Science.gov

Sample records for brainstem evoked potentials

  1. Brainstem Auditory Evoked Potential in HIV-Positive Adults

    PubMed Central

    Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C.

    2015-01-01

    Background To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. Material/Methods This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment – research groups I and II, respectively – and 30 control group individuals) were assessed through brainstem auditory evoked potential. Results There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. Conclusions HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment. PMID:26485202

  2. Brainstem auditory evoked potentials in cattle sedated with xylazine

    PubMed Central

    Arai, Shozo

    2008-01-01

    This study examined the effect of sedation with xylazine on the brainstem auditory evoked potentials (BAEP) of cattle to determine whether sedation causes differences in waveform configuration, peak latencies, interpeak latencies, measurement time of the average count (2000 responses), and clinical signs. There were no significant differences between the sedation and no-sedation groups in peak latency of any stimulus intensities. In the sedation group, the baselines of waveforms were comparatively stabilized. Those in the no-sedation group were unstable, however, because the measurement can be influenced by excessive muscle movement. The present findings suggest that clinically, it is useful to use a sedative when measuring BAEP in cattle to control excessive movement of the cattle without influencing the peak latencies. PMID:18505193

  3. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials

    PubMed Central

    Calderón-Garcidueñas, Lilian; D’Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-01-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3± 8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p<0.0001) and wave V (t(50)=19.730; p<0.0001) but no delay in wave I (p=0.548). They also had significantly longer latencies than controls for interwave intervals I–III, III–V, and I–V (all t(50)> 7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid 1–42. Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children’s exposure to urban air pollution increases their risk for auditory and vestibular impairment. PMID:21458557

  4. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials.

    PubMed

    Calderón-Garcidueñas, Lilian; D'Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-06-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3±8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p<0.0001) and wave V (t(50)=19.730; p<0.0001) but no delay in wave I (p=0.548). They also had significantly longer latencies than controls for interwave intervals I-III, III-V, and I-V (all t(50)>7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid(1-42). Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children's exposure to urban air pollution increases their risk for auditory and vestibular impairment.

  5. Diagnosis of deafness in a horse by brainstem auditory evoked potential

    PubMed Central

    Harland, Malte M.; Marshall, Arvle E.; Belknap, Ellen B.

    2006-01-01

    Abstract Deafness was confirmed in a blue-eyed, 3-year-old, overo paint horse by brainstem auditory evoked potential. Congenital inherited deafness associated with lack of facial pigmentation was suspected. Assessment of hearing should be considered, especially in paint horses, at the time of pre-purchase examination. Brainstem auditory evoked potential assessment is well tolerated and accurate. PMID:16579041

  6. Brainstem auditory evoked potentials and middle latency auditory evoked potentials in young children.

    PubMed

    Luo, Jin Jun; Khurana, Divya S; Kothare, Sanjeev V

    2013-03-01

    Measurements of brainstem auditory evoked potentials (BAEP) and middle latency auditory evoked potentials (MLAEP) are readily available neurophysiologic assessments. The generators for BAEP are believed to involve the structures of cochlear nerve, cochlear nucleus, superior olive complex, dorsal and rostral pons, and lateral lemniscus. The generators for MLAEP are assumed to be located in the subcortical area and auditory cortex. BAEP are commonly used in evaluating children with autistic and hearing disorders. However, measurement of MLAEP is rarely performed in young children. To explore the feasibility of this procedure in young children, we retrospectively reviewed our neurophysiology databank and charts for a 3-year period to identify subjects who had both BAEP and MLAEP performed. Subjects with known or identifiable central nervous system abnormalities from the history, neurologic examination and neuroimaging studies were excluded. This cohort of 93 children up to 3 years of age was divided into 10 groups based on the age at testing (upper limits of: 1 week; 1, 2, 4, 6, 8, 10 and 12 months; 2 years; and 3 years of age). Evolution of peak latency, interpeak latency and amplitude of waveforms in BAEP and MLAEP were demonstrated. We concluded that measurement of BAEP and MLAEP is feasible in children, as early as the first few months of life. The combination of both MLAEP and BAEP may increase the diagnostic sensitivity of neurophysiologic assessment of the integrity or functional status of both the peripheral (acoustic nerve) and the central (brainstem, subcortical and cortical) auditory conduction systems in young children with developmental speech and language disorders.

  7. [Brainstem auditory evoked potentials and somatosensory evoked potentials in Chiari malformation].

    PubMed

    Moncho, Dulce; Poca, María A; Minoves, Teresa; Ferré, Alejandro; Rahnama, Kimia; Sahuquillo, Juan

    2013-06-16

    Introduccion. La malformacion de Chiari (MC) incluye una serie de anomalias congenitas que tienen como comun denominador la ectopia de las amigdalas del cerebelo por debajo del foramen magno, lo que puede condicionar fenomenos compresivos del troncoencefalo, la medula espinal alta y los nervios craneales, alterando las respuestas de los potenciales evocados auditivos del tronco cerebral (PEATC) y de los potenciales evocados somatosensoriales (PESS). Sin embargo, las indicaciones de ambas exploraciones en las MC han sido motivo de estudio en un numero limitado de publicaciones, centradas en series cortas y heterogeneas de pacientes. Objetivo. Revisar los hallazgos de los PEATC y los PESS en los estudios publicados en pacientes con MC tipo 1 (MC-1) o tipo 2 (MC-2), y su indicacion en el diagnostico, tratamiento y seguimiento, especialmente en la MC-1. Desarrollo. Es un estudio de revision realizado mediante analisis de los estudios publicados en Medline desde 1966, localizados mediante PubMed, utilizando combinaciones de las palabras clave 'Chiari malformation', 'Arnold-Chiari malformation', 'Chiari type 1 malformation', 'Arnold-Chiari type 1 malformation', 'evoked potentials', 'brainstem auditory evoked potentials' y 'somatosensory evoked potentials', asi como informacion de pacientes con MC-1 valorados en los servicios de neurocirugia y neurofisiologia clinica del Hospital Universitari Vall d'Hebron. Conclusiones. Los hallazgos mas comunes de los PESS son la reduccion en la amplitud cortical para el nervio tibial posterior, la reduccion o ausencia del potencial cervical del nervio mediano y el aumento del intervalo N13-N20. En el caso de los PEATC, los hallazgos mas frecuentes descritos son el aumento del intervalo I-V y la alteracion periferica o coclear.

  8. Effects of multiple sclerosis brainstem lesions on sound lateralization and brainstem auditory evoked potentials.

    PubMed

    Levine, R A; Gardner, J C; Fullerton, B C; Stufflebeam, S M; Carlisle, E W; Furst, M; Rosen, B R; Kiang, N Y

    1993-06-01

    Magnetic resonance (MR) imaging, brainstem auditory evoked potentials (BAEPs), and tests of interaural time and level discrimination were performed on sixteen subjects with multiple sclerosis (MS). Objective criteria were used to define MR lesions. Of the eleven subjects in whom no pontine lesions were detected and the one subject who had pontine lesions that did not encroach upon the auditory pathways, all had normal BAEPs and interaural level discrimination, although a few had abnormal interaural time discrimination. Of four subjects with lesions involving the pontine auditory pathway, all had both abnormal BAEPs and abnormal interaural time discrimination; one also had abnormal interaural level discrimination. Analysis of the data suggest the following: waves I and II are generated peripheral to the middle of the ventral acoustic stria (VAS); wave III is generated ipsilaterally in the region of the rostral VAS, caudal superior olivary complex (SOC) and trapezoid body (TB); and waves V and L are generated contralaterally, rostral to the SOC-TB. The region of the ipsilateral rostral SOC-TB is implicated as part of the pathway involved in the generation of waves V and L. Interaural time discrimination of both high and low frequency stimuli were affected by all brainstem lesions that encroached on auditory pathways. A unilateral lesion in the region of the LL affected interaural time discrimination for low-frequency stimuli less severely than bilateral lesions of the LL or a unilateral lesion of the VAS. The only interaural level discrimination abnormality occurred for a subject with a unilateral lesion involving the entire rostral VAS. It appears that detailed analysis of lesion locations coupled with electrophysiological and psychophysical data holds promise for testing hypotheses concerning the function of various human auditory brainstem structures.

  9. Human brainstem auditory evoked potentials (BAEP) before and after MR examinations

    SciTech Connect

    Mueller, S.H.; Hotz, M. )

    1990-12-01

    Recently significant changes of human brainstem auditory evoked potentials (BAEP) after exposure to static magnetic fields were reported. We recorded BAEPs of 11 subjects before and after a routine MRI examination at 1.5 T. In addition the BAEP of a healthy volunteer was measured in five different static magnetic fields (0-2.0 T). Our results indicate that routine MRI investigations do not significantly alter the interpeak latencies of the BAEPs.

  10. Objective detection and localization of multiple sclerosis lesions on magnetic resonance brainstem images: validation with auditory evoked potentials.

    PubMed

    Stufflebeam, S M; Levine, R A; Gardner, J C; Fullerton, B C; Furst, M; Rosen, B R

    2000-01-01

    To develop an objective method for detecting multiple sclerosis (MS) brainstem lesions, magnetic resonance (MR) images (multiple planar, spin-echo, acquired in three planes of section) of sixteen MS patients and fourteen normal subjects were analyzed with an algorithm that detected regions with a relatively increased intensity on both a spin-echo image and a T2 image. To be considered a lesion, such regions had to overlap in at least two orthogonal planes. Using a digitized atlas of the human brainstem, the lesion locations were mapped with respect to the brainstem anatomy. This method was evaluated by comparing the location of MS lesions with the brainstem auditory evoked potentials obtained from these subjects. Brainstem lesions were detected in five MS patients; four had lesions impinging upon the auditory system and one did not. All four had abnormal evoked potentials. The fourteen normal subjects, the one MS patient with brainstem lesions outside the auditory pathway, and the eleven other MS patients with no brainstem lesions all had normal evoked potentials. The requirement that lesions be detected in at least two planes of section greatly improved the specificity of the algorithm. The consistency between the MR and brainstem auditory evoked potentials results supports the validity of this imaging analysis algorithm for objectively localizing brainstem lesions.

  11. Acoustically evoked potentials in two cephalopods inferred using the auditory brainstem response (ABR) approach.

    PubMed

    Hu, Marian Y; Yan, Hong Young; Chung, Wen-Sung; Shiao, Jen-Chieh; Hwang, Pung-Pung

    2009-07-01

    It is still a matter of debate whether cephalopods can detect sound frequencies above 400 Hz. So far there is no proof for the detection of underwater sound above 400 Hz via a physiological approach. The controversy of whether cephalopods have a sound detection ability above 400 Hz was tested using the auditory brainstem response (ABR) approach, which has been successfully applied in fish, crustaceans, amphibians, reptiles and birds. Using ABR we found that auditory evoked potentials can be obtained in the frequency range 400 to 1500 Hz (Sepiotheutis lessoniana) and 400 to 1000 Hz (Octopus vulgaris), respectively. The thresholds of S. lessoniana were generally lower than those of O. vulgaris.

  12. Hearing outcomes after loss of brainstem auditory evoked potentials during microvascular decompression.

    PubMed

    Thirumala, Parthasarathy D; Krishnaiah, Balaji; Habeych, Miguel E; Balzer, Jeffrey R; Crammond, Donald J

    2015-04-01

    The primary aim of this paper is to study the pre-operative characteristics, intra-operative changes and post-operative hearing outcomes in patients after complete loss of wave V of the brainstem auditory evoked potential. We retrospectively analyzed the brainstem auditory evoked potential data of 94 patients who underwent microvascular decompression for hemifacial spasm at our institute. Patients were divided into two groups - those with and those without loss of wave V. The differences between the two groups and outcomes were assessed using t-test and chi-squared tests. In our study 23 (24%) patients out of 94 had a complete loss of wave V, with 11 (48%) patients experiencing transient loss and 12 (52%) patients experiencing permanent loss. The incidence of hearing loss in patients with no loss of wave V was 5.7% and 26% in patients who did experience wave V loss. The incidence of hearing change in patients with no loss of wave V was 12.6% and 30.43% in patients who did experience wave V loss. Loss of wave V during the procedure or at the end of procedure significantly increases the odds of hearing loss. Hearing change is a significant under-reported clinical condition after microvascular decompression in patients who have loss of wave V.

