Sample records for brainstem evoked potentials

  1. Brainstem Auditory Evoked Potential in HIV-Positive Adults.

    PubMed

    Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C

    2015-10-20

    To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment - research groups I and II, respectively - and 30 control group individuals) were assessed through brainstem auditory evoked potential. There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment.

  2. Brainstem Auditory Evoked Potential Study in Children with Autistic Disorder.

    ERIC Educational Resources Information Center

    Wong, Virginia; Wong, Sik Nin

    1991-01-01

    Brainstem auditory evoked potentials were compared in 109 children with infantile autism, 38 with autistic condition, 19 with mental retardation, and 20 normal children. Children with infantile autism or autistic condition had significantly longer brainstem transmission time than normal children suggesting neurological damage as the basis of…

  3. Utility of Brainstem Trigeminal Evoked Potentials in Patients With Primary Trigeminal Neuralgia Treated by Microvascular Decompression.

    PubMed

    Zhu, Jin; Zhang, Xin; Zhao, Hua; Tang, Yin-Da; Ying, Ting-Ting; Li, Shi-Ting

    2017-09-01

    To investigate the characteristics of brainstem trigeminal evoked potentials (BTEP) waveform in patients with and without trigeminal neuralgia (TN), and to discuss the utility of BTEP in patients with primary TN treated by microvascular decompression (MVD). A retrospective review of 43 patients who underwent BTEP between January 2016 and June 2016, including 33 patients with TN who underwent MVD and 10 patients without TN. Brainstem trigeminal evoked potentials characteristics of TN and non-TN were summarized, in particular to compare the BTEP changes between pre- and post-MVD, and to discover the relationship between BTEP changes and surgical outcome. Brainstem trigeminal evoked potentials can be recorded in patients without trigeminal neuralgia. Abnormal BTEP could be recorded when different branches were stimulated. After decompression, the original W2, W3 disappeared and then replaced by a large wave in most patients, or original wave poorly differentiated improved in some patients, showed as shorter latency and (or) amplitude increased. Brainstem trigeminal evoked potentials waveform of healthy side in patients with trigeminal neuralgia was similar to the waveform of patients without TN. In 3 patients, after decompression the W2, W3 peaks increased, and the latency, duration, IPLD did not change significantly. Until discharge, 87.9% (29/33) of the patients presented complete absence of pain without medication (BNI I) and 93.9% (31/33) had good pain control without medication (BNI I-II). Brainstem trigeminal evoked potentials can reflect the conduction function of the trigeminal nerve to evaluate the functional level of the trigeminal nerve conduction pathway. The improvement and restoration of BTEP waveforms are closely related to the postoperative curative effect.

  4. [Forensic application of brainstem auditory evoked potential in patients with brain concussion].

    PubMed

    Zheng, Xing-Bin; Li, Sheng-Yan; Huang, Si-Xing; Ma, Ke-Xin

    2008-12-01

    To investigate changes of brainstem auditory evoked potential (BAEP) in patients with brain concussion. Nineteen patients with brain concussion were studied with BAEP examination. The data was compared to the healthy persons reported in literatures. The abnormal rate of BAEP for patients with brain concussion was 89.5%. There was a statistically significant difference between the abnormal rate of patients and that of healthy persons (P<0.05). The abnormal rate of BAEP in the brainstem pathway for patients with brain concussion was 73.7%, indicating dysfunction of the brainstem in those patients. BAEP might be helpful in forensic diagnosis of brain concussion.

  5. Interside Latency Differences in Brainstem Auditory and Somatosensory Evoked Potentials. Defining Upper Limits to Determine Asymmetry.

    PubMed

    Moncho, Dulce; Poca, Maria A; Minoves, Teresa; Ferré, Alejandro; Sahuquillo, Juan

    2015-10-01

    Limits of the interside differences are invaluable when interpreting asymmetry in brainstem auditory evoked potentials and somatosensory evoked potentials (SEP) recordings. The aim of this study was to analyze the normal upper limits of interside latency differences of brainstem auditory evoked potentials and SEP from the posterior tibial nerve and median nerve to determine asymmetry. The authors performed a prospective study in 56 healthy subjects aged 15 to 64 years with no neurological or hearing disorders. They analyzed (1) the latencies of I, III, and V waves and I-III, III-V, and I-V intervals and the amplitude ratios V/I and IV/I for brainstem auditory evoked potentials bilaterally; (2) the latencies of N8, N22, N28, and P37 waves and the interval N22-P37 and the amplitude P37 for posterior tibial nerve SEP bilaterally; and (3) the latencies and amplitudes of N9, N13, and N20 waves and N9-N13 and N13-N20 intervals for median nerve SEP bilaterally. The interside differences for these parameters were calculated and analyzed. The authors obtained an upper limit for the interside latency differences from brainstem auditory evoked potentials that was significantly lower than the previously published data. However, the upper limits of interside latency differences for SEP were similar to those previously reported. The findings of this study should be considered when laboratories analyze asymmetry using the normative data published by another center, however temporarily, in organizing new laboratories.

  6. Visual and brainstem auditory evoked potentials in infants with severe vitamin B12 deficiency.

    PubMed

    Demir, Nihat; Koç, Ahmet; Abuhandan, Mahmut; Calik, Mustafa; Işcan, Akin

    2015-01-01

    Vitamin B12 plays an important role in the development of mental, motor, cognitive, and social functions via its role in DNA synthesis and nerve myelination. Its deficiency in infants might cause neuromotor retardation as well as megaloblastic anemia. The objective of this study was to investigate the effects of infantile vitamin B12 deficiency on evoked brain potentials and determine whether improvement could be obtained with vitamin B12 replacement at appropriate dosages. Thirty patients with vitamin B12 deficiency and 30 age-matched healthy controls were included in the study. Hematological parameters, visual evoked potentials, and brainstem auditory evoked potentials tests were performed prior to treatment, 1 week after treatment, and 3 months after treatment. Visual evoked potentials (VEPs) and brainstem auditory evoked potentials (BAEPs) were found to be prolonged in 16 (53.3%) and 15 (50%) patients, respectively. Statistically significant improvements in VEP and BAEP examinations were determined 3 months after treatment. Three months after treatment, VEP and BAEP examinations returned to normal in 81.3% and 53.3% of subjects with prolonged VEPs and BAEPs, respectively. These results demonstrate that vitamin B12 deficiency in infants causes significant impairment in the auditory and visual functioning tests of the brain, such as VEP and BAEP.

  7. Exploring brainstem function in multiple sclerosis by combining brainstem reflexes, evoked potentials, clinical and MRI investigations.

    PubMed

    Magnano, Immacolata; Pes, Giovanni Mario; Pilurzi, Giovanna; Cabboi, Maria Paola; Ginatempo, Francesca; Giaconi, Elena; Tolu, Eusebio; Achene, Antonio; Salis, Antonio; Rothwell, John C; Conti, Maurizio; Deriu, Franca

    2014-11-01

    To investigate vestibulo-masseteric (VMR), acoustic-masseteric (AMR), vestibulo-collic (VCR) and trigemino-collic (TCR) reflexes in patients with multiple sclerosis (MS); to relate abnormalities of brainstem reflexes (BSRs) to multimodal evoked potentials (EPs), clinical and Magnetic Resonance Imaging (MRI) findings. Click-evoked VMR, AMR and VCR were recorded from active masseter and sternocleidomastoid muscles, respectively; TCR was recorded from active sternocleidomastoid muscles, following electrical stimulation of the infraorbital nerve. EPs and MRI were performed with standard techniques. Frequencies of abnormal BSRs were: VMR 62.1%, AMR 55.1%, VCR 25.9%, TCR 58.6%. Brainstem dysfunction was identified by these tests, combined into a four-reflex battery, in 86.9% of cases, by EPs in 82.7%, MRI in 71.7% and clinical examination in 37.7% of cases. The sensitivity of paired BSRs/EPs (93.3%) was significantly higher than combined MRI/clinical testing (70%) in patients with disease duration ⩽6.4years. BSR alterations significantly correlated with clinical, EP and MRI findings. The four-BSR battery effectively increases the performance of standard EPs in early detection of brainstem impairment, otherwise undetected by clinical examination and neuroimaging. Multiple BSR assessment usefully supplements conventional testing and monitoring of brainstem function in MS, especially in newly diagnosed patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials

    PubMed Central

    Calderón-Garcidueñas, Lilian; D’Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-01-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3± 8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p<0.0001) and wave V (t(50)=19.730; p<0.0001) but no delay in wave I (p=0.548). They also had significantly longer latencies than controls for interwave intervals I–III, III–V, and I–V (all t(50)> 7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid 1–42. Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children’s exposure to urban air pollution increases their risk for auditory and vestibular impairment. PMID:21458557

  9. Brainstem auditory evoked potential wave V latency-intensity function in normal Dalmatian and Beagle puppies.

    PubMed

    Poncelet, L; Coppens, A; Deltenre, P

    2000-01-01

    This study investigated whether Dalmatian puppies with normal hearing bilaterally had the same click-evoked brainstem auditory potential characteristics as age-matched dogs of another breed. Short-latency brainstem auditory potentials evoked by condensation and rarefaction clicks were recorded in 23 1.5- to 2-month-old Dalmatian puppies with normal hearing bilaterally by a qualitative brainstem auditory evoked potential test and in 16 Beagle dogs of the same age. For each stimulus intensity, from 90 dB normal hearing level down to the wave V threshold, the sum of the potentials evoked by the 2 kinds of stimuli were added, giving an equivalent to the alternate click polarity stimulation. The slope of the L segment of the wave V latency-intensity curve was steeper in Dalmatian (-40 +/- 10 micros/dB) than in Beagles (-28 +/- 5 micros/dB, P < .001) puppies. The hearing threshold was lower in the Beagle puppies (P < .05). These results suggest that interbreed differences may exist at the level of cochlear function in this age class. The wave V latency and wave V-wave I latencies differences at high stimulus intensity were different between the groups of puppies (4.3 +/- 0.2 and 2.5 +/- 0.2 milliseconds, respectively, for Beagles; and 4.1 +/- 0.2 and 2.3 +/- 0.2 milliseconds for Dalmatians, P < .05). A different maturation speed of the neural pathways is one possible explanation of this observation.

  10. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials.

    PubMed

    Calderón-Garcidueñas, Lilian; D'Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-06-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3±8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p<0.0001) and wave V (t(50)=19.730; p<0.0001) but no delay in wave I (p=0.548). They also had significantly longer latencies than controls for interwave intervals I-III, III-V, and I-V (all t(50)>7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid(1-42). Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children's exposure to urban air pollution increases their risk for auditory and vestibular impairment. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  11. Brainstem auditory and somatosensory evoked potentials in relation to clinical and neuroimaging findings in Chiari type 1 malformation.

    PubMed

    Moncho, Dulce; Poca, Maria-Antonia; Minoves, Teresa; Ferré, Alejandro; Rahnama, Kimia; Sahuquillo, Juan

    2015-04-01

    The aim of this study was to describe the abnormalities found in the recordings of evoked potentials (EPs), in particular those of brainstem auditory evoked potentials and somatosensory evoked potentials, in a homogeneous series of patients with Chiari type 1 malformation (CM-1) and study their relationship with clinical symptoms and malformation severity. CM-1 is characterized by cerebellar tonsils that descend below the foramen magnum and may be associated with EP alterations. However, only a small number of authors have described these tests in CM-1, and the patient groups studied to date have been small and heterogeneous. The clinical findings, neuroimages, and EP findings were retrospectively studied in a cohort of 50 patients with CM-1. Seventy percent of patients had EP abnormalities (brainstem auditory evoked potential: 52%, posterior tibial nerve somatosensory evoked potential: 42%, and median nerve somatosensory evoked potential: 34%). The most frequent alteration was an increased central conduction time. Morphometric measurements differed between the normal and pathological groups, although no statistical significance was found when comparing these groups. A high percentage of patients with CM-1 show EP alterations regardless of their clinical or radiological findings, thus highlighting the necessity of performing these tests, especially in patients with few or no symptoms.

  12. Gender differences in binaural speech-evoked auditory brainstem response: are they clinically significant?

    PubMed

    Jalaei, Bahram; Azmi, Mohd Hafiz Afifi Mohd; Zakaria, Mohd Normani

    2018-05-17

    Binaurally evoked auditory evoked potentials have good diagnostic values when testing subjects with central auditory deficits. The literature on speech-evoked auditory brainstem response evoked by binaural stimulation is in fact limited. Gender disparities in speech-evoked auditory brainstem response results have been consistently noted but the magnitude of gender difference has not been reported. The present study aimed to compare the magnitude of gender difference in speech-evoked auditory brainstem response results between monaural and binaural stimulations. A total of 34 healthy Asian adults aged 19-30 years participated in this comparative study. Eighteen of them were females (mean age=23.6±2.3 years) and the remaining sixteen were males (mean age=22.0±2.3 years). For each subject, speech-evoked auditory brainstem response was recorded with the synthesized syllable /da/ presented monaurally and binaurally. While latencies were not affected (p>0.05), the binaural stimulation produced statistically higher speech-evoked auditory brainstem response amplitudes than the monaural stimulation (p<0.05). As revealed by large effect sizes (d>0.80), substantive gender differences were noted in most of speech-evoked auditory brainstem response peaks for both stimulation modes. The magnitude of gender difference between the two stimulation modes revealed some distinct patterns. Based on these clinically significant results, gender-specific normative data are highly recommended when using speech-evoked auditory brainstem response for clinical and future applications. The preliminary normative data provided in the present study can serve as the reference for future studies on this test among Asian adults. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  13. Brain-stem evoked potentials and noise effects in seagulls.

    PubMed

    Counter, S A

    1985-01-01

    Brain-stem auditory evoked potentials (BAEP) recorded from the seagull were large-amplitude, short-latency, vertex-positive deflections which originate in the eighth nerve and several brain-stem nuclei. BAEP waveforms were similar in latency and configurations to that reported for certain other lower vertebrates and some mammals. BAEP recorded at several pure tone frequencies throughout the seagull's auditory spectrum showed an area of heightened auditory sensitivity between 1 and 3 kHz. This range was also found to be the primary bandwidth of the vocalization output of young seagulls. Masking by white noise and pure tones had remarkable effects on several parameters of the BAEP. In general, the tone- and click-induced BAEP were either reduced or obliterated by both pure tone and white noise maskers of specific signal to noise ratios and high intensity levels. The masking effects observed in this study may be related to the manner in which seagulls respond to intense environmental noise. One possible conclusion is that intense environmental noise, such as aircraft engine noise, may severely alter the seagull's localization apparatus and induce sonogenic stress, both of which could cause collisions with low-flying aircraft.

  14. Hearing outcomes after loss of brainstem auditory evoked potentials during microvascular decompression.

    PubMed

    Thirumala, Parthasarathy D; Krishnaiah, Balaji; Habeych, Miguel E; Balzer, Jeffrey R; Crammond, Donald J

    2015-04-01

    The primary aim of this paper is to study the pre-operative characteristics, intra-operative changes and post-operative hearing outcomes in patients after complete loss of wave V of the brainstem auditory evoked potential. We retrospectively analyzed the brainstem auditory evoked potential data of 94 patients who underwent microvascular decompression for hemifacial spasm at our institute. Patients were divided into two groups - those with and those without loss of wave V. The differences between the two groups and outcomes were assessed using t-test and chi-squared tests. In our study 23 (24%) patients out of 94 had a complete loss of wave V, with 11 (48%) patients experiencing transient loss and 12 (52%) patients experiencing permanent loss. The incidence of hearing loss in patients with no loss of wave V was 5.7% and 26% in patients who did experience wave V loss. The incidence of hearing change in patients with no loss of wave V was 12.6% and 30.43% in patients who did experience wave V loss. Loss of wave V during the procedure or at the end of procedure significantly increases the odds of hearing loss. Hearing change is a significant under-reported clinical condition after microvascular decompression in patients who have loss of wave V. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Brainstem auditory evoked potentials in children with lead exposure.

    PubMed

    Alvarenga, Katia de Freitas; Morata, Thais Catalani; Lopes, Andrea Cintra; Feniman, Mariza Ribeiro; Corteletti, Lilian Cassia Bornia Jacob

    2015-01-01

    Earlier studies have demonstrated an auditory effect of lead exposure in children, but information on the effects of low chronic exposures needs to be further elucidated. To investigate the effect of low chronic exposures of the auditory system in children with a history of low blood lead levels, using an auditory electrophysiological test. Contemporary cross-sectional cohort. Study participants underwent tympanometry, pure tone and speech audiometry, transient evoked otoacoustic emissions, and brainstem auditory evoked potentials, with blood lead monitoring over a period of 35.5 months. The study included 130 children, with ages ranging from 18 months to 14 years, 5 months (mean age 6 years, 8 months ± 3 years, 2 months). The mean time-integrated cumulative blood lead index was 12 μg/dL (SD ± 5.7, range: 2.433). All participants had hearing thresholds equal to or below 20 dBHL and normal amplitudes of transient evoked otoacoustic emissions. No association was found between the absolute latencies of waves I, III, and V, the interpeak latencies I-III, III-V, and I-V, and the cumulative lead values. No evidence of toxic effects from chronic low lead exposures was observed on the auditory function of children living in a lead contaminated area. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  16. Hearing Screening of High-Risk Newborns with Brainstem Auditory Evoked Potentials: A Follow-Up Study.

    ERIC Educational Resources Information Center

    Shannon, Dorothy A.; And Others

    1984-01-01

    The brainstem auditory evoked potential (BAEP) was evaluated as a hearing screening test in 168 high-risk newborns. The BAEP was found to be a sensitive procedure for the early identification of hearing-impaired newborns. However, the yield of significant hearing abnormalities was less than predicted in other studies using BAEP. (Author/CL)

  17. Generators of the brainstem auditory evoked potential in cat. III: Identified cell populations.

    PubMed

    Melcher, J R; Kiang, N Y

    1996-04-01

    This paper examines the relationship between different brainstem cell populations and the brainstem auditory evoked potential (BAEP). First, we present a mathematical model relating the BAEP to underlying cellular activity. Then, we identify specific cellular generators of the click-evoked BAEP in cats by combining model-derived insights with key experimental data. These data include (a) a correspondence between particular brainstem regions and specific extrema in the BAEP waveform, determined from lesion experiments, and (b) values for model parameters derived from published physiological and anatomical information. Ultimately, we conclude (with varying degrees of confidence) that: (1) the earliest extrema in the BAEP are generated by spiral ganglion cells, (2) P2 is mainly generated by cochlear nucleus (CN) globular cells, (3) P3 is partly generated by CN spherical cells and partly by cells receiving inputs from globular cells, (4) P4 is predominantly generated by medial superior olive (MSO) principal cells, which are driven by spherical cells, (5) the generators of P5 are driven by MSO principal cells, and (6) the BAEP, as a whole, is generated mainly by cells with characteristic frequencies above 2 kHz. Thus, the BAEP in cats mainly reflects cellular activity in two parallel pathways, one originating with globular cells and the other with spherical cells. Since the globular cell pathway is poorly represented in humans, we suggest that the human BAEP is largely generated by brainstem cells in the spherical cell pathway. Given our conclusions, it should now be possible to relate activity in specific cell populations to psychophysical performance since the BAEP can be recorded in behaving humans and animals.

  18. Brainstem auditory-evoked potentials as an objective tool for evaluating hearing dysfunction in traumatic brain injury.

    PubMed

    Lew, Henry L; Lee, Eun Ha; Miyoshi, Yasushi; Chang, Douglas G; Date, Elaine S; Jerger, James F

    2004-03-01

    Because of the violent nature of traumatic brain injury, traumatic brain injury patients are susceptible to various types of trauma involving the auditory system. We report a case of a 55-yr-old man who presented with communication problems after traumatic brain injury. Initial results from behavioral audiometry and Weber/Rinne tests were not reliable because of poor cooperation. He was transferred to our service for inpatient rehabilitation, where review of the initial head computed tomographic scan showed only left temporal bone fracture. Brainstem auditory-evoked potential was then performed to evaluate his hearing function. The results showed bilateral absence of auditory-evoked responses, which strongly suggested bilateral deafness. This finding led to a follow-up computed tomographic scan, with focus on bilateral temporal bones. A subtle transverse fracture of the right temporal bone was then detected, in addition to the left temporal bone fracture previously identified. Like children with hearing impairment, traumatic brain injury patients may not be able to verbalize their auditory deficits in a timely manner. If hearing loss is suspected in a patient who is unable to participate in traditional behavioral audiometric testing, brainstem auditory-evoked potential may be an option for evaluating hearing dysfunction.

  19. The vestibular evoked myogenic potentials (VEMP) score: a promising tool for evaluation of brainstem involvement in multiple sclerosis.

    PubMed

    Gabelić, T; Krbot Skorić, M; Adamec, I; Barun, B; Zadro, I; Habek, M

    2015-02-01

    Concerning the great importance of brainstem involvement in multiple sclerosis (MS), the aim of this study was to explore the role of the newly developed vestibular evoked myogenic potentials (VEMP) score as a possible marker of brainstem involvement in MS patients. This was a prospective case-control study which included 100 MS patients divided into two groups (without and with clinical signs of brainstem involvement) and 50 healthy controls. Ocular VEMP (oVEMP) and cervical VEMP (cVEMP) measurements were performed in all participants and analyzed for latencies, conduction block and amplitude asymmetry ratio. Based on this the VEMP score was calculated and compared with Expanded Disability Status Scale (EDSS), disease duration and magnetic resonance imaging data. Multiple sclerosis patients with clinical signs of brainstem involvement (group 2) had a statistically significant higher percentage of VEMP conduction blocks compared with patients without clinical signs of brainstem involvement (group 1) and healthy controls (P = 0.027 and P < 0.0001, respectively). Similarly, the VEMP score was significantly higher in group 2 compared with group 1 (P = 0.018) and correlated with EDSS and disease duration (P = 0.011 and P = 0.032, respectively). Multivariate linear regression analysis showed that the VEMP score has a statistically significant influence on the EDSS score (P < 0.001, R(2) = 0.239). Interpretation of the oVEMP and cVEMP results in the form of the VEMP score enables better evaluation of brainstem involvement than either of these evoked potentials alone and correlates well with disability. © 2014 EAN.

  20. Visual and brainstem auditory evoked potentials in children with obesity.

    PubMed

    Akın, Onur; Arslan, Mutluay; Akgün, Hakan; Yavuz, Süleyman Tolga; Sarı, Erkan; Taşçılar, Mehmet Emre; Ulaş, Ümit Hıdır; Yeşilkaya, Ediz; Ünay, Bülent

    2016-03-01

    The aim of our study is to investigate alterations in visual evoked potentials (VEP) and brainstem auditory evoked potentials (BAEP) in children with obesity. A total of 96 children, with a mean age of 12.1±2.0 years (range 9-17 years, 63 obese and 33 age and sex-matched control subjects) were included in the study. Laboratory tests were performed to detect insulin resistance (IR) and dyslipidemia. The latencies and amplitudes of VEP and BAEP were measured in healthy and obese subjects. The VEP P100, BAEP interpeak latency (IPL) I-III and IPL I-V averages of obese children were significantly longer than the control subjects. When the obese group was divided into two subgroups, those with IR and without IR, BAEP wave I, wave III and P100 wave latencies were found to be longer in the group with IR. A statistically significant correlation was observed between BAEP wave I latency, IPL I-V, IPL I-III and the homeostatic model assessment insulin resistance (HOMA IR) index and fasting insulin level. Our findings suggest that VEP and BAEP can be used to determine early subclinical on auditory and visual functions of obese children with insulin resistance. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  1. Inhalational exposure to carbonyl sulfide produces altered brainstem auditory and somatosensory-evoked potentials in Fischer 344N rats.

    PubMed

    Herr, David W; Graff, Jaimie E; Moser, Virginia C; Crofton, Kevin M; Little, Peter B; Morgan, Daniel L; Sills, Robert C

    2007-01-01

    Carbonyl sulfide (COS), a chemical listed by the original Clean Air Act, was tested for neurotoxicity by a National Institute of Environmental Health Sciences/National Toxicology Program and U.S. Environmental Protection Agency collaborative investigation. Previous studies demonstrated that COS produced cortical and brainstem lesions and altered auditory neurophysiological responses to click stimuli. This paper reports the results of expanded neurophysiological examinations that were an integral part of the previously published experiments (Morgan et al., 2004, Toxicol. Appl. Pharmacol. 200, 131-145; Sills et al., 2004, Toxicol. Pathol. 32, 1-10). Fisher 334N rats were exposed to 0, 200, 300, or 400 ppm COS for 6 h/day, 5 days/week for 12 weeks, or to 0, 300, or 400 ppm COS for 2 weeks using whole-body inhalation chambers. After treatment, the animals were studied using neurophysiological tests to examine: peripheral nerve function, somatosensory-evoked potentials (SEPs) (tail/hindlimb and facial cortical regions), brainstem auditory-evoked responses (BAERs), and visual flash-evoked potentials (2-week study). Additionally, the animals exposed for 2 weeks were examined using a functional observational battery (FOB) and response modification audiometry (RMA). Peripheral nerve function was not altered for any exposure scenario. Likewise, amplitudes of SEPs recorded from the cerebellum were not altered by treatment with COS. In contrast, amplitudes and latencies of SEPs recorded from cortical areas were altered after 12-week exposure to 400 ppm COS. The SEP waveforms were changed to a greater extent after forelimb stimulation than tail stimulation in the 2-week study. The most consistent findings were decreased amplitudes of BAER peaks associated with brainstem regions after exposure to 400 ppm COS. Additional BAER peaks were affected after 12 weeks, compared to 2 weeks of treatment, indicating that additional regions of the brainstem were damaged with longer exposures

  2. Speech Evoked Auditory Brainstem Response in Stuttering

    PubMed Central

    Tahaei, Ali Akbar; Ashayeri, Hassan; Pourbakht, Akram; Kamali, Mohammad

    2014-01-01

    Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS) at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency. PMID:25215262

  3. Generators of the brainstem auditory evoked potential in cat. II. Correlating lesion sites with waveform changes.

    PubMed

    Melcher, J R; Guinan, J J; Knudson, I M; Kiang, N Y

    1996-04-01

    Brainstem regions involved in generating the brainstem auditory evoked potential (BAEP) were identified by examining the effects of lesions on the click-evoked BAEP in cats. An excitotoxin, kainic acid, was injected into various parts of the cochlear nucleus (CN) or into the superior olivary complex (SOC). The locations of the resulting lesions were correlated with the changes produced in the various extrema of the BAEP waveforms. The results indicate that: (1) the earliest BAEP extrema (P1, N1 (recorded between vertex and the earbar ipsilateral to the stimulus) and P1a, P1b, (vertex to contralateral earbar)) are generated by cells with somata peripheral to the CN; (2) P2 is primarily generated by posterior anteroventral CN (AVCNp) and anterior posteroventral CN (PVCNa) cells; (3) SOC, anterior anteroventral CN (AVCNa), AVCNp, and PVCNa cells are involved in generating P3; (4) AVCNa cells are the main CN cells involved in P4, N4, and P5 generation; (5) both ipsilateral and contralateral SOC cells have a role in generating monaurally evoked P4 and P5; and (6) P5 is generated by cells with characteristic frequencies below 10 kHz. From (2) and (4), it is clear that P2 and P4-P5 are generated by cells in distinct, parallel pathways.

  4. Effects of myelin or cell body brainstem lesions on 3-channel Lissajous' trajectories of feline auditory brainstem evoked potentials.

    PubMed

    Pratt, H; Zaaroor, M; Bleich, N; Starr, A

    1991-06-01

    Auditory brainstem evoked potentials (ABEP) were recorded from 16 awake cats to obtain 3-Channel Lissajous' Trajectories (3CLTs) using three orthogonal differential electrode configurations (nasion-midline nuchal ridge, left-right mastoids, vertex-midline under the mandible). Potentials, evoked by monaural 80 dBnHL (re, human threshold) clicks, were studied before, and up to 7 weeks after inducing neuronal lesions localized to the cochlear nucleus (CN) or the superior olivary complex (SOC), or myelin lesions localized to the fibers of the trapezoid body connecting these two structures. Neuronal lesions were induced by injection of kainic acid (KA), while myelin lesions were induced by injection of L-alpha-lysophosphatidylcholine (LPC). With CN neuronal lesions the major changes in 3CLT were in the time domain of 'b', 'c' and 'd' (components P2, P3 and P4 of single-channel ABEP). With SOC neuronal lesions the major changes were in 'c' and 'd' of 3CLT (P3 and P4 of ABEP). With trapezoid body lesions the major change was in 'c' (P3 of ABEP). The results are compatible with the peripheral generation of the first ABEP components (P1a and P1b). The second component (P2) is generated by ipsilateral CN neurones and their outputs. The third component (P3) is generated primarily by ipsilateral SOC neurones and their outputs, with the ipsilateral CN providing input. The The fourth component (P4) is generated bilaterally by the SOC neurones and their outputs, receiving their inputs from ipsilateral CN. The fifth ABEP component (P5) is generated by structures central to the SOCs and their immediate outputs. Neither focal neuronal nor myelin lesions were sufficient to produce obliteration of any component, consistent with a set of generators for each of the ABEP components, consisting of both cell bodies and their output fibers, that is distributed spatially in the brainstem.

  5. Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children.

    PubMed

    Gordon, K A; Papsin, B C; Harrison, R V

    2007-08-01

    The role of apical versus basal cochlear implant electrode stimulation on central auditory development was examined. We hypothesized that, in children with early onset deafness, auditory development evoked by basal electrode stimulation would differ from that evoked more apically. Responses of the auditory nerve and brainstem, evoked by an apical and a basal implant electrode, were measured over the first year of cochlear implant use in 50 children with early onset severe to profound deafness who used hearing aids prior to implantation. Responses at initial stimulation were of larger amplitude and shorter latency when evoked by the apical electrode. No significant effects of residual hearing or age were found on initial response amplitudes or latencies. With implant use, responses evoked by both electrodes showed decreases in wave and interwave latencies reflecting decreased neural conduction time through the brainstem. Apical versus basal differences persisted with implant experience with one exception; eIII-eV interlatency differences decreased with implant use. Acute stimulation shows prolongation of basally versus apically evoked auditory nerve and brainstem responses in children with severe to profound deafness. Interwave latencies reflecting neural conduction along the caudal and rostral portions of the brainstem decreased over the first year of implant use. Differences in neural conduction times evoked by apical versus basal electrode stimulation persisted in the caudal but not rostral brainstem. Activity-dependent changes of the auditory brainstem occur in response to both apical and basal cochlear implant electrode stimulation.

  6. Exposures to fine particulate matter (PM2.5) and ozone above USA standards are associated with auditory brainstem dysmorphology and abnormal auditory brainstem evoked potentials in healthy young dogs.

    PubMed

    Calderón-Garcidueñas, Lilian; González-González, Luis O; Kulesza, Randy J; Fech, Tatiana M; Pérez-Guillé, Gabriela; Luna, Miguel Angel Jiménez-Bravo; Soriano-Rosales, Rosa Eugenia; Solorio, Edelmira; Miramontes-Higuera, José de Jesús; Gómez-Maqueo Chew, Aline; Bernal-Morúa, Alexia F; Mukherjee, Partha S; Torres-Jardón, Ricardo; Mills, Paul C; Wilson, Wayne J; Pérez-Guillé, Beatriz; D'Angiulli, Amedeo

    2017-10-01

    Delayed central conduction times in the auditory brainstem have been observed in Mexico City (MC) healthy children exposed to fine particulate matter (PM 2.5 ) and ozone (O 3 ) above the current United States Environmental Protection Agency (US-EPA) standards. MC children have α synuclein brainstem accumulation and medial superior olivary complex (MSO) dysmorphology. The present study used a dog model to investigate the potential effects of air pollution on the function and morphology of the auditory brainstem. Twenty-four dogs living in clean air v MC, average age 37.1 ± 26.3 months, underwent brainstem auditory evoked potential (BAEP) measurements. Eight dogs (4 MC, 4 Controls) were analysed for auditory brainstem morphology and histopathology. MC dogs showed ventral cochlear nuclei hypotrophy and MSO dysmorphology with a significant decrease in cell body size, decreased neuronal packing density with regions in the nucleus devoid of neurons and marked gliosis. MC dogs showed significant delayed BAEP absolute wave I, III and V latencies compared to controls. MC dogs show auditory nuclei dysmorphology and BAEPs consistent with an alteration of the generator sites of the auditory brainstem response waveform. This study puts forward the usefulness of BAEPs to study auditory brainstem neurodegenerative changes associated with air pollution in dogs. Recognition of the role of non-invasive BAEPs in urban dogs is warranted to elucidate novel neurodegenerative pathways link to air pollution and a promising early diagnostic strategy for Alzheimer's Disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Combined evoked potentials in co-occuring attention deficit hyperactivity disorder and epilepsy.

    PubMed

    Major, Zoltán Zsigmond

    2011-07-30

    Evoked potentials, both stimulus related and event related, show disturbances in attention deficit-hyperactivity disorder and epilepsies, too. This study was designed to evaluate if these potentials are characteristically influenced by the presence of the two diseases, individually, and in the case of co-occurrence. Forty children were included, and four groups were formed, control group, ADHD group, epilepsy group and a group with the comorbidity of epilepsy and ADHD. Epilepsy patients were under proper antiepileptic treatment; ADHD patients were free of specific therapy. Brainstem auditory evoked potentials, visual evoked potentials and auditory P300 evaluation were performed. The latency of the P100 and N135 visual evoked potential components was significantly extended by the presence of epilepsy. If ADHD was concomitantly present, this effect was attenuated. Brainstem auditory evoked potential components were prolonged in the presence of the comorbidity, considering the waves elicited in the brainstem. P300 latencies were prolonged by the presence of co-occurring ADHD and epilepsy. Feedback parameters showed overall reduction of the tested cognitive performances in the ADHD group. Disturbances produced by the presence of ADHD-epilepsy comorbidity reveal hypothetically a linked physiopathological path for both diseases, and offers an approach with possible diagnostic importance, combined evoked potential recordings.

  8. The Theoretical Distribution of Evoked Brainstem Activity in Preterm, High-Risk, and Healthy Infants.

    ERIC Educational Resources Information Center

    Salamy, A.

    1981-01-01

    Determines the frequency distribution of Brainstem Auditory Evoked Potential variables (BAEP) for premature babies at different stages of development--normal newborns, infants, young children, and adults. The author concludes that the assumption of normality underlying most "standard" statistical analyses can be met for many BAEP…

  9. Enhanced brainstem and cortical evoked response amplitudes: single-trial covariance analysis.

    PubMed

    Galbraith, G C

    2001-06-01

    The purpose of the present study was to develop analytic procedures that improve the definition of sensory evoked response components. Such procedures could benefit all recordings but would especially benefit difficult recordings where many trials are contaminated by muscle and movement artifacts. First, cross-correlation and latency adjustment analyses were applied to the human brainstem frequency-following response and cortical auditory evoked response recorded on the same trials. Lagged cross-correlation functions were computed, for each of 17 subjects, between single-trial data and templates consisting of the sinusoid stimulus waveform for the brainstem response and the subject's own smoothed averaged evoked response P2 component for the cortical response. Trials were considered in the analysis only if the maximum correlation-squared (r2) exceeded .5 (negatively correlated trials were thus included). Identical correlation coefficients may be based on signals with quite different amplitudes, but it is possible to assess amplitude by the nonnormalized covariance function. Next, an algorithm is applied in which each trial with negative covariance is matched to a trial with similar, but positive, covariance and these matched-trial pairs are deleted. When an evoked response signal is present in the data, the majority of trials positively correlate with the template. Thus, a residual of positively correlated trials remains after matched covariance trials are deleted. When these residual trials are averaged, the resulting brainstem and cortical responses show greatly enhanced amplitudes. This result supports the utility of this analysis technique in clarifying and assessing evoked response signals.

  10. Generators of the brainstem auditory evoked potential in cat. I. An experimental approach to their identification.

    PubMed

    Melcher, J R; Knudson, I M; Fullerton, B C; Guinan, J J; Norris, B E; Kiang, N Y

    1996-04-01

    This paper is the first in a series aimed at identifying the cellular generators of the brainstem auditory evoked potential (BAEP) in cats. The approach involves (1) developing experimental procedures for making small selective lesions and determining the corresponding changes in BAEP waveforms, (2) identifying brainstem regions involved in BAEP generation by examining the effects of lesions on the BAEP and (3) identifying specific cell populations involved by combining the lesion results with electrophysiological and anatomical information from other kinds of studies. We created lesions in the lower brainstem by injecting kainic acid which is generally toxic for neuronal cell bodies but not for axons and terminals. This first paper describes the justifications for using kainic acid, explains the associated problems, and develops a methodology that addresses the main difficulties. The issues and aspects of the specific methods are generally applicable to physiological and anatomical studies using any neurotoxin, as well as to the present BAEP study. The methods chosen involved (1) measuring the BAEP at regular intervals until it reached a post-injection steady state and perfusing the animals with fixative shortly after the last BAEP recordings were made, (2) using objective criteria to distinguish injection-related BAEP changes from unrelated ones, (3) making control injections to identify effects not due to kainic acid toxicity, (4) verifying the anatomical and functional integrity of axons in lesioned regions, and (5) examining injected brainstems microscopically for cell loss and cellular abnormalities indicating dysfunction. This combination of methods enabled us to identify BAEP changes which are clearly correlated with lesion locations.

  11. [Development of auditory evoked potentials of the brainstem in relation to age].

    PubMed

    Tarantino, V; Stura, M; Vallarino, R

    1988-01-01

    In order to study the various changes which occur in the waveform, latency and amplitude of the auditory brainstem evoked response (BSER) as a function of age, the authors recorded the BSER from the scalp's surface of 20 newborns and 50 infants, 3 months, 6 months, 1 year and 3 years old as well as from 20 normal adults. The data obtained show that the most reliable waves during the first month of life are waves I, III, V, which is often present even when other vertex-positive peaks are absent. The latencies of the various potential components decreased with maturation. Wave V, evoked by 90 dB sensation level clicks, changed in latency from 7, 12 msec at 1-4 weeks of age to 5,77 msec at 3 years of life. The auditory processes related to peripheral and central transmission were shown to mature at differential rates during the first period of life. By the 6th month, in fact, wave I latency had reached the adult value; in contrast, wave V latency did match that of the adult until approximately 1 year old. One obvious explanation for the age-related latency shift is progressive myelination of the auditory tract in infants, for this is know to occur. The authors conclude that the clinical application of this technique in paediatric patients couldn't provide reliable informations about auditory brain stem activity regardless of evaluation of the relationship between age and characteristics of BSER.

  12. Auditory Detection of the Human Brainstem Auditory Evoked Response.

    ERIC Educational Resources Information Center

    Kidd, Gerald, Jr.; And Others

    1993-01-01

    This study evaluated whether listeners can distinguish human brainstem auditory evoked responses elicited by acoustic clicks from control waveforms obtained with no acoustic stimulus when the waveforms are presented auditorily. Detection performance for stimuli presented visually was slightly, but consistently, superior to that which occurred for…

  13. [Evaluation of otoacoustic emissions in relation to brainstem evoked auditory potentials in children].

    PubMed

    Rado-Triveño, Julia; Alen-Ayca, Jaime

    2016-01-01

    To determine the validity of the use of acoustic otoacoustic emissions in comparison with the evoked potentials Auditory brainstem examination (PEATC), a study was carried out with 96 children between 0 and 4 years of age that went to Instituto Nacional de Rehabilitación in Lima, Peru. The results show a cut-off point corresponding to 1 in (+): 17.67 in right ear and 16.72 in left ear, and LR (-): 0.25 in ear right and 0.24 in left ear; ROC curve with area under the right ear curve of 0.830 (p<0.001) was obtained and in left ear of 0.829 (p<0.001). According to the results of LR (+) the sensitivity is 76% in the right ear and 65% In the left ear that coincides with the conformation of the ROC curve. In conclusion, acoustic emissions would not represent an alternative sufficiently discriminatory alternative as a screening test in this population.

  14. Speech-evoked auditory brainstem responses in children with hearing loss.

    PubMed

    Koravand, Amineh; Al Osman, Rida; Rivest, Véronique; Poulin, Catherine

    2017-08-01

    The main objective of the present study was to investigate subcortical auditory processing in children with sensorineural hearing loss. Auditory Brainstem Responses (ABRs) were recorded using click and speech/da/stimuli. Twenty-five children, aged 6-14 years old, participated in the study: 13 with normal hearing acuity and 12 with sensorineural hearing loss. No significant differences were observed for the click-evoked ABRs between normal hearing and hearing-impaired groups. For the speech-evoked ABRs, no significant differences were found for the latencies of the following responses between the two groups: onset (V and A), transition (C), one of the steady-state wave (F), and offset (O). However, the latency of the steady-state waves (D and E) was significantly longer for the hearing-impaired compared to the normal hearing group. Furthermore, the amplitude of the offset wave O and of the envelope frequency response (EFR) of the speech-evoked ABRs was significantly larger for the hearing-impaired compared to the normal hearing group. Results obtained from the speech-evoked ABRs suggest that children with a mild to moderately-severe sensorineural hearing loss have a specific pattern of subcortical auditory processing. Our results show differences for the speech-evoked ABRs in normal hearing children compared to hearing-impaired children. These results add to the body of the literature on how children with hearing loss process speech at the brainstem level. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Auditory Brainstem Evoked Responses in Newborns with Down Syndrome

    ERIC Educational Resources Information Center

    Kittler, Phyllis M.; Phan, Ha T. T.; Gardner, Judith M.; Miroshnichenko, Inna; Gordon, Anne; Karmel, Bernard Z.

    2009-01-01

    Auditory brainstem evoked responses (ABRs) were compared in 15 newborns with Down syndrome and 15 sex-, age-, and weight-matched control newborns. Participants had normal ABRs based upon values specific to 32- to 42-weeks postconceptional age. Although Wave III and Wave V component latencies and the Wave I-III interpeak latency (IPL) were shorter…

  16. Rhesus macaque model of chronic opiate dependence and neuro-AIDS: longitudinal assessment of auditory brainstem responses and visual evoked potentials

    PubMed Central

    Riazi, Mariam; Marcario, Joanne K; Samson, Frank K.; Kenjale, Himanshu; Adany, Istvan; Staggs, Vincent; Ledford, Emily; Marquis, Janet; Narayan, Opendra; Cheney, Paul D.

    2013-01-01

    Our work characterizes the effects of opiate (morphine) dependence on auditory brainstem and visual evoked responses in a rhesus macaque model of neuro-AIDS utilizing a chronic continuous drug delivery paradigm. The goal of this study was to clarify whether morphine is protective, or if it exacerbates simian immunodeficiency virus (SIV) related systemic and neurological disease. Our model employs a macrophage tropic CD4/CCR5 co-receptor virus, SIVmac239 (R71/E17), which crosses the blood brain barrier shortly after inoculation and closely mimics the natural disease course of human immunodeficiency virus (HIV) infection. The cohort was divided into 3 groups: morphine only, SIV only, and SIV + morphine. Evoked potential (EP) abnormalities in sub-clinically infected macaques were evident as early as eight weeks post-inoculation. Prolongations in EP latencies were observed in SIV-infected macaques across all modalities. Animals with the highest CSF viral loads and clinical disease showed more abnormalities than those with sub-clinical disease, confirming our previous work (Raymond et al, 1998, 1999, 2000). Although some differences were observed in auditory and visual evoked potentials in morphine treated compared to untreated SIV-infected animals, the effects were relatively small and not consistent across evoked potential type. However, morphine treated animals with subclinical disease had a clear tendency toward higher virus loads in peripheral and CNS tissues (Marcario et al., 2008) suggesting that if had been possible to follow all animals to end-stage disease, a clearer pattern of evoked potential abnormality might have emerged. PMID:19283490

  17. Surgical monitoring with auditory evoked potentials.

    PubMed

    Lüders, H

    1988-07-01

    This comprehensive review of surgical monitoring with auditory evoked potentials (AEPs) includes a detailed discussion of techniques used for recording brainstem auditory evoked potentials, direct eight-nerve potentials, and electrocochleograms. The normal waveform of these different potentials is discussed, and the typical patterns of abnormalities seen with different insults to the peripheral or central auditory pathways are presented. The mechanisms most probably responsible for changes in AEPs during surgical procedures are analyzed. A critical analysis is made of what represents a significant change in AEPs. Also considered is the predictive value of intrasurgical changes of AEPs. Finally, attempts are made to determine whether AEPs monitoring can assist the surgeon in the prevention of postsurgical complications.

  18. Speech-evoked Brainstem Auditory Responses and Auditory Processing Skills: A Correlation in Adults with Hearing Loss

    PubMed Central

    Sanguebuche, Taissane Rodrigues; Peixe, Bruna Pias; Bruno, Rúbia Soares; Biaggio, Eliara Pinto Vieira; Garcia, Michele Vargas

    2018-01-01

    Introduction  The auditory system consists of sensory structures and central connections. The evaluation of the auditory pathway at a central level can be performed through behavioral and electrophysiological tests, because they are complementary to each other and provide important information about comprehension. Objective  To correlate the findings of speech brainstem-evoked response audiometry with the behavioral tests Random Gap Detection Test and Masking Level Difference in adults with hearing loss. Methods  All patients were submitted to a basic audiological evaluation, to the aforementioned behavioral tests, and to an electrophysiological assessment, by means of click-evoked and speech-evoked brainstem response audiometry. Results  There were no statistically significant values among the electrophysiological test and the behavioral tests. However, there was a significant correlation between the V and A waves, as well as the D and F waves, of the speech-evoked brainstem response audiometry peaks. Such correlations are positive, indicating that the increase of a variable implies an increase in another and vice versa. Conclusion  It was possible to correlate the findings of the speech-evoked brainstem response audiometry with those of the behavioral tests Random Gap Detection and Masking Level Difference. However, there was no statistically significant correlation between them. This shows that the electrophysiological evaluation does not depend uniquely on the behavioral skills of temporal resolution and selective attention. PMID:29379574

  19. Are evoked potentials in patients with adult-onset pompe disease indicative of clinically relevant central nervous system involvement?

    PubMed

    Wirsching, Andreas; Müller-Felber, Wolfgang; Schoser, Benedikt

    2014-08-01

    Pompe disease is a multisystem autosomal recessive glycogen storage disease. Autoptic findings in patients with classic infantile and late-onset Pompe disease have proven that accumulation of glycogen can also be found in the peripheral and central nervous system. To assess the functional role of these pathologic findings, multimodal sensory evoked potentials were analyzed. Serial recordings for brainstem auditory, visual, and somatosensory evoked potentials of 11 late-onset Pompe patients were reviewed. Data at the onset of the enzyme replacement therapy with alglucosidase alfa were compared with follow-up recordings at 12 and 24 months. Brainstem auditory evoked potentials showed a delayed peak I in 1/10 patients and an increased I-III and I-V interpeak latency in 1/10 patients, respectively. The III-V interpeak latencies were in the normal range. Visual evoked potentials were completely normal. Median somatosensory evoked potentials showed an extended interpeak latency in 3/9 patients. Wilcoxon tests comparing age-matched subgroups found significant differences in brainstem auditory evoked potentials and visual evoked potentials. We found that the majority of recordings for evoked potentials were within the ranges for standard values, therefore reflecting the lack of clinically relevant central nervous system involvement. Regular surveillance by means of evoked potentials does not seem to be appropriate in late-onset Pompe patients.

  20. Newborn Auditory Brainstem Evoked Responses (ABRs): Prenatal and Contemporary Correlates.

    ERIC Educational Resources Information Center

    Murray, Ann D.

    1988-01-01

    Presented are a literature review and new data on correlates of newborn auditory brainstem evoked responses (ABRs). Concludes that disorders of the central components of the ABR may be more of prenatal than of postnatal origin. The I-V interval had low but reliable correlations with four of 11 Brazelton scale variables. (RH)

  1. Altered brainstem auditory evoked potentials in a rat central sensitization model are similar to those in migraine

    PubMed Central

    Arakaki, Xianghong; Galbraith, Gary; Pikov, Victor; Fonteh, Alfred N.; Harrington, Michael G.

    2014-01-01

    Migraine symptoms often include auditory discomfort. Nitroglycerin (NTG)-triggered central sensitization (CS) provides a rodent model of migraine, but auditory brainstem pathways have not yet been studied in this example. Our objective was to examine brainstem auditory evoked potentials (BAEPs) in rat CS as a measure of possible auditory abnormalities. We used four subdermal electrodes to record horizontal (h) and vertical (v) dipole channel BAEPs before and after injection of NTG or saline. We measured the peak latencies (PLs), interpeak latencies (IPLs), and amplitudes for detectable waveforms evoked by 8, 16, or 32 KHz auditory stimulation. At 8 KHz stimulation, vertical channel positive PLs of waves 4, 5, and 6 (vP4, vP5, and vP6), and related IPLs from earlier negative or positive peaks (vN1-vP4, vN1-vP5, vN1-vP6; vP3-vP4, vP3-vP6) increased significantly 2 hours after NTG injection compared to the saline group. However, BAEP peak amplitudes at all frequencies, PLs and IPLs from the horizontal channel at all frequencies, and the vertical channel stimulated at 16 and 32 KHz showed no significant/consistent change. For the first time in the rat CS model, we show that BAEP PLs and IPLs ranging from putative bilateral medial superior olivary nuclei (P4) to the more rostral structures such as the medial geniculate body (P6) were prolonged 2 hours after NTG administration. These BAEP alterations could reflect changes in neurotransmitters and/or hypoperfusion in the midbrain. The similarity of our results with previous human studies further validates the rodent CS model for future migraine research. PMID:24680742

  2. A novel method of brainstem auditory evoked potentials using complex verbal stimuli.

    PubMed

    Kouni, Sophia N; Koutsojannis, Constantinos; Ziavra, Nausika; Giannopoulos, Sotirios

    2014-08-01

    The click and tone-evoked auditory brainstem responses are widely used in clinical practice due to their consistency and predictability. More recently, the speech-evoked responses have been used to evaluate subcortical processing of complex signals, not revealed by responses to clicks and tones. Disyllable stimuli corresponding to familiar words can induce a pattern of voltage fluctuations in the brain stem resulting in a familiar waveform, and they can yield better information about brain stem nuclei along the ascending central auditory pathway. We describe a new method with the use of the disyllable word "baba" corresponding to English "daddy" that is commonly used in many other ethnic languages spanning from West Africa to the Eastern Mediterranean all the way to the East Asia. This method was applied in 20 young adults institutionally diagnosed as dyslexic (10 subjects) or light dyslexic (10 subjects) who were matched with 20 sex, age, education, hearing sensitivity, and IQ-matched normal subjects. The absolute peak latencies of the negative wave C and the interpeak latencies of A-C elicited by verbal stimuli "baba" were found to be significantly increased in the dyslexic group in comparison with the control group. The method is easy and helpful to diagnose abnormalities affecting the auditory pathway, to identify subjects with early perception and cortical representation abnormalities, and to apply the suitable therapeutic and rehabilitation management.

  3. Phase stability analysis of chirp evoked auditory brainstem responses by Gabor frame operators.

    PubMed

    Corona-Strauss, Farah I; Delb, Wolfgang; Schick, Bernhard; Strauss, Daniel J

    2009-12-01

    We have recently shown that click evoked auditory brainstem responses (ABRs) can be efficiently processed using a novelty detection paradigm. Here, ABRs as a large-scale reflection of a stimulus locked neuronal group synchronization at the brainstem level are detected as novel instance-novel as compared to the spontaneous activity which does not exhibit a regular stimulus locked synchronization. In this paper we propose for the first time Gabor frame operators as an efficient feature extraction technique for ABR single sweep sequences that is in line with this paradigm. In particular, we use this decomposition technique to derive the Gabor frame phase stability (GFPS) of sweep sequences of click and chirp evoked ABRs. We show that the GFPS of chirp evoked ABRs provides a stable discrimination of the spontaneous activity from stimulations above the hearing threshold with a small number of sweeps, even at low stimulation intensities. It is concluded that the GFPS analysis represents a robust feature extraction method for ABR single sweep sequences. Further studies are necessary to evaluate the value of the presented approach for clinical applications.

  4. Infant Temperament and the Brainstem Auditory Evoked Response in Later Childhood.

    ERIC Educational Resources Information Center

    Woodward, Sue A.; McManis, Mark H.; Kagan, Jerome; Deldin, Patricia; Snidman, Nancy; Lewis, Melissa; Kahn, Vali

    2001-01-01

    Evaluated brainstem auditory evoked responses (BAERs) on 10- to 12-year-olds who had been classified as high or low reactive to unfamiliar stimuli at 4 months of age. Found that children previously classified as high reactive at 4 months had larger wave V components than did low reactive children, possibly suggesting greater excitability in…

  5. A Novel Method of Brainstem Auditory Evoked Potentials Using Complex Verbal Stimuli

    PubMed Central

    Kouni, Sophia N; Koutsojannis, Constantinos; Ziavra, Nausika; Giannopoulos, Sotirios

    2014-01-01

    Background: The click and tone-evoked auditory brainstem responses are widely used in clinical practice due to their consistency and predictability. More recently, the speech-evoked responses have been used to evaluate subcortical processing of complex signals, not revealed by responses to clicks and tones. Aims: Disyllable stimuli corresponding to familiar words can induce a pattern of voltage fluctuations in the brain stem resulting in a familiar waveform, and they can yield better information about brain stem nuclei along the ascending central auditory pathway. Materials and Methods: We describe a new method with the use of the disyllable word “baba” corresponding to English “daddy” that is commonly used in many other ethnic languages spanning from West Africa to the Eastern Mediterranean all the way to the East Asia. Results: This method was applied in 20 young adults institutionally diagnosed as dyslexic (10 subjects) or light dyslexic (10 subjects) who were matched with 20 sex, age, education, hearing sensitivity, and IQ-matched normal subjects. The absolute peak latencies of the negative wave C and the interpeak latencies of A-C elicited by verbal stimuli “baba” were found to be significantly increased in the dyslexic group in comparison with the control group. Conclusions: The method is easy and helpful to diagnose abnormalities affecting the auditory pathway, to identify subjects with early perception and cortical representation abnormalities, and to apply the suitable therapeutic and rehabilitation management. PMID:25210677

  6. Diffusion tensor imaging of the inferior colliculus and brainstem auditory-evoked potentials in preterm infants.

    PubMed

    Reiman, Milla; Parkkola, Riitta; Johansson, Reijo; Jääskeläinen, Satu K; Kujari, Harry; Lehtonen, Liisa; Haataja, Leena; Lapinleimu, Helena

    2009-08-01

    Preterm and low-birth-weight infants have an increased risk of sensorineural hearing loss. Brainstem auditory-evoked potentials (BAEP) are an effective method to detect subtle deficits in impulse conduction in the auditory pathway. Abnormalities on diffusion tensor imaging (DTI) have been shown to be associated with perinatal white-matter injury and reduced fractional anisotropy (FA) has been reported in patients with sensorineural hearing loss. To evaluate the possibility of a correlation between BAEP and DTI of the inferior colliculus in preterm infants. DTI at term age and BAEP measurements were performed on all very-low-birth-weight or very preterm study infants (n=56). FA and apparent diffusion coefficient (ADC) of the inferior colliculus were measured from the DTI. Shorter BAEP wave I, III, and V latencies and I-III and I-V intervals and higher wave V amplitude correlated with higher FA of the inferior colliculus. The association between the DTI findings of the inferior colliculus and BAEP responses suggests that DTI can be used to assess the integrity of the auditory pathway in preterm infants.

  7. Newborn Auditory Brainstem Evoked Responses (ABRs): Longitudinal Correlates in the First Year.

    ERIC Educational Resources Information Center

    Murray, Ann D.

    1988-01-01

    Aimed to determine to what degree newborns' auditory brainstem evoked responses (ABRs) predict delayed or impaired development during the first year. When 93 infants' ABRs were evaluated at three, six, and nine months, newborn ABR was moderately sensitive for detecting hearing impairment and more sensitive than other indicators in detecting…

  8. Aberrant Lateralization of Brainstem Auditory Evoked Responses by Individuals with Down Syndrome.

    ERIC Educational Resources Information Center

    Miezejeski, Charles M.; And Others

    1994-01-01

    Brainstem auditory evoked response latencies were studied in 80 males (13 with Down's syndrome). Latencies for waves P3 and P5 were shorter for Down's syndrome subjects, who also showed a different pattern of left versus right ear responses. Results suggest decreased lateralization and receptive and expressive language ability among people with…

  9. [Brainstem auditory evoked potentials in neurophysiological assessment of brain stem dysfunction in patients with atherostenosis of vertebral arteries].

    PubMed

    Maksimova, M Yu; Sermagambetova, Zh N; Skrylev, S I; Fedin, P A; Koshcheev, A Yu; Shchipakin, V L; Sinicyn, I A

    To assess brain stem dysfunction in patients with hemodynamically significant stenosis of vertebral arteries (VA) using short latency brainstem auditory evoked potentials (BAEP). The study group included 50 patients (mean age 64±6 years) with hemodynamically significant extracranial VA stenosis. Patients with hemodynamically significant extracranial VA stenosis had BAEP abnormalities including the elongation of interpeak intervals I-V and peak V latency as well as the reduction of peak I amplitude. After transluminal balloon angioplasty with stenting of VA stenoses, there was a shortening of peak V latency compared to the preoperative period that reflected the improvement of brain stem conductive functions. Atherostenosis of vertebral arteries is characterized by the signs of brain stem dysfunction, predominantly in the pontomesencephal brain stem. After transluminal balloon angioplasty with stenting of VA, the improvement of brain stem conductive functions was observed.

  10. Auditory- and visual-evoked potentials in Mexican infants are not affected by maternal supplementation with 400 mg/d docosahexaenoic acid in the second half of pregnancy.

    PubMed

    Stein, Aryeh D; Wang, Meng; Rivera, Juan A; Martorell, Reynaldo; Ramakrishnan, Usha

    2012-08-01

    The evidence relating prenatal supplementation with DHA to offspring neurological development is limited. We investigated the effect of prenatal DHA supplementation on infant brainstem auditory-evoked responses and visual- evoked potentials in a double-blind, randomized controlled trial in Cuernavaca, Mexico. Pregnant women were supplemented daily with 400 mg DHA or placebo from gestation wk 18-22 through delivery. DHA and placebo groups did not differ in maternal characteristics at randomization or infant characteristics at birth. Brainstem auditory-evoked responses were measured at 1 and 3 mo in 749 and 664 infants, respectively, and visual-evoked potentials were measured at 3 and 6 mo in 679 and 817 infants, respectively. Left-right brainstem auditory-evoked potentials were moderately correlated (range, 0.26-0.43; all P < 0.001) and left-right visual-evoked potentials were strongly correlated (range, 0.79-0.94; all P < 0.001) within any assessment. Correlations across visits were modest to moderate (range, 0.09-0.38; all P < 0.01). The offspring of DHA-supplemented women did not differ from those of control women with respect to any outcome measure (all comparisons P > 0.10). We conclude that DHA supplementation during pregnancy did not influence brainstem auditory-evoked responses at 1 and 3 mo or visual-evoked potentials at 3 and 6 mo.

  11. Auditory- and Visual-Evoked Potentials in Mexican Infants Are Not Affected by Maternal Supplementation with 400 mg/d Docosahexaenoic Acid in the Second Half of Pregnancy1234

    PubMed Central

    Stein, Aryeh D.; Wang, Meng; Rivera, Juan A.; Martorell, Reynaldo; Ramakrishnan, Usha

    2012-01-01

    The evidence relating prenatal supplementation with DHA to offspring neurological development is limited. We investigated the effect of prenatal DHA supplementation on infant brainstem auditory-evoked responses and visual- evoked potentials in a double-blind, randomized controlled trial in Cuernavaca, Mexico. Pregnant women were supplemented daily with 400 mg DHA or placebo from gestation wk 18–22 through delivery. DHA and placebo groups did not differ in maternal characteristics at randomization or infant characteristics at birth. Brainstem auditory-evoked responses were measured at 1 and 3 mo in 749 and 664 infants, respectively, and visual-evoked potentials were measured at 3 and 6 mo in 679 and 817 infants, respectively. Left-right brainstem auditory-evoked potentials were moderately correlated (range, 0.26–0.43; all P < 0.001) and left-right visual-evoked potentials were strongly correlated (range, 0.79–0.94; all P < 0.001) within any assessment. Correlations across visits were modest to moderate (range, 0.09–0.38; all P < 0.01). The offspring of DHA-supplemented women did not differ from those of control women with respect to any outcome measure (all comparisons P > 0.10). We conclude that DHA supplementation during pregnancy did not influence brainstem auditory-evoked responses at 1 and 3 mo or visual-evoked potentials at 3 and 6 mo. PMID:22739364

  12. [Brainstem auditory evoked potentials (BAEPs) and assessment of personality test in patients with migraine].

    PubMed

    Yang, Y; Li, P; Ye, H C

    2000-02-28

    To explore personality test and brainstem auditory potentials (BAEPs) in patients with migraine. BAEPs and eysenck personality scale were recorded in 30 patients with migraine. The abnormal rate of BAEPs was 53%. The latency of individual wave I, III and V were prolonged, so did the interval of the wave III and wave V. The results of personality test showed that 3 patients(10%) manifested introvert personality, 12 patients (40%) extravert personality, and 17 patients (56%) the intermediate personality. It is indicated that migraine may be related to the disturbance of brainstem disfunction and personality of patients.

  13. A comparison of the brainstem auditory evoked response in healthy ears of unilaterally deaf dogs and bilaterally hearing dogs.

    PubMed

    Plonek, M; Nicpoń, J; Kubiak, K; Wrzosek, M

    2017-03-01

    Auditory plasticity in response to unilateral deafness has been reported in various animal species. Subcortical changes occurring in unilaterally deaf young dogs using the brainstem auditory evoked response have not been evaluated yet. The aim of this study was to assess the brainstem auditory evoked response findings in dogs with unilateral hearing loss, and compare them with recordings obtained from healthy dogs. Brainstem auditory evoked responses (amplitudes and latencies of waves I, II, III, V, the V/I wave amplitude ratio, wave I-V, I-III and III-V interpeak intervals) were studied retrospectively in forty-six privately owned dogs, which were either unilaterally deaf or had bilateral hearing. The data obtained from the hearing ears in unilaterally deaf dogs were compared to values obtained from their healthy littermates. Statistically significant differences in the amplitude of wave III and the V/I wave amplitude ratio at 75 dB nHL were found between the group of unilaterally deaf puppies and the control group. The recordings of dogs with single-sided deafness were compared, and the results showed no statistically significant differences in the latencies and amplitudes of the waves between left- (AL) and right-sided (AR) deafness. The recordings of the brainstem auditory evoked response in canines with unilateral inborn deafness in this study varied compared to recordings from healthy dogs. Future studies looking into electrophysiological assessment of hearing in conjunction with imaging modalities to determine subcortical auditory plasticity and auditory lateralization in unilaterally deaf dogs are warranted.

  14. Brainstem auditory evoked responses and ophthalmic findings in llamas and alpacas in eastern Canada

    PubMed Central

    Cullen, Cheryl L.; Lamont, Leigh A.

    2006-01-01

    Abstract Seventeen llamas and 23 alpacas of various coat and iris colors were evaluated for: 1) deafness by using brainstem auditory evoked response testing; and 2) for ocular abnormalities via complete ophthalmic examination. No animals were deaf. The most common ocular abnormalities noted were iris-to-iris persistent pupillary membranes and incipient cataracts. PMID:16536233

  15. Far-field brainstem responses evoked by vestibular and auditory stimuli exhibit increases in interpeak latency as brain temperature is decreased

    NASA Technical Reports Server (NTRS)

    Hoffman, L. F.; Horowitz, J. M.

    1984-01-01

    The effect of decreasing of brain temperature on the brainstem auditory evoked response (BAER) in rats was investigated. Voltage pulses, applied to a piezoelectric crystal attached to the skull, were used to evoke stimuli in the auditory system by means of bone-conducted vibrations. The responses were recorded at 37 C and 34 C brain temperatures. The peaks of the BAER recorded at 34 C were delayed in comparison with the peaks from the 37 C wave, and the later peaks were more delayed than the earlier peaks. These results indicate that an increase in the interpeak latency occurs as the brain temperature is decreased. Preliminary experiments, in which responses to brief angular acceleration were used to measure the brainstem vestibular evoked response (BVER), have also indicated increases in the interpeak latency in response to the lowering of brain temperature.

  16. [A Case of Left Vertebral Artery Aneurysm Showing Evoked Potentials on Bilateral Electrode by the Left Vagus Nerve Stimulation to Electromyographic Tracheal Tube].

    PubMed

    Kadoya, Tatsuo; Uehara, Hirofumi; Yamamoto, Toshinori; Shiraishi, Munehiro; Kinoshita, Yuki; Joyashiki, Takeshi; Enokida, Kengo

    2016-02-01

    Previously, we reported a case of brainstem cavernous hemangioma showing false positive responses to electromyographic tracheal tube (EMG tube). We concluded that the cause was spontaneous respiration accompanied by vocal cord movement. We report a case of left vertebral artery aneurysm showing evoked potentials on bilateral electrodes by the left vagus nerve stimulation to EMG tube. An 82-year-old woman underwent clipping of a left unruptured vertebral artery-posterior inferior cerebellar artery aneurysm. General anesthesia was induced with remifentanil, propofol and suxamethonium, and was maintained with oxygen, air, remifentanil and propofol. We monitored somatosensory evoked potentials, motor evoked potentials, and electromyogram of the vocal cord. When the manipulation reached brainstem and the instrument touched the left vagus nerve, evoked potentials appeared on bilateral electrodes. EMG tube is equipped with two electrodes on both sides. We concluded that the left vagus nerve stimulation generated evoked potentials of the left laryngeal muscles, and they were simultaneously detected as potential difference between two electrodes on both sides. EMG tube is used to identify the vagus nerve. However, it is necessary to bear in mind that each vagus nerve stimulation inevitably generates evoked potentials on bilateral electrodes.

  17. Speech-evoked brainstem frequency-following responses during verbal transformations due to word repetition.

    PubMed

    Galbraith, G C; Jhaveri, S P; Kuo, J

    1997-01-01

    Speech-evoked brainstem frequency-following responses (FFRs) were recorded to repeated presentations of the same stimulus word. Word repetition results in illusory verbal transformations (VTs) in which word perceptions can differ markedly from the actual stimulus. Previous behavioral studies support an explanation of VTs based on changes in arousal or attention. Horizontal and vertical dipole FFRs were recorded to assess responses with putative origins in the auditory nerve and central brainstem, respectively. FFRs were recorded from 18 subjects when they correctly heard the stimulus and when they reported VTs. Although horizontal and vertical dipole FFRs showed different frequency response patterns, dipoles did not differentiate between perceptual conditions. However, when subjects were divided into low- and high-VT groups (based on percentage of VT trials), a significant Condition x Group interaction resulted. This interaction showed the largest difference in FFR amplitudes during VT trials, with the low-VT group showing increased amplitudes, and the high-VT group showing decreased amplitudes, relative to trials in which the stimulus was correctly perceived. These results demonstrate measurable subject differences in the early processing of complex signals, due to possible effects of attention on the brainstem FFR. The present research shows that the FFR is useful in understanding human language as it is coded and processed in the brainstem auditory pathway.

  18. Human auditory evoked potentials. I - Evaluation of components

    NASA Technical Reports Server (NTRS)

    Picton, T. W.; Hillyard, S. A.; Krausz, H. I.; Galambos, R.

    1974-01-01

    Fifteen distinct components can be identified in the scalp recorded average evoked potential to an abrupt auditory stimulus. The early components occurring in the first 8 msec after a stimulus represent the activation of the cochlea and the auditory nuclei of the brainstem. The middle latency components occurring between 8 and 50 msec after the stimulus probably represent activation of both auditory thalamus and cortex but can be seriously contaminated by concurrent scalp muscle reflex potentials. The longer latency components occurring between 50 and 300 msec after the stimulus are maximally recorded over fronto-central scalp regions and seem to represent widespread activation of frontal cortex.

  19. Evoked potentials are useful for diagnosis of neuromyelitis optica spectrum disorder.

    PubMed

    Ohnari, Keiko; Okada, Kazumasa; Takahashi, Toshiyuki; Mafune, Kosuke; Adachi, Hiroaki

    2016-05-15

    Neuromyelitis optica spectrum disorder (NMOSD) has been differentiated from relapsing-remitting multiple sclerosis (RRMS) by clinical, laboratory, and pathological findings, including the presence of the anti-aquaporin 4 antibody. Measurement of evoked potentials (EPs) is often used for the diagnosis of RRMS, although the possibility of applying EPs to the diagnosis of NMOSD has not been investigated in detail. Eighteen patients with NMOSD and 28 patients with RRMS were included in this study. The patients' neurological symptoms and signs were examined and their EPs were recorded. Characteristic findings were absence of visual evoked potentials and absence of motor evoked potentials in the lower extremities in patients with NMOSD, and a delay in these potentials in patients with RRMS. Most patients with NMOSD did not present abnormal subclinical EPs, whereas many patients with RRMS did. None of the patients with NMOSD showed abnormalities in auditory brainstem responses. NMOSD can be differentiated from RRMS by EP data obtained in the early stages of these diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Evidence from Auditory Nerve and Brainstem Evoked Responses for an Organic Brain Lesion in Children with Autistic Traits

    ERIC Educational Resources Information Center

    Student, M.; Sohmer, H.

    1978-01-01

    In an attempt to resolve the question as to whether children with autistic traits have an organic nervous system lesion, auditory nerve and brainstem evoked responses were recorded in a group of 15 children (4 to 12 years old) with autistic traits. (Author)

  1. Cortical auditory evoked potentials in the assessment of auditory neuropathy: two case studies.

    PubMed

    Pearce, Wendy; Golding, Maryanne; Dillon, Harvey

    2007-05-01

    Infants with auditory neuropathy and possible hearing impairment are being identified at very young ages through the implementation of hearing screening programs. The diagnosis is commonly based on evidence of normal cochlear function but abnormal brainstem function. This lack of normal brainstem function is highly problematic when prescribing amplification in young infants because prescriptive formulae require the input of hearing thresholds that are normally estimated from auditory brainstem responses to tonal stimuli. Without this information, there is great uncertainty surrounding the final fitting. Cortical auditory evoked potentials may, however, still be evident and reliably recorded to speech stimuli presented at conversational levels. The case studies of two infants are presented that demonstrate how these higher order electrophysiological responses may be utilized in the audiological management of some infants with auditory neuropathy.

  2. [Determination of irreversibility of clinical brain death. Electroencephalography and evoked potentials].

    PubMed

    Buchner, H; Ferbert, A

    2016-02-01

    Principally, in the fourth update of the rules for the procedure to finally determine the irreversible cessation of function of the cerebrum, the cerebellum and the brainstem, the importance of an electroencephalogram (EEG), somatosensory evoked potentials (SEP) and brainstem auditory evoked potentials (BAEP) are confirmed. This paper presents the reliability and validity of the electrophysiological diagnosis, discusses the amendments in the fourth version of the guidelines and introduces the practical application, problems and sources of error.An EEG is the best established supplementary diagnostic method for determining the irreversibility of clinical brain death syndrome. It should be noted that residual brain activity can often persist for many hours after the onset of brain death syndrome, particularly in patients with primary brainstem lesions. The derivation and analysis of an EEG requires a high level of expertise to be able to safely distinguish artefacts from primary brain activity. The registration of EEGs to demonstrate the irreversibility of clinical brain death syndrome is extremely time consuming.The BAEPs can only be used to confirm the irreversibility of brain death syndrome in serial examinations or in the rare cases of a sustained wave I or sustained waves I and II. Very often, an investigation cannot be reliably performed because of existing sound conduction disturbances or failure of all potentials even before the onset of clinical brain death syndrome. This explains why BAEPs are only used in exceptional cases.The SEPs of the median nerve can be very reliably derived, are technically simple and with few sources of error. A serial investigation is not required and the time needed for examination is short. For these reasons SEPs are given preference over EEGs and BAEPs for establishing the irreversibility of clinical brain death syndrome.

  3. Electrically-evoked frequency-following response (EFFR) in the auditory brainstem of guinea pigs.

    PubMed

    He, Wenxin; Ding, Xiuyong; Zhang, Ruxiang; Chen, Jing; Zhang, Daoxing; Wu, Xihong

    2014-01-01

    It is still a difficult clinical issue to decide whether a patient is a suitable candidate for a cochlear implant and to plan postoperative rehabilitation, especially for some special cases, such as auditory neuropathy. A partial solution to these problems is to preoperatively evaluate the functional integrity of the auditory neural pathways. For evaluating the strength of phase-locking of auditory neurons, which was not reflected in previous methods using electrically evoked auditory brainstem response (EABR), a new method for recording phase-locking related auditory responses to electrical stimulation, called the electrically evoked frequency-following response (EFFR), was developed and evaluated using guinea pigs. The main objective was to assess feasibility of the method by testing whether the recorded signals reflected auditory neural responses or artifacts. The results showed the following: 1) the recorded signals were evoked by neuron responses rather than by artifact; 2) responses evoked by periodic signals were significantly higher than those evoked by the white noise; 3) the latency of the responses fell in the expected range; 4) the responses decreased significantly after death of the guinea pigs; and 5) the responses decreased significantly when the animal was replaced by an electrical resistance. All of these results suggest the method was valid. Recording obtained using complex tones with a missing fundamental component and using pure tones with various frequencies were consistent with those obtained using acoustic stimulation in previous studies.

  4. Value of intracochlear electrically evoked auditory brainstem response after cochlear implantation in patients with narrow internal auditory canal.

    PubMed

    Song, Mee Hyun; Bae, Mi Ran; Kim, Hee Nam; Lee, Won-Sang; Yang, Won Sun; Choi, Jae Young

    2010-08-01

    Cochlear implantation in patients with narrow internal auditory canal (IAC) can result in variable outcomes; however, preoperative evaluations have limitations in accurately predicting outcomes. In this study, we analyzed the outcomes of cochlear implantation in patients with narrow IAC and correlated the intracochlear electrically evoked auditory brainstem response (EABR) findings to postoperative performance to determine the prognostic significance of intracochlear EABR. Retrospective case series at a tertiary hospital. Thirteen profoundly deaf patients with narrow IAC who received cochlear implantation from 2002 to 2008 were included in this study. Postoperative performance was evaluated after at least 12 months of follow-up, and postoperative intracochlear EABR was measured to determine its correlation with outcome. The clinical significance of electrically evoked compound action potential (ECAP) was also analyzed. Patients with narrow IAC showed postoperative auditory performances ranging from CAP 0 to 4 after cochlear implantation. Intracochlear EABR measured postoperatively demonstrated prognostic value in the prediction of long-term outcomes, whereas ECAP measurements failed to show a significant correlation with outcome. Consistent with the advantages of intracochlear EABR over extracochlear EABR, this study demonstrates that intracochlear EABR has prognostic significance in predicting long-term outcomes in patients with narrow IAC. Intracochlear EABR measured either intraoperatively or in the early postoperative period may play an important role in deciding whether to continue with auditory rehabilitation using a cochlear implant or to switch to an auditory brainstem implant so as not to miss the optimal timing for language development.

  5. Brainstem auditory evoked responses in man. 1: Effect of stimulus rise-fall time and duration

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Squires, N.; Galambos, R.

    1975-01-01

    Short latency (under 10 msec) evoked responses elicited by bursts of white noise were recorded from the scalp of human subjects. Response alterations produced by changes in the noise burst duration (on-time) inter-burst interval (off-time), and onset and offset shapes are reported and evaluated. The latency of the most prominent response component, wave V, was markedly delayed with increases in stimulus rise-time but was unaffected by changes in fall-time. The amplitude of wave V was insensitive to changes in signal rise-and-fall times, while increasing signal on-time produced smaller amplitude responses only for sufficiently short off-times. It is concluded that wave V of the human auditory brainstem evoked response is solely an onset response.

  6. Short- and long-latency auditory evoked potentials in individuals with vestibular dysfunction.

    PubMed

    Santos Filha, Valdete Alves Valentins Dos; Bruckmann, Mirtes; Garcia, Michele Vargas

    2018-01-01

    Purpose Evaluate the auditory pathway at the brainstem and cortical levels in individuals with peripheral vestibular dysfunction. Methods The study sample was composed 19 individuals aged 20-80 years that presented exam results suggestive of Peripheral Vestibular Disorder (PVD) or Vestibular Dysfunction (VD). Participants underwent evaluation of the auditory pathway through Brainstem Auditory Evoked Potentials (BAEP) (short latency) and P1, N1, P2, N2, and P300 cortical potentials (long latency). Results Nine individuals presented diagnosis of VD and 10 participants were diagnosed with PVD. The overall average of the long latency potentials of the participants was within the normal range, whereas an increased mean was observed in the short latency of waves III and V of the left ear, as well as in the I - III interpeak interval of both ears. Association of the auditory potentials with VD and PVD showed statistically significant correlation only in the III - V interpeak interval of the right ear for short latency. Comparison between the long and short latencies in the groups showed differences between VD and PVD, but without statistical significance. Conclusion No statistically significant correlation was observed between VD/PVD and the auditory evoked potentials; however, for the long latency potentials, individuals with VD presented higher latency in P1, N1, P2, and N2, where as participants with PVD showed higher latency in P300. In the short latency potentials, there was an increase in the absolute latencies in the VD group and in the interpeak intervals in the PVD group.

  7. Evoked potential application to study of echolocation in cetaceans

    NASA Astrophysics Data System (ADS)

    Supin, Alexander Ya.; Nactigall, Paul E.; Pawloski, Jeffrey; Au, Whitlow W. L.

    2002-05-01

    The evoked-potential (EP) method is effective in studies of hearing capabilities of cetaceans. However, until now EP studies in cetaceans were performed only in conditions of passive hearing by recording EP to external stimuli. Can this method be applied to study active echolocation in odontocetes? To answer this question, auditory brainstem evoked responses (ABR) were recorded in a false killer whale while the animal echolocated a target within an experiment in which the animal reported the target present or absent. The ABR collection was triggered by echolocation clicks. In these conditions, the recorded ABR pattern contained a duplicate set of waves. A comparison of ABR wave delays recorded during echolocation with those recorded during regular external stimulation has shown that the first set of waves is a response to the emitted click whereas the second one is a response to the echo. Both responses, to the emitted click and to the echo, were of comparable amplitude in spite of the intensity difference of these two sounds of more than 40 dB near the animal's head. This finding indicates some mechanisms releasing responses to echoes from masking by loud emitted clicks. The evoked-potential method may be productive to investigate these mechanisms.

