Brainet improved owing to collective monkey behaviour. These results suggest that primate brains can be integrated into a Brainet, which self-adapts to achieve a common motor goal.

  8. Computing Arm Movements with a Monkey Brainet

    PubMed Central

    Ramakrishnan, Arjun; Ifft, Peter J.; Pais-Vieira, Miguel; Woo Byun, Yoon; Zhuang, Katie Z.; Lebedev, Mikhail A.; Nicolelis, Miguel A.L.

    2015-01-01

    Traditionally, brain-machine interfaces (BMIs) extract motor commands from a single brain to control the movements of artificial devices. Here, we introduce a Brainet that utilizes very-large-scale brain activity (VLSBA) from two (B2) or three (B3) nonhuman primates to engage in a common motor behaviour. A B2 generated 2D movements of an avatar arm where each monkey contributed equally to X and Y coordinates; or one monkey fully controlled the X-coordinate and the other controlled the Y-coordinate. A B3 produced arm movements in 3D space, while each monkey generated movements in 2D subspaces (X-Y, Y-Z, or X-Z). With long-term training we observed increased coordination of behavior, increased correlations in neuronal activity between different brains, and modifications to neuronal representation of the motor plan. Overall, performance of the Brainet improved owing to collective monkey behaviour. These results suggest that primate brains can be integrated into a Brainet, which self-adapts to achieve a common motor goal. PMID:26158523

  9. A Hybrid CMOS-Memristor Neuromorphic Synapse.

    PubMed

    Azghadi, Mostafa Rahimi; Linares-Barranco, Bernabe; Abbott, Derek; Leong, Philip H W

    2017-04-01

    Although data processing technology continues to advance at an astonishing rate, computers with brain-like processing capabilities still elude us. It is envisioned that such computers may be achieved by the fusion of neuroscience and nano-electronics to realize a brain-inspired platform. This paper proposes a high-performance nano-scale Complementary Metal Oxide Semiconductor (CMOS)-memristive circuit, which mimics a number of essential learning properties of biological synapses. The proposed synaptic circuit that is composed of memristors and CMOS transistors, alters its memristance in response to timing differences among its pre- and post-synaptic action potentials, giving rise to a family of Spike Timing Dependent Plasticity (STDP). The presented design advances preceding memristive synapse designs with regards to the ability to replicate essential behaviours characterised in a number of electrophysiological experiments performed in the animal brain, which involve higher order spike interactions. Furthermore, the proposed hybrid device CMOS area is estimated as [Formula: see text] in a [Formula: see text] process-this represents a factor of ten reduction in area with respect to prior CMOS art. The new design is integrated with silicon neurons in a crossbar array structure amenable to large-scale neuromorphic architectures and may pave the way for future neuromorphic systems with spike timing-dependent learning features. These systems are emerging for deployment in various applications ranging from basic neuroscience research, to pattern recognition, to Brain-Machine-Interfaces.

  10. Assessing the Depth of Cognitive Processing as the Basis for Potential User-State Adaptation

    PubMed Central

    Nicolae, Irina-Emilia; Acqualagna, Laura; Blankertz, Benjamin

    2017-01-01

    Objective: Decoding neurocognitive processes on a single-trial basis with Brain-Computer Interface (BCI) techniques can reveal the user's internal interpretation of the current situation. Such information can potentially be exploited to make devices and interfaces more user aware. In this line of research, we took a further step by studying neural correlates of different levels of cognitive processes and developing a method that allows to quantify how deeply presented information is processed in the brain. Methods/Approach: Seventeen participants took part in an EEG study in which we evaluated different levels of cognitive processing (no processing, shallow, and deep processing) within three distinct domains (memory, language, and visual imagination). Our investigations showed gradual differences in the amplitudes of event-related potentials (ERPs) and in the extend and duration of event-related desynchronization (ERD) which both correlate with task difficulty. We performed multi-modal classification to map the measured correlates of neurocognitive processing to the corresponding level of processing. Results: Successful classification of the neural components was achieved, which reflects the level of cognitive processing performed by the participants. The results show performances above chance level for each participant and a mean performance of 70–90% for all conditions and classification pairs. Significance: The successful estimation of the level of cognition on a single-trial basis supports the feasibility of user-state adaptation based on ongoing neural activity. There is a variety of potential use cases such as: a user-friendly adaptive design of an interface or the development of assistance systems in safety critical workplaces. PMID:29046625