  13. Brainstem auditory evoked potentials in children with low level cumulative lead exposure

    PubMed Central

    Alvarenga, Kátia F.; Morata, Thais C.; Lopes, Andréa Cintra; Feniman, Mariza Ribeiro; Corteletti, Lilian Cássia Bórnia Jacob

    2015-01-01

    Introduction Earlier studies have demonstrated an auditory effect of lead exposure in children,but information on the effects of low chronic exposures needs to be further elucidated. Objective To investigate the effect of low chronic exposures of the auditory system in childrenwith a history of low blood lead levels, using an auditory electrophysiological test. Methods Contemporary cross-sectional cohort. Study participants underwent tympanometry, pure tone and speech audiometry, transient evoked otoacoustic emissions, and brainstem auditory evoked potentials, with blood lead monitoring over a period of 35.5 months. The study included 130 children, with ages ranging from 18 months to 14 years, 5 months (mean age 6years, 8 months ± 3 years, 2 months). Results The mean time-integrated cumulative blood lead index was 12 g/dL (SD ± 5.7, range:2.433). All participants had hearing thresholds equal to or below 20 dBHL and normal amplitudes of transient evoked otoacoustic emissions. No association was found between the absolute latencies of waves I, III, and V, the interpeak latencies I---III, III---V, and I---V, and the cumulative lead values. Conclusion No evidence of toxic effects from chronic low lead exposures was observed on the auditory function of children living in a lead contaminated area. PMID:25458254

  14. Brainstem auditory evoked potentials in individuals exposed to long-term low concentrations of toluene.

    PubMed

    Vrca, A; Karacić, V; Bozicević, D; Bozikov, V; Malinar, M

    1996-07-01

    Brainstem auditory evoked potentials (BAEPs) were examined in 49 workers employed in a printing press, who were occupationally exposed to low concentrations of toluene for an average of 20.3 years, and in 59 subjects in a control group. In the group of exposed workers, a significant decrease was found in all wave amplitudes examined, a significant prolongation of P1 wave latency, and an increased interval of interpeak latencies (P3-P5), indicating that the extramedullary and high medullary part of the auditory pathway are biologically most frequently affected by chronic exposure to low concentrations of toluene. The level of exposure to toluene in both groups was evaluated by defining the concentration of toluene in peripheral blood and the concentration of hippuric acid and ortho-cresol in urine.

  15. The temporal relationship between the brainstem and primary cortical auditory evoked potentials.

    PubMed

    Shaw, N A

    1995-10-01

    Many methods are employed in order to define more precisely the generators of an evoked potential (EP) waveform. One technique is to compare the timing of an EP whose origin is well established with that of one whose origin is less certain. In the present article, the latency of the primary cortical auditory evoked potential (PCAEP) was compared to each of the seven subcomponents which compose the brainstem auditory evoked potential (BAEP). The data for this comparison was derived from a retrospective analysis of previous recordings of the PCAEP and BAEP. Central auditory conduction time (CACT) was calculated by subtracting the latency of the cochlear nucleus BAEP component (wave III) from that of the PCAEP. It was found that CACT in humans is 12 msec which is more than double that of central somatosensory conduction time. The interpeak latencies between BAEP waves V, VI, and VII and the PCAEP were also calculated. It was deduced that all three waves must have an origin rather more caudally within the central auditory system than is commonly supposed. In addition, it is demonstrated that the early components of the middle latency AEP (No and Na) largely reside within the time domain between the termination of the BAEP components and the PCAEP which would be consistent with their being far field reflections of midbrain and subcortical auditory activity. It is concluded that as the afferent volley ascends the central auditory pathways, it generates not a sequence of high frequency BAEP responses but rather a succession of slower post-synaptic waves. The only means of reconciling the timing of the BAEP waves with that of the PCAEP is to assume that the generation of all the BAEP components must be largely restricted to a quite confined region within the auditory nerve and the lower half of the pons.

  16. Brainstem auditory evoked potentials--a review and modified studies in healthy subjects.

    PubMed

    Stone, James L; Calderon-Arnulphi, Mateo; Watson, Karriem S; Patel, Ketan; Mander, Navneet S; Suss, Nichole; Fino, John; Hughes, John R

    2009-06-01

    The authors review the brainstem auditory evoked potential (BAEP), and present studies on 40 healthy subjects. In addition to the conventional click evoked BAEP, three modified BAEP examinations were performed. The modified BAEP tests include a 1,000 Hz tone-burst BAEP, and more rapid rate binaural click and 1,000 Hz tone-burst BAEPs-each of the last two studies performed at four diminishing moderate intensities. In addition to the usual parameters, the authors examined the Wave V to Vn interpeak latency, and stimulus intensity versus Wave V latency and amplitude functions in the rapid rate binaural studies. Studies were also repeated on healthy subjects in a dependant head position in an attempt to increase intracranial pressure. Discussion centers on the BAEP, its current utility in medicine, unique neurophysiology, and literature support that the above modifications could increase the practicality of the test in patients at risk with intracranial lesions and perhaps improve the feasibility for real-time continuous or frequent monitoring in the future.

  17. Adaptive denoising and multiscale detection of the V wave in brainstem auditory evoked potentials.

    PubMed

    Popescu, M; Papadimitriou, S; Karamitsos, D; Bezerianos, A

    1999-01-01

    This paper describes a wavelet-transform-based system for the V wave identification in brainstem auditory evoked potentials (BAEP). The system combines signal denoising and rule-based localization modules. The signal denoising module has the potential of effective noise reduction after signal averaging. It analyses adaptively the evolution of the wavelet transform maxima across scales. The singularities of the signal create wavelet maxima with different properties from those of the induced noise. A non-linear filtering process implemented with a neural network extracts out the noise-induced maxima. The filtered wavelet details are subsequently analysed by the rule-based localization module for the automatic identification of the V wave. In the first phase, it implements a set of statistical observations as well as heuristic criteria used by human experts in order to classify the IV-V complex. At the second phase, using a multiscale focusing algorithm, the IV and V waves are positioned on the BAEP signal. Our experiments revealed that the system provides accurate results even for signals exhibiting unclear IV-V complexes.

  18. Brainstem auditory evoked potentials in a case of 'Manto syndrome', or spasmodic torticollis with thoracic outlet syndrome.

    PubMed

    Disertori, B; Ducati, A; Piazza, M; Pavani, M

    1982-12-01

    A case of spasmodic torticollis with thoracic outlet syndrome observed for over 18 months is presented and discussed. Maximal head rotation (determining backward gaze) was associated with compression of the brachial plexus between the scaleni muscles and motor, sensory and trophic troubles in the hand. This new syndrome is called after the diviner Manto, quoted by Dante Alighieri in his 'Divina Commedia' (Inferno, XX, 52-56). The etiology was ascribed to subacute toxic effects of methylparathion. Brainstem Auditory Evoked Potentials (BAEPs) demonstrated severe brainstem involvement, maximal in the mesencephalic structures. Clinical and neurophysiological data improved on treatment with L-5-hydroxytryptophan. Finally, BAEPs returned to normal.

  19. Alterations in brain-stem auditory evoked potentials among drug addicts

    PubMed Central

    Garg, Sonia; Sharma, Rajeev; Mittal, Shilekh; Thapar, Satish

    2015-01-01

    Objective: To compare the absolute latencies, the interpeak latencies, and amplitudes of different waveforms of brainstem auditory evoked potentials (BAEP) in different drug abusers and controls, and to identify early neurological damage in persons who abuse different drugs so that proper counseling and timely intervention can be undertaken. Methods: In this cross-sectional study, BAEP’s were assessed by a data acquisition and analysis system in 58 male drug abusers in the age group of 15-45 years as well as in 30 age matched healthy controls. The absolute peak latencies and the interpeak latencies of BAEP were analyzed by applying one way ANOVA and student t-test. The study was carried out at the GGS Medical College, Faridkot, Punjab, India between July 2012 and May 2013. Results: The difference in the absolute peak latencies and interpeak latencies of BAEP in the 2 groups was found to be statistically significant in both the ears (p<0.05). However, the difference in the amplitude ratio in both the ears was found to be statistically insignificant. Conclusion: Chronic intoxication by different drugs has been extensively associated with prolonged absolute peak latencies and interpeak latencies of BAEP in drug abusers reflecting an adverse effect of drug dependence on neural transmission in central auditory nerve pathways. PMID:26166594

  20. The Electrically-Evoked Cortical Auditory Event-Related Potential in Children with Auditory Brainstem Implants

    PubMed Central

    He, Shuman; Holly, F.B. Teagle; Ewend, Matthew; Henderson, Lillian; Buchman, Craig A.

    2014-01-01

    Objective This study explored the feasibility of measuring electrically-evoked cortical auditory event-related potentials (eERPs) in children with auditory brainstem implants (ABIs). Design Five children with unilateral ABIs ranging in age from2.8 to 10.2yrs (mean: 5.2yrs) participated in this study. The stimulus was a 100-ms biphasic pulse train that was delivered to individual electrodes in a monopolar stimulation mode. Electrophysiological recordings of the onset eERP were conducted in all subjects. Results The onset eERP was recorded in four subjects who demonstrated auditory perception. These eERP responses showed variations in waveform morphology across subjects and stimulating electrode locations. No eERPs were observed in one subject who received no auditory sensation from ABI stimulation. Conclusions eERPs can be recorded in children with ABIs who develop auditory perception. The morphology of the eERP can vary across subjects and also across stimulating electrode locations within subjects. PMID:25426662

  1. Effect of Prolonged Use of Mobile Phone on Brainstem Auditory Evoked Potentials

    PubMed Central

    Goyal, Darshan; Sharma, Rajiv; Arora, Khushdeep Singh

    2015-01-01

    Objectives Mobile phones are being widely used throughout the world. Electromagnetic waves generated from mobile phones have raised concerns as these may have adverse effects on human auditory system owing to the daily use of mobile phones. The purpose of current study was to evaluate the effects of long term mobile phone usage on auditory brainstem evoked responses (ABR). Materials and Methods A retrospective, cross-sectional, case control study was carried out in a tertiary care hospital. Total 100 healthy subjects aged 18 to 30 years of both the genders were selected, out of which 67 subjects were long-term GSM mobile phone users (using mobile phone for more than 1 year) and 33 were controls who were mobile phone non users. Both the groups were investigated for ABR and changes were studied in both the ears of cases and controls to ascertain the effects of electromagnetic exposure. Results No significant difference (p>0.05) was found in latencies, interpeak latencies and amplitudes of ABR waves between cases and controls. Conclusion Our study shows that long term usage of mobile phones does not affect propagation of electrical stimuli along the auditory nerve to auditory brainstem centres. PMID:26155473

  2. Audiograms estimated from brainstem tone-evoked potentials in dogs from 10 days to 1.5 months of age.

    PubMed

    Poncelet, Luc C; Coppens, Angélique G; Deltenre, Paul F

    2002-01-01

    The objective of this study was to build audiograms from thresholds of brainstem tone-evoked potentials in dogs and to evaluate age-related change of the audiogram in puppies. Results were obtained from 9 Beagle puppies 10-47 days of age. Vertex to mastoid brainstem auditory-evoked potentials in response to 5.1-millisecond Hanning-gated sine waves with frequencies octave-spaced from 0.5 to 32 kHz were recorded. Three dogs were examined at 10, 13, 19, 25, and 45 days. Four other dogs were examined at 16 days. Data from 7 dogs between 42 and 47 days of age were pooled to obtain audiogram reference values in 1.5-month-old puppies. The best auditory threshold lowered from above 60 dB sound pressure level (SPL) to values close to 0 dB SPL between 13 and 25 days of age and then stabilized. The audible frequency range widened, including 32 kHz in all tested dogs from the 19th day. In the 7 1.5-month-old puppies, the mean auditory threshold decreased by 11 dB per octave from 0.5 to 2 kHz. The auditory threshold was lowest and held the same value from 2 to 8 kHz. The mean auditory threshold increased by 20 dB per octave from 8 to 32 kHz. Near threshold, click-evoked potentials test only a small part of the audible frequency range in dogs. Use of tone-evoked potentials may become a powerful tool in investigating dogs with possible partial hearing loss, including during the auditory system maturation period.

  3. A method of digital filtering to enhance the peaks of evoked potentials: application to auditory brainstem responses.

    PubMed

    Grandori, F; Bonfioli, F; Peretti, G; Antonelli, A R

    1988-08-01

    The aim of this paper is to propose a method of data processing for the analysis of evoked potentials, in particular for auditory brainstem responses. The present method has been developed to simplify and speed up the interpretation of the recordings by means of an enhancement of the response peaks. Even for experienced observers, identification of the response waves and subsequent latency measurements may sometimes constitute a difficult task, due to the presence of residual noise or to interference between the temporal waveforms of adjacent peaks and troughs. The method is implemented with a digital non-causal (zero-phase shift) filter, based on the convolution with a finite impulse response, to make the computation time compatible with the use of low-cost microcomputers. The performance is shown to be very good in several examples.

  4. Monitoring therapeutic efficacy of decompressive craniotomy in space occupying cerebellar infarcts using brain-stem auditory evoked potentials.

    PubMed

    Krieger, D; Adams, H P; Rieke, K; Hacke, W

    1993-01-01

    Brain-stem auditory evoked potentials (BAEPs) have been used to gauge effects of brain-stem dysfunction in humans and animal models. The purpose of this study was to evaluate the usefulness of BAEP in monitoring patients undergoing decompressive surgery of the posterior fossa for space occupying cerebellar infarcts. We report on serial BAEP recordings in 11 comatose patients with space occupying cerebellar infarcts undergoing decompressive craniotomy. BAEP studies were performed within 12 h after admission, 24 h following surgery and prior to extubation. BAEP signals were analyzed using latency determination and cross-correlation. Following surgery, 9 patients regained consciousness; 2 patients persisted in a comatose state and died subsequently. BAEP interpeak latency (IPL) I-V assessed prior to surgery exceeded normal values in all patients in whom it could be reliably measured (N = 9). Following decompressive surgery BAEP wave I-V IPL normalized in 5 patients, but remained prolonged despite dramatic clinical improvement in 4 patients. We prospectively computed the coefficient of cross-correlation (MCC) of combined ipsilateral BAEP trials after right and left ear stimulation. In all patients increasing MCC was associated with clinical improvement. Unchanging or decreasing MCC indicated poor outcome. We conclude that serial BAEP studies are an appropriate perioperative monitoring modality in patients with space occupying cerebellar infarcts undergoing decompressive surgery of the posterior fossa. Our study suggests advantages of cross-correlation analysis as an objective signal processing strategy; relevant information can be extracted even if BAEP wave discrimination is impossible due to severe brain-stem dysfunction.