  8. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    PubMed

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  9. Hyper-excitability of brainstem pathways in cerebral palsy.

    PubMed

    Smith, Allison Teresa; Gorassini, Monica Ann

    2018-06-27

    Individuals with cerebral palsy (CP) experience impairments in the control of head and neck movements, suggesting dysfunction in brainstem circuitry. To examine if brainstem circuitry is altered in CP we compared reflexes evoked in the sternocleidomastoid (SCM) muscle by trigeminal nerve stimulation in adults with CP and age/sex-matched controls. Increasing the intensity of trigeminal nerve stimulation produced progressive increases in the long-latency suppression of ongoing SCM EMG in controls. In contrast, participants with CP showed progressively increased facilitation around the same reflex window, suggesting heightened excitability of brainstem pathways. We also examined if there was altered activation of cortico-brainstem pathways in response to pre-natal injury of the brain. Motor-evoked potentials (MEPs) in the SCM that were conditioned by a prior trigeminal afferent stimulation were more facilitated in CP compared to controls, especially in ipsilateral MEPs that are likely mediated by cortico-reticulospinal pathways. In some participants with CP, but not in controls, a combined trigeminal nerve and cortical stimulation near threshold intensities produced large, long-lasting responses in both the SCM and biceps brachii muscles. We propose that the enhanced excitatory responses evoked from trigeminal and cortical inputs in CP are produced by heightened excitability of brainstem circuits, resulting in the augmented activation of reticulospinal pathways. Enhanced activation of reticulospinal pathways in response to early injury of the corticospinal tract may provide a compensated activation of the spinal cord, or alternatively, contribute to impairments in the precise control of head and neck functions.

  10. On wavelet analysis of auditory evoked potentials.

    PubMed

    Bradley, A P; Wilson, W J

    2004-05-01

    To determine a preferred wavelet transform (WT) procedure for multi-resolution analysis (MRA) of auditory evoked potentials (AEP). A number of WT algorithms, mother wavelets, and pre-processing techniques were examined by way of critical theoretical discussion followed by experimental testing of key points using real and simulated auditory brain-stem response (ABR) waveforms. Conclusions from these examinations were then tested on a normative ABR dataset. The results of the various experiments are reported in detail. Optimal AEP WT MRA is most likely to occur when an over-sampled discrete wavelet transformation (DWT) is used, utilising a smooth (regularity >or=3) and symmetrical (linear phase) mother wavelet, and a reflection boundary extension policy. This study demonstrates the practical importance of, and explains how to minimize potential artefacts due to, 4 inter-related issues relevant to AEP WT MRA, namely shift variance, phase distortion, reconstruction smoothness, and boundary artefacts.

  11. Neurotoxic effects of n-hexane on the human central nervous system: evoked potential abnormalities in n-hexane polyneuropathy.

    PubMed Central

    Chang, Y C

    1987-01-01

    An outbreak of n-hexane polyneuropathy as a result of industrial exposure occurred in printing factories in Taipei area from December 1983 to February 1985. Multimodality evoked potentials study was performed on 22 of the polyneuropathy cases, five of the subclinical cases, and seven of the unaffected workers. The absolute and interpeak latencies of patterned visual evoked potential (pVEP) in both the polyneuropathy and subclinical groups were longer than in the normal controls. The pVEP interpeak amplitude was also decreased in the polyneuropathy cases. Brainstem auditory evoked potentials (BAEP), showed no difference of wave I latency between factory workers and normal controls, but prolongation of the wave I-V interpeak latencies was noted, corresponding with the severity of the polyneuropathy. In somatosensory evoked potentials (SEPs), both the absolute latencies and central conduction time (CCT) were longer in subclinical and polyneuropathy cases than in the unaffected workers and normal controls. From this evoked potentials study, chronic toxic effects of n-hexane on the central nervous system were shown. PMID:3031221

  12. Changes in visual-evoked potential habituation induced by hyperventilation in migraine.

    PubMed

    Coppola, Gianluca; Currà, Antonio; Sava, Simona Liliana; Alibardi, Alessia; Parisi, Vincenzo; Pierelli, Francesco; Schoenen, Jean

    2010-12-01

    Hyperventilation is often associated with stress, an established trigger factor for migraine. Between attacks, migraine is associated with a deficit in habituation to visual-evoked potentials (VEP) that worsens just before the attack. Hyperventilation slows electroencephalographic (EEG) activity and decreases the functional response in the occipital cortex during visual stimulation. The neural mechanisms underlying deficient-evoked potential habituation in migraineurs remain unclear. To find out whether hyperventilation alters VEP habituation, we recorded VEPs before and after experimentally induced hyperventilation lasting 3 min in 18 healthy subjects and 18 migraine patients between attacks. We measured VEP P100 amplitudes in six sequential blocks of 100 sweeps and habituation as the change in amplitude over the six blocks. In healthy subjects, hyperventilation decreased VEP amplitude in block 1 and abolished the normal VEP habituation. In migraine patients, hyperventilation further decreased the already low block 1 amplitude and worsened the interictal habituation deficit. Hyperventilation worsens the habituation deficit in migraineurs possibly by increasing dysrhythmia in the brainstem-thalamo-cortical network.

  13. Auditory- and Vestibular-Evoked Potentials Correlate with Motor and Non-Motor Features of Parkinson’s Disease

    PubMed Central

    Shalash, Ali Soliman; Hassan, Dalia Mohamed; Elrassas, Hanan Hani; Salama, Mohamed Mosaad; Méndez-Hernández, Edna; Salas-Pacheco, José M.; Arias-Carrión, Oscar

    2017-01-01

    Degeneration of several brainstem nuclei has been long related to motor and non-motor symptoms (NMSs) of Parkinson’s disease (PD). Nevertheless, due to technical issues, there are only a few studies that correlate that association. Brainstem auditory-evoked potential (BAEP) and vestibular-evoked myogenic potential (VEMP) responses represent a valuable tool for brainstem assessment. Here, we investigated the abnormalities of BAEPs, ocular VEMPs (oVEMPs), and cervical VEMPs (cVEMPs) in patients with PD and its correlation to the motor and NMSs. Fifteen patients diagnosed as idiopathic PD were evaluated by Unified Parkinson’s Disease Rating Scale and its subscores, Hoehn and Yahr scale, Schwab and England scale, and Non-Motor Symptoms Scale. PD patients underwent pure-tone, speech audiometry, tympanometry, BAEP, oVEMPs, and cVEMPs, and compared to 15 age-matched control subjects. PD subjects showed abnormal BAEP wave morphology, prolonged absolute latencies of wave V and I–V interpeak latencies. Absent responses were the marked abnormality seen in oVEMP. Prolonged latencies with reduced amplitudes were seen in cVEMP responses. Rigidity and bradykinesia were correlated to the BAEP and cVEMP responses contralateral to the clinically more affected side. Contralateral and ipsilateral cVEMPs were significantly correlated to sleep (p = 0.03 and 0.001), perception (p = 0.03), memory/cognition (p = 0.025), and urinary scores (p = 0.03). The oVEMP responses showed significant correlations to cardiovascular (p = 0.01) and sexual dysfunctions (p = 0.013). PD is associated with BAEP and VEMP abnormalities that are correlated to the motor and some non-motor clinical characteristics. These abnormalities could be considered as potential electrophysiological biomarkers for brainstem dysfunction and its associated motor and non-motor features. PMID:28289399

  14. Cortical evoked potentials to an auditory illusion: binaural beats.

    PubMed

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2009-08-01

    To define brain activity corresponding to an auditory illusion of 3 and 6Hz binaural beats in 250Hz or 1000Hz base frequencies, and compare it to the sound onset response. Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000Hz to one ear and 3 or 6Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3Hz and 6Hz, in base frequencies of 250Hz and 1000Hz. Tones were 2000ms in duration and presented with approximately 1s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. All stimuli evoked tone-onset P(50), N(100) and P(200) components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P(50) had significantly different sources than the beats-evoked oscillations; and N(100) and P(200) sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp.

  15. Cortical Evoked Potentials to an Auditory Illusion: Binaural Beats

    PubMed Central

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J.; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2009-01-01

    Objective: To define brain activity corresponding to an auditory illusion of 3 and 6 Hz binaural beats in 250 Hz or 1,000 Hz base frequencies, and compare it to the sound onset response. Methods: Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000 Hz to one ear and 3 or 6 Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3 Hz and 6 Hz, in base frequencies of 250 Hz and 1000 Hz. Tones were 2,000 ms in duration and presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. Results: All stimuli evoked tone-onset P50, N100 and P200 components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P50 had significantly different sources than the beats-evoked oscillations; and N100 and P200 sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Conclusions: Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Significance: Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the

  16. Vertigo in brainstem and cerebellar strokes.

    PubMed

    Choi, Kwang-Dong; Lee, Hyung; Kim, Ji-Soo

    2013-02-01

    The aim of this study is to review the recent findings on the prevalence, clinical features, and diagnosis of vertigo from brainstem and cerebellar strokes. Patients with isolated vertigo are at higher risk for stroke than the general population. Strokes involving the brainstem and cerebellum may manifest as acute vestibular syndrome, and acute isolated audiovestibular loss may herald impending infarction in the territory of the anterior inferior cerebellar artery. Appropriate bedside evaluation is superior to MRI for detecting central vestibular syndromes. Recording of vestibular-evoked myogenic potentials is useful for evaluation of the central otolithic pathways in brainstem and cerebellar strokes. Accurate identification of isolated vascular vertigo is very important since misdiagnosis of acute stroke may result in significant morbidity and mortality, whereas overdiagnosis of vascular vertigo would lead to unnecessary costly work-ups and medication.

  17. Test-retest reliability of speech-evoked auditory brainstem response in healthy children at a low sensation level.

    PubMed

    Zakaria, Mohd Normani; Jalaei, Bahram

    2017-11-01

    Auditory brainstem responses evoked by complex stimuli such as speech syllables have been studied in normal subjects and subjects with compromised auditory functions. The stability of speech-evoked auditory brainstem response (speech-ABR) when tested over time has been reported but the literature is limited. The present study was carried out to determine the test-retest reliability of speech-ABR in healthy children at a low sensation level. Seventeen healthy children (6 boys, 11 girls) aged from 5 to 9 years (mean = 6.8 ± 3.3 years) were tested in two sessions separated by a 3-month period. The stimulus used was a 40-ms syllable /da/ presented at 30 dB sensation level. As revealed by pair t-test and intra-class correlation (ICC) analyses, peak latencies, peak amplitudes and composite onset measures of speech-ABR were found to be highly replicable. Compared to other parameters, higher ICC values were noted for peak latencies of speech-ABR. The present study was the first to report the test-retest reliability of speech-ABR recorded at low stimulation levels in healthy children. Due to its good stability, it can be used as an objective indicator for assessing the effectiveness of auditory rehabilitation in hearing-impaired children in future studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The effect of preterm birth on brainstem, middle latency and cortical auditory evoked responses (BMC AERs).

    PubMed

    Pasman, J W; Rotteveel, J J; de Graaf, R; Stegeman, D F; Visco, Y M

    1992-12-01

    Recent studies on the maturation of auditory brainstem evoked responses (ABRs) present conflicting results, whereas only sparse reports exist with respect to the maturation of middle latency auditory evoked responses (MLRs) and auditory cortical evoked responses (ACRs). The present study reports the effect of preterm birth on the maturation of auditory evoked responses in low risk preterm infants (27-34 weeks conceptional age). The ABRs indicate a consistent trend towards longer latencies for all individual ABR components and towards longer interpeak latencies in preterm infants. The MLR shows longer latencies for early component P0 in preterm infants. The ACRs show a remarkable difference between preterm and term infants. At 40 weeks CA the latencies of ACR components Na and P2 are significantly longer in term infants, whereas at 52 weeks CA the latencies of the same ACR components are shorter in term infants. The results support the hypothesis that retarded myelination of the central auditory pathway is partially responsible for differences found between preterm infants and term infants with respect to late ABR components and early MLR component P0. Furthermore, mild conductive hearing loss in preterm infants may also play its role. A more complex mechanism is implicated to account for the findings noted with respect to MLR component Na and ACR components Na and P2.

  19. Audiological characteristics of infants with abnormal transient evoked otoacoustic emission and normal auditory brainstem response.

    PubMed

    Huang, Lihui; Han, Demin; Guo, Ying; Liu, Sha; Cui, Xiaoyan; Mo, Lingyan; Qi, Beier; Cai, Zhenghua; Liu, Hui; En, Hui; Guo, Liansheng

    2008-10-01

    Audiological characteristics were investigated in 81 ears of 53 infants with abnormal transient evoked otoacoustic emission (TEOAE) and normal auditory brainstem response (ABR). The relationship between ABR and other hearing testing methods, including 40Hz auditory event-related potential (40Hz-AERP), auditory steady state response (ASSR), distortion product otoacoustic emission (DPOAE), tympanometry, and acoustic reflex, was analyzed. Of the 81 ears, 18 ears (22.2%) were normal, while 63 ears (77.8%) were abnormal according to the tests. Testing of the 40 Hz AERP (36 ears) and ASSR (45 ears) revealed that 14 ears (38.9%) and 27 ears (60.0%) were abnormal, respectively. Testing of DPOAE in 68 ears revealed that 50 ears (73.5%) were abnormal. Testing of tympanometry in 50 ears and acoustic reflex in 47 ears revealed that 9 ears (18%) and 27 ears (57.4%) were abnormal, respectively. The present data suggests that the hearing of infants cannot be sufficiently evaluated with ABR only and that it must be evaluated with integrative audiological testing methods.

  20. Auditory evoked potentials: predicting speech therapy outcomes in children with phonological disorders.

    PubMed

    Leite, Renata Aparecida; Wertzner, Haydée Fiszbein; Gonçalves, Isabela Crivellaro; Magliaro, Fernanda Cristina Leite; Matas, Carla Gentile

    2014-03-01

    This study investigated whether neurophysiologic responses (auditory evoked potentials) differ between typically developed children and children with phonological disorders and whether these responses are modified in children with phonological disorders after speech therapy. The participants included 24 typically developing children (Control Group, mean age: eight years and ten months) and 23 children clinically diagnosed with phonological disorders (Study Group, mean age: eight years and eleven months). Additionally, 12 study group children were enrolled in speech therapy (Study Group 1), and 11 were not enrolled in speech therapy (Study Group 2). The subjects were submitted to the following procedures: conventional audiological, auditory brainstem response, auditory middle-latency response, and P300 assessments. All participants presented with normal hearing thresholds. The study group 1 subjects were reassessed after 12 speech therapy sessions, and the study group 2 subjects were reassessed 3 months after the initial assessment. Electrophysiological results were compared between the groups. Latency differences were observed between the groups (the control and study groups) regarding the auditory brainstem response and the P300 tests. Additionally, the P300 responses improved in the study group 1 children after speech therapy. The findings suggest that children with phonological disorders have impaired auditory brainstem and cortical region pathways that may benefit from speech therapy.

  1. Gender Disparities in Speech-evoked Auditory Brainstem Response in Healthy Adults.

    PubMed

    Jalaei, Bahram; Zakaria, Mohd Normani; Mohd Azmi, Mohd Hafiz Afifi; Nik Othman, Nik Adilah; Sidek, Dinsuhaimi

    2017-04-01

    Gender disparities in speech-evoked auditory brainstem response (speech-ABR) outcomes have been reported, but the literature is limited. The present study was performed to further verify this issue and determine the influence of head size on speech-ABR results between genders. Twenty-nine healthy Malaysian subjects (14 males and 15 females) aged 19 to 30 years participated in this study. After measuring the head circumference, speech-ABR was recorded by using synthesized syllable /da/ from the right ear of each participant. Speech-ABR peaks amplitudes, peaks latencies, and composite onset measures were computed and analyzed. Significant gender disparities were noted in the transient component but not in the sustained component of speech-ABR. Statistically higher V/A amplitudes and less steeper V/A slopes were found in females. These gender differences were partially affected after controlling for the head size. Head size is not the main contributing factor for gender disparities in speech-ABR outcomes. Gender-specific normative data can be useful when recording speech-ABR for clinical purposes.

  2. Brainstem Encoding of Aided Speech in Hearing Aid Users with Cochlear Dead Region(s).

    PubMed

    Hassaan, Mohammad Ramadan; Ibraheem, Ola Abdallah; Galhom, Dalia Helal

    2016-07-01

    Neural encoding of speech begins with the analysis of the signal as a whole broken down into its sinusoidal components in the cochlea, which has to be conserved up to the higher auditory centers. Some of these components target the dead regions of the cochlea causing little or no excitation. Measuring aided speech-evoked auditory brainstem response elicited by speech stimuli with different spectral maxima can give insight into the brainstem encoding of aided speech with spectral maxima at these dead regions. This research aims to study the impact of dead regions of the cochlea on speech processing at the brainstem level after a long period of hearing aid use. This study comprised 30 ears without dead regions and 46 ears with dead regions at low, mid, or high frequencies. For all ears, we measured the aided speech-evoked auditory brainstem response using speech stimuli of low, mid, and high spectral maxima. Aided speech-evoked auditory brainstem response was producible in all subjects. Responses evoked by stimuli with spectral maxima at dead regions had longer latencies and smaller amplitudes when compared with the control group or the responses of other stimuli. The presence of cochlear dead regions affects brainstem encoding of speech with spectral maxima perpendicular to these regions. Brainstem neuroplasticity and the extrinsic redundancy of speech can minimize the impact of dead regions in chronic hearing aid users.

  3. Brainstem Encoding of Aided Speech in Hearing Aid Users with Cochlear Dead Region(s)

    PubMed Central

    Hassaan, Mohammad Ramadan; Ibraheem, Ola Abdallah; Galhom, Dalia Helal

    2016-01-01

    Introduction  Neural encoding of speech begins with the analysis of the signal as a whole broken down into its sinusoidal components in the cochlea, which has to be conserved up to the higher auditory centers. Some of these components target the dead regions of the cochlea causing little or no excitation. Measuring aided speech-evoked auditory brainstem response elicited by speech stimuli with different spectral maxima can give insight into the brainstem encoding of aided speech with spectral maxima at these dead regions. Objective  This research aims to study the impact of dead regions of the cochlea on speech processing at the brainstem level after a long period of hearing aid use. Methods  This study comprised 30 ears without dead regions and 46 ears with dead regions at low, mid, or high frequencies. For all ears, we measured the aided speech-evoked auditory brainstem response using speech stimuli of low, mid, and high spectral maxima. Results  Aided speech-evoked auditory brainstem response was producible in all subjects. Responses evoked by stimuli with spectral maxima at dead regions had longer latencies and smaller amplitudes when compared with the control group or the responses of other stimuli. Conclusion  The presence of cochlear dead regions affects brainstem encoding of speech with spectral maxima perpendicular to these regions. Brainstem neuroplasticity and the extrinsic redundancy of speech can minimize the impact of dead regions in chronic hearing aid users. PMID:27413404

  4. Evoked potentials in multiple sclerosis.

    PubMed

    Kraft, George H

    2013-11-01

    Before the development of magnetic resonance imaging (MRI), evoked potentials (EPs)-visual evoked potentials, somatosensory evoked potentials, and brain stem auditory evoked responses-were commonly used to determine a second site of disease in patients being evaluated for possible multiple sclerosis (MS). The identification of an area of the central nervous system showing abnormal conduction was used to supplement the abnormal signs identified on the physical examination-thus identifying the "multiple" in MS. This article is a brief overview of additional ways in which central nervous system (CNS) physiology-as measured by EPs-can still contribute value in the management of MS in the era of MRIs. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Exploring the Relationship between Physiological Measures of Cochlear and Brainstem Function

    PubMed Central

    Dhar, S.; Abel, R.; Hornickel, J.; Nicol, T.; Skoe, E.; Zhao, W.; Kraus, N.

    2009-01-01

    Objective Otoacoustic emissions and the speech-evoked auditory brainstem response are objective indices of peripheral auditory physiology and are used clinically for assessing hearing function. While each measure has been extensively explored, their interdependence and the relationships between them remain relatively unexplored. Methods Distortion product otoacoustic emissions (DPOAE) and speech-evoked auditory brainstem responses (sABR) were recorded from 28 normal-hearing adults. Through correlational analyses, DPOAE characteristics were compared to measures of sABR timing and frequency encoding. Data were organized into two DPOAE (Strength and Structure) and five brainstem (Onset, Spectrotemporal, Harmonics, Envelope Boundary, Pitch) composite measures. Results DPOAE Strength shows significant relationships with sABR Spectrotemporal and Harmonics measures. DPOAE Structure shows significant relationships with sABR Envelope Boundary. Neither DPOAE Strength nor Structure is related to sABR Pitch. Conclusions The results of the present study show that certain aspects of the speech-evoked auditory brainstem responses are related to, or covary with, cochlear function as measured by distortion product otoacoustic emissions. Significance These results form a foundation for future work in clinical populations. Analyzing cochlear and brainstem function in parallel in different clinical populations will provide a more sensitive clinical battery for identifying the locus of different disorders (e.g., language based learning impairments, hearing impairment). PMID:19346159

  6. Contralateral Inhibition of Click- and Chirp-Evoked Human Compound Action Potentials

    PubMed Central

    Smith, Spencer B.; Lichtenhan, Jeffery T.; Cone, Barbara K.

    2017-01-01

    Cochlear outer hair cells (OHC) receive direct efferent feedback from the caudal auditory brainstem via the medial olivocochlear (MOC) bundle. This circuit provides the neural substrate for the MOC reflex, which inhibits cochlear amplifier gain and is believed to play a role in listening in noise and protection from acoustic overexposure. The human MOC reflex has been studied extensively using otoacoustic emissions (OAE) paradigms; however, these measurements are insensitive to subsequent “downstream” efferent effects on the neural ensembles that mediate hearing. In this experiment, click- and chirp-evoked auditory nerve compound action potential (CAP) amplitudes were measured electrocochleographically from the human eardrum without and with MOC reflex activation elicited by contralateral broadband noise. We hypothesized that the chirp would be a more optimal stimulus for measuring neural MOC effects because it synchronizes excitation along the entire length of the basilar membrane and thus evokes a more robust CAP than a click at low to moderate stimulus levels. Chirps produced larger CAPs than clicks at all stimulus intensities (50–80 dB ppeSPL). MOC reflex inhibition of CAPs was larger for chirps than clicks at low stimulus levels when quantified both in terms of amplitude reduction and effective attenuation. Effective attenuation was larger for chirp- and click-evoked CAPs than for click-evoked OAEs measured from the same subjects. Our results suggest that the chirp is an optimal stimulus for evoking CAPs at low stimulus intensities and for assessing MOC reflex effects on the auditory nerve. Further, our work supports previous findings that MOC reflex effects at the level of the auditory nerve are underestimated by measures of OAE inhibition. PMID:28420960

  7. The Role of Auditory Evoked Potentials in the Context of Cochlear Implant Provision.

    PubMed

    Hoth, Sebastian; Dziemba, Oliver Christian

    2017-12-01

    : Auditory evoked potentials (AEP) are highly demanded during the whole process of equipping patients with cochlear implants (CI). They play an essential role in preoperative diagnostics, intraoperative testing, and postoperative monitoring of auditory performance and success. The versatility of AEP's is essentially enhanced by their property to be evokable by acoustic as well as electric stimuli. Thus, the electric responses of the auditory system following acoustic stimulation and recorded by the conventional surface technique as well as by transtympanic derivation from the promontory (Electrocochleography [ECochG]) are used for the quantitative determination of hearing loss and, additionally, electrically evoked compound actions potentials (ECAP) can be recorded with the intracochlear electrodes of the implant just adjacent to the stimulation electrode to check the functional integrity of the device and its coupling to the auditory system. The profile of ECAP thresholds is used as basis for speech processor fitting, the spread of excitation (SOE) allows the identification of electrode mislocations such as array foldover, and recovery functions may serve to optimize stimulus pulse rate. These techniques as well as those relying on scalp surface activity originating in the brainstem or the auditory cortex accompany the CI recipient during its whole life span and they offer valuable insights into functioning and possible adverse effects of the CI for clinical and scientific purposes.

  8. Lateralization and Binaural Interaction of Middle-Latency and Late-Brainstem Components of the Auditory Evoked Response.

    PubMed

    Dykstra, Andrew R; Burchard, Daniel; Starzynski, Christian; Riedel, Helmut; Rupp, Andre; Gutschalk, Alexander

    2016-08-01

    We used magnetoencephalography to examine lateralization and binaural interaction of the middle-latency and late-brainstem components of the auditory evoked response (the MLR and SN10, respectively). Click stimuli were presented either monaurally, or binaurally with left- or right-leading interaural time differences (ITDs). While early MLR components, including the N19 and P30, were larger for monaural stimuli presented contralaterally (by approximately 30 and 36 % in the left and right hemispheres, respectively), later components, including the N40 and P50, were larger ipsilaterally. In contrast, MLRs elicited by binaural clicks with left- or right-leading ITDs did not differ. Depending on filter settings, weak binaural interaction could be observed as early as the P13 but was clearly much larger for later components, beginning at the P30, indicating some degree of binaural linearity up to early stages of cortical processing. The SN10, an obscure late-brainstem component, was observed consistently in individuals and showed linear binaural additivity. The results indicate that while the MLR is lateralized in response to monaural stimuli-and not ITDs-this lateralization reverses from primarily contralateral to primarily ipsilateral as early as 40 ms post stimulus and is never as large as that seen with fMRI.

  9. Brainstem transcription of speech is disrupted in children with autism spectrum disorders

    PubMed Central

    Russo, Nicole; Nicol, Trent; Trommer, Barbara; Zecker, Steve; Kraus, Nina

    2009-01-01

    Language impairment is a hallmark of autism spectrum disorders (ASD). The origin of the deficit is poorly understood although deficiencies in auditory processing have been detected in both perception and cortical encoding of speech sounds. Little is known about the processing and transcription of speech sounds at earlier (brainstem) levels or about how background noise may impact this transcription process. Unlike cortical encoding of sounds, brainstem representation preserves stimulus features with a degree of fidelity that enables a direct link between acoustic components of the speech syllable (e.g., onsets) to specific aspects of neural encoding (e.g., waves V and A). We measured brainstem responses to the syllable /da/, in quiet and background noise, in children with and without ASD. Children with ASD exhibited deficits in both the neural synchrony (timing) and phase locking (frequency encoding) of speech sounds, despite normal click-evoked brainstem responses. They also exhibited reduced magnitude and fidelity of speech-evoked responses and inordinate degradation of responses by background noise in comparison to typically developing controls. Neural synchrony in noise was significantly related to measures of core and receptive language ability. These data support the idea that abnormalities in the brainstem processing of speech contribute to the language impairment in ASD. Because it is both passively-elicited and malleable, the speech-evoked brainstem response may serve as a clinical tool to assess auditory processing as well as the effects of auditory training in the ASD population. PMID:19635083

  10. Real-time intraoperative monitoring of brainstem auditory evoked potentials during microvascular decompression for hemifacial spasm.

    PubMed

    Joo, Byung-Euk; Park, Sang-Ku; Cho, Kyung-Rae; Kong, Doo-Sik; Seo, Dae-Won; Park, Kwan

    2016-11-01

    OBJECTIVE The aim of this study was to define a new protocol for intraoperative monitoring (IOM) of brainstem auditory evoked potentials (BAEPs) during microvascular decompression (MVD) surgery to treat hemifacial spasm (HFS) and to evaluate the usefulness of this new protocol to prevent hearing impairment. METHODS To define the optimal stimulation rate, estimate the number of trials to be averaged, and identify useful warning criteria in IOM of BAEPs, the authors performed a preliminary study of 13 patients with HFS in 2010. They increased the stimulation rate from 10.1 Hz/sec to 100.1 Hz/sec by 10-Hz increments, and they elevated the average time from 100 times to 1000 times by 100-unit increments at a fixed stimulus rate of 43.9 Hz. After defining the optimal stimulation rate and the number of trials that needed to be averaged for IOM of BAEPs, they also identified the useful warning criteria for this protocol for MVD surgery. From January to December 2013, 254 patients with HFS underwent MVD surgery following the new IOM of BAEPs protocol. Pure-tone audiometry and speech discrimination scoring were performed before surgery and 1 week after surgery. To evaluate the usefulness of the new protocol, the authors compared the incidence of postoperative hearing impairment with the results from the group that underwent MVD surgery prior to the new protocol. RESULTS Through a preliminary study, the authors confirmed that it was possible to obtain a reliable wave when using a stimulation rate of 43.9 Hz/sec and averaging 400 trials. Only a Wave V amplitude loss > 50% was useful as a warning criterion when using the new protocol. A reliable BAEP could be obtained in approximately 9.1 seconds. When the new protocol was used, 2 patients (0.8%) showed no recovery of Wave V amplitude loss > 50%, and only 1 of those 2 patients (0.39%) ultimately had postoperative hearing impairment. When compared with the outcomes in the pre-protocol group, hearing impairment incidence

  11. High frequency bone conduction auditory evoked potentials in the guinea pig: Assessing cochlear injury after ossicular chain manipulation.

    PubMed

    Bergin, M J; Bird, P A; Vlajkovic, S M; Thorne, P R

    2015-12-01

    Permanent high frequency (>4 kHz) sensorineural hearing loss following middle ear surgery occurs in up to 25% of patients. The aetiology of this loss is poorly understood and may involve transmission of supra-physiological forces down the ossicular chain to the cochlea. Investigating the mechanisms of this injury using animal models is challenging, as evaluating cochlear function with evoked potentials is confounded when ossicular manipulation disrupts the normal air conduction (AC) pathway. Bone conduction (BC) using clinical bone vibrators in small animals is limited by poor transducer output at high frequencies sensitive to trauma. The objectives of the present study were firstly to evaluate a novel high frequency bone conduction transducer with evoked auditory potentials in a guinea pig model, and secondly to use this model to investigate the impact of middle ear surgical manipulation on cochlear function. We modified a magnetostrictive device as a high frequency BC transducer and evaluated its performance by comparison with a calibrated AC transducer at frequencies up to 32 kHz using the auditory brainstem response (ABR), compound action potential (CAP) and summating potential (SP). To mimic a middle ear traumatising stimulus, a rotating bur was brought in to contact with the incudomalleal complex and the effect on evoked cochlear potentials was observed. BC-evoked potentials followed the same input-output function pattern as AC potentials for all ABR frequencies. Deterioration in CAP and SP thresholds was observed after ossicular manipulation. It is possible to use high frequency BC to evoke responses from the injury sensitive basal region of the cochlea and so not rely on AC with the potential confounder of conductive hearing loss. Ongoing research explores how these findings evolve over time, and ways in which injury may be reduced and the cochlea protected during middle ear surgery. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Forward Masking of the Speech-Evoked Auditory Brainstem Response.

    PubMed

    Hodge, Sarah E; Menezes, Denise C; Brown, Kevin D; Grose, John H

    2018-02-01

    The hypothesis tested was that forward masking of the speech-evoked auditory brainstem response (sABR) increases peak latency as an inverse function of masker-signal interval (Δt), and that the overall persistence of forward masking is age dependent. Older listeners exhibit deficits in forward masking. If forward-masked sABRs provide an objective measure of the susceptibility of speech sounds to prior stimulation, then this provides a novel approach to examining the age dependence of temporal processing. A /da/ stimulus forward masked by speech-shaped noise (Δt = 4-64 ms) was used to measure sABRs in 10 younger and nine older participants. Forward masking of subsegments of the /da/ stimulus (Δt = 16 ms) and click trains (Δt = 0-64 ms) was also measured. Forward-masked sABRs from young participants showed an increase in latency with decreasing Δt for the initial peak. Latency shifts for later peaks were smaller and more uniform. None of the peak latencies returned to baseline by Δt = 64 ms. Forward-masked /da/ subsegments showed peak latency shifts that did not depend simply on peak position, while forward-masked click trains showed latency shifts that were dependent on click position. The sABRs from older adults were less robust but confirmed the viability of the approach. Forward masking of the sABR provides an objective measure of the susceptibility of the auditory system to prior stimulation. Failure of recovery functions to return to baseline suggests an interaction between forward masking by the prior masker and temporal effects within the stimulus itself.

  13. Vestibular evoked myogenic potential findings in multiple sclerosis.

    PubMed

    Escorihuela García, Vicente; Llópez Carratalá, Ignacio; Orts Alborch, Miguel; Marco Algarra, Jaime

    2013-01-01

    Multiple sclerosis is an inflammatory disease involving the occurrence of demyelinating, chronic neurodegenerative lesions in the central nervous system. We studied vestibular evoked myogenic potentials (VEMPs) in this pathology, to allow us to evaluate the saccule, inferior vestibular nerve and vestibular-spinal pathway non-invasively. There were 23 patients diagnosed with multiple sclerosis who underwent VEMP recordings, comparing our results with a control group consisting of 35 healthy subjects. We registered p13 and n23 wave latencies, interaural amplitude difference and asymmetry ratio between both ears. Subjects also underwent an otoscopy and audiometric examination. The prolongation of p13 and n23 wave latencies was the most notable characteristic, with a mean p13 wave latency of 19.53 milliseconds and a mean latency of 30.06 milliseconds for n23. In contrast, the asymmetry index showed no significant differences with our control group. In case of multiple sclerosis, the prolongation of the p13 and n23 VEMP wave latencies is a feature that has been attributed to slowing of conduction by demyelination of the vestibular-spinal pathway. In this regard, alteration of the response or lack thereof in these potentials has a locator value of injury to the lower brainstem. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  14. Brainstem evoked response audiometry: an investigatory tool in detecting hepatic encephalopathy in decompensated chronic liver disease.

    PubMed

    Kabali, Balasubramanian; Velayutham, Gowri; Kapali, Suresh Chander

    2014-01-01

    It is estimated that globally there is a marked increase in liver disease with reports of rising morbidity and mortality, particularly in younger age groups. Brainstem auditory evoked potential (BAEP) was recorded in 60 decompensated chronic liver disease (DCLD) subjects who fulfilled the selection criteria and compared to 60 age and gender matched healthy subjects with normal liver functions. DCLD subjects were divided into two inter groups based on presence or absence of hepatic encephalopathy (HE). Group 1 comprises of 30 subjects of grade- I HE and Group 2 included 30 subjects without hepatic encephalopathy (NHE). Absolute and interpeak wave latencies were measured. Results were analysed by student independent t- test using SPSS software 11 version. Statistical significance was tested using P value. From the present study it can be concluded that the central nervous system is involved in liver cirrhosis evidenced by an abnormal BAEP latencies parameters. This shows that there may be progressive demyelination occurring along with axonal loss or dysfunction in liver cirrhosis HE. This study suggests that periodic evaluation of cirrhotic individuals to such test will help in monitoring the progress of encephalopathy. The prime goal of this study is early diagnosis and initiation of treatment before the onset of coma can reduce the fatality rate.

  15. Basilar artery hypoplasia associated with changes of brainstem potential, transcranial Doppler and perfusion-weighted imaging.

    PubMed

    Zhang, Dao Pei; Yin, Suo; Zhang, Shu Ling; Zhang, Jie Wen; Ma, Qian Kun; Lu, Gui Feng

    2017-07-01

    The aim of this study was to observe brainstem hemodynamic alterations associated with basilar artery hypoplasia (BAH). Nine hundred and fifty-two consecutive patients received emergency multimodal computed tomography; magnetic resonance imaging and magnetic resonance angiogram during the period of January 2011 to December 2014 were included. The vascular risk factors, brainstem auditory evoked potential (BAEP), blink reflex (BR), transcranial Doppler (TCD) and dynamic susceptibility contrast-enhanced perfusion-weighted imaging were completed. There was significant difference in the abnormal rates of TCD and BAEP between BAH and non-BAH patients. A positive correlation between basilar artery diameter and systolic velocity among BAH patients was suggested. V-wave value was used to predict posterior circulation infarction (PCI) with the sensitivity of 0.933 and specificity of 0.50 with the cutoff value of 5.97 s. Abnormal BR rate was also significantly different in BAH and non-BAH patients. The latency of R2 was used to predict PCI with the sensitivity of 0.933 and specificity of 0.50 with the cutoff value of 46.4 ms. The incidence of hypoperfusion was higher in BAH than non-BAH group and it was significant difference. BAH is closely associated with hemodynamic alterations within the pons, which might contribute to vascular vertigo due to regional hypoperfusion.

  16. Skin denervation does not alter cortical potentials to surface concentric electrode stimulation: A comparison with laser evoked potentials and contact heat evoked potentials.

    PubMed

    La Cesa, S; Di Stefano, G; Leone, C; Pepe, A; Galosi, E; Alu, F; Fasolino, A; Cruccu, G; Valeriani, M; Truini, A

    2018-01-01

    In the neurophysiological assessment of patients with neuropathic pain, laser evoked potentials (LEPs), contact heat evoked potentials (CHEPs) and the evoked potentials by the intraepidermal electrical stimulation via concentric needle electrode are widely agreed as nociceptive specific responses; conversely, the nociceptive specificity of evoked potentials by surface concentric electrode (SE-PREPs) is still debated. In this neurophysiological study we aimed at verifying the nociceptive specificity of SE-PREPs. We recorded LEPs, CHEPs and SE-PREPs in eleven healthy participants, before and after epidermal denervation produced by prolonged capsaicin application. We also used skin biopsy to verify the capsaicin-induced nociceptive nerve fibre loss in the epidermis. We found that whereas LEPs and CHEPs were suppressed after capsaicin-induced epidermal denervation, the surface concentric electrode stimulation of the same denervated skin area yielded unchanged SE-PREPs. The suppression of LEPs and CHEPs after nociceptive nerve fibre loss in the epidermis indicates that these techniques are selectively mediated by nociceptive system. Conversely, the lack of SE-PREP changes suggests that SE-PREPs do not provide selective information on nociceptive system function. Capsaicin-induced epidermal denervation abolishes laser evoked potentials (LEPs) and contact heat evoked potentials (CHEPs), but leaves unaffected pain-related evoked potentials by surface concentric electrode (SE-PREPs). These findings suggest that unlike LEPs and CHEPs, SE-PREPs are not selectively mediated by nociceptive system. © 2017 European Pain Federation - EFIC®.

  17. Neurophysiological aspects of brainstem processing of speech stimuli in audiometric-normal geriatric population.

    PubMed

    Ansari, M S; Rangasayee, R; Ansari, M A H

    2017-03-01

    Poor auditory speech perception in geriatrics is attributable to neural de-synchronisation due to structural and degenerative changes of ageing auditory pathways. The speech-evoked auditory brainstem response may be useful for detecting alterations that cause loss of speech discrimination. Therefore, this study aimed to compare the speech-evoked auditory brainstem response in adult and geriatric populations with normal hearing. The auditory brainstem responses to click sounds and to a 40 ms speech sound (the Hindi phoneme |da|) were compared in 25 young adults and 25 geriatric people with normal hearing. The latencies and amplitudes of transient peaks representing neural responses to the onset, offset and sustained portions of the speech stimulus in quiet and noisy conditions were recorded. The older group had significantly smaller amplitudes and longer latencies for the onset and offset responses to |da| in noisy conditions. Stimulus-to-response times were longer and the spectral amplitude of the sustained portion of the stimulus was reduced. The overall stimulus level caused significant shifts in latency across the entire speech-evoked auditory brainstem response in the older group. The reduction in neural speech processing in older adults suggests diminished subcortical responsiveness to acoustically dynamic spectral cues. However, further investigations are needed to encode temporal cues at the brainstem level and determine their relationship to speech perception for developing a routine tool for clinical decision-making.

  18. Click-evoked auditory brainstem responses and autism spectrum disorder: A meta-analytic review.

    PubMed

    Talge, Nicole M; Tudor, Brooke M; Kileny, Paul R

    2018-06-01

    Behavior does not differentiate ASD risk prior to 12 months of age, but biomarkers may inform risk before symptoms emerge. Click-evoked auditory brainstem responses (ABRs) may be worth consideration due to their measurement properties (noninvasiveness; reliability) and conceptual features (well-characterized neural generators), but participant characteristics and assessment protocols vary considerably across studies. Our goal is to perform a meta-analysis of the association between ABRs and ASD. Following an electronic database search (PubMed, Medline, PsycInfo, PsycArticles), we included papers that were written in English, included ASD and typically-developing (TD) groups, and reported the information needed to calculate standardized mean differences (Hedges's g) for at least one ABR latency component (I, III, V, I-III, III-V, I-V). We weighted and averaged effect sizes across conditions and subsets of participants to yield one estimate per component per study. We then performed random-effects regressions to generate component-specific estimates. ASD was associated with longer ABR latencies for Waves III (g = 0.5, 95% CI 0.1, 0.9), V (g = 0.7, 95% CI 0.3, 1.1), I-III (g = 0.7, 95% CI 0.2, 1.2), and I-V (g = 0.6, 95% CI 0.2, 1.0). All components showed significant heterogeneity. Associations were strongest among participants ≤8 years of age and those without middle ear abnormalities or elevated auditory thresholds. In sum, associations between ABRs and ASD are medium-to-large in size, but exhibit heterogeneity. Identifying sources of heterogeneity is challenging, however, due to power limitations and co-occurrence of sample/design characteristics across studies. Research addressing the above limitations is crucial to determining the etiologic and/or prognostic value of ABRs for ASD. Autism Res 2018, 11: 916-927. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. Auditory brainstem responses (ABR) may be associated with ASD

  19. Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential

    NASA Astrophysics Data System (ADS)

    Tu, Tao; Xin, Yi; Gao, Xiaorong; Gao, Shangkai

    2012-02-01

    Visual evoked potentials (VEPs) are of great concern in cognitive and clinical neuroscience as well as in the recent research field of brain-computer interfaces (BCIs). In this study, a chirp-modulated stimulation was employed to serve as a novel type of visual stimulus. Based on our empirical study, the chirp stimuli visual evoked potential (Chirp-VEP) preserved frequency features of the chirp stimulus analogous to the steady state evoked potential (SSVEP), and therefore it can be regarded as a generalization of SSVEP. Specifically, we first investigated the characteristics of the Chirp-VEP in the time-frequency domain and the fractional domain via fractional Fourier transform. We also proposed a group delay technique to derive the apparent latency from Chirp-VEP. Results on EEG data showed that our approach outperformed the traditional SSVEP-based method in efficiency and ease of apparent latency estimation. For the recruited six subjects, the average apparent latencies ranged from 100 to 130 ms. Finally, we implemented a BCI system with six targets to validate the feasibility of Chirp-VEP as a potential candidate in the field of BCIs.

  20. Brainstem auditory evoked responses in man. 1: Effect of stimulus rise-fall time and duration

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Squires, N.; Galambos, R.

    1975-01-01

    Short latency (under 10 msec) responses elicited by bursts of white noise were recorded from the scalps of human subjects. Response alterations produced by changes in the noise burst duration (on-time), inter-burst interval (off-time), and onset and offset shapes were analyzed. The latency of the most prominent response component, wave V, was markedly delayed with increases in stimulus rise time but was unaffected by changes in fall time. Increases in stimulus duration, and therefore in loudness, resulted in a systematic increase in latency. This was probably due to response recovery processes, since the effect was eliminated with increases in stimulus off-time. The amplitude of wave V was insensitive to changes in signal rise and fall times, while increasing signal on-time produced smaller amplitude responses only for sufficiently short off-times. It was concluded that wave V of the human auditory brainstem evoked response is solely an onset response.

  1. The maturation state of the auditory nerve and brainstem in rats exposed to lead acetate and supplemented with ferrous sulfate.

    PubMed

    Zucki, Fernanda; Morata, Thais C; Duarte, Josilene L; Ferreira, Maria Cecília F; Salgado, Manoel H; Alvarenga, Kátia F

    The literature has reported the association between lead and auditory effects, based on clinical and experimental studies. However, there is no consensus regarding the effects of lead in the auditory system, or its correlation with the concentration of the metal in the blood. To investigate the maturation state of the auditory system, specifically the auditory nerve and brainstem, in rats exposed to lead acetate and supplemented with ferrous sulfate. 30 weanling male rats (Rattus norvegicus, Wistar) were distributed into six groups of five animals each and exposed to one of two concentrations of lead acetate (100 or 400mg/L) and supplemented with ferrous sulfate (20mg/kg). The maturation state of the auditory nerve and brainstem was analyzed using Brainstem Auditory Evoked Potential before and after lead exposure. The concentration of lead in blood and brainstem was analyzed using Inductively Coupled Plasma-Mass Spectrometry. We verified that the concentration of Pb in blood and in brainstem presented a high correlation (r=0.951; p<0.0001). Both concentrations of lead acetate affected the maturation state of the auditory system, being the maturation slower in the regions corresponding to portion of the auditory nerve (wave I) and cochlear nuclei (wave II). The ferrous sulfate supplementation reduced significantly the concentration of lead in blood and brainstem for the group exposed to the lowest concentration of lead (100mg/L), but not for the group exposed to the higher concentration (400mg/L). This study indicate that the lead acetate can have deleterious effects on the maturation of the auditory nerve and brainstem (cochlear nucleus region), as detected by the Brainstem Auditory Evoked Potentials, and the ferrous sulphate can partially amend this effect. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. All rights reserved.

  2. Abnormal findings in brainstem auditory evoked response at 36-37weeks of postconceptional age in babies with neonatal chronic lung disease.

    PubMed

    Jiang, Ze D; Wang, Cui

    2016-12-01

    To examine brainstem auditory function at 36-37weeks of postconceptional age in preterm infants who are diagnosed to have neonatal chronic lung disease (CLD). Preterm infants, born at 31 and less weeks of gestation, were studied at 36-37weeks of postconceptional age when they were diagnosed to have neonatal CLD. Brainstem auditory evoked response (BAER) was recorded and analyzed at different click rates. Compared with healthy controls at the same postconceptional age, the CLD infants showed a slightly increase in BAER wave V latency. However, the I-V, and III-V interpeak intervals in the CLD infants were significantly increased. The III-V/I-III interval ratio was also significantly increased. The amplitudes of BAER waves III and V in the CLD infants tended to be reduced. These BAER findings were similar at all 21, 51 and 91/s clicks, although the abnormalities tended to be more significant at higher than at low click rates. At 36-37weeks of postconceptional age, BAER was abnormal in preterm infants who were diagnosed to have neonatal CLD. This suggests that at time when the diagnosis of CLD is made there is functional impairment, reflecting poor myelination, in the brainstem auditory pathway in preterm infants with neonatal CLD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Block-Dependent Sedation during Epidural Anaesthesia is Associated with Delayed Brainstem Conduction

    PubMed Central

    Wadhwa, Anupama; Shah, Yunus M.; Lin, Chum-Ming; Haugh, Gilbert S.; Sessler, Daniel I.

    2005-01-01

    Neuraxial anaesthesia produces a sedative and anesthetic-sparing effect. Recent evidence suggests that spinal cord anaesthesia modifies reticulo-thalamo-cortical arousal by decreasing afferent sensory transmission. We hypothesized that epidural anaesthesia produces sensory deafferentation-dependent sedation that is associated with impairment of brainstem transmission. We used brainstem auditory evoked potentials (BAEP) to evaluate reticular function in 11 volunteers. Epidural anaesthesia was induced with 2% 2-chloroprocaine. Hemodynamic and respiratory responses, sensory block level, sedation depth and BAEP were assessed throughout induction and resolution of epidural anaesthesia. Sedation was evaluated using verbal rating score (VRS), observer's assessment alertness/sedation (OAA/S) score, and bispectral index (BIS). Prediction probability (PK) was used to associate sensory block with sedation, as well as BIS with other sedation measures. Spearman rank order correlation was used to associate block level and sedation with the absolute and interpeak BAEP latencies. Sensory block level significantly predicted VRS (PK = 0.747), OAA/S score (PK = 0.748) and BIS. Bispectral index predicted VRS and OAA/S score (PK = 0.728). The latency of wave III of BAEP significantly correlated with sedation level (rho = 0.335, P < 0.01) and sensory block (rho = 0.394, P < 0.01). The other BAEP parameters did not change during epidural anaesthesia. Hemodynamic and respiratory responses remained stable throughout the study. Sedation during epidural anaesthesia depends on sensory block level and is associated with detectable block-dependent alterations in the brainstem auditory evoked responses. Sensory deafferentation may reduce CNS alertness through mechanisms related to brainstem neural activity. PMID:15220178

  4. SOMATOSENSORY EVOKED POTENTIALS

    EPA Science Inventory

    Somatosensory evoked potentials (SEPs) have been used by neuroscientists for many years. The versatility of the method is attested to be the differing purposes to which it has been applied. Initially, SEPs were used to uncover basic principles of sensory processing. A casual glan...

  5. Transesophageal versus transcranial motor evoked potentials to monitor spinal cord ischemia.

    PubMed

    Tsuda, Kazumasa; Shiiya, Norihiko; Takahashi, Daisuke; Ohkura, Kazuhiro; Yamashita, Katsushi; Kando, Yumi; Arai, Yoshifumi

    2016-02-01

    We have previously reported that transesophageal motor evoked potential is feasible and more stable than transcranial motor evoked potential. This study aimed to investigate the efficacy of transesophageal motor evoked potential to monitor spinal cord ischemia. Transesophageal and transcranial motor evoked potentials were recorded in 13 anesthetized dogs at the bilateral forelimbs, anal sphincters, and hindlimbs. Spinal cord ischemia was induced by aortic balloon occlusion at the 8th to 10th thoracic vertebra level. In the 12 animals with motor evoked potential disappearance, occlusion was maintained for 10 minutes (n = 6) or 40 minutes (n = 6) after motor evoked potential disappearance. Neurologic function was evaluated by Tarlov score at 24 and 48 hours postoperatively. Time to disappearance of bilateral motor evoked potentials was quicker in transesophageal motor evoked potentials than in transcranial motor evoked potentials at anal sphincters (6.9 ± 3.1 minutes vs 8.3 ± 3.4 minutes, P = .02) and hindlimbs (5.7 ± 1.9 minutes vs 7.1 ± 2.7 minutes, P = .008). Hindlimb function was normal in all dogs in the 10-minute occlusion group, and motor evoked potentials recovery (>75% on both sides) after reperfusion was quicker in transesophageal motor evoked potentials than transcranial motor evoked potentials at hindlimbs (14.8 ± 5.6 minutes vs 24.7 ± 8.2 minutes, P = .001). At anal sphincters, transesophageal motor evoked potentials always reappeared (>25%), but transcranial motor evoked potentials did not in 3 of 6 dogs. In the 40-minute occlusion group, hindlimb motor evoked potentials did not reappear in 4 dogs with paraplegia. Among the 2 remaining dogs, 1 with paraparesis (Tarlov 3) showed delayed recovery (>75%) of hindlimb motor evoked potentials without reappearance of anal sphincter motor evoked potentials. In another dog with spastic paraplegia, transesophageal motor evoked potentials from the hindlimbs remained less than 20%, whereas transcranial motor

  6. Maturation of Peripheral and Brainstem Auditory Function in the First Year Following Perinatal Asphyxia: A Longitudinal Study.

    ERIC Educational Resources Information Center

    Jiang, Ze D.

    1998-01-01

    A study of 44 infants who suffered asphyxia during the perinatal period examined the influence of perinatal asphyxia on the maturation of auditory pathways by serial recordings of the brainstem auditory evoked potentials (BAEP). The general maturational course of the BAEP following asphyxia was similar to a control group. (Author/CR)

  7. Improved outcomes in auditory brainstem implantation with the use of near-field electrical compound action potentials.

    PubMed

    Mandalà, Marco; Colletti, Liliana; Colletti, Giacomo; Colletti, Vittorio

    2014-12-01

    To compare the outcomes (auditory threshold and open-set speech perception at 48-month follow-up) of a new near-field monitoring procedure, electrical compound action potential, on positioning the auditory brainstem implant electrode array on the surface of the cochlear nuclei versus the traditional far-field electrical auditory brainstem response. Retrospective study. Tertiary referral center. Among the 202 patients with auditory brainstem implants fitted and monitored with electrical auditory brainstem response during implant fitting, 9 also underwent electrical compound action potential recording. These subjects were matched retrospectively with a control group of 9 patients in whom only the electrical auditory brainstem response was recorded. Electrical compound action potentials were obtained using a cotton-wick recording electrode located near the surface of the cochlear nuclei and on several cranial nerves. Significantly lower potential thresholds were observed with the recording electrode located on the cochlear nuclei surface compared with the electrical auditory brainstem response (104.4 ± 32.5 vs 158.9 ± 24.2, P = .0030). Electrical brainstem response and compound action potentials identified effects on the neighboring cranial nerves on 3.2 ± 2.4 and 7.8 ± 3.2 electrodes, respectively (P = .0034). Open-set speech perception outcomes at 48-month follow-up had improved significantly in the near- versus far-field recording groups (78.9% versus 56.7%; P = .0051). Electrical compound action potentials during auditory brainstem implantation significantly improved the definition of the potential threshold and the number of auditory and extra-auditory waves generated. It led to the best coupling between the electrode array and cochlear nuclei, significantly improving the overall open-set speech perception. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  8. Brainstem dysfunction protects against syncope in multiple sclerosis.

    PubMed

    Habek, Mario; Krbot Skorić, Magdalena; Crnošija, Luka; Adamec, Ivan

    2015-10-15

    The aim of this study was to investigate the correlation between autonomic dysfunction in multiple sclerosis (MS) and brainstem dysfunction evaluated with the vestibular evoked myogenic potentials (VEMP) score and conventional MRI. Forty-five patients with the diagnosis of clinically isolated syndrome (CIS) suggestive of MS were enrolled. VEMP, heart rate, and blood pressure responses to the Valsalva maneuver, heart rate response to deep breathing, and pain provoked head-up tilt table test, as well as brain and spinal cord MRI were performed. There was no difference in the VEMP score between patients with and without signs of sympathetic or parasympathetic dysfunction. However, patients with syncope had significantly lower VEMP score compared to patients without syncope (p<0.01). Patients with orthostatic hypotension (OH) showed a trend of higher VEMP score compared to patients without OH (p=0.06). There was no difference in the presence of lesions in the brainstem or cervical spinal cord between patients with or without any of the studied autonomic parameters. The model consisting of a VEMP score of ≤5 and normal MRI of the midbrain and cervical spinal cord has sensitivity and specificity of 83% for the possibility that the patient with MS can develop syncope. Pathophysiological mechanisms underlying functional and structural disorders of autonomic nervous system in MS differ significantly. While preserved brainstem function is needed for development of syncope, structural disorders like OH could be associated with brainstem dysfunction. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss.

    PubMed

    Verhulst, Sarah; Altoè, Alessandro; Vasilkov, Viacheslav

    2018-03-01

    Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Effects of the brominated flame retardant hexabromocyclododecane (HBCD) on dopamine-dependent behavior and brainstem auditory evoked potentials in a one-generation reproduction study in Wistar rats.

    PubMed

    Lilienthal, Hellmuth; van der Ven, Leo T M; Piersma, Aldert H; Vos, Josephus G

    2009-02-25

    Hexabromocyclododecane (HBCD) is a widely used brominated flame retardant which has been recently detected in many environmental matrices. Data from a subacute toxicity study indicated dose-related effects particularly on the pituitary thyroid-axis and retinoids in female rats. Brominated and chlorinated aromatic hydrocarbons are also reported to exert effects on the nervous system. Several investigations revealed a pronounced sensitivity of the dopaminergic system and auditory functions to polychlorinated biphenyls. Therefore, the present experiment should examine, whether or not HBCD affects these targets. Rats were exposed to 0, 0.1, 0.3, 1, 3, 10, 30 or 100 mg HBCD/kg body weight via the diet. Exposure started before mating and was continued during mating, gestation, lactation, and after weaning in offspring. Haloperidol-induced catalepsy and brainstem auditory evoked potentials (BAEPs) were used to assess dopamine-dependent behavior and hearing function in adult male and female offspring. On the catalepsy test, reduced latencies to movement onset were observed mainly in female offspring, indicating influences on dopamine-dependent behavior. The overall pattern of BAEP alterations, with increased thresholds and prolonged latencies of early waves, suggested a predominant cochlear effect. Effects were dose-dependent with lower bounds of benchmark doses (BMDL) between < or =1 and 10 mg/kg body weight for both catalepsy and BAEP thresholds. Tissue concentrations at the BMDL values obtained in this study were 3-4 orders of magnitude higher than current exposure levels in humans.

  11. Motor evoked potential monitoring of the vagus nerve with transcranial electrical stimulation during skull base surgeries.

    PubMed

    Ito, Eiji; Ichikawa, Masahiro; Itakura, Takeshi; Ando, Hitoshi; Matsumoto, Yuka; Oda, Keiko; Sato, Taku; Watanabe, Tadashi; Sakuma, Jun; Saito, Kiyoshi

    2013-01-01

    Dysphasia is one of the most serious complications of skull base surgeries and results from damage to the brainstem and/or cranial nerves involved in swallowing. Here, the authors propose a method to monitor the function of the vagus nerve using endotracheal tube surface electrodes and transcranial electrical stimulation during skull base surgeries. Fifteen patients with skull base or brainstem tumors were enrolled. The authors used surface electrodes of an endotracheal tube to record compound electromyographic responses from the vocalis muscle. Motor neurons were stimulated using corkscrew electrodes placed subdermally on the scalp at C3 and C4. During surgery, the operator received a warning when the amplitude of the vagal motor evoked potential (MEP) decreased to less than 50% of the control level. After surgery, swallowing function was assessed clinically using grading criteria. In 5 patients, vagal MEP amplitude permanently deteriorated to less than 50% of the control level on the right side when meningiomas were dissected from the pons or basilar artery, or when a schwannoma was dissected from the vagal rootlets. These 5 patients had postoperative dysphagia. At 4 weeks after surgery, 2 patients still had dysphagia. In 2 patients, vagal MEPs of one side transiently disappeared when the tumors were dissected from the brainstem or the vagal rootlets. After surgery, both patients had dysphagia, which recovered in 4 weeks. In 7 patients, MEP amplitude was consistent, maintaining more than 50% of the control level throughout the operative procedures. After surgery all 7 patients were neurologically intact with normal swallowing function. Vagal MEP monitoring with transcranial electrical stimulation and endotracheal tube electrode recording was a safe and effective method to provide continuous real-time information on the integrity of both the supranuclear and infranuclear vagal pathway. This method is useful to prevent intraoperative injury of the brainstem

  12. Electroretinography and Visual Evoked Potentials in Childhood Brain Tumor Survivors.

    PubMed

    Pietilä, Sari; Lenko, Hanna L; Oja, Sakari; Koivisto, Anna-Maija; Pietilä, Timo; Mäkipernaa, Anne

    2016-07-01

    This population-based cross-sectional study evaluates the clinical value of electroretinography and visual evoked potentials in childhood brain tumor survivors. A flash electroretinography and a checkerboard reversal pattern visual evoked potential (or alternatively a flash visual evoked potential) were done for 51 survivors (age 3.8-28.7 years) after a mean follow-up time of 7.6 (1.5-15.1) years. Abnormal electroretinography was obtained in 1 case, bilaterally delayed abnormal visual evoked potentials in 22/51 (43%) cases. Nine of 25 patients with infratentorial tumor location, and altogether 12 out of 31 (39%) patients who did not have tumors involving the visual pathways, had abnormal visual evoked potentials. Abnormal electroretinographies are rarely observed, but abnormal visual evoked potentials are common even without evident anatomic lesions in the visual pathway. Bilateral changes suggest a general and possibly multifactorial toxic/adverse effect on the visual pathway. Electroretinography and visual evoked potential may have clinical and scientific value while evaluating long-term effects of childhood brain tumors and tumor treatment. © The Author(s) 2016.

  13. Brainstem processing following unilateral and bilateral hearing-aid amplification.

    PubMed

    Dawes, Piers; Munro, Kevin J; Kalluri, Sridhar; Edwards, Brent

    2013-04-17

    Following previous research suggesting hearing-aid experience may induce functional plasticity at the peripheral level of the auditory system, click-evoked auditory brainstem response was recorded at first fitting and 12 weeks after hearing-aid use by unilateral and bilateral hearing-aid users. A control group of experienced hearing-aid users was tested over a similar time scale. No significant alterations in auditory brainstem response latency or amplitude were identified in any group. This does not support the hypothesis of plastic changes in the peripheral auditory system induced by hearing-aid use for 12 weeks.

  14. A kernel-based novelty detection scheme for the ultra-fast detection of chirp evoked Auditory Brainstem Responses.

    PubMed

    Corona-Strauss, Farah I; Delb, Wolfgang; Schick, Bernhard; Strauss, Daniel J

    2010-01-01

    Auditory Brainstem Responses (ABRs) are used as objective method for diagnostics and quantification of hearing loss. Many methods for automatic recognition of ABRs have been developed, but none of them include the individual measurement setup in the analysis. The purpose of this work was to design a fast recognition scheme for chirp-evoked ABRs that is adjusted to the individual measurement condition using spontaneous electroencephalographic activity (SA). For the classification, the kernel-based novelty detection scheme used features based on the inter-sweep instantaneous phase synchronization as well as energy and entropy relations in the time-frequency domain. This method provided SA discrimination from stimulations above the hearing threshold with a minimum number of sweeps, i.e., 200 individual responses. It is concluded that the proposed paradigm, processing procedures and stimulation techniques improve the detection of ABRs in terms of the degree of objectivity, i.e., automation of procedure, and measurement time.

  15. Neonatal brainstem dysfunction risks infant social engagement

    PubMed Central

    Sopher, Koreen; Kurtzman, Lea; Galili, Giora; Feldman, Ruth; Kuint, Jacob

    2013-01-01

    The role of the brainstem in mediating social signaling in phylogenetic ancestral organisms has been demonstrated. Evidence for its involvement in social engagement in human infants may deepen the understanding of the evolutionary pathway of humans as social beings. In this longitudinal study, neonatal brainstem functioning was measured by auditory brainstem-evoked responses (ABRs) in 125 healthy neonates born prematurely before 35 weeks’ gestational age. At 4 months, infants were tested in a set of structured vignettes that required varying levels of social engagement and cardiac vagal tone was assessed. Data show that neonates with a disrupted I–V waveform, evident mostly by delayed wave V, exhibit shorter latencies to gaze averts in episodes involving direct face-to-face interactions but engage gaze as controls when interacting with masked agents or with agents whose faces are partly veiled by toys. Analysis of variance of infants’ social engagement with ABR, neonatal risk, maternal stress and cardiac vagal tone showed a main effect for ABR and an ABR by gestational age interaction. The integrity of brainstem transmission of sensory information during the final weeks of gestation may scaffold the development of social disengagement, thereby attesting to the brainstem's preserved evolutionary role in developing humans as social organisms prior to engaging in social encounters. PMID:22146141

  16. Evaluation of peripheral auditory pathways and brainstem in obstructive sleep apnea.

    PubMed

    Matsumura, Erika; Matas, Carla Gentile; Magliaro, Fernanda Cristina Leite; Pedreño, Raquel Meirelles; Lorenzi-Filho, Geraldo; Sanches, Seisse Gabriela Gandolfi; Carvallo, Renata Mota Mamede

    2016-11-25

    Obstructive sleep apnea causes changes in normal sleep architecture, fragmenting it chronically with intermittent hypoxia, leading to serious health consequences in the long term. It is believed that the occurrence of respiratory events during sleep, such as apnea and hypopnea, can impair the transmission of nerve impulses along the auditory pathway that are highly dependent on the supply of oxygen. However, this association is not well established in the literature. To compare the evaluation of peripheral auditory pathway and brainstem among individuals with and without obstructive sleep apnea. The sample consisted of 38 adult males, mean age of 35.8 (±7.2), divided into four groups matched for age and Body Mass Index. The groups were classified based on polysomnography in: control (n=10), mild obstructive sleep apnea (n=11) moderate obstructive sleep apnea (n=8) and severe obstructive sleep apnea (n=9). All study subjects denied a history of risk for hearing loss and underwent audiometry, tympanometry, acoustic reflex and Brainstem Auditory Evoked Response. Statistical analyses were performed using three-factor ANOVA, 2-factor ANOVA, chi-square test, and Fisher's exact test. The significance level for all tests was 5%. There was no difference between the groups for hearing thresholds, tympanometry and evaluated Brainstem Auditory Evoked Response parameters. An association was observed between the presence of obstructive sleep apnea and changes in absolute latency of wave V (p=0.03). There was an association between moderate obstructive sleep apnea and change of the latency of wave V (p=0.01). The presence of obstructive sleep apnea is associated with changes in nerve conduction of acoustic stimuli in the auditory pathway in the brainstem. The increase in obstructive sleep apnea severity does not promote worsening of responses assessed by audiometry, tympanometry and Brainstem Auditory Evoked Response. Copyright © 2016 Associação Brasileira de

  17. Vestibular receptors contribute to cortical auditory evoked potentials.

    PubMed

    Todd, Neil P M; Paillard, Aurore C; Kluk, Karolina; Whittle, Elizabeth; Colebatch, James G

    2014-03-01

    Acoustic sensitivity of the vestibular apparatus is well-established, but the contribution of vestibular receptors to the late auditory evoked potentials of cortical origin is unknown. Evoked potentials from 500 Hz tone pips were recorded using 70 channel EEG at several intensities below and above the vestibular acoustic threshold, as determined by vestibular evoked myogenic potentials (VEMPs). In healthy subjects both auditory mid- and long-latency auditory evoked potentials (AEPs), consisting of Na, Pa, N1 and P2 waves, were observed in the sub-threshold conditions. However, in passing through the vestibular threshold, systematic changes were observed in the morphology of the potentials and in the intensity dependence of their amplitude and latency. These changes were absent in a patient without functioning vestibular receptors. In particular, for the healthy subjects there was a fronto-central negativity, which appeared at about 42 ms, referred to as an N42, prior to the AEP N1. Source analysis of both the N42 and N1 indicated involvement of cingulate cortex, as well as bilateral superior temporal cortex. Our findings are best explained by vestibular receptors contributing to what were hitherto considered as purely auditory evoked potentials and in addition tentatively identify a new component that appears to be primarily of vestibular origin. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Click- and chirp-evoked human compound action potentials

    PubMed Central

    Chertoff, Mark; Lichtenhan, Jeffery; Willis, Marie

    2010-01-01

    In the experiments reported here, the amplitude and the latency of human compound action potentials (CAPs) evoked from a chirp stimulus are compared to those evoked from a traditional click stimulus. The chirp stimulus was created with a frequency sweep to compensate for basilar membrane traveling wave delay using the O-Chirp equations from Fobel and Dau [(2004). J. Acoust. Soc. Am. 116, 2213–2222] derived from otoacoustic emission data. Human cochlear traveling wave delay estimates were obtained from derived compound band action potentials provided by Eggermont [(1979). J. Acoust. Soc. Am. 65, 463–470]. CAPs were recorded from an electrode placed on the tympanic membrane (TM), and the acoustic signals were monitored with a probe tube microphone attached to the TM electrode. Results showed that the amplitude and latency of chirp-evoked N1 of the CAP differed from click-evoked CAPs in several regards. For the chirp-evoked CAP, the N1 amplitude was significantly larger than the click-evoked N1s. The latency-intensity function was significantly shallower for chirp-evoked CAPs as compared to click-evoked CAPs. This suggests that auditory nerve fibers respond with more unison to a chirp stimulus than to a click stimulus. PMID:21117748

  19. Evoked potential recording during echolocation in a false killer whale Pseudorca crassidens (L)

    NASA Astrophysics Data System (ADS)

    Supin, Alexander Ya.; Nachtigall, Paul E.; Pawloski, Jeffrey; Au, Whitlow W. L.

    2003-05-01

    Auditory brainstem responses (ABRs) were recorded in a false killer whale while the animal echolocated a target. The ABR collection was triggered by echolocation clicks of the animal. In these conditions, the recorded ABR pattern contained a duplicate set of waves. A comparison of ABR wave delays recorded during echolocation with those recorded during regular external stimulation with experimenter generated clicks showed that the first set of waves may be a response to the emitted click whereas the second one may be a response to the echo. Both responses, to the emitted click and to the echo, were of comparable amplitude in spite of the intensity difference of these two sounds that may differ by more than 40 dB near the animal's head. This finding indicates the presence of some mechanism of releasing responses to echoes from masking by loud emitted clicks. The evoked-potential method may be productive to investigate these mechanisms.

  20. Potential asphyxia and brainstem abnormalities in sudden and unexpected death in infants.

    PubMed

    Randall, Bradley B; Paterson, David S; Haas, Elisabeth A; Broadbelt, Kevin G; Duncan, Jhodie R; Mena, Othon J; Krous, Henry F; Trachtenberg, Felicia L; Kinney, Hannah C

    2013-12-01

    Sudden and unexplained death is a leading cause of infant mortality. Certain characteristics of the sleep environment increase the risk for sleep-related sudden and unexplained infant death. These characteristics have the potential to generate asphyxial conditions. We tested the hypothesis that infants may be exposed to differing degrees of asphyxia in sleep environments, such that vulnerable infants with a severe underlying brainstem deficiency in serotonergic, γ-aminobutyric acid-ergic, or 14-3-3 transduction proteins succumb even without asphyxial triggers (e.g., supine), whereas infants with intermediate or borderline brainstem deficiencies require asphyxial stressors to precipitate death. We classified cases of sudden infant death into categories relative to a "potential asphyxia" schema in a cohort autopsied at the San Diego County Medical Examiner's Office. Controls were infants who died with known causes of death established at autopsy. Analysis of covariance tested for differences between groups. Medullary neurochemical abnormalities were present in both infants dying suddenly in circumstances consistent with asphyxia and infants dying suddenly without obvious asphyxia-generating circumstances. There were no differences in the mean neurochemical measures between these 2 groups, although mean measures were both significantly lower (P < .05) than those of controls dying of known causes. We found no direct relationship between the presence of potentially asphyxia conditions in the sleep environment and brainstem abnormalities in infants dying suddenly and unexpectedly. Brainstem abnormalities were associated with both asphyxia-generating and non-asphyxia generating conditions. Heeding safe sleep messages is essential for all infants, especially given our current inability to detect underlying vulnerabilities.

  1. Potential Asphyxia and Brainstem Abnormalities in Sudden and Unexpected Death in Infants

    PubMed Central

    Randall, Bradley B.; Paterson, David S.; Haas, Elisabeth A.; Broadbelt, Kevin G.; Duncan, Jhodie R.; Mena, Othon J.; Krous, Henry F.; Trachtenberg, Felicia L.

    2013-01-01

    OBJECTIVE: Sudden and unexplained death is a leading cause of infant mortality. Certain characteristics of the sleep environment increase the risk for sleep-related sudden and unexplained infant death. These characteristics have the potential to generate asphyxial conditions. We tested the hypothesis that infants may be exposed to differing degrees of asphyxia in sleep environments, such that vulnerable infants with a severe underlying brainstem deficiency in serotonergic, γ-aminobutyric acid-ergic, or 14-3-3 transduction proteins succumb even without asphyxial triggers (eg, supine), whereas infants with intermediate or borderline brainstem deficiencies require asphyxial stressors to precipitate death. METHODS: We classified cases of sudden infant death into categories relative to a “potential asphyxia” schema in a cohort autopsied at the San Diego County Medical Examiner’s Office. Controls were infants who died with known causes of death established at autopsy. Analysis of covariance tested for differences between groups. RESULTS: Medullary neurochemical abnormalities were present in both infants dying suddenly in circumstances consistent with asphyxia and infants dying suddenly without obvious asphyxia-generating circumstances. There were no differences in the mean neurochemical measures between these 2 groups, although mean measures were both significantly lower (P < .05) than those of controls dying of known causes. CONCLUSIONS: We found no direct relationship between the presence of potentially asphyxia conditions in the sleep environment and brainstem abnormalities in infants dying suddenly and unexpectedly. Brainstem abnormalities were associated with both asphyxia-generating and non–asphyxia generating conditions. Heeding safe sleep messages is essential for all infants, especially given our current inability to detect underlying vulnerabilities. PMID:24218471

  2. The Physiological Basis and Clinical Use of the Binaural Interaction Component of the Auditory Brainstem Response

    PubMed Central

    Klump, Georg M.; Tollin, Daniel J.

    2016-01-01

    The auditory brainstem response (ABR) is a sound-evoked non-invasively measured electrical potential representing the sum of neuronal activity in the auditory brainstem and midbrain. ABR peak amplitudes and latencies are widely used in human and animal auditory research and for clinical screening. The binaural interaction component (BIC) of the ABR stands for the difference between the sum of the monaural ABRs and the ABR obtained with binaural stimulation. The BIC comprises a series of distinct waves, the largest of which (DN1) has been used for evaluating binaural hearing in both normal hearing and hearing-impaired listeners. Based on data from animal and human studies, we discuss the possible anatomical and physiological bases of the BIC (DN1 in particular). The effects of electrode placement and stimulus characteristics on the binaurally evoked ABR are evaluated. We review how inter-aural time and intensity differences affect the BIC and, analyzing these dependencies, draw conclusion about the mechanism underlying the generation of the BIC. Finally, the utility of the BIC for clinical diagnoses are summarized. PMID:27232077

  3. Monitoring somatosensory evoked potentials in spinal cord ischemia-reperfusion injury

    PubMed Central

    Ji, Yiming; Meng, Bin; Yuan, Chenxi; Yang, Huilin; Zou, Jun

    2013-01-01

    It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-reperfusion injury in rabbits using somatosensory evoked potential detection technology. The results showed that the somatosensory evoked potential latency was significantly prolonged and the amplitude significantly reduced until it disappeared during the period of spinal cord ischemia. After reperfusion for 30–180 minutes, the amplitude and latency began to gradually recover; at 360 minutes of reperfusion, the latency showed no significant difference compared with the pre-ischemic value, while the somatosensory evoked potential amplitude in-creased, and severe hindlimb motor dysfunctions were detected. Experimental findings suggest that changes in somatosensory evoked potential latency can reflect the degree of spinal cord ischemic injury, while the amplitude variations are indicators of the late spinal cord reperfusion injury, which provide evidence for the assessment of limb motor function and avoid iatrogenic spinal cord injury. PMID:25206629

  4. Normalization of auditory evoked potential and visual evoked potential in patients with idiot savant.

    PubMed

    Chen, X; Zhang, M; Wang, J; Lou, F; Liang, J

    1999-03-01

    To investigate the variations of auditory evoked potentials (AEP) and visual evoked potentials (VEP) of patients with idiot savant (IS) syndrome. Both AEP and VEP were recorded from 7 patients with IS syndrome, 21 mentally retarded (MR) children without the syndrome and 21 normally age-matched controls, using a Dantec concerto SEEG-16 BEAM instrument. Both AEP and VEP of MR group showed significantly longer latencies (P1 and P2 latencies of AEP, P < 0.01; N1 and N2 latencies of VEP, P < 0.01/0.05), lower P2 amplitudes (P < 0.01) and higher P3 amplitudes (P < 0.01), as compared with normal controls. But none of above-mentioned changes was found with IS group. Almost all MR patients (90.1%) presented P4 component in both AEP and VEP, which was also in sharp contrast with its incidence in other 2 groups (IS: 14.3%; normal controls: 9.5%). Patients with idiot savant syndrome presented normalized AEP and VEP.

  5. Brainstem auditory evoked potentials with the use of acoustic clicks and complex verbal sounds in young adults with learning disabilities.

    PubMed

    Kouni, Sophia N; Giannopoulos, Sotirios; Ziavra, Nausika; Koutsojannis, Constantinos

    2013-01-01

    Acoustic signals are transmitted through the external and middle ear mechanically to the cochlea where they are transduced into electrical impulse for further transmission via the auditory nerve. The auditory nerve encodes the acoustic sounds that are conveyed to the auditory brainstem. Multiple brainstem nuclei, the cochlea, the midbrain, the thalamus, and the cortex constitute the central auditory system. In clinical practice, auditory brainstem responses (ABRs) to simple stimuli such as click or tones are widely used. Recently, complex stimuli or complex auditory brain responses (cABRs), such as monosyllabic speech stimuli and music, are being used as a tool to study the brainstem processing of speech sounds. We have used the classic 'click' as well as, for the first time, the artificial successive complex stimuli 'ba', which constitutes the Greek word 'baba' corresponding to the English 'daddy'. Twenty young adults institutionally diagnosed as dyslexic (10 subjects) or light dyslexic (10 subjects) comprised the diseased group. Twenty sex-, age-, education-, hearing sensitivity-, and IQ-matched normal subjects comprised the control group. Measurements included the absolute latencies of waves I through V, the interpeak latencies elicited by the classical acoustic click, the negative peak latencies of A and C waves, as well as the interpeak latencies of A-C elicited by the verbal stimulus 'baba' created on a digital speech synthesizer. The absolute peak latencies of waves I, III, and V in response to monoaural rarefaction clicks as well as the interpeak latencies I-III, III-V, and I-V in the dyslexic subjects, although increased in comparison with normal subjects, did not reach the level of a significant difference (p<0.05). However, the absolute peak latencies of the negative wave C and the interpeak latencies of A-C elicited by verbal stimuli were found to be increased in the dyslexic group in comparison with the control group (p=0.0004 and p=0.045, respectively

  6. Using Evoked Potentials to Match Interaural Electrode Pairs with Bilateral Cochlear Implants

    PubMed Central

    Delgutte, Bertrand

    2007-01-01

    Bilateral cochlear implantation seeks to restore the advantages of binaural hearing to the profoundly deaf by providing binaural cues normally important for accurate sound localization and speech reception in noise. Psychophysical observations suggest that a key issue for the implementation of a successful binaural prosthesis is the ability to match the cochlear positions of stimulation channels in each ear. We used a cat model of bilateral cochlear implants with eight-electrode arrays implanted in each cochlea to develop and test a noninvasive method based on evoked potentials for matching interaural electrodes. The arrays allowed the cochlear location of stimulation to be independently varied in each ear. The binaural interaction component (BIC) of the electrically evoked auditory brainstem response (EABR) was used as an assay of binaural processing. BIC amplitude peaked for interaural electrode pairs at the same relative cochlear position and dropped with increasing cochlear separation in either direction. To test the hypothesis that BIC amplitude peaks when electrodes from the two sides activate maximally overlapping neural populations, we measured multiunit neural activity along the tonotopic gradient of the inferior colliculus (IC) with 16-channel recording probes and determined the spatial pattern of IC activation for each stimulating electrode. We found that the interaural electrode pairings that produced the best aligned IC activation patterns were also those that yielded maximum BIC amplitude. These results suggest that EABR measurements may provide a method for assigning frequency–channel mappings in bilateral implant recipients, such as pediatric patients, for which psychophysical measures of pitch ranking or binaural fusion are unavailable. PMID:17225976

  7. Using evoked potentials to match interaural electrode pairs with bilateral cochlear implants.

    PubMed

    Smith, Zachary M; Delgutte, Bertrand

    2007-03-01

    Bilateral cochlear implantation seeks to restore the advantages of binaural hearing to the profoundly deaf by providing binaural cues normally important for accurate sound localization and speech reception in noise. Psychophysical observations suggest that a key issue for the implementation of a successful binaural prosthesis is the ability to match the cochlear positions of stimulation channels in each ear. We used a cat model of bilateral cochlear implants with eight-electrode arrays implanted in each cochlea to develop and test a noninvasive method based on evoked potentials for matching interaural electrodes. The arrays allowed the cochlear location of stimulation to be independently varied in each ear. The binaural interaction component (BIC) of the electrically evoked auditory brainstem response (EABR) was used as an assay of binaural processing. BIC amplitude peaked for interaural electrode pairs at the same relative cochlear position and dropped with increasing cochlear separation in either direction. To test the hypothesis that BIC amplitude peaks when electrodes from the two sides activate maximally overlapping neural populations, we measured multiunit neural activity along the tonotopic gradient of the inferior colliculus (IC) with 16-channel recording probes and determined the spatial pattern of IC activation for each stimulating electrode. We found that the interaural electrode pairings that produced the best aligned IC activation patterns were also those that yielded maximum BIC amplitude. These results suggest that EABR measurements may provide a method for assigning frequency-channel mappings in bilateral implant recipients, such as pediatric patients, for which psychophysical measures of pitch ranking or binaural fusion are unavailable.