  11. Assessing the Depth of Cognitive Processing as the Basis for Potential User-State Adaptation.

    PubMed

    Nicolae, Irina-Emilia; Acqualagna, Laura; Blankertz, Benjamin

    2017-01-01

    Objective: Decoding neurocognitive processes on a single-trial basis with Brain-Computer Interface (BCI) techniques can reveal the user's internal interpretation of the current situation. Such information can potentially be exploited to make devices and interfaces more user aware. In this line of research, we took a further step by studying neural correlates of different levels of cognitive processes and developing a method that allows to quantify how deeply presented information is processed in the brain. Methods/Approach: Seventeen participants took part in an EEG study in which we evaluated different levels of cognitive processing (no processing, shallow, and deep processing) within three distinct domains (memory, language, and visual imagination). Our investigations showed gradual differences in the amplitudes of event-related potentials (ERPs) and in the extend and duration of event-related desynchronization (ERD) which both correlate with task difficulty. We performed multi-modal classification to map the measured correlates of neurocognitive processing to the corresponding level of processing. Results: Successful classification of the neural components was achieved, which reflects the level of cognitive processing performed by the participants. The results show performances above chance level for each participant and a mean performance of 70-90% for all conditions and classification pairs. Significance: The successful estimation of the level of cognition on a single-trial basis supports the feasibility of user-state adaptation based on ongoing neural activity. There is a variety of potential use cases such as: a user-friendly adaptive design of an interface or the development of assistance systems in safety critical workplaces.

  12. A brain-computer interface based on self-regulation of gamma-oscillations in the superior parietal cortex

    NASA Astrophysics Data System (ADS)

    Grosse-Wentrup, Moritz; Schölkopf, Bernhard

    2014-10-01

    Objective. Brain-computer interface (BCI) systems are often based on motor- and/or sensory processes that are known to be impaired in late stages of amyotrophic lateral sclerosis (ALS). We propose a novel BCI designed for patients in late stages of ALS that only requires high-level cognitive processes to transmit information from the user to the BCI. Approach. We trained subjects via EEG-based neurofeedback to self-regulate the amplitude of gamma-oscillations in the superior parietal cortex (SPC). We argue that parietal gamma-oscillations are likely to be associated with high-level attentional processes, thereby providing a communication channel that does not rely on the integrity of sensory- and/or motor-pathways impaired in late stages of ALS. Main results. Healthy subjects quickly learned to self-regulate gamma-power in the SPC by alternating between states of focused attention and relaxed wakefulness, resulting in an average decoding accuracy of 70.2%. One locked-in ALS patient (ALS-FRS-R score of zero) achieved an average decoding accuracy significantly above chance-level though insufficient for communication (55.8%). Significance. Self-regulation of gamma-power in the SPC is a feasible paradigm for brain-computer interfacing and may be preserved in late stages of ALS. This provides a novel approach to testing whether completely locked-in ALS patients retain the capacity for goal-directed thinking.

  13. An adaptive P300-based online brain-computer interface.

    PubMed

    Lenhardt, Alexander; Kaper, Matthias; Ritter, Helge J

    2008-04-01

    The P300 component of an event related potential is widely used in conjunction with brain-computer interfaces (BCIs) to translate the subjects intent by mere thoughts into commands to control artificial devices. A well known application is the spelling of words while selection of the letters is carried out by focusing attention to the target letter. In this paper, we present a P300-based online BCI which reaches very competitive performance in terms of information transfer rates. In addition, we propose an online method that optimizes information transfer rates and/or accuracies. This is achieved by an algorithm which dynamically limits the number of subtrial presentations, according to the subject's current online performance in real-time. We present results of two studies based on 19 different healthy subjects in total who participated in our experiments (seven subjects in the first and 12 subjects in the second one). In the first, study peak information transfer rates up to 92 bits/min with an accuracy of 100% were achieved by one subject with a mean of 32 bits/min at about 80% accuracy. The second experiment employed a dynamic classifier which enables the user to optimize bitrates and/or accuracies by limiting the number of subtrial presentations according to the current online performance of the subject. At the fastest setting, mean information transfer rates could be improved to 50.61 bits/min (i.e., 13.13 symbols/min). The most accurate results with 87.5% accuracy showed a transfer rate of 29.35 bits/min.

  14. A Ternary Brain-Computer Interface Based on Single-Trial Readiness Potentials of Self-initiated Fine Movements: A Diversified Classification Scheme

    PubMed Central

    Abou Zeid, Elias; Rezazadeh Sereshkeh, Alborz; Schultz, Benjamin; Chau, Tom

    2017-01-01

    In recent years, the readiness potential (RP), a type of pre-movement neural activity, has been investigated for asynchronous electroencephalogram (EEG)-based brain-computer interfaces (BCIs). Since the RP is attenuated for involuntary movements, a BCI driven by RP alone could facilitate intentional control amid a plethora of unintentional movements. Previous studies have mainly attempted binary single-trial classification of RP. An RP-based BCI with three or more states would expand the options for functional control. Here, we propose a ternary BCI based on single-trial RPs. This BCI classifies amongst an idle state, a left hand and a right hand self-initiated fine movement. A pipeline of spatio-temporal filtering with per participant parameter optimization was used for feature extraction. The ternary classification was decomposed into binary classifications using a decision-directed acyclic graph (DDAG). For each class pair in the DDAG structure, an ordered diversified classifier system (ODCS-DDAG) was used to select the best among various classification algorithms or to combine the results of different classification algorithms. Using EEG data from 14 participants performing self-initiated left or right key presses, punctuated with rest periods, we compared the performance of ODCS-DDAG to a ternary classifier and four popular multiclass decomposition methods using only a single classification algorithm. ODCS-DDAG had the highest performance (0.769 Cohen's Kappa score) and was significantly better than the ternary classifier and two of the four multiclass decomposition methods. Our work supports further study of RP-based BCI for intuitive asynchronous environmental control or augmentative communication. PMID:28596725