  5. Altered brainstem auditory evoked potentials in a rat central sensitization model are similar to those in migraine.

    PubMed

    Arakaki, Xianghong; Galbraith, Gary; Pikov, Victor; Fonteh, Alfred N; Harrington, Michael G

    2014-05-14

    Migraine symptoms often include auditory discomfort. Nitroglycerin (NTG)-triggered central sensitization (CS) provides a rodent model of migraine, but auditory brainstem pathways have not yet been studied in this example. Our objective was to examine brainstem auditory evoked potentials (BAEPs) in rat CS as a measure of possible auditory abnormalities. We used four subdermal electrodes to record horizontal (h) and vertical (v) dipole channel BAEPs before and after injection of NTG or saline. We measured the peak latencies (PLs), interpeak latencies (IPLs), and amplitudes for detectable waveforms evoked by 8, 16, or 32 kHz auditory stimulation. At 8 kHz stimulation, vertical channel positive PLs of waves 4, 5, and 6 (vP4, vP5, and vP6), and related IPLs from earlier negative or positive peaks (vN1-vP4, vN1-vP5, vN1-vP6; vP3-vP4, vP3-vP6) increased significantly 2h after NTG injection compared to the saline group. However, BAEP peak amplitudes at all frequencies, PLs and IPLs from the horizontal channel at all frequencies, and the vertical channel stimulated at 16 and 32 kHz showed no significant/consistent change. For the first time in the rat CS model, we show that BAEP PLs and IPLs ranging from putative bilateral medial superior olivary nuclei (P4) to the more rostral structures such as the medial geniculate body (P6) were prolonged 2h after NTG administration. These BAEP alterations could reflect changes in neurotransmitters and/or hypoperfusion in the midbrain. The similarity of our results with previous human studies further validates the rodent CS model for future migraine research.

  6. Abnormalities in Brainstem Auditory Evoked Potentials in Sheep with Transmissible Spongiform Encephalopathies and Lack of a Clear Pathological Relationship

    PubMed Central

    Konold, Timm; Phelan, Laura J.; Cawthraw, Saira; Simmons, Marion M.; Chaplin, Melanie J.; González, Lorenzo

    2016-01-01

    Scrapie is transmissible spongiform encephalopathy (TSE), which causes neurological signs in sheep, but confirmatory diagnosis is usually made postmortem on examination of the brain for TSE-associated markers like vacuolar changes and disease-associated prion protein (PrPSc). The objective of this study was to evaluate whether testing of brainstem auditory evoked potentials (BAEPs) at two different sound levels could aid in the clinical diagnosis of TSEs in sheep naturally or experimentally infected with different TSE strains [classical and atypical scrapie and bovine spongiform encephalopathy (BSE)] and whether any BAEP abnormalities were associated with TSE-associated markers in the auditory pathways. BAEPs were recorded from 141 clinically healthy sheep of different breeds and ages that tested negative for TSEs on postmortem tests to establish a reference range and to allow comparison with 30 sheep clinically affected or exposed to classical scrapie (CS) without disease confirmation (test group 1) and 182 clinically affected sheep with disease confirmation (test group 2). Abnormal BAEPs were found in 7 sheep (23%) of group 1 and 42 sheep (23%) of group 2. The proportion of sheep with abnormalities did not appear to be influenced by TSE strain or PrPSc gene polymorphisms. When the magnitude of TSE-associated markers in the auditory pathways was compared between a subset of 12 sheep with and 12 sheep without BAEP abnormalities in group 2, no significant differences in the total PrPSc or vacuolation scores in the auditory pathways could be found. However, the data suggested that there was a difference in the PrPSc scores depending on the TSE strain because PrPSc scores were significantly higher in sheep with BAEP abnormalities infected with classical and L-type BSE, but not with CS. The results indicated that BAEPs may be abnormal in sheep infected with TSEs but the test is not specific for TSEs and that neither vacuolation nor PrPSc accumulation appears to be

  7. Effects of the brominated flame retardant hexabromocyclododecane (HBCD) on dopamine-dependent behavior and brainstem auditory evoked potentials in a one-generation reproduction study in Wistar rats.

    PubMed

    Lilienthal, Hellmuth; van der Ven, Leo T M; Piersma, Aldert H; Vos, Josephus G

    2009-02-25

    Hexabromocyclododecane (HBCD) is a widely used brominated flame retardant which has been recently detected in many environmental matrices. Data from a subacute toxicity study indicated dose-related effects particularly on the pituitary thyroid-axis and retinoids in female rats. Brominated and chlorinated aromatic hydrocarbons are also reported to exert effects on the nervous system. Several investigations revealed a pronounced sensitivity of the dopaminergic system and auditory functions to polychlorinated biphenyls. Therefore, the present experiment should examine, whether or not HBCD affects these targets. Rats were exposed to 0, 0.1, 0.3, 1, 3, 10, 30 or 100 mg HBCD/kg body weight via the diet. Exposure started before mating and was continued during mating, gestation, lactation, and after weaning in offspring. Haloperidol-induced catalepsy and brainstem auditory evoked potentials (BAEPs) were used to assess dopamine-dependent behavior and hearing function in adult male and female offspring. On the catalepsy test, reduced latencies to movement onset were observed mainly in female offspring, indicating influences on dopamine-dependent behavior. The overall pattern of BAEP alterations, with increased thresholds and prolonged latencies of early waves, suggested a predominant cochlear effect. Effects were dose-dependent with lower bounds of benchmark doses (BMDL) between < or =1 and 10 mg/kg body weight for both catalepsy and BAEP thresholds. Tissue concentrations at the BMDL values obtained in this study were 3-4 orders of magnitude higher than current exposure levels in humans.

  8. Auditory Detection of the Human Brainstem Auditory Evoked Response.

    ERIC Educational Resources Information Center

    Kidd, Gerald, Jr.; And Others

    1993-01-01

    This study evaluated whether listeners can distinguish human brainstem auditory evoked responses elicited by acoustic clicks from control waveforms obtained with no acoustic stimulus when the waveforms are presented auditorily. Detection performance for stimuli presented visually was slightly, but consistently, superior to that which occurred for…

  9. Auditory Brainstem Evoked Responses in Newborns with Down Syndrome

    ERIC Educational Resources Information Center

    Kittler, Phyllis M.; Phan, Ha T. T.; Gardner, Judith M.; Miroshnichenko, Inna; Gordon, Anne; Karmel, Bernard Z.

    2009-01-01

    Auditory brainstem evoked responses (ABRs) were compared in 15 newborns with Down syndrome and 15 sex-, age-, and weight-matched control newborns. Participants had normal ABRs based upon values specific to 32- to 42-weeks postconceptional age. Although Wave III and Wave V component latencies and the Wave I-III interpeak latency (IPL) were shorter…

  10. [Evoked potentials and post-traumatic evolution].

    PubMed

    Guérit, J-M

    2005-06-01

    Visual, somatosensory, and brainstem auditory evoked potentials provide functional quantitative assessment of the cerebral cortex and brainstem. Their contribution at the acute stage of coma concerns diagnosis, prognosis, and follow-up. Four patterns are observed in traumatic coma: pattern 1=dysfunction of the cerebral cortex, brainstem integrity: good prognosis in more than 80% of cases; pattern 2=midbrain dysfunction: prognosis depends on both the reversibility of midbrain dysfunction and the extent of associated axonal lesions in the hemispheric white matter; pattern 3=pontine dysfunction due to transtentorial herniation: ominous prognosis, this pattern must be early detected by continuous monitoring; pattern 4=brain death: we currently use evoked potentials at the only brain-death confirmatory test, even in sedated patients. The contribution of evoked potentials in vegetative or minimally responsive states concerns the identification of these patients whose state is determined by midbrain dysfunction and the evaluation of persisting cognitive abilities in individual cases.

  11. [Spasmodic torticollis, substantiating Manto syndrome, of possible toxic aethiology, with alterations of brainstem acoustic evoked potentials (BAEPs). Treatment with L-5-hydroxytryptophan. Follow up of 18 months, during which high degree resolution of symptoms and normalization of BAEPs took place].

    PubMed

    Disertori, B; Ducati, A; Piazza, M

    1982-01-01

    A case of very severe spasmodic torticollis observed for 18 months is presented and discussed. Head was so rotated that permitted only backward seeing and compressed brachial plexus between scaleni muscles with sensory, motor and trophic troubles in the hand. A toxic aethiology from parathion is likely. Brainstem Acoustic Evoked Potentials (BAEPs) showed in the beginning abnormal responses, especially as refers to waves originating in the mesencephalon. Therapy with L-5-hydroxytryptophan subdued neurological symptoms; a parallel normalization of BAEPs recording was observed. The Authors propose to call this syndrome (spasmodic torticollis with thoracic outlet syndrome) after the mythical diviner Manto, which Dante Alighieri refers to in his "Divina Commedia" (Inferno, XX, 55 e segg.).

  12. Visual evoked potentials in neonatal hyperbilirubinemia.

    PubMed

    Chen, Wen-Xiong; Wong, Virginia

    2006-01-01

    The management of neonatal hyperbilirubinemia is very standardized. However, there is a lack of an objective method to evaluate the cerebral effects of bilirubin apart from brainstem auditory evoked potentials. There were few studies evaluating the effects of hyperbilirubinemia or phototherapy on the visual pathway in infants with hyperbilirubinemia. Serial visual evoked potentials of two groups of term neonates (N = 24)--group 1 with moderate hyperbilirubinemia (n = 16) and group 2 with severe hyperbilirubinemia (n = 8)--were evaluated prospectively. All infants had regular physical, neurologic, visual, and auditory evaluations until 3 years. Four (16%) had abnormal visual evoked potentials before 1 year, and the abnormalities returned to normal thereafter. There was no significant difference in visual evoked potentials between the two groups. All had normal neurodevelopmental status by 3 years, with the exception of one child from the severe group with ABO incompatibility with transient mild motor delay, hypotonia, and abnormal visual evoked potential. There were no abnormal effects of phototherapy on visual evoked potentials in infants with neonatal hyperbilirubinemia after 1 year of age. Although our sample size was small, the results suggest that the effects of hyperbilirubinemia on visual evoked potentials might be transient. (J Child Neurol 2006;21:58-62).

  13. The binaural click-evoked auditory brainstem response of the California sea lion (Zalophus californianus).

    PubMed

    Mulsow, Jason; Reichmuth, Colleen

    2013-01-01

    Auditory brainstem responses (ABRs) elicited by high-amplitude [100 dB re 20 μPa, peak-to-peak equivalent sound pressure level (peSPL)] aerial broadband clicks were collected from seven California sea lions in order to provide a basic description of short-latency auditory evoked potentials in this species. The waveform of the ABR was similar to that of other mammals, comprising seven positive and six negative characteristic waves. Variability in the amplitudes and latencies of waves was higher among subjects than the variability in within-subject repeated measurements. ABRs to progressively attenuated clicks were collected for three additional sea lions. Wave amplitudes decreased and latencies increased with decreasing stimulus level, with only the sixth positive wave visible near threshold (35-40 dB peSPL). Based on observations of wave latency as a function of stimulus amplitude, the sixth positive wave of the ABR is equivalent to the clinically important "wave V" identified in studies with humans. The current results provide information on the basic electrophysiology of the pinniped auditory system, including the processes that underlie brainstem auditory steady-state responses used to measure frequency-specific hearing sensitivity.

  14. Evoked potentials in multiple sclerosis.

    PubMed

    Kraft, George H

    2013-11-01

    Before the development of magnetic resonance imaging (MRI), evoked potentials (EPs)-visual evoked potentials, somatosensory evoked potentials, and brain stem auditory evoked responses-were commonly used to determine a second site of disease in patients being evaluated for possible multiple sclerosis (MS). The identification of an area of the central nervous system showing abnormal conduction was used to supplement the abnormal signs identified on the physical examination-thus identifying the "multiple" in MS. This article is a brief overview of additional ways in which central nervous system (CNS) physiology-as measured by EPs-can still contribute value in the management of MS in the era of MRIs.

  15. Evoked potentials in the ICU.

    PubMed

    Amantini, A; Amadori, A; Fossi, S

    2008-01-01

    The most informative neurophysiological techniques available in the neurosurgical intensive care unit are electroencephalograph and somatosensory evoked potentials. Such tools, which give an evaluation of cerebral function in comatose patients, support clinical evaluation and are complementary to neuroimaging. They serve both diagnostic/prognostic and monitoring purposes. While for the former, discontinuous monitoring is sufficient, for the latter, to obtain increased clinical impact, continuous monitoring is necessary. To perform and interpret these examinations in the neurosurgical intensive care unit, both the technician and the neurophysiologist need specific training in the intensive care field. There is sufficient evidence to show that somatosensory evoked potentials are the best single indicator of early prognosis in traumatic and hypoxic-ischaemic coma compared to the Glasgow Coma Score, computed tomography scan and electroencephalograph. Indeed, somatosensory evoked potentials should always be combined with clinical examination to determine the prognosis of coma. Despite widespread use of somatosensory evoked potentials and their prognostic utility in acute brain injury, few studies exist on continuous somatosensory evoked potential monitoring in the intensive care unit. We carried out a pilot study of continuous electroencephalograph-somatosensory evoked potential monitoring in the neurosurgical intensive care unit (traumatic brain injury and intracranial haemorrhage, Glasgow Coma Score <9, intracranial pressure monitoring). All patients stable from a clinical and computed tomography scan point of view showed no significant somatosensory evoked potential modifications, while in the case of clinical deterioration (23%), somatosensory evoked potentials always showed significant modifications. While somatosensory evoked potentials correlated with short-term outcome, intracranial pressure showed a poor correlation. We believe neurophysiological monitoring is

  16. [The importance of brain stem evoked potentials in the diagnosis of neurosurgical patients].