  8. Sensitization of trigeminal brainstem pathways in a model for tear deficient dry eye

    PubMed Central

    Rahman, Mostafeezur; Okamoto, Keiichiro; Thompson, Randall; Katagiri, Ayano; Bereiter, David A.

    2015-01-01

    Abstract Chronic dry eye disease (DE) is associated with an unstable tear film and symptoms of ocular discomfort. The characteristics of symptoms suggest a key role for central neural processing; however, little is known about central neuroplasticity and DE. We used a model for tear deficient DE and assessed effects on eye blink behavior, orbicularis oculi muscle activity (OOemg), and trigeminal brainstem neural activity in male rats. Ocular-responsive neurons were recorded at the interpolaris/caudalis transition (Vi/Vc) and Vc/upper cervical cord (Vc/C1) regions under isoflurane, whereas OOemg activity was recorded under urethane. Spontaneous tear volume was reduced by ∼50% at 14 days after exorbital gland removal. Hypertonic saline–evoked eye blink behavior in awake rats was enhanced throughout the 14 days after surgery. Saline-evoked neural activity at the Vi/Vc transition and in superficial and deep laminae at the Vc/C1 region was greatly enhanced in DE rats. Neurons from DE rats classified as wide dynamic range displayed enlarged convergent periorbital receptive fields consistent with central sensitization. Saline-evoked OOemg activity was markedly enhanced in DE rats compared with controls. Synaptic blockade at the Vi/Vc transition or the Vc/C1 region greatly reduced hypertonic saline–evoked OOemg activity in DE and sham rats. These results indicated that persistent tear deficiency caused sensitization of ocular-responsive neurons at multiple regions of the caudal trigeminal brainstem and enhanced OOemg activity. Central sensitization of ocular-related brainstem circuits is a significant factor in DE and likely contributes to the apparent weak correlation between peripheral signs of tear dysfunction and symptoms of irritation. PMID:25734990

  9. Auditory evoked potentials.

    PubMed

    De Cosmo, G; Aceto, P; Clemente, A; Congedo, E

    2004-05-01

    Auditory evoked potentials (AEPs) are an electrical manifestation of the brain response to an auditory stimulus. Mid-latency auditory evoked potentials (MLAEPs) and the coherent frequency of the AEP are the most promising for monitoring depth of anaesthesia. MLAEPs show graded changes with increasing anaesthetic concentration over the clinical concentration range. The latencies of Pa and Nb lengthen and their amplitudes reduce. These changes in features of waveform are similar with both inhaled and intravenous anaesthetics. Changes in latency of Pa and Nb waves are highly correlated to a transition from awake to loss of consciousness. MLAEPs recording may also provide information about cerebral processing of the auditory input, probably because it reflects activity in the temporal lobe/primary cortex, sites involved in sounds elaboration and in a complex mechanism of implicit (non declarative) memory processing. The coherent frequency has found to be disrupted by the anaesthetics as well as to be implicated in attentional mechanism. These results support the concept that the AEPs reflects the balance between the arousal effects of surgical stimulation and the depressant effects of anaesthetics. However, AEPs aren't a perfect measure of anaesthesia depth. They can't predict patients movements during surgery and the signal may be affected by muscle artefacts, diathermy and other electrical operating theatre interferences. In conclusion, once reliability of the AEPs recording became proved and the signal acquisition improved it is likely to became a routine feature of clinical anaesthetic practice.

  10. A joint sparse representation-based method for double-trial evoked potentials estimation.

    PubMed

    Yu, Nannan; Liu, Haikuan; Wang, Xiaoyan; Lu, Hanbing

    2013-12-01

    In this paper, we present a novel approach to solving an evoked potentials estimating problem. Generally, the evoked potentials in two consecutive trials obtained by repeated identical stimuli of the nerves are extremely similar. In order to trace evoked potentials, we propose a joint sparse representation-based double-trial evoked potentials estimation method, taking full advantage of this similarity. The estimation process is performed in three stages: first, according to the similarity of evoked potentials and the randomness of a spontaneous electroencephalogram, the two consecutive observations of evoked potentials are considered as superpositions of the common component and the unique components; second, making use of their characteristics, the two sparse dictionaries are constructed; and finally, we apply the joint sparse representation method in order to extract the common component of double-trial observations, instead of the evoked potential in each trial. A series of experiments carried out on simulated and human test responses confirmed the superior performance of our method. © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.

  11. Brainstem auditory evoked responses in an equine patient population: part I--adult horses.

    PubMed

    Aleman, M; Holliday, T A; Nieto, J E; Williams, D C

    2014-01-01

    Brainstem auditory evoked response has been an underused diagnostic modality in horses as evidenced by few reports on the subject. To describe BAER findings, common clinical signs, and causes of hearing loss in adult horses. Study group, 76 horses; control group, 8 horses. Retrospective. BAER records from the Clinical Neurophysiology Laboratory were reviewed from the years of 1982 to 2013. Peak latencies, amplitudes, and interpeak intervals were measured when visible. Horses were grouped under disease categories. Descriptive statistics and a posthoc Bonferroni test were performed. Fifty-seven of 76 horses had BAER deficits. There was no breed or sex predisposition, with the exception of American Paint horses diagnosed with congenital sensorineural deafness. Eighty-six percent (n = 49/57) of the horses were younger than 16 years of age. The most common causes of BAER abnormalities were temporohyoid osteoarthropathy (THO, n = 20/20; abnormalities/total), congenital sensorineural deafness in Paint horses (17/17), multifocal brain disease (13/16), and otitis media/interna (4/4). Auditory loss was bilateral and unilateral in 74% (n = 42/57) and 26% (n = 15/57) of the horses, respectively. The most common causes of bilateral auditory loss were sensorineural deafness, THO, and multifocal brain disease whereas THO and otitis were the most common causes of unilateral deficits. Auditory deficits should be investigated in horses with altered behavior, THO, multifocal brain disease, otitis, and in horses with certain coat and eye color patterns. BAER testing is an objective and noninvasive diagnostic modality to assess auditory function in horses. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  12. Transcranial Motor-Evoked Potentials Are More Readily Acquired Than Somatosensory-Evoked Potentials in Children Younger Than 6 Years.

    PubMed

    McIntyre, Ian W; Francis, Lisa; McAuliffe, John J

    2016-01-01

    There is a general belief that somatosensory-evoked potentials (SSEPs) are more easily obtained than transcranial motor-evoked potentials (TcMEPs) in children younger than 6 years. We tested this assumption and the assumption that motor-evoked potentials are rarely obtained in children younger than 2 years. The records of all patients who were monitored during surgical procedures between April 1, 2010, and June 30, 2013, were reviewed and those who were younger than 72 months at the time of surgery were identified and analyzed for the rate of obtaining clinically useful SSEPs and motor-evoked potentials. Subgroup analysis was performed by age. A total of 146 patients were identified, 9 had SSEPs without TcMEPs monitored, 117 had both TcMEPs and SSEPs monitored, and the remainder had only electromyographic monitoring. All patients who were to have TcMEPs recorded received a total IV anesthetic. Among the 117 patients who had both SSEPs and TcMEPs monitored, clinically relevant TcMEPs were obtained more frequently than SSEPs (110/117 vs 89/117; χ = 14.82; P = 0.00012). There were significant differences between the rates of obtaining SSEPs and TcMEPs in the 0- to 23-month (P = 0.0038) and 24- to 47-month (P = 0.0056) age groups. Utilization of a double-train stimulation technique facilitated obtaining TcMEPs in the youngest patients. TcMEPs can be obtained more easily than SSEPs in patients younger than 72 months if a permissive anesthetic technique is used. The success rate for obtaining TcMEPs can be further enhanced by the use of a temporal facilitation (double-train) stimulation technique.

  13. [Comparison of tone burst evoked auditory brainstem responses with different filter settings for referral infants after hearing screening].

    PubMed

    Diao, Wen-wen; Ni, Dao-feng; Li, Feng-rong; Shang, Ying-ying

    2011-03-01

    Auditory brainstem responses (ABR) evoked by tone burst is an important method of hearing assessment in referral infants after hearing screening. The present study was to compare the thresholds of tone burst ABR with filter settings of 30 - 1500 Hz and 30 - 3000 Hz at each frequency, figure out the characteristics of ABR thresholds with the two filter settings and the effect of the waveform judgement, so as to select a more optimal frequency specific ABR test parameter. Thresholds with filter settings of 30 - 1500 Hz and 30 - 3000 Hz in children aged 2 - 33 months were recorded by click, tone burst ABR. A total of 18 patients (8 male/10 female), 22 ears were included. The thresholds of tone burst ABR with filter settings of 30 - 3000 Hz were higher than that with filter settings of 30 - 1500 Hz. Significant difference was detected for that at 0.5 kHz and 2.0 kHz (t values were 2.238 and 2.217, P < 0.05), no significant difference between the two filter settings was detected at the rest frequencies tone evoked ABR thresholds. The waveform of ABR with filter settings of 30 - 1500 Hz was smoother than that with filter settings of 30 - 3000 Hz at the same stimulus intensity. Response curve of the latter appeared jagged small interfering wave. The filter setting of 30 - 1500 Hz may be a more optimal parameter of frequency specific ABR to improve the accuracy of frequency specificity ABR for infants' hearing assessment.

  14. Specialization of the auditory processing in harbor porpoise, characterized by brain-stem potentials

    NASA Astrophysics Data System (ADS)

    Bibikov, Nikolay G.

    2002-05-01

    Brain-stem auditory evoked potentials (BAEPs) were recorded from the head surface of the three awaked harbor porpoises (Phocoena phocoena). Silver disk placed on the skin surface above the vertex bone was used as an active electrode. The experiments were performed at the Karadag biological station (the Crimea peninsula). Clicks and tone bursts were used as stimuli. The temporal and frequency selectivity of the auditory system was estimated using the methods of simultaneous and forward masking. An evident minimum of the BAEPs thresholds was observed in the range of 125-135 kHz, where the main spectral component of species-specific echolocation signal is located. In this frequency range the tonal forward masking demonstrated a strong frequency selectivity. Off-response to such tone bursts was a typical observation. An evident BAEP could be recorded up to the frequencies 190-200 kHz, however, outside the acoustical fovea the frequency selectivity was rather poor. Temporal resolution was estimated by measuring BAER recovery functions for double clicks, double tone bursts, and double noise bursts. The half-time of BAERs recovery was in the range of 0.1-0.2 ms. The data indicate that the porpoise auditory system is strongly adapted to detect ultrasonic closely spaced sounds like species-specific locating signals and echoes.

  15. The combined effects of forward masking by noise and high click rate on monaural and binaural human auditory nerve and brainstem potentials.

    PubMed

    Pratt, Hillel; Polyakov, Andrey; Bleich, Naomi; Mittelman, Naomi

    2004-07-01

    To study effects of forward masking and rapid stimulation on human monaurally- and binaurally-evoked brainstem potentials and suggest their relation to synaptic fatigue and recovery and to neuronal action potential refractoriness. Auditory brainstem evoked potentials (ABEPs) were recorded from 12 normally- and symmetrically hearing adults, in response to each click (50 dB nHL, condensation and rarefaction) in a train of nine, with an inter-click interval of 11 ms, that followed a white noise burst of 100 ms duration (50 dB nHL). Sequences of white noise and click train were repeated at a rate of 2.89 s(-1). The interval between noise and first click in the train was 2, 11, 22, 44, 66 or 88 ms in different runs. ABEPs were averaged (8000 repetitions) using a dwell time of 25 micros/address/channel. The binaural interaction components (BICs) of ABEPs were derived and the single, centrally located equivalent dipoles of ABEP waves I and V and of the BIC major wave were estimated. The latencies of dipoles I and V of ABEP, their inter-dipole interval and the dipole magnitude of component V were significantly affected by the interval between noise and clicks and by the serial position of the click in the train. The latency and dipole magnitude of the major BIC component were significantly affected by the interval between noise and clicks. Interval from noise and the click's serial position in the train interacted to affect dipole V latency, dipole V magnitude, BIC latencies and the V-I inter-dipole latency difference. Most of the effects were fully apparent by the first few clicks in the train, and the trend (increase or decrease) was affected by the interval between noise and clicks. The changes in latency and magnitude of ABEP and BIC components with advancing position in the click train and the interactions of click position in the train with the intervals from noise indicate an interaction of fatigue and recovery, compatible with synaptic depletion and replenishing

  16. Human cerebral potentials evoked by moving dynamic random dot stereograms.

    PubMed

    Herpers, M J; Caberg, H B; Mol, J M

    1981-07-01

    In 11 normal healthy human subjects an evoked potential was elicited by moving dynamic random dot stereograms. The random dots were generated by a minicomputer. An average of each of 8 EEG channels of the subjects tested was made. The maximum of the cerebral evoked potentials thus found was localized in the central and parietal region. No response earlier than 130--150 msec after the stimulus could be proved. The influence of fixation, the number of dots provided, an interocular interstimulus interval in the presentation of the dots, and lense accommodation movements on the evoked stereoptic potentials was investigated and discussed. An interocular interstimulus interval (left eye leading) in the presentation of the dots caused an increase in latency of the response much longer than the imposed interstimulus interval itself. It was shown that no accommodation was needed to perceive the depth impression, and to evoke the cerebral response with random dot stereograms. There are indications of an asymmetry between the two hemispheres in the handling of depth perception after 250 msec. The potential distribution of the evoked potentials strongly suggests that they are not generated in the occipital region.

  17. Effect of intrathecal baclofen on evoked pain perception: an evoked potentials and quantitative thermal testing study.

    PubMed

    Kumru, H; Kofler, M; Flores, M C; Portell, E; Robles, V; Leon, N; Vidal, J

    2013-08-01

    Somatic antinociceptive effects of baclofen have been demonstrated in animal models. We hypothesized that if enhanced thermal or pain sensitivity is produced by loss of gamma-aminobutyric acid (GABA)-ergic tone in the central nervous system, spinal administration of GABA agonists might be predicted to be effective in thermal and/or pain perception changes and pain-related evoked potentials in candidates for intrathecal baclofen (ITB) treatment. Eleven patients with severe spinal cord injury (SCI) who suffered from severe spasticity were evaluated during a 50-μg ITB bolus test. Warm and heat pain thresholds, evoked heat pain perception, and contact heat-evoked potentials (CHEPs) were determined above SCI level from the right and left sides. Nine age- and gender-matched healthy volunteers undergoing repeat testing without any placebo injection served as control group. In patients, heat pain perception threshold increased, and evoked pain perception and amplitude of CHEPs decreased significantly after ITB bolus application in comparison with baseline (p < 0.005), with no change in warm perception threshold. In controls, no significant changes were observed in repeat testing over time. Our findings indicate that ITB modulates heat pain perception threshold, evoked heat pain perception and heat pain-related evoked potentials without inducing warm perception threshold changes in SCI patients. This phenomenon should be taken into account in the clinical evaluation and management of pain in patients receiving baclofen. © 2012 European Federation of International Association for the Study of Pain Chapters.

  18. Visual evoked potentials in patients after methanol poisoning.

    PubMed

    Urban, Pavel; Zakharov, Sergey; Diblík, Pavel; Pelclová, Daniela; Ridzoň, Petr

    2016-01-01

    We report the results of the visual evoked potentials (VEP) examination in patients after severe poisoning by methanol. The group of 47 patients (38 males and 9 females) was assembled out of persons who survived an outbreak of poisoning by the methanol adulterated alcohol beverages, which happened in the Czech Republic in 2012-2013. The visual evoked potentials examination was performed using monocular checkerboard pattern-reversal stimulation. Two criteria of abnormality were chosen: missing evoked response, and wave P1 latency > 117 ms. Non-parametric statistical methods (median, range, and the median test) were used to analyze factors influencing the VEP abnormality. The visual evoked potential was abnormal in 20 patients (43%), 5 of them had normal visual acuity on the Snellen chart. The VEP abnormality did not correlate significantly with initial serum concentrations of methanol, formic acid or lactate; however, it showed statistically significant inverse relation to the initial serum pH: the subgroup with the abnormal VEP had significantly lower median pH in comparison with the subgroup with the normal VEP (7.16 vs. 7.34, p = 0.04). The abnormality was not related to chronic alcohol abuse. The visual evoked potentials examination appeared sensitive enough to detected even subclinical impairment of the optic system. Metabolic acidosis is likely to be the key factor related to the development of visual damage induced by methanol. The examination performed with a delay of 1-9 months after the poisoning documented the situation relatively early after the event. It is considered as a baseline for the planned long-term follow-up of the patients, which will make it possible to assess the dynamics of the observed changes, their reversibility, and the occurrence of potential late sequelae. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  19. A simple model for the generation of the vestibular evoked myogenic potential (VEMP).

    PubMed

    Wit, Hero P; Kingma, Charlotte M

    2006-06-01

    To describe the mechanism by which the vestibular evoked myogenic potential is generated. Vestibular evoked myogenic potential generation is modeled by adding a large number of muscle motor unit action potentials. These action potentials occur randomly in time along a 100 ms long time axis. But because between approximately 15 and 20 ms after a loud short sound stimulus (almost) no action potentials are generated during VEMP measurements in human subjects, no action potentials are present in the model during this time. The evoked potential is the result of the lack of amplitude cancellation in the averaged surface electromyogram at the edges of this 5 ms long time interval. The relatively simple model describes generation and some properties of the vestibular evoked myogenic potential very well. It is shown that, in contrast with other evoked potentials (BAEPs, VERs), the vestibular evoked myogenic potential is the result of an interruption of activity and not that of summed synchronized neural action potentials.

  20. Impact of monaural frequency compression on binaural fusion at the brainstem level.

    PubMed

    Klauke, Isabelle; Kohl, Manuel C; Hannemann, Ronny; Kornagel, Ulrich; Strauss, Daniel J; Corona-Strauss, Farah I

    2015-08-01

    A classical objective measure for binaural fusion at the brainstem level is the so-called β-wave of the binaural interaction component (BIC) in the auditory brainstem response (ABR). However, in some cases it appeared that a reliable detection of this component still remains a challenge. In this study, we investigate the wavelet phase synchronization stability (WPSS) of ABR data for the analysis of binaural fusion and compare it to the BIC. In particular, we examine the impact of monaural nonlinear frequency compression on binaural fusion. As the auditory system is tonotopically organized, an interaural frequency mismatch caused by monaural frequency compression could negatively effect binaural fusion. In this study, only few subjects showed a detectable β-wave and in most cases only for low ITDs. However, we present a novel objective measure for binaural fusion that outperforms the current state-of-the-art technique (BIC): the WPSS analysis showed a significant difference between the phase stability of the sum of the monaurally evoked responses and the phase stability of the binaurally evoked ABR. This difference could be an indicator for binaural fusion in the brainstem. Furthermore, we observed that monaural frequency compression could indeed effect binaural fusion, as the WPSS results for this condition vary strongly from the results obtained without frequency compression.

  1. Recording Visual Evoked Potentials and Auditory Evoked P300 at 9.4T Static Magnetic Field

    PubMed Central

    Hahn, David; Boers, Frank; Shah, N. Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4T were not different from those recorded at 0T. The amplitudes of ERPs were higher at 9.4T when compared to recordings at 0T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses. PMID:23650538

  2. Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.

    PubMed

    Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.

  3. Median and ulnar muscle and sensory evoked potentials.

    PubMed

    Felsenthal, G

    1978-08-01

    The medical literature was reviewed to find suggested clinical applications of the study of the amplitude of evoked muscle action potentials (MAP) and sensory action potentials (SAP). In addition, the literature was reviewed to ascertain the normal amplitude and duration of the evoked MAP and SAP as well as the factors affecting the amplitude: age, sex, temperature, ischemia. The present study determined the normal amplitude and duration of the median and ulnar MAP and SAP in fifty normal subjects. The amplitude of evoked muscle or sensory action potentials depends on multiple factors. Increased skin resistance, capacitance, and impedance at the surface of the recording electrode diminishes the amplitude. Similarly, increased distance from the source of the action potential diminishes its amplitude. Increased interelectrode distance increases the amplitude of the bipolarly recorded sensory action potential until a certain interelectrode distance is exceeded and the diphasic response becomes tri- or tetraphasic. Artifact or poor technique may reduce the potential difference between the recording electrodes or obscure the late positive phase of the action potential and thus diminish the peak to peak amplitude measurement. Intraindividual comparison indicated a marked difference of amplitude in opposite hands. The range of the MAP of the abductor pollicis brevis in one hand was 40.0--100% of the response in the opposite hand. For the abductor digiti minimi, the MAP was 58.5--100% of the response of the opposite hand. The median and ulnar SAP was between 50--100% of the opposite SAP. Consequent to these findings the effect of hand dominance on the amplitude of median and ulnar evoked muscle and sensory action potentials was studied in 41 right handed volunteers. The amplitudes of the median muscle action potential (p less than 0.02) and the median and ulnar sensory action potentials (p less than 0.001) were significantly less in the dominant hand. There was no

  4. Gap prepulse inhibition and auditory brainstem-evoked potentials as objective measures for tinnitus in guinea pigs

    PubMed Central

    Dehmel, Susanne; Eisinger, Daniel; Shore, Susan E.

    2012-01-01

    Tinnitus or ringing of the ears is a subjective phantom sensation necessitating behavioral models that objectively demonstrate the existence and quality of the tinnitus sensation. The gap detection test uses the acoustic startle response elicited by loud noise pulses and its gating or suppression by preceding sub-startling prepulses. Gaps in noise bands serve as prepulses, assuming that ongoing tinnitus masks the gap and results in impaired gap detection. This test has shown its reliability in rats, mice, and gerbils. No data exists for the guinea pig so far, although gap detection is similar across mammals and the acoustic startle response is a well-established tool in guinea pig studies of psychiatric disorders and in pharmacological studies. Here we investigated the startle behavior and prepulse inhibition (PPI) of the guinea pig and showed that guinea pigs have a reliable startle response that can be suppressed by 15 ms gaps embedded in narrow noise bands preceding the startle noise pulse. After recovery of auditory brainstem response (ABR) thresholds from a unilateral noise over-exposure centered at 7 kHz, guinea pigs showed diminished gap-induced reduction of the startle response in frequency bands between 8 and 18 kHz. This suggests the development of tinnitus in frequency regions that showed a temporary threshold shift (TTS) after noise over-exposure. Changes in discharge rate and synchrony, two neuronal correlates of tinnitus, should be reflected in altered ABR waveforms, which would be useful to objectively detect tinnitus and its localization to auditory brainstem structures. Therefore, we analyzed latencies and amplitudes of the first five ABR waves at suprathreshold sound intensities and correlated ABR abnormalities with the results of the behavioral tinnitus testing. Early ABR wave amplitudes up to N3 were increased for animals with tinnitus possibly stemming from hyperactivity and hypersynchrony underlying the tinnitus percept. Animals that did not

  5. Recording and assessment of evoked potentials with electrode arrays.

    PubMed

    Miljković, N; Malešević, N; Kojić, V; Bijelić, G; Keller, T; Popović, D B

    2015-09-01

    In order to optimize procedure for the assessment of evoked potentials and to provide visualization of the flow of action potentials along the motor systems, we introduced array electrodes for stimulation and recording and developed software for the analysis of the recordings. The system uses a stimulator connected to an electrode array for the generation of evoked potentials, an electrode array connected to the amplifier, A/D converter and computer for the recording of evoked potentials, and a dedicated software application. The method has been tested for the assessment of the H-reflex on the triceps surae muscle in six healthy humans. The electrode array with 16 pads was positioned over the posterior aspect of the thigh, while the recording electrode array with 16 pads was positioned over the triceps surae muscle. The stimulator activated all the pads of the stimulation electrode array asynchronously, while the signals were recorded continuously at all the recording sites. The results are topography maps (spatial distribution of evoked potentials) and matrices (spatial visualization of nerve excitability). The software allows the automatic selection of the lowest stimulation intensity to achieve maximal H-reflex amplitude and selection of the recording/stimulation pads according to predefined criteria. The analysis of results shows that the method provides rich information compared with the conventional recording of the H-reflex with regard the spatial distribution.

  6. Objective correlate of subjective pain perception by contact heat-evoked potentials.

    PubMed

    Granovsky, Yelena; Granot, Michal; Nir, Rony-Reuven; Yarnitsky, David

    2008-01-01

    The method of pain-evoked potentials has gained considerable acceptance over the last 3 decades regarding its objectivity, repeatability, and quantifiability. The present study explored whether the relationship between pain-evoked potentials and pain psychophysics obtained by contact heat stimuli is similar to those observed for the conventionally used laser stimulation. Evoked potentials (EPs) were recorded in response to contact heat stimuli at different body sites in 24 healthy volunteers. Stimuli at various temperatures were applied to the forearm (43 degrees C, 46 degrees C, 49 degrees C, and 52 degrees C) and leg (46 degrees C and 49 degrees C). The amplitudes of both components (N2 and P2) were strongly associated with the intensity of the applied stimuli and with subjective pain perception. Yet, regression analysis revealed pain perception and not stimulus intensity as the major contributing factor. A significant correlation was found between the forearm and the leg for both psychophysics and EPs amplitude. Contact heat can generate readily distinguishable evoked potentials on the scalp, consistent between upper and lower limbs. Although these potentials bear positive correlation with both stimulus intensity and pain magnitude, the latter is the main contributor to the evoked brain response.

  7. [Application of evoked potentials monitoring in total thoracoabdominal aorta aneurysm repair].

    PubMed

    Duan, Y Y; Zheng, J; Pan, X D; Zhu, J M; Liu, Y M; Ge, Y P; Cheng, L J; Sun, L Z

    2016-04-05

    To evaluate the application value of evoked potentials (EP) monitoring in patients undergoing aorta-iliac bypass for total thoracoabdominal aorta aneurysm repair (tTAAAR). A prospective study, with a total of 31 patients undergoing tTAAAR and intraoperative EP monitoring from June 2014 to April 2015 was carried out. The results of intraoperative evoked potentials, clinical outcomes and follow-up data of patients were collected for further evaluation. The EP wave disappeared [motor evoked potentials for (55.6±18.1) min, somatosensory evoked potentials for (50.3±18.7) min] after proximal descending aorta being clamped, and gradually recovered after the segment arteries of spine cord were reconstructed. The EP wave was restored to normal level at the end of operation in all the cases. The somatosensory evoked potentials remained unchanged in 2 cases (false negative). One case died after operation. No spinal cord injury occurred. The median follow-up after operation was 10 months (5-14 months). There was no delayed neurological deficit. EP provided an on-line monitoring of the condition of spinal cord function, which become an intraoperative protocol to avoid the irreversible injury of spinal cord.

  8. [The algorithms and development for the extraction of evoked potentials].

    PubMed

    Niu, Jie; Qiu, Tianshuang

    2004-06-01

    The extraction of evoked potentials is a main subject in the area of brain signal processing. In recent years, the single-trial extraction of evoked potentials has been focused on by many studies. In this paper, the approaches based on the wavelet transform, the neural network, the high order acumulants and the independent component analysis are briefly reviewed.

  9. Sensorineural hearing loss among cerebellopontine-angle tumor patients examined with pure tone audiometry and brainstem-evoked response audiometry

    NASA Astrophysics Data System (ADS)

    Rinindra, A. M.; Zizlavsky, S.; Bashiruddin, J.; Aman, R. A.; Wulani, V.; Bardosono, S.

    2017-08-01

    Tumor in the cerebellopontine angle (CPA) accurs for approximately 5-10% of all intracranial tumors, where unilateral hearing loss and tinnitus are the most frequent symptoms. This study aimed to collect data on sensorineural hearing loss in CPA tumor patients in Dr. Cipto Mangunkusumo Hospital (CMH) using pure tone audiometry and brainstem-evoked response audiometry (BERA). It also aimed to obtaine data on CPA-tumor imaging through magnetic resonance imaging (MRI). This was a descriptive, analytic, and cross-sectional study. The subjects of this study were gathered using a total sampling method from secondary data between July 2012 and November 2016. From 104 patients, 30 matched the inclusion criteria. The CPA-tumor patients in the ENT CMH outpatient clinic were mostly female, middle-aged patients (41-60 years) whose clinical presentation was mostly tinnitus and severe, asymmetric sensorineural hearing loss in 10 subjects. From 30 subjects, 29 showed ipsilaterally impaired BERA results, and 17 subjects showed contralaterally impaired BERA results. There were 24 subjects who with large-sized tumors and 19 subjects who had intracanal tumors that had spread until they were extracanal in 19 subjects.

  10. Exploring the Mechanisms of Exercise-Induced Hypoalgesia Using Somatosensory and Laser Evoked Potentials

    PubMed Central

    Jones, Matthew D.; Taylor, Janet L.; Booth, John; Barry, Benjamin K.

    2016-01-01

    Exercise-induced hypoalgesia is well described, but the underlying mechanisms are unclear. The aim of this study was to examine the effect of exercise on somatosensory evoked potentials, laser evoked potentials, pressure pain thresholds and heat pain thresholds. These were recorded before and after 3-min of isometric elbow flexion exercise at 40% of the participant's maximal voluntary force, or an equivalent period of rest. Exercise-induced hypoalgesia was confirmed in two experiments (Experiment 1–SEPs; Experiment 2–LEPs) by increased pressure pain thresholds at biceps brachii (24.3 and 20.6% increase in Experiment 1 and 2, respectively; both d > 0.84 and p < 0.001) and first dorsal interosseous (18.8 and 21.5% increase in Experiment 1 and 2, respectively; both d > 0.57 and p < 0.001). In contrast, heat pain thresholds were not significantly different after exercise (forearm: 10.8% increase, d = 0.35, p = 0.10; hand: 3.6% increase, d = 0.06, p = 0.74). Contrasting effects of exercise on the amplitude of laser evoked potentials (14.6% decrease, d = −0.42, p = 0.004) and somatosensory evoked potentials (10.9% increase, d = −0.02, p = 1) were also observed, while an equivalent period of rest showed similar habituation (laser evoked potential: 7.3% decrease, d = −0.25, p = 0.14; somatosensory evoked potential: 20.7% decrease, d = −0.32, p = 0.006). The differential response of pressure pain thresholds and heat pain thresholds to exercise is consistent with relative insensitivity of thermal nociception to the acute hypoalgesic effects of exercise. Conflicting effects of exercise on somatosensory evoked potentials and laser evoked potentials were observed. This may reflect non-nociceptive contributions to the somatosensory evoked potential, but could also indicate that peripheral nociceptors contribute to exercise-induced hypoalgesia. PMID:27965587

  11. Exploring the Mechanisms of Exercise-Induced Hypoalgesia Using Somatosensory and Laser Evoked Potentials.

    PubMed

    Jones, Matthew D; Taylor, Janet L; Booth, John; Barry, Benjamin K

    2016-01-01

    Exercise-induced hypoalgesia is well described, but the underlying mechanisms are unclear. The aim of this study was to examine the effect of exercise on somatosensory evoked potentials, laser evoked potentials, pressure pain thresholds and heat pain thresholds. These were recorded before and after 3-min of isometric elbow flexion exercise at 40% of the participant's maximal voluntary force, or an equivalent period of rest. Exercise-induced hypoalgesia was confirmed in two experiments (Experiment 1-SEPs; Experiment 2-LEPs) by increased pressure pain thresholds at biceps brachii (24.3 and 20.6% increase in Experiment 1 and 2, respectively; both d > 0.84 and p < 0.001) and first dorsal interosseous (18.8 and 21.5% increase in Experiment 1 and 2, respectively; both d > 0.57 and p < 0.001). In contrast, heat pain thresholds were not significantly different after exercise (forearm: 10.8% increase, d = 0.35, p = 0.10; hand: 3.6% increase, d = 0.06, p = 0.74). Contrasting effects of exercise on the amplitude of laser evoked potentials (14.6% decrease, d = -0.42, p = 0.004) and somatosensory evoked potentials (10.9% increase, d = -0.02, p = 1) were also observed, while an equivalent period of rest showed similar habituation (laser evoked potential: 7.3% decrease, d = -0.25, p = 0.14; somatosensory evoked potential: 20.7% decrease, d = -0.32, p = 0.006). The differential response of pressure pain thresholds and heat pain thresholds to exercise is consistent with relative insensitivity of thermal nociception to the acute hypoalgesic effects of exercise. Conflicting effects of exercise on somatosensory evoked potentials and laser evoked potentials were observed. This may reflect non-nociceptive contributions to the somatosensory evoked potential, but could also indicate that peripheral nociceptors contribute to exercise-induced hypoalgesia.

  12. Vestibular-evoked myogenic potentials, clinical evaluation, and imaging findings in multiple sclerosis.

    PubMed

    Güven, Hayat; Bayır, Omer; Aytaç, Emrah; Ozdek, Ali; Comoğlu, Selim Selçuk; Korkmaz, Hakan

    2014-02-01

    Vestibular-evoked myogenic potentials (VEMP), short-latency electromyographic responses elicited by acoustic stimuli, evaluate the function of vestibulocollic reflex and may give information about brainstem function. The aim of the present study is to evaluate the potential contribution of VEMP to the diagnosis of multiple sclerosis (MS). Fifty patients with MS and 30 healthy control subjects were included in this study. The frequency of VEMP p1-n1 and n2-p2 waves; mean p1, n1, n2, and p2 latency; and mean p1-n1 and n2-p2 amplitude were determined. The relation between clinical and imaging findings and VEMP parameters was evaluated. The p1-n1 and n2-p2 waves were more frequently absent in MS than in control subjects [p1-n1 wave absent: MS, 25 (25 %) ears; control, 6 (10 %) ears; P ≤ 0.02] [n2-p2 wave absent: MS, 44 (44 %) ears; control, 7 (12 %) ears; P ≤ 0.001]. The mean p1-n1 amplitude was lower in MS than in control subjects (MS, 19.1 ± 7.2 μV; control, 23.3 ± 7.4 μV; P ≤ 0.002). A total of 24/50 (48 %) MS patients had VEMP abnormalities (absent responses and/or prolonged latencies). VEMP abnormalities were more frequent in patients with than without vestibular symptoms (P ≤ 0.02) and with brainstem functional system score (FSS) ≥ 1 than FSS = 0 (P ≤ 0.02). In patients with MS, absence of p1-n1 wave was more frequent in patients with than without vestibular symptoms [absence of p1-n1 wave: vestibular symptoms, 9 (45 %) ears; no vestibular symptoms, 16 (20 %) ears; P ≤ 0.03] and patients with Expanded Disability Status Scale (EDSS) score ≥ 5.5 [absence of p1-n1 wave: EDSS ≥ 5.5, 7 (70 %) ears; EDSS <5.5, 18 (20 %) ears; P ≤ 0.001]. Abnormal VEMP may be noted in MS patients, especially those with vestibular symptoms and greater disability. The VEMP test may complement other studies for diagnosis and follow-up of patients with MS.

  13. Auditory evoked potentials in two short-finned pilot whales (Globicephala macrorhynchus).

    PubMed

    Schlundt, Carolyn E; Dear, Randall L; Houser, Dorian S; Bowles, Ann E; Reidarson, Tom; Finneran, James J

    2011-02-01

    The hearing sensitivities of two short-finned pilot whales (Globicephala macrorhynchus) were investigated by measuring auditory evoked potentials generated in response to clicks and sinusoidal amplitude modulated (SAM) tones. The first whale tested, an adult female, was a long-time resident at SeaWorld San Diego with a known health history. Click-evoked responses in this animal were similar to those measured in other echolocating odontocetes. Auditory thresholds were comparable to dolphins of similar age determined with similar evoked potential methods. The region of best sensitivity was near 40 kHz and the upper limit of functional hearing was between 80 and 100 kHz. The second whale tested, a juvenile male, was recently stranded and deemed non-releasable. Click-evoked potentials were not detected in this animal and testing with SAM tones suggested severe hearing loss above 10 kHz.

  14. Time Perception and Evoked Potentials

    DTIC Science & Technology

    1988-07-01

    ARI Research Note 88-69 0 MitnS.Ktohe U.0 ... Ann-r (. Time Perception and Evoked Potentials Paul FraisseDT ( Lfniversit6 Rene Descartes E LECTE...JOHNSON 00L, [N Technical Dicctojr Cmad Research accomplished under contract for the Department of the Army C. Universite Rene Descartes , Paris )r...ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Labrato-ire de Psychologie Experimental AREA• WORK UNIT NUMBERS Universite Rene Descartes

  15. Postoperative neurological deficits may occur despite unchanged intraoperative somatosensory evoked potentials.

    PubMed

    Lesser, R P; Raudzens, P; Lüders, H; Nuwer, M R; Goldie, W D; Morris, H H; Dinner, D S; Klem, G; Hahn, J F; Shetter, A G

    1986-01-01

    We describe 6 patients who demonstrated postoperative neurological deficits despite unchanged somatosensory evoked potentials during intraoperative monitoring. Although there is both experimental and clinical evidence that somatosensory evoked potentials are sensitive to some types of intraoperative mishap, the technique should be employed with an awareness of its possible limitations.

  16. Local classifiers for evoked potentials recorded from behaving rats.

    PubMed

    Jakuczun, Wit; Kublik, Ewa; Wójcik, Daniel K; Wróbel, Andrzej

    2005-01-01

    Dynamic states of the brain determine the way information is processed in local neural networks. We have applied classical conditioning paradigm in order to study whether habituated and aroused states can be differentiated in single barrel column of rat's somatosensory cortex by means of analysis of field potentials evoked by stimulation of a single vibrissa. A new method using local classifiers is presented which allows for reliable and meaningful classification of single evoked potentials which might be consequently attributed to different functional states of the cortical column.

  17. Properties of visual evoked potentials to onset of movement on a television screen.

    PubMed

    Kubová, Z; Kuba, M; Hubacek, J; Vít, F

    1990-08-01

    In 80 subjects the dependence of movement-onset visual evoked potentials on some measures of stimulation was examined, and these responses were compared with pattern-reversal visual evoked potentials to verify the effectiveness of pattern movement application for visual evoked potential acquisition. Horizontally moving vertical gratings were generated on a television screen. The typical movement-onset reactions were characterized by one marked negative peak only, with a peak time between 140 and 200 ms. In all subjects the sufficient stimulus duration for acquisition of movement-onset-related visual evoked potentials was 100 ms; in some cases it was only 20 ms. Higher velocity (5.6 degree/s) produced higher amplitudes of movement-onset visual evoked potentials than did the lower velocity (2.8 degrees/s). In 80% of subjects, the more distinct reactions were found in the leads from lateral occipital areas (in 60% from the right hemisphere), with no correlation to handedness of subjects. Unlike pattern-reversal visual evoked potentials, the movement-onset responses tended to be larger to extramacular stimulation (annular target of 5 degrees-9 degrees) than to macular stimulation (circular target of 5 degrees diameter).

  18. Automated cortical auditory evoked potentials threshold estimation in neonates.

    PubMed

    Oliveira, Lilian Sanches; Didoné, Dayane Domeneghini; Durante, Alessandra Spada

    2018-02-02

    The evaluation of Cortical Auditory Evoked Potential has been the focus of scientific studies in infants. Some authors have reported that automated response detection is effective in exploring these potentials in infants, but few have reported their efficacy in the search for thresholds. To analyze the latency, amplitude and thresholds of Cortical Auditory Evoked Potential using an automatic response detection device in a neonatal population. This is a cross-sectional, observational study. Cortical Auditory Evoked Potentials were recorded in response to pure-tone stimuli of the frequencies 500, 1000, 2000 and 4000Hz presented in an intensity range between 0 and 80dB HL using a single channel recording. P1 was performed in an exclusively automated fashion, using Hotelling's T 2 statistical test. The latency and amplitude were obtained manually by three examiners. The study comprised 39 neonates up to 28 days old of both sexes with presence of otoacoustic emissions and no risk factors for hearing loss. With the protocol used, Cortical Auditory Evoked Potential responses were detected in all subjects at high intensity and thresholds. The mean thresholds were 24.8±10.4dB NA, 25±9.0dB NA, 28±7.8dB NA and 29.4±6.6dB HL for 500, 1000, 2000 and 4000Hz, respectively. Reliable responses were obtained in the assessment of cortical auditory potentials in the neonates assessed with a device for automatic response detection. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  19. Effects of single cycle binaural beat duration on auditory evoked potentials.

    PubMed

    Mihajloski, Todor; Bohorquez, Jorge; Özdamar, Özcan

    2014-01-01

    Binaural beat (BB) illusions are experienced as continuous central pulsations when two sounds with slightly different frequencies are delivered to each ear. It has been shown that steady-state auditory evoked potentials (AEPs) to BBs can be captured and investigated. The authors recently developed a new method of evoking transient AEPs to binaural beats using frequency modulated stimuli. This methodology was able to create single BBs in predetermined intervals with varying carrier frequencies. This study examines the effects of the BB duration and the frequency modulating component of the stimulus on the binaural beats and their evoked potentials. Normal hearing subjects were tested with a set of four durations (25, 50, 100, and 200 ms) with two stimulation configurations, binaural dichotic (binaural beats) and diotic (frequency modulation). The results obtained from the study showed that out of the given durations, the 100 ms beat, was capable of evoking the largest amplitude responses. The frequency modulation effect showed a decrease in peak amplitudes with increasing beat duration until their complete disappearance at 200 ms. Even though, at 200 ms, the frequency modulation effects were not present, the binaural beats were still perceived and captured as evoked potentials.

  20. Noise-induced tinnitus: auditory evoked potential in symptomatic and asymptomatic patients.

    PubMed

    Santos-Filha, Valdete Alves Valentins dos; Samelli, Alessandra Giannella; Matas, Carla Gentile

    2014-07-01

    We evaluated the central auditory pathways in workers with noise-induced tinnitus with normal hearing thresholds, compared the auditory brainstem response results in groups with and without tinnitus and correlated the tinnitus location to the auditory brainstem response findings in individuals with a history of occupational noise exposure. Sixty individuals participated in the study and the following procedures were performed: anamnesis, immittance measures, pure-tone air conduction thresholds at all frequencies between 0.25-8 kHz and auditory brainstem response. The mean auditory brainstem response latencies were lower in the Control group than in the Tinnitus group, but no significant differences between the groups were observed. Qualitative analysis showed more alterations in the lower brainstem in the Tinnitus group. The strongest relationship between tinnitus location and auditory brainstem response alterations was detected in individuals with bilateral tinnitus and bilateral auditory brainstem response alterations compared with patients with unilateral alterations. Our findings suggest the occurrence of a possible dysfunction in the central auditory nervous system (brainstem) in individuals with noise-induced tinnitus and a normal hearing threshold.

  1. Refractory episodic vertigo: role of intratympanic gentamicin and vestibular evoked myogenic potentials.

    PubMed

    Celis-Aguilar, Erika; Hinojosa-González, Ramon; Vales-Hidalgo, Olivia; Coutinho-Toledo, Heloisa

    Even today, the treatment of intractable vertigo remains a challenge. Vestibular ablation with intratympanic gentamicin stands as a good alternative in the management of refractory vertigo patients. To control intractable vertigo through complete saccular and horizontal canal vestibular ablation with intratympanic gentamicin treatment. Patients with refractory episodic vertigo were included. The inclusion criteria were: unilateral ear disease, moderate to profound sensorineural hearing loss, and failure to other treatments. Included patients underwent 0.5-0.8mL of gentamicin intratympanic application at a 30mg/mL concentration. Vestibular ablation was confirmed by the absence of response on cervical vestibular evoked myogenic potentials and no response on caloric tests. Audiometry, electronystagmography with iced water, and vestibular evoked myogenic potentials were performed in all patients. Ten patients were included; nine patients with Meniere's disease and one patient with (late onset) delayed hydrops. Nine patients showed an absent response on vestibular evoked myogenic potentials and no response on caloric tests. The only patient with low amplitude on cervical vestibular evoked myogenic potentials had vertigo recurrence. Vertigo control was achieved in 90% of the patients. One patient developed hearing loss >30dB. Cervical vestibular evoked myogenic potentials confirmed vestibular ablation in patients treated with intratympanic gentamicin. High-grade vertigo control was due to complete saccular and horizontal canal ablation (no response to iced water in electronystagmography and no response on cervical vestibular evoked myogenic potentials). Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  2. Thapsigargin-induced activation of Ca(2+)-CaMKII-ERK in brainstem contributes to substance P release and induction of emesis in the least shrew.

    PubMed

    Zhong, Weixia; Chebolu, Seetha; Darmani, Nissar A

    2016-04-01

    Cytoplasmic calcium (Ca(2+)) mobilization has been proposed to be an important factor in the induction of emesis. The selective sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor thapsigargin, is known to deplete intracellular Ca(2+) stores, which consequently evokes extracellular Ca(2+) entry through cell membrane-associated channels, accompanied by a prominent rise in cytosolic Ca(2+). A pro-drug form of thapsigargin is currently under clinical trial as a targeted cancer chemotherapeutic. We envisioned that the intracellular effects of thapsigargin could cause emesis and planned to investigate its mechanisms of emetic action. Indeed, thapsigargin did induce vomiting in the least shrew in a dose-dependent and bell-shaped manner, with maximal efficacy (100%) at 0.5 mg/kg (i.p.). Thapsigargin (0.5 mg/kg) also caused increases in c-Fos immunoreactivity in the brainstem emetic nuclei including the area postrema (AP), nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMNX), as well as enhancement of substance P (SP) immunoreactivity in DMNX. In addition, thapsigargin (0.5 mg/kg, i.p.) led to vomit-associated and time-dependent increases in phosphorylation of Ca(2+)/calmodulin kinase IIα (CaMKIIα) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) in the brainstem. We then explored the suppressive potential of diverse chemicals against thapsigargin-evoked emesis including antagonists of: i) neurokinin-1 receptors (netupitant), ii) the type 3 serotonin receptors (palonosetron), iii) store-operated Ca(2+) entry (YM-58483), iv) L-type Ca(2+) channels (nifedipine), and v) SER Ca(2+)-release channels inositol trisphosphate (IP3Rs) (2-APB)-, and ryanodine (RyRs) (dantrolene)-receptors. In addition, the antiemetic potential of inhibitors of CaMKII (KN93) and ERK1/2 (PD98059) were investigated. All tested antagonists/blockers attenuated emetic parameters to varying degrees except palonosetron, however a combination of non

  3. The Electrically Evoked Auditory Change Complex Evoked by Temporal Gaps Using Cochlear Implants or Auditory Brainstem Implants in Children With Cochlear Nerve Deficiency.

    PubMed

    He, Shuman; McFayden, Tyler C; Shahsavarani, Bahar S; Teagle, Holly F B; Ewend, Matthew; Henderson, Lillian; Buchman, Craig A

    This study aimed to (1) establish the feasibility of measuring the electrically evoked auditory change complex (eACC) in response to temporal gaps in children with cochlear nerve deficiency (CND) who are using cochlear implants (CIs) and/or auditory brainstem implants (ABIs); and (2) explore the association between neural encoding of, and perceptual sensitivity to, temporal gaps in these patients. Study participants included 5 children (S1 to S5) ranging in age from 3.8 to 8.2 years (mean: 6.3 years) at the time of testing. All subjects were unilaterally implanted with a Nucleus 24M ABI due to CND. For each subject, two or more stimulating electrodes of the ABI were tested. S2, S3, and S5 previously received a CI in the contralateral ear. For these 3 subjects, at least two stimulating electrodes of their CIs were also tested. For electrophysiological measures, the stimulus was an 800-msec biphasic pulse train delivered to individual electrodes at the maximum comfortable level (C level). The electrically evoked responses, including the onset response and the eACC, were measured for two stimulation conditions. In the standard condition, the 800-msec pulse train was delivered uninterrupted to individual stimulating electrodes. In the gapped condition, a temporal gap was inserted into the pulse train after 400 msec of stimulation. Gap durations tested in this study ranged from 2 up to 128 msec. The shortest gap that could reliably evoke the eACC was defined as the objective gap detection threshold (GDT). For behavioral GDT measures, the stimulus was a 500-msec biphasic pulse train presented at the C level. The behavioral GDT was measured for individual stimulating electrodes using a one-interval, two-alternative forced-choice procedure. The eACCs to temporal gaps were recorded successfully in all subjects for at least one stimulating electrode using either the ABI or the CI. Objective GDTs showed intersubject variations, as well as variations across stimulating

  4. Adaptation of the cortical somatosensory evoked potential following pulsed pneumatic stimulation of the lower face in adults.

    PubMed

    Custead, Rebecca; Oh, Hyuntaek; Rosner, Austin Oder; Barlow, Steven

    2015-10-05

    Cortical adaptation to sustained sensory input is a pervasive form of short-term plasticity in neurological systems. Its role in sensory perception in health and disease, or predicting long-term plastic changes resulting from sensory training offers insight into the mechanisms of somatosensory and sensorimotor processing. A 4-channel electroencephalography (EEG) recording montage was placed bilaterally (C3-P3, C4-P4, F7-P3, F8-P4) to characterize the short-term effects of pulsed pneumatic orofacial stimulation on the cortical somatosensory evoked potential (cSEP) in twenty neurotypical adults (mean age=21±2.88 years). A servo-controlled pneumatic amplifier was used to deliver a repetitive series of pneumatic pulse trains (six 50-ms pulses, 5-second intertrain interval) through a linked pair of custom acetal homopolymer probes (aka TAC-Cells) adhered to the nonglabrous skin of the lower face proximal to the right oral angle to synchronously activate mechanoreceptive afferents in the trigeminal nerve. Blocks of pulse trains were counterbalanced among participants and delivered at two rates, 2 and 4Hz. TAC-Cell stimulation of the lower face consistently evoked a series of cSEPs at P7, N20, P28, N38, P75, N85, and P115. The spatial organization and adaptation of the evoked cSEP was dependent on stimulus pulse index (1-6 within the pulse train, p=.012), frequency of stimulus presentation (2 vs 4Hz, p<.001), component (P7-P115, p<.001), and recording montage (channels 1-4, p<.001). Early component latencies (P7-N20) were highly stable in polarity (sign) and latency, and consistent with putative far-field generators (e.g., trigeminal brainstem, ventroposteromedial thalamus). Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Vestibular Evoked Myogenic Potentials in Normal Mice and Phex Mice With Spontaneous Endolymphatic Hydrops

    PubMed Central

    Sheykholeslami, Kianoush; Megerian, Cliff A.; Zheng, Qing Y.

    2010-01-01

    Objective and Background Vestibular evoked myogenic potentials (VEMPs) have been recorded from the neck musculature and the cervical spinal cord in humans and a limited number of laboratory animals in response to loud sound. However, the mouse VEMP has yet to be described. Evaluation of the sacculocollic pathway via VEMPs in mice can set the stage for future evaluations of mutant mice that now play an important role in research regarding human auditory and vestibular dysfunction. Materials and Methods Sound-evoked potentials were recorded from the neck extensor muscles and the cervical spinal cord in normal adult mice and in circling PhexHyp-Duk/y mice with known vestibular abnormalities, including endolymphatic hydrops (ELH). Results Biphasic potentials were recorded from all normal animals. The mean threshold of the VEMP response in normal adult mice was 60 dB normal hearing level with a mean peak latency of 6.25 ± 0.46 and 7.95 ± 0.42 milliseconds for p1 and n1 peaks, respectively. At the maximum sound intensity used (100 dB normal hearing level), 4 of 5 Phex mice did not exhibit VEMP responses, and 1 showed an elevated threshold, but normal response, with regard to peak latency and amplitude. The histologic findings in all of these Phex mice were consistent with distended membranous labyrinth, displaced Reissner membrane, ganglion cell loss, and ELH. Conclusion This is the first report of VEMP recordings in mice and the first report of abnormal VEMPs in a mouse model with ELH. The characteristics of these potentials such as higher response threshold in comparison to auditory brainstem response, myogenic nature of the response, and latency correlation with the cervical recording (accessory nerve nucleus) were similar to those of VEMPs in humans, guinea pigs, cats, and rats, suggesting that the mouse may be used as an animal model in the study of VEMPs. The simplicity and reliability of these recordings make the VEMP a uniquely informative test for assessing

  6. Laser and somatosensory evoked potentials in amyotrophic lateral sclerosis.

    PubMed

    Isak, Baris; Tankisi, Hatice; Johnsen, Birger; Pugdahl, Kirsten; Finnerup, Nanna Brix; Fuglsang-Frederiksen, Anders

    2016-10-01

    Mild involvement of sensory nerves has been reported in previous studies in ALS patients. In this study, we assessed sensory pathways in ALS patients using laser evoked potentials (LEPs) and somatosensory evoked potentials (SSEPs). We recruited 18 ALS patients and 31 healthy subjects. Neodymium-doped yttrium aluminium perovskite (Nd:YAP)-laser was used to evoke LEPs in upper (UE) and lower (LE) extremities. N1 and N2P2 potentials were obtained from contralateral insular cortex (T3 or T4) and vertex (Cz), respectively. Median SSEPs were recorded from C3' or C4' and tibial SSEPs from Cz'. Compared to controls, ALS patients had longer N2 and P2 latencies, and smaller N2P2 amplitudes in both UE- and LE-LEPs (p<0.05), and longer latencies for median and tibial SSEPs (p<0.05). LEPs and SSEPs were abnormal in 72.2% and 56.6% patients, respectively. Cortical potentials showed that A-beta or A-delta sensory fibres, or both, were impaired in more than half of the ALS patients. The findings support that ALS is a multi-systemic disorder involving, although to a lesser degree, other systems than the motor. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Methamphetamine-related brainstem haemorrhage.

    PubMed

    Chiu, Zelia K; Bennett, Iwan E; Chan, Patrick; Rosenfeld, Jeffrey V

    2016-10-01

    We report the case of an otherwise healthy 29-year-old woman who presented with a brainstem haemorrhage following intravenous methamphetamine use. Extensive investigation did not reveal an underlying pathology, and the development of symptoms was temporally related to methamphetamine injection. Although intracerebral haemorrhage secondary to methamphetamine use is well documented, this report describes a haemorrhage within the brainstem which is a rare location. While animal studies have demonstrated the potential of methamphetamines to produce brainstem haemorrhages, there has only been one previous report describing a haemorrhage in this location due to amphetamine use in humans. We conclude with a brief discussion of the clinical features and aetiology of methamphetamine-related stroke. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Index finger somatosensory evoked potentials in blind Braille readers.

    PubMed

    Giriyappa, Dayananda; Subrahmanyam, Roopakala Mysore; Rangashetty, Srinivasa; Sharma, Rajeev

    2009-01-01

    Traditionally, vision has been considered the dominant modality in our multi-sensory perception of the surrounding world. Sensory input via non-visual tracts becomes of greater behavioural relevance in totally blind individuals to enable effective interaction with the world around them. These include audition and tactile perceptions, leading to an augmentation in these perceptions when compared with normal sighted individuals. The objective of the present work was to study the index finger somatosensory evoked potentials (SEPs) in totally blind and normal sighted individuals. SEPs were recorded in 15 Braille reading totally blind females and compared with 15 age-matched normal sighted females. Latency and amplitudes of somatosensory evoked potential waveforms (N9, N13, and N20) were measured. Amplitude of N20 SEP (a cortical somatosensory evoked potential) was significantly larger in the totally blind than in normal sighted individuals (p < 0.05). The amplitudes of N9 and N13 SEP and the latencies of all recorded SEPs showed no significant differences. Blindness has a profound effect on the Braille reading right index finger. Totally blind Braille readers have larger N20 amplitude, suggestive of greater somatosensory cortical representation of the Braille reading index finger.

  9. Dyslexia risk gene relates to representation of sound in the auditory brainstem.

    PubMed

    Neef, Nicole E; Müller, Bent; Liebig, Johanna; Schaadt, Gesa; Grigutsch, Maren; Gunter, Thomas C; Wilcke, Arndt; Kirsten, Holger; Skeide, Michael A; Kraft, Indra; Kraus, Nina; Emmrich, Frank; Brauer, Jens; Boltze, Johannes; Friederici, Angela D

    2017-04-01

    Dyslexia is a reading disorder with strong associations with KIAA0319 and DCDC2. Both genes play a functional role in spike time precision of neurons. Strikingly, poor readers show an imprecise encoding of fast transients of speech in the auditory brainstem. Whether dyslexia risk genes are related to the quality of sound encoding in the auditory brainstem remains to be investigated. Here, we quantified the response consistency of speech-evoked brainstem responses to the acoustically presented syllable [da] in 159 genotyped, literate and preliterate children. When controlling for age, sex, familial risk and intelligence, partial correlation analyses associated a higher dyslexia risk loading with KIAA0319 with noisier responses. In contrast, a higher risk loading with DCDC2 was associated with a trend towards more stable responses. These results suggest that unstable representation of sound, and thus, reduced neural discrimination ability of stop consonants, occurred in genotypes carrying a higher amount of KIAA0319 risk alleles. Current data provide the first evidence that the dyslexia-associated gene KIAA0319 can alter brainstem responses and impair phoneme processing in the auditory brainstem. This brain-gene relationship provides insight into the complex relationships between phenotype and genotype thereby improving the understanding of the dyslexia-inherent complex multifactorial condition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Identifying cochlear implant channels with poor electrode-neuron interface: electrically-evoked auditory brainstem responses measured with the partial tripolar configuration

    PubMed Central

    Bierer, Julie Arenberg; Faulkner, Kathleen F.; Tremblay, Kelly L.

    2011-01-01

    Objectives The goal of this study was to compare cochlear implant behavioral measures and electrically-evoked auditory brainstem responses (EABRs) obtained with a spatially focused electrode configuration. It has been shown previously that channels with high thresholds, when measured with the tripolar configuration, exhibit relatively broad psychophysical tuning curves (Bierer and Faulkner, 2010). The elevated threshold and degraded spatial/spectral selectivity of such channels are consistent with a poor electrode-neuron interface, such as suboptimal electrode placement or reduced nerve survival. However, the psychophysical methods required to obtain these data are time intensive and may not be practical during a clinical mapping procedure, especially for young children. Here we have extended the previous investigation to determine if a physiological approach could provide a similar assessment of channel functionality. We hypothesized that, in accordance with the perceptual measures, higher EABR thresholds would correlate with steeper EABR amplitude growth functions, reflecting a degraded electrode-neuron interface. Design Data were collected from six cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. EABRs were obtained in each subject for the two channels having the highest and lowest tripolar (σ=1 or 0.9) behavioral threshold. Evoked potentials were measured with both the monopolar (σ=0) and a more focused partial tripolar (σ ≥ 0.50) configuration. Results Consistent with previous studies, EABR thresholds were highly and positively correlated with behavioral thresholds

  11. Mapping the vestibular evoked myogenic potential (VEMP).

    PubMed

    Colebatch, James G

    2012-01-01

    Effects of different electrode placements and indifferent electrodes were investigated for the vestibular evoked myogenic potential (VEMP) recorded from the sternocleidomastoid muscle (SCM). In 5 normal volunteers, the motor point of the left SCM was identified and an electrode placed there. A grid of 7 additional electrodes was laid out, along and across the SCM, based upon the location of the motor point. One reference electrode was placed over the sternoclavicular joint and another over C7. There were clear morphological changes with differing recording sites and for the two reference electrodes, but the earliest and largest responses were recorded from the motor point. The C7 reference affected the level of rectified EMG and was associated with an initial negativity in some electrodes. The latencies of the p13 potentials increased with distance from the motor point but the n23 latencies did not. Thus the p13 potential behaved as a travelling wave whereas the n23 behaved as a standing wave. The C7 reference may be contaminated by other evoked myogenic activity. Ideally recordings should be made with an active electrode over the motor point.

  12. Hearing impairment in preterm very low birthweight babies detected at term by brainstem auditory evoked responses.

    PubMed

    Jiang, Z D; Brosi, D M; Wilkinson, A R

    2001-12-01

    Seventy preterm babies who were born with a birthweight <1500 g were studied with brainstem auditory evoked responses (BAER) at 37-42 wk of postconceptional age. The data were compared with those of normal term neonates to determine the prevalence of hearing impairment in preterm very low birthweight (VLBW) babies when they reached term. The BAER was recorded with click stimuli at 21 s(-1). Wave I and V latencies increased significantly (ANOVA p < 0.01 and 0.001). I-V and III-V intervals also increased significantly (p < 0.05 and 0.001). Wave V amplitude and V/I amplitude ratio did not differ significantly from those in the normal term controls. Ten of the 70 VLBW babies had a significant elevation in BAER threshold (>30 dB normal hearing level). Eleven had an increase in I-V interval (>2.5 SD above the mean in the normal controls) and one had a decrease in V/I amplitude ratio (<0.45). These results suggest that 14% (10/70) of the VLBW babies had a peripheral hearing impairment and 17% (12/70) a central impairment. Three babies had both an increase in I-V interval and an elevation in BAER threshold, suggesting that 4% (3/70) had both peripheral and central impairments. Thus, the total prevalence of hearing impairment was 27% (19/70). About one in four preterm VLBW babies has peripheral and/or central hearing impairment at term. VLBW and its associated unfavourable perinatal factors predispose the babies to hearing impairment.

  13. Phantom somatosensory evoked potentials following selective intraneural electrical stimulation in two amputees.

    PubMed

    Granata, Giuseppe; Di Iorio, Riccardo; Romanello, Roberto; Iodice, Francesco; Raspopovic, Stanisa; Petrini, Francesco; Strauss, Ivo; Valle, Giacomo; Stieglitz, Thomas; Čvančara, Paul; Andreu, David; Divoux, Jean-Louis; Guiraud, David; Wauters, Loic; Hiairrassary, Arthur; Jensen, Winnie; Micera, Silvestro; Rossini, Paolo Maria

    2018-06-01

    The aim of the paper is to objectively demonstrate that amputees implanted with intraneural interfaces are truly able to feel a sensation in the phantom hand by recording "phantom" somatosensory evoked potentials from the corresponding brain areas. We implanted four transverse intrafascicular multichannel electrodes, available with percutaneous connections to a multichannel electrical stimulator, in the median and ulnar nerves of two left trans-radial amputees. Two channels of the implants that were able to elicit sensations during intraneural nerve stimulation were chosen, in both patients, for recording somatosensory evoked potentials. We recorded reproducible evoked responses by stimulating the median and the ulnar nerves in both cases. Latencies were in accordance with the arrival of somatosensory information to the primary somatosensory cortex. Our results provide evidence that sensations generated by intraneural stimulation are truly perceived by amputees and located in the phantom hand. Moreover, our results strongly suggest that sensations perceived in different parts of the phantom hand result in different evoked responses. Somatosensory evoked potentials obtained by selective intraneural electrical stimulation in amputee patients are a useful tool to provide an objective demonstration of somatosensory feedback in new generation bidirectional prostheses. Copyright © 2018. Published by Elsevier B.V.

  14. Cortico-centric effects of general anesthetics on cerebrocortical evoked potentials.

    PubMed

    Voss, Logan J; Sleigh, James W

    2015-12-01

    Despite their ubiquitous use for rendering patients unconscious for surgery, our understanding of how general anesthetics cause hypnosis remains rudimentary at best. Recent years have seen increased interest in "top-down" cortico-centric theories of anesthetic action. The aim of this study was to explore this by investigating direct cortical effects of anesthetics on cerebrocortical evoked potentials in isolated mouse brain slices. Evoked potentials were elicited in cortical layer IV by electrical stimulation of the underlying white matter. The effects of three anesthetics (ketamine, etomidate, and isoflurane) on the amplitude, latency, and slope of short-latency evoked potentials were quantified. The N2/P3/N4 potentials–which represent the early cortical response–were enhanced by etomidate (increased P3-N4 slope, P <0.01), maintained by ketamine, and reduced by isoflurane (lower N2/P3 amplitude, P <0.01). These effects closely resemble those seen in vivo for the same drugs and point to a cortical mechanism independent of effects on subcortical structures such as the thalamus.

  15. Temporal processing and long-latency auditory evoked potential in stutterers.

    PubMed

    Prestes, Raquel; de Andrade, Adriana Neves; Santos, Renata Beatriz Fernandes; Marangoni, Andrea Tortosa; Schiefer, Ana Maria; Gil, Daniela

    Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n=20) and non-stutters (n=21), compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  16. A Perturbation Based Decomposition of Compound-Evoked Potentials for Characterization of Nerve Fiber Size Distributions.

    PubMed

    Szlavik, Robert B

    2016-02-01

    The characterization of peripheral nerve fiber distributions, in terms of diameter or velocity, is of clinical significance because information associated with these distributions can be utilized in the differential diagnosis of peripheral neuropathies. Electro-diagnostic techniques can be applied to the investigation of peripheral neuropathies and can yield valuable diagnostic information while being minimally invasive. Nerve conduction velocity studies are single parameter tests that yield no detailed information regarding the characteristics of the population of nerve fibers that contribute to the compound-evoked potential. Decomposition of the compound-evoked potential, such that the velocity or diameter distribution of the contributing nerve fibers may be determined, is necessary if information regarding the population of contributing nerve fibers is to be ascertained from the electro-diagnostic study. In this work, a perturbation-based decomposition of compound-evoked potentials is proposed that facilitates determination of the fiber diameter distribution associated with the compound-evoked potential. The decomposition is based on representing the single fiber-evoked potential, associated with each diameter class, as being perturbed by contributions, of varying degree, from all the other diameter class single fiber-evoked potentials. The resultant estimator of the contributing nerve fiber diameter distribution is valid for relatively large separations in diameter classes. It is also useful in situations where the separation between diameter classes is small and the concomitant single fiber-evoked potentials are not orthogonal.

  17. Intraoperative Subcortical Fiber Mapping with Subcortico-Cortical Evoked Potentials.

    PubMed

    Enatsu, Rei; Kanno, Aya; Ohtaki, Shunya; Akiyama, Yukinori; Ochi, Satoko; Mikuni, Nobuhiro

    2016-02-01

    During brain surgery, there are difficulties associated with identifying subcortical fibers with no clear landmarks. We evaluated the usefulness of cortical evoked potentials with subcortical stimuli (subcortico-cortical evoked potential [SCEP]) in identifying subcortical fibers intraoperatively. We used SCEP to identify the pyramidal tract in 4 patients, arcuate fasciculus in 1 patient, and both in 2 patients during surgical procedures. After resection, a 1 × 4-electrode plate was placed on the floor of the removal cavity and 1-Hz alternating electrical stimuli were delivered to this electrode. A 4 × 5 recording electrode plate was placed on the central cortical areas to map the pyramidal tract and temporoparietal cortical areas for the arcuate fasciculus. SCEPs were obtained by averaging electrocorticograms time locked to the stimulus onset. The subcortical stimulation within 15 mm of the target fiber induced cortical evoked potentials in the corresponding areas, whereas the stimulation apart from 20 mm did not. Five patients showed transient worsening of neurologic symptoms after surgery. However, all patients recovered. SCEP was useful for identifying subcortical fibers and confirmed the preservation of these fibers. This technique is expected to contribute to the effectiveness and safety of resective surgery in patients with lesions close to eloquent areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Auditory evoked potentials in children and adolescents with Down syndrome.

    PubMed

    Gregory, Letícia; Rosa, Rafael F M; Zen, Paulo R G; Sleifer, Pricila

    2018-01-01

    Down syndrome, or trisomy 21, is the most common genetic alteration in humans. The syndrome presents with several features, including hearing loss and changes in the central nervous system, which may affect language development in children and lead to school difficulties. The present study aimed to investigate group differences in the central auditory system by long-latency auditory evoked potentials and cognitive potential. An assessment of 23 children and adolescents with Down syndrome was performed, and a control group composed of 43 children and adolescents without genetic and/or neurological changes was used for comparison. All children underwent evaluation with pure tone and vocal audiometry, acoustic immitance measures, long-latency auditory evoked potentials, and cognitive potential. Longer latencies of the waves were found in the Down syndrome group than the control group, without significant differences in amplitude, suggesting that individuals with Down syndrome have difficulty in discrimination and auditory memory. It is, therefore, important to stimulate and monitor these children in order to enable adequate development and improve their life quality. We also emphasize the importance of the application of auditory evoked potentials in clinical practice, in order to contribute to the early diagnosis of hearing alterations and the development of more research in this area. © 2017 Wiley Periodicals, Inc.

  19. Vestibular evoked potentials (VsEPs) of cortical origin produced by impulsive acceleration applied at the nasion.

    PubMed

    Todd, Neil P M; McLean, Aisha; Paillard, Aurore; Kluk, Karolina; Colebatch, James G

    2014-12-01

    We report the results of a study to record vestibular evoked potentials (VsEPs) of cortical origin produced by impulsive acceleration (IA). In a sample of 12 healthy participants, evoked potentials recorded by 70 channel electroencephalography were obtained by IA stimulation at the nasion and compared with evoked potentials from the same stimulus applied to the forefingers. The nasion stimulation gave rise to a series of positive and negative deflections in the latency range of 26-72 ms, which were dependent on the polarity of the applied IA. In contrast, evoked potentials from the fingers were characterised by a single N50/P50 deflection at about 50 ms and were polarity invariant. Source analysis confirmed that the finger evoked potentials were somatosensory in origin, i.e. were somatosensory evoked potentials, and suggested that the nasion evoked potentials plausibly included vestibular midline and frontal sources, as well as contributions from the eyes, and thus were likely VsEPs. These results show considerable promise as a new method for assessment of the central vestibular system by means of VsEPs produced by IA applied to the head.

  20. Cortico-cortical evoked potentials for sites of early versus late seizure spread in stereoelectroencephalography.

    PubMed

    Lega, Bradley; Dionisio, Sasha; Flanigan, Patrick; Bingaman, William; Najm, Imad; Nair, Dileep; Gonzalez-Martinez, Jorge

    2015-09-01

    Cortico-cortical evoked potentials offer the possibility of understanding connectivity within seizure networks to improve diagnosis and more accurately identify candidates for seizure surgery. We sought to determine if cortico-cortical evoked potentials and post-stimulation oscillatory changes differ for sites of EARLY versus LATE ictal spread. 37 patients undergoing stereoelectroencephalography were tested using a cortico-cortical evoked potential paradigm. All electrodes were classified according to the speed of ictal spread. EARLY spread sites were matched to a LATE spread site equidistant from the onset zone. Root-mean-square was used to quantify evoked responses and post-stimulation gamma band power and coherence were extracted and compared. Sites of EARLY spread exhibited significantly greater evoked responses after stimulation across all patients (t(36)=2.973, p=0.004). Stimulation elicited enhanced gamma band activity at EARLY spread sites (t(36)=2.61, p=0.03, FDR corrected); this gamma band oscillation was highly coherent with the onset zone. Cortico-cortical evoked potentials and post-stimulation changes in gamma band activity differ between sites of EARLY versus LATE ictal spread. The oscillatory changes can help visualize connectivity within the seizure network. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. On the single sweep processing of auditory brainstem responses: click vs. chirp stimulations and active vs. passive electrodes.

    PubMed

    Corona-Strauss, Farah I; Delb, Wolfgang; Bloching, Marc; Strauss, Daniel J

    2008-01-01

    We have recently shown that click evoked auditory brainstem responses (ABRs) single sweeps can efficiently be processed by a hybrid novelty detection system. This approach allowed for the objective detection of hearing thresholds in a fraction of time of conventional schemes, making it appropriate for the efficient implementation of newborn hearing screening procedures. It is the objective of this study to evaluate whether this approach might further be improved by different stimulation paradigms and electrode settings. In particular, we evaluate chirp stimulations which compensate the basilar-membrane dispersion and active electrodes which are less sensitive to movements. This is the first study which is directed to a single sweep processing of chirp evoked ABRs. By concentrating on transparent features and a minimum number of adjustable parameters, we present an objective comparison of click vs.chirp stimulations and active vs. passive electrodes in the ultrafast ABR detection. We show that chirp evoked brainstem responses and active electrodes might improve the single sweeps analysis of ABRs.Consequently, we conclude that a single sweep processing of ABRs for the objective determination of hearing thresholds can further be improved by the use of optimized chirp stimulations and active electrodes.

  2. Our first decade of experience in deep brain stimulation of the brainstem: elucidating the mechanism of action of stimulation of the ventrolateral pontine tegmentum.

    PubMed

    Mazzone, Paolo; Vilela Filho, Osvaldo; Viselli, Fabio; Insola, Angelo; Sposato, Stefano; Vitale, Flora; Scarnati, Eugenio

    2016-07-01

    The region of the pedunculopontine tegmental nucleus (PPTg) has been proposed as a novel target for deep brain stimulation (DBS) to treat levodopa resistant symptoms in motor disorders. Recently, the anatomical organization of the brainstem has been revised and four new distinct structures have been represented in the ventrolateral pontine tegmentum area in which the PPTg was previously identified. Given this anatomical reassessment, and considering the increasing of our experience, in this paper we revisit the value of DBS applied to that area. The reappraisal of clinical outcomes in the light of this revisitation may also help to understand the consequences of DBS applied to structures located in the ventrolateral pontine tegmentum, apart from the PPTg. The implantation of 39 leads in 32 patients suffering from Parkinson's disease (PD, 27 patients) and progressive supranuclear palsy (PSP, four patients) allowed us to reach two major conclusions. The first is that the results of the advancement of our technique in brainstem DBS matches the revision of brainstem anatomy. The second is that anatomical and functional aspects of our findings may help to explain how DBS acts when applied in the brainstem and to identify the differences when it is applied either in the brainstem or in the subthalamic nucleus. Finally, in this paper we discuss how the loss of neurons in brainstem nuclei occurring in both PD and PSP, the results of intraoperative recording of somatosensory evoked potentials, and the improvement of postural control during DBS point toward the potential role of ascending sensory pathways and/or other structures in mediating the effects of DBS applied in the ventrolateral pontine tegmentum region.

  3. Identification of Dynamic Patterns of Speech-Evoked Auditory Brainstem Response Based on Ensemble Empirical Mode Decomposition and Nonlinear Time Series Analysis Methods

    NASA Astrophysics Data System (ADS)

    Mozaffarilegha, Marjan; Esteki, Ali; Ahadi, Mohsen; Nazeri, Ahmadreza

    The speech-evoked auditory brainstem response (sABR) shows how complex sounds such as speech and music are processed in the auditory system. Speech-ABR could be used to evaluate particular impairments and improvements in auditory processing system. Many researchers used linear approaches for characterizing different components of sABR signal, whereas nonlinear techniques are not applied so commonly. The primary aim of the present study is to examine the underlying dynamics of normal sABR signals. The secondary goal is to evaluate whether some chaotic features exist in this signal. We have presented a methodology for determining various components of sABR signals, by performing Ensemble Empirical Mode Decomposition (EEMD) to get the intrinsic mode functions (IMFs). Then, composite multiscale entropy (CMSE), the largest Lyapunov exponent (LLE) and deterministic nonlinear prediction are computed for each extracted IMF. EEMD decomposes sABR signal into five modes and a residue. The CMSE results of sABR signals obtained from 40 healthy people showed that 1st, and 2nd IMFs were similar to the white noise, IMF-3 with synthetic chaotic time series and 4th, and 5th IMFs with sine waveform. LLE analysis showed positive values for 3rd IMFs. Moreover, 1st, and 2nd IMFs showed overlaps with surrogate data and 3rd, 4th and 5th IMFs showed no overlap with corresponding surrogate data. Results showed the presence of noisy, chaotic and deterministic components in the signal which respectively corresponded to 1st, and 2nd IMFs, IMF-3, and 4th and 5th IMFs. While these findings provide supportive evidence of the chaos conjecture for the 3rd IMF, they do not confirm any such claims. However, they provide a first step towards an understanding of nonlinear behavior of auditory system dynamics in brainstem level.

  4. Multifocal visual evoked potentials for early glaucoma detection.

    PubMed

    Weizer, Jennifer S; Musch, David C; Niziol, Leslie M; Khan, Naheed W

    2012-07-01

    To compare multifocal visual evoked potentials (mfVEP) with other detection methods in early open-angle glaucoma. Ten patients with suspected glaucoma and 5 with early open-angle glaucoma underwent mfVEP, standard automated perimetry (SAP), short-wave automated perimetry, frequency-doubling technology perimetry, and nerve fiber layer optical coherence tomography. Nineteen healthy control subjects underwent mfVEP and SAP for comparison. Comparisons between groups involving continuous variables were made using independent t tests; for categorical variables, Fisher's exact test was used. Monocular mfVEP cluster defects were associated with an increased SAP pattern standard deviation (P = .0195). Visual fields that showed interocular mfVEP cluster defects were more likely to also show superior quadrant nerve fiber layer thinning by OCT (P = .0152). Multifocal visual evoked potential cluster defects are associated with a functional and an anatomic measure that both relate to glaucomatous optic neuropathy. Copyright 2012, SLACK Incorporated.