  15. Suppressing flashes of items surrounding targets during calibration of a P300-based brain-computer interface improves performance

    NASA Astrophysics Data System (ADS)

    Frye, G. E.; Hauser, C. K.; Townsend, G.; Sellers, E. W.

    2011-04-01

    Since the introduction of the P300 brain-computer interface (BCI) speller by Farwell and Donchin in 1988, the speed and accuracy of the system has been significantly improved. Larger electrode montages and various signal processing techniques are responsible for most of the improvement in performance. New presentation paradigms have also led to improvements in bit rate and accuracy (e.g. Townsend et al (2010 Clin. Neurophysiol. 121 1109-20)). In particular, the checkerboard paradigm for online P300 BCI-based spelling performs well, has started to document what makes for a successful paradigm, and is a good platform for further experimentation. The current paper further examines the checkerboard paradigm by suppressing items which surround the target from flashing during calibration (i.e. the suppression condition). In the online feedback mode the standard checkerboard paradigm is used with a stepwise linear discriminant classifier derived from the suppression condition and one classifier derived from the standard checkerboard condition, counter-balanced. The results of this research demonstrate that using suppression during calibration produces significantly more character selections/min ((6.46) time between selections included) than the standard checkerboard condition (5.55), and significantly fewer target flashes are needed per selection in the SUP condition (5.28) as compared to the RCP condition (6.17). Moreover, accuracy in the SUP and RCP conditions remained equivalent (~90%). Mean theoretical bit rate was 53.62 bits/min in the suppression condition and 46.36 bits/min in the standard checkerboard condition (ns). Waveform morphology also showed significant differences in amplitude and latency.

  16. Neuromodulation, agency and autonomy.

    PubMed

    Glannon, Walter

    2014-01-01

    Neuromodulation consists in altering brain activity to restore mental and physical functions in individuals with neuropsychiatric disorders and brain and spinal cord injuries. This can be achieved by delivering electrical stimulation that excites or inhibits neural tissue, by using electrical signals in the brain to move computer cursors or robotic arms, or by displaying brain activity to subjects who regulate that activity by their own responses to it. As enabling prostheses, deep-brain stimulation and brain-computer interfaces (BCIs) are forms of extended embodiment that become integrated into the individual's conception of himself as an autonomous agent. In BCIs and neurofeedback, the success or failure of the techniques depends on the interaction between the learner and the trainer. The restoration of agency and autonomy through neuromodulation thus involves neurophysiological, psychological and social factors.

  17. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness

    NASA Astrophysics Data System (ADS)

    Pichiorri, F.; De Vico Fallani, F.; Cincotti, F.; Babiloni, F.; Molinari, M.; Kleih, S. C.; Neuper, C.; Kübler, A.; Mattia, D.

    2011-04-01

    The main purpose of electroencephalography (EEG)-based brain-computer interface (BCI) technology is to provide an alternative channel to support communication and control when motor pathways are interrupted. Despite the considerable amount of research focused on the improvement of EEG signal detection and translation into output commands, little is known about how learning to operate a BCI device may affect brain plasticity. This study investigated if and how sensorimotor rhythm-based BCI training would induce persistent functional changes in motor cortex, as assessed with transcranial magnetic stimulation (TMS) and high-density EEG. Motor imagery (MI)-based BCI training in naïve participants led to a significant increase in motor cortical excitability, as revealed by post-training TMS mapping of the hand muscle's cortical representation; peak amplitude and volume of the motor evoked potentials recorded from the opponens pollicis muscle were significantly higher only in those subjects who develop a MI strategy based on imagination of hand grasping to successfully control a computer cursor. Furthermore, analysis of the functional brain networks constructed using a connectivity matrix between scalp electrodes revealed a significant decrease in the global efficiency index for the higher-beta frequency range (22-29 Hz), indicating that the brain network changes its topology with practice of hand grasping MI. Our findings build the neurophysiological basis for the use of non-invasive BCI technology for monitoring and guidance of motor imagery-dependent brain plasticity and thus may render BCI a viable tool for post-stroke rehabilitation.

  18. Hybrid Brain–Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review

    PubMed Central

    Hong, Keum-Shik; Khan, Muhammad Jawad

    2017-01-01

    In this article, non-invasive hybrid brain–computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain–computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided. PMID:28790910

  19. Improving zero-training brain-computer interfaces by mixing model estimators

    NASA Astrophysics Data System (ADS)

    Verhoeven, T.; Hübner, D.; Tangermann, M.; Müller, K. R.; Dambre, J.; Kindermans, P. J.