    PubMed

    Rogowski, M; Michalska, B I

    2001-01-01

    The technique of Brainstem Electric Response Audiometry (BERA) is a non-invasive electrophysiologic method used in comatose patients for localization of areas of neuronal and synaptic dysfunction not evident in clinical evaluation. This test has a diagnostic and prognostic value in detection of abnormalities and evaluation of comatose head-injured patients at a reversible clinical stage. In contrast to most clinical signs, brainstem auditory evoked potentials are independent of levels of consciousness, analgesics, sedatives. This test is aetiologically non-specific and must be carefully integrated into the clinical situation. Generators of brainstem auditory evoked potentials are located in the auditory nerve (waves I and II) and brainstem (waves III-V). Patients in acute posttraumatic coma are assessed by means of Glasgow Coma Score (GCS), which is reliable in forecasting a favourable outcome. Patients with a score 8 points have an unfavourable outcome in 16%. Brainstem auditory evoked potentials are reliable predictors of unfavourable outcome. Subsequent brainstem auditory evoked potential testing provides relevant prognostic information, since improvement of graded brainstem auditory evoked potentials indicates a favourable outcome. Progressive deterioration of brainstem auditory evoked potentials indicates irreversible damage and is associated with unfavourable outcome, whereas singular abnormal evoked potentials may result from reversible neuronal dysfunction. The absence of waves III-V associated with the end EEG activity is the proof of brain death. Serial BERA monitoring has been used to evaluate progressive clinical syndromes, such as "uncal herniation" and evolving brain death. The use of serial BERA recordings appeared to improve the outcome predictions in comparison with single BERA tests. A combination of brainstem auditory evoked potentials, somatosensory and visual evoked potentials (multimodality evoked potentials-MEP) provides more information for

  17. Investigation of auditory processing disorder and language impairment using the speech-evoked auditory brainstem response.

    PubMed

    Rocha-Muniz, Caroline N; Befi-Lopes, Debora M; Schochat, Eliane

    2012-12-01

    This study investigated whether there are differences in the Speech-Evoked Auditory Brainstem Response among children with Typical Development (TD), (Central) Auditory Processing Disorder (C)APD, and Language Impairment (LI). The speech-evoked Auditory Brainstem Response was tested in 57 children (ages 6-12). The children were placed into three groups: TD (n = 18), (C)APD (n = 18) and LI (n = 21). Speech-evoked ABR were elicited using the five-formant syllable/da/. Three dimensions were defined for analysis, including timing, harmonics, and pitch. A comparative analysis of the responses between the typical development children and children with (C)APD and LI revealed abnormal encoding of the speech acoustic features that are characteristics of speech perception in children with (C)APD and LI, although the two groups differed in their abnormalities. While the children with (C)APD might had a greater difficulty distinguishing stimuli based on timing cues, the children with LI had the additional difficulty of distinguishing speech harmonics, which are important to the identification of speech sounds. These data suggested that an inefficient representation of crucial components of speech sounds may contribute to the difficulties with language processing found in children with LI. Furthermore, these findings may indicate that the neural processes mediated by the auditory brainstem differ among children with auditory processing and speech-language disorders.

  18. [Brain stem auditory evoked potentials in brain death state].

    PubMed

    Kojder, I; Garell, S; Włodarczyk, E; Sagan, L; Jezewski, D; Slósarek, J

    1998-01-01

    The authors studied auditory brainstem evoked potentials (BAEP) in 27 organ donors aged 40 to 68 years treated in neurosurgery units in Szczecin and Grenoble. Abnormal results were found in all cases. In 63% of cases no evoked action potentials were obtained, in 34% only the 1st wave was obtained, and in two cases evolution was observed with activity extinction. The authors believe that in the process of shaping of BAEP morphotic extinction begins from the later waves to earlier ones in agreement with the rostrocaudal direction of extinction of the functions or brain midline structures, and in a single study various findings may be obtained.

  19. Toneburst-evoked auditory brainstem response in a leopard seal, Hydrurga leptonyx.

    PubMed

    Tripovich, J S; Purdy, S C; Hogg, C; Rogers, T L

    2011-01-01

    Toneburst-evoked auditory brainstem responses (ABRs) were recorded in a captive subadult male leopard seal. Three frequencies from 1 to 4 kHz were tested at sound levels from 68 to 122 dB peak equivalent sound pressure level (peSPL). Results illustrate brainstem activity within the 1-4 kHz range, with better hearing sensitivity at 4 kHz. As is seen in human ABR, only wave V is reliably identified at the lower stimulus intensities. Wave V is present down to levels of 82 dB peSPL in the right ear and 92 dB peSPL in the left ear at 4 kHz. Further investigations testing a wider frequency range on seals of various sex and age classes are required to conclusively report on the hearing range and sensitivity in this species.

  20. Brainstem auditory evoked responses in man. 1: Effect of stimulus rise-fall time and duration

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Squires, N.; Galambos, R.

    1975-01-01

    Short latency (under 10 msec) evoked responses elicited by bursts of white noise were recorded from the scalp of human subjects. Response alterations produced by changes in the noise burst duration (on-time) inter-burst interval (off-time), and onset and offset shapes are reported and evaluated. The latency of the most prominent response component, wave V, was markedly delayed with increases in stimulus rise-time but was unaffected by changes in fall-time. The amplitude of wave V was insensitive to changes in signal rise-and-fall times, while increasing signal on-time produced smaller amplitude responses only for sufficiently short off-times. It is concluded that wave V of the human auditory brainstem evoked response is solely an onset response.

  1. Time Perception and Evoked Potentials

    DTIC Science & Technology

    1988-07-01

    ARI Research Note 88-69 0 MitnS.Ktohe U.0 ... Ann-r (. Time Perception and Evoked Potentials Paul FraisseDT ( Lfniversit6 Rene Descartes E LECTE...JOHNSON 00L, [N Technical Dicctojr Cmad Research accomplished under contract for the Department of the Army C. Universite Rene Descartes , Paris )r...ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Labrato-ire de Psychologie Experimental AREA• WORK UNIT NUMBERS Universite Rene Descartes

  2. Brainstem auditory evoked responses in man. 1: Effect of stimulus rise-fall time and duration

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Squires, N.; Galambos, R.

    1975-01-01

    Short latency (under 10 msec) responses elicited by bursts of white noise were recorded from the scalps of human subjects. Response alterations produced by changes in the noise burst duration (on-time), inter-burst interval (off-time), and onset and offset shapes were analyzed. The latency of the most prominent response component, wave V, was markedly delayed with increases in stimulus rise time but was unaffected by changes in fall time. Increases in stimulus duration, and therefore in loudness, resulted in a systematic increase in latency. This was probably due to response recovery processes, since the effect was eliminated with increases in stimulus off-time. The amplitude of wave V was insensitive to changes in signal rise and fall times, while increasing signal on-time produced smaller amplitude responses only for sufficiently short off-times. It was concluded that wave V of the human auditory brainstem evoked response is solely an onset response.

  3. Are speech-evoked auditory brainstem response (speech-ABR) outcomes influenced by ethnicity?

    PubMed

    Zakaria, Mohd Normani; Jalaei, Bahram; Aw, Cheu Lih; Sidek, Dinsuhaimi

    2016-06-01

    Due to its objective nature, auditory brainstem response (ABR) evoked by complex stimuli has been gaining attention lately. The present study aimed to compare the speech-evoked auditory brainstem response (speech-ABR) results between two ethnic groups: Malay and Chinese. In addition, it was also of interest to compare the speech-ABR outcomes obtained from the present study with the published Caucasian data. Thirty healthy male adults (15 Malay and 15 Chinese) were enrolled in this comparative study. Speech syllable/da/presented at 80 dBnHL was used to record speech-ABR waveforms from the right ear of each subject. Amplitudes and latencies of speech-ABR peaks (V, A, C, D, E, F and O), as well as composite onset measures (V/A duration, V/A amplitude and V/A slope) were computed and analyzed. When the two ethnic groups were compared, all speech-ABR results were not statistically different from each other (p > 0.05). When the data from the present study were compared with the published Caucasian data, most of the statistical analyses were significant (p < 0.05). That is, Asian subjects revealed significantly higher peak amplitudes, earlier peak latencies, higher V/A amplitudes and steeper V/A slopes than that of Caucasians. The speech-ABR results between Malay and Chinese were found to be essentially similar due to anatomical similarities. Nevertheless, specific normative data for Asian adults are required as their speech-ABR results are different from that of Caucasian males. This issue should be addressed before it can be applied holistically in multiracial countries.

  4. Unilateral and bilateral brainstem auditory-evoked response abnormalities in 900 Dalmatian dogs.

    PubMed

    Holliday, T A; Nelson, H J; Williams, D C; Willits, N

    1992-01-01

    In a survey of 900 Dalmatian dogs, brainstem auditory-evoked responses (BAER) and clinical observations were used to determine the incidence and sex distribution of bilateral and unilateral BAER abnormalities and their association with heterochromia iridis (HI). To assess the efficacy of BAER testing in guiding breeding programs, data from 749 dogs (subgroup A), considered to be a sample of the population at large, were compared with data from a subgroup (subgroup B; n = 151) in which selection of breeding stock had been based on BAER testing from the beginning of the 4-year survey. Brainstem auditory-evoked responses were elicited by applying click stimuli unilaterally, while applying a white noise masking sound to the contralateral ear. Under these conditions, BAER were either normal, unilaterally absent, or bilaterally absent. Dogs with bilaterally absent BAER were clinically deaf; dogs with unilaterally absent BAER were not clinically deaf but appeared dependent on their BAER-normal ears for their auditory-cued behavior. Dogs with unilaterally absent BAER often were misidentified as normal by uninformed observers. Among the 900 dogs, 648 (72.0%) were normal, 189 (21.0%) had unilateral absence of BAER, and 63 (7.0%) had bilateral absence of BAER or were clinically deaf and assumed to have bilaterally absent BAER (n = 4). Total incidence in the population sampled was assumed to be higher, because some bilaterally affected dogs that would have been members of subgroup A undoubtedly did not come to our attention. Among females, 24.0% were unilaterally abnormal and 8.2% were bilaterally abnormal whereas, among males, 17.8% were unilaterally abnormal and 5.7% were bilaterally abnormal.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Initial and serial evoked potentials in cerebrovascular critical care patients.

    PubMed

    Haupt, Walter F; Pawlik, Gunter; Thiel, Alexander

    2006-10-01

    Results of somatosensory evoked potential (SEP) and brainstem auditory evoked potential (BAEP) examinations performed early in the clinical course of patients with acute cerebrovascular disease correlate statistically significantly with outcome regardless of type and localization of the primary lesion. The prognostic value of serial examinations of SEP and BAEP has not been studied yet. The authors examined a group of 215 patients suffering from acute stroke requiring neurocritical care composed of 75 supratentorial and 36 infratentorial ischemic strokes, 58 supratentorial and 18 infratentorial hemorrhages, and 28 aneurysmatic subarachnoid hemorrhages prospectively using spinal and cortical SEP and BAEP according to routine procedures on admission as well as after 1 and 2 weeks. The findings were correlated to outcome at 4 weeks. Statistical assessment was performed using standard methods of contingency analysis. In all groups, SEP findings were significantly correlated with outcome at initial and all subsequent examinations, similar correlations were also found for BAEP. However, after partialling out the prognostic information gained from the initial examination of SEP and BAEP, the follow-up examinations rendered only a marginal increase in prognostic information. Therefore, the initial examination of evoked potentials supplies valuable prognostic information, however, serial examinations of evoked potentials during the first weeks of disease improve the prognostic information only marginally.

  6. Hypothyroidism Affects Olfactory Evoked Potentials.

    PubMed

    Świdziński, Teodor; Linkowska-Świdzińska, Kamila; Czerniejewska-Wolska, Hanna; Wiskirska-Woźnica, Bożena; Owecki, Maciej; Głowacka, Maria Danuta; Frankowska, Anna; Łącka, Katarzyna; Glapiński, Mariusz; Maciejewska-Szaniec, Zofia; Świdziński, Piotr

    Background. Objective electrophysiological methods for investigations of the organ of smell consist in recordings of olfactory cortex responses to specific, time restricted odor stimuli. In hypothyroidism have impaired sense of smell. Material and Methods. Two groups: control of 31 healthy subjects and study group of 21 with hypothyroidism. The inclusion criterion for the study group was the TSH range from 3.54 to 110 μIU/mL. Aim. Assessment of the latency time of evoked responses from the olfactory nerve N1 and the trigeminal nerve N5 using two smells of mint and anise in hypothyroidism. Results. The smell perception in subjective olfactory tests was normal in 85% of the hypothyroid group. Differences were noticed in the objective tests. The detailed intergroup analysis of latency times of recorded cortical responses PN5 and PN1 performed by means between the groups of patients with overt clinical hypothyroidism versus subclinical hypothyroidism demonstrated a significant difference (p < 0.05) whereas no such differences were found between the control group versus subclinical hypothyroidism group (p > 0.05). Conclusion. We can conclude that registration of cortex potentials at irritation of olfactory and trigeminal nerves offers possibilities for using this method as an objective indicator of hypothyroidism severity and prognostic process factor.