  5. CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture

    PubMed Central

    Forsberg, David; Horn, Zachi; Tserga, Evangelia; Smedler, Erik; Silberberg, Gilad; Shvarev, Yuri; Kaila, Kai; Uhlén, Per; Herlenius, Eric

    2016-01-01

    Inflammation-induced release of prostaglandin E2 (PGE2) changes breathing patterns and the response to CO2 levels. This may have fatal consequences in newborn babies and result in sudden infant death. To elucidate the underlying mechanisms, we present a novel breathing brainstem organotypic culture that generates rhythmic neural network and motor activity for 3 weeks. We show that increased CO2 elicits a gap junction-dependent release of PGE2. This alters neural network activity in the preBötzinger rhythm-generating complex and in the chemosensitive brainstem respiratory regions, thereby increasing sigh frequency and the depth of inspiration. We used mice lacking eicosanoid prostanoid 3 receptors (EP3R), breathing brainstem organotypic slices and optogenetic inhibition of EP3R+/+ cells to demonstrate that the EP3R is important for the ventilatory response to hypercapnia. Our study identifies a novel pathway linking the inflammatory and respiratory systems, with implications for inspiration and sighs throughout life, and the ability to autoresuscitate when breathing fails. DOI: http://dx.doi.org/10.7554/eLife.14170.001 PMID:27377173

  6. The effect of preterm birth on vestibular evoked myogenic potentials in children.

    PubMed

    Eshaghi, Zahra; Jafari, Zahra; Shaibanizadeh, Abdolreza; Jalaie, Shohreh; Ghaseminejad, Azizeh

    2014-01-01

    Preterm birth is a significant global health problem with serious short- and long-term consequences. This study examined the long term effects of preterm birth on vestibular evoked myogenic potentials (VEMPs) among preschool-aged children. Thirty-one children with preterm and 20 children with term birth histories aged 5.5 to 6.5 years were studied. Each child underwent VEMPs testing using a 500 Hz tone-burst stimulus with a 95 dB nHL (normal hearing level) intensity level. The mean peak latencies of the p13 and n23 waves in the very preterm group were significantly longer than for the full-term group (p≤ 0.041). There was a significant difference between very and mildly preterm children in the latency of peak p13 (p= 0.003). No significant differences existed between groups for p13-n23 amplitude and the interaural amplitude difference ratio. The tested ear and gender did not affect the results of the test. Prolonged VEMPs in very preterm children may reflect neurodevelopmental impairment and incomplete maturity of the vestibulospinal tract (sacculocollic reflex pathway), especially myelination. VEMPs is a non-invasive technique for investigating the vestibular function in young children, and considered to be an appropriate tool for evaluating vestibular impairments at the low brainstem level. It can be used in follow-ups of the long-term effects of preterm birth on the vestibular system.

  7. Stimulus novelty, task relevance and the visual evoked potential in man

    NASA Technical Reports Server (NTRS)

    Courchesne, E.; Hillyard, S. A.; Galambos, R.

    1975-01-01

    The effect of task relevance on P3 (waveform of human evoked potential) waves and the methodologies used to deal with them are outlined. Visual evoked potentials (VEPs) were recorded from normal adult subjects performing in a visual discrimination task. Subjects counted the number of presentations of the numeral 4 which was interposed rarely and randomly within a sequence of tachistoscopically flashed background stimuli. Intrusive, task-irrelevant (not counted) stimuli were also interspersed rarely and randomly in the sequence of 2s; these stimuli were of two types: simples, which were easily recognizable, and novels, which were completely unrecognizable. It was found that the simples and the counted 4s evoked posteriorly distributed P3 waves while the irrelevant novels evoked large, frontally distributed P3 waves. These large, frontal P3 waves to novels were also found to be preceded by large N2 waves. These findings indicate that the P3 wave is not a unitary phenomenon but should be considered in terms of a family of waves, differing in their brain generators and in their psychological correlates.

  8. Cerebral and brainstem electrophysiologic activity during euthanasia with pentobarbital sodium in horses.

    PubMed

    Aleman, M; Williams, D C; Guedes, A; Madigan, J E

    2015-01-01

    An overdose of pentobarbital sodium administered i.v. is the most commonly used method of euthanasia in veterinary medicine. Determining death after the infusion relies on the observation of physical variables. However, it is unknown when cortical electrical activity and brainstem function are lost in a sequence of events before death. To examine changes in the electrical activity of the cerebral cortex and brainstem during an overdose of pentobarbital sodium solution for euthanasia. Our testing hypothesis is that isoelectric pattern of the brain in support of brain death occurs before absence of electrocardiogram (ECG) activity. Fifteen horses requiring euthanasia. Prospective observational study. Horses with neurologic, orthopedic, and cardiac illnesses were selected and instrumented for recording of electroencephalogram, electrooculogram, brainstem auditory evoked response (BAER), and ECG. Physical and neurologic (brainstem reflexes) variables were monitored. Loss of cortical electrical activity occurred during or within 52 seconds after the infusion of euthanasia solution. Cessation of brainstem function as evidenced by a lack of brainstem reflexes and disappearance of the BAER happened subsequently. Despite undetectable heart sounds, palpable arterial pulse, and mean arterial pressure, recordable ECG was the last variable to be lost after the infusion (5.5-16 minutes after end of the infusion). Overdose of pentobarbital sodium solution administered i.v. is an effective, fast, and humane method of euthanasia. Brain death occurs within 73-261 seconds of the infusion. Although absence of ECG activity takes longer to occur, brain death has already occurred. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  9. Effect of pinching-evoked pain on jaw-stretch reflexes and exteroceptive suppression periods in healthy subjects.

    PubMed

    Biasiotta, A; Peddireddy, A; Wang, K; Romaniello, A; Frati, A; Svensson, P; Arendt-Nielsen, L

    2007-10-01

    To investigate the influence of conditioning cutaneous nociceptive inputs by a new "pinch" model on the jaw-stretch reflex and the exteroceptive suppression periods (ES1 and ES2) in jaw muscles. The jaw-stretch reflex was evoked with the use of a custom-made muscle stretcher and electrical stimuli were used to evoke an early and late exteroceptive suppression period (ES1 and ES2) in the jaw-closing muscles. Electromyographic (EMG) activity was recorded bilaterally from the masseter and temporalis muscles. These brainstem reflexes were recorded in 19 healthy men (28.8+/-1.1 years) during three different conditions: one painful clip applied to the earlobe; one painful clip applied to the nostril, and four painful clips applied simultaneously to the earlobe, nostril, eyebrow, and lower lip. Pain intensity induced by the application of the clips was scored continuously by the subjects on a 100mm visual analogue scale (VAS). The highest VAS pain scores were evoked by placement of four clips (79+/-0.5mm). There was no significant modulation of the jaw-stretch reflex (ANOVAs: P=0.929), the ES1 (P=0.298) or ES2 (P=0.082) in any of the three painful conditions. Intense and tonic cutaneous pain could be elicited by this new "pinch" pain model; however, there was no significant modulation on either excitatory or inhibitory brainstem reflex responses. The novel observation that high-intensity pinch stimuli applied to the craniofacial region fail to modulate two different brainstem reflexes is in contrast to other experimental pain studies documented facilitation of the jaw-stretch reflexes or inhibition of exteroceptive suppression periods. The clinical implication of the present findings is that only some craniofacial pain conditions could be expected to show perturbation of the brainstem reflex responses.

  10. Steady-state evoked potentials possibilities for mental-state estimation

    NASA Technical Reports Server (NTRS)

    Junker, Andrew M.; Schnurer, John H.; Ingle, David F.; Downey, Craig W.

    1988-01-01

    The use of the human steady-state evoked potential (SSEP) as a possible measure of mental-state estimation is explored. A method for evoking a visual response to a sum-of-ten sine waves is presented. This approach provides simultaneous multiple frequency measurements of the human EEG to the evoking stimulus in terms of describing functions (gain and phase) and remnant spectra. Ways in which these quantities vary with the addition of performance tasks (manual tracking, grammatical reasoning, and decision making) are presented. Models of the describing function measures can be formulated using systems engineering technology. Relationships between model parameters and performance scores during manual tracking are discussed. Problems of unresponsiveness and lack of repeatability of subject responses are addressed in terms of a need for loop closure of the SSEP. A technique to achieve loop closure using a lock-in amplifier approach is presented. Results of a study designed to test the effectiveness of using feedback to consciously connect humans to their evoked response are presented. Findings indicate that conscious control of EEG is possible. Implications of these results in terms of secondary tasks for mental-state estimation and brain actuated control are addressed.

  11. Congenital brainstem disconnection associated with a syrinx of the brainstem.

    PubMed

    Barth, P G; de Vries, L S; Nikkels, P G J; Troost, D

    2008-02-01

    We report a case of congenital brainstem disconnection including the second detailed autopsy. A full-term newborn presented with irreversible apnoea and died on the fifth day. MRI revealed disconnection of the brainstem. The autopsy included a series of transverse sections of the mesencephalon, medulla oblongata and bridging tissue fragments. A fragile tube walled by mature brainstem tissue could be reconstructed. It enveloped a cylinder of fluid within the ventral pons extending to the mesencephalon and the lower brainstem. The aqueduct was patent and outside the lesion. The basilar artery was represented by a tiny median vessel. The ventral and lateral parts of the posterior brainstem were surrounded by heterotopic glial tissue. The olivary nucleus was absent and the cerebellar dentate nucleus was dysplastic. Considering the maturity of the remaining parts of the pons, the onset of structural decline is likely to be close to the time of birth. Probable causes are progressively insufficient perfusion through an hypoplastic basilar artery, and obstructed venous drainage through an abnormal glial barrier surrounding the posterior brainstem. The morphological findings can be characterized as a syrinx, known from disorders in which brainstem or spinal cord are damaged by a combination of mechanical and circulatory factors.

  12. Transcranial electric motor evoked potential monitoring during spine surgery: is it safe?

    PubMed

    Schwartz, Daniel M; Sestokas, Anthony K; Dormans, John P; Vaccaro, Alexander R; Hilibrand, Alan S; Flynn, John M; Li, P Mark; Shah, Suken A; Welch, William; Drummond, Denis S; Albert, Todd J

    2011-06-01

    Retrospective review. To report on the safety of repetitive transcranial electric stimulation (RTES) for eliciting motor-evoked potentials during spine surgery. Theoretical concerns over the safety of RTES have hindered broader acceptance of transcranial electric motor-evoked potentials (tceMEP), despite successful implementation of spinal cord monitoring with tceMEPs in many large spine centers, as well as their apparent superiority over mixed-nerve somatosensory-evoked potentials (SSEP) for detection of spinal cord injury. The records of 18,862 consecutive patients who met inclusion criteria and underwent spine surgery with tceMEP monitoring were reviewed for RTES-related complications. This large retrospective review identified only 26 (0.14%) cases with RTES-related complications; all but one of these were tongue lacerations, most of which were self-limiting. The results demonstrate that RTES is a highly safe modality for monitoring spinal cord motor tract function intraoperatively.

  13. Responses evoked from man by acoustic stimulation

    NASA Technical Reports Server (NTRS)

    Galambos, R.; Hecox, K.; Picton, T.

    1974-01-01

    Clicks and other acoustic stimuli evoke time-locked responses from the brain of man. The properties of the waves recordable within the interval from 1 to 10 msec after the stimuli strike the eardrum are discussed along with factors influencing the waves in the 100 to 500 msec epoch. So-called brainstem responses from a normal young adult are considered. No waves were observed for clicks to weak to be heard. With increasing stimulus strength the waves become larger in amplitude and their latency shortens.

  14. Loss of lower limb motor evoked potentials and spinal cord injury during the initial exposure in scoliosis surgery.

    PubMed

    Legatt, Alan D; Fried, Stephen J; Amaral, Terry D; Sarwahi, Vishal; Moguilevitch, Marina

    2014-04-01

    To report a case of motor evoked potential changes and spinal cord injury during the initial dissection in scoliosis surgery. Motor evoked potentials to transcranial electrical stimulation were recorded from multiple muscles. Somatosensory evoked potentials to limb nerve stimulation were recorded from the scalp. Clear motor evoked potentials were initially present in all monitored muscles. The patient was then pharmacologically paralyzed for the initial dissection. More than usual bleeding was encountered during that dissection, prompting transfusion. As the neuromuscular blockade subsided, motor evoked potentials persisted in the hand muscles but disappeared and remained absent in all monitored leg muscles. The spine had not been instrumented. A wake-up test demonstrated paraplegia; the surgery was aborted. There were no adverse somatosensory evoked potential changes. MRI showed an anterior spinal cord infarct. Copious soft tissue bleeding during the initial dissection might have lowered pressures in critical segmental arteries enough to cause spinal cord infarction through a steal phenomenon. The lack of somatosensory evoked potential changes reflected sparing of the dorsal columns. When neuromuscular blockade is used during the initial soft tissue dissection, motor evoked potentials should be assessed after this, but before spinal instrumentation, to determine whether there had been any spinal cord compromise during the initial dissection.

  15. Intraoperative changes in transcranial motor evoked potentials and somatosensory evoked potentials predicting outcome in children with intramedullary spinal cord tumors.

    PubMed

    Cheng, Jason S; Ivan, Michael E; Stapleton, Christopher J; Quinones-Hinojosa, Alfredo; Gupta, Nalin; Auguste, Kurtis I

    2014-06-01

    Intraoperative dorsal column mapping, transcranial motor evoked potentials (TcMEPs), and somatosensory evoked potentials (SSEPs) have been used in adults to assist with the resection of intramedullary spinal cord tumors (IMSCTs) and to predict postoperative motor deficits. The authors sought to determine whether changes in MEP and SSEP waveforms would similarly predict postoperative motor deficits in children. The authors reviewed charts and intraoperative records for children who had undergone resection for IMSCTs as well as dorsal column mapping and TcMEP and SSEP monitoring. Motor evoked potential data were supplemented with electromyography data obtained using a Kartush microstimulator (Medtronic Inc.). Motor strength was graded using the Medical Research Council (MRC) scale during the preoperative, immediate postoperative, and follow-up periods. Reductions in SSEPs were documented after mechanical traction, in response to maneuvers with the cavitational ultrasonic surgical aspirator (CUSA), or both. Data from 12 patients were analyzed. Three lesions were encountered in the cervical and 7 in the thoracic spinal cord. Two patients had lesions of the cervicomedullary junction and upper spinal cord. Intraoperative MEP changes were noted in half of the patients. In these cases, normal polyphasic signals converted to biphasic signals, and these changes correlated with a loss of 1-2 grades in motor strength. One patient lost MEP signals completely and recovered strength to MRC Grade 4/5. The 2 patients with high cervical lesions showed neither intraoperative MEP changes nor motor deficits postoperatively. Dorsal columns were mapped in 7 patients, and the midline was determined accurately in all 7. Somatosensory evoked potentials were decreased in 7 patients. Two patients each had 2 SSEP decreases in response to traction intraoperatively but had no new sensory findings postoperatively. Another 2 patients had 3 traction-related SSEP decreases intraoperatively, and both

  16. NLP-12 engages different UNC-13 proteins to potentiate tonic and evoked release.

    PubMed

    Hu, Zhitao; Vashlishan-Murray, Amy B; Kaplan, Joshua M

    2015-01-21

    A neuropeptide (NLP-12) and its receptor (CKR-2) potentiate tonic and evoked ACh release at Caenorhabditis elegans neuromuscular junctions. Increased evoked release is mediated by a presynaptic pathway (egl-30 Gαq and egl-8 PLCβ) that produces DAG, and by DAG binding to short and long UNC-13 proteins. Potentiation of tonic ACh release persists in mutants deficient for egl-30 Gαq and egl-8 PLCβ and requires DAG binding to UNC-13L (but not UNC-13S). Thus, NLP-12 adjusts tonic and evoked release by distinct mechanisms. Copyright © 2015 the authors 0270-6474/15/351038-05$15.00/0.

  17. Sunlight irradiance and habituation of visual evoked potentials in migraine: The environment makes its mark.

    PubMed

    Lisicki, Marco; D'Ostilio, Kevin; Erpicum, Michel; Schoenen, Jean; Magis, Delphine

    2017-01-01

    Background Migraine is a complex multifactorial disease that arises from the interaction between a genetic predisposition and an enabling environment. Habituation is considered as a fundamental adaptive behaviour of the nervous system that is often impaired in migraine populations. Given that migraineurs are hypersensitive to light, and that light deprivation is able to induce functional changes in the visual cortex recognizable through visual evoked potentials habituation testing, we hypothesized that regional sunlight irradiance levels could influence the results of visual evoked potentials habituation studies performed in different locations worldwide. Methods We searched the literature for visual evoked potentials habituation studies comparing healthy volunteers and episodic migraine patients and correlated their results with levels of local solar radiation. Results After reviewing the literature, 26 studies involving 1291 participants matched our inclusion criteria. Deficient visual evoked potentials habituation in episodic migraine patients was reported in 19 studies. Mean yearly sunlight irradiance was significantly higher in locations of studies reporting deficient habituation. Correlation analyses suggested that visual evoked potentials habituation decreases with increasing sunlight irradiance in migraine without aura patients. Conclusion Results from this hypothesis generating analysis suggest that variations in sunlight irradiance may induce adaptive modifications in visual processing systems that could be reflected in visual evoked potentials habituation, and thus partially account for the difference in results between studies performed in geographically distant centers. Other causal factors such as genetic differences could also play a role, and therefore well-designed prospective trials are warranted.

  18. Conventional and cross-correlation brain-stem auditory evoked responses in the white leghorn chick: rate manipulations

    NASA Technical Reports Server (NTRS)

    Burkard, R.; Jones, S.; Jones, T.

    1994-01-01

    Rate-dependent changes in the chick brain-stem auditory evoked response (BAER) using conventional averaging and a cross-correlation technique were investigated. Five 15- to 19-day-old white leghorn chicks were anesthetized with Chloropent. In each chick, the left ear was acoustically stimulated. Electrical pulses of 0.1-ms duration were shaped, attenuated, and passed through a current driver to an Etymotic ER-2 which was sealed in the ear canal. Electrical activity from stainless-steel electrodes was amplified, filtered (300-3000 Hz) and digitized at 20 kHz. Click levels included 70 and 90 dB peSPL. In each animal, conventional BAERs were obtained at rates ranging from 5 to 90 Hz. BAERs were also obtained using a cross-correlation technique involving pseudorandom pulse sequences called maximum length sequences (MLSs). The minimum time between pulses, called the minimum pulse interval (MPI), ranged from 0.5 to 6 ms. Two BAERs were obtained for each condition. Dependent variables included the latency and amplitude of the cochlear microphonic (CM), wave 2 and wave 3. BAERs were observed in all chicks, for all level by rate combinations for both conventional and MLS BAERs. There was no effect of click level or rate on the latency of the CM. The latency of waves 2 and 3 increased with decreasing click level and increasing rate. CM amplitude decreased with decreasing click level, but was not influenced by click rate for the 70 dB peSPL condition. For the 90 dB peSPL click, CM amplitude was uninfluenced by click rate for conventional averaging. For MLS BAERs, CM amplitude was similar to conventional averaging for longer MPIs.(ABSTRACT TRUNCATED AT 250 WORDS).

  19. On hemispheric differences in evoked potentials to speech stimuli

    NASA Technical Reports Server (NTRS)

    Galambos, R.; Benson, P.; Smith, T. S.; Schulman-Galambos, C.; Osier, H.

    1975-01-01

    Confirmation is provided for the belief that evoked potentials may reflect differences in hemispheric functioning that are marginal at best. Subjects were right-handed and audiologically normal men and women, and responses were recorded using standard EEG techniques. Subjects were instructed to listen for the targets while laying in a darkened sound booth. Different stimuli, speech and tone signals, were used. Speech sounds were shown to evoke a response pattern that resembles that to tone or clicks. Analysis of variances on peak amplitude and latency measures showed no significant differences between hemispheres, however, a Wilcoxon test showed significant differences in hemispheres for certain target tasks.

  20. [Motor evoked potentials in thoracoabdominal aortic surgery].

    PubMed

    Magro, Cátia; Nora, David; Marques, Miguel; Alves, Angela Garcia

    2012-01-01

    Thoracoabdominal aortic disease (aneurysm or dissection) has increased in recent decades. Surgery is the curative treatment but is associated to high perioperative morbidity and mortality risks. Paraplegia is one of the most severe complications, whose incidence has decreased significantly with the implementation of spinal cord protection strategies. No single method or combination of methods has proven to be fully effective in preventing paraplegia. This review is intended to analyse the scientific evidence available on the role of intraoperative monitoring with motor evoked potentials in the neurological outcome of patients undergoing thoracoabdominal aortic surgery. An online search (PubMed) was conducted. Relevant references were selected and reviewed. Intraoperative monitoring with motor evoked potentials (MEP) allows early detection of ischemic events and a targeted intervention to prevent the development of spinal cord injury, significantly reducing the incidence of postoperative paraplegia. MEP monitoring may undergo several intraoperative interferences which may compromise their interpretation. Neuromuscular blockade is the main limiting factor of anesthetic origin. It is essential to strike a balance between monitoring conditions and surgical and anesthetic needs as well as to evaluate the risks and benefits of the technique for each patient. MEP monitoring improves neurological outcome when integrated in a multidisciplinary strategy which must include multiple protective mechanisms that should be tailored to each hospital reality.

  1. Vertex evoked potentials in a rating-scale detection task: Relation to signal probability

    NASA Technical Reports Server (NTRS)

    Squires, K. C.; Squires, N. K.; Hillyard, S. A.

    1974-01-01

    Vertex evoked potentials were recorded from human subjects performing in an auditory detection task with rating scale responses. Three values of a priori probability of signal presentation were tested. The amplitudes of the N1 and P3 components of the vertex potential associated with correct detections of the signal were found to be systematically related to the strictness of the response criterion and independent of variations in a priori signal probability. No similar evoked potential components were found associated with signal absent judgements (misses and correct rejections) regardless of the confidence level of the judgement or signal probability. These results strongly support the contention that the form of the vertex evoked response is closely correlated with the subject's psychophysical decision regarding the presence or absence of a threshold level signal.

  2. Stability of Evoked Potentials during Auditory Attention

    DTIC Science & Technology

    1988-12-01

    attention ef- (S2), to which the subject made a behavioral response and fects upon NI components of the evoked potential received food reinforcement for a... food dipper mounted in the floor, and a driver, with a sound tube attached, mounted in the top of the box. Histology Four weeks after surgery, the cats...response paradigm dose of intravenous sodium pentobarbital. Electrolytic lesions were using food reinforcement. They were gradually deprived of food

  3. Human auditory evoked potentials in the assessment of brain function during major cardiovascular surgery.

    PubMed

    Rodriguez, Rosendo A

    2004-06-01

    Focal neurologic and intellectual deficits or memory problems are relatively frequent after cardiac surgery. These complications have been associated with cerebral hypoperfusion, embolization, and inflammation that occur during or after surgery. Auditory evoked potentials, a neurophysiologic technique that evaluates the function of neural structures from the auditory nerve to the cortex, provide useful information about the functional status of the brain during major cardiovascular procedures. Skepticism regarding the presence of artifacts or difficulty in their interpretation has outweighed considerations of its potential utility and noninvasiveness. This paper reviews the evidence of their potential applications in several aspects of the management of cardiac surgery patients. The sensitivity of auditory evoked potentials to the effects of changes in brain temperature makes them useful for monitoring cerebral hypothermia and rewarming during cardiopulmonary bypass. The close relationship between evoked potential waveforms and specific anatomic structures facilitates the assessment of the functional integrity of the central nervous system in cardiac surgery patients. This feature may also be relevant in the management of critical patients under sedation and coma or in the evaluation of their prognosis during critical care. Their objectivity, reproducibility, and relative insensitivity to learning effects make auditory evoked potentials attractive for the cognitive assessment of cardiac surgery patients. From a clinical perspective, auditory evoked potentials represent an additional window for the study of underlying cerebral processes in healthy and diseased patients. From a research standpoint, this technology offers opportunities for a better understanding of the particular cerebral deficits associated with patients who are undergoing major cardiovascular procedures.

  4. Auditory evoked potential could reflect emotional sensitivity and impulsivity

    PubMed Central

    Kim, Ji Sun; Kim, Sungkean; Jung, Wookyoung; Im, Chang-Hwan; Lee, Seung-Hwan

    2016-01-01

    Emotional sensitivity and impulsivity could cause interpersonal conflicts and neuropsychiatric problems. Serotonin is correlated with behavioral inhibition and impulsivity. This study evaluated whether the loudness dependence of auditory evoked potential (LDAEP), a potential biological marker of central serotonergic activity, could reflect emotional sensitivity and impulsivity. A total of 157 healthy individuals were recruited, who performed LDAEP and Go/Nogo paradigms during electroencephalogram measurement. Barratt impulsivity scale (BIS), Conners’ Adult ADHD rating scale (CAARS), and affective lability scale (ALS) were evaluated. Comparison between low and high LDAEP groups was conducted for behavioural, psychological, and event-related potential (ERP) measures. The high LDAEP group showed significantly increased BIS, a subscale of the CAARS, ALS, and false alarm rate of Nogo stimuli compared to the low LDAEP group. LDAEP showed significant positive correlations with the depression scale, ALS scores, subscale of the CAARS and Nogo-P3 amplitude. In the source activity of Nogo-P3, the cuneus, lingual gyrus, and precentral gyrus activities were significantly increased in the high LDAEP group. Our study revealed that LDAEP could reflect emotional sensitivity and impulsivity. LDAEP, an auditory evoked potential could be a useful tool to evaluate emotional regulation. PMID:27910865

  5. Short latency vestibular evoked potentials in the chicken embryo

    NASA Technical Reports Server (NTRS)

    Jones, S. M.; Jones, T. A.

    1996-01-01

    Electrophysiological responses to pulsed linear acceleration stimuli were recorded in chicken embryos incubated for 19 or 20 days (E19/E20). Responses occurred within the first 16 ms following the stimulus onset. The evoked potentials disappeared following bilateral labyrinthectomy, but persisted following cochlear destruction alone, thus demonstrating that the responses were vestibular. Approximately 8 to 10 response peaks could be identified. The first 4 positive and corresponding negative components (early peaks with latencies < 6.0 ms) were scored and latencies and amplitudes quantified. Vestibular response latencies were significantly longer (P < 0.01) and amplitudes significantly smaller (P < 0.001) than those observed in 2-week-old birds. Mean response threshold for anesthetized embryos was -15.9dBre 1.0 g/ms, which was significantly higher (P < 0.03) than those observed in 2-week-old birds (-23.0dBre 1.0 g/ms). Latency/intensity functions (that is, slopes) were not significantly different between embryos and 2-week-old animals, but amplitude/intensity functions for embryos were significantly shallower than those for 2-week-old birds (P < 0.001). We presume that these differences reflect the refinement of sensory function that occurs following 19 to 20 days of incubation. The recording of vestibular evoked potentials provides an objective, direct and noninvasive measure of peripheral vestibular function in the embryo and, as such, the method shows promise as an investigative tool. The results of the present study form the definitive basis for using vestibular evoked potentials in the detailed study of avian vestibular ontogeny and factors that may influence it.

  6. The Relationship of Visual Evoked Potential Asymmetries to the Performance of Sonar Operators

    DTIC Science & Technology

    1981-08-11

    also been related to EP variability. Schizophrenic adults and patients with Korsakoff’s Syndrome have shown higher evoked potential variability than...average evoked response in Korsakoff patients. J. Psychiatry Res. 6: 253-260, 1969. Santoro, T. and D. Fender. Rules for the perception of

  7. [Effects of sevoflurane and propofol on evoked potentials during neurosurgical anesthesia].

    PubMed

    Nakagawa, Itsuo; Hidaka, Syozo; Okada, Hironori; Kubo, Takashi; Okamura, Kenta; Kato, Takahiro

    2006-06-01

    The effect of anesthetics on somatosensory evoked potential (SEP) and auditory brain stem response (ABR) has been a subject of intense reseach over the last two decades. In fact, volatile anesthetics have been repeatedly shown to decrease cortical amplitude in a dose-dependent fashion but the information regarding the effect of propofol is incomplete. The purpose of this study was to compare the effects of sevoflurane and propofol on evoked potentials during comparable depth of anesthesia guided by bispectral index (BIS). Forty four patients scheduled for neurosurgery were studied. Anesthesia was maintained with intravenous propofol using target controlled infusion (TCI). We measured the change of amplitude and latency of SEP(N20-P25), ABR (V wave) and visual evoked potential (VEP: P100) at three sets of sevoflurane (0%, 1%, 2%) or propofol concentrations (effect site concentration of 1.5, 2.0, 3.0 microug x ml(-1)). BIS monitor was used to measure relative depth of hypnosis. With increasing concentrations of sevoflurane (0, 1% and 2%), SEP showed dose-related reduction in its amplitude, ABR produced less marked changes and VEP showed a significant reduction at 1%. VEP at the propofol concentration of 3.0 microg x ml(-1) was decreased significantly compared with the amplitude at 1.5 microg x ml(-1) concentration. No significant change was observed with SEP and ABR during the change of propofol dosages. BIS values were almost the same with each anesthetics. VEP was most strongly affected with anesthetics, and ABR showed less marked influence of sevoflurane and propofol. Propofol based TIVA technique would induce less change in evoked potentials than sevoflurane.

  8. Perinatal sulfur dioxide exposure alters brainstem parasympathetic control of heart rate.

    PubMed

    Woerman, Amanda L; Mendelowitz, David

    2013-07-01

    Sulfur dioxide (SO₂) is an air pollutant that impedes neonatal development and induces adverse cardiorespiratory health effects, including tachycardia. Here, an animal model was developed that enabled characterization of (i) in vivo alterations in heart rate and (ii) altered activity in brainstem neurons that control heart rate after perinatal SO₂ exposure. Pregnant Sprague-Dawley dams and their pups were exposed to 5 parts per million SO₂ for 1 h daily throughout gestation and 6 days postnatal. Electrocardiograms were recorded from pups at 5 days postnatal to examine changes in basal and diving reflex-evoked changes in heart rate following perinatal SO₂ exposure. In vitro studies employed whole-cell patch-clamp electrophysiology to examine changes in neurotransmission to cardiac vagal neurons within the nucleus ambiguus upon SO₂ exposure using a preparation that maintains fictive inspiratory activity recorded from the hypoglossal rootlet. Perinatal SO₂ exposure increased heart rate and blunted the parasympathetic-mediated diving reflex-evoked changes in heart rate. Neither spontaneous nor inspiratory-related inhibitory GABAergic or glycinergic neurotransmission to cardiac vagal neurons was altered by SO₂ exposure. However, excitatory glutamatergic neurotransmission was decreased by 51.2% upon SO₂ exposure. This diminished excitatory neurotransmission was tetrodotoxin-sensitive, indicating SO₂ exposure impaired the activity of preceding glutamatergic neurons that synapse upon cardiac vagal neurons. Diminished glutamatergic, but unaltered inhibitory neurotransmission to cardiac vagal neurons provides a mechanism for the observed SO₂-induced elevated heart rate via an impairment of brainstem cardioinhibitory parasympathetic activity to the heart.

  9. Automatic classification of visual evoked potentials based on wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Stasiakiewicz, Paweł; Dobrowolski, Andrzej P.; Tomczykiewicz, Kazimierz

    2017-04-01

    Diagnosis of part of the visual system, that is responsible for conducting compound action potential, is generally based on visual evoked potentials generated as a result of stimulation of the eye by external light source. The condition of patient's visual path is assessed by set of parameters that describe the time domain characteristic extremes called waves. The decision process is compound therefore diagnosis significantly depends on experience of a doctor. The authors developed a procedure - based on wavelet decomposition and linear discriminant analysis - that ensures automatic classification of visual evoked potentials. The algorithm enables to assign individual case to normal or pathological class. The proposed classifier has a 96,4% sensitivity at 10,4% probability of false alarm in a group of 220 cases and area under curve ROC equals to 0,96 which, from the medical point of view, is a very good result.

  10. Focal brainstem gliomas

    PubMed Central

    Sabbagh, Abdulrahman J.; Alaqeel, Ahmed M.

    2015-01-01

    Improved neuronavigation guidance as well as intraoperative imaging and neurophysiologic monitoring technologies have enhanced the ability of neurosurgeons to resect focal brainstem gliomas. In contrast, diffuse brainstem gliomas are considered to be inoperable lesions. This article is a continuation of an article that discussed brainstem glioma diagnostics, imaging, and classification. Here, we address open surgical treatment of and approaches to focal, dorsally exophytic, and cervicomedullary brainstem gliomas. Intraoperative neuronavigation, intraoperative neurophysiologic monitoring, as well as intraoperative imaging are discussed as adjunctive measures to help render these procedures safer, more acute, and closer to achieving surgical goals. PMID:25864061

  11. [Evoked potentials extraction based on cross-talk resistant adaptive noise cancellation].

    PubMed

    Zeng, Qingning; Li, Ling; Liu, Qinghua; Yao, Dezhong

    2004-06-01

    As Evoked Potentials are much lower in amplitude with respect to the on-going EEC, many trigger-related signals are needed for common averaging technique to enable the extraction of single-trail evoked potentials (EP). How to acquire EP through fewer evocations is an important research project. This paper proposes a cross-talk resistant adaptive noise cancellation method to extract EP. Together with the use of filtering technique and the common averaging technique, the present method needs much less evocations to acquire EP signals. According to the simulating experiment, it needs only several evocations or even only one evocation to get EP signals in good quality.

  12. The steady-state visual evoked potential in vision research: A review

    PubMed Central

    Norcia, Anthony M.; Appelbaum, L. Gregory; Ales, Justin M.; Cottereau, Benoit R.; Rossion, Bruno

    2015-01-01

    Periodic visual stimulation and analysis of the resulting steady-state visual evoked potentials were first introduced over 80 years ago as a means to study visual sensation and perception. From the first single-channel recording of responses to modulated light to the present use of sophisticated digital displays composed of complex visual stimuli and high-density recording arrays, steady-state methods have been applied in a broad range of scientific and applied settings.The purpose of this article is to describe the fundamental stimulation paradigms for steady-state visual evoked potentials and to illustrate these principles through research findings across a range of applications in vision science. PMID:26024451

  13. Influence of rotating shift work on visual reaction time and visual evoked potential.

    PubMed

    R V, Hemamalini; N, Krishnamurthy; A, Saravanan

    2014-10-01

    The present day life style is changing the circadian rhythm of the body especially in rotating night shift workers. The impact of this prolongs their reaction time. Night shift also interferes with the circadian variation of pupil size which may affect the visual evoked potential. To compare the visual reaction time, visual evoked potential (VEP) in rotating night shift workers & day workers and also to correlate the changes in visual reaction time with visual evoked potential. Forty healthy male security guards & staff (25 - 35 y) who did rotating night shifts at least for six months & 40 d workers (25 - 35 y) who did not do night shift in last two years were involved in the study. Visual reaction time and the latency & amplitude of VEP were recorded. Kolmogorov- Smirnov test for normalcy showed the latencies & amplitude of VEP to be normally distributed. Student's unpaired t test showed significant difference (p<0.05) in the visual time and in the latencies of VEP between night shift & day workers. There was no significant difference in the amplitude of VEP. Night shift workers who are prone to circadian rhythm alteration will have prolonged visual reaction time & visual evoked potential abnormalities. Implementation of Bright Light Therapy would be beneficial to the night shift worker.

  14. A comparison of auditory evoked potentials to acoustic beats and to binaural beats.

    PubMed

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2010-04-01

    The purpose of this study was to compare cortical brain responses evoked by amplitude modulated acoustic beats of 3 and 6 Hz in tones of 250 and 1000 Hz with those evoked by their binaural beats counterparts in unmodulated tones to indicate whether the cortical processes involved differ. Event-related potentials (ERPs) were recorded to 3- and 6-Hz acoustic and binaural beats in 2000 ms duration 250 and 1000 Hz tones presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to beats-evoked oscillations were determined and compared across beat types, beat frequencies and base (carrier) frequencies. All stimuli evoked tone-onset components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude in response to acoustic than to binaural beats, to 250 than to 1000 Hz base frequency and to 3 Hz than to 6 Hz beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left temporal lobe areas. Differences between estimated sources of potentials to acoustic and binaural beats were not significant. The perceptions of binaural beats involve cortical activity that is not different than acoustic beats in distribution and in the effects of beat- and base frequency, indicating similar cortical processing. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Non-provocative diagnostics of photosensitivity using visual evoked potentials.

    PubMed

    Vermeulen, Joost; Kalitzin, Stiliyan; Parra, Jaime; Dekker, Erwin; Vossepoel, Albert; da Silva, Fernando Lopes

    2008-04-01

    Photosensitive epilepsy (PSE) is the most common form of reflex epilepsy. Usually, to find out whether a patient is sensitive, he/she is stimulated visually with, e.g. a stroboscopic light stimulus at variable frequency and intensity until a photo paroxysmal response (PPR) occurs. The research described in this work aims to find whether photosensitivity can be detected without provoking a PPR. Twenty-two subjects, 15 with known photosensitivity, were stimulated with visual stimuli that did not provoke a PPR. Using an "evoked response representation", 18 features were analytically derived from EEG signals. Single- and multi-feature classification paradigms were applied to extract those features that separate best subjects with PSE from controls. Two variables in the "evoked response representation", a frequency term and a goodness of fit term to a particular template, appeared to be best suited to make a prediction about the photosensitivity of a subject. Evoked responses appear to carry information about potential PSE. This result can be useful for screening patients for photosensitivity and it may also help to assess in a quantitative way the effectiveness of medical therapy.

  16. Development of visual evoked potentials in neonates. A study using light emitting diode goggles.

    PubMed Central

    Chin, K C; Taylor, M J; Menzies, R; Whyte, H

    1985-01-01

    We used a signal averager with light emitting diode goggles as the photostimulator to study the development of the visual evoked potentials in 40 normal neonates of between 23 and 42 weeks' gestation. All except two infants of less than 24 weeks' gestation had replicable visual evoked potentials. A negative peak of latency (mean (SD), 308 (21) msec) was present in all infants, but the development of the primary positive peak depended on maturity. Only infants of 37 weeks or more had a consistent positive peak of latency (mean (SD), 220 (22) msec). The practical simplicity and reliability of this technique has distinct advantages over previous conventional recording systems. Neonatal visual evoked potentials are shown to change with maturity. PMID:4091582

  17. [Incidence of hypoacusia secondary to hyperbilirubinaemia in a universal neonatal auditory screening programme based on otoacoustic emissions and evoked auditory potentials].

    PubMed

    Núñez-Batalla, Faustino; Carro-Fernández, Pilar; Antuña-León, María Eva; González-Trelles, Teresa

    2008-03-01

    Hyperbilirubinaemia is a neonatal risk factor that has been proved to be associated with sensorineural hearing loss. A high concentration of unconjugated bilirubin place newborn children at risk of suffering toxic effects, including hypoacusia. Review of the newborn screening results with a diagnosis of pathological hyperbilirubinaemia as part of a hearing-loss early detection protocol in the general population based on otoemissions and evoked potentials. Retrospective study of 21 590 newborn children screened between 2002 and 2006. The selection criteria for defining pathological hyperbilirubinaemia were bilirubin concentrations in excess of 14 mg/dL in pre-term infants and 20 mg/dL in full-term babies. The Universal Neonatal Hearing Screening Programme is a two-phase protocol in which all children are initially subjected to a transient otoacoustic emissions test (TOAE). Children presenting risk factors associated with auditory neuropathy were always given brainstem auditory evoked potentials (BAEP). The patients identified as having severe hyperbilirubinaemia in the neonatal period numbered 109 (0.5 %) and 96 of these (88.07 %) passed the otoacoustic emissions test at the first attempt and 13 (11.93 %) did not; 11 of the 13 children in whom the otoacoustic emissions test was repeated passed it successfully. The 2 children who failed to pass the otoacoustic emissions test has normal BAEP results; 3 (2.75 %) of the newborn infants who passed the TOAE test did not pass the BAEP. Hyperbilirubinaemia values previously considered safe may harm the hearing system and give rise to isolated problems in auditory processing without being associated with other signs of classical kernicterus. Our results show that hyperbilirubinaemia-related auditory neuropathy reveals changes over time in the audiometric outcomes.

  18. Working memory capacity and visual-verbal cognitive load modulate auditory-sensory gating in the brainstem: toward a unified view of attention.

    PubMed

    Sörqvist, Patrik; Stenfelt, Stefan; Rönnberg, Jerker

    2012-11-01

    Two fundamental research questions have driven attention research in the past: One concerns whether selection of relevant information among competing, irrelevant, information takes place at an early or at a late processing stage; the other concerns whether the capacity of attention is limited by a central, domain-general pool of resources or by independent, modality-specific pools. In this article, we contribute to these debates by showing that the auditory-evoked brainstem response (an early stage of auditory processing) to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual-verbal version of the n-back task). Furthermore, individual differences in central/domain-general working memory capacity modulated the magnitude of the auditory-evoked brainstem response, but only in the high working memory load condition. The results support a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.

  19. Evoked potentials in immobilized cats to a combination of clicks with painful electrocutaneous stimuli

    NASA Technical Reports Server (NTRS)

    Gilinskiy, M. A.; Korsakov, I. A.

    1979-01-01

    Averaged evoked potentials in the auditory, somatosensory, and motor cortical zones, as well as in the mesencephalic reticular formation were recorded in acute experiments on nonanesthetized, immobilized cats. Omission of the painful stimulus after a number of pairings resulted in the appearance of a delayed evoked potential, often resembling the late phases of the response to the painful stimulus. The characteristics of this response are discussed in comparison with conditioned changes of the sensory potential amplitudes.

  20. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    EPA Science Inventory

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats

    " NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo.

    " The pattern evok...

  1. Effect of ischaemia on somatosensory evoked potentials in diabetic patients.

    PubMed Central

    López-Alburquerque, T; García Miguel, A; Ruiz Ezquerro, J J; de Portugal Alvarez, J

    1987-01-01

    The nerve action potential at the elbow and somatosensory evoked potentials (SEPs) at the scalp were recorded over 30 minutes of tourniquet-induced limb ischaemia in 10 diabetic patients and 10 controls. According to the SEP changes, an increased resistance to nerve ischaemia in diabetic patients was observed. The pathways involved in SEP conduction are discussed. PMID:3585354

  2. Validation of DPOAE screening conducted by village health workers in a rural community with real-time click evoked tele-auditory brainstem response.

    PubMed

    Ramkumar, Vidya; Vanaja, C S; Hall, James W; Selvakumar, K; Nagarajan, Roopa

    2018-05-01

    This study assessed the validity of DPOAE screening conducted by village health workers (VHWs) in a rural community. Real-time click evoked tele-auditory brainstem response (tele-ABR) was used as the gold standard to establish validity. A cross-sectional design was utilised to compare the results of screening by VHWs to those obtained via tele-ABR. Study samples: One hundred and nineteen subjects (0 to 5 years) were selected randomly from a sample of 2880 infants and young children who received DPOAE screening by VHWs. Real time tele-ABR was conducted by using satellite or broadband internet connectivity at the village. An audiologist located at the tertiary care hospital conducted tele-ABR testing through a remote computing paradigm. Tele-ABR was recorded using standard recording parameters recommended for infants and young children. Wave morphology, repeatability and peak latency data were used for ABR analysis. Tele-ABR and DPOAE findings were compared for 197 ears. The sensitivity of DPOAE screening conducted by the VHW was 75%, and specificity was 91%. The negative and positive predictive values were 98.8% and 27.2%, respectively. The validity of DPOAE screening conducted by trained VHW was acceptable. This study supports the engagement of grass-root workers in community-based hearing health care provision.

  3. Ear asymmetries in middle-ear, cochlear, and brainstem responses in human infants

    PubMed Central

    Keefe, Douglas H.; Gorga, Michael P.; Jesteadt, Walt; Smith, Lynette M.

    2008-01-01

    In 2004, Sininger and Cone-Wesson examined asymmetries in the signal-to-noise ratio (SNR) of otoacoustic emissions (OAE) in infants, reporting that distortion-product (DP)OAE SNR was larger in the left ear, whereas transient-evoked (TE)OAE SNR was larger in the right. They proposed that cochlear and brainstem asymmetries facilitate development of brain-hemispheric specialization for sound processing. Similarly, in 2006 Sininger and Cone-Wesson described ear asymmetries mainly favoring the right ear in infant auditory brainstem responses (ABRs). The present study analyzed 2640 infant responses to further explore these effects. Ear differences in OAE SNR, signal, and noise were evaluated separately and across frequencies (1.5, 2, 3, and 4 kHz), and ABR asymmetries were compared with cochlear asymmetries. Analyses of ear-canal reflectance and admittance showed that asymmetries in middle-ear functioning did not explain cochlear and brainstem asymmetries. Current results are consistent with earlier studies showing right-ear dominance for TEOAE and ABR. Noise levels were higher in the right ear for OAEs and ABRs, causing ear asymmetries in SNR to differ from those in signal level. No left-ear dominance for DPOAE signal was observed. These results do not support a theory that ear asymmetries in cochlear processing mimic hemispheric brain specialization for auditory processing. PMID:18345839

  4. An indirect component in the evoked compound action potential of the vagal nerve.

    PubMed

    Ordelman, Simone C M A; Kornet, Lilian; Cornelussen, Richard; Buschman, Hendrik P J; Veltink, Peter H

    2010-12-01

    The vagal nerve plays a vital role in the regulation of the cardiovascular system. It not only regulates the heart but also sends sensory information from the heart back to the brain. We hypothesize that the evoked vagal nerve compound action potential contains components that are indirect via the brain stem or coming via the neural network on the heart. In an experimental study of 15 pigs, we identified four components in the evoked compound action potentials. The fourth component was found to be an indirect component, which came from the periphery. The latency of the indirect component increased when heart rate and contractility were decreased by burst stimulation (P = 0.01; n = 7). When heart rate and contractility were increased by dobutamine administration, the latency of the indirect component decreased (P = 0.01; n = 9). This showed that the latency of the indirect component of the evoked compound action potentials may relate to the state of the cardiovascular system.

  5. Vestibular evoked myogenic potentials and MRI in early multiple sclerosis: Validation of the VEMP score.

    PubMed

    Crnošija, Luka; Krbot Skorić, Magdalena; Gabelić, Tereza; Adamec, Ivan; Habek, Mario

    2017-01-15

    To validate the VEMP score as a measure of brainstem dysfunction in patients with the first symptom of multiple sclerosis (MS) (clinically isolated syndrome (CIS)) and to investigate the correlation between VEMP and brainstem MRI results. 121 consecutive CIS patients were enrolled and brainstem functional system score (BSFS) was determined. Ocular VEMP (oVEMP) and cervical VEMP (cVEMP) were analyzed for latencies, conduction block and amplitude asymmetry ratio and the VEMP score was calculated. MRI was analyzed for the presence of brainstem lesions as a whole and separately for the presence of pontine, midbrain and medulla oblongata lesions. Patients with signs of brainstem involvement during the neurological examination (with BSFS ≥1) had a higher oVEMP score compared to patients with no signs of brainstem involvement. A binary logistic regression model showed that patients with brainstem lesion on the MRI are 6.780 times more likely to have BSFS ≥1 (p=0.001); and also, a higher VEMP score is associated with BSFS ≥1 (p=0.042). Furthermore, significant correlations were found between clinical brainstem involvement and brainstem and pontine MRI lesions, and prolonged latencies and/or absent VEMP responses. The VEMP score is a valuable tool in evaluation of brainstem involvement in patients with early MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Evaluation of the occurrence of canine congenital sensorineural deafness in puppies of predisposed dog breeds using the brainstem auditory evoked response.

    PubMed

    Płonek, Marta; Giza, Elżbieta; Niedźwiedź, Artur; Kubiak, Krzysztof; Nicpoń, Józef; Wrzosek, Marcin

    2016-12-01

    Canine congenital sensorineural deafness (CCSD) affects predisposed breeds of dogs and is primarily caused by an atrophy of the stria vascularis of the organ of Corti. The analysis of the brainstem auditory evoked response (BAER) is a reliable method for the evaluation of hearing in animals as it allows an accurate detection of unilateral or bilateral deafness. The occurrence of unilateral and bilateral deafness using the BAER was determined in a representative group of dogs in Poland, including Bull Terriers (n = 117), Australian Cattle Dogs (n = 62), English Setters (n = 32) and the Dogo Argentino (n = 32). Overall deafness, deafness in each dog breed and an association between deafness and phenotype were studied. Among the 243 dogs tested, 156 (81%) had a normal BAER, 27 (11%) were unilaterally deaf, and 12 (5%) were bilaterally deaf. The amplitudes and latencies of waves I, II, III, V, the V/I wave amplitude ratio, and wave I-V, I-III and III-V inter-peak intervals were recorded for each dog. Unilaterally and bilaterally deaf dogs were present in all the dog breeds studied. There were 17 (14.5%) deaf Bull Terriers, three (4.8%) deaf Australian Cattle Dogs, seven (21.9%) deaf English Setters, and 12 (37.5%) deaf Dogos Argentinos. Preventive BAER screening should be routinely performed in these four breeds to prevent the spread of genes responsible for deafness.

  7. Effect Of Electromagnetic Waves Emitted From Mobile Phone On Brain Stem Auditory Evoked Potential In Adult Males.

    PubMed

    Singh, K

    2015-01-01

    Mobile phone (MP) is commonly used communication tool. Electromagnetic waves (EMWs) emitted from MP may have potential health hazards. So, it was planned to study the effect of electromagnetic waves (EMWs) emitted from the mobile phone on brainstem auditory evoked potential (BAEP) in male subjects in the age group of 20-40 years. BAEPs were recorded using standard method of 10-20 system of electrode placement and sound click stimuli of specified intensity, duration and frequency.Right ear was exposed to EMW emitted from MP for about 10 min. On comparison of before and after exposure to MP in right ear (found to be dominating ear), there was significant increase in latency of II, III (p < 0.05) and V (p < 0.001) wave, amplitude of I-Ia wave (p < 0.05) and decrease in IPL of III-V wave (P < 0.05) after exposure to MP. But no significant change was found in waves of BAEP in left ear before vs after MP. On comparison of right (having exposure routinely as found to be dominating ear) and left ears (not exposed to MP), before exposure to MP, IPL of IIl-V wave and amplitude of V-Va is more (< 0.001) in right ear compared to more latency of III and IV wave (< 0.001) in left ear. After exposure to MP, the amplitude of V-Va was (p < 0.05) more in right ear compared to left ear. In conclusion, EMWs emitted from MP affects the auditory potential.

  8. Perinatal sulfur dioxide exposure alters brainstem parasympathetic control of heart rate

    PubMed Central

    Woerman, Amanda L.; Mendelowitz, David

    2013-01-01

    Aims Sulfur dioxide (SO2) is an air pollutant that impedes neonatal development and induces adverse cardiorespiratory health effects, including tachycardia. Here, an animal model was developed that enabled characterization of (i) in vivo alterations in heart rate and (ii) altered activity in brainstem neurons that control heart rate after perinatal SO2 exposure. Methods and results Pregnant Sprague–Dawley dams and their pups were exposed to 5 parts per million SO2 for 1 h daily throughout gestation and 6 days postnatal. Electrocardiograms were recorded from pups at 5 days postnatal to examine changes in basal and diving reflex-evoked changes in heart rate following perinatal SO2 exposure. In vitro studies employed whole-cell patch-clamp electrophysiology to examine changes in neurotransmission to cardiac vagal neurons within the nucleus ambiguus upon SO2 exposure using a preparation that maintains fictive inspiratory activity recorded from the hypoglossal rootlet. Perinatal SO2 exposure increased heart rate and blunted the parasympathetic-mediated diving reflex-evoked changes in heart rate. Neither spontaneous nor inspiratory-related inhibitory GABAergic or glycinergic neurotransmission to cardiac vagal neurons was altered by SO2 exposure. However, excitatory glutamatergic neurotransmission was decreased by 51.2% upon SO2 exposure. This diminished excitatory neurotransmission was tetrodotoxin-sensitive, indicating SO2 exposure impaired the activity of preceding glutamatergic neurons that synapse upon cardiac vagal neurons. Conclusions Diminished glutamatergic, but unaltered inhibitory neurotransmission to cardiac vagal neurons provides a mechanism for the observed SO2-induced elevated heart rate via an impairment of brainstem cardioinhibitory parasympathetic activity to the heart. PMID:23504550

  9. Axono-cortical evoked potentials: A proof-of-concept study.

    PubMed

    Mandonnet, E; Dadoun, Y; Poisson, I; Madadaki, C; Froelich, S; Lozeron, P

    2016-04-01

    Awake surgery is currently considered the best method to tailor intraparenchymatous resections according to functional boundaries. However, the exact mechanisms by which electrical stimulation disturbs behavior remain largely unknown. In this case report, we describe a new method to explore the propagation toward cortical sites of a brief pulse applied to an eloquent white matter pathway. We present a patient, operated on in awake condition for removal of a cavernoma of the left ventral premotor cortex. At the end of the resection, the application of 60Hz stimulation in the white matter of the operculum induced anomia. Stimulating the same site at a frequency of 1Hz during 70seconds allowed to record responses on electrodes put over Broca's area and around the inferior part of central sulcus. Axono-cortical evoked potentials were then obtained by averaging unitary responses, time-locked to the stimulus. We then discuss the origin of these evoked axono-cortical potentials and the likely pathway connecting the stimulation site to the recorded cortical sites. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Laser-evoked potentials in painful radiculopathy.

    PubMed

    Hüllemann, P; von der Brelie, C; Manthey, G; Düsterhöft, J; Helmers, A K; Synowitz, M; Gierthmühlen, J; Baron, R

    2017-11-01

    The aims of this exploratory study were (1) to develop a standardized objective electrophysiological technique with laser-evoked potentials to assess dorsal root damage quantitatively and (2) to correlate these LEP measures with clinical parameters and sensory abnormalities (QST) in the affected dermatome. Thirty-eight patients with painful radiculopathy and 20 healthy subjects were investigated with LEP recorded from the affected dermatome and control areas as well as with quantitative sensory testing. Questionnaires evaluating severity and functionality were applied. On average, LEP amplitudes and latencies from the affected dermatomes did not differ from the contralateral control side. In patients with left L5 radiculopathy (more severely affected) the N2 latency was longer and the amplitudes reduced. The N2P2 amplitude correlated with pinprick evoked sensations in QST. The N2 latency from the affected dermatome correlates with pain intensity, chronicity, clinical severity and with a decrease of physical function. An increase in N2-latency indicates a more pronounced nerve root damage, which is associated with a decrease of function and an increase of severity and pain. LEP amplitudes are associated with the functional status of the nociceptive system and may distinguish between degeneration of neuronal systems and central sensitization processes. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  11. Diffuse noxious inhibitory control. Reappraisal by pain-related somatosensory evoked potentials following CO2 laser stimulation.

    PubMed

    Kakigi, R

    1994-09-01

    The effects of DNIC (diffuse noxious inhibitory control) in humans were evaluated by means of pain SEPs (somatosensory evoked potentials) and pain visual analogue scale (VAS) following CO2 laser stimulation applied to the left knee while conditioning stimuli (non-noxious and noxious thermal stimuli) applied to the right hand. Pain SEPs were recorded from scalp electrodes following laser stimulation applied to the left knee during various conditions as follows: (1) control (without any interference), (2) non-noxious (dipping the right hand in water at 41 degrees C for 3 min), (3) noxious (dipping the right hand in water at 46 degrees C for 3 min), and (4) after-effect (3-6 min after taking the hand from the water at 46 degrees C). The present pain SEPs findings confirmed the presence of DNIC in humans, and indicates: (1) degree of pain relief was significantly correlated with changes in pain SEPs, particularly a marked decrease in amplitude, and a decrease in VAS; (2) DNIC was more effective on the second pain than the first pain; (3) the effect of DNIC gradually increased over time, but it rapidly disappeared after the conditioning stimuli ceased; and (4) DNIC was not due merely to changes of attention. I propose that the site responsible for DNIC is the brainstem or the spinal cord rather than the cerebral hemisphere.

  12. Visual evoked potential in RCS rats with Okayama University-type retinal prosthesis (OUReP™) implantation.

    PubMed

    Alamusi; Matsuo, Toshihiko; Hosoya, Osamu; Uchida, Tetsuya

    2017-06-01

    Photoelectric dye-coupled polyethylene film, designated Okayama University type-retinal prosthesis or OUReP™, generates light-evoked surface electric potentials and stimulates neurons. The dye-coupled films or plain films were implanted subretinally in both eyes of 10 Royal College of Surgeons rats with hereditary retinal dystrophy at the age of 6 weeks. Visual evoked potentials in response to monocular flashing light stimuli were recorded from cranially-fixed electrodes, 4 weeks and 8 weeks after the implantation. After the recording, subretinal film implantation was confirmed histologically in 7 eyes with dye-coupled films and 7 eyes with plain films. The recordings from these 7 eyes in each group were used for statistical analysis. The amplitudes of visual evoked potentials in the consecutive time points from 125 to 250 ms after flash were significantly larger in the 7 eyes with dye-coupled film implantation, compared to the 7 eyes with plain film implantation at 8 weeks after the implantation (P < 0.05, repeated-measure ANOVA). The photoelectric dye-coupled polyethylene film, as retinal prosthesis, gave rise to visual evoked potential in response to flashing light.

  13. Cellular generators of the cortical auditory evoked potential initial component.

    PubMed

    Steinschneider, M; Tenke, C E; Schroeder, C E; Javitt, D C; Simpson, G V; Arezzo, J C; Vaughan, H G

    1992-01-01

    Cellular generators of the initial cortical auditory evoked potential (AEP) component were determined by analyzing laminar profiles of click-evoked AEPs, current source density, and multiple unit activity (MUA) in primary auditory cortex of awake monkeys. The initial AEP component is a surface-negative wave, N8, that peaks at 8-9 msec and inverts in polarity below lamina 4. N8 is generated by a lamina 4 current sink and a deeper current source. Simultaneous MUA is present from lower lamina 3 to the subjacent white matter. Findings indicate that thalamocortical afferents are a generator of N8 and support a role for lamina 4 stellate cells. Relationships to the human AEP are discussed.

  14. Notched-noise embedded frequency specific chirps for objective audiometry using auditory brainstem responses

    PubMed Central

    Corona-Strauss, Farah I.; Schick, Bernhard; Delb, Wolfgang; Strauss, Daniel J.

    2012-01-01

    It has been shown recently that chirp-evoked auditory brainstem responses (ABRs) show better performance than click stimulations, especially at low intensity levels. In this paper we present the development, test, and evaluation of a series of notched-noise embedded frequency specific chirps. ABRs were collected in healthy young control subjects using the developed stimuli. Results of the analysis of the corresponding ABRs using a time-scale phase synchronization stability (PSS) measure are also reported. The resultant wave V amplitude and latency measures showed a similar behavior as for values reported in literature. The PSS of frequency specific chirp-evoked ABRs reflected the presence of the wave V for all stimulation intensities. The scales that resulted in higher PSS are in line with previous findings, where ABRs evoked by broadband chirps were analyzed, and which stated that low frequency channels are better for the recognition and analysis of chirp-evoked ABRs. We conclude that the development and test of the series of notched-noise embedded frequency specific chirps allowed the assessment of frequency specific ABRs, showing an identifiable wave V for different intensity levels. Future work may include the development of a faster automatic recognition scheme for these frequency specific ABRs. PMID:26557336

  15. Characterization of Motor and Somatosensory Evoked Potentials in the Yucatan Micropig Using Transcranial and Epidural Stimulation.

    PubMed

    Benavides, Francisco D; Santamaria, Andrea J; Bodoukhin, Nikita; Guada, Luis G; Solano, Juan P; Guest, James D

    2017-09-15

    Yucatan micropigs have brain and spinal cord dimensions similar to humans and are useful for certain spinal cord injury (SCI) translational studies. Micropigs are readily trained in behavioral tasks, allowing consistent testing of locomotor loss and recovery. However, there has been little description of their motor and sensory pathway neurophysiology. We established methods to assess motor and sensory cortical evoked potentials in the anesthetized, uninjured state. We also evaluated epidurally evoked motor and sensory stimuli from the T6 and T9 levels, spanning the intended contusion injury epicenter. Response detection frequency, mean latency and amplitude values, and variability of evoked potentials were determined. Somatosensory evoked potentials were reliable and best detected during stimulation of peripheral nerve and epidural stimulation by referencing the lateral cortex to midline Fz. The most reliable hindlimb motor evoked potential (MEP) occurred in tibialis anterior. We found MEPs in forelimb muscles in response to thoracic epidural stimulation likely generated from propriospinal pathways. Cranially stimulated MEPs were easier to evoke in the upper limbs than in the hindlimbs. Autopsy studies revealed substantial variations in cortical morphology between animals. This electrophysiological study establishes that neurophysiological measures can be reliably obtained in micropigs in a time frame compatible with other experimental procedures, such as SCI and transplantation. It underscores the need to better understand the motor control pathways, including the corticospinal tract, to determine which therapeutics are suitable for testing in the pig model.

  16. Effect of caffeine on vestibular evoked myogenic potential: a systematic review with meta-analysis.

    PubMed

    Souza, Maria Eduarda Di Cavalcanti Alves de; Costa, Klinger Vagner Teixeira da; Menezes, Pedro de Lemos

    2017-12-24

    Caffeine can be considered the most consumed drug by adults worldwide, and can be found in several foods, such as chocolate, coffee, tea, soda and others. Overall, caffeine in moderate doses, results in increased physical and intellectual productivity, increases the capacity of concentration and reduces the time of reaction to sensory stimuli. On the other hand, high doses can cause noticeable signs of mental confusion and error induction in intellectual tasks, anxiety, restlessness, muscle tremors, tachycardia, labyrinthine changes, and tinnitus. Considering that the vestibular evoked myogenic potential is a clinical test that evaluates the muscular response of high intensity auditory stimulation, the present systematic review aimed to analyze the effects of caffeine on vestibular evoked myogenic potential. This study consisted of the search of the following databases: MEDLINE, CENTRAL, ScienceDirect, Scopus, Web of Science, LILACS, SciELO and ClinicalTrials.gov. Additionally, the gray literature was also searched. The search strategy included terms related to intervention (caffeine or coffee consumption) and the primary outcome (vestibular evoked myogenic potential). Based on the 253 potentially relevant articles identified through the database search, only two full-text publications were retrieved for further evaluation, which were maintained for qualitative analysis. Analyzing the articles found, caffeine has no effect on vestibular evoked myogenic potential in normal individuals. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  17. Influence of detomidine and buprenorphine on motor-evoked potentials in horses.

    PubMed

    Nollet, H; Van Ham, L; Gasthuys, F; Dewulf, J; Vanderstraeten, G; Deprez, P

    2003-04-26

    Horses need to be sedated before they are investigated by transcranial magnetic stimulation because of the mild discomfort induced by the evoked muscle contraction and the noise of stimulation. This paper describes the influence of a combination of detomidine (10 microg/kg bodyweight) and a low dose of buprenorphine (2.4 microg/kg) on the onset latency and peak-to-peak amplitude of magnetic motor-evoked potentials in normal horses. There were no significant differences between measurements of these parameters made before the horses were sedated and measurements made 10 and 30 minutes after the drugs were administered.

  18. Auditory fear conditioning modifies steady-state evoked potentials in the rat inferior colliculus.

    PubMed

    Lockmann, André Luiz Vieira; Mourão, Flávio Afonso Gonçalves; Moraes, Marcio Flávio Dutra

    2017-08-01

    The rat inferior colliculus (IC) is a major midbrain relay for ascending inputs from the auditory brain stem and has been suggested to play a key role in the processing of aversive sounds. Previous studies have demonstrated that auditory fear conditioning (AFC) potentiates transient responses to brief tones in the IC, but it remains unexplored whether AFC modifies responses to sustained periodic acoustic stimulation-a type of response called the steady-state evoked potential (SSEP). Here we used an amplitude-modulated tone-a 10-kHz tone with a sinusoidal amplitude modulation of 53.7 Hz-as the conditioning stimulus (CS) in an AFC protocol (5 CSs per day in 3 consecutive days) while recording local field potentials (LFPs) from the IC. In the preconditioning session ( day 1 ), the CS elicited prominent 53.7-Hz SSEPs. In the training session ( day 2 ), foot shocks occurred at the end of each CS (paired group) or randomized in the inter-CS interval (unpaired group). In the test session ( day 3 ), SSEPs markedly differed from preconditioning in the paired group: in the first two trials the phase to which the SSEP coupled to the CS amplitude envelope shifted ~90°; in the last two trials the SSEP power and the coherence of SSEP with the CS amplitude envelope increased. LFP power decreased in frequency bands other than 53.7 Hz. In the unpaired group, SSEPs did not change in the test compared with preconditioning. Our results show that AFC causes dissociated changes in the phase and power of SSEP in the IC. NEW & NOTEWORTHY Local field potential oscillations in the inferior colliculus follow the amplitude envelope of an amplitude-modulated tone, originating a neural response called the steady-state evoked potential. We show that auditory fear conditioning of an amplitude-modulated tone modifies two parameters of the steady-state evoked potentials in the inferior colliculus: first the phase to which the evoked oscillation couples to the amplitude-modulated tone shifts

  19. Development of N-Methyl-D-Aspartate Receptor Subunits in Avian Auditory Brainstem

    PubMed Central

    TANG, YE-ZHONG; CARR, CATHERINE E.

    2012-01-01

    N-methyl-D-aspartate (NMDA) receptor subunit-specific probes were used to characterize developmental changes in the distribution of excitatory amino acid receptors in the chicken’s auditory brainstem nuclei. Although NR1 subunit expression does not change greatly during the development of the cochlear nuclei in the chicken (Tang and Carr [2004] Hear. Res 191:79 – 89), there are significant developmental changes in NR2 subunit expression. We used in situ hybridization against NR1, NR2A, NR2B, NR2C, and NR2D to compare NR1 and NR2 expression during development. All five NMDA subunits were expressed in the auditory brainstem before embryonic day (E) 10, when electrical activity and synaptic responses appear in the nucleus magnocellularis (NM) and the nucleus laminaris (NL). At this time, the dominant form of the receptor appeared to contain NR1 and NR2B. NR2A appeared to replace NR2B by E14, a time that coincides with synaptic refinement and evoked auditory responses. NR2C did not change greatly during auditory development, whereas NR2D increased from E10 and remained at fairly high levels into adulthood. Thus changes in NMDA NR2 receptor subunits may contribute to the development of auditory brainstem responses in the chick. PMID:17366608

  20. Generalized alternating stimulation: a novel method to reduce stimulus artifact in electrically evoked compound action potentials.

    PubMed

    Alvarez, Isaac; de la Torre, Angel; Sainz, Manuel; Roldan, Cristina; Schoesser, Hansjoerg; Spitzer, Philipp

    2007-09-15

    Stimulus artifact is one of the main limitations when considering electrically evoked compound action potential for clinical applications. Alternating stimulation (average of recordings obtained with anodic-cathodic and cathodic-anodic bipolar stimulation pulses) is an effective method to reduce stimulus artifact when evoked potentials are recorded. In this paper we extend the concept of alternating stimulation by combining anodic-cathodic and cathodic-anodic recordings with a weight in general different to 0.5. We also provide an automatic method to obtain an estimation of the optimal weights. Comparison with conventional alternating, triphasic stimulation and masker-probe paradigm shows that the generalized alternating method improves the quality of electrically evoked compound action potential responses.

  1. Diagnostic accuracy of evoked potentials for functional impairment after contusive spinal cord injury in adult rats.

    PubMed

    Thirumala, Parthasarathy; Zhou, James; Krishnan, Rohan; Manem, Nihita; Umredkar, Shreya; Hamilton, D K; Balzer, Jeffrey R; Oudega, Martin

    2016-03-01

    Iatrogenic spinal cord injury (SCI) is a cause of potentially debilitating post-operative neurologic complications. Currently, intra-operative neurophysiological monitoring (IONM) via somatosensory evoked potentials and motor-evoked potentials is used to detect and prevent impending SCI. However, no empirically validated interventions exist to halt the progression of iatrogenic SCI once it is detected. This is in part due to the lack of a suitable translational model that mimics the circumstances surrounding iatrogenic SCI detected via IONM. Here, we evaluate a model of simulated contusive iatrogenic SCI detected via IONM in adult female Sprague-Dawley rats. We show that transient losses of somatosensory evoked potentials responses are 88.24% sensitive (95% confidence interval [CI] 63.53-98.20) and 80% specific (95% CI 51.91-95.43) for significant functional impairment following simulated iatrogenic SCI. Similarly, we show that transient losses in motor-evoked potentials responses are 70.83% sensitive (95% CI 48.91-87.33) and 100% specific (95% CI 62.91-100.00) for significant functional impairment following simulated iatrogenic SCI. These results indicate that our model is a suitable replica of the circumstances surrounding clinical iatrogenic SCI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Efficacy of Distortion Product Oto-Acoustic Emission (OAE)/Auditory Brainstem Evoked Response (ABR) Protocols in Universal Neonatal Hearing Screening and Detecting Hearing Loss in Children <2 Years of Age.

    PubMed

    Mishra, Girish; Sharma, Yojana; Mehta, Kanishk; Patel, Gunjan

    2013-04-01

    Deafness is commonest curable childhood handicap. Most remedies and programmes don't address this issue at childhood level leading to detrimental impact on development of newborns. Aims and objectives are (A) screen all newborns for deafness and detect prevalence of deafness in children less than 2 years of age. and (B) assess efficacy of multi-staged OAE/ABR protocol for hearing screening. Non-randomized, prospective study from August 2008 to August 2011. All infants underwent a series of oto-acoustic emission (OAE) and final confirmatory auditory brainstem evoked response (ABR) audiometry. Finally, out of 1,101 children, 1,069 children passed the test while 12 children had impaired hearing after final testing, confirmed by ABR. Positive predictive value of OAE after multiple test increased to 100 %. OAE-ABR test series is effective in screening neonates and multiple tests reduce economic burden. High risk screening will miss nearly 50 % deaf children, thus universal screening is indispensable in picking early deafness.

  3. Whole-brain diffusion tensor imaging in correlation to visual-evoked potentials in multiple sclerosis: a tract-based spatial statistics analysis.

    PubMed

    Lobsien, D; Ettrich, B; Sotiriou, K; Classen, J; Then Bergh, F; Hoffmann, K-T

    2014-01-01

    Functional correlates of microstructural damage of the brain affected by MS are incompletely understood. The purpose of this study was to evaluate correlations of visual-evoked potentials with microstructural brain changes as determined by DTI in patients with demyelinating central nervous disease. Sixty-one patients with clinically isolated syndrome or MS were prospectively recruited. The mean P100 visual-evoked potential latencies of the right and left eyes of each patient were calculated and used for the analysis. For DTI acquisition, a single-shot echo-planar imaging pulse sequence with 80 diffusion directions was performed at 3T. Fractional anisotropy, radial diffusivity, and axial diffusivity were calculated and correlated with mean P100 visual-evoked potentials by tract-based spatial statistics. Significant negative correlations between mean P100 visual-evoked potentials and fractional anisotropy and significant positive correlations between mean P100 visual-evoked potentials and radial diffusivity were found widespread over the whole brain. The highest significance was found in the optic radiation, frontoparietal white matter, and corpus callosum. Significant positive correlations between mean P100 visual-evoked potentials and axial diffusivity were less widespread, notably sparing the optic radiation. Microstructural changes of the whole brain correlated significantly with mean P100 visual-evoked potentials. The distribution of the correlations showed clear differences among axial diffusivity, fractional anisotropy, and radial diffusivity, notably in the optic radiation. This finding suggests a stronger correlation of mean P100 visual-evoked potentials to demyelination than to axonal damage. © 2014 by American Journal of Neuroradiology.

  4. Contact Heat Evoked Potentials (CHEPs) in Patients with Mild-Moderate Alzheimer's Disease and Matched Control--A Pilot Study.

    PubMed

    Jensen-Dahm, Christina; Madsen, Caspar Skau; Waldemar, Gunhild; Ballegaard, Martin; Hejl, Anne-Mette; Johnsen, Birger; Jensen, Troels Staehelin

    2016-04-01

    Clinical studies have found that patients with Alzheimer's disease report pain of less intensity and with a lower affective response, which has been thought to be due to altered pain processing. The authors wished to examine the cerebral processing of non-painful and painful stimuli using somatosensory evoked potentials and contact heat evoked potentials in patients with Alzheimer's disease and in healthy elderly controls. Case-control study Twenty outpatients with mild-moderate Alzheimer's disease and in 17 age- and gender-matched healthy controls were included Contact heat evoked potentials and somatosensory evoked potentials were recorded in all subjects. Furthermore, warmth detection threshold and heat pain threshold were assessed. Patients and controls also rated quality and intensity of the stimuli. The authors found no difference on contact heat evoked potential amplitude (P = 0.59) or latency of N2 or P2 wave (P = 0.62 and P = 0.75, respectively) between patients and controls. In addition, there was no difference in regard to pain intensity scores or pain quality. The patients and controls had similar warmth detection threshold and heat pain threshold. Somatosensory evoked potentials, amplitude, and latency were within normal range and similar for the two groups. The findings suggest that the processing of non-painful and painful stimuli is preserved in patients with mild to moderate Alzheimer's disease. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Middle Latency Auditory Evoked Potential (MLAEP) in Workers with and without Tinnitus who are Exposed to Occupational Noise.

    PubMed

    dos Santos Filha, Valdete Alves Valentins; Samelli, Alessandra Giannella; Matas, Carla Gentile

    2015-09-11

    Tinnitus is an important occupational health concern, but few studies have focused on the central auditory pathways of workers with a history of occupational noise exposure. Thus, we analyzed the central auditory pathways of workers with a history of occupational noise exposure who had normal hearing threshold, and compared middle latency auditory evoked potential in those with and without noise-induced tinnitus. Sixty individuals (30 with and 30 without tinnitus) underwent the following procedures: anamnesis, immittance measures, pure-tone air conduction thresholds at all frequencies between 0.25-8 kHz, and middle latency auditory evoked potentials. Quantitative analysis of latencies and amplitudes of middle latency auditory evoked potential showed no significant differences between the groups with and without tinnitus. In the qualitative analysis, we found that both groups showed increased middle latency auditory evoked potential latencies. The study group had more alterations of the "both" type regarding the Na-Pa amplitude, while the control group had more "electrode effect" alterations, but these alterations were not significantly different when compared to controls. Individuals with normal hearing with or without tinnitus who are exposed to occupational noise have altered middle latency auditory evoked potential, suggesting impairment of the auditory pathways in cortical and subcortical regions. Although differences did not reach significance, individuals with tinnitus seemed to have more abnormalities in components of the middle latency auditory evoked potential when compared to individuals without tinnitus, suggesting alterations in the generation and transmission of neuroelectrical impulses along the auditory pathway.

  6. Auditory Brainstem Responses in Autism: Brainstem Dysfunction or Peripheral Hearing Loss?

    ERIC Educational Resources Information Center

    Klin, Ami

    1993-01-01

    A review of 11 studies of auditory brainstem response (ABR) in individuals with autism concludes that the ABR data are only suggestive (rather than supportive) of brainstem involvement in autism. The presence of peripheral hearing impairment was observed in some of the autistic individuals. (Author/DB)

  7. The auditory brain-stem response to complex sounds: a potential biomarker for guiding treatment of psychosis.

    PubMed

    Tarasenko, Melissa A; Swerdlow, Neal R; Makeig, Scott; Braff, David L; Light, Gregory A

    2014-01-01

    Cognitive deficits limit psychosocial functioning in schizophrenia. For many patients, cognitive remediation approaches have yielded encouraging results. Nevertheless, therapeutic response is variable, and outcome studies consistently identify individuals who respond minimally to these interventions. Biomarkers that can assist in identifying patients likely to benefit from particular forms of cognitive remediation are needed. Here, we describe an event-related potential (ERP) biomarker - the auditory brain-stem response (ABR) to complex sounds (cABR) - that appears to be particularly well-suited for predicting response to at least one form of cognitive remediation that targets auditory information processing. Uniquely, the cABR quantifies the fidelity of sound encoded at the level of the brainstem and midbrain. This ERP biomarker has revealed auditory processing abnormalities in various neurodevelopmental disorders, correlates with functioning across several cognitive domains, and appears to be responsive to targeted auditory training. We present preliminary cABR data from 18 schizophrenia patients and propose further investigation of this biomarker for predicting and tracking response to cognitive interventions.

  8. Steady-State Somatosensory Evoked Potential for Brain-Computer Interface—Present and Future

    PubMed Central

    Ahn, Sangtae; Kim, Kiwoong; Jun, Sung Chan

    2016-01-01

    Brain-computer interface (BCI) performance has achieved continued improvement over recent decades, and sensorimotor rhythm-based BCIs that use motor function have been popular subjects of investigation. However, it remains problematic to introduce them to the public market because of their low reliability. As an alternative resolution to this issue, visual-based BCIs that use P300 or steady-state visually evoked potentials (SSVEPs) seem promising; however, the inherent visual fatigue that occurs with these BCIs may be unavoidable. For these reasons, steady-state somatosensory evoked potential (SSSEP) BCIs, which are based on tactile selective attention, have gained increasing attention recently. These may reduce the fatigue induced by visual attention and overcome the low reliability of motor activity. In this literature survey, recent findings on SSSEP and its methodological uses in BCI are reviewed. Further, existing limitations of SSSEP BCI and potential future directions for the technique are discussed. PMID:26834611

  9. Feasibility and performance evaluation of generating and recording visual evoked potentials using ambulatory Bluetooth based system.

    PubMed

    Ellingson, Roger M; Oken, Barry

    2010-01-01

    Report contains the design overview and key performance measurements demonstrating the feasibility of generating and recording ambulatory visual stimulus evoked potentials using the previously reported custom Complementary and Alternative Medicine physiologic data collection and monitoring system, CAMAS. The methods used to generate visual stimuli on a PDA device and the design of an optical coupling device to convert the display to an electrical waveform which is recorded by the CAMAS base unit are presented. The optical sensor signal, synchronized to the visual stimulus emulates the brain's synchronized EEG signal input to CAMAS normally reviewed for the evoked potential response. Most importantly, the PDA also sends a marker message over the wireless Bluetooth connection to the CAMAS base unit synchronized to the visual stimulus which is the critical averaging reference component to obtain VEP results. Results show the variance in the latency of the wireless marker messaging link is consistent enough to support the generation and recording of visual evoked potentials. The averaged sensor waveforms at multiple CPU speeds are presented and demonstrate suitability of the Bluetooth interface for portable ambulatory visual evoked potential implementation on our CAMAS platform.