    2017-06-01

    Objective. Brain-computer interfaces (BCI) based on event-related potentials (ERP) incorporate a decoder to classify recorded brain signals and subsequently select a control signal that drives a computer application. Standard supervised BCI decoders require a tedious calibration procedure prior to every session. Several unsupervised classification methods have been proposed that tune the decoder during actual use and as such omit this calibration. Each of these methods has its own strengths and weaknesses. Our aim is to improve overall accuracy of ERP-based BCIs without calibration. Approach. We consider two approaches for unsupervised classification of ERP signals. Learning from label proportions (LLP) was recently shown to be guaranteed to converge to a supervised decoder when enough data is available. In contrast, the formerly proposed expectation maximization (EM) based decoding for ERP-BCI does not have this guarantee. However, while this decoder has high variance due to random initialization of its parameters, it obtains a higher accuracy faster than LLP when the initialization is good. We introduce a method to optimally combine these two unsupervised decoding methods, letting one method’s strengths compensate for the weaknesses of the other and vice versa. The new method is compared to the aforementioned methods in a resimulation of an experiment with a visual speller. Main results. Analysis of the experimental results shows that the new method exceeds the performance of the previous unsupervised classification approaches in terms of ERP classification accuracy and symbol selection accuracy during the spelling experiment. Furthermore, the method shows less dependency on random initialization of model parameters and is consequently more reliable. Significance. Improving the accuracy and subsequent reliability of calibrationless BCIs makes these systems more appealing for frequent use.

  20. Brain-computer interface game applications for combined neurofeedback and biofeedback treatment for children on the autism spectrum.

    PubMed

    Friedrich, Elisabeth V C; Suttie, Neil; Sivanathan, Aparajithan; Lim, Theodore; Louchart, Sandy; Pineda, Jaime A

    2014-01-01

    Individuals with autism spectrum disorder (ASD) show deficits in social and communicative skills, including imitation, empathy, and shared attention, as well as restricted interests and repetitive patterns of behaviors. Evidence for and against the idea that dysfunctions in the mirror neuron system are involved in imitation and could be one underlying cause for ASD is discussed in this review. Neurofeedback interventions have reduced symptoms in children with ASD by self-regulation of brain rhythms. However, cortical deficiencies are not the only cause of these symptoms. Peripheral physiological activity, such as the heart rate and its variability, is closely linked to neurophysiological signals and associated with social engagement. Therefore, a combined approach targeting the interplay between brain, body, and behavior could be more effective. Brain-computer interface applications for combined neurofeedback and biofeedback treatment for children with ASD are currently nonexistent. To facilitate their use, we have designed an innovative game that includes social interactions and provides neural- and body-based feedback that corresponds directly to the underlying significance of the trained signals as well as to the behavior that is reinforced.

  1. CSP - 2017 International Conference of Mobile Brain Body Imaging (MoBI) and the Neuroscience of Art, Innovation and Creativity

    DTIC Science & Technology

    2017-09-10

    including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services , Directorate for Information Operations and...covered in the conference: 1) Wearable Mobile Brain-Body Imaging (MoBI) technologies (both hardware and software developments); 2) Cognitive and Brain...the state of the art and challenges in cognitive and affective brain-computer interfaces, and their deployment in the service of the arts and the

  2. Evolvix BEST Names for semantic reproducibility across code2brain interfaces.

    PubMed

    Loewe, Laurence; Scheuer, Katherine S; Keel, Seth A; Vyas, Vaibhav; Liblit, Ben; Hanlon, Bret; Ferris, Michael C; Yin, John; Dutra, Inês; Pietsch, Anthony; Javid, Christine G; Moog, Cecilia L; Meyer, Jocelyn; Dresel, Jerdon; McLoone, Brian; Loberger, Sonya; Movaghar, Arezoo; Gilchrist-Scott, Morgaine; Sabri, Yazeed; Sescleifer, Dave; Pereda-Zorrilla, Ivan; Zietlow, Andrew; Smith, Rodrigo; Pietenpol, Samantha; Goldfinger, Jacob; Atzen, Sarah L; Freiberg, Erika; Waters, Noah P; Nusbaum, Claire; Nolan, Erik; Hotz, Alyssa; Kliman, Richard M; Mentewab, Ayalew; Fregien, Nathan; Loewe, Martha