  7. Hypothyroidism Affects Olfactory Evoked Potentials

    PubMed Central

    Świdziński, Teodor; Czerniejewska-Wolska, Hanna; Wiskirska-Woźnica, Bożena; Owecki, Maciej; Głowacka, Maria Danuta; Frankowska, Anna; Łącka, Katarzyna; Glapiński, Mariusz; Maciejewska-Szaniec, Zofia; Świdziński, Piotr

    2016-01-01

    Background. Objective electrophysiological methods for investigations of the organ of smell consist in recordings of olfactory cortex responses to specific, time restricted odor stimuli. In hypothyroidism have impaired sense of smell. Material and Methods. Two groups: control of 31 healthy subjects and study group of 21 with hypothyroidism. The inclusion criterion for the study group was the TSH range from 3.54 to 110 μIU/mL. Aim. Assessment of the latency time of evoked responses from the olfactory nerve N1 and the trigeminal nerve N5 using two smells of mint and anise in hypothyroidism. Results. The smell perception in subjective olfactory tests was normal in 85% of the hypothyroid group. Differences were noticed in the objective tests. The detailed intergroup analysis of latency times of recorded cortical responses PN5 and PN1 performed by means between the groups of patients with overt clinical hypothyroidism versus subclinical hypothyroidism demonstrated a significant difference (p < 0.05) whereas no such differences were found between the control group versus subclinical hypothyroidism group (p > 0.05). Conclusion. We can conclude that registration of cortex potentials at irritation of olfactory and trigeminal nerves offers possibilities for using this method as an objective indicator of hypothyroidism severity and prognostic process factor. PMID:27656655

  8. Brainstem auditory-evoked response (BAER) in client-owned pet ferrets with normal hearing.

    PubMed

    Piazza, S; Huynh, M; Cauzinille, L

    2014-06-07

    The objective of this study was to evaluate the feasibility of brainstem auditory-evoked response (BAER) testing in pet ferrets in a clinical setting, and to describe a routine method and baseline data for normal hearing ferrets for future investigation of deafness in this species. Twenty-eight clinically normal client-owned ferrets were included. BAER measurements were recorded under general anaesthesia (isoflurane delivered by mask), from subcutaneously placed needle electrodes. A 'click' stimulus applied by insert earphone with an intensity of 90 dB sound pressure level (SPL) was used. The final BAER waveform represents an average of 500 successive responses. Morphology of the waveform was studied; amplitude and latency measures were determined and means were calculated. The BAER waveform of the normal ferret included 4 reproducible waves named I, II, III and V, as previously described in dogs and cats. Measurements of latencies are consistent with previous laboratory research using experimental ferrets. In the present study, a reliable routine protocol for clinical evaluation of the hearing function in the pet ferret was established. This procedure can be easily and safely performed in a clinical setting in ferrets as young as eight weeks of age. The prevalence of congenital deafness in ferrets is currently unknown but may be an important consideration, especially in ferrets with a white coat. BAER test is a useful screening for congenital deafness in this species.

  9. Effects of otitis on hearing in dogs characterised by brainstem auditory evoked response testing.

    PubMed

    Eger, C E; Lindsay, P

    1997-09-01

    Hearing function was measured in normal dogs and in dogs with otitis using brainstem auditory evoked response testing. Data were obtained from 86 normal ears and from 105 ears with otitis, categorised into four degrees of severity. The data were analysed to illustrate the differences between the hearing function in the normal and abnormal ears and to estimate the degree of impairment associated with differing degrees of pathology. While severe hearing loss seemed to be present in the dogs with more severe otitis, only two individuals were identified as being totally deaf in the affected ears and no dogs were identified in which the cleaning and examination processes had caused damage to hearing function. Cleaning the ear canal produced measurable improvements in hearing in several dogs, indicating the profound effect of physical obstruction of the external ear canal by debris. It is concluded that most dogs with chronic otitis externa are not totally deaf and that the hearing impairment that does occur has the characteristics of conductive hearing loss.

  10. Effect of different phases of menstrual cycle on brainstem auditory evoked response

    PubMed Central

    Batta, Meenal; Dhir, Shashi Kant; Kumar, Avnish; Singh, KD

    2017-01-01

    Introduction: The change in the hormonal levels during the three phases of menstrual cycle, namely, menstrual phase (hormonal withdrawal), proliferative phase (estrogen peak), and secretory phase (progesterone peak), influences the conduction velocities in the central auditory pathways. Variable findings of brainstem auditory evoked response (BAER) have been reported during different phases of menstrual cycle by different researchers. Aim: To study the effect of different phases of menstrual cycle on BAER. Methodology: A prospective observational study on 80 audiometrically normal, healthy, eumenorrheic female students in age group of 18–24 years was done at a medical college of northern India. BAER was recorded across the three phases of the menstrual cycle, i.e., menstrual phase (day 1–3), proliferative phase (day 10–12), and secretory phase (day 20–22). Recordings of peak latencies, interpeak latencies, and amplitude of waves of BAER were taken and statistically analyzed. Results: In this study, significant decrease in the latencies of wave III, wave V, and interpeak latency I-III and a trend of decrease in latencies of wave I and interpeak latency I-V (which was statistically insignificant) were observed in proliferative (estrogen peak) phase as compared to menstrual and secretory phase. However, there was no statistically significant difference found in the amplitude of waves of BAER during all the three phases of menstrual cycle. Conclusion: The hormonal changes during different phases of menstrual cycle do seem to influence BAER. PMID:28251107

  11. Sensorineural hearing loss with brainstem auditory evoked responses changes in homozygote and heterozygote sickle cell patients in Guadeloupe (France).

    PubMed

    Jovanovic-Bateman, L; Hedreville, R

    2006-08-01

    This prospective study involved 79 homozygote and heterozygote sickle cell anaemia patients (16 to 50 years old) and a control group of 40 people.All patients underwent ENT, audiological and brainstem auditory evoked responses (BSER) examinations in order to evaluate the incidence of sensorineural hearing loss (SNHL), to identify the changes at the level of the cochlear nerve and the central pathways, and to determine the most vulnerable group, in order to intervene with early prevention and rehabilitation for this condition.A hearing loss of greater than 20 dB at two or more frequencies was found in 36 (45.57 per cent) sickle cell patients (19 (47.22 per cent) HbSC patients and 17 (43.59 per cent) HbSS patients) and three (7.5 per cent) members of the control group. Homozygote and heterozygote patients, as well as both sexes, were equally affected. Bilateral hearing loss occurred in 19 (52.78 per cent) patients, unilateral right-sided hearing loss in five (13.89 per cent) patients and unilateral left-sided hearing loss in 12 (33.33 per cent) patients. Brainstem auditory evoked potential demonstrated a prolonged I-V (III-V) interpeak latency in 13 (25.35 per cent) sickle cell patients (11 men (eight with HbSS) and two women). The hearing loss in HbSS patients was neural in nature and of earlier onset; the hearing loss in HbSC patients was usually cochlear in nature and of later onset. Despite high medical standards and 100 per cent social security cover, the high incidence of SNHL in our sickle cell affected patients (the majority with the Benin haplotype) was probably due to their specific haematological profile and to the original geographical distribution of the disease in the tropics. Our results highlight the necessity for early and regular hearing assessment of sickle cell patients, including BSER examination, especially in male patients with SNHL.

  12. [Evoked somatosensory plexus and cervical evoked potentials in cervicobrachialgia].

    PubMed

    Rossi, L; Ubiali, E; Merli, R; Rottoli, M R

    1983-01-01

    The authors study the sensitive potential evoked from point of Erb and from cervical spine in C6-C7, obtained by stimulation of median nerve in a control group (normals) and in a greater group of 40 cases from patients affected by radiculopathie with or without discal protrusion and by myelopathie spondiloartrosic. The date supply significant informations and are (obicurred in analytique) analyzed with accuracy.

  13. Canine brainstem auditory evoked responses are not clinically impacted by head size or breed.

    PubMed

    Kemper, Debra L; Scheifele, Peter M; Clark, John Greer

    2013-02-17

    Accurate assessment of canine hearing is essential to decrease the incidence of hereditary deafness in predisposed breeds and to substantiate hearing acuity. The Brainstem Auditory Evoked Response (BAER) is a widely accepted, objective test used in humans and animals for estimation of hearing thresholds and deafness diagnosis. In contrast to humans, testing and recording parameters for determination of normal values for canine hearing are not available. Conflicting information concerning breed and head size effects on canine BAER tests are major contributors preventing this normalization. The present study utilized standard head measurement techniques coupled with BAER testing and recording parameters modeled from humans to examine the effect canine head size and breed have on BAER results. Forty-three adult dogs from fourteen different breeds had head size measurements and BAER tests performed. The mean latencies compared by breed for waves I, II, III, IV, and V were as follows: 1.46±0.49 ms, 2.52±0.54 ms, 3.45±0.41 ms, 4.53±0.83 ms and 5.53±0.43 ms, respectively. The mean wave I-V latency interval for all breeds was 3.69 ms. All dogs showed similar waveform morphology, structures, including the presence of five waves occurring within 11 ms after stimulus presentation and a significant trough occurring after Wave V. All of the waveform morphology for our subjects occurred with consistent interpeak latencies as shown by statistical testing. All animals had diagnostic results within the expected ranges for each wave latency and interwave interval allowing diagnostic evaluation. Our results establish that neither differences in head size nor breed impact determination of canine BAER waveform morphology, latency, or hearing sensitivity for diagnostic purposes. The differences in canine head size do not have a relevant impact on canine BAERs and are not clinically pertinent to management or diagnostic decisions.

  14. Evoked potential application to study of echolocation in cetaceans

    NASA Astrophysics Data System (ADS)

    Supin, Alexander Ya.; Nactigall, Paul E.; Pawloski, Jeffrey; Au, Whitlow W. L.

    2002-05-01

    The evoked-potential (EP) method is effective in studies of hearing capabilities of cetaceans. However, until now EP studies in cetaceans were performed only in conditions of passive hearing by recording EP to external stimuli. Can this method be applied to study active echolocation in odontocetes? To answer this question, auditory brainstem evoked responses (ABR) were recorded in a false killer whale while the animal echolocated a target within an experiment in which the animal reported the target present or absent. The ABR collection was triggered by echolocation clicks. In these conditions, the recorded ABR pattern contained a duplicate set of waves. A comparison of ABR wave delays recorded during echolocation with those recorded during regular external stimulation has shown that the first set of waves is a response to the emitted click whereas the second one is a response to the echo. Both responses, to the emitted click and to the echo, were of comparable amplitude in spite of the intensity difference of these two sounds of more than 40 dB near the animal's head. This finding indicates some mechanisms releasing responses to echoes from masking by loud emitted clicks. The evoked-potential method may be productive to investigate these mechanisms.

  15. [Role of evoked potentials in neonatal hypoxic-ischemic encephalopathy: review of the literature].

    PubMed

    Suppiej, A

    2001-01-01

    Results of the studies on evoked potentials (EP) in neonates with hypoxic-ischaemic encephalopathy and their technical feasibility support extensive application in neonatal intensive care units. The combined application of visual evoked potentials (VEP) and somestesic evoked potentials (SEP) is the method of choice for neurodevelopmental prognostication in full-term neonate; especially useful in cases with moderate encephalopathy; in preterm neonates EP are complementary to head ultrasound scans, particularly early on when the findings are in the process of evolution. Brainstem auditory evoked potentials (BAEP) are the technique of choice for early identification of sensorineural hearing loss necessitating intervention. Long term prognosis on vision and audition is based on VEP and BAEP. Studies devoted to definition of the role of EP in selection of babies and monitoring neuroprotective intervention are warranted.

  16. Startle evoked movement is delayed in older adults: implications for brainstem processing in the elderly

    PubMed Central

    Tresch, Ursina A.; Perreault, Eric J.; Honeycutt, Claire F.