  10. Long-Term Visuo-Gustatory Appetitive and Aversive Conditioning Potentiate Human Visual Evoked Potentials

    PubMed Central

    Christoffersen, Gert R. J.; Laugesen, Jakob L.; Møller, Per; Bredie, Wender L. P.; Schachtman, Todd R.; Liljendahl, Christina; Viemose, Ida

    2017-01-01

    Human recognition of foods and beverages are often based on visual cues associated with flavors. The dynamics of neurophysiological plasticity related to acquisition of such long-term associations has only recently become the target of investigation. In the present work, the effects of appetitive and aversive visuo-gustatory conditioning were studied with high density EEG-recordings focusing on late components in the visual evoked potentials (VEPs), specifically the N2-P3 waves. Unfamiliar images were paired with either a pleasant or an unpleasant juice and VEPs evoked by the images were compared before and 1 day after the pairings. In electrodes located over posterior visual cortex areas, the following changes were observed after conditioning: the amplitude from the N2-peak to the P3-peak increased and the N2 peak delay was reduced. The percentage increase of N2-to-P3 amplitudes was asymmetrically distributed over the posterior hemispheres despite the fact that the images were bilaterally symmetrical across the two visual hemifields. The percentage increases of N2-to-P3 amplitudes in each experimental subject correlated with the subject’s evaluation of positive or negative hedonic valences of the two juices. The results from 118 scalp electrodes gave surface maps of theta power distributions showing increased power over posterior visual areas after the pairings. Source current distributions calculated from swLORETA revealed that visual evoked currents rose as a result of conditioning in five cortical regions—from primary visual areas and into the inferior temporal gyrus (ITG). These learning-induced changes were seen after both appetitive and aversive training while a sham trained control group showed no changes. It is concluded that long-term visuo-gustatory conditioning potentiated the N2-P3 complex, and it is suggested that the changes are regulated by the perceived hedonic valence of the US. PMID:28983243

  11. Thermoreceptive innervation of human glabrous and hairy skin: a contact heat evoked potential analysis.

    PubMed

    Granovsky, Yelena; Matre, Dagfinn; Sokolik, Alexander; Lorenz, Jürgen; Casey, Kenneth L

    2005-06-01

    The human palm has a lower heat detection threshold and a higher heat pain threshold than hairy skin. Neurophysiological studies of monkeys suggest that glabrous skin has fewer low threshold heat nociceptors (AMH type 2) than hairy skin. Accordingly, we used a temperature-controlled contact heat evoked potential (CHEP) stimulator to excite selectively heat receptors with C fibers or Adelta-innervated AMH type 2 receptors in humans. On the dorsal hand, 51 degrees C stimulation produced painful pinprick sensations and 41 degrees C stimuli evoked warmth. On the glabrous thenar, 41 degrees C stimulation produced mild warmth and 51 degrees C evoked strong but painless heat sensations. We used CHEP responses to estimate the conduction velocities (CV) of peripheral fibers mediating these sensations. On hairy skin, 41 degrees C stimuli evoked an ultra-late potential (mean, SD; N wave latency: 455 (118) ms) mediated by C fibers (CV by regression analysis: 1.28 m/s, N=15) whereas 51 degrees C stimuli evoked a late potential (N latency: 267 (33) ms) mediated by Adelta afferents (CV by within-subject analysis: 12.9 m/s, N=6). In contrast, thenar responses to 41 and 51 degrees C were mediated by C fibers (average N wave latencies 485 (100) and 433 (73) ms, respectively; CVs 0.95-1.35 m/s by regression analysis, N=15; average CV=1.7 (0.41) m/s calculated from distal glabrous and proximal hairy skin stimulation, N=6). The exploratory range of the human and monkey palm is enhanced by the abundance of low threshold, C-innervated heat receptors and the paucity of low threshold AMH type 2 heat nociceptors.

  12. The association between later cortical potentials and later phases of postural reactions evoked by perturbations to upright stance.

    PubMed

    Quant, Sylvia; Maki, Brian E; McIlroy, William E

    2005-06-24

    Previous studies have suggested that early cortical potentials (e.g. N1) that are evoked by perturbations to upright stance are associated with sensory processing of the initial perturbation and that later potentials may represent cognitive processing of this perturbation. However, it has also been suggested that later cortical potentials could reflect sensory and motor processing of later phases of the postural reaction. The current study set out to provide additional insight into the association between perturbation-evoked cortical potentials and postural reactions evoked by whole-body perturbations. By altering the deceleration onset of the perturbation, which altered the timing of later postural responses, we determined whether changes in later postural responses were associated with changes in later potentials. Based on previous work, we hypothesized that later potentials would not be associated with changes in later postural responses. During stance, seven healthy young adults were instructed to maintain their balance following two types of perturbations: (1) acceleration phase immediately followed by a deceleration phase (TASK 1), and (2) acceleration phase followed by a delayed deceleration phase (TASK 2). In spite of profound task differences in later postural responses, results revealed no significant differences in later potentials. This work provides additional support for the idea that latter elements of perturbation-evoked cortical responses are likely independent of evoked motor reactions required to maintain stability.

  13. Assessment of visual disability using visual evoked potentials.

    PubMed

    Jeon, Jihoon; Oh, Seiyul; Kyung, Sungeun

    2012-08-06

    The purpose of this study is to validate the use of visual evoked potential (VEP) to objectively quantify visual acuity in normal and amblyopic patients, and determine if it is possible to predict visual acuity in disability assessment to register visual pathway lesions. A retrospective chart review was conducted of patients diagnosed with normal vision, unilateral amblyopia, optic neuritis, and visual disability who visited the university medical center for registration from March 2007 to October 2009. The study included 20 normal subjects (20 right eyes: 10 females, 10 males, ages 9-42 years), 18 unilateral amblyopic patients (18 amblyopic eyes, ages 19-36 years), 19 optic neuritis patients (19 eyes: ages 9-71 years), and 10 patients with visual disability having visual pathway lesions. Amplitude and latencies were analyzed and correlations with visual acuity (logMAR) were derived from 20 normal and 18 amblyopic subjects. Correlation of VEP amplitude and visual acuity (logMAR) of 19 optic neuritis patients confirmed relationships between visual acuity and amplitude. We calculated the objective visual acuity (logMAR) of 16 eyes from 10 patients to diagnose the presence or absence of visual disability using relations derived from 20 normal and 18 amblyopic eyes. Linear regression analyses between amplitude of pattern visual evoked potentials and visual acuity (logMAR) of 38 eyes from normal (right eyes) and amblyopic (amblyopic eyes) subjects were significant [y = -0.072x + 1.22, x: VEP amplitude, y: visual acuity (logMAR)]. There were no significant differences between visual acuity prediction values, which substituted amplitude values of 19 eyes with optic neuritis into function. We calculated the objective visual acuity of 16 eyes of 10 patients to diagnose the presence or absence of visual disability using relations of y = -0.072x + 1.22 (-0.072). This resulted in a prediction reference of visual acuity associated with malingering vs. real

  14. Assessment of visual disability using visual evoked potentials

    PubMed Central

    2012-01-01

    Background The purpose of this study is to validate the use of visual evoked potential (VEP) to objectively quantify visual acuity in normal and amblyopic patients, and determine if it is possible to predict visual acuity in disability assessment to register visual pathway lesions. Methods A retrospective chart review was conducted of patients diagnosed with normal vision, unilateral amblyopia, optic neuritis, and visual disability who visited the university medical center for registration from March 2007 to October 2009. The study included 20 normal subjects (20 right eyes: 10 females, 10 males, ages 9–42 years), 18 unilateral amblyopic patients (18 amblyopic eyes, ages 19–36 years), 19 optic neuritis patients (19 eyes: ages 9–71 years), and 10 patients with visual disability having visual pathway lesions. Amplitude and latencies were analyzed and correlations with visual acuity (logMAR) were derived from 20 normal and 18 amblyopic subjects. Correlation of VEP amplitude and visual acuity (logMAR) of 19 optic neuritis patients confirmed relationships between visual acuity and amplitude. We calculated the objective visual acuity (logMAR) of 16 eyes from 10 patients to diagnose the presence or absence of visual disability using relations derived from 20 normal and 18 amblyopic eyes. Results Linear regression analyses between amplitude of pattern visual evoked potentials and visual acuity (logMAR) of 38 eyes from normal (right eyes) and amblyopic (amblyopic eyes) subjects were significant [y = −0.072x + 1.22, x: VEP amplitude, y: visual acuity (logMAR)]. There were no significant differences between visual acuity prediction values, which substituted amplitude values of 19 eyes with optic neuritis into function. We calculated the objective visual acuity of 16 eyes of 10 patients to diagnose the presence or absence of visual disability using relations of y = −0.072x + 1.22 (−0.072). This resulted in a prediction reference of visual

  15. Direct detection of a single evoked action potential with MRS in Lumbricus terrestris.

    PubMed

    Poplawsky, Alexander J; Dingledine, Raymond; Hu, Xiaoping P

    2012-01-01

    Functional MRI (fMRI) measures neural activity indirectly by detecting the signal change associated with the hemodynamic response following brain activation. In order to alleviate the temporal and spatial specificity problems associated with fMRI, a number of attempts have been made to detect neural magnetic fields (NMFs) with MRI directly, but have thus far provided conflicting results. In this study, we used MR to detect axonal NMFs in the median giant fiber of the earthworm, Lumbricus terrestris, by examining the free induction decay (FID) with a sampling interval of 0.32 ms. The earthworm nerve cords were isolated from the vasculature and stimulated at the threshold of action potential generation. FIDs were acquired shortly after the stimulation, and simultaneous field potential recordings identified the presence or absence of single evoked action potentials. FIDs acquired when the stimulus did not evoke an action potential were summed as background. The phase of the background-subtracted FID exhibited a systematic change, with a peak phase difference of (-1.2 ± 0.3) × 10(-5) radians occurring at a time corresponding to the timing of the action potential. In addition, we calculated the possible changes in the FID magnitude and phase caused by a simulated action potential using a volume conductor model. The measured phase difference matched the theoretical prediction well in both amplitude and temporal characteristics. This study provides the first evidence for the direct detection of a magnetic field from an evoked action potential using MR. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Cervical sympathetic block prolongs the latency and reduces the amplitude of trigeminal somatosensory evoked potentials on the contralateral side.

    PubMed

    Kawaguchi, Jun; Matsuura, Nobuyuki; Kasahara, Masataka; Ichinohe, Tatsuya

    2015-02-01

    The purpose of this study was to investigate the latency and amplitude of trigeminal somatosensory evoked potentials to clarify how nerve function on the contralateral side is affected after cervical sympathetic block (CSB). Subjects comprised 16 volunteers. For CSB, the tip of a needle was contacted with the transverse process of the sixth cervical vertebra on the right side, and lidocaine was injected. Trigeminal somatosensory evoked potentials were recorded bilaterally from C5/C6 scalp positions. Pupil diameters were also measured. Electrical stimulations were applied to the left-side lower lip, and trigeminal somatosensory evoked potentials waveforms derived from both sides of the scalp were recorded. Then, electrical stimulations were applied to the right-side of the lower lip, and recording was again performed. Recordings were performed at 5, 15, and 30 minutes after CSB. On the CSB side, pupil diameter decreased at 5 and 15 minutes after CSB. Trigeminal somatosensory evoked potentials at contralateral stimulation showed a prolongation of the latency in both P20 and N25 components on bilateral recording sites 5 and 15 minutes after CSB. Trigeminal somatosensory evoked potentials' amplitude at contralateral stimulation was smaller than at ipsilateral stimulation 5 minutes after CSB. Cervical sympathetic block prolongs the latency and reduces the amplitude of trigeminal somatosensory evoked potentials on the contralateral side.

  17. Disturbances of stem circumnutations evoked by wound-induced variation potentials in Helianthus annuus L.

    PubMed

    Stolarz, Maria; Dziubińska, Halina; Krupa, Maciej; Buda, Agnieszka; Trebacz, Kazimierz; Zawadzki, Tadeusz

    2003-01-01

    The relationship between evoked electrical activity and stem movements in three-week old sunflowers was demonstrated. Electrical potential changes (recorded by Ag/AgCl extracellular electrodes) and time-lapse images (from a top view camera) were recorded and analyzed. A heat stimulus applied to the tip of one of the second pair of leaves evoked a variation potential, transmitted basipetally along one side of the stem. After stimulation, disturbances of circumnutations occurred. They included: changes in the period, disorders in the elliptical shape, and, in some cases, reversion of direction (of movement). We suggest that asymmetrically propagated variation potential induces asymmetric stem shrinking and bending, which strongly disturbs circumnutations. Our results confirm the involvement of electrical potential changes in the mechanism of stem nutations.

  18. Optimization of visual evoked potential (VEP) recording systems.

    PubMed

    Karanjia, Rustum; Brunet, Donald G; ten Hove, Martin W

    2009-01-01

    To explore the influence of environmental conditions on pattern visual evoked potential (VEP) recordings. Fourteen subjects with no known ocular pathology were recruited for the study. In an attempt to optimize the recording conditions, VEP recordings were performed in both the seated and recumbent positions. Comparisons were made between recordings using either LCD or CRT displays and recordings obtained in silence or with quiet background music. Paired recordings (in which only one variable was changed) were analyzed for changes in P100 latency, RMS noise, and variability. Baseline RMS noise demonstrated a significant decrease in the variability during the first 50msec accompanied by a 73% decrease in recording time for recumbent position when compared to the seated position (p<0.05). Visual evoked potentials recorded using LCD monitors demonstrated a significant increase in the P100 latency when compared to CRT recordings in the same subjects. The addition of background music did not affect the amount of RMS noise during the first 50msec of the recordings. This study demonstrates that the use of the recumbent position increases patient comfort and improves the signal to noise ratio. In contrast, the addition of background music to relax the patient did not improve the recording signal. Furthermore, the study illustrates the importance of avoiding low-contrast visual stimulation patterns obtained with LCD as they lead to higher latencies resulting in false positive recordings. These findings are important when establishing or modifying a pattern VEP recording protocol.

  19. Evoked-potential changes following discrimination learning involving complex sounds

    PubMed Central

    Orduña, Itzel; Liu, Estella H.; Church, Barbara A.; Eddins, Ann C.; Mercado, Eduardo

    2011-01-01

    Objective Perceptual sensitivities are malleable via learning, even in adults. We trained adults to discriminate complex sounds (periodic, frequency-modulated sweep trains) using two different training procedures, and used psychoacoustic tests and evoked potential measures (the N1-P2 complex) to assess changes in both perceptual and neural sensitivities. Methods Training took place either on a single day, or daily across eight days, and involved discrimination of pairs of stimuli using a single-interval, forced-choice task. In some participants, training started with dissimilar pairs that became progressively more similar across sessions, whereas in others training was constant, involving only one, highly similar, stimulus pair. Results Participants were better able to discriminate the complex sounds after training, particularly after progressive training, and the evoked potentials elicited by some of the sounds increased in amplitude following training. Significant amplitude changes were restricted to the P2 peak. Conclusion Our findings indicate that changes in perceptual sensitivities parallel enhanced neural processing. Significance These results are consistent with the proposal that changes in perceptual abilities arise from the brain’s capacity to adaptively modify cortical representations of sensory stimuli, and that different training regimens can lead to differences in cortical sensitivities, even after relatively short periods of training. PMID:21958655

  20. Effect of mechanical tactile noise on amplitude of visual evoked potentials: multisensory stochastic resonance.

    PubMed

    Méndez-Balbuena, Ignacio; Huidobro, Nayeli; Silva, Mayte; Flores, Amira; Trenado, Carlos; Quintanar, Luis; Arias-Carrión, Oscar; Kristeva, Rumyana; Manjarrez, Elias

    2015-10-01

    The present investigation documents the electrophysiological occurrence of multisensory stochastic resonance in the human visual pathway elicited by tactile noise. We define multisensory stochastic resonance of brain evoked potentials as the phenomenon in which an intermediate level of input noise of one sensory modality enhances the brain evoked response of another sensory modality. Here we examined this phenomenon in visual evoked potentials (VEPs) modulated by the addition of tactile noise. Specifically, we examined whether a particular level of mechanical Gaussian noise applied to the index finger can improve the amplitude of the VEP. We compared the amplitude of the positive P100 VEP component between zero noise (ZN), optimal noise (ON), and high mechanical noise (HN). The data disclosed an inverted U-like graph for all the subjects, thus demonstrating the occurrence of a multisensory stochastic resonance in the P100 VEP. Copyright © 2015 the American Physiological Society.

  1. [Prospective study with auditory evoked potentials of the brain stem in children at risk].

    PubMed

    Navarro Rivero, B; González Díaz, E; Marrero Santos, L; Martínez Toledano, I; Murillo Díaz, M J; Valiño Colás, M J

    1999-04-01

    The aim of this study was to evaluate methods of hypoacusis screening. The early detection of audition problems is vital for quick rehabilitation. For this reason, resting on the criteria of the Comisión Española para la Detección Precoz de la Hipoacusia (Spanish Commission for the Early Detection of Hypoacusis), we have carried out a prospective study, from January to May 1998, evaluating patients at risk of suffering from hypoacusis. The study included 151 patients with ages between birth and 14 years. Medical records and brainstem auditory evoked responses (BAER) were carried out. The most common reason for requesting a consultation for the 151 patients included in our study was the suspicion of hypoacusis. Seventy-one (47%) presented pathological BAER, 37 of them were bilateral. In most cases the loss of audition was of cochlear origin, with 11 patients having a serious deafness, 4 with bilateral affection (3 suspicious of hypoacusis and 1 of hyperbilirubinemia) and 7 unilateral deafness. BAER is a good screening method for children at risk. It is an innocuous, objective and specific test that does not require the patient's collaboration. The level of positives is high (47%).

  2. Use of the Stockwell Transform in the Detection of P300 Evoked Potentials with Low-Cost Brain Sensors.

    PubMed

    Pérez-Vidal, Alan F; Garcia-Beltran, Carlos D; Martínez-Sibaja, Albino; Posada-Gómez, Rubén

    2018-05-09

    The evoked potential is a neuronal activity that originates when a stimulus is presented. To achieve its detection, various techniques of brain signal processing can be used. One of the most studied evoked potentials is the P300 brain wave, which usually appears between 300 and 500 ms after the stimulus. Currently, the detection of P300 evoked potentials is of great importance due to its unique properties that allow the development of applications such as spellers, lie detectors, and diagnosis of psychiatric disorders. The present study was developed to demonstrate the usefulness of the Stockwell transform in the process of identifying P300 evoked potentials using a low-cost electroencephalography (EEG) device with only two brain sensors. The acquisition of signals was carried out using the Emotiv EPOC ® device—a wireless EEG headset. In the feature extraction, the Stockwell transform was used to obtain time-frequency information. The algorithms of linear discriminant analysis and a support vector machine were used in the classification process. The experiments were carried out with 10 participants; men with an average age of 25.3 years in good health. In general, a good performance (75⁻92%) was obtained in identifying P300 evoked potentials.

  3. Intelligence and Complexity of the Averaged Evoked Potential: An Attentional Theory.

    ERIC Educational Resources Information Center

    Bates, Tim; And Others

    1995-01-01

    A study measuring average evoked potentials in 21 college students finds that intelligence test scores correlate significantly with the difference between string length in attended and nonattended conditions, a finding that suggests that previous inconsistencies in reporting string length-intelligence correlations may have resulted from confound…

  4. The Nature and Process of Development in Averaged Visually Evoked Potentials: Discussion on Pattern Structure.

    ERIC Educational Resources Information Center

    Izawa, Shuji; Mizutani, Tohru

    This paper examines the development of visually evoked EEG patterns in retarded and normal subjects. The paper focuses on the averaged visually evoked potentials (AVEP) in the central and occipital regions of the brain in eyes closed and eyes open conditions. Wave pattern, amplitude, and latency are examined. The first section of the paper reviews…

  5. Nonlinear Processing of Auditory Brainstem Response

    DTIC Science & Technology

    2001-10-25

    Kraków, Poland Abstract: - Auditory brainstem response potentials (ABR) are signals calculated from the EEG signals registered as responses to an...acoustic activation of the auditory system. The ABR signals provide an objective, diagnostic method, widely applied in examinations of hearing organs

  6. Cortical Auditory Evoked Potentials Recorded From Nucleus Hybrid Cochlear Implant Users.

    PubMed

    Brown, Carolyn J; Jeon, Eun Kyung; Chiou, Li-Kuei; Kirby, Benjamin; Karsten, Sue A; Turner, Christopher W; Abbas, Paul J

    2015-01-01

    Nucleus Hybrid Cochlear Implant (CI) users hear low-frequency sounds via acoustic stimulation and high-frequency sounds via electrical stimulation. This within-subject study compares three different methods of coordinating programming of the acoustic and electrical components of the Hybrid device. Speech perception and cortical auditory evoked potentials (CAEP) were used to assess differences in outcome. The goals of this study were to determine whether (1) the evoked potential measures could predict which programming strategy resulted in better outcome on the speech perception task or was preferred by the listener, and (2) CAEPs could be used to predict which subjects benefitted most from having access to the electrical signal provided by the Hybrid implant. CAEPs were recorded from 10 Nucleus Hybrid CI users. Study participants were tested using three different experimental processor programs (MAPs) that differed in terms of how much overlap there was between the range of frequencies processed by the acoustic component of the Hybrid device and range of frequencies processed by the electrical component. The study design included allowing participants to acclimatize for a period of up to 4 weeks with each experimental program prior to speech perception and evoked potential testing. Performance using the experimental MAPs was assessed using both a closed-set consonant recognition task and an adaptive test that measured the signal-to-noise ratio that resulted in 50% correct identification of a set of 12 spondees presented in background noise. Long-duration, synthetic vowels were used to record both the cortical P1-N1-P2 "onset" response and the auditory "change" response (also known as the auditory change complex [ACC]). Correlations between the evoked potential measures and performance on the speech perception tasks are reported. Differences in performance using the three programming strategies were not large. Peak-to-peak amplitude of the ACC was not found to be

  7. Magnetic resonance imaging and brainstem auditory evoked responses in the diagnosis of cerebellar cortical degeneration in american staffordshire terriers.

    PubMed

    Kwiatkowska, Miłosława; Pomianowski, Andrzej; Adamiak, Zbigniew; Bocheńska, Aneta

    2013-03-01

    The aim of the study was to determine the diagnostic usefulness of magnetic resonance imaging (MRI) and brainstem auditory evoked responses (BAER) in dogs suspected of having cerebellar cortical degeneration (CCD). In the years 2009-2011, six dogs with suspected CCD were examined. Both MRI and BAER examinations revealed abnormalities in all dogs (100%). By MRI, T2-weighted midsagittal images revealed an increased amount of cerebrospinal fluid (CSF) surrounding the cerebellum within the sulci of the folia in all dogs (100%). In 4 out of the 6 dogs (66.66%), cerebellar hypoplasia was more visible in the region of the dorsal cerebellar lobules. In 5 out of the 6 dogs (83.33%), the fourth ventricle was enlarged. In our studies, the brain to cerebellum ratio evaluated on the midsagittal image was 11.93%, in comparison to 14.9% in normal dogs. By BAER examination, the amplitude of the first and second waves was diminished and III-V interlatency was prolonged in 5 out of the 6 dogs (83.33%). In one out of the 6 dogs (16.67%), only the III-V interlatency was prolonged. In one dog (16.67%), somato-nervous deafness in the left ear was detected, whereas in the right ear the III-V interlatency was prolonged. MRI of the cerebellum is a reliable method for the antemortem diagnosis of CCD in American Staffordshire terriers, as is BAER examination. BAER is an objective diagnostic tool, which - along with other diagnostic modalities - can be helpful in the assessment, management and follow-up of dogs with cerebellar abiotrophy. It proved to be useful in determining the severity of neurological lesions in comparison to MRI findings, as well as in assessing the prognosis.

  8. A Steady State Visually Evoked Potential Investigation of Memory and Ageing

    ERIC Educational Resources Information Center

    Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard

    2009-01-01

    Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and…

  9. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FAILS TO ALTER BRAINSTEM AUDITORY EVOKED RESPONSE (BAERS) IN RATS.

    EPA Science Inventory

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Cholinergic transmission is involved in auditory structures in the periphery and the brainstem and is altered following chlorpyrifos exposure. This study e...

  10. A new role for evoked potentials in MS? Repurposing evoked potentials as biomarkers for clinical trials in MS.

    PubMed

    Hardmeier, Martin; Leocani, Letizia; Fuhr, Peter

    2017-09-01

    Evoked potentials (EP) characterize signal conduction in selected tracts of the central nervous system in a quantifiable way. Since alteration of signal conduction is the main mechanism of symptoms and signs in multiple sclerosis (MS), multimodal EP may serve as a representative measure of the functional impairment in MS. Moreover, EP have been shown to be predictive for disease course, and thus might help to select patient groups at high risk of progression for clinical trials. EP can detect deterioration, as well as improvement of impulse propagation, independently from the mechanism causing the change. Therefore, they are candidates for biomarkers with application in clinical phase-II trials. Applicability of EP in multicenter trials has been limited by different standards of registration and assessment.

  11. Evoked potential correlates of figure and ground.

    PubMed

    Landis, T; Lehmann, D; Mita, T; Skrandies, W

    1984-06-01

    Brain potentials averaged during the viewing of an alternating, positive and negative "hidden man" puzzle picture were averaged from 8 subjects before and after they learned to recognize the figure. After figure recognition in comparison to before recognition, there was significantly more evoked positivity at 64/96 ms latency, and more negativity at 224/256 ms and at 352-480 ms latency over parietal areas during the viewing of the positive picture (recognizable as face) referred to the values obtained during viewing of the negative picture (not recognizable as face). It is hypothesized that separate physiological changes might reflect learned meaningfulness of the figure (which entails increased attention) and figure extraction from ground.

  12. Brain state-dependence of electrically evoked potentials monitored with head-mounted electronics.

    PubMed

    Richardson, Andrew G; Fetz, Eberhard E

    2012-11-01

    Inferring changes in brain connectivity is critical to studies of learning-related plasticity and stimulus-induced conditioning of neural circuits. In addition, monitoring spontaneous fluctuations in connectivity can provide insight into information processing during different brain states. Here, we quantified state-dependent connectivity changes throughout the 24-h sleep-wake cycle in freely behaving monkeys. A novel, head-mounted electronic device was used to electrically stimulate at one site and record evoked potentials at other sites. Electrically evoked potentials (EEPs) revealed the connectivity pattern between several cortical sites and the basal forebrain. We quantified state-dependent changes in the EEPs. Cortico-cortical EEP amplitude increased during slow-wave sleep, compared to wakefulness, while basal-cortical EEP amplitude decreased. The results demonstrate the utility of using portable electronics to document state-dependent connectivity changes in freely behaving primates.

  13. Auditory brainstem responses to broad-band chirps: amplitude growth functions in sedated and anaesthetised infants.

    PubMed

    Mühler, Roland; Rahne, Torsten; Verhey, Jesko L

    2013-01-01

    Recently an optimized broad-band chirp stimulus has been proposed for the objective estimation of hearing thresholds with auditory brainstem responses (ABRs). Several studies have demonstrated that this stimulus, compensating for the travelling wave delay of the frequency components of a click stimulus at the basilar membrane, evokes larger ABR amplitudes in adults. This study analyses the amplitude of chirp-evoked ABRs recorded in infants below 48 month of age under clinical conditions and compares these results with literature data. Chirp-evoked ABR recordings in 46 infants under chloral hydrate sedation or general anaesthesia were analysed retrospectively. The amplitude of the wave V was measured as a function of the stimulus intensity. To compare ABR amplitudes across infants with different hearing losses, the stimulus intensity was readjusted to the subjects' individual physiological threshold in dB SL (sensation level). Individual wave V amplitudes were plotted against stimulus intensity and individual amplitude growth functions were calculated. To investigate the maturation of chirp-evoked ABR, data from infants below and above 18 months of age were analysed separately. Chirp-evoked ABR amplitudes in both age groups were larger than the click-evoked ABR amplitudes in young infants from the literature. Amplitudes of chirp-evoked ABR in infants above 18 months of age were not substantially smaller than those reported for normal hearing adults. Amplitudes recorded in infants below 18 months were significantly smaller than those in infants above 18 months. A significant difference between chirp-evoked ABR amplitudes recorded in sedation or under general anaesthesia was not found. The higher amplitudes of ABR elicited by a broadband chirp stimulus allow for a reduction of the recording time in young infants. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. The Auditory Brain-Stem Response to Complex Sounds: A Potential Biomarker for Guiding Treatment of Psychosis

    PubMed Central

    Tarasenko, Melissa A.; Swerdlow, Neal R.; Makeig, Scott; Braff, David L.; Light, Gregory A.

    2014-01-01

    Cognitive deficits limit psychosocial functioning in schizophrenia. For many patients, cognitive remediation approaches have yielded encouraging results. Nevertheless, therapeutic response is variable, and outcome studies consistently identify individuals who respond minimally to these interventions. Biomarkers that can assist in identifying patients likely to benefit from particular forms of cognitive remediation are needed. Here, we describe an event-related potential (ERP) biomarker – the auditory brain-stem response (ABR) to complex sounds (cABR) – that appears to be particularly well-suited for predicting response to at least one form of cognitive remediation that targets auditory information processing. Uniquely, the cABR quantifies the fidelity of sound encoded at the level of the brainstem and midbrain. This ERP biomarker has revealed auditory processing abnormalities in various neurodevelopmental disorders, correlates with functioning across several cognitive domains, and appears to be responsive to targeted auditory training. We present preliminary cABR data from 18 schizophrenia patients and propose further investigation of this biomarker for predicting and tracking response to cognitive interventions. PMID:25352811

  15. Band limited chirp stimulation in vestibular evoked myogenic potentials.

    PubMed

    Walther, Leif Erik; Cebulla, Mario

    2016-10-01

    Air conducted vestibular evoked myogenic potentials (VEMP) can be elicited by various low frequency and intense sound stimuli, mainly clicks or short tone bursts (STB). Chirp stimuli are increasingly used in diagnostic audiological evaluations as an effective means to obtain acoustically evoked responses in narrowed or extended frequency ranges. We hypothesized in this study that band limited chirp stimulation, which covers the main sensitivity range of sound sensitive otolithic afferents (around 500 Hz), might be useful for application in cervical and ocular VEMP to air conduction. For this purpose we designed a chirp stimulus ranging 250-1000 Hz (up chirp). The chirp stimulus was delivered with a stimulus intensity of 100 dB nHL in normal subjects (n = 10) and patients with otolith involvement (vestibular neuritis) (n = 6). Amplitudes of the designed chirp ("CW-VEMP-chirp, 250-1000 Hz") were compared with amplitudes of VEMPs evoked by click stimuli (0.1 ms) and a short tone burst (STB, 1-2-1, 8 ms, 500 Hz). CVEMPs and oVEMPs were detectable in 9 of 10 normal individuals. Statistical evaluation in healthy patients revealed significantly larger cVEMP and oVEMP amplitudes for CW-VEMP-chirp (250-1000 Hz) stimuli. CVEMP amplitudes evoked by CW-VEMP-chirp (250-1000 Hz) showed a high stability in comparison with click and STB stimulation. CW-VEMP-chirp (250-1000 Hz) showed abnormal cVEMP and oVEMP amplitudes in patients with vestibular neuritis, with the same properties as click and STB stimulated VEMPs. We conclude that the designed CW-VEMP-chirp (250-1000 Hz) is an effective stimulus which can be further used in VEMP diagnostic. Since a chirp stimulus can be easily varied in its properties, in particular with regard to frequency, this might be a promising tool for further investigations.

  16. Intraoperative Monitoring: Recent Advances in Motor Evoked Potentials.

    PubMed

    Koht, Antoun; Sloan, Tod B

    2016-09-01

    Advances in electrophysiological monitoring have improved the ability of surgeons to make decisions and minimize the risks of complications during surgery and interventional procedures when the central nervous system (CNS) is at risk. Individual techniques have become important for identifying or mapping the location and pathway of critical neural structures. These techniques are also used to monitor the progress of procedures to augment surgical and physiologic management so as to reduce the risk of CNS injury. Advances in motor evoked potentials have facilitated mapping and monitoring of the motor tracts in newer, more complex procedures. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Steady-state pattern electroretinogram and short-duration transient visual evoked potentials in glaucomatous and healthy eyes.

    PubMed

    Amarasekera, Dilru C; Resende, Arthur F; Waisbourd, Michael; Puri, Sanjeev; Moster, Marlene R; Hark, Lisa A; Katz, L Jay; Fudemberg, Scott J; Mantravadi, Anand V

    2018-01-01

    This study evaluates two rapid electrophysiological glaucoma diagnostic tests that may add a functional perspective to glaucoma diagnosis. This study aimed to determine the ability of two office-based electrophysiological diagnostic tests, steady-state pattern electroretinogram and short-duration transient visual evoked potentials, to discern between glaucomatous and healthy eyes. This is a cross-sectional study in a hospital setting. Forty-one patients with glaucoma and 41 healthy volunteers participated in the study. Steady-state pattern electroretinogram and short-duration transient visual evoked potential testing was conducted in glaucomatous and healthy eyes. A 64-bar-size stimulus with both a low-contrast and high-contrast setting was used to compare steady-state pattern electroretinogram parameters in both groups. A low-contrast and high-contrast checkerboard stimulus was used to measure short-duration transient visual evoked potential parameters in both groups. Steady-state pattern electroretinogram parameters compared were MagnitudeD, MagnitudeD/Magnitude ratio, and the signal-to-noise ratio. Short-duration transient visual evoked potential parameters compared were amplitude and latency. MagnitudeD was significantly lower in glaucoma patients when using a low-contrast (P = 0.001) and high-contrast (P < 0.001) 64-bar-size steady-state pattern electroretinogram stimulus. MagnitudeD/Magnitude ratio and SNR were significantly lower in the glaucoma group when using a high-contrast 64-bar-size stimulus (P < 0.001 and P = 0.010, respectively). Short-duration transient visual evoked potential amplitude and latency were not significantly different between the two groups. Steady-state pattern electroretinogram was effectively able to discern between glaucomatous and healthy eyes. Steady-state pattern electroretinogram may thus have a role as a clinically useful electrophysiological diagnostic tool. © 2017 Royal Australian and New Zealand College of

  18. Use of auditory evoked potentials for intra-operative awareness in anesthesia: a consciousness-based conceptual model.

    PubMed

    Dong, Xuebao; Suo, Puxia; Yuan, Xin; Yao, Xuefeng

    2015-01-01

    Auditory evoked potentials (AEPs) have been used as a measure of the depth of anesthesia during the intra-operative process. AEPs are classically divided, on the basis of their latency, into first, fast, middle, slow, and late components. The use of auditory evoked potential has been advocated for the assessment of Intra-operative awareness (IOA), but has not been considered seriously enough to universalize it. It is because we have not explored enough the impact of auditory perception and auditory processing on the IOA phenomena as well as on the subsequent psychological impact of IOA on the patient. More importantly, we have seldom tried to look at the phenomena of IOP from the perspective of consciousness itself. This perspective is especially important because many of IOA phenomena exist in the subconscious domain than they do in the conscious domain of explicit recall. Two important forms of these subconscious manifestations of IOA are the implicit recall phenomena and post-operative dreams related to the operation. Here, we present an integrated auditory consciousness-based model of IOA. We start with a brief description of auditory awareness and the factors affecting it. Further, we proceed to the evaluation of conscious and subconscious information processing by auditory modality and how they interact during and after intra-operative period. Further, we show that both conscious and subconscious auditory processing affect the IOA experience and both have serious psychological implications on the patient subsequently. These effects could be prevented by using auditory evoked potential during monitoring of anesthesia, especially the mid-latency auditory evoked potentials (MLAERs). To conclude our model with present hypothesis, we propose that the use of auditory evoked potential should be universal with general anesthesia use in order to prevent the occurrences of distressing outcomes resulting from both conscious and subconscious auditory processing during

  19. Low-frequency rTMS inhibitory effects in the primary motor cortex: Insights from TMS-evoked potentials.

    PubMed

    Casula, Elias P; Tarantino, Vincenza; Basso, Demis; Arcara, Giorgio; Marino, Giuliana; Toffolo, Gianna Maria; Rothwell, John C; Bisiacchi, Patrizia S

    2014-09-01

    The neuromodulatory effects of repetitive transcranial magnetic stimulation (rTMS) have been mostly investigated by peripheral motor-evoked potentials (MEPs). New TMS-compatible EEG systems allow a direct investigation of the stimulation effects through the analysis of TMS-evoked potentials (TEPs). We investigated the effects of 1-Hz rTMS over the primary motor cortex (M1) of 15 healthy volunteers on TEP evoked by single pulse TMS over the same area. A second experiment in which rTMS was delivered over the primary visual cortex (V1) of 15 healthy volunteers was conducted to examine the spatial specificity of the effects. Single-pulse TMS evoked four main components: P30, N45, P60 and N100. M1-rTMS resulted in a significant decrease of MEP amplitude and in a significant increase of P60 and N100 amplitude. There was no effect after V1-rTMS. 1-Hz rTMS appears to increase the amount of inhibition following a TMS pulse, as demonstrated by the higher N100 and P60, which are thought to originate from GABAb-mediated inhibitory post-synaptic potentials. Our results confirm the reliability of the TMS-evoked N100 as a marker of cortical inhibition and provide insight into the neuromodulatory effects of 1-Hz rTMS. The present finding could be of relevance for therapeutic and diagnostic purposes. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. The ventricular intracardiac unipolar paced-evoked potential in an isolated animal heart.

    PubMed

    Economides, A P; Walton, C; Gergely, S

    1988-02-01

    The endocardial unipolar paced evoked response has excited a great deal of interest due to its possible use in the measurement of the metabolic state of the body and other pacer-related areas. Although rate-responsive pacing utilizing this signal has been clinically evaluated, little is known regarding the behavior of the components of this waveform under normal physiological conditions. We have developed an electronic circuit which allows the recording of the evoked response within a few milliseconds of a pacing stimulus of 5 V and 0.5 ms duration being applied using a single unipolar, smooth platinum electrode of 14 mm2 surface area. The paced evoked response was measured using a total of 20 isolated rabbit heart preparations. Five were run for 8 hours and the remaining fifteen were run for 5 hours. Our results indicate that the waveform components of the evoked response remain stable while the preparation is viable, but that two of the time-related measurements change with loss of viability. A significant lengthening of the stimulus-R interval was seen together with a dramatic shortening of the R-T period. The net result of these changes was an overall reduction of 17% in the complex duration. In addition, we found the R-T shortening to be a sensitive measure of myocardial integrity. We conclude that the combination of our interface charge elimination circuit and the isolated heart preparation has proved a useful system for the investigation of the paced evoked potential. Furthermore, the loss of myocardial viability has a complex action on this response.

  1. Oesophageal sensation assessed by electrical stimuli and brain evoked potentials--a new model for visceral nociception.

    PubMed Central

    Frøbert, O; Arendt-Nielsen, L; Bak, P; Funch-Jensen, P; Bagger, J P

    1995-01-01

    Sensory thresholds and brain evoked potentials were determined in 12 healthy volunteers using electrical stimulation of the oesophagus 28 and 38 cm from the nares. The peaks of the evoked potentials were designated N for negative deflections and P for positive. Continuous electrical stimulation (40 Hz) at the 38 cm position resembled heartburn (five of 12 subjects) while non-specific ('electrical') sensations were provoked at 28 cm (10 of 12). Thresholds of sensation and of pain were lower at the initial than the second determination, but did not differ with respect to stimulation site. The pain summation threshold to repeated stimuli (2 Hz, 5 stimuli) was determined for the first time in a viscus. This threshold was lower than the pain threshold to single stimuli at 38 cm (p < 0.02). Evoked potential latencies did not change significantly over a six month period while the N1/P2 amplitude was higher at the first measurement (p < 0.05). P1 and N1 latencies were significantly shorter 38 cm (medians 100 and 141 ms) than 28 cm from the nares (102 and 148 ms) (p = 0.04 and p = 0.008). Electrical stimulation of the oesophagus may serve as a human experimental model for visceral pain. Longer evoked potential latencies from the proximal compared with distal stimulations provide new information about the sensory pathways of the oesophagus. PMID:8549932

  2. Neurophysiological Changes Measured Using Somatosensory Evoked Potentials.

    PubMed

    Macerollo, Antonella; Brown, Matt J N; Kilner, James M; Chen, Robert

    2018-05-01

    Measurements of somatosensory evoked potentials (SEPs), recorded using electroencephalography during different phases of movement, have been fundamental in understanding the neurophysiological changes related to motor control. SEP recordings have also been used to investigate adaptive plasticity changes in somatosensory processing related to active and observational motor learning tasks. Combining noninvasive brain stimulation with SEP recordings and intracranial SEP depth recordings, including recordings from deep brain stimulation electrodes, has been critical in identifying neural areas involved in specific temporal stages of somatosensory processing. Consequently, this fundamental information has furthered our understanding of the maladaptive plasticity changes related to pathophysiology of diseases characterized by abnormal movements, such as Parkinson's disease, dystonia, and functional movement disorders. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  3. Serial auditory-evoked potentials in the diagnosis and monitoring of a child with Landau-Kleffner syndrome.

    PubMed

    Plyler, Erin; Harkrider, Ashley W

    2013-01-01

    A boy, aged 2 1/2 yr, experienced sudden deterioration of speech and language abilities. He saw multiple medical professionals across 2 yr. By almost 5 yr, his vocabulary diminished from 50 words to 4, and he was referred to our speech and hearing center. The purpose of this study was to heighten awareness of Landau-Kleffner syndrome (LKS) and emphasize the importance of an objective test battery that includes serial auditory-evoked potentials (AEPs) to audiologists who often are on the front lines of diagnosis and treatment delivery when faced with a child experiencing unexplained loss of the use of speech and language. Clinical report. Interview revealed a family history of seizure disorder. Normal social behaviors were observed. Acoustic reflexes and otoacoustic emissions were consistent with normal peripheral auditory function. The child could not complete behavioral audiometric testing or auditory processing tests, so serial AEPs were used to examine central nervous system function. Normal auditory brainstem responses, a replicable Na and absent Pa of the middle latency responses, and abnormal slow cortical potentials suggested dysfunction of auditory processing at the cortical level. The child was referred to a neurologist, who confirmed LKS. At age 7 1/2 yr, after 2 1/2 yr of antiepileptic medications, electroencephalographic (EEG) and audiometric measures normalized. Presently, the child communicates manually with limited use of oral information. Audiologists often are one of the first professionals to assess children with loss of speech and language of unknown origin. Objective, noninvasive, serial AEPs are a simple and valuable addition to the central audiometric test battery when evaluating a child with speech and language regression. The inclusion of these tests will markedly increase the chance for early and accurate referral, diagnosis, and monitoring of a child with LKS which is imperative for a positive prognosis. American Academy of Audiology.

  4. Micro-field evoked potentials recorded from the porcine sub-dural cortical surface utilizing a microelectrode array.

    PubMed

    Kitzmiller, Joseph P; Hansford, Derek J; Fortin, Linda D; Obrietan, Karl H; Bergdall, Valerie K; Beversdorf, David Q

    2007-05-15

    A sub-dural surface microelectrode array designed to detect micro-field evoked potentials has been developed. The device is comprised of an array of 350-microm square gold contacts, with bidirectional spacing of 150 microm, contained within a polyimide Kapton material. Cytotoxicity testing suggests that the device is suitable for use with animal and human patients. Implementation of the device in animal studies revealed that reliable evoked potentials could be acquired. Further work will be needed to determine how these micro-field potentials, which demonstrate selectivity for one eye, relate to the distribution of the ocular dominance columns of the occipital cortex.

  5. Micro-Field Evoked Potentials Recorded from the Porcine Sub-Dural Cortical Surface Utilizing a Microelectrode Array

    PubMed Central

    Kitzmiller, Joseph P.; Hansford, Derek J.; Fortin, Linda D.; Obrietan, Karl H.; Bergdall, Valerie K.

    2007-01-01

    A sub-dural surface microelectrode array designed to detect microfield evoked potentials has been developed. The device is comprised of an array of 350-micron square gold contacts, with bi-directional spacing of 150 microns, contained within a polyimide Kapton material. Cytotoxicity testing suggests that the device is suitable for use with animal and human patients. Implementation of the device in animal studies revealed that reliable evoked potentials could be acquired. Further work will be needed to determine how these microfield potentials, which demonstrate selectivity for one eye, relate to the distribution of the ocular dominance columns of the occipital cortex. PMID:17298849

  6. Detection Rates of Cortical Auditory Evoked Potentials at Different Sensation Levels in Infants with Sensory/Neural Hearing Loss and Auditory Neuropathy Spectrum Disorder

    PubMed Central

    Gardner-Berry, Kirsty; Chang, Hsiuwen; Ching, Teresa Y. C.; Hou, Sanna

    2016-01-01

    With the introduction of newborn hearing screening, infants are being diagnosed with hearing loss during the first few months of life. For infants with a sensory/neural hearing loss (SNHL), the audiogram can be estimated objectively using auditory brainstem response (ABR) testing and hearing aids prescribed accordingly. However, for infants with auditory neuropathy spectrum disorder (ANSD) due to the abnormal/absent ABR waveforms, alternative measures of auditory function are needed to assess the need for amplification and evaluate whether aided benefit has been achieved. Cortical auditory evoked potentials (CAEPs) are used to assess aided benefit in infants with hearing loss; however, there is insufficient information regarding the relationship between stimulus audibility and CAEP detection rates. It is also not clear whether CAEP detection rates differ between infants with SNHL and infants with ANSD. This study involved retrospective collection of CAEP, hearing threshold, and hearing aid gain data to investigate the relationship between stimulus audibility and CAEP detection rates. The results demonstrate that increases in stimulus audibility result in an increase in detection rate. For the same range of sensation levels, there was no difference in the detection rates between infants with SNHL and ANSD. PMID:27587922

  7. Anxiety affects the amplitudes of red and green color-elicited flash visual evoked potentials in humans.

    PubMed

    Hosono, Yuki; Kitaoka, Kazuyoshi; Urushihara, Ryo; Séi, Hiroyoshi; Kinouchi, Yohsuke

    2014-01-01

    It has been reported that negative emotional changes and conditions affect the visual faculties of humans at the neural level. On the other hand, the effects of emotion on color perception in particular, which are based on evoked potentials, are unknown. In the present study, we investigated whether different anxiety levels affect the color information processing for each of 3 wavelengths by using flash visual evoked potentials (FVEPs) and State-Trait Anxiety Inventory. In results, significant positive correlations were observed between FVEP amplitudes and state or trait anxiety scores in the long (sensed as red) and middle (sensed as green) wavelengths. On the other hand, short-wavelength-evoked FVEPs were not correlated with anxiety level. Our results suggest that negative emotional conditions may affect color sense processing in humans.

  8. [Executive functioning and evoked potentials P300 pre- and post- treatment in attention deficit hyperactivity disorder].

    PubMed

    Roca, Patricia; Mulas, Fernando; Gandia, Rubén; Ortiz-Sánchez, Pedro; Abad, Luis

    2013-02-22

    Evoked potentials P300 and the analysis of executive functions have shown their utility in the monitoring of patients with symptoms of attention deficit hyperactivity disorder (ADHD). Neuropsychological profiles and evoked potentials P300 have been analysed for two groups of children with an ADHD treatment with atomoxetine and methylphenidate respectively. Correlations between P300 and the selected neuropsychological parameters are studied, and the differences between basal values and 1 year follow-up are analysed. Two groups were performed: a group of 22 children ADHD in the atomoxetine condition, and a group of 24 children ADHD in the methylphenidate condition. The results show a global improvement of all the parameters, in terms of executive function and P300 values in both, the atomoxetine and the methylphenidate group. Executive functions and evoked potentials P300 reflect an underlying processing and they are very useful in the clinical practice. This exploratory study shows the importance of designing personalized objective variables-based treatments.

  9. Lack of habituation of evoked visual potentials in analytic information processing style: evidence in healthy subjects.

    PubMed

    Buonfiglio, Marzia; Toscano, M; Puledda, F; Avanzini, G; Di Clemente, L; Di Sabato, F; Di Piero, V

    2015-03-01

    Habituation is considered one of the most basic mechanisms of learning. Habituation deficit to several sensory stimulations has been defined as a trait of migraine brain and also observed in other disorders. On the other hand, analytic information processing style is characterized by the habit of continually evaluating stimuli and it has been associated with migraine. We investigated a possible correlation between lack of habituation of evoked visual potentials and analytic cognitive style in healthy subjects. According to Sternberg-Wagner self-assessment inventory, 15 healthy volunteers (HV) with high analytic score and 15 HV with high global score were recruited. Both groups underwent visual evoked potentials recordings after psychological evaluation. We observed significant lack of habituation in analytical individuals compared to global group. In conclusion, a reduced habituation of visual evoked potentials has been observed in analytic subjects. Our results suggest that further research should be undertaken regarding the relationship between analytic cognitive style and lack of habituation in both physiological and pathophysiological conditions.

  10. Cerebellar and Brainstem Malformations.

    PubMed

    Poretti, Andrea; Boltshauser, Eugen; Huisman, Thierry A G M

    2016-08-01

    The frequency and importance of the evaluation of the posterior fossa have increased significantly over the past 20 years owing to advances in neuroimaging. Conventional and advanced neuroimaging techniques allow detailed evaluation of the complex anatomic structures within the posterior fossa. A wide spectrum of cerebellar and brainstem malformations has been shown. Familiarity with the spectrum of cerebellar and brainstem malformations and their well-defined diagnostic criteria is crucial for optimal therapy, an accurate prognosis, and correct genetic counseling. This article discusses cerebellar and brainstem malformations, with emphasis on neuroimaging findings (including diagnostic criteria), neurologic presentation, systemic involvement, prognosis, and recurrence. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Analysis of electrically evoked compound action potential of the auditory nerve in children with bilateral cochlear implants.

    PubMed

    Caldas, Fernanda Ferreira; Cardoso, Carolina Costa; Barreto, Monique Antunes de Souza Chelminski; Teixeira, Marina Santos; Hilgenberg, Anacléia Melo da Silva; Serra, Lucieny Silva Martins; Bahmad Junior, Fayez

    2016-01-01

    The cochlear implant device has the capacity to measure the electrically evoked compound action potential of the auditory nerve. The neural response telemetry is used in order to measure the electrically evoked compound action potential of the auditory nerve. To analyze the electrically evoked compound action potential, through the neural response telemetry, in children with bilateral cochlear implants. This is an analytical, prospective, longitudinal, historical cohort study. Six children, aged 1-4 years, with bilateral cochlear implant were assessed at five different intervals during their first year of cochlear implant use. There were significant differences in follow-up time (p=0.0082) and electrode position (p=0.0019) in the T-NRT measure. There was a significant difference in the interaction between time of follow-up and electrode position (p=0.0143) when measuring the N1-P1 wave amplitude between the three electrodes at each time of follow-up. The electrically evoked compound action potential measurement using neural response telemetry in children with bilateral cochlear implants during the first year of follow-up was effective in demonstrating the synchronized bilateral development of the peripheral auditory pathways in the studied population. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  12. Segmental somatosensory-evoked potentials as a diagnostic tool in chronic inflammatory demyelinating polyneuropathies, and other sensory neuropathies.

    PubMed

    Koutlidis, R M; Ayrignac, X; Pradat, P-F; Le Forestier, N; Léger, J-M; Salachas, F; Maisonobe, T; Fournier, E; Viala, K

    2014-09-01

    Somatosensory-evoked potentials with segmental recordings were performed with the aim of distinguishing chronic inflammatory demyelinating polyneuropathy from other sensory neuropathies. Four groups of 20 subjects each corresponded to patients with (1) possible sensory chronic inflammatory demyelinating polyneuropathy, (2) patients with sensory polyneuropathy of unknown origin, (3) patients with amyotrophic lateral sclerosis and (4) normal subjects. The patients selected for this study had preserved sensory potentials on electroneuromyogram and all waves were recordable in evoked potentials. Somatosensory-evoked potentials evaluations were carried out by stimulation of the posterior tibial nerve at the ankle, recording peripheral nerve potential in the popliteal fossa, radicular potential and spinal potential at the L4-L5 and T12 levels, and cortical at C'z, with determination of distal conduction time, proximal and radicular conduction time and central conduction time. In the group of chronic inflammatory demyelinating polyneuropathy, 80% of patients had abnormal conduction in the N8-N22 segment and 95% had abnormal N18-N22 conduction time. In the group of neuropathies, distal conduction was abnormal in most cases, whereas 60% of patients had no proximal abnormality. None of the patients in the group of amyotrophic lateral sclerosis had an abnormal N18-N22 conduction time. Somatosensory-evoked potentials with segmental recording can be used to distinguish between atypical sensory chronic inflammatory demyelinating polyneuropathy and other sensory neuropathies, at the early stage of the disease. Graphical representation of segmental conduction times provides a rapid and accurate visualization of the profile of each patient. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components

    NASA Astrophysics Data System (ADS)

    Müller-Putz, Gernot R.; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert

    2005-12-01

    Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.

  14. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components.

    PubMed

    Müller-Putz, Gernot R; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert

    2005-12-01

    Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.

  15. Unknown Pseudocholinesterase Deficiency in a Patient Undergoing TIVA with Planned Motor Evoked Potential Monitoring: A Case Report.

    PubMed

    Binkley, Candace

    2016-06-01

    Pseudocholinesterase abnormalities are a genetic cause of aberrant metabolism of the depolarizing muscle relaxant succinylcholine. This article examines a case where succinylcholine was chosen to facilitate intubation due to its ultra short duration and the request of the surgeon to monitor motor evoked potentials. Following succinylcholine administration the neurophysiologist was unable to obtain motor evoked potentials. This case study highlights the intraoperative and postoperative management of an elderly patient with an unknown pseudocholinesterase deficiency.

  16. Long latency auditory evoked potentials in children with cochlear implants: systematic review.

    PubMed

    Silva, Liliane Aparecida Fagundes; Couto, Maria Inês Vieira; Matas, Carla Gentile; Carvalho, Ana Claudia Martinho de

    2013-11-25

    The aim of this study was to analyze the findings on Cortical Auditory Evoked Potentials in children with cochlear implant through a systematic literature review. After formulation of research question and search of studies in four data bases with the following descriptors: electrophysiology (eletrofisiologia), cochlear implantation (implante coclear), child (criança), neuronal plasticity (plasticidade neuronal) and audiology (audiologia), were selected articles (original and complete) published between 2002 and 2013 in Brazilian Portuguese or English. A total of 208 studies were found; however, only 13 contemplated the established criteria and were further analyzed; was made data extraction for analysis of methodology and content of the studies. The results described suggest rapid changes in P1 component of Cortical Auditory Evoked Potentials in children with cochlear implants. Although there are few studies on the theme, cochlear implant has been shown to produce effective changes in central auditory path ways especially in children implanted before 3 years and 6 months of age.

  17. Continuous time wavelet entropy of auditory evoked potentials.

    PubMed

    Cek, M Emre; Ozgoren, Murat; Savaci, F Acar

    2010-01-01

    In this paper, the continuous time wavelet entropy (CTWE) of auditory evoked potentials (AEP) has been characterized by evaluating the relative wavelet energies (RWE) in specified EEG frequency bands. Thus, the rapid variations of CTWE due to the auditory stimulation could be detected in post-stimulus time interval. This approach removes the probability of missing the information hidden in short time intervals. The discrete time and continuous time wavelet based wavelet entropy variations were compared on non-target and target AEP data. It was observed that CTWE can also be an alternative method to analyze entropy as a function of time. 2009 Elsevier Ltd. All rights reserved.

  18. Clinical application of vestibular evoked myogenic potential (VEMP).

    PubMed

    Murofushi, Toshihisa

    2016-08-01

    The author reviewed clinical aspects of vestibular evoked myogenic potentials (VEMPs). Now two types of VEMPs are available. The first one is cervical VEMP, which is recorded in the sternocleidomastoid muscle and predominantly reflects sacculo-collic reflex. The other is ocular VEMP, which is usually recorded below the lower eye lid and predominantly reflects utriculo-ocular reflex. VEMPs play important roles not only for assessment of common vestibular diseases but also for establishment of new clinical entities. Clinical application in Meniere's disease, vestibular neuritis, benign paroxysmal positional vertigo, vestibular migraine, idiopathic otolithic vertigo, and central vertigo/dizziness was reviewed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. The semantic component of the evoked potential of differentiation.

    PubMed

    Izmailov, Chingis A; Korshunova, Svetlana G; Sokolov, Yevgeniy N

    2008-05-01

    This work analyzes data from recordings of (occipital and temporal) cortical evoked potentials (called evoked potentials of differentiation (EPD) occurring in humans in response to an abrupt substitution of stimuli. As stimuli we used three groups of words: the names of the ten basic colors taken from Newton's color circle; the names of seven basic emotions forming Shlossberg's circle of emotions; and seven nonsense words comprised of random combinations of letters. Within each group of word stimuli we constructed a matrix of the differences between the amplitudes of mid-latency components of EPD for each pair of words. This matrix was analyzed using the method of multidimensional scaling. As a result of this analysis we were able to distinguish the semantic and configurational components of EPD amplitude. The semantic component of EPD amplitude was evaluated by comparing structure of the data obtained to the circular structures of emotion and color names. The configurational component was evaluated on the basis of the attribute of word length (number of letters). It was demonstrated that the semantic component of the EPD can only be detected in the left occipital lead at an interpeak amplitude of P120-N180. The configurational component is reflected in the occipital and temporal leads to an identical extent, but only in the amplitude of a later (N180-P230) component of the EPD. The results obtained are discussed in terms of the coding of categorized, configurational, and semantic attributes of a visual stimulus.

  20. A two-year longitudinal pilot MRI study of the brainstem in autism.

    PubMed

    Jou, Roger J; Frazier, Thomas W; Keshavan, Matcheri S; Minshew, Nancy J; Hardan, Antonio Y

    2013-08-15

    Research has demonstrated the potential role of the brainstem in the pathobiology of autism. Previous studies have suggested reductions in brainstem volume and a relationship between this structure and sensory abnormalities. However, little is known regarding the developmental aspects of the brainstem across childhood and adolescence. The goal of this pilot study was to examine brainstem development via MRI volumetry using a longitudinal research design. Participants included 23 boys with autism and 23 matched controls (age range=8-17 years), all without intellectual disability. Participants underwent structural MRI scans once at baseline and again at two-year follow-up. Brainstem volumetric measurements were performed using the BRAINS2 software package. There were no significant group differences in age, gender, handedness, and total brain volume; however, full-scale IQ was higher in controls. Autism and control groups showed different patterns of growth in brainstem volume. While whole brainstem volume remained stable in controls over the two-year period, the autism group showed increases with age reaching volumes comparable to controls by age 15 years. This increase of whole brainstem volume was primarily driven by bilateral increases in gray matter volume. Findings from this preliminary study are suggestive of developmental brainstem abnormalities in autism primarily involving gray matter structures. These findings are consistent with autism being conceptualized as a neurodevelopmental disorder with alterations in brain-growth trajectories. More longitudinal MRI studies are needed integrating longitudinal cognitive/behavioral data to confirm and elucidate the clinical significance of these atypical growth patterns. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. The auditory cross-section (AXS) test battery: A new way to study afferent/efferent relations linking body periphery (ear, voice, heart) with brainstem and cortex

    NASA Astrophysics Data System (ADS)

    Lauter, Judith

    2002-05-01

    Several noninvasive methods are available for studying the neural bases of human sensory-motor function, but their cost is prohibitive for many researchers and clinicians. The auditory cross section (AXS) test battery utilizes relatively inexpensive methods, yet yields data that are at least equivalent, if not superior in some applications, to those generated by more expensive technologies. The acronym emphasizes access to axes-the battery makes it possible to assess dynamic physiological relations along all three body-brain axes: rostro-caudal (afferent/efferent), dorso-ventral, and right-left, on an individually-specific basis, extending from cortex to the periphery. For auditory studies, a three-level physiological ear-to-cortex profile is generated, utilizing (1) quantitative electroencephalography (qEEG); (2) the repeated evoked potentials version of the auditory brainstem response (REPs/ABR); and (3) otoacoustic emissions (OAEs). Battery procedures will be explained, and sample data presented illustrating correlated multilevel changes in ear, voice, heart, brainstem, and cortex in response to circadian rhythms, and challenges with substances such as antihistamines and Ritalin. Potential applications for the battery include studies of central auditory processing, reading problems, hyperactivity, neural bases of voice and speech motor control, neurocardiology, individually-specific responses to medications, and the physiological bases of tinnitus, hyperacusis, and related treatments.

  2. [Effect of acoustic stimulus intensity on air-conducted sound elicited ocular vestibular-evoked myogenic potential and cervical vestibular-evoked myogenic potential].

    PubMed

    Zhang, Rui; Xu, Min; Zhang, Qing; Yang, Yin-Tong; Chen, Yanfei

    2014-06-01

    To observe the effect of acoustic stimulus intensity on air-conducted sound elicited ocular vestibular- evoked myogenic potential (oVEMP) and cervical vestibular-evoked myogenic potential (cVEMP) in normal young Chinese subjects. Thirty-five normal subjects aged 4-40 years (20.80∓8.89 years), including 16 males and 19 females, were recruited for conventional oVEMP and cVEMP examinations. The responses obtained from each side using 500 Hz tone bursts were divided into 6 groups according to different sound intensities (100, 95, 90, 85, 80 and 75dB nHL). The response rate and normal parameters of each stimulus intensity group were calculated. As the acoustic stimulus intensity decreased, the oVEMP response rate decreased from 100% in both 100 dB nHL and 95dB nHL groups to 97.14% (90 dB nHL), 54.29% (85 dB nHL), 14.29% (80 dB nHL), and 2.86% (75 dB nHL), and the response rate of cVEMP, 100% in both 100 dB nHL and 95dB nHL groups, was lowered to 97.14% (90 dB nHL), 84.29% (85 dB nHL), 38.57% (80 dB nHL) and 8.57% (75 dB nHL). The response rate and the parameters were comparable between 100 and 95 dB nHL groups. As the acoustic stimulus intensity decreases, both oVEMP and cVEMP show decreased response rate and amplitude. For Chinese subjects under 40 years of age, we recommend 95dB nHL as the maximum initial stimulus intensity in VEMPs test.

  3. Applications of pain-related evoked potentials and short-latency somatosensory evoked potentials in acupuncture research: a narrative review.

    PubMed

    Lin, Chi; Ma, Liangxiao; Zhu, Shipeng; Hu, Nijuan; Wang, Pei; Zhang, Peng; Qi, Dandan; Hao, Jie; Li, Jing; Xin, Siyuan; Zhu, Jiang

    2015-10-01

    To review and discuss the Chinese and English literature on the use of pain-related evoked potentials (PREP) and short-latency somatosensory EP (SLSEP) in acupuncture research. China National Knowledge Infrastructure Database and MEDLINE were searched for the following key words: acupuncture and PREP or SLSEP. Thirty-seven articles were included in the review. Researchers usually use PREPs to study the analgesic effect of acupuncture, observe influential factors, or for mechanistic exploration. In the SLSEP studies, researchers focused on response characteristics of acupuncture, acupoint specificity, and influential factors of the treatment. There were some problems with the study design and conclusions. Researchers could use PREP and SLSEP to objectively validate the effects of acupuncture and explore its mechanisms using nerve electrophysiology. Further studies can benefit from observing more acupoints' effects using PREPs or SLSEPs and investigating the placebo effect of acupuncture.

  4. Somatosensory evoked potentials in patients with hypocalcaemia after parathyroidectomy.

    PubMed

    Kanda, F; Jinnai, J; Fujita, T

    1988-01-01

    The effects of hypocalcaemia on somatosensory evoked potentials (SEPs) were studied in five patients after parathyroidectomy. Despite normal latencies the mean value of amplitudes of the SEPs in hypocalcaemic patients was greater than that in normocalcaemic subjects. Recovery functions of the SEPs showed a significant decrease in hypocalcaemic patients at interstimulus intervals of about 10 ms compared with those in normocalcaemic patients and in normal volunteers. Recovery functions appear to be a valid indicator of synaptic efficacy, especially for evaluation of the reduction in conduction efficacy of the central nervous system in hypocalcaemia.

  5. Diagnostic value of conventional visual evoked potentials applied to patients with multiple sclerosis.

    PubMed

    Balnytė, Renata; Ulozienė, Ingrida; Rastenytė, Daiva; Vaitkus, Antanas; Malcienė, Lina; Laučkaitė, Kristina

    2011-01-01

    The aim of this study was to determine the sensitivity and specificity of this classical technique employed at the Hospital of Lithuanian University of Health Sciences for the patients with multiple sclerosis and to assess its possible correlations with affected neurological systems. Pattern shift visual evoked potentials were recorded in 63 patients with multiple sclerosis, 17 (27%) of whom had a history of optic neuritis, and in 63 control patients with other neurological diseases. The latencies and amplitudes of P100 were measured. In total, 126 patients were referred to the inpatient department of neurology for differential diagnosis of demyelinating disorders between January and December of 2007. Abnormalities of visual evoked potentials were observed by 73% more frequently in patients with multiple sclerosis than in control patients (α=0.05, β<0.01). The combined monocular/interocular test showed a specificity of 90.5% and a sensitivity of 82.5%. The probability of an affection of the pyramidal system was 5 times greater (95% CI, 2.2-11.0; P<0.01) and the probability of the optic pathways involvement was 4.8 times greater (95% CI, 1.9-11.9; P<0.01) in patients with multiple sclerosis than in controls. Conventional visual evoked potentials must be reappraised in light of their diagnostic value in multiple sclerosis given their high diagnostic efficiency, relatively easy, short, and cheap implementation, and easy availability in everyday clinical practice.

  6. Chromatic spatial contrast sensitivity estimated by visual evoked cortical potential and psychophysics

    PubMed Central

    Barboni, M.T.S.; Gomes, B.D.; Souza, G.S.; Rodrigues, A.R.; Ventura, D.F.; Silveira, L.C.L.

    2013-01-01

    The purpose of the present study was to measure contrast sensitivity to equiluminant gratings using steady-state visual evoked cortical potential (ssVECP) and psychophysics. Six healthy volunteers were evaluated with ssVECPs and psychophysics. The visual stimuli were red-green or blue-yellow horizontal sinusoidal gratings, 5° × 5°, 34.3 cd/m2 mean luminance, presented at 6 Hz. Eight spatial frequencies from 0.2 to 8 cpd were used, each presented at 8 contrast levels. Contrast threshold was obtained by extrapolating second harmonic amplitude values to zero. Psychophysical contrast thresholds were measured using stimuli at 6 Hz and static presentation. Contrast sensitivity was calculated as the inverse function of the pooled cone contrast threshold. ssVECP and both psychophysical contrast sensitivity functions (CSFs) were low-pass functions for red-green gratings. For electrophysiology, the highest contrast sensitivity values were found at 0.4 cpd (1.95 ± 0.15). ssVECP CSF was similar to dynamic psychophysical CSF, while static CSF had higher values ranging from 0.4 to 6 cpd (P < 0.05, ANOVA). Blue-yellow chromatic functions showed no specific tuning shape; however, at high spatial frequencies the evoked potentials showed higher contrast sensitivity than the psychophysical methods (P < 0.05, ANOVA). Evoked potentials can be used reliably to evaluate chromatic red-green CSFs in agreement with psychophysical thresholds, mainly if the same temporal properties are applied to the stimulus. For blue-yellow CSF, correlation between electrophysiology and psychophysics was poor at high spatial frequency, possibly due to a greater effect of chromatic aberration on this kind of stimulus. PMID:23369980

  7. Brain stem evoked response audiometry of former drug users.

    PubMed

    Weich, Tainara Milbradt; Tochetto, Tania Maria; Seligman, Lilian

    2012-10-01

    Illicit drugs are known for their deleterious effects upon the central nervous system and more specifically for how they adversely affect hearing. This study aims to analyze and compare the hearing complaints and the results of brainstem evoked response audiometry (BERA) of former drug user support group goers. This is a cross-sectional non-experimental descriptive quantitative study. The sample consisted of 17 subjects divided by their preferred drug of use. Ten individuals were placed in the marijuana group (G1) and seven in the crack/cocaine group (G2). The subjects were further divided based on how long they had been using drugs: 1 to 5 years, 6 to 10 years, and over 15 years. They were interviewed, and assessed by pure tone audiometry, acoustic impedance tests, and BERA. No statistically significant differences were found between G1 and G2 or time of drug use in absolute latencies and interpeak intervals. However, only five of the 17 individuals had BERA results with adequate results for their ages. Marijuana and crack/cocaine may cause diffuse disorders in the brainstem and compromise the transmission of auditory stimuli regardless of how long these substances are used for.

  8. Combined ocular and cervical vestibular evoked myogenic potential in individuals with vestibular hyporeflexia and in patients with Ménière's disease.

    PubMed

    Silva, Tatiana Rocha; de Resende, Luciana Macedo; Santos, Marco Aurélio Rocha

    The vestibular evoked myogenic potential is a potential of mean latency that measures the muscle response to auditory stimulation. This potential can be generated from the contraction of the sternocleidomastoid muscle and also from the contraction of extraocular muscles in response to high-intensity sounds. This study presents a combined or simultaneous technique of cervical and ocular vestibular evoked myogenic potential in individuals with changes in the vestibular system, for use in otoneurologic diagnosis. To characterize the records and analyze the results of combined cervical and ocular VEMP in individuals with vestibular hyporeflexia and in those with Ménière's disease. The study included 120 subjects: 30 subjects with vestibular hyporeflexia, 30 with Ménière's disease, and 60 individuals with normal hearing. Data collection was performed by simultaneously recording the cervical and ocular vestibular evoked myogenic potential. There were differences between the study groups (individuals with vestibular hyporeflexia and individuals with Ménière's disease) and the control group for most of wave parameters in combined cervical and ocular vestibular evoked myogenic potential. For cervical vestibular evoked myogenic potential, it was observed that the prolongation of latency of the P13 and N23 waves was the most frequent finding in the group with vestibular hyporeflexia and in the group with Ménière's disease. For ocular vestibular evoked myogenic potential, prolonged latency of N10 and P15 waves was the most frequent finding in the study groups. Combined cervical and ocular vestibular evoked myogenic potential presented relevant results for individuals with vestibular hyporeflexia and for those with Ménière's disease. There were differences between the study groups and the control group for most of the wave parameters in combined cervical and ocular vestibular evoked myogenic potential. Copyright © 2016 Associação Brasileira de Otorrinolaringologia

  9. Investigation of brachial plexus traction lesions by peripheral and spinal somatosensory evoked potentials.

    PubMed Central

    Jones, S J

    1979-01-01

    Peripheral, spinal and cortical somatosensory evoked potentials were recorded in 26 patients with unilateral traction injuries of the brachial plexus ganglia. Of 10 cases explored surgically the recordings correctly anticipated the major site of the lesion in eight. PMID:422958

  10. Vestibular evoked myogenic potential (VEMP) in patients with acoustic neuromas.

    PubMed

    Takeichi, N; Sakamoto, T; Fukuda, S; Inuyama, Y

    2001-05-01

    To study the utility of VEMP (vestibular-evoked myogenic potential) in the diagnosis of acoustic neuromas. Eighteen patients with unilateral acoustic neuromas were subjected to this study. Myogenic potential responding to loud click stimuli was recorded at ipsilateral sternocleidomastoid muscle. A normal range of VEMP was obtained from 20 controls. VEMP responses were compared with both, clinical symptoms and results of caloric tests. Thirteen out of 18 patients showed decreased responses of VEMP at the affected side. VEMP responses seemed to have little relation with dysequilibrium, spontaneous nystagmus, canal paresis and pure-tone hearing. VEMP is useful for detecting dysfunction of inferior vestibular nerve in patients with acoustic neuromas.

  11. Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model

    PubMed Central

    Marsh, John E.; Campbell, Tom A.

    2016-01-01

    The rostral brainstem receives both “bottom-up” input from the ascending auditory system and “top-down” descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e

  12. Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model.

    PubMed

    Marsh, John E; Campbell, Tom A

    2016-01-01

    The rostral brainstem receives both "bottom-up" input from the ascending auditory system and "top-down" descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e.g., speech in

  13. [Intraoperative pain stimuli change somatosensory evoked potentials, but not auditory evoked potentials during isoflurane/nitrous oxide anesthesia].

    PubMed

    Rundshagen, I; Kochs, E; Bischoff, P; Schulte am Esch, J

    1997-10-01

    Evoked potentials are used for intraoperative monitoring to assess changes of cerebral function. This prospective randomised study assesses the influence of surgical stimulation on midlatency components of somatosensory (SEPs) and auditory evoked potentials (AEPs) in anaesthetised patients. After approval of the Ethics Committee and written informed consent 36 orthopaedic patients (34 +/- 15 y, 73 +/- 14 kg. 1.71 +/- 0.07 m, ASA I-II) were randomly included in the study. Anaesthesia was induced with 1.5 micrograms/kg fentanyl, 0.3 mg/kg etomidate and 0.1 mg/kg vecuronium. The lungs were intubated and patients normoventilated in steady state anaesthesia with isoflurane (end-tidal 0.6%) and 66% nitrous oxide. 18 patients (group 1) were assigned to the SEP group: median nerve stimulation, recording at Erb, C 6 and the contralateral somatosensory cortex (N20, P25, N35) vs Fz. AEPs were recorded in group 2 (n = 18): binaural stimulation, recording at Cz versus linked mastoid (V, Na, Pa, Nb). Recordings were performed during 30 min before the start of surgery (baseline: BL), at skin incision (SURG1) and at the preparation of the periost (SURG2). Heart rate, mean arterial blood pressure, oxygen saturation, endtidal pCO2 and isoflurane (PetISO) concentrations were registered simultaneously. Data were analysed by one-way analysis of variance. Post hoc comparison were made by Mann-Whitney U-Wilcoxon Rank Sum Test with p < 0.05 significant. During steady state isoflurane anaesthesia surgical stimulation (SURG2) resulted in significant increases of N20 P25 amplitudes compared with BL (BL: 1.4 +/- 0.7 microV; SURG2: 2.0 +/- 0.8 microV; p < 0.05). Latencies of SEPs and midlatency components of AEPs did not change over time. There were no differences in autonomic parameters between SEP and AEP groups. MAP increased from 76 +/- 6 mmHg at BL to 93 +/- 16 mmHg at SURG1 and 96 +/- 17 mmHg at SURG2 (n = 36; p < 0.05). HR increased from BL (60 +/- 8 beats/min) to SURG2 (76 +/- 12 beats

  14. Diffusion tensor imaging of the brainstem in children with achondroplasia

    PubMed Central

    BOSEMANI, THANGAMADHAN; ORMAN, GUNES; CARSON, KATHRYN A; MEODED, AVNER; HUISMAN, THIERRY A G M; PORETTI, ANDREA

    2014-01-01

    Aim The aims of this study were to compare, using diffusion tensor imaging (DTI) of the brainstem, microstructural integrity of the white matter in children with achondroplasia and age-matched participants and to correlate the severity of craniocervical junction (CCJ) narrowing and neurological findings with DTI scalars in children with achondroplasia. This study also aimed to assess the potential role of fibroblast growth factor receptor type 3 on white matter microstructure. Method Diffusion tensor imaging was performed using a 1.5T magnetic resonance scanner and balanced pairs of diffusion gradients along 20 non-collinear directions. Measurements were obtained from regions of interest, sampled in each pontine corticospinal tract (CST), medial lemniscus, and middle cerebellar peduncle, as well as in the lower brainstem and centrum semiovale, for fractional anisotropy and for mean, axial and radial diffusivity. In addition, a severity score for achondroplasia was assessed by measuring CCJ narrowing. Result Eight patients with achondroplasia (seven males, one female; mean age 5y 6mo, range 1y 1mo–15y 1mo) and eight age- and sex-matched comparison participants (mean age 5y 2mo, range 1y 1mo–14y 11mo) were included in this study. Fractional anisotropy was lower and mean diffusivity and radial diffusivity were higher in the lower brainstem of patients with achondroplasia than in age-matched comparison participants. The CST and middle cerebellar peduncle of the participants showed increases in mean, axial, and radial diffusivity. Fractional anisotropy in the lower brainstem was negatively correlated with the degree of CCJ narrowing. No differences in the DTI metrics of the centrum semiovale were observed between the two groups. Interpretation The reduction in fractional anisotropy and increase in diffusivities in the lower brainstem of participants with achondroplasia may reflect secondary encephalomalacic degeneration and cavitation of the affected white matter

  15. Diffusion tensor imaging of the brainstem in children with achondroplasia.

    PubMed

    Bosemani, Thangamadhan; Orman, Gunes; Carson, Kathryn A; Meoded, Avner; Huisman, Thierry A G M; Poretti, Andrea

    2014-11-01

    The aims of this study were to compare, using diffusion tensor imaging (DTI) of the brainstem, microstructural integrity of the white matter in children with achondroplasia and age-matched participants and to correlate the severity of craniocervical junction (CCJ) narrowing and neurological findings with DTI scalars in children with achondroplasia. This study also aimed to assess the potential role of fibroblast growth factor receptor type 3 on white matter microstructure. Diffusion tensor imaging was performed using a 1.5T magnetic resonance scanner and balanced pairs of diffusion gradients along 20 non-collinear directions. Measurements were obtained from regions of interest, sampled in each pontine corticospinal tract (CST), medial lemniscus, and middle cerebellar peduncle, as well as in the lower brainstem and centrum semiovale, for fractional anisotropy and for mean, axial, and radial diffusivity. In addition, a severity score for achondroplasia was assessed by measuring CCJ narrowing. Eight patients with achondroplasia (seven males, one female; mean age 5y 6mo, range 1y 1mo-15y 1mo) and eight age- and sex-matched comparison participants (mean age 5y 2mo, range 1y 1mo-14y 11mo) were included in this study. Fractional anisotropy was lower and mean diffusivity and radial diffusivity were higher in the lower brainstem of patients with achondroplasia than in age-matched comparison participants. The CST and middle cerebellar peduncle of the participants showed increases in mean, axial, and radial diffusivity. Fractional anisotropy in the lower brainstem was negatively correlated with the degree of CCJ narrowing. No differences in the DTI metrics of the centrum semiovale were observed between the two groups. The reduction in fractional anisotropy and increase in diffusivities in the lower brainstem of participants with achondroplasia may reflect secondary encephalomalacic degeneration and cavitation of the affected white matter tracts as shown by histology. In

  16. Neuronal current magnetic resonance imaging of evoked potentials and neural oscillations

    NASA Astrophysics Data System (ADS)

    Jiang, Xia

    Despite its great success, the current functional magnetic resonance imaging (MRI) technique relies on changes in cerebral hemodynamic parameters to infer the underlying neural activities, and as a result is limited in its spatial and temporal resolutions. In this dissertation, we discuss the feasibility of neuronal current MRI (nc-MRI), a novel technique in which the small magnetic field changes caused by neuronal electrical activities are directly measured by MRI. Two studies are described. In the first study, we investigated the feasibility of detecting the magnetic field produced by sensory evoked potentials. To eliminate the blood-oxygen-level-dependent (BOLD) effect on the MRI signal, which confounded most previous studies, an octopus visual system model was developed, which, for the first time, allowed for an in vivo investigation of nc-MRI in a BOLD-free environment. Electrophysiological responses were measured in the octopus retina and optical lobe to guide the nc-MRI acquisition. Our results indicated that no nc-MRI signal change related to neuronal activation could be detected at 0.2°/0.2% threshold for signal phase/magnitude respectively, while robust electrophysiological responses were recorded. In the second study, we discuss the feasibility of detecting neural oscillations with MRI, Based on previous studies, a novel approach was proposed in which an external oscillatory field was exploited as the excitation pulse under a spin-locked condition. This approach has the advantages of increased sensitivity and lowered physiological noise. Successful detection of sub-nanotesla field was demonstrated in phantom. Our results suggest that evoked potentials are too weak for nc-MRI detection with the current hardware, and that previous positive findings were likely due to hemodynamic confounders. On the other hand, oscillatory magnetic field can be efficiently detected in phantom. Given the stronger equivalent current dipoles produced by neural oscillations

  17. Brainstem involvement in subacute sclerosing panencephalitis.

    PubMed

    Sharma, Pawan; Singh, Dileep; Singh, Maneesh Kumar; Garg, Ravindra Kumar; Kohli, Neera

    2011-01-01

    The parieto-occipital region of the brain is most frequently and severely affected in subacute sclerosing panencephalitis (SSPE). The basal ganglia, cerebellum and corpus callosum are less commonly involved. Brainstem involvement is rarely described in SSPE, and usually there is involvement of other regions of the brain. We describe a patient with subacute sclerosing panencephalitis with brain magnetic resonance imaging showing extensive brainstem involvement without significant involvement of other cortical structures. Though rarely described in SSPE, one should be aware of such brainstem and cerebellum involvement, and SSPE should be kept in mind when brainstem signal changes are seen in brain MRI with or without involvement of other regions of brain to avoid erroneous reporting.