    2017-01-01

    Names in programming are vital for understanding the meaning of code and big data. We define code2brain (C2B) interfaces as maps in compilers and brains between meaning and naming syntax, which help to understand executable code. While working toward an Evolvix syntax for general-purpose programming that makes accurate modeling easy for biologists, we observed how names affect C2B quality. To protect learning and coding investments, C2B interfaces require long-term backward compatibility and semantic reproducibility (accurate reproduction of computational meaning from coder-brains to reader-brains by code alone). Semantic reproducibility is often assumed until confusing synonyms degrade modeling in biology to deciphering exercises. We highlight empirical naming priorities from diverse individuals and roles of names in different modes of computing to show how naming easily becomes impossibly difficult. We present the Evolvix BEST (Brief, Explicit, Summarizing, Technical) Names concept for reducing naming priority conflicts, test it on a real challenge by naming subfolders for the Project Organization Stabilizing Tool system, and provide naming questionnaires designed to facilitate C2B debugging by improving names used as keywords in a stabilizing programming language. Our experiences inspired us to develop Evolvix using a flipped programming language design approach with some unexpected features and BEST Names at its core. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  3. GeNN: a code generation framework for accelerated brain simulations

    NASA Astrophysics Data System (ADS)

    Yavuz, Esin; Turner, James; Nowotny, Thomas

    2016-01-01

    Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/.

  4. GeNN: a code generation framework for accelerated brain simulations.

    PubMed

    Yavuz, Esin; Turner, James; Nowotny, Thomas

    2016-01-07

    Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/.

  5. GeNN: a code generation framework for accelerated brain simulations

    PubMed Central

    Yavuz, Esin; Turner, James; Nowotny, Thomas

    2016-01-01

    Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/. PMID:26740369

  6. Interfacing Computer Aided Parallelization and Performance Analysis

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit; Biegel, Bryan A. (Technical Monitor)

    2003-01-01

    When porting sequential applications to parallel computer architectures, the program developer will typically go through several cycles of source code optimization and performance analysis. We have started a project to develop an environment where the user can jointly navigate through program structure and performance data information in order to make efficient optimization decisions. In a prototype implementation we have interfaced the CAPO computer aided parallelization tool with the Paraver performance analysis tool. We describe both tools and their interface and give an example for how the interface helps within the program development cycle of a benchmark code.

  7. A general method for assessing brain-computer interface performance and its limitations

    NASA Astrophysics Data System (ADS)

    Hill, N. Jeremy; Häuser, Ann-Katrin; Schalk, Gerwin

    2014-04-01

    Objective. When researchers evaluate brain-computer interface (BCI) systems, we want quantitative answers to questions such as: How good is the system’s performance? How good does it need to be? and: Is it capable of reaching the desired level in future? In response to the current lack of objective, quantitative, study-independent approaches, we introduce methods that help to address such questions. We identified three challenges: (I) the need for efficient measurement techniques that adapt rapidly and reliably to capture a wide range of performance levels; (II) the need to express results in a way that allows comparison between similar but non-identical tasks; (III) the need to measure the extent to which certain components of a BCI system (e.g. the signal processing pipeline) not only support BCI performance, but also potentially restrict the maximum level it can reach. Approach. For challenge (I), we developed an automatic staircase method that adjusted task difficulty adaptively along a single abstract axis. For challenge (II), we used the rate of information gain between two Bernoulli distributions: one reflecting the observed success rate, the other reflecting chance performance estimated by a matched random-walk method. This measure includes Wolpaw’s information transfer rate as a special case, but addresses the latter’s limitations including its restriction to item-selection tasks. To validate our approach and address challenge (III), we compared four healthy subjects’ performance using an EEG-based BCI, a ‘Direct Controller’ (a high-performance hardware input device), and a ‘Pseudo-BCI Controller’ (the same input device, but with control signals processed by the BCI signal processing pipeline). Main results. Our results confirm the repeatability and validity of our measures, and indicate that our BCI signal processing pipeline reduced attainable performance by about 33% (21 bits min-1). Significance. Our approach provides a flexible basis for evaluating BCI performance and its limitations, across a wide range of tasks and task difficulties.

  8. Exploring the Impact of Target Eccentricity and Task Difficulty on Covert Visual Spatial Attention and Its Implications for Brain Computer Interfacing

    PubMed Central

    Roijendijk, Linsey; Farquhar, Jason; van Gerven, Marcel; Jensen, Ole; Gielen, Stan

    2013-01-01

    Objective Covert visual spatial attention is a relatively new task used in brain computer interfaces (BCIs) and little is known about the characteristics which may affect performance in BCI tasks. We investigated whether eccentricity and task difficulty affect alpha lateralization and BCI performance. Approach We conducted a magnetoencephalography study with 14 participants who performed a covert orientation discrimination task at an easy or difficult stimulus contrast at either a near (3.5°) or far (7°) eccentricity. Task difficulty was manipulated block wise and subjects were aware of the difficulty level of each block. Main Results Grand average analyses revealed a significantly larger hemispheric lateralization of posterior alpha power in the difficult condition than in the easy condition, while surprisingly no difference was found for eccentricity. The difference between task difficulty levels was significant in the interval between 1.85 s and 2.25 s after cue onset and originated from a stronger decrease in the contralateral hemisphere. No significant effect of eccentricity was found. Additionally, single-trial classification analysis revealed a higher classification rate in the difficult (65.9%) than in the easy task condition (61.1%). No effect of eccentricity was found in classification rate. Significance Our results indicate that manipulating the difficulty of a task gives rise to variations in alpha lateralization and that using a more difficult task improves covert visual spatial attention BCI performance. The variations in the alpha lateralization could be caused by different factors such as an increased mental effort or a higher visual attentional demand. Further research is necessary to discriminate between them. We did not discover any effect of eccentricity in contrast to results of previous research. PMID:24312477

  9. Exploring the impact of target eccentricity and task difficulty on covert visual spatial attention and its implications for brain computer interfacing.