    2014-01-01

    Abstract Little attention has been given to how age affects the neural processing of movement within the brainstem. Since the brainstem plays a critical role in motor control throughout the whole body, having a clear understanding of deficits in brainstem function could provide important insights into movement deficits in older adults. A unique property of the startle reflex is its ability to involuntarily elicit planned movements, a phenomenon referred to as startReact. The noninvasive startReact response has previously been used to probe both brainstem utilization and motor planning. Our objective was to evaluate deficits in startReact hand extension movements in older adults. We hypothesized that startReact hand extension will be intact but delayed. Electromyography was recorded from the sternocleidomastoid (SCM) muscle to detect startle and the extensor digitorum communis (EDC) to quantify movement onset in both young (24 ± 1) and older adults (70 ± 11). Subjects were exposed to a startling loud sound when prepared to extend their hand. Trials were split into those where a startle did (SCM+) and did not (SCM−) occur. We found that startReact was intact but delayed in older adults. SCM+ onset latencies were faster than SCM− trials in both the populations, however, SCM+ onset latencies were slower in older adults compared to young (Δ = 8 msec). We conclude that the observed age‐related delay in the startReact response most likely arises from central processing delays within the brainstem. PMID:24907294

  17. Evoked potentials in monitoring multiple sclerosis.

    PubMed

    Leocani, L; Medaglini, S; Comi, G

    2000-01-01

    The usefulness of evoked potentials (EPs) in the diagnosis of multiple sclerosis is limited by its relatively low sensitivity to subclinical lesions. However, they are still a good tool to assess the integrity of afferent and efferent pathways and to quantify the severity of white matter involvement. Transversal and longitudinal studies have demonstrated good correlation between EP abnormalities and disability, suggesting that multimodal evoked potentials could be useful in monitoring the disease evolution in single patients and as surrogate end points in clinical trials.

  18. Auditory- and visual-evoked potentials in Mexican infants are not affected by maternal supplementation with 400 mg/d docosahexaenoic acid in the second half of pregnancy.

    PubMed

    Stein, Aryeh D; Wang, Meng; Rivera, Juan A; Martorell, Reynaldo; Ramakrishnan, Usha

    2012-08-01

    The evidence relating prenatal supplementation with DHA to offspring neurological development is limited. We investigated the effect of prenatal DHA supplementation on infant brainstem auditory-evoked responses and visual- evoked potentials in a double-blind, randomized controlled trial in Cuernavaca, Mexico. Pregnant women were supplemented daily with 400 mg DHA or placebo from gestation wk 18-22 through delivery. DHA and placebo groups did not differ in maternal characteristics at randomization or infant characteristics at birth. Brainstem auditory-evoked responses were measured at 1 and 3 mo in 749 and 664 infants, respectively, and visual-evoked potentials were measured at 3 and 6 mo in 679 and 817 infants, respectively. Left-right brainstem auditory-evoked potentials were moderately correlated (range, 0.26-0.43; all P < 0.001) and left-right visual-evoked potentials were strongly correlated (range, 0.79-0.94; all P < 0.001) within any assessment. Correlations across visits were modest to moderate (range, 0.09-0.38; all P < 0.01). The offspring of DHA-supplemented women did not differ from those of control women with respect to any outcome measure (all comparisons P > 0.10). We conclude that DHA supplementation during pregnancy did not influence brainstem auditory-evoked responses at 1 and 3 mo or visual-evoked potentials at 3 and 6 mo.

  19. Cortical auditory evoked potentials in the assessment of auditory neuropathy: two case studies.

    PubMed

    Pearce, Wendy; Golding, Maryanne; Dillon, Harvey

    2007-05-01

    Infants with auditory neuropathy and possible hearing impairment are being identified at very young ages through the implementation of hearing screening programs. The diagnosis is commonly based on evidence of normal cochlear function but abnormal brainstem function. This lack of normal brainstem function is highly problematic when prescribing amplification in young infants because prescriptive formulae require the input of hearing thresholds that are normally estimated from auditory brainstem responses to tonal stimuli. Without this information, there is great uncertainty surrounding the final fitting. Cortical auditory evoked potentials may, however, still be evident and reliably recorded to speech stimuli presented at conversational levels. The case studies of two infants are presented that demonstrate how these higher order electrophysiological responses may be utilized in the audiological management of some infants with auditory neuropathy.

  20. [Effect of sleep deprivation on visual evoked potentials and brain stem auditory evoked potentials in epileptics].

    PubMed

    Urumova, L T; Kovalenko, G A; Tsunikov, A I; Sumskiĭ, L I

    1984-01-01

    The article reports on the first study of the evoked activity of the brain in epileptic patients (n = 20) following sleep deprivation. An analysis of the data obtained has revealed a tendency to the shortening of the peak latent intervals of visual evoked potentials in the range of 100-200 mu sec and the V component and the interpeak interval III-V of evoked auditory trunk potentials in patients with temporal epilepsy. The phenomenon may indicate the elimination of stabilizing control involving the specific conductive pathways and, possibly, an accelerated conduction of a specific sensor signal.

  1. Forskolin induced increase in spontaneous activity of auditory brainstem neurons is comparable to acoustic stimulus evoked responses.

    PubMed

    Shaikh, Aasef G; Finlayson, Paul G

    2012-12-07

    Contemporary proposals for the pathophysiology of tinnitus due to cochlear damage underscore increased spontaneous activity of auditory brainstem neurons. One of the several consequences of the cochlear injury is the activation of the ERK pathway, suppression of phosphodiestase E activity, and putatively setting a long-term increase in intracellular levels of cyclic AMP at central auditory neurons. Local application of forskolin also increases intracellular cyclic AMP and spontaneous neural activity. We measured the effects of locally applied forskolin on spontaneous firing rate of isolated neurons in the peri-olivary region of the superior olive complex in anesthetized adult Long Evan rats. Forskolin induced increase in spontaneous neural activity was comparable to supra-threshold tone evoke neural responses. These results are viewed in context of hyperexcitability as a correlate of tinnitus.

  2. Early visual evoked potentials in callosal agenesis.

    PubMed

    Barr, Melodie S; Hamm, Jeff P; Kirk, Ian J; Corballis, Michael C

    2005-11-01

    Three participants with callosal agenesis and 12 neurologically normal participants were tested on a simple reaction time task, with visual evoked potentials collected using a high-density 128-channel system. Independent-components analyses were performed on the averaged visual evoked potentials to isolate the components of interest. Contrary to previous research with acallosals, evidence of ipsilateral activation was present in all 3 participants. Although ipsilateral visual components were present in all 4 unilateral conditions in the 2 related acallosal participants, in the 3rd, these were present only in the crossed visual field-hand conditions and not in the uncrossed conditions. Suggestions are made as to why these results differ from earlier findings and as to the neural mechanisms facilitating this ipsilateral activation.

  3. A primer on motion visual evoked potentials.

    PubMed

    Heinrich, Sven P

    2007-03-01

    Motion visual evoked potentials (motion VEPs) have been used since the late 1960s to investigate the properties of human visual motion processing, and continue to be a popular tool with a possible future in clinical diagnosis. This review first provides a synopsis of the characteristics of motion VEPs and then summarizes important methodological aspects. A subsequent overview illustrates how motion VEPs have been applied to study basic functions of human motion processing and shows perspectives for their use as a diagnostic tool.

  4. [Evoked potentials monitoring in aortic surgery].

    PubMed

    Shiiya, Norihiko; Takahashi, Daisuke; Tsuda, Kazumasa

    2014-07-01

    Somatosensory evoked potential (SSEP), evoked spinal cord potential (ESCP) and motor evoked potential (MEP) have been used to detect spinal cord ischemia during aortic surgery. SSEP evaluates the sensory pathway, and is recorded from the sensory cortex by peripheral nerve stimulation. The interval from the onset of ischemia to change is relatively long(5-10 minutes). It has less frequently been used because of the high false negative and false positive rate. ESCP is recorded from the spinal cord by direct stimulation of the cord. It reflects the function of spinal tract but not that of alpha motor neurons. It is resistant to anesthesia and both the sensitivity and specificity is high, but the interval from ischemia to change is relatively long. Together with the necessity of 2 epidural electrodes, its application in aortic surgery has become infrequent. Since the introduction of train pulse transcranial electrical stimulation, myogenic MEP have gained widespread acceptance. It evaluates motor pathways from the cortex to the muscle, and therefore is influenced by non-spinal factors such as peripheral nerve ischemia. Its vulnerability to anesthesia requires special anesthetic consideration, and baseline amplitude fluctuation is common. It is highly sensitive and shows changes in the early phase of spinal cord ischemia.

  5. Far-field brainstem responses evoked by vestibular and auditory stimuli exhibit increases in interpeak latency as brain temperature is decreased

    NASA Technical Reports Server (NTRS)

    Hoffman, L. F.; Horowitz, J. M.

    1984-01-01

    The effect of decreasing of brain temperature on the brainstem auditory evoked response (BAER) in rats was investigated. Voltage pulses, applied to a piezoelectric crystal attached to the skull, were used to evoke stimuli in the auditory system by means of bone-conducted vibrations. The responses were recorded at 37 C and 34 C brain temperatures. The peaks of the BAER recorded at 34 C were delayed in comparison with the peaks from the 37 C wave, and the later peaks were more delayed than the earlier peaks. These results indicate that an increase in the interpeak latency occurs as the brain temperature is decreased. Preliminary experiments, in which responses to brief angular acceleration were used to measure the brainstem vestibular evoked response (BVER), have also indicated increases in the interpeak latency in response to the lowering of brain temperature.

  6. Evaluation of sensory evoked potentials in Long Evans rats gestationally exposed to mercury (Hg0) vapor.

    PubMed

    Herr, David W; Chanda, Sushmita M; Graff, Jaimie E; Barone, Stanley S; Beliles, Robert P; Morgan, Daniel L

    2004-11-01

    Mercury is known to alter neuronal function and has been shown to cross the placental barrier. These experiments were undertaken to examine if gestational exposure to mercury vapor (Hg(0)) would result in alterations in sensory neuronal function in adult offspring. Dams were exposed to 0 or 4 mg/m(3) Hg(0) for 2 h/day from gestational days 6-15. This exposure paradigm has been shown to approximate a maximal tolerated dose of Hg(0) for the dams. Between postnatal days 140-168, male and female offspring (one of each gender/dam) were examined using a battery of sensory evoked potentials. Peripheral nerve action potentials, nerve conduction velocity, somatosensory evoked responses (cortical and cerebellar), brainstem auditory evoked responses, pattern evoked potentials, and flash evoked potentials were quantified. Gestational exposure to 4 mg/m(3) Hg(0) did not significantly alter any of the evoked responses, although there was a suggestion of a decrease in compound nerve action potential (CNAP) amplitudes in male animals for the 3 mA stimulus condition. However, this possible change in CNAP amplitudes was not replicated in a second experiment. All evoked potentials exhibited predictable changes as the stimulus was modified. This shows conclusively that the evoked responses were under stimulus control, and that the study had sufficient statistical power to detect changes of these magnitudes. These results indicate that gestational exposure to 4 mg/m(3) Hg(0) did not result in changes in responses evoked from peripheral nerves, or the somatosensory, auditory, or visual modalities.

  7. Normative Bilateral Brainstem Evoked Response Data for a Naval Aviation Student Population: Group Statistics

    DTIC Science & Technology

    1979-08-07

    ear, was amplified by a differential- input preamplifier (NWratt-Packard Model 80llA Bioelectric Preamplifier) with a frequency response extending from... Model 54518 Fast Fourier Transform Analyzser) was used to construct time-averages of the ipailAterally and contralat~rally recorded evoked response...signal•, Bofore digitizing the tW signals, the output of the tape recorder vas passed through a low- pass &assel filter (Rockland Sy.ate" Model 816

  8. Contact heat evoked potentials in normal subjects.

    PubMed

    Chen, I-An; Hung, Steven Wu; Chen, Yu-Hsien; Lim, Siew-Na; Tsai, Yu-Tai; Hsiao, Cheng-Lun; Hsieh, Hsiang-Yao; Wu, Tony

    2006-09-01

    Laser-evoked potentials are widely used to investigate nociceptive pathways. The newly developed contact heat stimulator for evoking brain response has the advantages of obtaining reliable scalp potentials and absence of cutaneous lesions. This study aimed to identify the most appropriate stimulation site with consistent cortical responses, and to correlate several parameters of the contact heat evoked potentials (CHEPs) with age, gender, and body height in normal subjects. CHEPs were recorded at Cz with a contact heat stimulator (Medoc, Israel) in 35 normal controls. The subjects were asked to keep eyes open and remain alert. The baseline temperature was 32 degrees C, and stimulation peak heat intensity of 51 degrees C was applied to five body sites: bilateral forearm, right dorsum hand, right peroneal area, and right dorsum foot. Reproducible CHEPs were recorded more frequently when stimulated at volar forearm (62.5%) than at the lower limbs (around 40%). The first negative peak latency (N1) was 370.1 +/- 20.3 ms, first positive peak latency (P1) was 502.4 +/- 33.0 ms, and peak to peak amplitude was 10.2 +/- 4.9 microV with stimulation of the forearm. Perceived pain intensity was not correlated with the presence or amplitude of CHEPs. No gender or inter-side differences were observed for N1 latency and N1-P1 amplitude. Also, no correlation was noted between N1 and age or body height. These results support future clinical access of CHEPs as a diagnostic tool.

  9. Long-Term Evolution of Brainstem Electrical Evoked Responses to Sound after Restricted Ablation of the Auditory Cortex

    PubMed Central

    Lamas, Verónica; Alvarado, Juan C.; Carro, Juan; Merchán, Miguel A.