  18. Auditory Evoked Potentials as a Function of Sleep Deprivation and Recovery Sleep

    DTIC Science & Technology

    1985-09-29

    present research: They relate to the effects of: a) 48-hours of sleep deprivation on endogenous event related potentials (ERPs); b) circadian rhythms on...the study were: decreases in amplitude for N2, P3 and N2P3 across the reprivation period; a circadian rhythm was apparent for both ERP recordings and...of cortical evoked response potentials (ERPs)? 2) How do circadian rhythms affect ERPS under conditions of sleep deprivation? 3) How do different

  19. Electrophysiological Evidence for the Sources of the Masking Level Difference.

    PubMed

    Fowler, Cynthia G

    2017-08-16

    The purpose of this review article is to review evidence from auditory evoked potential studies to describe the contributions of the auditory brainstem and cortex to the generation of the masking level difference (MLD). A literature review was performed, focusing on the auditory brainstem, middle, and late latency responses used in protocols similar to those used to generate the behavioral MLD. Temporal coding of the signals necessary for generating the MLD occurs in the auditory periphery and brainstem. Brainstem disorders up to wave III of the auditory brainstem response (ABR) can disrupt the MLD. The full MLD requires input to the generators of the auditory late latency potentials to produce all characteristics of the MLD; these characteristics include threshold differences for various binaural signal and noise conditions. Studies using central auditory lesions are beginning to identify the cortical effects on the MLD. The MLD requires auditory processing from the periphery to cortical areas. A healthy auditory periphery and brainstem codes temporal synchrony, which is essential for the ABR. Threshold differences require engaging cortical function beyond the primary auditory cortex. More studies using cortical lesions and evoked potentials or imaging should clarify the specific cortical areas involved in the MLD.

  20. [Origin of acoustically evoked short latency negative response in guinea pigs].

    PubMed

    Huang, Wen-qin; Qin, Huan-hua; Nong, Dong-xiao; Tang, An-zhou; Li, Zhi-mei; Yang, Tian

    2011-04-01

    To establish a model of acoustically evoked short latency negative response (ASNR) in guinea pigs, a model of profound hearing loss with normal saccular functions, and verify the correlation between ASNR and vestibular evoked myogenic potential (VEMP). Thirty-two healthy guinea pigs were employed in the experiment, which were randomly divided into control group (16 subjects) and deafened group (16 subjects). Each animal experienced auditory and vestibular tests including auditory brainstem response (ABR), VEMP and caloric test. A quick treatment was employed for deafened group consisting of a subcutaneous injection of kanamycin at a dose of 400 mg/kg followed by a jugular vein injection of ethacrynic acid at a dose of 40 mg/kg one hour later. The animals were received ABR, VEMP and caloric test 7 - 10 days following the drug administration. The deafened group was further divided into ASNR group and non-ASNR group, based on the presence of ASNR. In deafened group, five subjects died postoperatively, 11 subjects (22 ears) provided full data, ASNR was elicited in eight ears (36.4%), the threshold was 120 - 130 dB SPL with mean of (124.4 ± 4.96) dB SPL. Its latency range was 1.75 - 2.60 ms with mean of (2.15 ± 0.27) ms. The mean latency of threshold was (2.34 ± 0.18) ms. All eight ASNR ears presented with VEMP. The VEMP threshold, positive and negative potential latencies proved no statistical difference (P > 0.05) between ASNR group and control group. Significant difference was detected between the VEMP presence of ASNR group and non-ASNR group (P = 0.002). There was no statistically significant correlation between VEMP and caloric test neither between ASNR and caloric test in deafened group. This study evoked ASNR in an ototoxicity guinea pig model which has profound hearing loss with normal saccular functions. The presence of ASNR correlated with VEMP, however, not correlated with caloric test, suggesting that ASNR and VEMP are both originated from the saccule.

  1. [Recommendations for the clinical use of motor evoked potentials in multiple sclerosis].

    PubMed

    Fernández, V; Valls-Sole, J; Relova, J L; Raguer, N; Miralles, F; Dinca, L; Taramundi, S; Costa-Frossard, L; Ferrandiz, M; Ramió-Torrentà, Ll; Villoslada, P; Saiz, A; Calles, C; Antigüedad, A; Alvarez-Cermeño, J C; Prieto, J M; Izquierdo, G; Montalbán, X; Fernández, O

    2013-09-01

    To establish clinical guidelines for the clinical use and interpretation of motor evoked potentials (MEP) in diagnosing and monitoring patients with multiple sclerosis (MS). Recommendations for MEP use and interpretation will help us rationalise and optimise resources used in MS patient diagnosis and follow up. We completed an extensive literature review and pooled our own data to produce a consensus statement with recommendations for the clinical use of MEPs in the study of MS. MEPs, in addition to spinal and cranial magnetic resonance imaging (MRI), help us diagnose and assess MS patients whose disease initially presents as spinal cord syndrome and those with non-specific brain MRI findings, or a normal brain MRI and clinical signs of MS. Whenever possible, a multimodal evoked potential study should be performed on patients with suspected MS in order to demonstrate involvement of the motor pathway which supports a diagnosis of dissemination in space. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  2. Auditory evoked potential (AEP) measurements in stranded rough-toothed dolphins (Steno bredanensis)

    NASA Astrophysics Data System (ADS)

    Cook, Mandy L. H.; Manire, Charles A.; Mann, David A.

    2005-04-01

    Thirty-six rough-toothed dolphins (Steno bredanensis) live-stranded on Hutchinson Island, FL on August 6, 2004. Seven animals were transported to Mote Marine Laboratory for rehabilitation. Two auditory evoked potential (AEP) measurements were performed on each of five of these dolphins in air using a jawphone to present acoustic stimuli. Modulation rate transfer functions (MRTFs) were measured to establish how well the auditory system follows the temporal envelope of acoustic stimuli. A 40 kHz stimulus carrier was amplitude modulated (AM) with varying rates ranging from 200 Hz to 1800 Hz, in 200 Hz steps. The best AM-rate from the first dolphin tested was 1500 Hz. This AM rate was used in subsequent AEP measurements to determine evoked-potential hearing thresholds between 5000 and 80000 Hz. These findings show that rough-toothed dolphins can detect sounds between 5 and 80 kHz, and are most likely capable of detecting frequencies much higher than 80 kHz. MRTF data suggest that rough-toothed dolphins have a high temporal resolution, similar to that of other cetaceans.

  3. Implementation of a microprocessor-based visual-evoked cortical potential recording and analysis system.

    PubMed

    Wilson, A; Fram, D; Sistar, J

    1981-06-01

    An Imsai 8080 microcomputer is being used to simultaneously generate a color graphics stimulus display and to record visual-evoked cortical potentials. A brief description of the hardware and software developed for this system is presented. Data storage and analysis techniques are also discussed.

  4. A short latency vestibular evoked potential (VsEP) produced by bone-conducted acoustic stimulation

    NASA Astrophysics Data System (ADS)

    McAngus Todd, Neil P.; Rosengren, Sally M.; Colebatch, James G.

    2003-12-01

    In this paper data are presented from an experiment which provides evidence for the existence of a short latency, acoustically evoked potential of probable vestibular origin. The experiment was conducted in two phases using bone-conducted acoustic stimulation. In the first phase subjects were stimulated with 6-ms, 500-Hz tone bursts in order to obtain the threshold VT for vestibular evoked myogenic potentials (VEMP). It was confirmed that the difference between bone-conducted auditory and acoustic vestibular thresholds was slightly over 30 dB. The estimated threshold was then used as a reference value in the second part of the experiment to stimulate subjects over a range of intensities from -6 to +18 dB (re:VT). Averaged EEG recordings were made with eight Ag/AgCl electrodes placed on the scalp at Fpz, F3, F4, F7, F8, Cz, T3, and T4 according to the 10-20 system. Below VT auditory midlatency responses (MLRs) were observed. Above VT two additional potentials appeared: a positivity at about 10 ms (P10) which was maximal at Cz, and a negativity at about 15 ms (N15) which was maximal at Fpz. Extrapolation of the growth functions for the P10 and N15 indicated a threshold close to VT, consistent with a vestibular origin of these potentials. Given the low threshold of vestibular acoustic sensitivity it is possible that this mode may make a contribution to the detection of and affective responses to loud low frequency sounds. The evoked potentials may also have application as a noninvasive and nontraumatic test of vestibular projections to the cortex.

  5. Auditory evoked potential measurements in elasmobranchs

    NASA Astrophysics Data System (ADS)

    Casper, Brandon; Mann, David

    2005-04-01

    Auditory evoked potentials (AEP) were first used to examine hearing in elasmobranchs by Corwin and Bullock in the late 1970s and early 1980s, marking the first time AEPs had been measured in fishes. Results of these experiments identified the regions of the ear and brain in which sound is processed, though no actual hearing thresholds were measured. Those initial experiments provided the ground work for future AEP experiments to measure fish hearing abilities in a manner that is much faster and more convenient than classical conditioning. Data will be presented on recent experiments in which AEPs were used to measure the hearing thresholds of two species of elasmobranchs: the nurse shark, Ginglymostoma cirratum, and the yellow stingray, Urobatis jamaicencis. Audiograms were analyzed and compared to previously published audiograms obtained using classical conditioning with results indicating that hearing thresholds were similar for the two methods. These data suggest that AEP testing is a viable option when measuring hearing in elasmobranchs and can increase the speed in which future hearing measurements can be obtained.

  6. Lateral geniculate body evoked potentials elicited by visual and electrical stimulation.

    PubMed

    Choi, Chang Wook; Kim, Pan Sang; Shin, Sun Ae; Yang, Ji Yeon; Yang, Yun Sik

    2014-08-01

    Blind individuals who have photoreceptor loss are known to perceive phosphenes with electrical stimulation of their remaining retinal ganglion cells. We proposed that implantable lateral geniculate body (LGB) stimulus electrode arrays could be used to generate phosphene vision. We attempted to refine the basic reference of the electrical evoked potentials (EEPs) elicited by microelectrical stimulations of the optic nerve, optic tract and LGB of a domestic pig, and then compared it to visual evoked potentials (VEPs) elicited by short-flash stimuli. For visual function measurement, VEPs in response to short-flash stimuli on the left eye of the domestic pig were assessed over the visual cortex at position Oz with the reference electrode at Fz. After anesthesia, linearly configured platinum wire electrodes were inserted into the optic nerve, optic track and LGB. To determine the optimal stimulus current, EEPs were recorded repeatedly with controlling the pulse and power. The threshold of current and charge density to elicit EEPs at 0.3 ms pulse duration was about ±10 µA. Our experimental results showed that visual cortex activity can be effectively evoked by stimulation of the optic nerve, optic tract and LGB using penetrating electrodes. The latency of P1 was more shortened as the electrical stimulation was closer to LGB. The EEPs of two-channel in the visual cortex demonstrated a similar pattern with stimulation of different spots of the stimulating electrodes. We found that the LGB-stimulated EEP pattern was very similar to the simultaneously generated VEP on the control side, although implicit time deferred. EEPs and VEPs derived from visual-system stimulation were compared. The LGB-stimulated EEP wave demonstrated a similar pattern to the VEP waveform except implicit time, indicating prosthetic-based electrical stimulation of the LGB could be utilized for the blind to perceive vision of phosphenes.

  7. Development of somatosensory-evoked potentials in foetal sheep: effects of betamethasone.

    PubMed

    Anegroaie, P; Frasch, M G; Rupprecht, S; Antonow-Schlorke, I; Müller, T; Schubert, H; Witte, O W; Schwab, M

    2017-05-01

    Antenatal glucocorticoids are used to accelerate foetal lung maturation in babies threatened with premature labour. We examined the influence of glucocorticoids on functional and structural maturation of the central somatosensory pathway in foetal sheep. Somatosensory-evoked potentials (SEP) reflect processing of somatosensory stimuli. SEP latencies are determined by afferent stimuli transmission while SEP amplitudes reveal cerebral processing. After chronic instrumentation of foetal sheep, mothers received saline (n = 9) or three courses of betamethasone (human equivalent dose of 2 × 110 μg kg -1 betamethasone i.m. 24 h apart, n = 12) at 0.7, 0.75 and 0.8 of gestational age. Trigeminal SEP were evoked prior to, 4 and 24 h after each injection and at 0.8 of gestational age before brains were histologically processed. Somatosensory-evoked potentials were already detectable at 0.7 of gestation age. The early and late responses N20 and N200 were the only reproducible peaks over the entire study period. With advancing gestational age, SEP latencies decreased but amplitudes remained unchanged. Acutely, betamethasone did not affect SEP latencies and amplitudes 4 and 24 h following administration. Chronically, betamethasone delayed developmental decrease in the N200 but not N20 latency by 2 weeks without affecting amplitudes. In parallel, betamethasone decreased subcortical white matter myelination but did not affect network formation and synaptic density in the somatosensory cortex. Somatosensory stimuli are already processed by the foetal cerebral cortex at the beginning of the third trimester. Subsequent developmental decrease in SEP latencies suggests ongoing maturation of afferent sensory transmission. Antenatal glucocorticoids affect structural and functional development of the somatosensory system with specific effects at subcortical level. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  8. Cold-evoked potentials - Ready for clinical use?

    PubMed

    Hüllemann, P; Nerdal, A; Binder, A; Helfert, S; Reimer, M; Baron, R

    2016-11-01

    Cold-evoked potentials (CEPs) are known to assess the integrity of A-delta fibres and the spinothalamic tract. Nevertheless, the clinical value was not investigated previously. The aim of this study was to measure CEPs in 16 healthy subjects from the face, hand and foot sole and to investigate whether CEPs reliably detect A-delta fibre abnormalities. Swift cold stimuli were applied to the skin with a commercially available thermode, which cooled down from 30 to 25 °C in approximately 0.5 s. CEP latencies (N1, N2 and P2) and amplitudes (N1, N2/P2) were recorded with EEG. Reversible A-fibre function loss was induced by applying a selective A-fibre block at the superficial radial nerve. In all 16 subjects CEPs could be recorded from all locations; N2, P2 mean latencies were 276.4 ± 38.9 and 389.8 ± 52.5 (face), 318.6 ± 31.6 ms and 477.7 ± 43.6 (hand), and 627.6 ± 84.4 and 774.2 ± 94.0 (foot sole). N2/P2 amplitudes were 10.7 ± 4.1, 11.3 ± 4.1 and 7.5 ± 4.1 μV. During A-fibre block no CEPs were detectable in the grand average, which restored 10 min after block removal. CEPs were reliably recorded in healthy subjects at the hand, face and foot. Experimentally induced reversible A-delta fibre function loss was detected by CEPs. Functional recovery was assessed as well. This study is basis for further CEP evaluation studies and might be the first step for implementing CEPs in clinical routine for the early diagnosis of small-fibre disease. WHAT DOES THIS STUDY ADD?: Cold-evoked potentials are capable of reliably measuring A-delta fibre integrity, loss of function and functional recovery in healthy subjects, which is an essential prerequisite for diagnostic use in patients with small-fibre disease. © 2016 European Pain Federation - EFIC®.

  9. Matched Filtering of Visual Evoked Potentials to Detect Acceleration (+Gz) Induced Blackout

    DTIC Science & Technology

    1985-01-03

    FILTERING OF VISUAL EVOKED POTENTIALS rO DETECT ACCELERATION ( + Gz) INDUCED BLACKOUT John Q. Nelson, Leonid Hrebien and Joseph P. Cammarota Aircraft...8217: , r .,.V -. 1-». .v. IE •> _"->.-"*« A^V :j% _"«;_"V X~«. _~»^"V.i.~» iuTtuTii i."»..-^. .-*._> r /; NOTICES REPORT NUMBERING SYSTEM - The...Potentials to Detect Acceleration (+G2) Induced Blackout 12 PERSONAL AUTHOR(S) John G. Nelson, Leonid Hrebien, Joseph P. Cammarota 13* TYPE OF REPORT

  10. Dynamics of infant cortical auditory evoked potentials (CAEPs) for tone and speech tokens.

    PubMed

    Cone, Barbara; Whitaker, Richard

    2013-07-01

    Cortical auditory evoked potentials (CAEPs) to tones and speech sounds were obtained in infants to: (1) further knowledge of auditory development above the level of the brainstem during the first year of life; (2) establish CAEP input-output functions for tonal and speech stimuli as a function of stimulus level and (3) elaborate the data-base that establishes CAEP in infants tested while awake using clinically relevant stimuli, thus providing methodology that would have translation to pediatric audiological assessment. Hypotheses concerning CAEP development were that the latency and amplitude input-output functions would reflect immaturity in encoding stimulus level. In a second experiment, infants were tested with the same stimuli used to evoke the CAEPs. Thresholds for these stimuli were determined using observer-based psychophysical techniques. The hypothesis was that the behavioral thresholds would be correlated with CAEP input-output functions because of shared cortical response areas known to be active in sound detection. 36 infants, between the ages of 4 and 12 months (mean=8 months, s.d.=1.8 months) and 9 young adults (mean age 21 years) with normal hearing were tested. First, CAEPs amplitude and latency input-output functions were obtained for 4 tone bursts and 7 speech tokens. The tone bursts stimuli were 50 ms tokens of pure tones at 0.5, 1.0, 2.0 and 4.0 kHz. The speech sound tokens, /a/, /i/, /o/, /u/, /m/, /s/, and /∫/, were created from natural speech samples and were also 50 ms in duration. CAEPs were obtained for tone burst and speech token stimuli at 10 dB level decrements in descending order from 70 dB SPL. All CAEP tests were completed while the infants were awake and engaged in quiet play. For the second experiment, observer-based psychophysical methods were used to establish perceptual threshold for the same speech sound and tone tokens. Infant CAEP component latencies were prolonged by 100-150 ms in comparison to adults. CAEP latency

  11. The division of attention and the human auditory evoked potential

    NASA Technical Reports Server (NTRS)

    Hink, R. F.; Van Voorhis, S. T.; Hillyard, S. A.; Smith, T. S.

    1977-01-01

    The sensitivity of the scalp-recorded, auditory evoked potential to selective attention was examined while subjects responded to stimuli presented to one ear (focused attention) and to both ears (divided attention). The amplitude of the N1 component was found to be largest to stimuli in the ear upon which attention was to be focused, smallest to stimuli in the ear to be ignored, and intermediate to stimuli in both ears when attention was divided. The results are interpreted as supporting a capacity model of attention.

  12. Visual evoked potentials through night vision goggles.

    PubMed

    Rabin, J

    1994-04-01

    Night vision goggles (NVG's) have widespread use in military and civilian environments. NVG's amplify ambient illumination making performance possible when there is insufficient illumination for normal vision. While visual performance through NVG's is commonly assessed by measuring threshold functions such as visual acuity, few attempts have been made to assess vision through NVG's at suprathreshold levels of stimulation. Such information would be useful to better understand vision through NVG's across a range of stimulus conditions. In this study visual evoked potentials (VEP's) were used to evaluate vision through NVG's across a range of stimulus contrasts. The amplitude and latency of the VEP varied linearly with log contrast. A comparison of VEP's recorded with and without NVG's was used to estimate contrast attenuation through the device. VEP's offer an objective, electrophysiological tool to assess visual performance through NVG's at both threshold and suprathreshold levels of visual stimulation.

  13. Binaural interaction in the auditory brainstem response: a normative study.

    PubMed

    Van Yper, Lindsey N; Vermeire, Katrien; De Vel, Eddy F J; Battmer, Rolf-Dieter; Dhooge, Ingeborg J M

    2015-04-01

    Binaural interaction can be investigated using auditory evoked potentials. A binaural interaction component can be derived from the auditory brainstem response (ABR-BIC) and is considered evidence for binaural interaction at the level of the brainstem. Although click ABR-BIC has been investigated thoroughly, data on 500 Hz tone-burst (TB) ABR-BICs are scarce. In this study, characteristics of click and 500 Hz TB ABR-BICs are described. Furthermore, reliability of both click and 500 Hz TB ABR-BIC are investigated. Eighteen normal hearing young adults (eight women, ten men) were included. ABRs were recorded in response to clicks and 500 Hz TBs. ABR-BICs were derived by subtracting the binaural response from the sum of the monaural responses measured in opposite ears. Good inter-rater reliability is obtained for both click and 500 Hz TB ABR-BICs. The most reliable peak in click ABR-BIC occurs at a mean latency of 6.06 ms (SD 0.354 ms). Reliable 500 Hz TB ABR-BIC are obtained with a mean latency of 9.47 ms (SD 0.678 ms). Amplitudes are larger for 500 Hz TB ABR-BIC than for clicks. The most reliable peak in click ABR-BIC occurs at the downslope of wave V. Five hundred Hertz TB ABR-BIC is characterized by a broad positivity occurring at the level of wave V. The ABR-BIC is a useful technique to investigate binaural interaction in certain populations. Examples are bilateral hearing aid users, bilateral cochlear implant users and bimodal listeners. The latter refers to the combination of unilateral cochlear implantation and contralateral residual hearing. The majority of these patients have residual hearing in the low frequencies. The current study suggests that 500 Hz TB ABR-BIC may be a suitable technique to assess binaural interaction in this specific population of cochlear implant users. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Short-Latency Median-Nerve Somatosensory-Evoked Potentials and Induced Gamma-Oscillations in Humans

    ERIC Educational Resources Information Center

    Fukuda, Miho; Nishida, Masaaki; Juhasz, Csaba; Muzik, Otto; Sood, Sandeep; Chugani, Harry T.; Asano, Eishi

    2008-01-01

    Recent studies have suggested that cortical gamma-oscillations are tightly linked with various forms of physiological activity. In the present study, the dynamic changes of intracranially recorded median-nerve somatosensory-evoked potentials (SEPs) and somatosensory-induced gamma-oscillations were animated on a three-dimensional MR image, and the…

  15. The cortical spatiotemporal correlate of otolith stimulation: Vestibular evoked potentials by body translations.

    PubMed

    Ertl, M; Moser, M; Boegle, R; Conrad, J; Zu Eulenburg, P; Dieterich, M

    2017-07-15

    The vestibular organ senses linear and rotational acceleration of the head during active and passive motion. These signals are necessary for bipedal locomotion, navigation, the coordination of eye and head movements in 3D space. The temporal dynamics of vestibular processing in cortical structures have hardly been studied in humans, let alone with natural stimulation. The aim was to investigate the cortical vestibular network related to natural otolith stimulation using a hexapod motion platform. We conducted two experiments, 1. to estimate the sources of the vestibular evoked potentials (VestEPs) by means of distributed source localization (n=49), and 2. to reveal modulations of the VestEPs through the underlying acceleration intensity (n=24). For both experiments subjects were accelerated along the main axis (left/right, up/down, fore/aft) while the EEG was recorded. We were able to identify five VestEPs (P1, N1, P2, N2, P3) with latencies between 38 and 461 ms as well as an evoked beta-band response peaking with a latency of 68 ms in all subjects and for all acceleration directions. Source localization gave the cingulate sulcus visual (CSv) area and the opercular-insular region as the main origin of the evoked potentials. No lateralization effects due to handedness could be observed. In the second experiment, area CSv was shown to be integral in the processing of acceleration intensities as sensed by the otolith organs, hinting at its potential role in ego-motion detection. These robust VestEPs could be used to investigate the mechanisms of inter-regional interaction in the natural context of vestibular processing and multisensory integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Comparison of Motor-Evoked Potentials Versus Somatosensory-Evoked Potentials as Early Indicators of Neural Compromise in Rat Model of Spinal Cord Compression.

    PubMed

    Morris, Susan H; Howard, Jason J; El-Hawary, Ron

    2017-03-15

    Randomized controlled study comparing the efficacy of intraoperative somatosensory-evoked potentials (SSEPs) versus transcranial motor-evoked potentials (TcMEPs) as early indicators of neural compromise and predictors of postoperative function in a rat model of spinal cord compression. To compare the relative efficacy of SSEPs and TcMEPs to detect spinal cord compromise and predict postoperative functional deficit after spinal cord compression. There is controversy regarding the efficacy of SSEPs versus TcMEPs to detect intraoperative spinal cord compromise and predict functional outcomes. Previous trials provide some guidance as to the role of each modality in spinal cord monitoring but randomized controlled trials, which are not feasible in humans, are lacking. Twenty-four adult male Wistar rats were evenly divided into three experimental groups and one control group. The experimental groups were determined according to the length of time that 100% TcMEP signal loss was maintained: 0, 5, or 15 minutes. All animals had standardized preoperative functional testing. Spinal cord compromise was initiated utilizing a validated protocol, which involved compression via a balloon catheter introduced into the thoracic sublaminar space. Both SSEPs and TcMEPs were recorded during cord compression for each experimental group. Functional behavioral testing using two validated methods (tilt and modified Tarlov) was repeated 24 hours after termination of spinal cord compression. Post hoc, animals were redistributed into two functional subgroups, noncompromised and compromised, for statistical analysis. TcMEPs consistently detected spinal cord compromise either in advance of or at the same time as SSEPs; however, the delay in SSEP response was not significant for cases when compromised postoperative function resulted. Both SSEP and TcMEP amplitude recovery correlated well with postoperative functional scores. TcMEPs are more sensitive to spinal cord compromise than SSEPs, but the

  17. Distribution of CGRP in the minipig brainstem.

    PubMed

    Lisardo Sánchez, Manuel; Vecino, Elena; Coveñas, Rafael

    2014-05-01

    For the first time, an in-depth study has been made of the distribution of fibers and cell bodies containing calcitonin gene-related peptide (CGRP) in the minipig brainstem using an indirect immunoperoxidase technique. The animals studied were not treated with colchicine. Cell bodies containing CGRP were found in 20 nuclei/regions of the brainstem. These perikarya were located in somatomotor, brachiomotor and raphae nuclei, nucleus ambiguus, substantia nigra, nucleus reticularis tegmenti pontis, nucleus prepositus hypoglossi, nuclei olivaris inferior and superior, nuclei pontis, formatio reticularis, nucleus dorsalis tegmenti of Gudden, and in the nucleus reticularis lateralis. Fourteen of the 20 brainstem nuclei showed a high density of immunoreactive cell bodies. In comparison with other species, the minipig, together with the rat, show the most widespread distribution of cell bodies containing CGRP in the mammalian brainstem. Immunoreactive fibers were also observed in the brainstem. However, in the minipig brainstem the density of these fibers is low, as in many brainstem nuclei only single immunoreactive fibers were observed. A high density of immunoreactive fibers was only observed in the pars caudalis of the nucleus tractus spinalis nervi trigemini and in the nucleus ventralis tegmenti of Gudden. According to the observed anatomical distribution of the immunoreactive structures containing CGRP, the peptide could be involved in motor, somatosensory, gustative, and autonomic mechanisms. Copyright © 2014 Wiley Periodicals, Inc.

  18. WITHIN-SESSION CHANGES IN PEAK N160 AMPLITUDE OF FLASH EVOKED POTENTIALS IN RATS

    EPA Science Inventory

    The negative peak occurring approximately 160 msec after stimulation (peak N 160) flash evoked potentials (FEPS) of rats changes with repeated testing. abituation, sensitization, and arousal have all been invoked to explain these changes, but few studies have directly tested thes...

  19. The Direct Detection of a Single Evoked Action Potential with Magnetic Resonance Spectroscopy in Lumbricus Terrestris

    PubMed Central

    Poplawsky, Alexander J.; Dingledine, Raymond

    2011-01-01

    Functional MRI (fMRI) indirectly measures neural activity by detecting the signal change associated with the hemodynamic response following brain activation. In order to alleviate the temporal and spatial specificity problems associated with fMRI, a number of attempts have been made to detect neural magnetic fields (NMFs) with MRI directly, but have thus far provided conflicting results. In the present study, we used magnetic resonance to detect axonal NMFs in the median giant fiber of the earthworm, Lumbricus terrestris, by examining the free-induction decay (FID) with a sampling interval of 0.32 ms. The earthworm nerve cords were isolated from the vasculature and stimulated at the threshold of action potential generation. FIDs were acquired shortly after the stimulation and simultaneous field potential recordings identified the presence or absence of single evoked action potentials. FIDs acquired when the stimulus did not evoke an action potential were summed as background. The phase of the background-subtracted FID exhibited a systematic change, with a peak phase difference of [-1.2 ± 0.3] ×10-5 radians occurring at a time corresponding to the timing of the action potential. In addition, we calculated the possible changes in the FID magnitude and phase due to a simulated action potential using a volume conductor model. The measured phase difference matched the theoretical prediction well in both amplitude and temporal characteristics. This study provides the first evidence for the direct detection of a magnetic field from an evoked action potential using magnetic resonance. PMID:21728204

  20. Imaging White Matter in Human Brainstem

    PubMed Central

    Ford, Anastasia A.; Colon-Perez, Luis; Triplett, William T.; Gullett, Joseph M.; Mareci, Thomas H.; FitzGerald, David B.

    2013-01-01

    The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted magnetic resonance imaging (MRI) may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging of an intact excised human brainstem performed at 11.1 T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST), superior (SCP) and middle cerebellar peduncle (MCP), and medial lemniscus (ML) pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI

  1. Imaging white matter in human brainstem.

    PubMed

    Ford, Anastasia A; Colon-Perez, Luis; Triplett, William T; Gullett, Joseph M; Mareci, Thomas H; Fitzgerald, David B

    2013-01-01

    The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted magnetic resonance imaging (MRI) may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging of an intact excised human brainstem performed at 11.1 T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST), superior (SCP) and middle cerebellar peduncle (MCP), and medial lemniscus (ML) pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI

  2. Visual evoked potentials in the horse.

    PubMed

    Ström, L; Ekesten, B

    2016-06-21

    Electrical potentials generated in the central nervous system in response to brief visual stimuli, flash visual evoked potentials (FVEPs), can be recorded non-invasively over the occipital cortex. FVEPs are used clinically in human medicine and also experimentally in a number of animal species, but the method has not yet been evaluated in the horse. The method would potentially allow the ophthalmologist and equine clinician to evaluate visual impairment caused by disorders affecting post-retinal visual pathways. The aim was to establish a method for recording of FVEPs in horses in a clinical setting and to evaluate the waveform morphology in the normal horse. Ten horses were sedated with a continuous detomidine infusion. Responses were recorded from electrodes placed on the scalp. Several positions were evaluated to determine suitable electrode placement. Flash electroretinograms (FERGs) were recorded simultaneously. To evaluate potential contamination of the FVEP from retinal potentials, a retrobulbar nerve block was performed in two horses and transection of the optic nerve was performed in one horse as a terminal procedure. A series of positive (P) and negative (N) peaks in response to light stimuli was recorded in all horses. Reproducible wavelets with mean times-to-peaks of 26 (N1), 55 (P2), 141 (N2) and 216 ms (P4) were seen in all horses in all recordings. Reproducible results were obtained when the active electrode was placed in the midline rostral to the nuchal crest. Recording at lateral positions gave more variable results, possibly due to ear muscle artifacts. Averaging ≥100 responses reduced the impact of noise and artifacts. FVEPs were reproducible in the same horse during the same recording session and between sessions, but were more variable between horses. Retrobulbar nerve block caused a transient loss of the VEP whereas transection of the optic nerve caused an irreversible loss. We describe the waveform of the equine FVEP and our results show

  3. Gaze-evoked nystagmus: a case report and literature review.

    PubMed

    Rett, Doug

    2007-09-01

    A sustained gaze-evoked nystagmus (GEN) is an important ocular finding that may indicate serious neurologic pathology. It is also a finding that can be missed easily during routine extraocular muscle (EOM) testing. This report presents a case that should familiarize the reader with GEN and presents a novel approach to testing EOM function. The mother of an otherwise healthy 4-year-old girl noted that her daughter's eyes crossed occasionally, the right lid drooped on one occasion, and she had been having strange headaches. An asymmetric, sustained, gaze-evoked nystagmus was detected using a different approach to EOM testing. Magnetic resonance imaging found a large, brainstem astrocytoma in the cerebellar-pontine angle. EOM function often is overlooked or underperformed but is an important part of the battery of clinical tests to rule out neurologic problems. Most forms of EOM testing will check for muscle palsies but little else. If the time is taken to extend the patient's gaze to the extreme ends, to attempt to hold the gaze in all 9 positions, and to maintain an accurate speed, the clinician can stand to gain much more information regarding the neurologic system.

  4. Evoked potential correlates of selective attention with multi-channel auditory inputs

    NASA Technical Reports Server (NTRS)

    Schwent, V. L.; Hillyard, S. A.

    1975-01-01

    Ten subjects were presented with random, rapid sequences of four auditory tones which were separated in pitch and apparent spatial position. The N1 component of the auditory vertex evoked potential (EP) measured relative to a baseline was observed to increase with attention. It was concluded that the N1 enhancement reflects a finely tuned selective attention to one stimulus channel among several concurrent, competing channels. This EP enhancement probably increases with increased information load on the subject.

  5. Control of humanoid robot via motion-onset visual evoked potentials

    PubMed Central

    Li, Wei; Li, Mengfan; Zhao, Jing

    2015-01-01

    This paper investigates controlling humanoid robot behavior via motion-onset specific N200 potentials. In this study, N200 potentials are induced by moving a blue bar through robot images intuitively representing robot behaviors to be controlled with mind. We present the individual impact of each subject on N200 potentials and discuss how to deal with individuality to obtain a high accuracy. The study results document the off-line average accuracy of 93% for hitting targets across over five subjects, so we use this major component of the motion-onset visual evoked potential (mVEP) to code people's mental activities and to perform two types of on-line operation tasks: navigating a humanoid robot in an office environment with an obstacle and picking-up an object. We discuss the factors that affect the on-line control success rate and the total time for completing an on-line operation task. PMID:25620918

  6. [The modified method registration of kinesthetic evoked potentials and its application for research of proprioceptive sensitivity disorders at spondylogenic cervical myelopathy].

    PubMed

    Gordeev, S A; Voronin, S G

    2016-01-01

    To analyze the efficacy of modified (passive radiocarpal articulation flexion/extension) and «standard» (passive radiocarpal articulation flexion) methods of kinesthetic evoked potentials for proprioceptive sensitivity assessment in healthy subjects and patients with spondylotic cervical myelopathy. The study included 14 healthy subjects (4 women and 10 men, mean age 54.1±10.5 years) and 8 patients (2 women and 6 men, mean age 55.8±10.9 years) with spondylotic cervical myelopathy. Muscle-joint sensation was examined during the clinical study. A modified method of kinesthetic evoked potentials was developed. This method differed from the "standard" one by the organization of a cycle including several passive movements,where each new movement differed from the preceding one by the direction. The modified method of kinesthetic evoked potentials ensures more reliable kinesthetic sensitivity assessment due to movement variability. Asignificant increaseof the latent periods of the early components of the response was found in patients compared to healthy subjects. The modified method of kinesthetic evoked potentials can be used for objective diagnosis of proprioceptive sensitivity disorders in patients with spondylotic cervical myelopathy.

  7. Adaptive regularization network based neural modeling paradigm for nonlinear adaptive estimation of cerebral evoked potentials.

    PubMed

    Zhang, Jian-Hua; Böhme, Johann F

    2007-11-01

    In this paper we report an adaptive regularization network (ARN) approach to realizing fast blind separation of cerebral evoked potentials (EPs) from background electroencephalogram (EEG) activity with no need to make any explicit assumption on the statistical (or deterministic) signal model. The ARNs are proposed to construct nonlinear EEG and EP signal models. A novel adaptive regularization training (ART) algorithm is proposed to improve the generalization performance of the ARN. Two adaptive neural modeling methods based on the ARN are developed and their implementation and performance analysis are also presented. The computer experiments using simulated and measured visual evoked potential (VEP) data have shown that the proposed ARN modeling paradigm yields computationally efficient and more accurate VEP signal estimation owing to its intrinsic model-free and nonlinear processing characteristics.

  8. Effects of propofol, sevoflurane, remifentanil, and (S)-ketamine in subanesthetic concentrations on visceral and somatosensory pain-evoked potentials.

    PubMed

    Untergehrer, Gisela; Jordan, Denis; Eyl, Sebastian; Schneider, Gerhard

    2013-02-01

    Although electroencephalographic parameters and auditory evoked potentials (AEP) reflect the hypnotic component of anesthesia, there is currently no specific and mechanism-based monitoring tool for anesthesia-induced blockade of nociceptive inputs. The aim of this study was to assess visceral pain-evoked potentials (VPEP) and contact heat-evoked potentials (CHEP) as electroencephalographic indicators of drug-induced changes of visceral and somatosensory pain. Additionally, AEP and electroencephalographic permutation entropy were used to evaluate sedative components of the applied drugs. In a study enrolling 60 volunteers, VPEP, CHEP (amplitude N2-P1), and AEP (latency Nb, amplitude Pa-Nb) were recorded without drug application and at two subanesthetic concentration levels of propofol, sevoflurane, remifentanil, or (s)-ketamine. Drug-induced changes of evoked potentials were analyzed. VPEP were generated by electric stimuli using bipolar electrodes positioned in the distal esophagus. For CHEP, heat pulses were given to the medial aspect of the right forearm using a CHEP stimulator. In addition to AEP, electroencephalographic permutation entropy was used to indicate level of sedation. With increasing concentrations of propofol, sevoflurane, remifentanil, and (s)-ketamine, VPEP and CHEP N2-P1 amplitudes decreased. AEP and electroencephalographic permutation entropy showed neither clinically relevant nor statistically significant suppression of cortical activity during drug application. Decreasing VPEP and CHEP amplitudes under subanesthetic concentrations of propofol, sevoflurane, remifentanil, and (s)-ketamine indicate suppressive drug effects. These effects seem to be specific for analgesia.

  9. [EEG and brain-stem evoked potentials in 125 recent concussions].

    PubMed

    Geets, W; Louette, N

    1983-12-01

    EEG and ipsi/contralateral BEPs have been recorded in 125 cases of concussion at most 48 h after the cerebral trauma. In 100 cases of minor concussion the temporary loss of consciousness lasted not more than 2 min. In 25 cases of mild concussion, the loss of consciousness lasted until their arrival at the hospital. In minor concussions an abnormal EEG was found in 17% of the cases and in mild concussions, in 56%. The abnormalities of the BEP, more often seen in mild concussions (60%) than in minor concussions (8%), are an increase of interpeak latencies or distorted responses with average to bad reproducibility. The results are discussed.

  10. Early disturbances in multimodal evoked potentials as a prognostic factor for long-term disability in relapsing-remitting multiple sclerosis patients.

    PubMed

    London, Frédéric; El Sankari, Souraya; van Pesch, Vincent

    2017-04-01

    The aim of this study was to investigate whether early alterations in evoked potentials (EPs) have a prognostic value in relapsing-remitting multiple sclerosis (RRMS). We retrospectively selected 108 early MS patients with a neurological follow-up ranging from 5 to 15years, in whom multimodal EPs (visual, brainstem auditory, somatosensory and motor) were performed at diagnosis. A conventional ordinal score was used to quantify the observed abnormalities. The extent of change in the composite EP score was well correlated to the Expanded Disability Status Scale (EDSS) at ten years (Y 10 ) and up to 15years (Y 11-15 ) after disease onset. Analysis of the predictive value of the EP score showed an increased risk of disability progression at Y 10 and Y 11-15 of 60% (p<0.0001) and 73% (p<0.0001) respectively in patients with an EP score >4. Conversely, the risk of disability progression at Y 10 and Y 11-15 associated with a lower EP score (⩽4) was reduced to 16% and 20% respectively. Our data support the good predictive value for long-term disability progression of multimodal EPs performed early after disease onset in RRMS patients. This study, performed in a homogeneous RRMS cohort with long term follow-up, demonstrates the value of an early comprehensive neurophysiological assessment as a marker for future disability. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  11. Auditory brainstem evoked responses and temperature monitoring during pediatric cardiopulmonary bypass.

    PubMed

    Rodriguez, R A; Edmonds, H L; Auden, S M; Austin, E H

    1999-09-01

    To examine the effects of temperature on auditory brainstem responses (ABRs) in infants during hypothermic cardiopulmonary bypass for total circulatory arrest (TCA). The relationship between ABRs (as a surrogate measure of core-brain temperature) and body temperature as measured at several temperature monitoring sites was determined. In a prospective, observational study, ABRs were recorded non-invasively at normothermia and at every 1 or 2 degrees C change in ear-canal temperature during cooling and rewarming in 15 infants (ages: 2 days to 14 months) that required TCA. The ABR latencies and amplitudes and the lowest temperatures at which an ABR was identified (the threshold) were measured during both cooling and rewarming. Temperatures from four standard temperature monitoring sites were simultaneously recorded. The latencies of ABRs increased and amplitudes decreased with cooling (P < 0.01), but rewarming reversed these effects. The ABR threshold temperature as related to each monitoring site (ear-canal, nasopharynx, esophagus and bladder) was respectively determined as 23 +/- 2.2 degrees C, 20.8 +/- 1.7 degrees C, 14.6 +/- 3.4 degrees C, and 21.5 +/- 3.8 degrees C during cooling and 21.8 +/- 1.6 degrees C, 22.4 +/- 2.0 degrees C, 27.6 +/- 3.6 degrees C, and 23.0 +/- 2.4 degrees C during rewarming. The rewarming latencies were shorter and Q10 latencies smaller than the corresponding cooling values (P < 0.01). Esophageal and bladder sites were more susceptible to temperature variations as compared with the ear-canal and nasopharynx. No temperature site reliably predicted an electrophysiological threshold. A faster latency recovery during rewarming suggests that body temperature monitoring underestimates the effects of rewarming in the core-brain. ABRs may be helpful to monitor the effects of cooling and rewarming on the core-brain during pediatric cardiopulmonary bypass.

  12. Normative data for Aδ contact heat evoked potentials in adult population: a multicenter study.

    PubMed

    Granovsky, Yelena; Anand, Praveen; Nakae, Aya; Nascimento, Osvaldo; Smith, Benn; Sprecher, Elliot; Valls-Solé, Josep

    2016-05-01

    There has been a significant increase over recent years in the use of contact heat evoked potentials (CHEPs) for the evaluation of small nerve fiber function. Measuring CHEP amplitude and latency has clinical utility for the diagnosis and assessment of conditions with neuropathic pain. This international multicenter study aimed to provide reference values for CHEPs to stimuli at 5 commonly examined body sites. Contact heat evoked potentials were recorded from 226 subjects (114 females), distributed per age decade between 20 and 79 years. Temperature stimuli were delivered by a thermode (32°C-51°C at a rate of 70°C/s). In phase I of the study, we investigated side-to-side differences and reported the maximum normal side-to-side difference in Aδ CHEP peak latency and amplitude for leg, forearm, and face. In phase II, we obtained normative data for 3 CHEP parameters (N2P2 amplitude, N2 latency, and P2 latency), stratified for gender and age decades from face, upper and lower limbs, and overlying cervical and lumbar spine. In general, larger CHEP amplitudes were associated with higher evoked pain scores. Females had CHEPs of larger amplitude and shorter latency than males. This substantive data set of normative values will facilitate the clinical use of CHEPs as a rapid, noninvasive, and objective technique for the assessment of patients presenting with neuropathic pain.

  13. Accuracy of measurement in electrically evoked compound action potentials.

    PubMed

    Hey, Matthias; Müller-Deile, Joachim

    2015-01-15

    Electrically evoked compound action potentials (ECAP) in cochlear implant (CI) patients are characterized by the amplitude of the N1P1 complex. The measurement of evoked potentials yields a combination of the measured signal with various noise components but for ECAP procedures performed in the clinical routine, only the averaged curve is accessible. To date no detailed analysis of error dimension has been published. The aim of this study was to determine the error of the N1P1 amplitude and to determine the factors that impact the outcome. Measurements were performed on 32 CI patients with either CI24RE (CA) or CI512 implants using the Software Custom Sound EP (Cochlear). N1P1 error approximation of non-averaged raw data consisting of recorded single-sweeps was compared to methods of error approximation based on mean curves. The error approximation of the N1P1 amplitude using averaged data showed comparable results to single-point error estimation. The error of the N1P1 amplitude depends on the number of averaging steps and amplification; in contrast, the error of the N1P1 amplitude is not dependent on the stimulus intensity. Single-point error showed smaller N1P1 error and better coincidence with 1/√(N) function (N is the number of measured sweeps) compared to the known maximum-minimum criterion. Evaluation of N1P1 amplitude should be accompanied by indication of its error. The retrospective approximation of this measurement error from the averaged data available in clinically used software is possible and best done utilizing the D-trace in forward masking artefact reduction mode (no stimulation applied and recording contains only the switch-on-artefact). Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Effect of neck flexion on somatosensory and motor evoked potentials in Hirayama disease.

    PubMed

    Abraham, A; Gotkine, M; Drory, V E; Blumen, S C

    2013-11-15

    Hirayama disease (HD) is a rare motor disorder mainly affecting young men, characterized by atrophy and weakness of forearm and hand muscles corresponding to a C7-T1 myotome distribution. The weakness is usually unilateral or asymmetric and progression usually stops within several years. The etiology of HD is not well understood. One hypothesis, mainly based on MRI findings, is that the weakness is a consequence of cervical flexion myelopathy. The aim of this study was to explore the function of corticospinal and ascending somatosensory pathways during neck flexion using evoked responses. 15 men with HD and 7 age-matched control male subjects underwent somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) studies with the neck in neutral position and fully flexed. SSEP studies included electrical stimulation of median and ulnar nerves at the wrist, and tibial nerve at the ankle with recording over the ipsilateral Erb's point, cervical spine, and contralateral sensory cortex. MEP recordings were obtained by magnetic stimulation of the motor cortex and the cervical lower spinal roots; the evoked responses were recorded from the contralateral thenar and abductor hallucis muscles. MEP recordings demonstrated significant lower amplitudes, and slightly prolonged latencies in HD patients on cervical stimulation, compared to control subjects. During neck flexion, MEP studies also demonstrated a statistically significant drop in mean upper limb amplitude on cervical stimulation in HD patients, as well as in control subjects, although to a lesser degree. In contrast, no significant differences were found in SSEP studies in HD patients compared to control subjects, or between neutral and flexed position in these groups. The study shows a negative effect of cervical flexion on MEP amplitudes in HD patients as well as in control subjects, requiring more studies to investigate its significance. Neck flexion did not have an influence on any SSEP parameters in

  15. The impact of emotion on respiratory-related evoked potentials

    PubMed Central

    von Leupoldt, Andreas; Vovk, Andrea; Bradley, Margaret M.; Keil, Andreas; Lang, Peter J.; Davenport, Paul W.

    2013-01-01

    Emotion influences the perception of respiratory sensations, although the specific mechanism underlying this modulation is not yet clear. We examined the impact of viewing pleasant, neutral, and unpleasant affective pictures on the respiratory-related evoked potential (RREP) elicited by a short inspiratory occlusion in healthy volunteers. Reduced P3 amplitude of the RREP was found for respiratory probes presented when viewing pleasant or unpleasant series, when compared to those presented during the neutral series. Earlier RREP components, such as Nf, P1, N1, and P2, showed no modulation by emotion. The results suggest that emotion impacts the perception of respiratory sensations by reducing the attentional resources available for processing afferent respiratory sensory signals. PMID:20070570

  16. Vestibular-dependent inter-stimulus interval effects on sound evoked potentials of central origin.

    PubMed

    Todd, N P M; Govender, S; Colebatch, J G

    2016-11-01

    Todd et al. (2014ab) have recently demonstrated the presence of vestibular-dependent contributions to auditory evoked potentials (AEPs) when passing through the vestibular threshold as determined by vestibular evoked myogenic potentials (VEMPs), including a particular deflection labeled as an N42/P52 prior to the long-latency AEPs N1 and P2. In this paper we report the results of an experiment to determine the effect of inter-stimulus interval (ISI) and regularity on potentials recorded above and below VEMP threshold. Five healthy, right-handed subjects were recruited and evoked potentials were recorded to binaurally presented sound stimulation, above and below vestibular threshold, at seven stimulus rates with ISIs of 212, 300, 424, 600, 848, 1200 and 1696 ms. The inner five intervals, i.e. 300, 424, 600, 848, 1200 ms, were presented twice in both regular and irregular conditions. ANOVA on the global field power (GFP) were conducted for each of four waves, N42, P52, N1 and P2 with factors of intensity, ISI and regularity. Both N42 and P52 waves showed significant ANOVA effects of intensity but no other main effects or interactions. In contrast both N1 and P2 showed additional effects of ISI, as well as intensity, and evidence of non-linear interactions between ISI and intensity. A source analysis was carried out consistent with prior work suggesting that when above vestibular threshold, in addition to bilateral superior temporal cortex, ocular, cerebellar and cingulate sources are recruited. Further statistical analysis of the source currents indicated that the origin of the interactions with intensity may be the ISI sensitivity of the vestibular-dependent sources. This in turn may reflect a specific vestibular preference for stimulus rates associated with locomotion, i.e. rates close to 2 Hz, or ISIs close to 500 ms, where saccular afferents show increased gain and the corresponding reflexes are most sensitive. Copyright © 2016 The Authors. Published by

  17. Brainstem timing: implications for cortical processing and literacy.

    PubMed

    Banai, Karen; Nicol, Trent; Zecker, Steven G; Kraus, Nina

    2005-10-26

    The search for a unique biological marker of language-based learning disabilities has so far yielded inconclusive findings. Previous studies have shown a plethora of auditory processing deficits in learning disabilities at both the perceptual and physiological levels. In this study, we investigated the association among brainstem timing, cortical processing of stimulus differences, and literacy skills. To that end, brainstem timing and cortical sensitivity to acoustic change [mismatch negativity (MMN)] were measured in a group of children with learning disabilities and normal-learning children. The learning-disabled (LD) group was further divided into two subgroups with normal and abnormal brainstem timing. MMNs, literacy, and cognitive abilities were compared among the three groups. LD individuals with abnormal brainstem timing were more likely to show reduced processing of acoustic change at the cortical level compared with both normal-learning individuals and LD individuals with normal brainstem timing. This group was also characterized by a more severe form of learning disability manifested by poorer reading, listening comprehension, and general cognitive ability. We conclude that abnormal brainstem timing in learning disabilities is related to higher incidence of reduced cortical sensitivity to acoustic change and to deficient literacy skills. These findings suggest that abnormal brainstem timing may serve as a reliable marker of a subgroup of individuals with learning disabilities. They also suggest that faulty mechanisms of neural timing at the brainstem may be the biological basis of malfunction in this group.

  18. Gamma Knife Treatment of Brainstem Metastases

    PubMed Central

    Peterson, Halloran E.; Larson, Erik W.; Fairbanks, Robert K.; MacKay, Alexander R.; Lamoreaux, Wayne T.; Call, Jason A.; Carlson, Jonathan D.; Ling, Benjamin C.; Demakas, John J.; Cooke, Barton S.; Peressini, Ben; Lee, Christopher M.

    2014-01-01

    The management of brainstem metastases is challenging. Surgical treatment is usually not an option, and chemotherapy is of limited utility. Stereotactic radiosurgery has emerged as a promising palliative treatment modality in these cases. The goal of this study is to assess our single institution experience treating brainstem metastases with Gamma Knife radiosurgery (GKRS). This retrospective chart review studied 41 patients with brainstem metastases treated with GKRS. The most common primary tumors were lung, breast, renal cell carcinoma, and melanoma. Median age at initial treatment was 59 years. Nineteen (46%) of the patients received whole brain radiation therapy (WBRT) prior to or concurrent with GKRS treatment. Thirty (73%) of the patients had a single brainstem metastasis. The average GKRS dose was 17 Gy. Post-GKRS overall survival at six months was 42%, at 12 months was 22%, and at 24 months was 13%. Local tumor control was achieved in 91% of patients, and there was one patient who had a fatal brain hemorrhage after treatment. Karnofsky performance score (KPS) >80 and the absence of prior WBRT were predictors for improved survival on multivariate analysis (HR 0.60 (p = 0.02), and HR 0.28 (p = 0.02), respectively). GKRS was an effective treatment for brainstem metastases, with excellent local tumor control. PMID:24886816

  19. Auditory effects of aircraft noise on people living near an airport.

    PubMed

    Chen, T J; Chen, S S; Hsieh, P Y; Chiang, H C

    1997-01-01

    Two groups of randomly chosen individuals who lived in two communities located different distances from the airport were studied. We monitored audiometry and brainstem auditory-evoked potentials to evaluate cochlear and retrocochlear functions in the individuals studied. The results of audiometry measurements indicated that hearing ability was reduced significantly in individuals who lived near the airport and who were exposed frequently to aircraft noise. Values of pure-tone average, high pure-tone average, and threshold at 4 kHz were all higher in individuals who lived near the airport, compared with those who lived farther away. With respect to brainstem auditory-evoked potentials, latencies between the two groups were not consistently different; however, the abnormality rate of such potentials was significantly higher in volunteers who lived near the airport, compared with less-exposed counterparts. In addition, a positive correlation was found between brainstem auditory-evoked potential latency and behavioral hearing threshold of high-frequency tone in exposed volunteers. We not only confirmed that damage to the peripheral cochlear organs occurred in individuals exposed frequently to aircraft noise, but we demonstrated involvement of the central auditory pathway.

  20. Transcranial sonography of brainstem structures in panic disorder.

    PubMed

    Šilhán, Petr; Jelínková, Monika; Walter, Uwe; Pavlov Praško, Ján; Herzig, Roman; Langová, Kateřina; Školoudík, David

    2015-10-30

    Panic disorder has been associated with altered serotonin metabolism in the brainstem raphe. The aim of study was to evaluate the BR echogenicity on transcranial sonography (TCS) in panic disorder. A total of 96 healthy volunteers were enrolled in the "derivation" cohort, and 26 healthy volunteers and 26 panic disorder patients were enrolled in the "validation" cohort. TCS echogenicity of brainstem raphe and substantia nigra was assessed on anonymized images visually and by means of digitized image analysis. Significantly reduced brainstem raphe echogenicity was detected more frequently in panic disorder patients than in controls using both visual (68% vs. 31%) and digitized image analysis (52% vs. 12%). The optimal cut-off value of digitized brainstem raphe echogenicity indicated the diagnosis of panic disorder with a sensitivity of 64% and a specificity of 73%, and corresponded to the 30th percentile in the derivation cohort. Reduced brainstem raphe echogenicity was associated with shorter treatment duration, and, by trend, lower severity of anxiety. No relationship was found between echogenicity of brainstem raphe or substantia nigra and age, gender, severity of panic disorder, or severity of depression. Patients with panic disorder exhibit changes of brainstem raphe on TCS suggesting an alteration of the central serotonergic system. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Interhemispheric Asymmetries in Visual Evoked Potential Amplitude

    DTIC Science & Technology

    1980-06-12

    Layne, 1965) and of patients with Korsakoff’s syndrome (Malerstein and Callaway, 1969) . In the schizophrenics, the high variability is related to poor...communication. Malerstein, A. J., Callaway, E. Two-tone average evoked response in Korsakoff patients. J. Psychiatr. Res. 6: 253-260, 1969. Marsh, G

  2. Multifocal Visual Evoked Potential in Eyes With Temporal Hemianopia From Chiasmal Compression: Correlation With Standard Automated Perimetry and OCT Findings.

    PubMed

    Sousa, Rafael M; Oyamada, Maria K; Cunha, Leonardo P; Monteiro, Mário L R

    2017-09-01

    To verify whether multifocal visual evoked potential (mfVEP) can differentiate eyes with temporal hemianopia due to chiasmal compression from healthy controls. To assess the relationship between mfVEP, standard automated perimetry (SAP), and Fourier domain-optical coherence tomography (FD-OCT) macular and peripapillary retinal nerve fiber layer (RNFL) thickness measurements. Twenty-seven eyes with permanent temporal visual field (VF) defects from chiasmal compression on SAP and 43 eyes of healthy controls were submitted to mfVEP and FD-OCT scanning. Multifocal visual evoked potential was elicited using a stimulus pattern of 60 sectors and the responses were averaged for the four quadrants and two hemifields. Optical coherence tomography macular measurements were averaged in quadrants and halves, while peripapillary RNFL thickness was averaged in four sectors around the disc. Visual field loss was estimated in four quadrants and each half of the 24-2 strategy test points. Multifocal visual evoked potential measurements in the two groups were compared using generalized estimated equations, and the correlations between mfVEP, VF, and OCT findings were quantified. Multifocal visual evoked potential-measured temporal P1 and N2 amplitudes were significantly smaller in patients than in controls. No significant difference in amplitude was observed for nasal parameters. A significant correlation was found between mfVEP amplitudes and temporal VF loss, and between mfVEP amplitudes and the corresponding OCT-measured macular and RNFL thickness parameters. Multifocal visual evoked potential amplitude parameters were able to differentiate eyes with temporal hemianopia from controls and were significantly correlated with VF and OCT findings, suggesting mfVEP is a useful tool for the detection of visual abnormalities in patients with chiasmal compression.

  3. Viewing condition dependence of the gaze-evoked nystagmus in Arnold Chiari type 1 malformation.

    PubMed

    Ghasia, Fatema F; Gulati, Deepak; Westbrook, Edward L; Shaikh, Aasef G

    2014-04-15

    Saccadic eye movements rapidly shift gaze to the target of interest. Once the eyes reach a given target, the brainstem ocular motor integrator utilizes feedback from various sources to assure steady gaze. One of such sources is cerebellum whose lesion can impair neural integration leading to gaze-evoked nystagmus. The gaze evoked nystagmus is characterized by drifts moving the eyes away from the target and a null position where the drifts are absent. The extent of impairment in the neural integration for two opposite eccentricities might determine the location of the null position. Eye in the orbit position might also determine the location of the null. We report this phenomenon in a patient with Arnold Chiari type 1 malformation who had intermittent esotropia and horizontal gaze-evoked nystagmus with a shift in the null position. During binocular viewing, the null was shifted to the right. During monocular viewing, when the eye under cover drifted nasally (secondary to the esotropia), the null of the gaze-evoked nystagmus reorganized toward the center. We speculate that the output of the neural integrator is altered from the bilateral conflicting eye in the orbit position secondary to the strabismus. This could possibly explain the reorganization of the location of the null position. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Innovative neurophysiological methods in itch research: long-latency evoked potentials after electrical and thermal stimulation in patients with atopic dermatitis.

    PubMed

    Yudina, Marina M; Toropina, Galina G; Lvov, Andrey; Gieler, Uwe

    2011-10-01

    The aim of this study was to examine the findings of innovative neurophysiological methods of itch research. Short-latency and pain-related somatosensory-evoked potentials after electrical stimulation, as well as long-latency evoked potentials after thermal stimulation were studied in 38 patients with atopic dermatitis (AD) and 26 healthy volunteers. Quantitative Sensory Testing of thermal perception was performed in 22 patients with AD from the main AD group and in 15 healthy volunteers. Brain hyperactivity to electrical stimuli, delayed thermal-evoked potentials and elevated thermal thresholds were revealed in patients with AD compared with healthy controls. The data indicate small nerve fibre dysfunction in patients with AD, which may contribute to the pathogenesis of AD and chronic itch. The study demonstrates objective approaches to assess the function of small nerve fibres in patients with chronic itch.

  5. Single-trial laser-evoked potentials feature extraction for prediction of pain perception.

    PubMed

    Huang, Gan; Xiao, Ping; Hu, Li; Hung, Yeung Sam; Zhang, Zhiguo

    2013-01-01

    Pain is a highly subjective experience, and the availability of an objective assessment of pain perception would be of great importance for both basic and clinical applications. The objective of the present study is to develop a novel approach to extract pain-related features from single-trial laser-evoked potentials (LEPs) for classification of pain perception. The single-trial LEP feature extraction approach combines a spatial filtering using common spatial pattern (CSP) and a multiple linear regression (MLR). The CSP method is effective in separating laser-evoked EEG response from ongoing EEG activity, while MLR is capable of automatically estimating the amplitudes and latencies of N2 and P2 from single-trial LEP waveforms. The extracted single-trial LEP features are used in a Naïve Bayes classifier to classify different levels of pain perceived by the subjects. The experimental results show that the proposed single-trial LEP feature extraction approach can effectively extract pain-related LEP features for achieving high classification accuracy.

  6. Maximally reliable spatial filtering of steady state visual evoked potentials.

    PubMed

    Dmochowski, Jacek P; Greaves, Alex S; Norcia, Anthony M

    2015-04-01

    Due to their high signal-to-noise ratio (SNR) and robustness to artifacts, steady state visual evoked potentials (SSVEPs) are a popular technique for studying neural processing in the human visual system. SSVEPs are conventionally analyzed at individual electrodes or linear combinations of electrodes which maximize some variant of the SNR. Here we exploit the fundamental assumption of evoked responses--reproducibility across trials--to develop a technique that extracts a small number of high SNR, maximally reliable SSVEP components. This novel spatial filtering method operates on an array of Fourier coefficients and projects the data into a low-dimensional space in which the trial-to-trial spectral covariance is maximized. When applied to two sample data sets, the resulting technique recovers physiologically plausible components (i.e., the recovered topographies match the lead fields of the underlying sources) while drastically reducing the dimensionality of the data (i.e., more than 90% of the trial-to-trial reliability is captured in the first four components). Moreover, the proposed technique achieves a higher SNR than that of the single-best electrode or the Principal Components. We provide a freely-available MATLAB implementation of the proposed technique, herein termed "Reliable Components Analysis". Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Auditory Brainstem Responses in Childhood Psychosis.

    ERIC Educational Resources Information Center

    Gillberg, Christopher; And Others

    1983-01-01

    Auditory brainstem responses (ABR) were compared in 24 autistic children, seven children with other childhood psychoses, and 31 normal children. One-third of the autistic Ss showed abnormal ABR indicating brainstem dysfunction and correlating with muscular hypotonia and severe language impairment. Ss with other psychoses and normal Ss showed…

  8. Electroretinogram (ERG) to photic stimuli should be carefully distinct from photic brainstem reflex in patients with deep coma.

    PubMed

    Mitsuhashi, Masahiro; Hitomi, Takefumi; Aoyama, Akihiro; Kaido, Toshimi; Ikeda, Akio; Takahashi, Ryosuke

    2017-08-31

    Patient 1: A 35-year-old woman became deep coma because of intracranial hemorrhage after pulmonary surgery. Patient 2: A 39-year-old woman became deep coma because of cerebellar hemorrhage after hepatic surgery. Scalp-recorded digital electroencephalography (EEG) showed electrocerebral inactivity in both cases. In addition, both EEG showed repetitive discharges at bilateral frontopolar electrodes in response to photic stimuli. The amplitude and latency of the discharges was 17 μV and 24 msec in case 1, and 9 μV and 27 msec in case 2 respectively. The activity at left frontopolar electrode disappeared after coverage of the ipsilateral eye. Based on these findings, we could exclude the possibility of brainstem response and judged it as electroretinogram (ERG). Photic stimulation is a useful activation method in EEG recording, and we can also evaluate brainstem function by checking photic blink reflex if it is evoked. However, we should be cautious about the distinction of ERG from photic blink reflex when brain death is clinically suspected.

  9. Automatic Parametrization of Somatosensory Evoked Potentials With Chirp Modeling.

    PubMed

    Vayrynen, Eero; Noponen, Kai; Vipin, Ashwati; Thow, X Y; Al-Nashash, Hasan; Kortelainen, Jukka; All, Angelo

    2016-09-01

    In this paper, an approach using polynomial phase chirp signals to model somatosensory evoked potentials (SEPs) is proposed. SEP waveforms are assumed as impulses undergoing group velocity dispersion while propagating along a multipath neural connection. Mathematical analysis of pulse dispersion resulting in chirp signals is performed. An automatic parameterization of SEPs is proposed using chirp models. A Particle Swarm Optimization algorithm is used to optimize the model parameters. Features describing the latencies and amplitudes of SEPs are automatically derived. A rat model is then used to evaluate the automatic parameterization of SEPs in two experimental cases, i.e., anesthesia level and spinal cord injury (SCI). Experimental results show that chirp-based model parameters and the derived SEP features are significant in describing both anesthesia level and SCI changes. The proposed automatic optimization based approach for extracting chirp parameters offers potential for detailed SEP analysis in future studies. The method implementation in Matlab technical computing language is provided online.

  10. Mid-latency evoked potentials in self-reported impulsive aggression.

    PubMed

    Houston, R J; Stanford, M S

    2001-02-01

    The present study was conducted to examine psychophysiological differences in arousability among individuals who display impulsive aggressive outbursts. Amplitude and latency for the mid-latency evoked potentials (P1, N1 and P2) were obtained at scalp electrode sites. The evoking stimuli were three intensities (low, medium, high) of photic stimulation. Compared to non-aggressive controls, impulsive aggressive subjects showed significantly reduced P1 amplitude, which is indicative of an inefficient sensory gating mechanism. In addition, these subjects exhibited significantly larger N1 amplitude implying an enhanced orienting of attention to stimuli. Impulsive aggressive subjects also exhibited shorter P1, N1 and P2 peak latency. These results suggest that impulsive aggressive individuals may display quicker orienting and processing of stimuli in an attempt to compensate for low resting arousal levels. Finally, impulsive aggressive subjects augmented the P1-N1 component more frequently than controls, which is consistent with previous studies examining impulsivity and sensation seeking. Together, these findings extend previous work concerning the underlying physiology of impulsive aggression. It has been suggested that impulsive aggressive individuals may attempt to compensate for low resting arousal levels by engaging in stimulus seeking behaviors. Accordingly, the present findings imply similar physiological compensatory responses as demonstrated by heightened orienting of attention, processing and arousability. In addition, a compromised sensory gating system in impulsive aggressors may exacerbate such circumstances, and lead to later cognitive processing deficits.

  11. High sensitivity of contact-heat evoked potentials in "snake-eye" appearance myelopathy.

    PubMed

    Ulrich, A; Min, K; Curt, A

    2015-10-01

    To evaluate the sensitivity of dermatomal contact-heat evoked potentials (dCHEPs) compared to dermatomal somatosensory evoked potentials (dSSEPs) and clinical sensory testing in patients with focal central cord myelopathy, referred to as "snake-eye" appearance myelopathy (SEAM). 33 patients with SEAM in neuroimaging underwent electrophysiological (dCHEPs, dSSEPs) and clinical testing of sensory function (light touch [LT] and pin prick [PP]) at segments above, at and below to the spinal cord lesion. In total, 151 dermatomes were tested (39 above, 112 at/below lesion). The sensitivity of dCHEPs (97.0%) was significantly higher compared to dSSEPs (23.3%, p<0.001), PP (66.7%, p=0.003) and LT (69.7%, p=0.006), respectively. The sensitivity of dCHEPs was highest when applied one to two segments caudally to the level of spinal cord lesion in MRI. dCHEPs are highly sensitive and superior to dSSEPs and clinical sensory testing in the diagnosis of SEAM. dCHEPs may complement the diagnosis in focal central cord myelopathies where clinical testing of sensory function and dSSEPs are less sensitive to provide conclusive findings. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Automated brainstem co-registration (ABC) for MRI.

    PubMed

    Napadow, Vitaly; Dhond, Rupali; Kennedy, David; Hui, Kathleen K S; Makris, Nikos

    2006-09-01

    Group data analysis in brainstem neuroimaging is predicated on accurate co-registration of anatomy. As the brainstem is comprised of many functionally heterogeneous nuclei densely situated adjacent to one another, relatively small errors in co-registration can manifest in increased variance or decreased sensitivity (or significance) in detecting activations. We have devised a 2-stage automated, reference mask guided registration technique (Automated Brainstem Co-registration, or ABC) for improved brainstem co-registration. Our approach utilized a brainstem mask dataset to weight an automated co-registration cost function. Our method was validated through measurement of RMS error at 12 manually defined landmarks. These landmarks were also used as guides for a secondary manual co-registration option, intended for outlier individuals that may not adequately co-register with our automated method. Our methodology was tested on 10 healthy human subjects and compared to traditional co-registration techniques (Talairach transform and automated affine transform to the MNI-152 template). We found that ABC had a significantly lower mean RMS error (1.22 +/- 0.39 mm) than Talairach transform (2.88 +/- 1.22 mm, mu +/- sigma) and the global affine (3.26 +/- 0.81 mm) method. Improved accuracy was also found for our manual-landmark-guided option (1.51 +/- 0.43 mm). Visualizing individual brainstem borders demonstrated more consistent and uniform overlap for ABC compared to traditional global co-registration techniques. Improved robustness (lower susceptibility to outliers) was demonstrated with ABC through lower inter-subject RMS error variance compared with traditional co-registration methods. The use of easily available and validated tools (AFNI and FSL) for this method should ease adoption by other investigators interested in brainstem data group analysis.

  13. Spectrum pattern resolution after noise exposure in a beluga whale, Delphinapterus leucas: Evoked potential study.

    PubMed

    Popov, Vladimir V; Nechaev, Dmitry I; Sysueva, Evgenia V; Rozhnov, Viatcheslav V; Supin, Alexander Ya

    2015-07-01

    Temporary threshold shift (TTS) and the discrimination of spectrum patterns after fatiguing noise exposure (170 dB re 1 μPa, 10 min duration) was investigated in a beluga whale, Delphinapterus leucas, using the evoked potential technique. Thresholds were measured using rhythmic (1000/s) pip trains of varying levels and recording the rhythmic evoked responses. Discrimination of spectrum patterns was investigated using rippled-spectrum test stimuli of various levels and ripple densities, recording the rhythmic evoked responses to ripple phase reversals. Before noise exposure, the greatest responses to rippled-spectrum probes were evoked by stimuli with a low ripple density with a decrease in the response magnitude occurring with an increasing ripple density. After noise exposure, both a TTS and a reduction of the responses to rippled-spectrum probes appeared and recovered in parallel. The reduction of the responses to rippled-spectrum probes was maximal for high-magnitude responses at low ripple densities and was negligible for low-magnitude responses at high ripple densities. It is hypothesized that the impacts of fatiguing sounds are not limited by increased thresholds and decreased sensitivity results in reduced ability to discriminate fine spectral content with the greatest impact on the discrimination of spectrum content that may carry the most obvious information about stimulus properties.

  14. Effects of acute brainstem compression on auditory brainstem response in the guinea pig.

    PubMed

    Tu, T Y; Yu, L H; Chiu, J H; Shu, C H; Shiao, A S; Lien, C F

    1998-11-01

    The purpose of this study was to establish the norm for parameters of auditory brainstem response (ABR) in the guinea pig and to investigate if acute brainstem compression results in significant changes to these parameters. Thirty-six guinea pigs with positive Preyer's reflex were anesthetized. A craniectomy was performed to remove the right occipital bone and the dura mater was opened to expose the brain, cerebellum and cerebellopontine angle (CPA). A small inflatable balloon was placed into the CPA precisely and slowly. ABR was recorded before incision of the skin as a baseline value, after placement and after inflation of the balloon with water at 0.1-ml intervals. Five stable peaks were recorded in 27 experimental animals. When the balloon was inflated with 0.1 ml water, the absolute latency (AL) of peaks IV and V and the interpeak latency (IPL) of peaks III and IV, and IV and V were prolonged. The amplitude ratios (AR) of peaks II, III, IV and V to peak I decreased. Inflation of the balloon with 0.2 ml of water caused further elongation of ALs of peaks IV and V and decreases in each AR. When the balloon volume increased to 0.3 ml, peak V became unrecognizable and peaks III and IV showed significant elongation of AL; peaks I and II did not show significant change in ALs. Further increase of the balloon volume to 0.4 ml resulted in disappearance of peaks III, IV and V; AL of peak II was also elongated. However, the amplitude and AL of peak I remained unchanged. Similar changes were observed in IPLs. This study establishes the norm of parameters of ABR in guinea pigs and demonstrates that acute brainstem compression causes elongation of ALs and IPLs of peaks II, III, IV and V. This suggests that peaks II, III, IV and V come from the brainstem and that peak I is not generated from the brainstem in the guinea pig.

  15. Single-trial extraction of cognitive evoked potentials by combination of third-order correlation and wavelet denoising.

    PubMed

    Zhang, Z; Tian, X

    2005-01-01

    The application of a recently proposed denoising implementation for obtaining cognitive evoked potentials (CEPs) at the single-trial level is shown. The aim of this investigation is to develop the technique of extracting CEPs by combining both the third-order correlation and the wavelet denoising methods. First, the noisy CEPs was passed through a finite impulse response filter whose impulse response is matched with the shape of the noise-free signal. It was shown that it is possible to estimate the filter impulse response on basis of a select third-order correlation slice (TOCS) of the input noisy CEPs. Second, the output from the third-order correlation filter is decomposed with bi-orthogonal splines at 5 levels. The CEPs is reconstructed by wavelet final approximation a5. We study its performance in simulated data as well as in cognitive evoked potentials of normal rat and Alzheimer's disease (AD) model rat. For the simulated data, the method gives a significantly better reconstruction of the single-trial cognitive evoked potentials responses in comparison with the simulated data. Moreover, with this approach we obtain a significantly better estimation of the amplitudes and latencies of the simulated CEPs. For the real data, the method clearly improves the visualization of single-trial CEPs. This allows the calculation of better averages as well as the study of systematic or unsystematic variations between trials.

  16. Passive attenuation of cortical pattern evoked potentials with increasing body weight in young male rhesus macaques.

    PubMed

    Komaromy, Andras M; Brooks, Dennis E; Kallberg, Maria E; Dawson, William W; Sapp, Harold L; Sherwood, Mark B; Lambrou, George N; Percicot, Christine L

    2003-05-01

    The purpose of our study was to determine changes in amplitudes and implicit times of retinal and cortical pattern evoked potentials with increasing body weight in young, growing rhesus macaques (Macaca mulatta). Retinal and cortical pattern evoked potentials were recorded from 29 male rhesus macaques between 3 and 7 years of age. Thirteen animals were reexamined after 11 months. Computed tomography (CT) was performed on two animals to measure the distance between the location of the skin electrode and the surface of the striate cortex. Spearman correlation coefficients were calculated to describe the relationship between body weights and either root mean square (rms) amplitudes or implicit times. For 13 animals rms amplitudes and implicit times were compared with the Wilcoxon matched pairs signed rank test for recordings taken 11 months apart. Highly significant correlations between increases in body weights and decreases in cortical rms amplitudes were noted in 29 monkeys (p < 0.0005). No significant changes were found in the cortical rms amplitudes in thirteen monkeys over 11 months. Computed tomography showed a large increase of soft tissue thickness over the skull and striate cortex with increased body weight. The decreased amplitude in cortical evoked potentials with weight gain associated with aging can be explained by the increased distance between skin electrode and striate cortex due to soft tissue thickening (passive attenuation).

  17. Waveform Similarity Analysis: A Simple Template Comparing Approach for Detecting and Quantifying Noisy Evoked Compound Action Potentials.