    PubMed

    Roijendijk, Linsey; Farquhar, Jason; van Gerven, Marcel; Jensen, Ole; Gielen, Stan

    2013-01-01

    Covert visual spatial attention is a relatively new task used in brain computer interfaces (BCIs) and little is known about the characteristics which may affect performance in BCI tasks. We investigated whether eccentricity and task difficulty affect alpha lateralization and BCI performance. We conducted a magnetoencephalography study with 14 participants who performed a covert orientation discrimination task at an easy or difficult stimulus contrast at either a near (3.5°) or far (7°) eccentricity. Task difficulty was manipulated block wise and subjects were aware of the difficulty level of each block. Grand average analyses revealed a significantly larger hemispheric lateralization of posterior alpha power in the difficult condition than in the easy condition, while surprisingly no difference was found for eccentricity. The difference between task difficulty levels was significant in the interval between 1.85 s and 2.25 s after cue onset and originated from a stronger decrease in the contralateral hemisphere. No significant effect of eccentricity was found. Additionally, single-trial classification analysis revealed a higher classification rate in the difficult (65.9%) than in the easy task condition (61.1%). No effect of eccentricity was found in classification rate. Our results indicate that manipulating the difficulty of a task gives rise to variations in alpha lateralization and that using a more difficult task improves covert visual spatial attention BCI performance. The variations in the alpha lateralization could be caused by different factors such as an increased mental effort or a higher visual attentional demand. Further research is necessary to discriminate between them. We did not discover any effect of eccentricity in contrast to results of previous research.

  10. Driving a Semiautonomous Mobile Robotic Car Controlled by an SSVEP-Based BCI.

    PubMed

    Stawicki, Piotr; Gembler, Felix; Volosyak, Ivan

    2016-01-01

    Brain-computer interfaces represent a range of acknowledged technologies that translate brain activity into computer commands. The aim of our research is to develop and evaluate a BCI control application for certain assistive technologies that can be used for remote telepresence or remote driving. The communication channel to the target device is based on the steady-state visual evoked potentials. In order to test the control application, a mobile robotic car (MRC) was introduced and a four-class BCI graphical user interface (with live video feedback and stimulation boxes on the same screen) for piloting the MRC was designed. For the purpose of evaluating a potential real-life scenario for such assistive technology, we present a study where 61 subjects steered the MRC through a predetermined route. All 61 subjects were able to control the MRC and finish the experiment (mean time 207.08 s, SD 50.25) with a mean (SD) accuracy and ITR of 93.03% (5.73) and 14.07 bits/min (4.44), respectively. The results show that our proposed SSVEP-based BCI control application is suitable for mobile robots with a shared-control approach. We also did not observe any negative influence of the simultaneous live video feedback and SSVEP stimulation on the performance of the BCI system.

  11. Leveraging anatomical information to improve transfer learning in brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Wronkiewicz, Mark; Larson, Eric; Lee, Adrian K. C.

    2015-08-01

    Objective. Brain-computer interfaces (BCIs) represent a technology with the potential to rehabilitate a range of traumatic and degenerative nervous system conditions but require a time-consuming training process to calibrate. An area of BCI research known as transfer learning is aimed at accelerating training by recycling previously recorded training data across sessions or subjects. Training data, however, is typically transferred from one electrode configuration to another without taking individual head anatomy or electrode positioning into account, which may underutilize the recycled data. Approach. We explore transfer learning with the use of source imaging, which estimates neural activity in the cortex. Transferring estimates of cortical activity, in contrast to scalp recordings, provides a way to compensate for variability in electrode positioning and head morphologies across subjects and sessions. Main results. Based on simulated and measured electroencephalography activity, we trained a classifier using data transferred exclusively from other subjects and achieved accuracies that were comparable to or surpassed a benchmark classifier (representative of a real-world BCI). Our results indicate that classification improvements depend on the number of trials transferred and the cortical region of interest. Significance. These findings suggest that cortical source-based transfer learning is a principled method to transfer data that improves BCI classification performance and provides a path to reduce BCI calibration time.

  12. Quantitative analysis of task selection for brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Llera, Alberto; Gómez, Vicenç; Kappen, Hilbert J.