    2013-01-01

    Introduction This study aimed to assess the top-down control of sound processing in the auditory brainstem of rats. Short latency evoked responses were analyzed after unilateral or bilateral ablation of auditory cortex. This experimental paradigm was also used towards analyzing the long-term evolution of post-lesion plasticity in the auditory system and its ability to self-repair. Method Auditory cortex lesions were performed in rats by stereotactically guided fine-needle aspiration of the cerebrocortical surface. Auditory Brainstem Responses (ABR) were recorded at post-surgery day (PSD) 1, 7, 15 and 30. Recordings were performed under closed-field conditions, using click trains at different sound intensity levels, followed by statistical analysis of threshold values and ABR amplitude and latency variables. Subsequently, brains were sectioned and immunostained for GAD and parvalbumin to assess the location and extent of lesions accurately. Results Alterations in ABR variables depended on the type of lesion and post-surgery time of ABR recordings. Accordingly, bilateral ablations caused a statistically significant increase in thresholds at PSD1 and 7 and a decrease in waves amplitudes at PSD1 that recover at PSD7. No effects on latency were noted at PSD1 and 7, whilst recordings at PSD15 and 30 showed statistically significant decreases in latency. Conversely, unilateral ablations had no effect on auditory thresholds or latencies, while wave amplitudes only decreased at PSD1 strictly in the ipsilateral ear. Conclusion Post-lesion plasticity in the auditory system acts in two time periods: short-term period of decreased sound sensitivity (until PSD7), most likely resulting from axonal degeneration; and a long-term period (up to PSD7), with changes in latency responses and recovery of thresholds and amplitudes values. The cerebral cortex may have a net positive gain on the auditory pathway response to sound. PMID:24066057

  10. [Cognitive evoked potentials. Perspectives for mismatch negativity].

    PubMed

    Gurtubay, I G

    2009-01-01

    The techniques of cognitive evoked potentials are considered long and technically complex, which is why their use in clinical practice is not very widespread in spite of their potential utility. Recent advances in registering and analysis, together with improvement of the software managing these signals, have appreciably reduced these problems. Mismatch negativity stands out as the most promising of all the cognitive potentials due to its special characteristics regarding its generation requisites and its proven clinical utility. The fact that it can be generated without care requirements makes it especially useful for evaluating subjects with a low level of consciousness; it serves for predicting when they will emerge from a coma, amongst other uses. The incorporation of this technique into the arsenal of neurophysiological techniques for evaluating the state of these subjects will bring a substantial improvement in the evaluation of cases whose management in clinical practice is extremely complex.

  11. [Motor evoked potentials in thoracoabdominal aortic surgery].

    PubMed

    Magro, Cátia; Nora, David; Marques, Miguel; Alves, Angela Garcia

    2012-01-01

    Thoracoabdominal aortic disease (aneurysm or dissection) has increased in recent decades. Surgery is the curative treatment but is associated to high perioperative morbidity and mortality risks. Paraplegia is one of the most severe complications, whose incidence has decreased significantly with the implementation of spinal cord protection strategies. No single method or combination of methods has proven to be fully effective in preventing paraplegia. This review is intended to analyse the scientific evidence available on the role of intraoperative monitoring with motor evoked potentials in the neurological outcome of patients undergoing thoracoabdominal aortic surgery. An online search (PubMed) was conducted. Relevant references were selected and reviewed. Intraoperative monitoring with motor evoked potentials (MEP) allows early detection of ischemic events and a targeted intervention to prevent the development of spinal cord injury, significantly reducing the incidence of postoperative paraplegia. MEP monitoring may undergo several intraoperative interferences which may compromise their interpretation. Neuromuscular blockade is the main limiting factor of anesthetic origin. It is essential to strike a balance between monitoring conditions and surgical and anesthetic needs as well as to evaluate the risks and benefits of the technique for each patient. MEP monitoring improves neurological outcome when integrated in a multidisciplinary strategy which must include multiple protective mechanisms that should be tailored to each hospital reality.

  12. Long Latency Auditory Evoked Potentials during Meditation.

    PubMed

    Telles, Shirley; Deepeshwar, Singh; Naveen, Kalkuni Visweswaraiah; Pailoor, Subramanya

    2015-10-01

    The auditory sensory pathway has been studied in meditators, using midlatency and short latency auditory evoked potentials. The present study evaluated long latency auditory evoked potentials (LLAEPs) during meditation. Sixty male participants, aged between 18 and 31 years (group mean±SD, 20.5±3.8 years), were assessed in 4 mental states based on descriptions in the traditional texts. They were (a) random thinking, (b) nonmeditative focusing, (c) meditative focusing, and (d) meditation. The order of the sessions was randomly assigned. The LLAEP components studied were P1 (40-60 ms), N1 (75-115 ms), P2 (120-180 ms), and N2 (180-280 ms). For each component, the peak amplitude and peak latency were measured from the prestimulus baseline. There was significant decrease in the peak latency of the P2 component during and after meditation (P<.001; analysis of variance and post hoc analysis with Bonferroni adjustment). The P1, P2, and N2 components showed a significant decrease in peak amplitudes during random thinking (P<.01; P<.001; P<.01, respectively) and nonmeditative focused thinking (P<.01; P<.01; P<.05, respectively). The results suggest that meditation facilitates the processing of information in the auditory association cortex, whereas the number of neurons recruited was smaller in random thinking and non-meditative focused thinking, at the level of the secondary auditory cortex, auditory association cortex and anterior cingulate cortex.

  13. Acoustic Responses after Total Destruction of the Cochlear Receptor: Brainstem and Auditory Cortex

    NASA Astrophysics Data System (ADS)

    Cazals, Yves; Aran, Jean-Marie; Erre, Jean-Paul; Guilhaume, Anne

    1980-10-01

    Acoustically evoked neural activity has been recorded from the brainstem and auditory cortex of guinea pigs after complete destruction of the organ of Corti by the aminoglycosidic antibiotic amikacin. These responses to sound differ in important respects from the evoked potentials normally recorded from the auditory pathways. At the brainstem level they resemble the potentials reported by others after stimulation of the vestibular nerve.

  14. Effect of middle ear effusion on the brain-stem auditory evoked response of Cavalier King Charles Spaniels.

    PubMed

    Harcourt-Brown, Thomas R; Parker, John E; Granger, Nicolas; Jeffery, Nick D

    2011-06-01

    Brain-stem auditory evoked responses (BAER) were assessed in 23 Cavalier King Charles Spaniels with and without middle ear effusion at sound intensities ranging from 10 to 100 dB nHL. Significant differences were found between the median BAER threshold for ears where effusions were present (60 dB nHL), compared to those without (30 dB nHL) (P=0.001). The slopes of latency-intensity functions from both groups did not differ, but the y-axis intercept when the x value was zero was greater in dogs with effusions (P=0.009), consistent with conductive hearing loss. Analysis of latency-intensity functions suggested the degree of hearing loss due to middle ear effusion was 21 dB (95% confidence between 10 and 33 dB). Waves I-V inter-wave latency at 90 dB nHL was not significantly different between the two groups. These findings demonstrate that middle ear effusion is associated with a conductive hearing loss of 10-33 dB in affected dogs despite the fact that all animals studied were considered to have normal hearing by their owners.

  15. Early and middle latency evoked potentials in medically and psychiatrically normal daily marihuana users: a paucity of significant findings.

    PubMed

    Patrick, G; Straumanis, J J; Struve, F A; Fitz-Gerald, M J; Manno, J E

    1997-01-01

    The use of evoked potentials to study CNS effects of marihuana (THC) have produced inconsistent findings. Our previous pilot studies suggested that auditory P300 latencies and amplitudes, auditory P50 and somatosensory P30 amplitudes and brainstem auditory evoked potential latencies were altered in THC users. Because these findings were flawed by uncontrolled psychiatric diagnostic and medication variables, we undertook a controlled investigation of screened medically and psychiatrically normal THC users and controls. When age effects were controlled, THC related alterations of brain stem and both auditory and visual P300 responses could not be seen. This report extends our analyses to other auditory, somatosensory and visual evoked potentials. With the possible exception of an elevated auditory P50 amplitude, significant evoked potential correlates to daily THC use were not seen when normals were studied and age effects controlled.

  16. Visual evoked potentials through night vision goggles.

    PubMed

    Rabin, J

    1994-04-01

    Night vision goggles (NVG's) have widespread use in military and civilian environments. NVG's amplify ambient illumination making performance possible when there is insufficient illumination for normal vision. While visual performance through NVG's is commonly assessed by measuring threshold functions such as visual acuity, few attempts have been made to assess vision through NVG's at suprathreshold levels of stimulation. Such information would be useful to better understand vision through NVG's across a range of stimulus conditions. In this study visual evoked potentials (VEP's) were used to evaluate vision through NVG's across a range of stimulus contrasts. The amplitude and latency of the VEP varied linearly with log contrast. A comparison of VEP's recorded with and without NVG's was used to estimate contrast attenuation through the device. VEP's offer an objective, electrophysiological tool to assess visual performance through NVG's at both threshold and suprathreshold levels of visual stimulation.

  17. Resting Heart Rate and Auditory Evoked Potential

    PubMed Central

    Fiuza Regaçone, Simone; Baptista de Lima, Daiane Damaris; Engrácia Valenti, Vitor; Figueiredo Frizzo, Ana Cláudia

    2015-01-01

    The objective of this study was to evaluate the association between rest heart rate (HR) and the components of the auditory evoked-related potentials (ERPs) at rest in women. We investigated 21 healthy female university students between 18 and 24 years old. We performed complete audiological evaluation and measurement of heart rate for 10 minutes at rest (heart rate monitor Polar RS800CX) and performed ERPs analysis (discrepancy in frequency and duration). There was a moderate negative correlation of the N1 and P3a with rest HR and a strong positive correlation of the P2 and N2 components with rest HR. Larger components of the ERP are associated with higher rest HR. PMID:26504838

  18. Auditory evoked potentials in senescent forgetfulness.

    PubMed

    Loring, D W; Levin, H S; Papanicolaou, A C; Larrabee, G J; Eisenberg, H M

    1984-10-01

    Two evoked potential (EP) techniques and the selective reminding test were employed to investigate an apparently benign forgetfulness in seven elderly subjects and seven age-matched elderly subjects with normal memory. EPs were also recorded in a group of seven young adults. Latency of the P3 component, which has been demonstrated to increase in primary degenerative dementia, displayed the normal age-related variation in both elderly groups, but did not differ between the forgetful subjects and the elderly controls. Further, no difference in the recovery cycle of the EP, as measured in a two tone stimulation paradigm, was present between forgetful and elderly control groups. Reexamination of memory after nearly a year disclosed no evidence of deterioration in either elderly group. These findings suggest that senescent forgetfulness, as defined herein, may be a nonprogressive memory disorder.

  19. Visual evoked potentials in rubber factory workers.

    PubMed

    Tandon, O P; Kumar, V

    1997-01-01

    Pattern reversal visual evoked potentials (pVEP) were studied in 39 male rubber factory workers in the age range of 18-55 years and 20 control subjects (aged 18-46 years) not exposed to the rubber factory environment. Results revealed that 20 (51%) rubber factory workers had abnormal latencies of wave P1 (dominant component of pVEP) as per accepted criteria of 99% tolerance limit set for the control group (i.e. any value above mean +3 SD of control was considered abnormal). The section-wise per cent distribution of abnormalities was vulcanization (83%), tubing (75%), calendering (60%), loading (38%) and mixing (14%). This study provides electrophysiological evidence that rubber factory environments affect the conduction processes in optical pathways from their origin in the retina to striate cortex. However, this study has its limitations in not identifying the specific chemical(s) causing these changes in VEP.

  20. Neurotoxic effects of rubber factory environment. An auditory evoked potential study.

    PubMed

    Kumar, V; Tandon, O P

    1997-01-01

    The effects of rubber factory environment on functional integrity of auditory pathway have been studied in forty rubber factory workers using Brainstem Auditory Evoked Potentials (BAEPs) technique to detect early subclinical impairments. Results indicate that 47 percent of the workers showed abnormalities in prolongations of either peak latencies or interpeak latencies when compared with age and sex matched control subjects not exposed to rubber factory environment. The percent distribution of abnormalities (ears affected) were in the order of extrusion and calendering (75%) > vulcanising (41.66%) > mixing (28.57%) > loading and dispatch (23.07%) > tubing (18.75%) sections of the factory. This incidence of abnormalities may be attributed to solvents being used in these units of rubber factory. These findings suggest that rubber factory environment does affect auditory pathway in the brainstem.

  1. Auditory Evoked Potentials from the Frog Eighth Nerve

    DTIC Science & Technology

    1989-09-01

    ACCESSION NO. Brooks AFB, TX 78235-5301 62202F 7757 01 85 11. TITLE (I nclude Security Classification) (U) Auditory Evoked Potentials from the Frog Eighth...identify by block number) S FIELD jGROUP SUB-GROUP F6 07 Auditory Evoked Potential Eighth Nerve Frog 06 10 19. ABSTRACT (Continue on reverse if necessary...and identify by block number) A method for recording evoked potentials from the eighth nerve of frogs using midline and lateral electrodes is described

  2. Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential.

    PubMed

    Tu, Tao; Xin, Yi; Gao, Xiaorong; Gao, Shangkai

    2012-02-01

    Visual evoked potentials (VEPs) are of great concern in cognitive and clinical neuroscience as well as in the recent research field of brain-computer interfaces (BCIs). In this study, a chirp-modulated stimulation was employed to serve as a novel type of visual stimulus. Based on our empirical study, the chirp stimuli visual evoked potential (Chirp-VEP) preserved frequency features of the chirp stimulus analogous to the steady state evoked potential (SSVEP), and therefore it can be regarded as a generalization of SSVEP. Specifically, we first investigated the characteristics of the Chirp-VEP in the time-frequency domain and the fractional domain via fractional Fourier transform. We also proposed a group delay technique to derive the apparent latency from Chirp-VEP. Results on EEG data showed that our approach outperformed the traditional SSVEP-based method in efficiency and ease of apparent latency estimation. For the recruited six subjects, the average apparent latencies ranged from 100 to 130 ms. Finally, we implemented a BCI system with six targets to validate the feasibility of Chirp-VEP as a potential candidate in the field of BCIs.