    PubMed

    Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira

    2015-01-01

    Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound

  18. Waveform Similarity Analysis: A Simple Template Comparing Approach for Detecting and Quantifying Noisy Evoked Compound Action Potentials

    PubMed Central

    Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira

    2015-01-01

    Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound

  19. Cortical Auditory Evoked Potentials with Simple (Tone Burst) and Complex (Speech) Stimuli in Children with Cochlear Implant

    PubMed Central

    Martins, Kelly Vasconcelos Chaves; Gil, Daniela

    2017-01-01

    Introduction  The registry of the component P1 of the cortical auditory evoked potential has been widely used to analyze the behavior of auditory pathways in response to cochlear implant stimulation. Objective  To determine the influence of aural rehabilitation in the parameters of latency and amplitude of the P1 cortical auditory evoked potential component elicited by simple auditory stimuli (tone burst) and complex stimuli (speech) in children with cochlear implants. Method  The study included six individuals of both genders aged 5 to 10 years old who have been cochlear implant users for at least 12 months, and who attended auditory rehabilitation with an aural rehabilitation therapy approach. Participants were submitted to research of the cortical auditory evoked potential at the beginning of the study and after 3 months of aural rehabilitation. To elicit the responses, simple stimuli (tone burst) and complex stimuli (speech) were used and presented in free field at 70 dB HL. The results were statistically analyzed, and both evaluations were compared. Results  There was no significant difference between the type of eliciting stimulus of the cortical auditory evoked potential for the latency and the amplitude of P1. There was a statistically significant difference in the P1 latency between the evaluations for both stimuli, with reduction of the latency in the second evaluation after 3 months of auditory rehabilitation. There was no statistically significant difference regarding the amplitude of P1 under the two types of stimuli or in the two evaluations. Conclusion  A decrease in latency of the P1 component elicited by both simple and complex stimuli was observed within a three-month interval in children with cochlear implant undergoing aural rehabilitation. PMID:29018498

  20. The Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury

    PubMed Central

    Ibitoye, Morufu Olusola; Estigoni, Eduardo H.; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M.

    2014-01-01

    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05) between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population. PMID:25025551

  1. Facilitation and refractoriness of the electrically evoked compound action potential.

    PubMed

    Hey, Matthias; Müller-Deile, Joachim; Hessel, Horst; Killian, Matthijs

    2017-11-01

    In this study we aim to resolve the contributions of facilitation and refractoriness at very short pulse intervals. Measurements of the refractory properties of the electrically evoked compound action potential (ECAP) of the auditory nerve in cochlear implant (CI) users at inter pulse intervals below 300 μs are influenced by facilitation and recovery effects. ECAPs were recorded using masker pulses with a wide range of current levels relative to the probe pulse levels, for three suprathreshold probe levels and pulse intervals from 13 to 200 μs. Evoked potentials were measured for 21 CI patients by using the masked response extraction artifact cancellation procedure. During analysis of the measurements the stimulation current was not used as absolute value, but in relation to the patient's individual ECAP threshold. This enabled a more general approach to describe facilitation as a probe level independent effect. Maximum facilitation was found for all tested inter pulse intervals at masker levels near patient's individual ECAP threshold, independent from probe level. For short inter pulse intervals an increased N 1 P 1 amplitude was measured for subthreshold masker levels down to 120 CL below patient's individual ECAP threshold in contrast to the recreated state. ECAPs recorded with inter pulse intervals up to 200 μs are influenced by facilitation and recovery. Facilitation effects are most pronounced for masker levels at or below ECAP threshold, while recovery effects increase with higher masker levels above ECAP threshold. The local maximum of the ECAP amplitude for masker levels around ECAP threshold can be explained by the mutual influence of maximum facilitation and minimal refractoriness. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Effect of head circumference on parameters of pattern reversal visual evoked potential in healthy adults of central India.

    PubMed

    Kothari, R; Singh, R; Singh, S; Bokariya, P

    2012-06-01

    Visual evoked response testing has been one of the most exciting clinical tools to be developed from neurophysiologic research in recent years and has provided us with an objective method of identifying abnormalities of the afferent visual pathways. Investigation were carried out to see whether the head circumference influence the pattern reversal visual evoked potential (PRVEP) parameters. The study comprised of pattern reversal visual evoked potential (PRVEP) recordings in 400 eyes of 200 normal subjects. Two hundred fourty eight eyes were males and 152 eyes were from 76 female subjects recruited from the Central Indian population in the age range of 40-79 years. Visual evoked potential (VEP) recordings were performed in accordance to the standardized methodology of International Federation of Clinical Neurophysiology (IFCN) Committee Recommendations and International Society for Clinical Electrophysiology of Vision (ISCEV) Guidelines and montages were kept as per 10-20 International System of EEG Electrode placements. The stimulus configuration in this study consisted of the transient pattern reversal method in which a black and white checker board was generated (full field) and displayed on a VEP Monitor by an electronic pattern regenerator inbuilt in an Evoked Potential Recorder (RMS EMG EP MARK II). VEP latencies, duration and amplitude were measured in all subjects and the data were analyzed. The correlation of all the electrophysiological parameters with head circumference was evaluated by Pearson's correlation co-efficient (r) and its statistical significance was evaluated. The prediction equations for all the VEP parameters with respect to head circumference were derived. We found a positive correlation of P 100 latency and N 155 latency with mean head circumference, while a highly significant negative correlation were noted of P 100 amplitude with head circumference. N 70 latency was significantly correlated with head circumference. P 100 duration showed

  3. Analysis of the Averaged Visually Evoked Potentials in Normal Children. (RIEEC Research Bulletin 3.)

    ERIC Educational Resources Information Center

    Mizutani, Tohru; And Others

    Evaluated were the properties and fine structures of averaged visually evoked potentials (AVEP) in 60 normal children between the ages of 2 and 9 years. Electroencephalographic recordings were taken while white diffuse flashes were used to deliver visual stimuli to the Ss. Three types of AVEP patterns were discerned, with no relationship observed…

  4. Attentional Modulation of Visual-Evoked Potentials by Threat: Investigating the Effect of Evolutionary Relevance

    ERIC Educational Resources Information Center

    Brown, Christopher; El-Deredy, Wael; Blanchette, Isabelle

    2010-01-01

    In dot-probe tasks, threatening cues facilitate attention to targets and enhance the amplitude of the target P1 peak of the visual-evoked potential. While theories have suggested that evolutionarily relevant threats should obtain preferential neural processing, this has not been examined empirically. In this study we examined the effects of…

  5. Unpredictable interference of new transcranial motor-evoked potential monitor against the implanted pacemaker.

    PubMed

    Hayashi, Kazuko

    2016-12-01

    Recently, NuVasive NV-M5 nerve monitoring system, a new transcranial motor-evoked potential (TcMEP) monitor, has been introduced with the spread of flank-approach spinal operations such as extreme lateral interbody fusion, to prevent nerve damage. Conventional TcMEP monitors use changes in MEP wave patterns, such as amplitude and/or latency, whereas the NV-M5 nerve monitor system first measures the MEP baseline waveform from the transcranial-evoked potential then measures the electric current necessary to obtain the standard of the previous baseline wave pattern at subsequent monitoring times. The NV-M5 monitor determines nerve damage according to the increase in necessary electric current threshold. The NV-M5 monitor also uses a local electrical stimulation mode to monitor the safety of setting screws into the lumbar vertebrae. In this way, various electrical stimulations with various durations and frequencies are used, and electrical noise may result in unpredictable interference with cardiac pacemakers. We performed anesthetic management of extreme lateral interbody fusion surgery using the NV-M5 in a patient with an implanted pacemaker, during which TcMEP stimulation caused interference with the implanted pacemaker. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Subacute Sclerosing Panencephalitis of the Brainstem as a Clinical Entity.

    PubMed

    Upadhyayula, Pavan S; Yang, Jason; Yue, John K; Ciacci, Joseph D

    2017-11-07

    Subacute sclerosing panencephalitis (SSPE) is a rare progressive neurological disorder of early adolescence caused by persistent infection of the measles virus, which remains prevalent worldwide despite an effective vaccine. SSPE is a devastating disease with a characteristic clinical course in subcortical white matter; however, atypical presentations of brainstem involvement may be seen in rare cases. This review summarizes reports to date on brainstem involvement in SSPE, including the clinical course of disease, neuroimaging presentations, and guidelines for treatment. A comprehensive literature search was performed for English-language publications with keywords "subacute sclerosing panencephalitis" and "brainstem" using the National Library of Medicine PubMed database (March 1981-September 2017). Eleven articles focusing on SSPE of the brainstem were included. Predominant brainstem involvement remains uncharacteristic of SSPE, which may lead to misdiagnosis and poor outcome. A number of case reports have demonstrated brainstem involvement associated with other intracranial lesions commonly presenting in later SSPE stages (III and IV). However, brainstem lesions can appear in all stages, independent of higher cortical structures. The varied clinical presentations complicate diagnosis from a neuroimaging perspective. SSPE of the brainstem is a rare but important clinical entity. It may present like canonical SSPE or with unique clinical features such as absence seizures and pronounced ataxia. While SSPE generally progresses to the brainstem, it can also begin with a primary focus of infection in the brainstem. Awareness of varied SSPE presentations can aid in early diagnosis as well as guide management and treatment.

  7. Quantitative proteomic analysis of the brainstem following lethal sarin exposure.

    PubMed

    Meade, Mitchell L; Hoffmann, Andrea; Makley, Meghan K; Snider, Thomas H; Schlager, John J; Gearhart, Jeffery M

    2015-06-22

    The brainstem represents a major tissue area affected by sarin organophosphate poisoning due to its function in respiratory and cardiovascular control. While the acute toxic effects of sarin on brainstem-related responses are relatively unknown, other brain areas e.g., cortex or cerebellum, have been studied more extensively. The study objective was to analyze the guinea pig brainstem toxicology response following sarin (2×LD50) exposure by proteome pathway analysis to gain insight into the complex regulatory mechanisms that lead to impairment of respiratory and cardiovascular control. Guinea pig exposure to sarin resulted in the typical acute behavior/physiology outcomes with death between 15 and 25min. In addition, brain and blood acetylcholinesterase activity was significantly reduced in the presence of sarin to 95%, and 89%, respectively, of control values. Isobaric-tagged (iTRAQ) liquid chromatography tandem mass spectrometry (LC-MS/MS) identified 198 total proteins of which 23% were upregulated, and 18% were downregulated following sarin exposure. Direct gene ontology (GO) analysis revealed a sarin-specific broad-spectrum proteomic profile including glutamate-mediated excitotoxicity, calcium overload, energy depletion responses, and compensatory carbohydrate metabolism, increases in ROS defense, DNA damage and chromatin remodeling, HSP response, targeted protein degradation (ubiquitination) and cell death response. With regards to the sarin-dependent effect on respiration, our study supports the potential interference of sarin with CO2/H(+) sensitive chemoreceptor neurons of the brainstem retrotrapezoid nucleus (RTN) that send excitatory glutamergic projections to the respiratory centers. In conclusion, this study gives insight into the brainstem broad-spectrum proteome following acute sarin exposure and the gained information will assist in the development of novel countermeasures. Published by Elsevier B.V.

  8. Operative management of brainstem cavernous malformations.

    PubMed

    Asaad, Wael F; Walcott, Brian P; Nahed, Brian V; Ogilvy, Christopher S

    2010-09-01

    Brainstem cavernous malformations (CMs) are complex lesions associated with hemorrhage and neurological deficit. In this review, the authors describe the anatomical nuances relating to the operative techniques for these challenging lesions. The resection of brainstem CMs in properly selected patients has been demonstrated to reduce the risk of rehemorrhage and can be achieved relatively safely in experienced hands.

  9. Large Amplitude Cortical Evoked Potentials in Nonepileptic Patients. Reviving an Old Neurophysiologic Tool to Help Detect CNS Pathology.

    PubMed

    Martín-Palomeque, Guillermo; Castro-Ortiz, Antonio; Pamplona-Valenzuela, Pilar; Saiz-Sepúlveda, Miguel Á; Cabañes-Martínez, Lidia; López, Jaime R

    2017-01-01

    Although large amplitude evoked potentials (EPs) are typically associated with progressive myoclonic epilepsy patients, giant EPs imply central nervous system (CNS) hyperexcitability and can be seen in various nonepileptic disorders. We performed a retrospective chart review including history, physical examination, imaging and diagnostic studies of nonepileptic patients with large amplitude somatosensory evoked potentials (SSEPs) and visual evoked potentials (VEPs) during 2007 to 2013. Large amplitude EPs were defined as follows: VEPs (N75-P100) >18 μV; and SSEPs (N20-P25) >6.4 μV. Recording montage for VEPs was Oz-Cz and SSEPs C3'/C4'-Fz. Fifty-two patients (33 females, 19 males; age range, 9-90 years) were identified. No CNS pathology was detected in 7 patients. All remaining patients were diagnosed with new CNS disorders including: vascular (37%); myelopathies (13%); demyelinating (11%); space occupying lesions (8.7%); syringomyelia (8.7%); hydrocephalus (6.5%); Vitamin B-12 deficiency (4.3%); multiple system atrophy (4.3%); and toxins (2.2%). This study supports the notion that large amplitude EP implies CNS hyperexcitability and CNS disease. These results confirm the utility of EP studies in patients with suspected CNS pathology.

  10. Correlation of pattern reversal visual evoked potential parameters with the pattern standard deviation in primary open angle glaucoma.

    PubMed

    Kothari, Ruchi; Bokariya, Pradeep; Singh, Ramji; Singh, Smita; Narang, Purvasha

    2014-01-01

    To evaluate whether glaucomatous visual field defect particularly the pattern standard deviation (PSD) of Humphrey visual field could be associated with visual evoked potential (VEP) parameters of patients having primary open angle glaucoma (POAG). Visual field by Humphrey perimetry and simultaneous recordings of pattern reversal visual evoked potential (PRVEP) were assessed in 100 patients with POAG. The stimulus configuration for VEP recordings consisted of the transient pattern reversal method in which a black and white checker board pattern was generated (full field) and displayed on VEP monitor (colour 14″) by an electronic pattern regenerator inbuilt in an evoked potential recorder (RMS EMG EP MARK II). The results of our study indicate that there is a highly significant (P<0.001) negative correlation of P100 amplitude and a statistically significant (P<0.05) positive correlation of N70 latency, P100 latency and N155 latency with the PSD of Humphrey visual field in the subjects of POAG in various age groups as evaluated by Student's t-test. Prolongation of VEP latencies were mirrored by a corresponding increase of PSD values. Conversely, as PSD increases the magnitude of VEP excursions were found to be diminished.

  11. Killer whale (Orcinus orca) hearing: auditory brainstem response and behavioral audiograms.

    PubMed

    Szymanski, M D; Bain, D E; Kiehl, K; Pennington, S; Wong, S; Henry, K R

    1999-08-01

    Killer whale (Orcinus orca) audiograms were measured using behavioral responses and auditory evoked potentials (AEPs) from two trained adult females. The mean auditory brainstem response (ABR) audiogram to tones between 1 and 100 kHz was 12 dB (re 1 mu Pa) less sensitive than behavioral audiograms from the same individuals (+/- 8 dB). The ABR and behavioral audiogram curves had shapes that were generally consistent and had the best threshold agreement (5 dB) in the most sensitive range 18-42 kHz, and the least (22 dB) at higher frequencies 60-100 kHz. The most sensitive frequency in the mean Orcinus audiogram was 20 kHz (36 dB), a frequency lower than many other odontocetes, but one that matches peak spectral energy reported for wild killer whale echolocation clicks. A previously reported audiogram of a male Orcinus had greatest sensitivity in this range (15 kHz, approximately 35 dB). Both whales reliably responded to 100-kHz tones (95 dB), and one whale to a 120-kHz tone, a variation from an earlier reported high-frequency limit of 32 kHz for a male Orcinus. Despite smaller amplitude ABRs than smaller delphinids, the results demonstrated that ABR audiometry can provide a useful suprathreshold estimate of hearing range in toothed whales.

  12. Reduced laser-evoked potential habituation detects abnormal central pain processing in painful radiculopathy patients.

    PubMed

    Hüllemann, P; von der Brelie, C; Manthey, G; Düsterhöft, J; Helmers, A K; Synowitz, M; Baron, R

    2017-05-01

    Repetitive painful laser stimuli lead to physiological laser-evoked potential (LEP) habituation, measurable by a decrement of the N2/P2 amplitude. The time course of LEP-habituation is reduced in the capsaicin model for peripheral and central sensitization and in patients with migraine and fibromyalgia. In the present investigation, we aimed to assess the time course of LEP-habituation in a neuropathic pain syndrome, i.e. painful radiculopathy. At the side of radiating pain, four blocks of 25 painful laser stimuli each were applied to the ventral thigh at the L3 dermatome in 27 patients with painful radiculopathy. Inclusion criteria were (1) at least one neurological finding of radiculopathy, (2) low back pain with radiation into the foot and (3) a positive one-sided compression of the L5 and/or S1 root in the MRI. The time course of LEP-habituation was compared to 20 healthy height and age matched controls. Signs of peripheral (heat hyperalgesia) and central sensitization (dynamic mechanical allodynia and hyperalgesia) at the affected L5 or S1 dermatome were assessed with quantitative sensory testing. Painful radiculopathy patients showed decreased LEP-habituation compared to controls. Patients with signs of central sensitization showed a more prominent LEP-habituation decrease within the radiculopathy patient group. Laser-evoked potential habituation is reduced in painful radiculopathy patients, which indicates an abnormal central pain processing. Central sensitization seems to be a major contributor to abnormal LEP habituation. The LEP habituation paradigm might be useful as a clinical tool to assess central pain processing alterations in nociceptive and neuropathic pain conditions. Abnormal central pain processing in neuropathic pain conditions may be revealed with the laser-evoked potential habituation paradigm. In painful radiculopathy patients, LEP-habituation is reduced compared to healthy controls. © 2017 European Pain Federation - EFIC®.

  13. Generating synchrony from the asynchronous: compensation for cochlear traveling wave delays by the dendrites of individual brainstem neurons

    PubMed Central

    McGinley, Matthew J.; Liberman, M. Charles; Bal, Ramazan; Oertel, Donata

    2012-01-01

    Broadband transient sounds, such as clicks and consonants, activate a traveling wave in the cochlea. This wave evokes firing in auditory nerve fibers that are tuned to high frequencies several milliseconds earlier than in fibers tuned to low frequencies. Despite this substantial traveling wave delay, octopus cells in the brainstem receive broadband input and respond to clicks with submillisecond temporal precision. The dendrites of octopus cells lie perpendicular to the tonotopically organized array of auditory nerve fibers, placing the earliest arriving inputs most distally and the latest arriving closest to the soma. Here, we test the hypothesis that the topographic arrangement of synaptic inputs on dendrites of octopus cells allows octopus cells to compensate the traveling wave delay. We show that in mice the full cochlear traveling wave delay is 1.6 ms. Because the dendrites of each octopus cell spread across about one third of the tonotopic axis, a click evokes a soma directed sweep of synaptic input lasting 0.5 ms in individual octopus cells. Morphologically and biophysically realistic, computational models of octopus cells show that soma-directed sweeps with durations matching in vivo measurements result in the largest and sharpest somatic excitatory postsynaptic potentials (EPSPs). A low input resistance and activation of a low-voltage-activated potassium conductance that are characteristic of octopus cells are important determinants of sweep sensitivity. We conclude that octopus cells have dendritic morphologies and biophysics tailored to accomplish the precise encoding of broadband transient sounds. PMID:22764237

  14. Emotional body-word conflict evokes enhanced n450 and slow potential.

    PubMed

    Ma, Jianling; Liu, Chang; Zhong, Xin; Wang, Lu; Chen, Xu

    2014-01-01

    Emotional conflict refers to the influence of task irrelevant affective stimuli on current task set. Previously used emotional face-word tasks have produced certain electrophysiological phenomena, such as an enhanced N450 and slow potential; however, it remains unknown whether these effects emerge in other tasks. The present study used an emotional body-word conflict task to investigate the neural dynamics of emotional conflict as reflected by response time, accuracy, and event-related potentials, which were recorded with the aim of replicating the previously observed N450 and slow potential effect. Results indicated increased response time and decreased accuracy in the incongruent condition relative to the congruent condition, indicating a robust interference effect. Furthermore, the incongruent condition evoked pronounced N450 amplitudes and a more positive slow potential, which might be associated with conflict-monitoring and conflict resolution. The present findings extend our understanding of emotional conflict to the body-word domain.

  15. Relationship between endolymphatic hydrops and vestibular-evoked myogenic potential.

    PubMed

    Katayama, Naomi; Yamamoto, Masako; Teranishi, Masaaki; Naganawa, Shinji; Nakata, Seiichi; Sone, Michihiko; Nakashima, Tsutomu

    2010-08-01

    Vestibular-evoked myogenic potential (VEMP) can be used to examine endolymphatic hydrops, especially in the vestibule. To investigate the relationship between the degree of endolymphatic hydrops revealed by magnetic resonance imaging (MRI) and VEMP. Gadolinium diluted with saline was injected intratympanically in 49 ears (40 patients). One day after the injection, the endolymphatic space in the vestibule and the cochlea was visualized by 3 Tesla MRI. A VEMP test was done, and VEMP was judged as absent when the VEMP was within the noise level. VEMP was present in 21 ears and absent in 28 ears. Endolymphatic hydrops was significantly associated with the disappearance of VEMP. Endolymphatic hydrops in the vestibule had a stronger effect than endolymphatic hydrops in the cochlea. Five patients with extremely large vestibular hydrops showed no response of VEMP.

  16. Stereotactic radiosurgery for deep intracranial arteriovenous malformations, part 1: Brainstem arteriovenous malformations.

    PubMed

    Cohen-Inbar, Or; Ding, Dale; Chen, Ching-Jen; Sheehan, Jason P

    2016-02-01

    The management of brainstem arteriovenous malformations (AVM) are one of the greatest challenges encountered by neurosurgeons. Brainstem AVM have a higher risk of hemorrhage compared to AVM in other locations, and rupture of these lesions commonly results in devastating neurological morbidity and mortality. The potential morbidity associated with currently available treatment modalities further compounds the complexity of decision making for affected patients. Stereotactic radiosurgery (SRS) has an important role in the management of brainstem AVM. SRS offers acceptable obliteration rates with lower risks of hemorrhage occurring during the latency period. Complex nidal architecture requires a multi-disciplinary treatment approach. Nidi partly involving subpial/epipial regions of the dorsal midbrain or cerebellopontine angle should be considered for a combination of endovascular embolization, micro-surgical resection and SRS. Considering the fact that incompletely obliterated lesions (even when reduced in size) could still cause lethal hemorrhages, additional treatment, including repeat SRS and surgical resection should be considered when complete obliteration is not achieved by first SRS. Patients with brainstem AVM require continued clinical and radiological observation and follow-up after SRS, well after angiographic obliteration has been confirmed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Can Vestibular-Evoked Myogenic Potentials Help Differentiate Ménière Disease from Vestibular Migraine?

    PubMed Central

    Zuniga, M. Geraldine; Janky, Kristen L.; Schubert, Michael C.; Carey, John P.

    2013-01-01

    Objectives To characterize both cervical and ocular vestibular-evoked myogenic potential (cVEMP, oVEMP) responses to air-conducted sound (ACS) and midline taps in Ménière disease (MD), vestibular migraine (VM), and controls, as well as to determine if cVEMP or oVEMP responses can differentiate MD from VM. Study Design Prospective cohort study. Setting Tertiary referral center. Subjects and Methods Unilateral definite MD patients (n = 20), VM patients (n = 21) by modified Neuhauser criteria, and age-matched controls (n = 28). cVEMP testing used ACS (clicks), and oVEMP testing used ACS (clicks and 500-Hz tone bursts) and midline tap stimuli (reflex hammer and Mini-Shaker). Outcome parameters were cVEMP peak-to-peak amplitudes and oVEMP n10 amplitudes. Results Relative to controls, MD and VM groups both showed reduced click-evoked cVEMP (P < .001) and oVEMP (P < .001) amplitudes. Only the MD group showed reduction in tone-evoked amplitudes for oVEMP. Tone-evoked oVEMPs differentiated MD from controls (P = .001) and from VM (P = .007). The oVEMPs in response to the reflex hammer and Mini-Shaker midline taps showed no differences between groups (P > .210). Conclusions Using these techniques, VM and MD behaved similarly on most of the VEMP test battery. A link in their pathophysiology may be responsible for these responses. The data suggest a difference in 500-Hz tone burst–evoked oVEMP responses between MD and MV as a group. However, no VEMP test that was investigated segregated individuals with MD from those with VM. PMID:22267492

  18. Effects of failure of development of crossing brainstem pathways on ocular motor control.

    PubMed

    Jen, Joanna C

    2008-01-01

    Horizontal gaze palsy with progressive scoliosis (HGPPS) is a rare, inherited disorder characterized by a congenital absence of conjugate horizontal eye movement with progressive scoliosis developing in childhood in patients who are otherwise neurologically intact. Detailed structural neuroimaging studies demonstrated abducens nerves and the absence of fibrosis in the extraocular muscles, and a remarkably dysmorphic hindbrain, with hypoplasia and flattened, butterfly-like medulla with deep midline cleft. Diffusion tensor imaging further demonstrated a widespread lack of crossing fibres in the brainstem, supported by evoked potential studies showing uncrossed descending motor and ascending sensory pathways in HGPPS patients. In these patients, we identified homozygous or compound heterozygous mutations in a gene we named ROBO3, which shares homology with evolutionarily conserved roundabout genes that are important in neural and vascular wiring. Removal of Robo3 in mice led to the absence of commissural crossing throughout the spinal cord and hindbrain (and death soon after birth). Therefore, ROBO3 is required for hindbrain axon midline crossing and morphogenesis in both human and mouse. We continue to investigate how ROBO3 mutations lead to massive miswiring in the hindbrain and disruption of conjugate horizontal gaze. Elucidation of the full extent of the anatomical abnormalities in HGPPS awaits improved neuroimaging techniques and detailed pathological studies.

  19. Electrophysiological Evidence for the Sources of the Masking Level Difference

    ERIC Educational Resources Information Center

    Fowler, Cynthia G.

    2017-01-01

    Purpose: The purpose of this review article is to review evidence from auditory evoked potential studies to describe the contributions of the auditory brainstem and cortex to the generation of the masking level difference (MLD). Method: A literature review was performed, focusing on the auditory brainstem, middle, and late latency responses used…

  20. Binaural Interaction in Specific Language Impairment: An Auditory Evoked Potential Study

    ERIC Educational Resources Information Center

    Clarke, Elaine M; Adams, Catherine

    2007-01-01

    The aim of the study was to examine whether auditory binaural interaction, defined as any difference between binaurally evoked responses and the sum of monaurally evoked responses, which is thought to index functions involved in the localization and detection of signals in background noise, is atypical in a group of children with specific language…

  1. Cervical Vestibular-Evoked Myogenic Potentials: Norms and Protocols

    PubMed Central

    Isaradisaikul, Suwicha; Navacharoen, Niramon; Hanprasertpong, Charuk; Kangsanarak, Jaran

    2012-01-01

    Vestibular-evoked myogenic potential (VEMP) testing is a vestibular function test used for evaluating saccular and inferior vestibular nerve function. Parameters of VEMP testing include VEMP threshold, latencies of p1 and n1, and p1-n1 interamplitude. Less commonly used parameters were p1-n1 interlatency, interaural difference of p1 and n1 latency, and interaural amplitude difference (IAD) ratio. This paper recommends using air-conducted 500 Hz tone burst auditory stimulation presented monoaurally via an inserted ear phone while the subject is turning his head to the contralateral side in the sitting position and recording the responses from the ipsilateral sternocleidomastoid muscle. Normative values of VEMP responses in 50 normal audiovestibular volunteers were presented. VEMP testing protocols and normative values in other literature were reviewed and compared. The study is beneficial to clinicians as a reference guide to set up VEMP testing and interpretation of the VEMP responses. PMID:22577386

  2. Vestibular evoked myogenic potentials (VEMPs) in central neurological disorders.

    PubMed

    Venhovens, J; Meulstee, J; Verhagen, W I M

    2016-01-01

    Several types of acoustic stimulation (i.e. tone bursts or clicks), bone-conducted vibration, forehead taps, and galvanic stimulation elicit myogenic potentials. These can be recorded in cervical and ocular muscles, the so called vestibular evoked myogenic potentials (VEMPs). The cervical VEMP (cVEMP) resembles the vestibulo-collic reflex and the responses can be recorded from the ipsilateral sternocleidomastoid muscle. The ocular VEMP resembles the vestibulo-ocular reflex and can be recorded from extra-ocular muscles by a surface electrode beneath the contralateral infraorbital margin. Initially, the literature concerning VEMPs was limited to peripheral vestibular disorders, however, the field of VEMP testing is rapidly expanding, with an increasing focus on central neurological disorders. The current literature concerning VEMP abnormalities in central neurological disorders is critically reviewed, especially regarding the methodological aspects in relation to quality as well as the clinical interpretation of the VEMP results. Suggestions for further research are proposed as well as some clinically useful indications. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. EEG, evoked potentials and pulsed Doppler in asphyxiated term infants.

    PubMed

    Julkunen, Mia K; Himanen, Sari-Leena; Eriksson, Kai; Janas, Martti; Luukkaala, Tiina; Tammela, Outi

    2014-09-01

    To evaluate electroencephalograms (EEG), evoked potentials (EPs) and Doppler findings in the cerebral arteries as predictors of a 1-year outcome in asphyxiated newborn infants. EEG and EPs (brain stem auditory (BAEP), somatosensory (SEP), visual (VEP) evoked potentials) were assessed in 30 asphyxiated and 30 healthy term infants during the first days (range 1-8). Cerebral blood flow velocities (CBFV) were measured from the cerebral arteries using pulsed Doppler at ∼24h of age. EEG, EPs, Doppler findings, symptoms of hypoxic ischemic encephalopathy (HIE) and their combination were evaluated in predicting a 1-year outcome. An abnormal EEG background predicted poor outcome in the asphyxia group with a sensitivity of 67% and 81% specificity, and an abnormal SEP with 75% and 79%, respectively. Combining increased systolic CBFV (mean+3SD) with abnormal EEG or SEP improved the specificity, but not the sensitivity. The predictive values of abnormal BAEP and VEP were poor. Normal EEG and SEP predicted good outcome in the asphyxia group with sensitivities from 79% to 81%. The combination of normal EEG, normal SEP and systolic CBFV<3SD predicted good outcome with a sensitivity of 74% and 100% specificity. Combining abnormal EEG or EPs findings with increased systolic CBFV did not improve prediction of a poor 1-year outcome of asphyxiated infants. Normal EEG and normal SEP combined with systolic CBFV<3SD at about 24 h can be valuable in the prediction of normal 1-year outcome. Combining systolic CBFV at 24 h with EEG and SEP examinations can be of use in the prediction of normal 1-year outcome among asphyxiated infants. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. The effects of click and tone-burst stimulus parameters on the vestibular evoked myogenic potential (VEMP).

    PubMed

    Akin, Faith Wurm; Murnane, Owen D; Proffitt, Tina M

    2003-11-01

    Vestibular evoked myogenic potentials (VEMP) are short latency electromyograms (EMG) evoked by high-level acoustic stimuli and recorded from surface electrodes over the tonically contracted sternocleidomastoid (SCM) muscle and are presumed to originate in the saccule. The present experiments examined the effects of click and tone-burst level and stimulus frequency on the latency, amplitude, and threshold of the VEMP in subjects with normal hearing sensitivity and no history of vestibular disease. VEMPs were recorded in all subjects using 100 dB nHL click stimuli. Most subjects had VEMPs present at 500, 750, and 1000 Hz, and few subjects had VEMPs present at 2000 Hz. The response amplitude of the VEMP increased with click and tone-burst level, whereas VEMP latency was not influenced by the stimulus level. The largest tone-burst-evoked VEMPs and lowest thresholds were obtained at 500 and 750 Hz. VEMP latency was independent of stimulus frequency when tone-burst duration was held constant.

  5. Deep brain stimulation of the ventral hippocampus restores deficits in processing of auditory evoked potentials in a rodent developmental disruption model of schizophrenia

    PubMed Central

    Ewing, Samuel G.; Grace, Anthony A.

    2012-01-01

    Existing antipsychotic drugs are most effective at treating the positive symptoms of schizophrenia, but their relative efficacy is low and they are associated with considerable side effects. In this study deep brain stimulation of the ventral hippocampus was performed in a rodent model of schizophrenia (MAM-E17) in an attempt to alleviate one set of neurophysiological alterations observed in this disorder. Bipolar stimulating electrodes were fabricated and implanted, bilaterally, into the ventral hippocampus of rats. High frequency stimulation was delivered bilaterally via a custom-made stimulation device and both spectral analysis (power and coherence) of resting state local field potentials and amplitude of auditory evoked potential components during a standard inhibitory gating paradigm were examined. MAM rats exhibited alterations in specific components of the auditory evoked potential in the infralimbic cortex, the core of the nucleus accumbens, mediodorsal thalamic nucleus, and ventral hippocampus in the left hemisphere only. DBS was effective in reversing these evoked deficits in the infralimbic cortex and the mediodorsal thalamic nucleus of MAM-treated rats to levels similar to those observed in control animals. In contrast stimulation did not alter evoked potentials in control rats. No deficits or stimulation-induced alterations were observed in the prelimbic and orbitofrontal cortices, the shell of the nucleus accumbens or ventral tegmental area. These data indicate a normalization of deficits in generating auditory evoked potentials induced by a developmental disruption by acute high frequency, electrical stimulation of the ventral hippocampus. PMID:23269227

  6. Visual evoked potentials of mildly mentally retarded and control children.

    PubMed

    Gasser, T; Pietz, J; Schellberg, D; Köhler, W

    1988-10-01

    Visual evoked potentials (VEPs) were recorded from 25 10- to 13-year-old mildly mentally retarded children and compared with those from 31 control children of the same age-range. Correlations of VEPs with age were weak, but a relationship between VEPs and IQ was demonstrated for the control group. The retarded group had significantly longer latencies and higher amplitude peaks than the control group, with the differences occurring primarily over non-specific cortex and for secondary components. Analysis also showed that the retarded group were neurophysiologically heterogeneous. Since the same children had been analyzed earlier by quantitative EEG methods, comparisons are made with respect to these two methods of investigating brain function.

  7. Motor output evoked by subsaccadic stimulation of primate frontal eye fields.

    PubMed

    Corneil, Brian D; Elsley, James K; Nagy, Benjamin; Cushing, Sharon L

    2010-03-30

    In addition to its role in shifting the line of sight, the oculomotor system is also involved in the covert orienting of visuospatial attention. Causal evidence supporting this premotor theory of attention, or oculomotor readiness hypothesis, comes from the effect of subsaccadic threshold stimulation of the oculomotor system on behavior and neural activity in the absence of evoked saccades, which parallels the effects of covert attention. Here, by recording neck-muscle activity from monkeys and systematically titrating the level of stimulation current delivered to the frontal eye fields (FEF), we show that such subsaccadic stimulation is not divorced from immediate motor output but instead evokes neck-muscle responses at latencies that approach the minimal conduction time to the motor periphery. On average, neck-muscle thresholds were approximately 25% lower than saccade thresholds, and this difference is larger for FEF sites associated with progressively larger saccades. Importantly, we commonly observed lower neck-muscle thresholds even at sites evoking saccades brainstem, culminating with recruitment in the motor periphery.

  8. Effects of core body temperature on changes in spinal somatosensory-evoked potential in acute spinal cord compression injury: an experimental study in the rat.

    PubMed

    Jou, I M

    2000-08-01

    Acute spinal cord injury was induced by a clip compression model in rats to approximate spinal cord injury encountered in spinal surgery. Spinal somatosensory-evoked potential neuromonitoring was used to study the electrophysiologic change. To compare and correlate changes in evoked potential after acute compression at different core temperatures with postoperative neurologic function and histologic change, to evaluate current intraoperative neuromonitoring warning criteria for neural damage, and to confirm the protective effect of hypothermia in acute spinal cord compression injury by electrophysiologic, histologic, and clinical observation. With the increase in aggressive correction of spinal deformities, and the invasiveness of surgical instruments, the incidence of neurologic complication appears to have increased despite the availability of sensitive intraoperative neuromonitoring techniques designed to alert surgeons to impending neural damage. Many reasons have been given for the frequent failures of neuromonitoring, but the influence of temperature-a very important and frequently encountered factor-on evoked potential has not been well documented. Specifically, decrease in amplitude and elongation of latency seem not to have been sufficiently taken into account when intraoperative neuromonitoring levels were interpreted and when acceptable intraoperative warning criteria were determined. Experimental acute spinal cord injury was induced in rats by clip compression for two different intervals and at three different core temperatures. Spinal somatosensory-evoked potential, elicited by stimulating the median nerve and recorded from the cervical interspinous C2-C3, was monitored immediately before and after compression, and at 15-minute intervals for 1 hour. Spinal somatosensory-evoked potential change is almost parallel to temperature-based amplitude reduction and latency elongation. Significant neurologic damage induced by acute compression of the cervical

  9. Sensitivity of visual evoked potentials and spectral domain optical coherence tomography in early relapsing remitting multiple sclerosis.

    PubMed

    Behbehani, Raed; Ahmed, Samar; Al-Hashel, Jasem; Rousseff, Rossen T; Alroughani, Raed

    2017-02-01

    Visual evoked potentials and spectral-domain optical coherence tomography are common ancillary studies that assess the visual pathways from a functional and structural aspect, respectively. To compare prevalence of abnormalities of Visual evoked potentials (VEP) and spectral-domain optical coherence tomography (SDOCT) in patients with relapsing remitting multiple sclerosis (RRMS). A cross-sectional study of 100 eyes with disease duration of less than 5 years since the diagnosis. Correlation between retinal nerve fiber layer and ganglion-cell/inner plexiform layer with pattern-reversal visual evoked potentials amplitude and latency and contrast sensitivity was performed. The prevalence of abnormalities in pattern-reversal visual VEP was 56% while that of SOCT was 48% in all eyes. There was significant negative correlations between the average RNFL (r=-0.34, p=0.001) and GCIPL (r=-0.39, p<0.001) with VEP latency. In eyes with prior optic neuritis, a significant negative correlation was seen between average RNFL (r=-0.33, p=0.037) and GCIPL (r=-0.40, p=0.010) with VEP latency. We have found higher prevalence of VEP abnormalities than SCOCT in early relapsing-remitting multiple sclerosis. This suggests that VEP has a higher sensitivity for detecting lesions of the visual pathway in patients with early RRMS. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Brainstem cavernous malformations: anatomical, clinical, and surgical considerations.

    PubMed

    Giliberto, Giuliano; Lanzino, Desiree J; Diehn, Felix E; Factor, David; Flemming, Kelly D; Lanzino, Giuseppe

    2010-09-01

    Symptomatic brainstem cavernous malformations carry a high risk of permanent neurological deficit related to recurrent hemorrhage, which justifies aggressive management. Detailed knowledge of the microscopic and surface anatomy is important for understanding the clinical presentation, predicting possible surgical complications, and formulating an adequate surgical plan. In this article the authors review and illustrate the surgical and microscopic anatomy of the brainstem, provide anatomoclinical correlations, and illustrate a few clinical cases of cavernous malformations in the most common brainstem areas.

  11. Magnetic resonance imaging differential diagnosis of brainstem lesions in children

    PubMed Central

    Quattrocchi, Carlo Cosimo; Errante, Yuri; Rossi Espagnet, Maria Camilla; Galassi, Stefania; Della Sala, Sabino Walter; Bernardi, Bruno; Fariello, Giuseppe; Longo, Daniela

    2016-01-01

    Differential diagnosis of brainstem lesions, either isolated or in association with cerebellar and supra-tentorial lesions, can be challenging. Knowledge of the structural organization is crucial for the differential diagnosis and establishment of prognosis of pathologies with involvement of the brainstem. Familiarity with the location of the lesions in the brainstem is essential, especially in the pediatric population. Magnetic resonance imaging (MRI) is the most sensitive and specific imaging technique for diagnosing disorders of the posterior fossa and, particularly, the brainstem. High magnetic static field MRI allows detailed visualization of the morphology, signal intensity and metabolic content of the brainstem nuclei, together with visualization of the normal development and myelination. In this pictorial essay we review the brainstem pathology in pediatric patients and consider the MR imaging patterns that may help the radiologist to differentiate among vascular, toxico-metabolic, infective-inflammatory, degenerative and neoplastic processes. Helpful MR tips can guide the differential diagnosis: These include the location and morphology of lesions, the brainstem vascularization territories, gray and white matter distribution and tissue selective vulnerability. PMID:26834941

  12. Multimodal evoked potentials in patients with multiple sclerosis in assessment of the course of the disease.

    PubMed

    Łabuz-Roszak, Beata; Torbus, Magdalena; Kubicka-Bączyk, Katarzyna; Machowska-Majchrzak, Agnieszka; Kierber, Agata; Borucka, Katarzyna; Zellner, Małgorzata; Starostak-Tatar, Anna; Pierzchała, Krystyna

    Multiple sclerosis (MS) is a chronic inflammatory, demyelinating disease of the central nervous system with a multifocal damage. The assessment of the MS course by multimodal evoked potentials (EP). We evaluated 95 patients (63 female, 32 male) with relapsing-remitting MS in the average age of 36.4±10.4. The average disease duration was 4.6±7.4 year. Among them, 48 patients (50.5%) were treated with immunomodulatory drugs. All patients underwent neurological examination and EP testing: VEP (visual evoked potentials), SEP (somatosensory evoked potentials), endogenous potential P300. The latencies of following waves were evaluated: P100 (VEP), N4 , N9 , N13, N20, P22 (SEP) and P300, with the reference values of the Neurophysiological Research Laboratory of the Department of Neurology in Zabrze. Abnormal VEP(I) was found in 80 patients (84.2%), SEP(I) in 9 patients (9.5%), P300(I) in 15 patients (15.8%). Abnormal result of the control research VEP (II) was found in 23 patients (82.1%), SEP(II) in 1 patient (3.6%), P300(II) in 4 patients (14.3%). The average values of the waves latencies in the control study were higher, however the statistical significance was not found. The correlation was observed between EDSS, and N20 and P22. No relationship was found between EP and age, disease duration, number of relapses and treatment. In the era of neuroimaging, usage of EP in the diagnosis and assessment of MS is limited. Electrophysiological studies may be used in addition to the clinical examination to confirm the multifocal damage.

  13. High-frequency tone burst-evoked ABR latency-intensity functions.

    PubMed

    Fausti, S A; Olson, D J; Frey, R H; Henry, J A; Schaffer, H I

    1993-01-01

    High-frequency tone burst stimuli (8, 10, 12, and 14 kHz) have been developed and demonstrated to provide reliable and valid auditory brainstem responses (ABRs) in normal-hearing subjects. In this study, latency-intensity functions (LIFs) were determined using these stimuli in 14 normal-hearing individuals. Significant shifts in response latency occurred as a function of stimulus intensity for all tone burst frequencies. For each 10 dB shift in intensity, latency shifts for waves I and V were statistically significant except for one isolated instance. LIF slopes were comparable between frequencies, ranging from 0.020 to 0.030 msec/dB. These normal LIFs for high-frequency tone burst-evoked ABRs suggest the degree of response latency change that might be expected from, for example, progressive hearing loss due to ototoxic insult, although these phenomena may not be directly related.

  14. [Relationships between electrophysiological characteristic of speech evoked auditory brainstem response and Mandarin monosyllable discriminative ability at different hearing impairment].

    PubMed

    Fu, Q Y; Liang, Y; Zou, A; Wang, T; Zhao, X D; Wan, J

    2016-04-07

    To investigate the relationships between electrophysiological characteristic of speech evoked auditory brainstem response(s-ABR) and Mandarin phonetically balanced maximum(PBmax) at different hearing impairment, so as to provide more clues for the mechanism of speech cognitive behavior. Forty-one ears in 41 normal hearing adults(NH), thirty ears in 30 conductive hearing loss patients(CHL) and twenty-seven ears in 27 sensorineural hearing loss patients(SNHL) were included in present study. The speech discrimination scores were obtained by Mandarin phonemic-balanced monosyllable lists via speech audiometric software. Their s-ABRs were recorded with speech syllables /da/ with the intensity of phonetically balanced maximum(PBmax). The electrophysiological characteristic of s-ABR, as well as the relationships between PBmax and s-ABR parameters including latency in time domain, fundamental frequency(F0) and first formant(F1) in frequency domain were analyzed statistically. All subjects completed good speech perception tests and PBmax of CHL and SNHL had no significant difference (P>0.05), but both significantly less than that of NH (P<0.05). While divided the subjects into three groups by 90%

  15. Pain-related somatosensory evoked potentials and functional brain magnetic resonance in the evaluation of neurologic recovery after cardiac arrest: a case study of three patients.

    PubMed

    Zanatta, Paolo; Messerotti Benvenuti, Simone; Baldanzi, Fabrizio; Bendini, Matteo; Saccavini, Marsilio; Tamari, Wadih; Palomba, Daniela; Bosco, Enrico

    2012-03-31

    This case series investigates whether painful electrical stimulation increases the early prognostic value of both somatosensory-evoked potentials and functional magnetic resonance imaging in comatose patients after cardiac arrest. Three single cases with hypoxic-ischemic encephalopathy were considered. A neurophysiological evaluation with an electroencephalogram and somatosensory-evoked potentials during increased electrical stimulation in both median nerves was performed within five days of cardiac arrest. Each patient also underwent a functional magnetic resonance imaging evaluation with the same neurophysiological protocol one month after cardiac arrest. One patient, who completely recovered, showed a middle latency component at a high intensity of stimulation and the activation of all brain areas involved in cerebral pain processing. One patient in a minimally conscious state only showed the cortical somatosensory response and the activation of the primary somatosensory cortex. The last patient, who was in a vegetative state, did not show primary somatosensory evoked potentials; only the activation of subcortical brain areas occurred. These preliminary findings suggest that the pain-related somatosensory evoked potentials performed to increase the prognosis of comatose patients after cardiac arrest are associated with regional brain activity showed by functional magnetic resonance imaging during median nerves electrical stimulation. More importantly, this cases report also suggests that somatosensory evoked potentials and functional magnetic resonance imaging during painful electrical stimulation may be sensitive and complementary methods to predict the neurological outcome in the acute phase of coma. Thus, pain-related somatosensory-evoked potentials may be a reliable and a cost-effective tool for planning the early diagnostic evaluation of comatose patients.

  16. Subacute Sclerosing Panencephalitis of the Brainstem as a Clinical Entity

    PubMed Central

    Yang, Jason; Ciacci, Joseph D.

    2017-01-01

    Subacute sclerosing panencephalitis (SSPE) is a rare progressive neurological disorder of early adolescence caused by persistent infection of the measles virus, which remains prevalent worldwide despite an effective vaccine. SSPE is a devastating disease with a characteristic clinical course in subcortical white matter; however, atypical presentations of brainstem involvement may be seen in rare cases. This review summarizes reports to date on brainstem involvement in SSPE, including the clinical course of disease, neuroimaging presentations, and guidelines for treatment. A comprehensive literature search was performed for English-language publications with keywords “subacute sclerosing panencephalitis” and “brainstem” using the National Library of Medicine PubMed database (March 1981–September 2017). Eleven articles focusing on SSPE of the brainstem were included. Predominant brainstem involvement remains uncharacteristic of SSPE, which may lead to misdiagnosis and poor outcome. A number of case reports have demonstrated brainstem involvement associated with other intracranial lesions commonly presenting in later SSPE stages (III and IV). However, brainstem lesions can appear in all stages, independent of higher cortical structures. The varied clinical presentations complicate diagnosis from a neuroimaging perspective. SSPE of the brainstem is a rare but important clinical entity. It may present like canonical SSPE or with unique clinical features such as absence seizures and pronounced ataxia. While SSPE generally progresses to the brainstem, it can also begin with a primary focus of infection in the brainstem. Awareness of varied SSPE presentations can aid in early diagnosis as well as guide management and treatment. PMID:29112137

  17. Maturation of long latency auditory evoked potentials in hearing children: systematic review.

    PubMed

    Silva, Liliane Aparecida Fagundes; Magliaro, Fernanda Cristina Leite; Carvalho, Ana Claudia Martinho de; Matas, Carla Gentile

    2017-05-15

    To analyze how Auditory Long Latency Evoked Potentials (LLAEP) change according to age in children population through a systematic literature review. After formulation of the research question, a bibliographic survey was done in five data bases with the following descriptors: Electrophysiology (Eletrofisiologia), Auditory Evoked Potentials (Potenciais Evocados Auditivos), Child (Criança), Neuronal Plasticity (Plasticidade Neuronal) and Audiology (Audiologia). Level 1 evidence articles, published between 1995 and 2015 in Brazilian Portuguese or English language. Aspects related to emergence, morphology and latency of P1, N1, P2 and N2 components were analyzed. A total of 388 studies were found; however, only 21 studies contemplated the established criteria. P1 component is characterized as the most frequent component in young children, being observed around 100-150 ms, which tends to decrease as chronological age increases. The N2 component was shown to be the second most commonly observed component in children, being observed around 200-250 ms.. The other N1 and P2 components are less frequent and begin to be seen and recorded throughout the maturational process. The maturation of LLAEP occurs gradually, and the emergence of P1, N1, P2 and N2 components as well as their latency values are variable in childhood. P1 and N2 components are the most observed and described in pediatric population. The diversity of protocols makes the comparison between studies difficult.

  18. Peripheral generators of the vestibular evoked potentials (VsEPs) in the chick.

    PubMed

    Weisleder, P; Jones, T A; Rubel, E W

    1990-10-01

    Electrophysiological activity in response to linear acceleration stimuli was recorded from young chickens by means of subcutaneous electrodes. This investigation had 2 purposes: (1) to establish the vestibular origin of the potentials; and (2) to investigate the contribution of each vestibular labyrinth to the response. The stimuli consisted of pulses of linear acceleration delivered by a mechanical vibrator (shaker). In the first set of experiments vestibular evoked potentials (VsEPs) were recorded prior to and 24 h after bilateral cochlea removal. In the second set of experiments responses were recorded before and after unilateral or bilateral intralabyrinthine injections of tetrodotoxin (TTX). Different groups of subjects were used for each experimental condition. The general morphology of the VsEPs was maintained after bilateral cochlea removal. Absolute latency of wave P2, the most prominent component of the response, was not significantly affected by the manipulation. Unilateral intralabyrinthine TTX injections consistently prolonged the latency and reduced the amplitude of wave P2. Following binaural TTX injections we were unable to elicit responses at the acceleration levels used in this study. The results from these experiments suggest that: (1) the activity recorded in response to linear acceleration stimuli is vestibular in origin; (2) when recorded from intact animals the evoked response is composed of activity from both vestibular systems; and (3) TTX consistently blocks the activity of the vestibular portion of the VIIIth cranial nerve.

  19. Diminished n1 auditory evoked potentials to oddball stimuli in misophonia patients.

    PubMed

    Schröder, Arjan; van Diepen, Rosanne; Mazaheri, Ali; Petropoulos-Petalas, Diamantis; Soto de Amesti, Vicente; Vulink, Nienke; Denys, Damiaan

    2014-01-01

    Misophonia (hatred of sound) is a newly defined psychiatric condition in which ordinary human sounds, such as breathing and eating, trigger impulsive aggression. In the current study, we investigated if a dysfunction in the brain's early auditory processing system could be present in misophonia. We screened 20 patients with misophonia with the diagnostic criteria for misophonia, and 14 matched healthy controls without misophonia, and investigated any potential deficits in auditory processing of misophonia patients using auditory event-related potentials (ERPs) during an oddball task. Subjects watched a neutral silent movie while being presented a regular frequency of beep sounds in which oddball tones of 250 and 4000 Hz were randomly embedded in a stream of repeated 1000 Hz standard tones. We examined the P1, N1, and P2 components locked to the onset of the tones. For misophonia patients, the N1 peak evoked by the oddball tones had smaller mean peak amplitude than the control group. However, no significant differences were found in P1 and P2 components evoked by the oddball tones. There were no significant differences between the misophonia patients and their controls in any of the ERP components to the standard tones. The diminished N1 component to oddball tones in misophonia patients suggests an underlying neurobiological deficit in misophonia patients. This reduction might reflect a basic impairment in auditory processing in misophonia patients.

  20. Diminished N1 Auditory Evoked Potentials to Oddball Stimuli in Misophonia Patients

    PubMed Central

    Schröder, Arjan; van Diepen, Rosanne; Mazaheri, Ali; Petropoulos-Petalas, Diamantis; Soto de Amesti, Vicente; Vulink, Nienke; Denys, Damiaan

    2014-01-01

    Misophonia (hatred of sound) is a newly defined psychiatric condition in which ordinary human sounds, such as breathing and eating, trigger impulsive aggression. In the current study, we investigated if a dysfunction in the brain’s early auditory processing system could be present in misophonia. We screened 20 patients with misophonia with the diagnostic criteria for misophonia, and 14 matched healthy controls without misophonia, and investigated any potential deficits in auditory processing of misophonia patients using auditory event-related potentials (ERPs) during an oddball task. Subjects watched a neutral silent movie while being presented a regular frequency of beep sounds in which oddball tones of 250 and 4000 Hz were randomly embedded in a stream of repeated 1000 Hz standard tones. We examined the P1, N1, and P2 components locked to the onset of the tones. For misophonia patients, the N1 peak evoked by the oddball tones had smaller mean peak amplitude than the control group. However, no significant differences were found in P1 and P2 components evoked by the oddball tones. There were no significant differences between the misophonia patients and their controls in any of the ERP components to the standard tones. The diminished N1 component to oddball tones in misophonia patients suggests an underlying neurobiological deficit in misophonia patients. This reduction might reflect a basic impairment in auditory processing in misophonia patients. PMID:24782731

  1. Comparison of threshold estimation in infants with hearing loss or normal hearing using auditory steady-state response evoked by narrow band CE-chirps and auditory brainstem response evoked by tone pips.

    PubMed

    Michel, Franck; Jørgensen, Kristoffer Foldager

    2017-02-01

    The objective of this study is to compare air-conduction thresholds obtained with ASSR evoked by narrow band (NB) CE-chirps and ABR evoked by tone pips (tpABR) in infants with various degrees of hearing loss. Thresholds were measured at 500, 1000, 2000 and 4000 Hz. Data on each participant were collected at the same day. Sixty-seven infants aged 4 d to 22 months (median age = 96 days), resulting in 57, 52, 87 and 56 ears for 500, 1000, 2000 and 4000 Hz, respectively. Statistical analysis was performed for ears with hearing loss (HL) and showed a very strong correlation between tpABR and ASSR evoked by NB CE-chirps: 0.90 (n = 28), 0.90 (n = 28), 0.96 (n = 42) and 0.95 (n = 30) for 500, 1000, 2000 and 4000 Hz, respectively. At these frequencies, the mean difference between tpABR and ASSR was -3.6 dB (± 7.0), -5.2 dB (± 7.3), -3.9 dB (± 5.2) and -5.2 dB (± 4.7). Linear regression analysis indicated that the relationship was not influenced by the degree of hearing loss. We propose that dB nHL to dB eHL correction values for ASSR evoked by NB CE-chirps should be 5 dB lower than values used for tpABR.

  2. Deep brain stimulation of the ventral hippocampus restores deficits in processing of auditory evoked potentials in a rodent developmental disruption model of schizophrenia.

    PubMed

    Ewing, Samuel G; Grace, Anthony A

    2013-02-01

    Existing antipsychotic drugs are most effective at treating the positive symptoms of schizophrenia but their relative efficacy is low and they are associated with considerable side effects. In this study deep brain stimulation of the ventral hippocampus was performed in a rodent model of schizophrenia (MAM-E17) in an attempt to alleviate one set of neurophysiological alterations observed in this disorder. Bipolar stimulating electrodes were fabricated and implanted, bilaterally, into the ventral hippocampus of rats. High frequency stimulation was delivered bilaterally via a custom-made stimulation device and both spectral analysis (power and coherence) of resting state local field potentials and amplitude of auditory evoked potential components during a standard inhibitory gating paradigm were examined. MAM rats exhibited alterations in specific components of the auditory evoked potential in the infralimbic cortex, the core of the nucleus accumbens, mediodorsal thalamic nucleus, and ventral hippocampus in the left hemisphere only. DBS was effective in reversing these evoked deficits in the infralimbic cortex and the mediodorsal thalamic nucleus of MAM-treated rats to levels similar to those observed in control animals. In contrast stimulation did not alter evoked potentials in control rats. No deficits or stimulation-induced alterations were observed in the prelimbic and orbitofrontal cortices, the shell of the nucleus accumbens or ventral tegmental area. These data indicate a normalization of deficits in generating auditory evoked potentials induced by a developmental disruption by acute high frequency, electrical stimulation of the ventral hippocampus. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Evoked potentials recorded during routine EEG predict outcome after perinatal asphyxia.

    PubMed

    Nevalainen, Päivi; Marchi, Viviana; Metsäranta, Marjo; Lönnqvist, Tuula; Toiviainen-Salo, Sanna; Vanhatalo, Sampsa; Lauronen, Leena

    2017-07-01

    To evaluate the added value of somatosensory (SEPs) and visual evoked potentials (VEPs) recorded simultaneously with routine EEG in early outcome prediction of newborns with hypoxic-ischemic encephalopathy under modern intensive care. We simultaneously recorded multichannel EEG, median nerve SEPs, and flash VEPs during the first few postnatal days in 50 term newborns with hypoxic-ischemic encephalopathy. EEG background was scored into five grades and the worst two grades were considered to indicate poor cerebral recovery. Evoked potentials were classified as absent or present. Clinical outcome was determined from the medical records at a median age of 21months. Unfavorable outcome included cerebral palsy, severe mental retardation, severe epilepsy, or death. The accuracy of outcome prediction was 98% with SEPs compared to 90% with EEG. EEG alone always predicted unfavorable outcome when it was inactive (n=9), and favorable outcome when it was normal or only mildly abnormal (n=17). However, newborns with moderate or severe EEG background abnormality could have either favorable or unfavorable outcome, which was correctly predicted by SEP in all but one newborn (accuracy in this subgroup 96%). Absent VEPs were always associated with an inactive EEG, and an unfavorable outcome. However, presence of VEPs did not guarantee a favorable outcome. SEPs accurately predict clinical outcomes in newborns with hypoxic-ischemic encephalopathy and improve the EEG-based prediction particularly in those newborns with severely or moderately abnormal EEG findings. SEPs should be added to routine EEG recordings for early bedside assessment of newborns with hypoxic-ischemic encephalopathy. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  4. Management of subaxial cervical facet dislocation through anterior approach monitored by spinal cord evoked potential.

    PubMed

    Du, Wei; Wang, Cheng; Tan, Jiangwei; Shen, Binghua; Ni, Shuqin; Zheng, Yanping

    2014-01-01

    Retrospective case series. To discuss the clinical efficacy of anterior cervical surgery of decompression, reduction, stabilization, and fusion in treating subaxial cervical facet dislocation without spinal cord injury or with mild spinal cord injury monitored by spinal cord evoked potential. The optimal treatment of lower cervical facet dislocation has been controversial. Because of the risk of iatrogenic damage of neurological function, it is challenging for surgeons to manage the lower cervical facet dislocation without or with mild spinal cord injury. To avoid the risks, more secure strategy need to be designed. A retrospective study was performed on 17 cases of subaxial cervical facet dislocation without spinal cord injury or with mild spinal cord injury treated by anterior cervical surgery under spinal cord evoked potential monitor from January 2008 to June 2012. There were 12 males, 5 females, with a mean age of 40.1 years (from 21 to 73 yr). Dislocation sites: 1 in C3-C4, 2 in C4-C5, 6 in C5-C6, 8 in C6-C7; 10 cases with unilateral cervical facet dislocation, 7 cases with bilateral dislocation. Thirteen patients were preoperatively classified as grade D and 4 as E according to Frankel standard. All patients were followed up for average of 16 months. All operations were completed successfully. Postoperative radiographs showed that the sequence and curvature of the cervical spine were well recovered. And, evidence of intervertebral fusion was observed at 3 months in all cases. No redislocation or symptoms of spinal cord injury occurred. Thirteen cases with mild spinal cord injury recovered at 1 month after operation. Anterior cervical surgery of decompression, reduction, stabilization, and fusion monitored by spinal cord evoked potential is an effective and safe method for treatment of subaxial cervical facet dislocation without or with mild spinal cord injury. 4.

  5. Deconvolution of the vestibular evoked myogenic potential.

    PubMed

    Lütkenhöner, Bernd; Basel, Türker

    2012-02-07

    The vestibular evoked myogenic potential (VEMP) and the associated variance modulation can be understood by a convolution model. Two functions of time are incorporated into the model: the motor unit action potential (MUAP) of an average motor unit, and the temporal modulation of the MUAP rate of all contributing motor units, briefly called rate modulation. The latter is the function of interest, whereas the MUAP acts as a filter that distorts the information contained in the measured data. Here, it is shown how to recover the rate modulation by undoing the filtering using a deconvolution approach. The key aspects of our deconvolution algorithm are as follows: (1) the rate modulation is described in terms of just a few parameters; (2) the MUAP is calculated by Wiener deconvolution of the VEMP with the rate modulation; (3) the model parameters are optimized using a figure-of-merit function where the most important term quantifies the difference between measured and model-predicted variance modulation. The effectiveness of the algorithm is demonstrated with simulated data. An analysis of real data confirms the view that there are basically two components, which roughly correspond to the waves p13-n23 and n34-p44 of the VEMP. The rate modulation corresponding to the first, inhibitory component is much stronger than that corresponding to the second, excitatory component. But the latter is more extended so that the two modulations have almost the same equivalent rectangular duration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Auditory brain stem response and cortical evoked potentials in children with type 1 diabetes mellitus.

    PubMed

    Radwan, Heba Mohammed; El-Gharib, Amani Mohamed; Erfan, Adel Ali; Emara, Afaf Ahmad

    2017-05-01

    Delay in ABR and CAEPs wave latencies in children with type 1DM indicates that there is abnormality in the neural conduction in DM patients. The duration of DM has greater effect on auditory function than the control of DM. Diabetes mellitus (DM) is a common endocrine and metabolic disorder. Evoked potentials offer the possibility to perform a functional evaluation of neural pathways in the central nervous system. To investigate the effect of type 1 diabetes mellitus (T1DM) on auditory brain stem response (ABR) and cortical evoked potentials (CAEPs). This study included two groups: a control group (GI), which consisted of 20 healthy children with normal peripheral hearing, and a study group (GII), which consisted of 30 children with type I DM. Basic audiological evaluation, ABR, and CAEPs were done in both groups. Delayed absolute latencies of ABR and CAEPs waves were found. Amplitudes showed no significant difference between both groups. Positive correlation was found between ABR wave latencies and duration of DM. No correlation was found between ABR, CAEPs, and glycated hemoglobin.

  7. Curvularia abscess of the brainstem.

    PubMed

    Skovrlj, Branko; Haghighi, Maryam; Smethurst, Mark E; Caridi, John; Bederson, Joshua B

    2014-01-01

    To present a unique case of a brainstem Curvularia fungal infection and review the diagnosis and management of this rare phenomenon. A 33-year-old immunocompetent African American male presented with 2 weeks of headache, nausea, and vomiting in a setting of a recent 20-lb weight loss. Neurological examination was positive for multiple cranial nerve palsies, hemisensory loss, and gait instability. Magnetic resonance imaging demonstrated an enhancing medullary lesion. Metastatic and infectious workup revealed a left lung lesion, which on subsequent biopsy was positive for a granuloma yielding no further clues to the etiology of the brainstem lesion. On surgical exploration of the cranial lesion, a puss-filed, encapsulated lesion was encountered that was tightly adherent to the brainstem. Intraoperative biopsy of the lesion capsule was initially negative but on postoperative day 9, fungal hyphae were encountered identified on morphology as Curvularia species. The patient was started on triple antifungal therapy but necessitated a second surgery for lesion debulking and drainage. The patient was discharged home 10 weeks after initial presentation. At the 13-months follow-up the patient is doing very well and his neurological examination continues to improve. This is the first reported case of a brainstem Curvularia infection. This case highlights the importance of an aggressive surgical and antibiotic therapy in the treatment of central nervous system Curvularia infections. There appears to be a strong relationship between heavy marijuana use and Curvularia infection, producing lung granulomas that may extend to other organs such as the central nervous system of immunocompetent patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Activation of cannabinoid CB1 receptors modulates evoked action potentials in rat retinal ganglion cells.

    PubMed

    Jiang, Shu-Xia; Li, Qian; Wang, Xiao-Han; Li, Fang; Wang, Zhong-Feng

    2013-08-25

    Activation of cannabinoid CB1 receptors (CB1Rs) regulates a variety of physiological functions in the vertebrate retina through modulating various types of ion channels. The aim of the present study was to investigate the effects of this receptor on cell excitability of rat retinal ganglion cells (RGCs) in retinal slices using whole-cell patch-clamp techniques. The results showed that under current-clamped condition perfusing WIN55212-2 (WIN, 5 μmol/L), a CB1R agonist, did not significantly change the spontaneous firing frequency and resting membrane potential of RGCs. In the presence of cocktail synaptic blockers, including excitatory postsynaptic receptor blockers CNQX and D-APV, and inhibitory receptor blockers bicuculline and strychnine, perfusion of WIN (5 μmol/L) hardly changed the frequencies of evoked action potentials by a series of positive current injection (from +10 to +100 pA). Phase-plane plot analysis showed that both average threshold voltage for triggering action potential and delay time to reach threshold voltage were not affected by WIN. However, WIN significantly decreased +dV/dtmax and -dV/dtmax of action potentials, suggestive of reduced rising and descending velocities of action potentials. The effects of WIN were reversed by co-application of SR141716, a CB1R selective antagonist. Moreover, WIN did not influence resting membrane potential of RGCs with synaptic inputs being blocked. These results suggest that activation of CB1Rs may regulate intrinsic excitability of rat RGCs through modulating evoked action potentials.

  9. [Evoked potentials N200/P300 disorders and clinical phenotype in Cuban families with paranoid schizophrenia: a family-based association study].

    PubMed

    Guerra López, Seidel; Martín Reyes, Migdyrai; Pedroso Rodríguez, María de Los Ángeles; Reyes Berazain, Adnelys; Mendoza Quiñones, Raúl; Bravo Collazo, Tania Martha; Días de Villarvilla, Thais; Machado Cano, María Julia; Bobés León, María Antonieta

    2015-04-01

    N200 and P300 event-related evoked potentials provide sensitive measurements of sensory and cognitive function and have been used to study information processing in patients with schizophrenia and their unaffected first-degree relatives. Reduced amplitude and increased latency of N200 and P300 potentials have been consistently reported in schizophrenia. Thus, event-related evoked potentials abnormalities are promising possible biological markers for genetic vulnerability to schizophrenia. To assess the association of changes in latency, amplitude and topographic distribution of potentials N200 and P300 of patients with paranoid schizophrenia and their healthy first-degree relatives, in families with schizophrenia multiplex. We measured latency and amplitude of the N200 and P300 component of evoked potentials using an auditory odd-ball paradigm in 25 schizophrenic patients (probands) from 60 families multiply affected with paranoid schizophrenia, 23 of their non-schizophrenic first-degree relatives and 25 unrelated healthy controls, through a study of family association. Schizophrenic patients and their relatives showed significant latency prolongation and amplitude reduction of the N200 and P300 waves compared to controls. Left-temporal as compared to right-temporal N200 and P300 were significantly smaller in schizophrenic patients and their non-schizophrenic first-degree relatives than in controls. Our results suggest that event-related evoked potentials abnormalities may serve as markers of genetic vulnerability in schizophrenia. Confirming results of other researchers, this present study suggests that latency prolongation and amplitude reduction of the N200 and P300 waves and an altered topography at temporal sites may be a trait “marker” of paranoid schizophrenia.

  10. Gender disparity in subcortical encoding of binaurally presented speech stimuli: an auditory evoked potentials study.

    PubMed

    Ahadi, Mohsen; Pourbakht, Akram; Jafari, Amir Homayoun; Shirjian, Zahra; Jafarpisheh, Amir Salar

    2014-06-01

    To investigate the influence of gender on subcortical representation of speech acoustic parameters where simultaneously presented to both ears. Two-channel speech-evoked auditory brainstem responses were obtained in 25 female and 23 male normal hearing young adults by using binaural presentation of the 40 ms synthetic consonant-vowel/da/, and the encoding of the fast and slow elements of speech stimuli at subcortical level were compared in the temporal and spectral domains between the sexes using independent sample, two tailed t-test. Highly detectable responses were established in both groups. Analysis in the time domain revealed earlier and larger Fast-onset-responses in females but there was no gender related difference in sustained segment and offset of the response. Interpeak intervals between Frequency Following Response peaks were also invariant to sex. Based on shorter onset responses in females, composite onset measures were also sex dependent. Analysis in the spectral domain showed more robust and better representation of fundamental frequency as well as the first formant and high frequency components of first formant in females than in males. Anatomical, biological and biochemical distinctions between females and males could alter the neural encoding of the acoustic cues of speech stimuli at subcortical level. Females have an advantage in binaural processing of the slow and fast elements of speech. This could be a physiological evidence for better identification of speaker and emotional tone of voice, as well as better perceiving the phonetic information of speech in women. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Vestibular-Evoked Myogenic Potentials in Bilateral Vestibulopathy

    PubMed Central

    Rosengren, Sally M.; Welgampola, Miriam S.; Taylor, Rachael L.

    2018-01-01

    Bilateral vestibulopathy (BVP) is a chronic condition in which patients have a reduction or absence of vestibular function in both ears. BVP is characterized by bilateral reduction of horizontal canal responses; however, there is increasing evidence that otolith function can also be affected. Cervical and ocular vestibular-evoked myogenic potentials (cVEMPs/oVEMPs) are relatively new tests of otolith function that can be used to test the saccule and utricle of both ears independently. Studies to date show that cVEMPs and oVEMPs are often small or absent in BVP but are in the normal range in a significant proportion of patients. The variability in otolith function is partly due to the heterogeneous nature of BVP but is also due to false negative and positive responses that occur because of the large range of normal VEMP amplitudes. Due to their variability, VEMPs are not part of the diagnosis of BVP; however, they are helpful complementary tests that can provide information about the extent of disease within the labyrinth. This article is a review of the use of VEMPs in BVP, summarizing the available data on VEMP abnormalities in patients and discussing the limitations of VEMPs in diagnosing bilateral loss of otolith function. PMID:29719527

  12. Frontal auditory evoked potentials and augmenting-reducing.

    PubMed

    Bruneau, N; Roux, S; Garreau, B; Lelord, G

    1985-09-01

    Auditory evoked potentials (AEPs) to tones (750 Hz--200 msec) ranging from 50 to 80 dB SPL were studied at Cz and Fz leads in 29 normal adults (15 males) ranging in age from 20 to 22. Peak-to-trough amplitudes were measured for the P1-N1 and the N1-P2 wave forms as well as baseline (500 msec prestimulus)-to-peak amplitudes for each component, i.e., P1, N1 and P2. Amplitudes were examined as a function of intensity and electrode location. Cz-Fz amplitude differences increased with increasing stimulus intensity, the differentiating peak being the N1 component. An overall reducing phenomenon was found at Fz in the 70-80 dB range whereas an augmenting effect was observed at Cz for these intensities. The augmenting/reducing groups defined by analysis of individual amplitude-intensity patterns were different whether we considered Fz or Cz results: Fz reducers were more numerous than Cz reducers. These results on prominent reducing at the frontal level were examined in relation to the data concerning the modulatory function of the frontal cortex on auditory EPs. Implications were drawn for the role of the frontal cortex in cortical augmenting-reducing.

  13. AMPD2 Regulates GTP Synthesis and is Mutated in a Potentially-Treatable Neurodegenerative Brainstem Disorder

    PubMed Central

    Akizu, Naiara; Cantagrel, Vincent; Schroth, Jana; Cai, Na; Vaux, Keith; McCloskey, Douglas; Naviaux, Robert K.; Vleet, Jeremy Van; Fenstermaker, Ali G.; Silhavy, Jennifer L.; Scheliga, Judith S.; Toyama, Keiko; Morisaki, Hiroko; Sonmez, Fatma Mujgan; Celep, Figen; Oraby, Azza; Zaki, Maha S.; Al-Baradie, Raidah; Faqeih, Eissa; Saleh, Mohammad; Spencer, Emily; Rosti, Rasim Ozgur; Scott, Eric; Nickerson, Elizabeth; Gabriel, Stacey; Morisaki, Takayuki; Holmes, Edward W.; Gleeson, Joseph G.

    2013-01-01

    Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acids synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a new distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH), due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a new, potentially treatable early-onset neurodegenerative disease. PMID:23911318

  14. Synaptic potentials in respiratory neurones during evoked phase switching after NMDA receptor blockade in the cat

    PubMed Central

    Pierrefiche, O; Haji, A; Foutz, A S; Takeda, R; Champagnat, J; Denavit-Saubié, M

    1998-01-01

    Blockade of NMDA receptors by dizocilpine impairs the inspiratory off-switch (IOS) of central origin but not the IOS evoked by stimulation of sensory afferents. To investigate whether this difference was due to the effects of different patterns of synaptic interactions on respiratory neurones, we stimulated electrically the superior laryngeal nerve (SLN) or vagus nerve in decerebrate cats before and after i.v. administration of dizocilpine, whilst recording intracellularly. Phrenic nerve responses to ipsilateral SLN or vagal stimulation were: at mid-inspiration, a transient inhibition often followed by a brief burst of activity; at late inspiration, an IOS; and at mid-expiration, a late burst of activity. In all neurones (n = 16), SLN stimulation at mid-inspiration evoked an early EPSP during phase 1 (latency to the arrest of phrenic nerve activity), followed by an IPSP in inspiratory (I) neurones (n = 8) and by a wave of EPSPs in post-inspiratory (PI) neurones (n = 8) during phase 2 (inhibition of phrenic activity). An EPSP in I neurones and an IPSP in PI neurones occurred during phase 3 (brief phrenic burst) following phase 2. Evoked IOS was associated with a fast (phase 1) activation of PI neurones, whereas during spontaneous IOS, a progressive (30-50 ms) depolarization of PI neurones preceded the arrest of phrenic activity. Phase 3 PSPs were similar to those occurring during the burst of activity seen at the start of spontaneous inspiration. Dizocilpine did not suppress the evoked phrenic inhibition and the late burst of activity. The shapes and timing of the evoked PSPs and the changes in membrane potential in I and PI neurones during the phase transition were not altered. We hypothesize that afferent sensory pathways not requiring NMDA receptors (1) terminate inspiration through a premature activation of PI neurones, and (2) evoke a late burst of phrenic activity which might be the first stage of the inspiratory on-switch. PMID:9508816

  15. High-frequency combination coding-based steady-state visual evoked potential for brain computer interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Feng; Zhang, Xin; Xie, Jun

    2015-03-10

    This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method;more » Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n{sup n} with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method.« less

  16. Mapping human brain networks with cortico-cortical evoked potentials

    PubMed Central

    Keller, Corey J.; Honey, Christopher J.; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D.

    2014-01-01

    The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex. PMID:25180306

  17. Pericellular Ca2+ recycling potentiates thrombin-evoked Ca2+ signals in human platelets

    PubMed Central

    Sage, Stewart O; Pugh, Nicholas; Farndale, Richard W; Harper, Alan G S

    2013-01-01

    We have previously demonstrated that Na+/Ca2+ exchangers (NCXs) potentiate Ca2+ signaling evoked by thapsigargin in human platelets, via their ability to modulate the secretion of autocoids from dense granules. This link was confirmed in platelets stimulated with the physiological agonist, thrombin, and experiments were performed to examine how Ca2+ removal by the NCX modulates platelet dense granule secretion. In cells loaded with the near-membrane indicator FFP-18, thrombin stimulation was observed to elicit an NCX-dependent accumulation of Ca2+ in a pericellular region around the platelets. To test whether this pericellular Ca2+ accumulation might be responsible for the influence of NCXs over platelet function, platelets were exposed to fast Ca2+ chelators or had their glycocalyx removed. Both manipulations of the pericellular Ca2+ rise reduced thrombin-evoked Ca2+ signals and dense granule secretion. Blocking Ca2+-permeable ion channels had a similar effect, suggesting that Ca2+ exported into the pericellular region is able to recycle back into the platelet cytosol. Single cell imaging with extracellular Fluo-4 indicated that thrombin-evoked rises in extracellular [Ca2+] occurred within the boundary described by the cell surface, suggesting their presence within the open canalicular system (OCS). FFP-18 fluorescence was similarly distributed. These data suggest that upon thrombin stimulation, NCX activity creates a rise in [Ca2+] within the pericellular region of the platelet from where it recycles back into the platelet cytosol, acting to both accelerate dense granule secretion and maintain the initial rise in cytosolic [Ca2+]. PMID:24303163

  18. Sensory-evoked LTP driven by dendritic plateau potentials in vivo.

    PubMed

    Gambino, Frédéric; Pagès, Stéphane; Kehayas, Vassilis; Baptista, Daniela; Tatti, Roberta; Carleton, Alan; Holtmaat, Anthony

    2014-11-06

    Long-term synaptic potentiation (LTP) is thought to be a key process in cortical synaptic network plasticity and memory formation. Hebbian forms of LTP depend on strong postsynaptic depolarization, which in many models is generated by action potentials that propagate back from the soma into dendrites. However, local dendritic depolarization has been shown to mediate these forms of LTP as well. As pyramidal cells in supragranular layers of the somatosensory cortex spike infrequently, it is unclear which of the two mechanisms prevails for those cells in vivo. Using whole-cell recordings in the mouse somatosensory cortex in vivo, we demonstrate that rhythmic sensory whisker stimulation efficiently induces synaptic LTP in layer 2/3 (L2/3) pyramidal cells in the absence of somatic spikes. The induction of LTP depended on the occurrence of NMDAR (N-methyl-d-aspartate receptor)-mediated long-lasting depolarizations, which bear similarities to dendritic plateau potentials. In addition, we show that whisker stimuli recruit synaptic networks that originate from the posteromedial complex of the thalamus (POm). Photostimulation of channelrhodopsin-2 expressing POm neurons generated NMDAR-mediated plateau potentials, whereas the inhibition of POm activity during rhythmic whisker stimulation suppressed the generation of those potentials and prevented whisker-evoked LTP. Taken together, our data provide evidence for sensory-driven synaptic LTP in vivo, in the absence of somatic spiking. Instead, LTP is mediated by plateau potentials that are generated through the cooperative activity of lemniscal and paralemniscal synaptic circuitry.