    2014-10-01

    Objective. To assess quantitatively the impact of task selection in the performance of brain-computer interfaces (BCI). Approach. We consider the task-pairs derived from multi-class BCI imagery movement tasks in three different datasets. We analyze for the first time the benefits of task selection on a large-scale basis (109 users) and evaluate the possibility of transferring task-pair information across days for a given subject. Main results. Selecting the subject-dependent optimal task-pair among three different imagery movement tasks results in approximately 20% potential increase in the number of users that can be expected to control a binary BCI. The improvement is observed with respect to the best task-pair fixed across subjects. The best task-pair selected for each subject individually during a first day of recordings is generally a good task-pair in subsequent days. In general, task learning from the user side has a positive influence in the generalization of the optimal task-pair, but special attention should be given to inexperienced subjects. Significance. These results add significant evidence to existing literature that advocates task selection as a necessary step towards usable BCIs. This contribution motivates further research focused on deriving adaptive methods for task selection on larger sets of mental tasks in practical online scenarios.

  13. A small, portable, battery-powered brain-computer interface system for motor rehabilitation.

    PubMed

    McCrimmon, Colin M; Ming Wang; Silva Lopes, Lucas; Wang, Po T; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An H

    2016-08-01

    Motor rehabilitation using brain-computer interface (BCI) systems may facilitate functional recovery in individuals after stroke or spinal cord injury. Nevertheless, these systems are typically ill-suited for widespread adoption due to their size, cost, and complexity. In this paper, a small, portable, and extremely cost-efficient (<;$200) BCI system has been developed using a custom electroencephalographic (EEG) amplifier array, and a commercial microcontroller and touchscreen. The system's performance was tested using a movement-related BCI task in 3 able-bodied subjects with minimal previous BCI experience. Specifically, subjects were instructed to alternate between relaxing and dorsiflexing their right foot, while their EEG was acquired and analyzed in real-time by the BCI system to decode their underlying movement state. The EEG signals acquired by the custom amplifier array were similar to those acquired by a commercial amplifier (maximum correlation coefficient ρ=0.85). During real-time BCI operation, the average correlation between instructional cues and decoded BCI states across all subjects (ρ=0.70) was comparable to that of full-size BCI systems. Small, portable, and inexpensive BCI systems such as the one reported here may promote a widespread adoption of BCI-based movement rehabilitation devices in stroke and spinal cord injury populations.

  14. Leveraging anatomical information to improve transfer learning in brain-computer interfaces.

    PubMed

    Wronkiewicz, Mark; Larson, Eric; Lee, Adrian K C

    2015-08-01

    Brain-computer interfaces (BCIs) represent a technology with the potential to rehabilitate a range of traumatic and degenerative nervous system conditions but require a time-consuming training process to calibrate. An area of BCI research known as transfer learning is aimed at accelerating training by recycling previously recorded training data across sessions or subjects. Training data, however, is typically transferred from one electrode configuration to another without taking individual head anatomy or electrode positioning into account, which may underutilize the recycled data. We explore transfer learning with the use of source imaging, which estimates neural activity in the cortex. Transferring estimates of cortical activity, in contrast to scalp recordings, provides a way to compensate for variability in electrode positioning and head morphologies across subjects and sessions. Based on simulated and measured electroencephalography activity, we trained a classifier using data transferred exclusively from other subjects and achieved accuracies that were comparable to or surpassed a benchmark classifier (representative of a real-world BCI). Our results indicate that classification improvements depend on the number of trials transferred and the cortical region of interest. These findings suggest that cortical source-based transfer learning is a principled method to transfer data that improves BCI classification performance and provides a path to reduce BCI calibration time.

  15. Time-Shift Correlation Algorithm for P300 Event Related Potential Brain-Computer Interface Implementation

    PubMed Central

    Liu, Ju-Chi; Chou, Hung-Chyun; Chen, Chien-Hsiu; Lin, Yi-Tseng

    2016-01-01

    A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI). The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN), and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM) and accuracy-recognition mode (AM), were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR). When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints. PMID:27579033

  16. Driving a Semiautonomous Mobile Robotic Car Controlled by an SSVEP-Based BCI

    PubMed Central

    2016-01-01

    Brain-computer interfaces represent a range of acknowledged technologies that translate brain activity into computer commands. The aim of our research is to develop and evaluate a BCI control application for certain assistive technologies that can be used for remote telepresence or remote driving. The communication channel to the target device is based on the steady-state visual evoked potentials. In order to test the control application, a mobile robotic car (MRC) was introduced and a four-class BCI graphical user interface (with live video feedback and stimulation boxes on the same screen) for piloting the MRC was designed. For the purpose of evaluating a potential real-life scenario for such assistive technology, we present a study where 61 subjects steered the MRC through a predetermined route. All 61 subjects were able to control the MRC and finish the experiment (mean time 207.08 s, SD 50.25) with a mean (SD) accuracy and ITR of 93.03% (5.73) and 14.07 bits/min (4.44), respectively. The results show that our proposed SSVEP-based BCI control application is suitable for mobile robots with a shared-control approach. We also did not observe any negative influence of the simultaneous live video feedback and SSVEP stimulation on the performance of the BCI system. PMID:27528864

  17. Time-Shift Correlation Algorithm for P300 Event Related Potential Brain-Computer Interface Implementation.

    PubMed

    Liu, Ju-Chi; Chou, Hung-Chyun; Chen, Chien-Hsiu; Lin, Yi-Tseng; Kuo, Chung-Hsien

    2016-01-01

    A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI). The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN), and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM) and accuracy-recognition mode (AM), were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR). When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints.

  18. SSVEP recognition using common feature analysis in brain-computer interface.

    PubMed

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2015-04-15

    Canonical correlation analysis (CCA) has been successfully applied to steady-state visual evoked potential (SSVEP) recognition for brain-computer interface (BCI) application. Although the CCA method outperforms the traditional power spectral density analysis through multi-channel detection, it requires additionally pre-constructed reference signals of sine-cosine waves. It is likely to encounter overfitting in using a short time window since the reference signals include no features from training data. We consider that a group of electroencephalogram (EEG) data trials recorded at a certain stimulus frequency on a same subject should share some common features that may bear the real SSVEP characteristics. This study therefore proposes a common feature analysis (CFA)-based method to exploit the latent common features as natural reference signals in using correlation analysis for SSVEP recognition. Good performance of the CFA method for SSVEP recognition is validated with EEG data recorded from ten healthy subjects, in contrast to CCA and a multiway extension of CCA (MCCA). Experimental results indicate that the CFA method significantly outperformed the CCA and the MCCA methods for SSVEP recognition in using a short time window (i.e., less than 1s). The superiority of the proposed CFA method suggests it is promising for the development of a real-time SSVEP-based BCI. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Cognitive assessment in Amyotrophic Lateral Sclerosis by means of P300-Brain Computer Interface: a preliminary study.

    PubMed

    Poletti, Barbara; Carelli, Laura; Solca, Federica; Lafronza, Annalisa; Pedroli, Elisa; Faini, Andrea; Zago, Stefano; Ticozzi, Nicola; Meriggi, Paolo; Cipresso, Pietro; Lulé, Dorothée; Ludolph, Albert C; Riva, Giuseppe; Silani, Vincenzo

    To investigate the use of P300-based Brain Computer Interface (BCI) technology for the administration of motor-verbal free cognitive tests in Amyotrophic Lateral Sclerosis (ALS). We recruited 15 ALS patients and 15 age- and education-matched healthy subjects. All participants underwent a BCI-based neuropsychological assessment, together with two standard cognitive screening tools (FAB, MoCA), two psychological questionnaires (BDI, STAI-Y) and a usability questionnaire. For patients, clinical and respiratory examinations were also performed, together with a behavioural assessment (FBI). Correlations were observed between standard cognitive and BCI-based neuropsychological assessment, mainly concerning execution times in the ALS group. Moreover, patients provided positive rates concerning the BCI perceived usability and subjective experience. Finally, execution times at the BCI-based neuropsychological assessment were useful to discriminate patients from controls, with patients achieving lower processing speed than controls regarding executive functions. The developed motor-verbal free neuropsychological battery represents an innovative approach, that could provide relevant information for clinical practice and ethical issues. Its use for cognitive evaluation throughout the course of ALS, currently not available by means of standard assessment, must be addressed in further longitudinal validation studies. Further work will be aimed at refining the developed system and enlarging the cognitive spectrum investigated.

  20. The Effect of a Transcranial Channel as a Skull/Brain Interface in High-Definition Transcranial Direct Current Stimulation—A Computational Study

    PubMed Central

    Seo, Hyeon; Kim, Hyoung-Ihl; Jun, Sung Chan

    2017-01-01

    A transcranial channel is an interface between the skull and brain; it consists of a biocompatible and highly conductive material that helps convey the current induced by transcranial direct current stimulation (tDCS) to the target area. However, it has been proposed only conceptually, and there has been no concrete study of its efficacy. In this work, we conducted a computational investigation of this conceptual transcranial model with high-definition tDCS, inducing focalized neuromodulation to determine whether inclusion of a transcranial channel performs effectively. To do so, we constructed an anatomically realistic head model and compartmental pyramidal neuronal models. We analyzed membrane polarization by extracellular stimulation and found that the inclusion of a transcranial channel induced polarization at the target area 11 times greater than conventional HD-tDCS without the transcranial channel. Furthermore, the stimulation effect of the transcranial channel persisted up to approximately 80%, even when the stimulus electrodes were displaced approximately 5 mm from the target area. We investigated the efficacy of the transcranial channel and found that greatly improved stimulation intensity and focality may be achieved. Thus, the use of these channels may be promising for clinical treatment. PMID:28084429

Top