  19. Auditory Evoked Potentials from the Frog Eighth Nerve

    DTIC Science & Technology

    1989-09-01

    superior olivary nucleus 6, 10-100 ms in torus semicircularis’ 2,4’ 14, 1618, 30-120 ms in thalamus 7’ 1,13,14, and greater than 30 ms in telencephalon 12...899. 12 Mudry, K.M. and Capranica, R.R., Evoked auditory activity within the telencephalon of the bullfrog (Rana catesbeiana), Brain Res., 182 (1980

  20. Bilateral somatosensory evoked potentials following intermittent theta-burst repetitive transcranial magnetic stimulation.

    PubMed

    Premji, Azra; Ziluk, Angela; Nelson, Aimee J

    2010-08-05

    Intermittent theta-burst stimulation (iTBS) is a form of repetitive transcranial magnetic stimulation that may alter cortical excitability in the primary somatosensory cortex (SI). The present study investigated the effects of iTBS on subcortical and early cortical somatosensory evoked potentials (SEPs) recorded over left, iTBS stimulated SI and the right-hemisphere non-stimulated SI. SEPs were recorded before and at 5, 15, and 25 minutes following iTBS. Compared to pre-iTBS, the amplitude of cortical potential N20/P25 was significantly increased for 5 minutes from non-stimulated SI and for 15 to 25 minutes from stimulated SI. Subcortical potentials recorded bilaterally remained unaltered following iTBS. We conclude that iTBS increases the cortical excitability of SI bilaterally and does not alter thalamocortical afferent input to SI. ITBS may provide one avenue to induce cortical plasticity in the somatosensory cortex.

  1. Brainstem death: A comprehensive review in Indian perspective

    PubMed Central

    Dhanwate, Anant Dattatray

    2014-01-01

    With the advent of cardiopulmonary resuscitation techniques, the cardiopulmonary definition of death lost its significance in favor of brain death. Brain death is a permanent cessation of all functions of the brain in which though individual organs may function but lack of integrating function of the brain, lack of respiratory drive, consciousness, and cognition confirms to the definition that death is an irreversible cessation of functioning of the organism as a whole. In spite of medical and legal acceptance globally, the concept of brain death and brain-stem death is still unclear to many. Brain death is not promptly declared due to lack of awareness and doubts about the legal procedure of certification. Many brain dead patients are kept on life supporting systems needlessly. In this comprehensive review, an attempt has been made to highlight the history and concept of brain death and brain-stem death; the anatomical and physiological basis of brain-stem death, and criteria to diagnose brain-stem death in India. PMID:25249744

  2. The P50 auditory evoked potential in violent and non-violent patients with schizophrenia.

    PubMed

    Fresán, Ana; Apiquian, Rogelio; García-Anaya, María; de la Fuente-Sandoval, Camilo; Nicolini, Humberto; Graff-Guerrero, Ariel

    2007-12-01

    Emotionally driven violence is facilitated by increased arousal. It may be a consequence of an information-processing deficit and the cognitive attributions for the stimuli given by the subject. The aim of this study was to compare the P50 evoked potential responses of violent patients with schizophrenia with non-violent patients with schizophrenia and healthy controls. Patients were classified into violent and non-violent in accordance to the Overt Aggression Scale. P50 auditory evoked potentials of 32 unmedicated patients with schizophrenia (violent=14, non-violent=18) and 17 healthy controls were recorded during five runs of 30 click pairs. Healthy controls exhibited a lower S2/S1 ratio when compared to violent (p<0.001) and non-violent (p=0.04) patients. Using a cutoff point of 0.50 for S2/S1 ratio to define abnormal gating a significant proportion of violent patients did not show P50 suppression (71.4%) in comparison to non-violent patients (38.9%) and healthy controls (23.5%) (p=0.02). Violent behavior in patients with schizophrenia could be associated with a disturbed information sensory gating. Violence in patients with schizophrenia may be facilitated by an increased arousal which may in turn be the result of an information-processing deficit.

  3. Source analysis of short and long latency vestibular-evoked potentials (VsEPs) produced by left vs. right ear air-conducted 500 Hz tone pips.

    PubMed

    Todd, N P M; Paillard, A C; Kluk, K; Whittle, E; Colebatch, J G

    2014-06-01

    Todd et al. (2014) have recently demonstrated the presence of vestibular dependent changes both in the morphology and in the intensity dependence of auditory evoked potentials (AEPs) when passing through the vestibular threshold as determined by vestibular evoked myogenic potentials (VEMPs). In this paper we extend this work by comparing left vs. right ear stimulation and by conducting a source analysis of the resulting evoked potentials of short and long latency. Ten healthy, right-handed subjects were recruited and evoked potentials were recorded to both left- and right-ear sound stimulation, above and below vestibular threshold. Below VEMP threshold, typical AEPs were recorded, consisting of mid-latency (MLR) waves Na and Pa followed by long latency AEPs (LAEPs) N1 and P2. In the supra-threshold condition, the expected changes in morphology were observed, consisting of: (1) short-latency vestibular evoked potentials (VsEPs) which have no auditory correlate, i.e. the ocular VEMP (OVEMP) and inion response related potentials; (2) a later deflection, labelled N42/P52, followed by the LAEPs N1 and P2. Statistical analysis of the vestibular dependent responses indicated a contralateral effect for inion related short-latency responses and a left-ear/right-hemisphere advantage for the long-latency responses. Source analysis indicated that the short-latency effects may be mediated by a contralateral projection to left cerebellum, while the long-latency effects were mediated by a contralateral projection to right cingulate cortex. In addition we found evidence of a possible vestibular contribution to the auditory T-complex in radial temporal lobe sources. These last results raise the possibility that acoustic activation of the otolith organs could potentially contribute to auditory processing. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  4. The developmental effects of extremely low frequency electric fields on visual and somatosensory evoked potentials in adult rats.

    PubMed

    Gok, Deniz Kantar; Akpinar, Deniz; Hidisoglu, Enis; Ozen, Sukru; Agar, Aysel; Yargicoglu, Piraye

    2016-01-01

    The purpose of our study was to investigate the developmental effects of extremely low frequency electric fields (ELF-EFs) on visual evoked potentials (VEPs) and somatosensory-evoked potentials (SEPs) and to examine the relationship between lipid peroxidation and changes of these potentials. In this context, thiobarbituric acid reactive substances (TBARS) levels were determined as an indicator of lipid peroxidation. Wistar albino female rats were divided into four groups; Control (C), gestational (prenatal) exposure (Pr), gestational+ postnatal exposure (PP) and postnatal exposure (Po) groups. Pregnant rats of Pr and PP groups were exposed to 50 Hz electric field (EF) (12 kV/m; 1 h/day), while those of C and Po groups were placed in an inactive system during pregnancy. Following parturition, rats of PP and Po groups were exposed to ELF-EFs whereas rats of C and Pr groups were kept under the same experimental conditions without being exposed to any EF during 68 days. On postnatal day 90, rats were prepared for VEP and SEP recordings. The latencies of VEP components in all experimental groups were significantly prolonged versus C group. For SEPs, all components of PP group, P2, N2 components of Pr group and P1, P2, N2 components of Po group were delayed versus C group. As brain TBARS levels were significantly increased in Pr and Po groups, retina TBARS levels were significantly elevated in all experimental groups versus C group. In conclusion, alterations seen in evoked potentials, at least partly, could be explained by lipid peroxidation in the retina and brain.

  5. Monitoring auditory cortical plasticity in hearing aid users with long latency auditory evoked potentials: a longitudinal study.

    PubMed

    Leite, Renata Aparecida; Magliaro, Fernanda Cristina Leite; Raimundo, Jeziela Cristina; Bento, Ricardo Ferreira; Matas, Carla Gentile

    2018-02-19

    The objective of this study was to compare long-latency auditory evoked potentials before and after hearing aid fittings in children with sensorineural hearing loss compared with age-matched children with normal hearing. Thirty-two subjects of both genders aged 7 to 12 years participated in this study and were divided into two groups as follows: 14 children with normal hearing were assigned to the control group (mean age 9 years and 8 months), and 18 children with mild to moderate symmetrical bilateral sensorineural hearing loss were assigned to the study group (mean age 9 years and 2 months). The children underwent tympanometry, pure tone and speech audiometry and long-latency auditory evoked potential testing with speech and tone burst stimuli. The groups were assessed at three time points. The study group had a lower percentage of positive responses, lower P1-N1 and P2-N2 amplitudes (speech and tone burst), and increased latencies for the P1 and P300 components following the tone burst stimuli. They also showed improvements in long-latency auditory evoked potentials (with regard to both the amplitude and presence of responses) after hearing aid use. Alterations in the central auditory pathways can be identified using P1-N1 and P2-N2 amplitude components, and the presence of these components increases after a short period of auditory stimulation (hearing aid use). These findings emphasize the importance of using these amplitude components to monitor the neuroplasticity of the central auditory nervous system in hearing aid users.

  6. Monitoring auditory cortical plasticity in hearing aid users with long latency auditory evoked potentials: a longitudinal study

    PubMed Central

    Leite, Renata Aparecida; Magliaro, Fernanda Cristina Leite; Raimundo, Jeziela Cristina; Bento, Ricardo Ferreira; Matas, Carla Gentile

    2018-01-01

    OBJECTIVE: The objective of this study was to compare long-latency auditory evoked potentials before and after hearing aid fittings in children with sensorineural hearing loss compared with age-matched children with normal hearing. METHODS: Thirty-two subjects of both genders aged 7 to 12 years participated in this study and were divided into two groups as follows: 14 children with normal hearing were assigned to the control group (mean age 9 years and 8 months), and 18 children with mild to moderate symmetrical bilateral sensorineural hearing loss were assigned to the study group (mean age 9 years and 2 months). The children underwent tympanometry, pure tone and speech audiometry and long-latency auditory evoked potential testing with speech and tone burst stimuli. The groups were assessed at three time points. RESULTS: The study group had a lower percentage of positive responses, lower P1-N1 and P2-N2 amplitudes (speech and tone burst), and increased latencies for the P1 and P300 components following the tone burst stimuli. They also showed improvements in long-latency auditory evoked potentials (with regard to both the amplitude and presence of responses) after hearing aid use. CONCLUSIONS: Alterations in the central auditory pathways can be identified using P1-N1 and P2-N2 amplitude components, and the presence of these components increases after a short period of auditory stimulation (hearing aid use). These findings emphasize the importance of using these amplitude components to monitor the neuroplasticity of the central auditory nervous system in hearing aid users. PMID:29466495

  7. Asymmetric vestibular evoked myogenic potentials in unilateral Menière patients

    PubMed Central

    Wit, H. P.

    2010-01-01

    Vestibular evoked myogenic potentials (VEMPs) were measured in 22 unilateral Menière patients with monaural and binaural stimulation with 250 and 500 Hz tone bursts. For all measurement situations significantly lower VEMP amplitudes were on average measured at the affected side compared to the unaffected side. Unilateral Menière patients have, in contrast to normal subjects, asymmetric VEMPs, indicating a permanently affected vestibular (most likely otolith) system at the side of hearing loss. The diagnostic value of VEMP amplitude asymmetry measurement in individual patients is low, because of the large overlap of the VEMP amplitude asymmetry range for unilateral Menière patients with that for normal subjects. PMID:20665043

  8. Analysis of wave III of brain stem auditory evoked potential waveforms during microvascular decompression of cranial nerve VII for hemifacial spasm.

    PubMed

    Thirumala, Parthasarathy D; Krishnaiah, Balaji; Crammond, Donald J; Habeych, Miguel E; Balzer, Jeffrey R

    2014-04-01

    Intraoperative monitoring of brain stem auditory evoked potential during microvascular decompression (MVD) prevent hearing loss (HL). Previous studies have shown that changes in wave III (wIII) are an early and sensitive sign of auditory nerve injury. To evaluate the changes of amplitude and latency of wIII of brain stem auditory evoked potential during MVD and its association with postoperative HL. Hearing loss was classified by American Academy of Otolaryngology - Head and Neck Surgery (AAO-HNS) criteria, based on changes in pure tone audiometry and speech discrimination score. Retrospective analysis of wIII in patients who underwent intraoperative monitoring with brain stem auditory evoked potential during MVD was performed. A univariate logistic regression analysis was performed on independent variables amplitude of wIII and latency of wIII at change max and On-Skin, or a final recording at the time of skin closure. A further analysis for the same variables was performed adjusting for the loss of wave. The latency of wIII was not found to be significantly different between groups I and II. The amplitude of wIII was significantly decreased in the group with HL. Regression analysis did not find any increased odds of HL with changes in the amplitude of wIII. Changes in wave III did not increase the odds of HL in patients who underwent brain stem auditory evoked potential s during MVD. This information might be valuable to evaluate the value of wIII as an alarm criterion during MVD to prevent HL.

  9. A new method for registration of kinesthetic evoked potentials for studies of proprioceptive sensitivity in normal subjects and patients with organic lesions in the brain.

    PubMed

    Gordeev, S A; Voronin, S G

    2015-01-01

    The proprioceptive sensitivity of healthy volunteers and convalescents after acute cerebrovascular episodes was studied by a new neurophysiological method for registration of kinesthetic evoked potentials emerging in response to passive 50(o) bending of the hand in the wrist joint with the angular acceleration of 350 rad/sec(2). Kinesthetic evoked potentials were recorded above the somatosensory cortex projection areas in the hemispheres contra- and ipsilateral to the stimulated limb. The patients exhibited significantly longer latencies and lesser amplitudes of the early components of response in the involved hemisphere in comparison with normal subjects. The method for registration of the kinesthetic evoked potentials allows a more detailed study of the mechanisms of kinesthetic sensitivity in health and in organic involvement of the brain.

  10. AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorder.

    PubMed

    Akizu, Naiara; Cantagrel, Vincent; Schroth, Jana; Cai, Na; Vaux, Keith; McCloskey, Douglas; Naviaux, Robert K; Van Vleet, Jeremy; Fenstermaker, Ali G; Silhavy, Jennifer L; Scheliga, Judith S; Toyama, Keiko; Morisaki, Hiroko; Sonmez, Fatma M; Celep, Figen; Oraby, Azza; Zaki, Maha S; Al-Baradie, Raidah; Faqeih, Eissa A; Saleh, Mohammed A M; Spencer, Emily; Rosti, Rasim Ozgur; Scott, Eric; Nickerson, Elizabeth; Gabriel, Stacey; Morisaki, Takayuki; Holmes, Edward W; Gleeson, Joseph G

    2013-08-01

    Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acid synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH) due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a potentially treatable early-onset neurodegenerative disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Vestibular short-latency evoked potential abolished by low-frequency noise exposure in rats.

    PubMed

    Stewart, Courtney E; Kanicki, Ariane C; Altschuler, Richard A; King, W M

    2018-02-01

    The vestibular system plays a critical role in detection of head movements and is essential for normal postural control. Because of their anatomical proximity to the cochlea, the otolith organs are selectively exposed to sound pressure and are at risk for noise overstimulation. Clinical reports suggest a link between noise exposure and balance problems, but the structural and physiological basis for this linkage is not well understood. The goal of this study was to determine the effects of low-frequency noise (LFN) on the otolith organs by correlating changes in vestibular short-latency evoked potentials (VsEPs) with changes in saccular afferent endings following noise exposure. LFN exposure transiently abolished the VsEP and reduced the number of stained calyces within the sacculus. Although some recovery of the VsEP waveform could be observed within 3 days after noise, at 3 wk recovery was only partial in most animals, consistent with a reduced number of afferents with calyceal endings. These data show that a single intense noise exposure is capable of causing a vestibular deficit that appears to mirror the synaptic deficit associated with hidden hearing loss after noise-induced cochlear injury. NEW & NOTEWORTHY This is the first study to explore the effects of low-frequency high-intensity noise on vestibular short-latency evoked potential (VsEP) responses, which shows a linkage between attenuated noise-induced VsEPs and pathological changes to otolith organ afferents. This finding suggests a potential limitation of the VsEP for evaluation of vestibular dysfunction, since the VsEP measurement may assess the activity of a specific class rather than all afferents.

  12. Basic Hearing and Echolocation Mechanisms of Marine Mammals: Measured Auditory Evoked Potential and Behavioral Experiments FY 2007

    DTIC Science & Technology

    2007-01-01

    Breese, M. (2007) Evoked-potential recovery during double click stimulation in a whale: A possibility of biosonar automatic gain control. Journal of...Yokohama Japan (published) Supin A.Ya, Nachtigall, P.E., and Breese, M. Source level to sensation level ratio of transmitted biosonar pulses in an

  13. Color vision in attention-deficit/hyperactivity disorder: a pilot visual evoked potential study.

    PubMed

    Kim, Soyeon; Banaschewski, Tobias; Tannock, Rosemary

    2015-01-01

    Individuals with attention-deficit/hyperactivity disorder (ADHD) are reported to manifest visual problems (including ophthalmological and color perception, particularly for blue-yellow stimuli), but findings are inconsistent. Accordingly, this study investigated visual function and color perception in adolescents with ADHD using color Visual Evoked Potentials (cVEP), which provides an objective measure of color perception. Thirty-one adolescents (aged 13-18), 16 with a confirmed diagnosis of ADHD, and 15 healthy peers, matched for age, gender, and IQ participated in the study. All underwent an ophthalmological exam, as well as electrophysiological testing color Visual Evoked Potentials (cVEP), which measured the latency and amplitude of the neural P1 response to chromatic (blue-yellow, red-green) and achromatic stimuli. No intergroup differences were found in the ophthalmological exam. However, significantly larger P1 amplitude was found for blue and yellow stimuli, but not red/green or achromatic stimuli, in the ADHD group (particularly in the medicated group) compared to controls. Larger amplitude in the P1 component for blue-yellow in the ADHD group compared to controls may account for the lack of difference in color perception tasks. We speculate that the larger amplitude for blue-yellow stimuli in early sensory processing (P1) might reflect a compensatory strategy for underlying problems including compromised retinal input of s-cones due to hypo-dopaminergic tone. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  14. Electromagnetic interference in intraoperative monitoring of motor evoked potentials and a wireless solution.

    PubMed

    Farajidavar, Aydin; Seifert, Jennifer L; Delgado, Mauricio R; Sparagana, Steven; Romero-Ortega, Mario I; Chiao, J-C

    2016-02-01

    Intraoperative neurophysiological monitoring (IONM) is utilized to minimize neurological morbidity during spine surgery. Transcranial motor evoked potentials (TcMEPs) are principal IONM signals in which the motor cortex of the subject is stimulated with electrical pulses and the evoked potentials are recorded from the muscles of interest. Currently available monitoring systems require the connection of 40-60 lengthy lead wires to the patient. These wires contribute to a crowded and cluttered surgical environment, and limit the maneuverability of the surgical team. In this work, it was demonstrated that the cumbersome wired system is vulnerable to electromagnetic interference (EMI) produced by operating room (OR) equipment. It was hypothesized that eliminating the lengthy recording wires can remove the EMI induced in the IONM signals. Hence, a wireless system to acquire TcMEPs was developed and validated through bench-top and animal experiments. Side-by-side TcMEPs acquisition from the wired and wireless systems in animal experiments under controlled conditions (absence of EMI from OR equipment) showed comparable magnitudes and waveforms, thus demonstrating the fidelity in the signal acquisition of the wireless solution. The robustness of the wireless system to minimize EMI was compared with a wired-system under identical conditions. Unlike the wired-system, the wireless system was not influenced by the electromagnetic waves from the C-Arm X-ray machine and temperature management system in the OR. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. The effects of neck flexion on cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in related sensory cortices

    PubMed Central

    2012-01-01

    Background A flexed neck posture leads to non-specific activation of the brain. Sensory evoked cerebral potentials and focal brain blood flow have been used to evaluate the activation of the sensory cortex. We investigated the effects of a flexed neck posture on the cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in the related sensory cortices. Methods Twelve healthy young adults received right visual hemi-field, binaural auditory and left median nerve stimuli while sitting with the neck in a resting and flexed (20° flexion) position. Sensory evoked potentials were recorded from the right occipital region, Cz in accordance with the international 10–20 system, and 2 cm posterior from C4, during visual, auditory and somatosensory stimulations. The oxidative-hemoglobin concentration was measured in the respective sensory cortex using near-infrared spectroscopy. Results Latencies of the late component of all sensory evoked potentials significantly shortened, and the amplitude of auditory evoked potentials increased when the neck was in a flexed position. Oxidative-hemoglobin concentrations in the left and right visual cortices were higher during visual stimulation in the flexed neck position. The left visual cortex is responsible for receiving the visual information. In addition, oxidative-hemoglobin concentrations in the bilateral auditory cortex during auditory stimulation, and in the right somatosensory cortex during somatosensory stimulation, were higher in the flexed neck position. Conclusions Visual, auditory and somatosensory pathways were activated by neck flexion. The sensory cortices were selectively activated, reflecting the modalities in sensory projection to the cerebral cortex and inter-hemispheric connections. PMID:23199306

  16. The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential.

    PubMed

    Ma, Teng; Li, Hui; Deng, Lili; Yang, Hao; Lv, Xulin; Li, Peiyang; Li, Fali; Zhang, Rui; Liu, Tiejun; Yao, Dezhong; Xu, Peng

    2017-04-01

    Movement control is an important application for EEG-BCI (EEG-based brain-computer interface) systems. A single-modality BCI cannot provide an efficient and natural control strategy, but a hybrid BCI system that combines two or more different tasks can effectively overcome the drawbacks encountered in single-modality BCI control. In the current paper, we developed a new hybrid BCI system by combining MI (motor imagery) and mVEP (motion-onset visual evoked potential), aiming to realize the more efficient 2D movement control of a cursor. The offline analysis demonstrates that the hybrid BCI system proposed in this paper could evoke the desired MI and mVEP signal features simultaneously, and both are very close to those evoked in the single-modality BCI task. Furthermore, the online 2D movement control experiment reveals that the proposed hybrid BCI system could provide more efficient and natural control commands. The proposed hybrid BCI system is compensative to realize efficient 2D movement control for a practical online system, especially for those situations in which P300 stimuli are not suitable to be applied.

  17. Vestibular evoked myogenic potential (Vemp): evaluation of responses in normal subjects.

    PubMed

    Felipe, Lilian; Santos, Marco Aurélio Rocha; Gonçalves, Denise Utsch

    2008-01-01

    the Vestibular Evoked Myogenic Potential (Vemp) is formed by myogenic neurophysiologic responses activated by high-intensity sound stimulation. The response is registered through surface electromyography of the cervical muscles during muscle contraction. The acoustic stimuli activate the saccular macula, the vestibular inferior nerve and the pathways related to the vestibule-spinal descendant nerves. to describe Vemp parameters in a normal population. thirty adults, 13 men and 17 women with no otoneurological complaints were selected. The stimuli were 200 tone burst, with a frequency of 1Hz and intensity of 118 dB Na, band-pass filter ranging from 10Hz to 1500Hz. The first potential biphasic P13-N23 wave was analyzed. no significant difference was observed between the sides of stimulation in terms of latency and amplitude. However, a statistically significant difference was found for amplitude between genders. Vemp demonstrated to be a reliable instrument in the clinical assessment of the vestibular function.

  18. The color-vision approach to emotional space: cortical evoked potential data.

    PubMed

    Boucsein, W; Schaefer, F; Sokolov, E N; Schröder, C; Furedy, J J

    2001-01-01

    A framework for accounting for emotional phenomena proposed by Sokolov and Boucsein (2000) employs conceptual dimensions that parallel those of hue, brightness, and saturation in color vision. The approach that employs the concepts of emotional quality. intensity, and saturation has been supported by psychophysical emotional scaling data gathered from a few trained observers. We report cortical evoked potential data obtained during the change between different emotions expressed in schematic faces. Twenty-five subjects (13 male, 12 female) were presented with a positive, a negative, and a neutral computer-generated face with random interstimulus intervals in a within-subjects design, together with four meaningful and four meaningless control stimuli made up from the same elements. Frontal, central, parietal, and temporal ERPs were recorded from each hemisphere. Statistically significant outcomes in the P300 and N200 range support the potential fruitfulness of the proposed color-vision-model-based approach to human emotional space.

  19. Mapping human brain networks with cortico-cortical evoked potentials.

    PubMed

    Keller, Corey J; Honey, Christopher J; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D

    2014-10-05

    The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. [Communication and auditory behavior obtained by auditory evoked potentials in mammals, birds, amphibians, and reptiles].

    PubMed

    Arch-Tirado, Emilio; Collado-Corona, Miguel Angel; Morales-Martínez, José de Jesús

    2004-01-01

    amphibians, Frog catesbiana (frog bull, 30 animals); reptiles, Sceloporus torcuatus (common small lizard, 22 animals); birds: Columba livia (common dove, 20 animals), and mammals, Cavia porcellus, (guinea pig, 20 animals). With regard to lodging, all animals were maintained at the Institute of Human Communication Disorders, were fed with special food for each species, and had water available ad libitum. Regarding procedure, for carrying out analysis of auditory evoked potentials of brain stem SPL amphibians, birds, and mammals were anesthetized with ketamine 20, 25, and 50 mg/kg, by injection. Reptiles were anesthetized by freezing (6 degrees C). Study subjects had needle electrodes placed in an imaginary line on the half sagittal line between both ears and eyes, behind right ear, and behind left ear. Stimulation was carried out inside a no noise site by means of a horn in free field. The sign was filtered at between 100 and 3,000 Hz and analyzed in a computer for provoked potentials (Racia APE 78). In data shown by amphibians, wave-evoked responses showed greater latency than those of the other species. In reptiles, latency was observed as reduced in comparison with amphibians. In the case of birds, lesser latency values were observed, while in the case of guinea pigs latencies were greater than those of doves but they were stimulated by 10 dB, which demonstrated best auditory threshold in the four studied species. Last, it was corroborated that as the auditory threshold of each species it descends conforms to it advances in the phylogenetic scale. Beginning with these registrations, we care able to say that response for evoked brain stem potential showed to be more complex and lesser values of absolute latency as we advance along the phylogenetic scale; thus, the opposing auditory threshold is better agreement with regard to the phylogenetic scale among studied species. These data indicated to us that seeking of auditory information is more complex in more

  1. Systematic Morphometry of Catecholamine Nuclei in the Brainstem.

    PubMed

    Bucci, Domenico; Busceti, Carla L; Calierno, Maria T; Di Pietro, Paola; Madonna, Michele; Biagioni, Francesca; Ryskalin, Larisa; Limanaqi, Fiona; Nicoletti, Ferdinando; Fornai, Francesco

    2017-01-01

    Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology.

  2. Systematic Morphometry of Catecholamine Nuclei in the Brainstem

    PubMed Central

    Bucci, Domenico; Busceti, Carla L.; Calierno, Maria T.; Di Pietro, Paola; Madonna, Michele; Biagioni, Francesca; Ryskalin, Larisa; Limanaqi, Fiona; Nicoletti, Ferdinando; Fornai, Francesco

    2017-01-01

    Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology. PMID:29163071

  3. Long Latency Auditory Evoked Potential in Term and Premature Infants

    PubMed Central

    Didoné, Dayane Domeneghini; Garcia, Michele Vargas; da Silveira, Aron Ferreira

    2013-01-01

    Introduction The research in long latency auditory evokes potentials (LLAEP) in newborns is recent because of the cortical structure maturation, but studies note that these potentials may be evidenced at this age and could be considered as indicators of cognitive development. Purpose To research the exogenous potentials in term and premature infants during their first month of life. Materials and Methods The sample consisted of 25 newborns, 15 term and 10 premature infants. The infants with gestational age under 37 weeks were considered premature. To evaluate the cortical potentials, the infants remained in natural sleep. The LLAEPs were researched binaurally, through insertion earphones, with frequent /ba/ and rare /ga/ speech stimuli in the intensity of 80 dB HL (decibel hearing level). The frequent stimuli presented a total of 80% of the presentations, and the rare, 20%. The data were statistically analyzed. Results The average gestational age of the term infants was 38.9 weeks (± 1.3) and for the premature group, 33.9 weeks (± 1.6). It was possible to observe only the potentials P1 and N1 in both groups, but there was no statistically significant difference for the latencies of the components P1 and N1 (p > 0.05) between the groups. Conclusion It was possible to observe the exogenous components P1 and N1 of the cortical potentials in both term and preterm newborns of no more than 1 month of age. However, there was no difference between the groups. PMID:25992057

  4. Activation of Brainstem Pro-opiomelanocortin Neurons Produces Opioidergic Analgesia, Bradycardia and Bradypnoea

    PubMed Central

    Hirschberg, Stefan; Hill, Rob; Balthasar, Nina; Pickering, Anthony E.

    2016-01-01

    Opioids are widely used medicinally as analgesics and abused for hedonic effects, actions that are each complicated by substantial risks such as cardiorespiratory depression. These drugs mimic peptides such as β-endorphin, which has a key role in endogenous analgesia. The β-endorphin in the central nervous system originates from pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and nucleus of the solitary tract (NTS). Relatively little is known about the NTSPOMC neurons but their position within the sensory nucleus of the vagus led us to test the hypothesis that they play a role in modulation of cardiorespiratory and nociceptive control. The NTSPOMC neurons were targeted using viral vectors in a POMC-Cre mouse line to express either opto-genetic (channelrhodopsin-2) or chemo-genetic (Pharmacologically Selective Actuator Modules). Opto-genetic activation of the NTSPOMC neurons in the working heart brainstem preparation (n = 21) evoked a reliable, titratable and time-locked respiratory inhibition (120% increase in inter-breath interval) with a bradycardia (125±26 beats per minute) and augmented respiratory sinus arrhythmia (58% increase). Chemo-genetic activation of NTSPOMC neurons in vivo was anti-nociceptive in the tail flick assay (latency increased by 126±65%, p<0.001; n = 8). All effects of NTSPOMC activation were blocked by systemic naloxone (opioid antagonist) but not by SHU9119 (melanocortin receptor antagonist). The NTSPOMC neurons were found to project to key brainstem structures involved in cardiorespiratory control (nucleus ambiguus and ventral respiratory group) and endogenous analgesia (periaqueductal gray and midline raphe). Thus the NTSPOMC neurons may be capable of tuning behaviour by an opioidergic modulation of nociceptive, respiratory and cardiac control. PMID:27077912

  5. Clinical significance of vestibular evoked myogenic potentials in benign paroxysmal positional vertigo.

    PubMed

    Yang, Won Sun; Kim, Sung Huhn; Lee, Jong Dae; Lee, Won-Sang

    2008-12-01

    To investigate the vestibular evoked myogenic potentials (VEMPs) resulting in benign paroxysmal positional vertigo (BPPV) patients and to verify its clinical applications in BPPV. A prospective study. Tertiary referral dizziness center. Forty-one patients with diagnosis of BPPV and 92 healthy volunteers who underwent VEMP testing. Patients were treated by canalith repositioning maneuvers according to the affected canal, and testing of VEMP was performed at diagnosis and after treatment. Testing of VEMP was performed in BPPV patients and in the control group. The number of times the canalith repositioning maneuver was repeated until the patient's report of relief from vertigo and findings of negative positioning test were recorded to find out the relationship between VEMP results and the progress of disease. Vestibular evoked myogenic potential results of BPPV patients showed prolonged p13 and n23 latencies compared with those of the control group, and we could not find any significant difference in VEMP latencies between patients with posterior and horizontal canal type of BPPV. The number of times that the maneuver was repeated did not correlate with the degree of latency prolongation, but in the "no response" group, the number of times was considerably greater than that in the "response" group. We found that VEMP latencies are increased in BPPV patients, which may signify neuronal degenerative changes in the macula of the saccule. When an extensive neuronal damage was suspected by VEMP results such as "no response" in VEMP, the disease progress showed a chronic and resistive course. Therefore, we propose that VEMP could be a useful method to determine a clinical prognosis of patients with BPPV.

  6. Altered Automatic Face Processing in Individuals with High-Functioning Autism Spectrum Disorders: Evidence from Visual Evoked Potentials

    ERIC Educational Resources Information Center

    Fujita, Takako; Kamio, Yoko; Yamasaki, Takao; Yasumoto, Sawa; Hirose, Shinichi; Tobimatsu, Shozo

    2013-01-01

    Individuals with autism spectrum disorders (ASDs) have different automatic responses to faces than typically developing (TD) individuals. We recorded visual evoked potentials (VEPs) in 10 individuals with high-functioning ASD (HFASD) and 10 TD individuals. Visual stimuli consisted of upright and inverted faces (fearful and neutral) and objects…

  7. Objective measures of binaural masking level differences and comodulation masking release based on late auditory evoked potentials.

    PubMed

    Epp, Bastian; Yasin, Ifat; Verhey, Jesko L

    2013-12-01

    The audibility of important sounds is often hampered due to the presence of other masking sounds. The present study investigates if a correlate of the audibility of a tone masked by noise is found in late auditory evoked potentials measured from human listeners. The audibility of the target sound at a fixed physical intensity is varied by introducing auditory cues of (i) interaural target signal phase disparity and (ii) coherent masker level fluctuations in different frequency regions. In agreement with previous studies, psychoacoustical experiments showed that both stimulus manipulations result in a masking release (i: binaural masking level difference; ii: comodulation masking release) compared to a condition where those cues are not present. Late auditory evoked potentials (N1, P2) were recorded for the stimuli at a constant masker level, but different signal levels within the same set of listeners who participated in the psychoacoustical experiment. The data indicate differences in N1 and P2 between stimuli with and without interaural phase disparities. However, differences for stimuli with and without coherent masker modulation were only found for P2, i.e., only P2 is sensitive to the increase in audibility, irrespective of the cue that caused the masking release. The amplitude of P2 is consistent with the psychoacoustical finding of an addition of the masking releases when both cues are present. Even though it cannot be concluded where along the auditory pathway the audibility is represented, the P2 component of auditory evoked potentials is a candidate for an objective measure of audibility in the human auditory system. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Auditory Brainstem Responses for Click and CE-chirp Stimuli in Individuals with and without Occupational Noise Exposure

    PubMed Central

    Pushpalatha, Zeena Venkatacheluvaiah; Konadath, Sreeraj

    2016-01-01

    Introduction: Encoding of CE-chirp and click stimuli in auditory system was studied using auditory brainstem responses (ABRs) among individuals with and without noise exposure. Materials and Methods: The study consisted of two groups. Group 1 (experimental group) consisted of 20 (40 ears) individuals exposed to occupational noise with hearing thresholds within 25 dB HL. They were further divided into three subgroups based on duration of noise exposure (0–5 years of exposure-T1, 5–10 years of exposure-T2, and >10 years of exposure-T3). Group 2 (control group) consisted of 20 individuals (40 ears). Absolute latency and amplitude of waves I, III, and V were compared between the two groups for both click and CE-chirp stimuli. T1, T2, and T3 groups were compared for the same parameters to see the effect of noise exposure duration on CE-chirp and click ABR. Result: In Click ABR, while both the parameters for wave III were significantly poorer for the experimental group, wave V showed a significant decline in terms of amplitude only. There was no significant difference obtained for any of the parameters for wave I. In CE-Chirp ABR, the latencies for all three waves were significantly prolonged in the experimental group. However, there was a significant decrease in terms of amplitude in only wave V for the same group. Discussion: Compared to click evoked ABR, CE-Chirp ABR was found to be more sensitive in comparison of latency parameters in individuals with occupational noise exposure. Monitoring of early pathological changes at the brainstem level can be studied effectively by using CE-Chirp stimulus in comparison to click stimulus. Conclusion: This study indicates that ABR's obtained with CE-chirp stimuli serves as an effective tool to identify the early pathological changes due to occupational noise exposure when compared to click evoked ABR. PMID:27762255

  9. Auditory evoked functions in ground crew working in high noise environment of Mumbai airport.

    PubMed

    Thakur, L; Anand, J P; Banerjee, P K

    2004-10-01

    The continuous exposure to the relatively high level of noise in the surroundings of an airport is likely to affect the central pathway of the auditory system as well as the cognitive functions of the people working in that environment. The Brainstem Auditory Evoked Responses (BAER), Mid Latency Response (MLR) and P300 response of the ground crew employees working in Mumbai airport were studied to evaluate the effects of continuous exposure to high level of noise of the surroundings of the airport on these responses. BAER, P300 and MLR were recorded by using a Nicolet Compact-4 (USA) instrument. Audiometry was also monitored with the help of GSI-16 Audiometer. There was a significant increase in the peak III latency of the BAER in the subjects exposed to noise compared to controls with no change in their P300 values. The exposed group showed hearing loss at different frequencies. The exposure to the high level of noise caused a considerable decline in the auditory conduction upto the level of the brainstem with no significant change in conduction in the midbrain, subcortical areas, auditory cortex and associated areas. There was also no significant change in cognitive function as measured by P300 response.

  10. Correlation analysis of the long latency auditory evoked potential N2 and cognitive P3 with the level of lead poisoning in children

    PubMed Central

    Alvarenga, Kátia de Freitas; Alvarez Bernardez-Braga, Gabriela Rosito; Zucki, Fernanda; Duarte, Josilene Luciene; Lopes, Andrea Cintra; Feniman, Mariza Ribeiro

    2013-01-01

    Summary Introduction: The effects of lead on children's health have been widely studied. Aim: To analyze the correlation between the long latency auditory evoked potential N2 and cognitive P3 with the level of lead poisoning in Brazilian children. Methods: This retrospective study evaluated 20 children ranging in age from 7 to 14 years at the time of audiological and electrophysiological evaluations. We performed periodic surveys of the lead concentration in the blood and basic audiological evaluations. Furthermore, we studied the auditory evoked potential long latency N2 and cognitive P3 by analyzing the absolute latency of the N2 and P3 potentials and the P3 amplitude recorded at Cz. At the time of audiological and electrophysiological evaluations, the average concentration of lead in the blood was less than 10 ug/dL. Results: In conventional audiologic evaluations, all children had hearing thresholds below 20 dBHL for the frequencies tested and normal tympanometry findings; the auditory evoked potential long latency N2 and cognitive P3 were present in 95% of children. No significant correlations were found between the blood lead concentration and latency (p = 0.821) or amplitude (p = 0.411) of the P3 potential. However, the latency of the N2 potential increased with the concentration of lead in the blood, with a significant correlation (p = 0.030). Conclusion: Among Brazilian children with low lead exposure, a significant correlation was found between blood lead levels and the average latency of the auditory evoked potential long latency N2; however, a significant correlation was not observed for the amplitude and latency of the cognitive potential P3. PMID:25991992

  11. The role of eABR with intracochlear test electrode in decision making between cochlear and brainstem implants: preliminary results.

    PubMed

    Cinar, Betul Cicek; Yarali, Mehmet; Atay, Gamze; Bajin, Munir Demir; Sennaroglu, Gonca; Sennaroglu, Levent

    2017-09-01

    The objective of the study was to discuss the findings of intraoperative electrically evoked auditory brainstem response (eABR) test results with a recently designed intracochlear test electrode (ITE) in terms of their relation to decisions of cochlear or auditory brainstem implantation. This clinical study was conducted in Hacettepe University, Department of Otolaryngology, Head and Neck Surgery and Department of Audiology. Subjects were selected from inner ear malformation (IEM) database. Eleven subjects with profound sensorineural hearing loss were included in the current study with age range from 1 year 3 months to 4 years 3 months for children with prelingual hearing loss. There was only one 42-year-old post-lingual subject. eABR was recorded with an ITE and intraoperatively with an original cochlear implant (CI) electrode in 11 cases with different IEMs. Findings of eABR with ITE and their relation to the decision for CI or auditory brainstem implant (ABI) are discussed. Positive eABR test results were found to be dependent on close to normal cochlear structures and auditory nerve. The probability of positive result decreases with increasing degree of malformation severity. The prediction value of eABR via ITE on decision for hearing restoration was found to be questionable in this study. The results of eABR with ITE have predictive value on what we will get with the actual CI electrode. ITE appears to stimulate the cochlea like an actual CI. If the eABR is positive, the results are reliable. However, if eABR is negative, the results should be evaluated with preoperative audiological testing and MRI findings.

  12. Grafting of fetal brainstem 5-HT neurons into the sublesional spinal cord of paraplegic rats restores coordinated hindlimb locomotion.

    PubMed

    Sławińska, Urszula; Miazga, Krzysztof; Cabaj, Anna M; Leszczyńska, Anna N; Majczyński, Henryk; Nagy, James I; Jordan, Larry M

    2013-09-01

    In rodent models of spinal cord injury, there is increasing evidence that activation of the locomotor central pattern generator (CPG) below the site of injury with 5-hydroxytryptamine (5-HT) agonists improves locomotor recovery and restores coordination. A promising means of replacing 5-HT control of locomotion is to graft brainstem 5-HT neurons into the spinal cord below the level of the spinal cord injury. However, it is not known whether this approach improves limb coordination because recovery of coordinated stepping has not been documented in detail in previous studies employing this transplantation strategy. Here, adult rats with complete spinal cord transections at the T9/10 level were grafted with E14 fetal neurons from the medulla at the T10/11 vertebra level one month after injury. The B1, B2 and B3 fetal anlagen of brainstem 5-HT neurons, a grouping that included the presumed precursors of recently described 5-HT locomotor command neurons, were used in these grafts. EMG and video recordings of treadmill locomotion evoked by tail stimulation showed full recovery of inter- and intralimb coordination in the grafted rats. We showed, using systemically applied antagonists, that 5-HT₂ and 5-HT₇ receptors mediate the improved locomotion after grafting, but through actions on different populations of spinal locomotor neurons. Specifically, 5-HT₂ receptors control CPG activation as well as motoneuron output, while 5-HT₇ receptors contribute primarily to activity of the locomotor CPG. These results are consistent with the roles for these receptors during locomotion in intact rodents and in rodent brainstem-spinal cord in vitro preparations. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. A developmental classification of malformations of the brainstem.

    PubMed

    Barkovich, A James; Millen, Kathleen J; Dobyns, William B

    2007-12-01

    With advances in imaging and genetics, malformations of the brainstem are being more commonly identified. We describe and classify brainstem anomalies in 138 patients ascertained over a period of 10 years Magnetic resonance imaging studies and, where available, clinical records of the patients were retrospectively reviewed. Malformations were segregated according to magnetic resonance findings and classified when possible by embryological mechanisms The most common location for anomalies was the pons, which was involved in 114 patients. The midbrain was involved in 45 patients, whereas the medulla was involved in 14. In 53 patients, more than 1 region was affected (all 3 regions in 6 patients, midbrain and pons in 39, and medulla and pons in 8). The malformations were divided into four groups: (1) malformations with abnormal brainstem segmentation, (2) malformations with segmental hypoplasia, (3) postsegmentation malformations, and (4) malformations associated with abnormal cortical organization The malformations of the brainstem identified in this study were diverse and complex. This proposed classification organizes them into groupings based on known genetics and embryological events. Use of this system will help clinicians and scientists to better understand these disorders and, ultimately, to better counsel families of affected patients.

  14. Enhanced Auditory Brainstem Response and Parental Bonding Style in Children with Gastrointestinal Symptoms

    PubMed Central

    Seino, Shizuka; Watanabe, Satoshi; Ito, Namiko; Sasaki, Konosuke; Shoji, Kaori; Miura, Shoko; Kozawa, Kanoko; Nakai, Kunihiko; Sato, Hiroshi; Kanazawa, Motoyori; Fukudo, Shin

    2012-01-01

    Background The electrophysiological properties of the brain and influence of parental bonding in childhood irritable bowel syndrome (IBS) are unclear. We hypothesized that children with chronic gastrointestinal (GI) symptoms like IBS may show exaggerated brainstem auditory evoked potential (BAEP) responses and receive more inadequate parental bonding. Methodology/Principal Findings Children aged seven and their mothers (141 pairs) participated. BAEP was measured by summation of 1,000 waves of the electroencephalogram triggered by 75 dB click sounds. The mothers completed their Children's Somatization Inventory (CSI) and Parental Bonding Instrument (PBI). CSI results revealed 66 (42%) children without GI symptoms (controls) and 75 (58%) children with one or more GI symptoms (GI group). The III wave in the GI group (median 4.10 interquartile range [3.95–4.24] ms right, 4.04 [3.90–4.18] ms left) had a significantly shorter peak latency than controls (4.18 [4.06–4.34] ms right, p = 0.032, 4.13 [4.02–4.24] ms left, p = 0.018). The female GI group showed a significantly shorter peak latency of the III wave (4.00 [3.90–4.18] ms) than controls (4.18 [3.97–4.31] ms, p = 0.034) in the right side. BAEP in the male GI group did not significantly differ from that in controls. GI scores showed a significant correlation with the peak latency of the III wave in the left side (rho = −0.192, p = 0.025). The maternal care PBI scores in the GI group (29 [26]–[33]) were significantly lower than controls (31 [28.5–33], p = 0.010), while the maternal over-protection PBI scores were significantly higher in the GI group (16 [12]–[17]) than controls (13 [10.5–16], p = 0.024). Multiple regression analysis in females also supported these findings. Conclusions It is suggested that children with chronic GI symptoms have exaggerated brainstem responses to environmental stimuli and inadequate parental behaviors aggravate these symptoms. PMID

  15. Consciousness and the Brainstem.

    ERIC Educational Resources Information Center

    Parvizi, Josef; Damasio, Antonio

    2001-01-01

    Summarizes a theoretical framework and set of hypotheses aimed at accounting for consciousness in neurobiological terms. Discusses the functional neuroanatomy of nuclei in the brainstem reticular formation. Notes that the views presented are compatible with the idea that the reticular formation modulates the electrophysiological activity of the…

  16. The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential

    NASA Astrophysics Data System (ADS)

    Ma, Teng; Li, Hui; Deng, Lili; Yang, Hao; Lv, Xulin; Li, Peiyang; Li, Fali; Zhang, Rui; Liu, Tiejun; Yao, Dezhong; Xu, Peng

    2017-04-01

    Objective. Movement control is an important application for EEG-BCI (EEG-based brain-computer interface) systems. A single-modality BCI cannot provide an efficient and natural control strategy, but a hybrid BCI system that combines two or more different tasks can effectively overcome the drawbacks encountered in single-modality BCI control. Approach. In the current paper, we developed a new hybrid BCI system by combining MI (motor imagery) and mVEP (motion-onset visual evoked potential), aiming to realize the more efficient 2D movement control of a cursor. Main result. The offline analysis demonstrates that the hybrid BCI system proposed in this paper could evoke the desired MI and mVEP signal features simultaneously, and both are very close to those evoked in the single-modality BCI task. Furthermore, the online 2D movement control experiment reveals that the proposed hybrid BCI system could provide more efficient and natural control commands. Significance. The proposed hybrid BCI system is compensative to realize efficient 2D movement control for a practical online system, especially for those situations in which P300 stimuli are not suitable to be applied.

  17. Functional correlates of the therapeutic and adverse effects evoked by thalamic stimulation for essential tremor

    PubMed Central

    Gibson, William S.; Jo, Hang Joon; Testini, Paola; Cho, Shinho; Felmlee, Joel P.; Welker, Kirk M.; Klassen, Bryan T.; Min, Hoon-Ki

    2016-01-01

    Deep brain stimulation is an established neurosurgical therapy for movement disorders including essential tremor and Parkinson’s disease. While typically highly effective, deep brain stimulation can sometimes yield suboptimal therapeutic benefit and can cause adverse effects. In this study, we tested the hypothesis that intraoperative functional magnetic resonance imaging could be used to detect deep brain stimulation-evoked changes in functional and effective connectivity that would correlate with the therapeutic and adverse effects of stimulation. Ten patients receiving deep brain stimulation of the ventralis intermedius thalamic nucleus for essential tremor underwent functional magnetic resonance imaging during stimulation applied at a series of stimulation localizations, followed by evaluation of deep brain stimulation-evoked therapeutic and adverse effects. Correlations between the therapeutic effectiveness of deep brain stimulation (3 months postoperatively) and deep brain stimulation-evoked changes in functional and effective connectivity were assessed using region of interest-based correlation analysis and dynamic causal modelling, respectively. Further, we investigated whether brain regions might exist in which activation resulting from deep brain stimulation might correlate with the presence of paraesthesias, the most common deep brain stimulation-evoked adverse effect. Thalamic deep brain stimulation resulted in activation within established nodes of the tremor circuit: sensorimotor cortex, thalamus, contralateral cerebellar cortex and deep cerebellar nuclei (FDR q < 0.05). Stimulation-evoked activation in all these regions of interest, as well as activation within the supplementary motor area, brainstem, and inferior frontal gyrus, exhibited significant correlations with the long-term therapeutic effectiveness of deep brain stimulation (P < 0.05), with the strongest correlation (P < 0.001) observed within the contralateral cerebellum. Dynamic causal

  18. Guanfacine potentiates the activation of prefrontal cortex evoked by warning signals.

    PubMed

    Clerkin, Suzanne M; Schulz, Kurt P; Halperin, Jeffrey M; Newcorn, Jeffrey H; Ivanov, Iliyan; Tang, Cheuk Y; Fan, Jin

    2009-08-15

    Warning signals evoke an alert state of readiness that prepares for a rapid response by priming a thalamo-frontal-striatal network that includes the dorsolateral prefrontal cortex (DLPFC). Animal models indicate that noradrenergic input is essential for this stimulus-driven activation of DLPFC, but the precise mechanisms involved have not been determined. We tested the role that postsynaptic alpha(2A) adrenoceptors play in the activation of DLPFC evoked by warning cues using a placebo-controlled challenge with the alpha(2A) agonist guanfacine. Sixteen healthy young adults were scanned twice with event-related functional magnetic resonance imaging (fMRI), while performing a simple cued reaction time (RT) task following administration of a single dose of oral guanfacine (1 mg) and placebo in counterbalanced order. The RT task temporally segregates the neural effects of warning cues and motor responses and minimizes mnemonic demands. Warning cues produced a marked reduction in RT accompanied by significant activation in a distributed thalamo-frontal-striatal network, including bilateral DLPFC. Guanfacine selectively increased the cue-evoked activation of the left DLPFC and right anterior cerebellum, although this increase was not accompanied by further reductions in RT. The effects of guanfacine on DLPFC activation were specifically associated with the warning cue and were not seen for visual- or target-related activation. Guanfacine produced marked increases in the cue-evoked activation of DLPFC that correspond to the well-described actions of postsynaptic alpha(2) adrenoceptor stimulation. The current procedures provide an opportunity to test postsynaptic alpha(2A) adrenoceptor function in the prefrontal cortex in the pathophysiology of several psychiatric disorders.

  19. Transcutaneous Electrical Nerve Stimulation Effects on Neglect: A Visual-Evoked Potential Study

    PubMed Central

    Pitzalis, Sabrina; Spinelli, Donatella; Vallar, Giuseppe; Di Russo, Francesco

    2013-01-01

    We studied the effects of transcutaneous electrical nerve stimulation (TENS) in six right-brain-damaged patients with left unilateral spatial neglect (USN), using both standard clinical tests (reading, line, and letter cancelation, and line bisection), and electrophysiological measures (steady-state visual-evoked potentials, SSVEP). TENS was applied on left neck muscles for 15′, and measures were recorded before, immediately after, and 60′ after stimulation. Behavioral results showed that the stimulation temporarily improved the deficit in all patients. In cancelation tasks, omissions and performance asymmetries between the two hand-sides were reduced, as well as the rightward deviation in line bisection. Before TENS, SSVEP average latency to stimuli displayed in the left visual half-field [LVF (160 ms)] was remarkably longer than to stimuli shown in the right visual half-field [RVF (120 ms)]. Immediately after TENS, latency to LVF stimuli was 130 ms; 1 h after stimulation the effect of TENS faded, with latency returning to baseline. TENS similarly affected also the latency SSVEP of 12 healthy participants, and their line bisection performance, with effects smaller in size. The present study, first, replicates evidence concerning the positive behavioral effects of TENS on the manifestations of left USN in right-brain-damaged patients; second, it shows putatively related electrophysiological effects on the SSVEP latency. These behavioral and novel electrophysiological results are discussed in terms of specific directional effects of left somatosensory stimulation on egocentric coordinates, which in USN patients are displaced toward the side of the cerebral lesion. Showing that visual-evoked potentials latency is modulated by proprioceptive stimulation, we provide electrophysiological evidence to the effect that TENS may improve some manifestations of USN, with implications for its rehabilitation. PMID:23966919

  20. Vestibular-evoked myogenic potential (VEMP) in the evaluation of schistosomal myeloradiculopathy.

    PubMed

    Felipe, Lilian; Gonçalves, Denise Utsch; Tavares, Maurício Campelo; Sousa-Pereira, Sílvio Roberto; Antunes, Carlos Maurício de Figueiredo; Lambertucci, José Roberto

    2009-10-01

    Schistosomal myeloradiculopathy (SMR) is the most severe and disabling form of schistosomiasis. The diagnosis is based on clinical, laboratory, and image data. Vestibular-evoked myogenic potential (VEMP) is a neurophysiologic test that assesses the vestibulospinal pathway through acoustic or galvanic stimuli. The aim of this study was to evaluate cervical spinal abnormalities in patients with SMR. Fifty-two subjects were evaluated, of whom 29 had SMR and 30 did not (normal control). Normal VEMP was observed in all volunteers without SMR. Abnormal VEMP was recorded in 34% of the group with SMR. After treatment, abnormal VEMP was found in 80% of those with persistent neurologic abnormalities. VEMP is a functional test, and the alteration may precede image abnormalities. This procedure may be useful for early diagnosis of schistosomal cervical spinal cord involvement.

  1. A computer-controlled, closed-loop infusion system for infusing muscle relaxants: its use during motor-evoked potential monitoring.

    PubMed

    Stinson, L W; Murray, M J; Jones, K A; Assef, S J; Burke, M J; Behrens, T L; Lennon, R L

    1994-02-01

    A microcomputer-controlled closed-loop infusion system (MCCLIS) has been developed that provides stable intraoperative levels of partial neuromuscular blockade. Complete neuromuscular blockade interferes with intraoperative motor-evoked potential (MEP) monitoring used for patients undergoing surgical procedures that place them at risk for spinal cord ischemia. Nine patients were studied during which the MCCLIS maintained stable levels of partial neuromuscular blockade and allowed transcranial magnetic motor-evoked potential (TcM-MEP) monitoring during thoracoabdominal aortic aneurysmectomy. The use of TcM-MEP for monitoring intraoperative spinal cord function was balanced against surgical considerations for muscle relaxation with 80% to 90% neuromuscular blockade fulfilling each requirement. Intraoperative adjustment of partial neuromuscular blockade to facilitate TcM-MEP monitoring was also possible with the MCCLIS. The MCCLIS should allow for further investigation into the sensitivity, specificity, and predictability of TcM-MEP monitoring for any patient at risk for intraoperative spinal cord ischemia including those undergoing thoracoabdominal aortic aneurysmectomy.

  2. Event related aspects of somatosensory and auditory evoked potentials: noise or signals?

    PubMed

    Stowell, H

    1985-05-01

    The so-called Vertex Potential (VP) of human scalp-conducted and event related brain potential (ERBP), which occur as a slow and often large, biphasic sinusoid within the 100-400 msec time segment after transient stimulation in the three main sensory modalities, are the longest researched of all human evoked potential (EP) phenomena. Its variable amplitude has been directly correlated, in experiments expressly tailored for the purpose, with input/output variables such as the rate of acceleration of given stimulus parameters from a state of relative rest (RM function), interstimulus interval (ISI), stimulus intensity, skin potential and resistance changes (SPR and SRR), the peripheral electroneurogram (ENG), and experimentally isolated C-fiber afference; and with neuropsychological variables such as attention or vigilance, visual acuity, response time, subjective stimulus probability or expectancy, acute pain of both fast and slow kinds, intelligence quotient (IQ), and psychometric personality scores (e.g., extraversion versus introversion and neuroticism versus normality). Unfortunately, the cerebral, neural origins of the VP, if any, are unknown; it is reported as usually absent from cortex-surface EP in those primates and mammals hitherto studied, and also from human extracranial event related magnetic fields of the brain (ERMFb) insofar as these reveal only superficial tangential sources; but a possible analog has been recorded from deep subcortical electrodes during human neurosurgery. In view of the increasing published range and quantity of direct correlates of VP amplitude, and of the scarcity of data about its neuroanatomy and neurophysiology, it seemed a good idea to do some rudimentary signal analysis. Preliminary results from five subjects confirm earlier data: The VP of somatosensory (SEP) and auditory (AEP) evoked potentials, as obtained by scalp-conductance and either averaged or single-epoch, can be resolved into inconsistently stimulus synchronized

  3. Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface.

    PubMed

    Ng, Kian B; Bradley, Andrew P; Cunnington, Ross

    2012-06-01

    The mechanisms of neural excitation and inhibition when given a visual stimulus are well studied. It has been established that changing stimulus specificity such as luminance contrast or spatial frequency can alter the neuronal activity and thus modulate the visual-evoked response. In this paper, we study the effect that stimulus specificity has on the classification performance of a steady-state visual-evoked potential-based brain-computer interface (SSVEP-BCI). For example, we investigate how closely two visual stimuli can be placed before they compete for neural representation in the cortex and thus influence BCI classification accuracy. We characterize stimulus specificity using the four stimulus parameters commonly encountered in SSVEP-BCI design: temporal frequency, spatial size, number of simultaneously displayed stimuli and their spatial proximity. By varying these quantities and measuring the SSVEP-BCI classification accuracy, we are able to determine the parameters that provide optimal performance. Our results show that superior SSVEP-BCI accuracy is attained when stimuli are placed spatially more than 5° apart, with size that subtends at least 2° of visual angle, when using a tagging frequency of between high alpha and beta band. These findings may assist in deciding the stimulus parameters for optimal SSVEP-BCI design.

  4. Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Ng, Kian B.; Bradley, Andrew P.; Cunnington, Ross

    2012-06-01

    The mechanisms of neural excitation and inhibition when given a visual stimulus are well studied. It has been established that changing stimulus specificity such as luminance contrast or spatial frequency can alter the neuronal activity and thus modulate the visual-evoked response. In this paper, we study the effect that stimulus specificity has on the classification performance of a steady-state visual-evoked potential-based brain-computer interface (SSVEP-BCI). For example, we investigate how closely two visual stimuli can be placed before they compete for neural representation in the cortex and thus influence BCI classification accuracy. We characterize stimulus specificity using the four stimulus parameters commonly encountered in SSVEP-BCI design: temporal frequency, spatial size, number of simultaneously displayed stimuli and their spatial proximity. By varying these quantities and measuring the SSVEP-BCI classification accuracy, we are able to determine the parameters that provide optimal performance. Our results show that superior SSVEP-BCI accuracy is attained when stimuli are placed spatially more than 5° apart, with size that subtends at least 2° of visual angle, when using a tagging frequency of between high alpha and beta band. These findings may assist in deciding the stimulus parameters for optimal SSVEP-BCI design.

  5. A human brain network derived from coma-causing brainstem lesions.

    PubMed

    Fischer, David B; Boes, Aaron D; Demertzi, Athena; Evrard, Henry C; Laureys, Steven; Edlow, Brian L; Liu, Hesheng; Saper, Clifford B; Pascual-Leone, Alvaro; Fox, Michael D; Geerling, Joel C

    2016-12-06

    To characterize a brainstem location specific to coma-causing lesions, and its functional connectivity network. We compared 12 coma-causing brainstem lesions to 24 control brainstem lesions using voxel-based lesion-symptom mapping in a case-control design to identify a site significantly associated with coma. We next used resting-state functional connectivity from a healthy cohort to identify a network of regions functionally connected to this brainstem site. We further investigated the cortical regions of this network by comparing their spatial topography to that of known networks and by evaluating their functional connectivity in patients with disorders of consciousness. A small region in the rostral dorsolateral pontine tegmentum was significantly associated with coma-causing lesions. In healthy adults, this brainstem site was functionally connected to the ventral anterior insula (AI) and pregenual anterior cingulate cortex (pACC). These cortical areas aligned poorly with previously defined resting-state networks, better matching the distribution of von Economo neurons. Finally, connectivity between the AI and pACC was disrupted in patients with disorders of consciousness, and to a greater degree than other brain networks. Injury to a small region in the pontine tegmentum is significantly associated with coma. This brainstem site is functionally connected to 2 cortical regions, the AI and pACC, which become disconnected in disorders of consciousness. This network of brain regions may have a role in the maintenance of human consciousness. © 2016 American Academy of Neurology.

  6. A human brain network derived from coma-causing brainstem lesions

    PubMed Central

    Boes, Aaron D.; Demertzi, Athena; Evrard, Henry C.; Laureys, Steven; Edlow, Brian L.; Liu, Hesheng; Saper, Clifford B.; Pascual-Leone, Alvaro; Geerling, Joel C.

    2016-01-01

    Objective: To characterize a brainstem location specific to coma-causing lesions, and its functional connectivity network. Methods: We compared 12 coma-causing brainstem lesions to 24 control brainstem lesions using voxel-based lesion-symptom mapping in a case-control design to identify a site significantly associated with coma. We next used resting-state functional connectivity from a healthy cohort to identify a network of regions functionally connected to this brainstem site. We further investigated the cortical regions of this network by comparing their spatial topography to that of known networks and by evaluating their functional connectivity in patients with disorders of consciousness. Results: A small region in the rostral dorsolateral pontine tegmentum was significantly associated with coma-causing lesions. In healthy adults, this brainstem site was functionally connected to the ventral anterior insula (AI) and pregenual anterior cingulate cortex (pACC). These cortical areas aligned poorly with previously defined resting-state networks, better matching the distribution of von Economo neurons. Finally, connectivity between the AI and pACC was disrupted in patients with disorders of consciousness, and to a greater degree than other brain networks. Conclusions: Injury to a small region in the pontine tegmentum is significantly associated with coma. This brainstem site is functionally connected to 2 cortical regions, the AI and pACC, which become disconnected in disorders of consciousness. This network of brain regions may have a role in the maintenance of human consciousness. PMID:27815400

  7. Ocular Vestibular Evoked Myogenic Potentials in Response to Three Test Positions and Two Frequencies

    PubMed Central

    Todai, Janvi K.; Congdon, Sharon L.; Sangi-Haghpeykar, Haleh; Cohen, Helen S.

    2014-01-01

    Objective To determine how eye closure, test positions, and stimulus frequencies influence ocular vestibular evoked myogenic potentials. Study Design This study used a within-subjects repeated measures design. Methods Twenty asymptomatic subjects were each tested on ocular vestibular evoked myogenic potentials in three head/eye conditions at 500 Hz and 1000 Hz using air-conducted sound: 1) Sitting upright, head erect, eyes open, looking up. 2) Lying supine, neck flexed 30 degrees, eyes open and looking up. 3) Lying supine, neck flexed 30 degrees, eyes closed and relaxed. Four dependent variables measured were n10, p16, amplitude, and threshold. Results The supine position/ eyes open was comparable to sitting/ eyes open and better than supine/ eyes closed. Eyes closed resulted in lower amplitude, higher threshold, and prolonged latency. Significantly fewer subjects provided responses with eyes closed than with eyes open. No significant differences were found between both eyes open conditions. Both n10 and p16 were lower at 1000 Hz than at 500 Hz. Amplitude and threshold were higher at 1000 Hz than at 500 Hz. Conclusion Supine eyes open is a reliable alternative to sitting eyes open in patients who cannot maintain a seated position. Testing at 1000 Hz provides a larger response with a faster onset that fatigues faster than at 500 Hz. The increased variability and decreased response in the eyes closed position suggest that the eyes closed position is not reliable. PMID:24178911

  8. Visual evoked potentials and selective attention to points in space

    NASA Technical Reports Server (NTRS)

    Van Voorhis, S.; Hillyard, S. A.

    1977-01-01

    Visual evoked potentials (VEPs) were recorded to sequences of flashes delivered to the right and left visual fields while subjects responded promptly to designated stimuli in one field at a time (focused attention), in both fields at once (divided attention), or to neither field (passive). Three stimulus schedules were used: the first was a replication of a previous study (Eason, Harter, and White, 1969) where left- and right-field flashes were delivered quasi-independently, while in the other two the flashes were delivered to the two fields in random order (Bernoulli sequence). VEPs to attended-field stimuli were enhanced at both occipital (O2) and central (Cz) recording sites under all stimulus sequences, but different components were affected at the two scalp sites. It was suggested that the VEP at O2 may reflect modality-specific processing events, while the response at Cz, like its auditory homologue, may index more general aspects of selective attention.

  9. Sensory physiology assessed by evoked potentials in survivors of poliomyelitis.

    PubMed

    Prokhorenko, Olga A; Vasconcelos, Olavo M; Lupu, Vitalie D; Campbell, William W; Jabbari, Bahman

    2008-10-01

    Evidence suggests that sensory loss may occur in a proportion of patients affected by poliomyelitis. We hypothesize that sensory problems may be a lasting sequela in some polio survivors. Sensory pathways in polio survivors were evaluated clinically and electrophysiologically using sensory evoked potentials (SEPs). Patients with sensory deficits or abnormal SEPs were further evaluated by magnetic resonance imaging (MRI). Twenty-two patients were studied. The mean age was 64.7 years (age range: 56-81 years). Clinically, sensory impairments were found in 4 patients. Upper limb SEPs were normal. Lower limb SEPs were abnormal in 10 patients. In 1 patient, clinical and electrographic findings correlated with a patch of atrophy in the spinal cord, as shown by MRI. Sensory derangements may be found in a proportion of aging polio survivors. SEP studies may add sensitivity when evaluating sensory function in this cohort. It remains unclear whether these sensory abnormalities are related to remote poliomyelitis. Further studies are necessary.

  10. A comparative study on long-term evoked auditory and visual potential responses between Schizophrenic patients and normal subjects

    PubMed Central

    2011-01-01

    Background The electrical signals measuring method is recommended to examine the relationship between neuronal activities and measure with the event related potentials (ERPs) during an auditory and a visual oddball paradigm between schizophrenic patients and normal subjects. The aim of this study is to discriminate the activation changes of different stimulations evoked by auditory and visual ERPs between schizophrenic patients and normal subjects. Methods Forty-three schizophrenic patients were selected as experimental group patients, and 40 healthy subjects with no medical history of any kind of psychiatric diseases, neurological diseases, or drug abuse, were recruited as a control group. Auditory and visual ERPs were studied with an oddball paradigm. All the data were analyzed by SPSS statistical software version 10.0. Results In the comparative study of auditory and visual ERPs between the schizophrenic and healthy patients, P300 amplitude at Fz, Cz, and Pz and N100, N200, and P200 latencies at Fz, Cz, and Pz were shown significantly different. The cognitive processing reflected by the auditory and the visual P300 latency to rare target stimuli was probably an indicator of the cognitive function in schizophrenic patients. Conclusions This study shows the methodology of application of auditory and visual oddball paradigm identifies task-relevant sources of activity and allows separation of regions that have different response properties. Our study indicates that there may be slowness of automatic cognitive processing and controlled cognitive processing of visual ERPs compared to auditory ERPs in schizophrenic patients. The activation changes of visual evoked potentials are more regionally specific than auditory evoked potentials. PMID:21542917

  11. Cellular generators of the binaural difference potential in cat.

    PubMed

    Melcher, J R

    1996-05-01

    In humans, lateralization and fusion of binaurally presented clicks are correlated with the latency and amplitude of the binaural difference potential (BDP) (e.g., Furst et al., 1985). The BDP is derived by subtracting the brainstem auditory evoked potential (BAEP) for binaural stimulation from the sum of the BAEPs for left and right monaural stimulation. Our aim in this work was to determine the cellular generators of the BDP and thus identify cells that may be crucial for specific types of binaural sound processing. To this end, we injected kainic acid into the superior olivary complex (SOC) or the cochlear nucleus (CN) in cats and examined the effects of the resulting lesions on the click-evoked BDP. Lesions confined to the anterior anteroventral CN (AVCNa) substantially reduced the BDP, while lesions primarily involving more posterior parts of the CN had little or no effect. BDP reductions occurred for lesions involving either high (> 10 kHz) or lower (< 10 kHz) characteristic frequency (CF) regions of the AVCNa (as well as the posterior CN). Lesions involving the SOC reduced the BDP and, in one case, eliminated the high-pass filtered (270 Hz cutoff) BDP. Combining these results with published information about the physiology and anatomy of auditory brainstem cells, we conclude that: (1) spherical cells in the AVCNa are essential for BDP production, (2) the earliest part of the BDP is generated by medial superior olive (MSO) principal cells which receive spherical cell inputs, (3) a later part is probably generated by the cellular targets of MSO principal cells and, (4) the cells involved in BDP generation have CFs above, as well as below, 10 kHz. Since humans, like cats, have a well-developed MSO, we suggest that the MSO may also be essential for BDP production in humans. Thus, perceptual correlates of the BDP, binaural fusion and click lateralization, apparently involve the MSO.

  12. BAER - brainstem auditory evoked response

    MedlinePlus

    ... Updated by: Sumana Jothi, MD, specialist in laryngology, Assistant Clinical Professor, UCSF Otolaryngology, NCHCS VA, SFVA, San Francisco, CA. Review provided by VeriMed Healthcare Network. Also reviewed by David Zieve, MD, MHA, ...

  13. Development of the Brainstem and Cerebellum in Autistic Patients.

    ERIC Educational Resources Information Center

    Hashimoto, Toshiaki; And Others

    1995-01-01

    This study of 102 individuals with autism found that the brainstem and cerebellum increased in size with age but were significantly smaller in autistic patients than in controls. Analysis of the speed of development suggests that brainstem and vermian abnormalities in autism were due to an early insult and hypoplasia rather than to progressive…

  14. An adult case of mumps brainstem encephalitis.

    PubMed

    Koyama, S; Morita, K; Yamaguchi, S; Fujikane, T; Sasaki, N; Aizawa, H; Kikuchi, K

    2000-06-01

    We present an adult case of mumps brainstem encephalitis. He was successfully treated with steroid pulse therapy and recovered completely except for persistent dysuria. He had not been vaccinated and had no history of acute mumps infection. We consider that encephalitis in this case was caused by a reversible autoimmune process triggered by mumps infection. We emphasize the usefulness of pulse therapy for the treatment of some cases of mumps brainstem encephalitis in addition to the importance of mumps vaccination to prevent such a severe complication as encephalitis.

  15. Cortical Auditory Evoked Potentials to Evaluate Cochlear Implant Candidacy in an Ear With Long-standing Hearing Loss: A Case Report.

    PubMed

    Patel, Tirth R; Shahin, Antoine J; Bhat, Jyoti; Welling, D Bradley; Moberly, Aaron C

    2016-10-01

    We describe a novel use of cortical auditory evoked potentials in the preoperative workup to determine ear candidacy for cochlear implantation. A 71-year-old male was evaluated who had a long-deafened right ear, had never worn a hearing aid in that ear, and relied heavily on use of a left-sided hearing aid. Electroencephalographic testing was performed using free field auditory stimulation of each ear independently with pure tones at 1000 and 2000 Hz at approximately 10 dB above pure-tone thresholds for each frequency and for each ear. Mature cortical potentials were identified through auditory stimulation of the long-deafened ear. The patient underwent successful implantation of that ear. He experienced progressively improving aided pure-tone thresholds and binaural speech recognition benefit (AzBio score of 74%). Findings suggest that use of cortical auditory evoked potentials may serve a preoperative role in ear selection prior to cochlear implantation. © The Author(s) 2016.

  16. Auditory Evoked Potentials and Hand Preference in 6-Month-Old Infants: Possible Gender-Related Differences in Cerebral Organization.

    ERIC Educational Resources Information Center

    Shucard, Janet L.; Shucard, David W.

    1990-01-01

    Verbal and musical stimuli were presented to infants in a study of the relations of evoked potential left-right amplitude asymmetries to gender and hand preference. There was a relation between asymmetry and hand preference, and for girls, between asymmetry and stimulus condition. Results suggest a gender difference in cerebral hemisphere…

  17. Brainstem response patterns in deeply-sedated critically-ill patients predict 28-day mortality.

    PubMed

    Rohaut, Benjamin; Porcher, Raphael; Hissem, Tarik; Heming, Nicholas; Chillet, Patrick; Djedaini, Kamel; Moneger, Guy; Kandelman, Stanislas; Allary, Jeremy; Cariou, Alain; Sonneville, Romain; Polito, Andréa; Antona, Marion; Azabou, Eric; Annane, Djillali; Siami, Shidasp; Chrétien, Fabrice; Mantz, Jean; Sharshar, Tarek

    2017-01-01

    Deep sedation is associated with acute brain dysfunction and increased mortality. We had previously shown that early-assessed brainstem reflexes may predict outcome in deeply sedated patients. The primary objective was to determine whether patterns of brainstem reflexes might predict mortality in deeply sedated patients. The secondary objective was to generate a score predicting mortality in these patients. Observational prospective multicenter cohort study of 148 non-brain injured deeply sedated patients, defined by a Richmond Assessment sedation Scale (RASS) <-3. Brainstem reflexes and Glasgow Coma Scale were assessed within 24 hours of sedation and categorized using latent class analysis. The Full Outline Of Unresponsiveness score (FOUR) was also assessed. Primary outcome measure was 28-day mortality. A "Brainstem Responses Assessment Sedation Score" (BRASS) was generated. Two distinct sub-phenotypes referred as homogeneous and heterogeneous brainstem reactivity were identified (accounting for respectively 54.6% and 45.4% of patients). Homogeneous brainstem reactivity was characterized by preserved reactivity to nociceptive stimuli and a partial and topographically homogenous depression of brainstem reflexes. Heterogeneous brainstem reactivity was characterized by a loss of reactivity to nociceptive stimuli associated with heterogeneous brainstem reflexes depression. Heterogeneous sub-phenotype was a predictor of increased risk of 28-day mortality after adjustment to Simplified Acute Physiology Score-II (SAPS-II) and RASS (Odds Ratio [95% confidence interval] = 6.44 [2.63-15.8]; p<0.0001) or Sequential Organ Failure Assessment (SOFA) and RASS (OR [95%CI] = 5.02 [2.01-12.5]; p = 0.0005). The BRASS (and marginally the FOUR) predicted 28-day mortality (c-index [95%CI] = 0.69 [0.54-0.84] and 0.65 [0.49-0.80] respectively). In this prospective cohort study, around half of all deeply sedated critically ill patients displayed an early particular neurological sub

  18. ASSESSMENT OF LOW-FREQUENCY HEARING WITH NARROW-BAND CHIRP EVOKED 40-HZ SINUSOIDAL AUDITORY STEADY STATE RESPONSE

    PubMed Central

    Wilson, Uzma S.; Kaf, Wafaa A.; Danesh, Ali A.; Lichtenhan, Jeffery T.

    2016-01-01

    Objective To determine the clinical utility of narrow-band chirp evoked 40-Hz sinusoidal auditory steady state responses (s-ASSR) in the assessment of low-frequency hearing in noisy participants. Design Tone bursts and narrow-band chirps were used to respectively evoke auditory brainstem responses (tb-ABR) and 40-Hz s-ASSR thresholds with the Kalman-weighted filtering technique and were compared to behavioral thresholds at 500, 2000, and 4000 Hz. A repeated measure ANOVA and post-hoc t-tests, and simple regression analyses were performed for each of the three stimulus frequencies. Study Sample Thirty young adults aged 18–25 with normal hearing participated in this study. Results When 4000 equivalent responses averages were used, the range of mean s-ASSR thresholds from 500, 2000, and 4000 Hz were 17–22 dB lower (better) than when 2000 averages were used. The range of mean tb-ABR thresholds were lower by 11–15 dB for 2000 and 4000 Hz when twice as many equivalent response averages were used, while mean tb-ABR thresholds for 500 Hz were indistinguishable regardless of additional response averaging Conclusion Narrow band chirp evoked 40-Hz s-ASSR requires a ~15 dB smaller correction factor than tb-ABR for estimating low-frequency auditory threshold in noisy participants when adequate response averaging is used. PMID:26795555

  19. Real-Time Detection and Monitoring of Acute Brain Injury Utilizing Evoked Electroencephalographic Potentials.

    PubMed

    Fisher, Jonathan A N; Huang, Stanley; Ye, Meijun; Nabili, Marjan; Wilent, W Bryan; Krauthamer, Victor; Myers, Matthew R; Welle, Cristin G

    2016-09-01

    Rapid detection and diagnosis of a traumatic brain injury (TBI) can significantly improve the prognosis for recovery. Helmet-mounted sensors that detect impact severity based on measurements of acceleration or pressure show promise for aiding triage and transport decisions in active, field environments such as professional sports or military combat. The detected signals, however, report on the mechanics of an impact rather than directly indicating the presence and severity of an injury. We explored the use of cortical somatosensory evoked electroencephalographic potentials (SSEPs) to detect and track, in real-time, neural electrophysiological abnormalities within the first hour following head injury in an animal model. To study the immediate electrophysiological effects of injury in vivo, we developed an experimental paradigm involving focused ultrasound that permits continuous, real-time measurements and minimizes mechanical artifact. Injury was associated with a dramatic reduction of amplitude over the damaged hemisphere directly after the injury. The amplitude systematically improved over time but remained significantly decreased at one hour, compared with baseline. In contrast, at one hour there was a concomitant enhancement of the cortical SSEP amplitude evoked from the uninjured hemisphere. Analysis of the inter-trial electroencephalogram (EEG) also revealed significant changes in low-frequency components and an increase in EEG entropy up to 30 minutes after injury, likely reflecting altered EEG reactivity to somatosensory stimuli. Injury-induced alterations in SSEPs were also observed using noninvasive epidermal electrodes, demonstrating viability of practical implementation. These results suggest cortical SSEPs recorded at just a few locations by head-mounted sensors and associated multiparametric analyses could potentially be used to rapidly detect and monitor brain injury in settings that normally present significant levels of mechanical and electrical

  20. Amplitude modulation of steady-state visual evoked potentials by event-related potentials in a working memory task

    PubMed Central

    Yao, Dezhong; Tang, Yu; Huang, Yilan; Su, Sheng

    2009-01-01

    Previous studies have shown that the amplitude and phase of the steady-state visual-evoked potential (SSVEP) can be influenced by a cognitive task, yet the mechanism of this influence has not been understood. As the event-related potential (ERP) is the direct neural electric response to a cognitive task, studying the relationship between the SSVEP and ERP would be meaningful in understanding this underlying mechanism. In this work, the traditional average method was applied to extract the ERP directly, following the stimulus of a working memory task, while a technique named steady-state probe topography was utilized to estimate the SSVEP under the simultaneous stimulus of an 8.3-Hz flicker and a working memory task; a comparison between the ERP and SSVEP was completed. The results show that the ERP can modulate the SSVEP amplitude, and for regions where both SSVEP and ERP are strong, the modulation depth is large. PMID:19960240