  3. Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential

    NASA Astrophysics Data System (ADS)

    Tu, Tao; Xin, Yi; Gao, Xiaorong; Gao, Shangkai

    2012-02-01

    Visual evoked potentials (VEPs) are of great concern in cognitive and clinical neuroscience as well as in the recent research field of brain-computer interfaces (BCIs). In this study, a chirp-modulated stimulation was employed to serve as a novel type of visual stimulus. Based on our empirical study, the chirp stimuli visual evoked potential (Chirp-VEP) preserved frequency features of the chirp stimulus analogous to the steady state evoked potential (SSVEP), and therefore it can be regarded as a generalization of SSVEP. Specifically, we first investigated the characteristics of the Chirp-VEP in the time-frequency domain and the fractional domain via fractional Fourier transform. We also proposed a group delay technique to derive the apparent latency from Chirp-VEP. Results on EEG data showed that our approach outperformed the traditional SSVEP-based method in efficiency and ease of apparent latency estimation. For the recruited six subjects, the average apparent latencies ranged from 100 to 130 ms. Finally, we implemented a BCI system with six targets to validate the feasibility of Chirp-VEP as a potential candidate in the field of BCIs.

  4. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    PubMed

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  5. Conventional and cross-correlation brain-stem auditory evoked responses in the white leghorn chick: rate manipulations

    NASA Technical Reports Server (NTRS)

    Burkard, R.; Jones, S.; Jones, T.

    1994-01-01

    Rate-dependent changes in the chick brain-stem auditory evoked response (BAER) using conventional averaging and a cross-correlation technique were investigated. Five 15- to 19-day-old white leghorn chicks were anesthetized with Chloropent. In each chick, the left ear was acoustically stimulated. Electrical pulses of 0.1-ms duration were shaped, attenuated, and passed through a current driver to an Etymotic ER-2 which was sealed in the ear canal. Electrical activity from stainless-steel electrodes was amplified, filtered (300-3000 Hz) and digitized at 20 kHz. Click levels included 70 and 90 dB peSPL. In each animal, conventional BAERs were obtained at rates ranging from 5 to 90 Hz. BAERs were also obtained using a cross-correlation technique involving pseudorandom pulse sequences called maximum length sequences (MLSs). The minimum time between pulses, called the minimum pulse interval (MPI), ranged from 0.5 to 6 ms. Two BAERs were obtained for each condition. Dependent variables included the latency and amplitude of the cochlear microphonic (CM), wave 2 and wave 3. BAERs were observed in all chicks, for all level by rate combinations for both conventional and MLS BAERs. There was no effect of click level or rate on the latency of the CM. The latency of waves 2 and 3 increased with decreasing click level and increasing rate. CM amplitude decreased with decreasing click level, but was not influenced by click rate for the 70 dB peSPL condition. For the 90 dB peSPL click, CM amplitude was uninfluenced by click rate for conventional averaging. For MLS BAERs, CM amplitude was similar to conventional averaging for longer MPIs.(ABSTRACT TRUNCATED AT 250 WORDS).

  6. Direct cortical stimulation but not transcranial electrical stimulation motor evoked potentials detect brain ischemia during brain tumor resection.

    PubMed

    Li, Fenghua; Deshaies, Eric M; Allott, Geoffrey; Canute, Gregory; Gorji, Reza

    2011-09-01

    Motor evoked potentials (MEPs) elicited by both direct cortical stimulation (DCS) and transcranial electrical stimulation are used during brain tumor resection. Parallel use of direct cortical stimulation motor evoked potentials (DCS-MEPs) and transcranial electrical stimulation motor evoked potentials (TCeMEPs) has been practiced during brain tumor resection. We report that DCS-MEPs elicited by direct subdural grid stimulation, but not TCeMEPs, detected brain ischemia during brain tumor resection. Following resection of a brainstem high-grade glioma in a 21-year-old, the threshold of cortical motor-evoked-potentials (cMEPs) increased from 13 mA to 20 mA while amplitudes decreased. No changes were noted in transcranial motor evoked potentials (TCMEPs), somatosensory evoked potentials (SSEPs), auditory evoked potentials (AEPs), anesthetics, or hemodynamic parameters. Our case showed the loss of cMEPs and SSEPs, but not TCeMEPs. Permanent loss of DCS-MEPs and SSEPs was correlated with permanent left hemiplegia in our patient even when appropriate action was taken. Parallel use of DCS- and TCeMEPs with SSEPs improves sensitivity of intraoperative detection of motor impairment. DCS may be superior to TCeMEPs during brain tumor resection.

  7. Auditory- and Visual-Evoked Potentials in Mexican Infants Are Not Affected by Maternal Supplementation with 400 mg/d Docosahexaenoic Acid in the Second Half of Pregnancy1234

    PubMed Central

    Stein, Aryeh D.; Wang, Meng; Rivera, Juan A.; Martorell, Reynaldo; Ramakrishnan, Usha

    2012-01-01

    The evidence relating prenatal supplementation with DHA to offspring neurological development is limited. We investigated the effect of prenatal DHA supplementation on infant brainstem auditory-evoked responses and visual- evoked potentials in a double-blind, randomized controlled trial in Cuernavaca, Mexico. Pregnant women were supplemented daily with 400 mg DHA or placebo from gestation wk 18–22 through delivery. DHA and placebo groups did not differ in maternal characteristics at randomization or infant characteristics at birth. Brainstem auditory-evoked responses were measured at 1 and 3 mo in 749 and 664 infants, respectively, and visual-evoked potentials were measured at 3 and 6 mo in 679 and 817 infants, respectively. Left-right brainstem auditory-evoked potentials were moderately correlated (range, 0.26–0.43; all P < 0.001) and left-right visual-evoked potentials were strongly correlated (range, 0.79–0.94; all P < 0.001) within any assessment. Correlations across visits were modest to moderate (range, 0.09–0.38; all P < 0.01). The offspring of DHA-supplemented women did not differ from those of control women with respect to any outcome measure (all comparisons P > 0.10). We conclude that DHA supplementation during pregnancy did not influence brainstem auditory-evoked responses at 1 and 3 mo or visual-evoked potentials at 3 and 6 mo. PMID:22739364

  8. Visual evoked potentials and dietary long chain polyunsaturated fatty acids in preterm infants.

    PubMed Central

    Faldella, G; Govoni, M; Alessandroni, R; Marchiani, E; Salvioli, G P; Biagi, P L; Spano, C

    1996-01-01

    The influence of dietary long chain polyunsaturated fatty acid (LCP) supply, and especially of docosahexaenoic acid (DHA), on evoked potential maturation, was studied in 58 healthy preterm infants using flash visual evoked potentials (VEPs), flash electroretinography (ERG), and brainstem acoustic evoked potentials (BAEPs) at 52 weeks of postconceptional age. At the same time, the fatty acid composition of red blood cell membranes was examined. The infants were fed on breast milk (n = 12), a preterm formula supplemented with LCP (PF-LCP) (n = 21), or a traditional preterm formula (PF) (n = 25). In the breast milk and PF-LCP groups the morphology and latencies of the waves that reflect the visual projecting system were similar; in the PF group the morphology was quite different and the wave latencies were significantly longer. This could mean that the maturation pattern of VEPs in preterm infants who did not receive LCP was slower. Moreover, a higher level of erythrocyte LCP, especially DHA, was found in breast milk and PF-LCP groups compared with the PF group. ERG and BAEP recordings were the same in all three groups. These results suggest that a well balanced LCP supplement in preterm formulas can positively influence the maturation of visual evoked potentials in preterm infants when breast milk is not available. PMID:8949693

  9. Auditory evoked potential measurements in elasmobranchs

    NASA Astrophysics Data System (ADS)

    Casper, Brandon; Mann, David

    2005-04-01

    Auditory evoked potentials (AEP) were first used to examine hearing in elasmobranchs by Corwin and Bullock in the late 1970s and early 1980s, marking the first time AEPs had been measured in fishes. Results of these experiments identified the regions of the ear and brain in which sound is processed, though no actual hearing thresholds were measured. Those initial experiments provided the ground work for future AEP experiments to measure fish hearing abilities in a manner that is much faster and more convenient than classical conditioning. Data will be presented on recent experiments in which AEPs were used to measure the hearing thresholds of two species of elasmobranchs: the nurse shark, Ginglymostoma cirratum, and the yellow stingray, Urobatis jamaicencis. Audiograms were analyzed and compared to previously published audiograms obtained using classical conditioning with results indicating that hearing thresholds were similar for the two methods. These data suggest that AEP testing is a viable option when measuring hearing in elasmobranchs and can increase the speed in which future hearing measurements can be obtained.

  10. Alterations of motor evoked potentials by thalamotomy.

    PubMed

    van der Linden, C; Bruggeman, R; Goldman, W H

    1993-09-01

    To evaluate the effect of stereotactic thalamotomy on the function of the corticospinal tract, we studied motor evoked potentials (MEPs) recorded by surface electromyography (EMG) in the left extensor carpi radialis (ECR) and flexor carpi radialis (FCR) with magnetic stimulation of the contralateral motor cortex in a 43-year-old patient with a severe postural and resting tremor of the left hand. The patient was diagnosed eight years previously with left hemiparkinsonism. The tremor was unresponsive to various medications. After thalamotomy the tremor had disappeared, confirmed by EMG studies. MEP latencies at rest were normal and did not change after thalamotomy. Volitional contraction of either ECR or FCR shortened the latency of the corresponding MEP before and after thalamotomy. However, before thalamotomy responses at rest were less well synchronized and followed by EMG silence with subsequent long duration tonic after discharges. Furthermore, during voluntary contraction the responses only slightly enhanced. After surgery MEPs at rest in both muscles were more synchronized and after-discharges had disappeared. Moreover, with volitional contraction of either ECR of FCR, the MEPs enhanced more dramatically. The silent periods (SPs) following the MEP during sustained voluntary contraction were longer after thalamotomy. The consistent MEP latencies suggest that the conduction of the pyramidal tract is unaffected by thalamotomy. The better synchronized responses, the alleviation of after-discharges and the longer SPs in this patient with hemiparkinsonism following thalamotomy suggest an improved sensorimotor integration, which may be the result of a reduced thalamic input onto suprasegmental levels.

  11. Clinical aspects of the visually evoked potential.

    PubMed Central

    Weinstein, G W

    1977-01-01

    The visually evoked potential (VEP) was studied in normal and abnormal human subjects, and in Rhesus monkeys with central, paracentral, and peripheral photocoagulation lesions. A relatively simple protocol for clinical VEP testing is described. The monkeys showed similar VEP responses but these were smaller in amplitude than those obtained from human subjects. Central, but not paracentral or peripheral retinal lesions were associated with VEP abnormalities. For both monkey and human subjects, some variability of responses between normal and subjects was noted. Generally, there are differences in VEP responses obtained from the affected eye of abnormal subjects who had one eye which could serve as a control, as compared to responses from the normal eye. In these subjects as well as in subjects with two abnormal eyes, computer analysis of digitized VEP data from 10 Hz stimulus responses was performed. Fourier transformation analyses showed abnormalities which could be detected easily by evaluating the pattern of the amplitudes of the fundamental and first three harmonics. With this technique, it was possible to group correctly normal VEP's with eyes with normal visual acuity (greater than or equal to 20/30 or 0.67), and abnormal VEP's with eyes with poor visual acuity (less than 20/30 or 0.67) in 72% of cases. Analysis of the data obtained with 1 Hz and 10 Hz stimulation suggests that the components of the VEP related to visual acuity occur within the first 60-100 msec of the response, corresponding to the primary evoked response of Chiganek. The second, smaller wave of the response complex to 10 Hz flash stimuli corresponds to the primary evoked response, and is closely related to visual acuity. This was further supported in another series in which the digitized data was filtered around the stimulating frequency. It was possible to recognize visually this VEP waveform and subjectively interpret the record correctly in 85% of eyes with regard to visual acuity

  12. A Basis for Evoked Potential Assessment of Certain Visual Functions.

    DTIC Science & Technology

    1981-06-30

    evoked potentials. 1982, in preparation. (4) Tweel , L.H. van der, Regan, D. & Spekreijse, H. Some aspects of poten- tials evoked by changes in spatial...brightness contrast. 7th ISCERG Symp., Istanbul (1969), pub. by Univ. of Istanbul (1971), pp. 1-11. (5) Spekreijse, H., van der Tweel , L.H. & Regan, D...ponIses to pattern reversal. References (8) Tweel , L.11. van der & Spekreijse, H. Signal transport and rectifica- tion in the human evoked response

  13. A Bayesian approach to estimate evoked potentials.

    PubMed

    Sparacino, Giovanni; Milani, Stefano; Arslan, Edoardo; Cobelli, Claudio

    2002-06-01

    Several approaches, based on different assumptions and with various degree of theoretical sophistication and implementation complexity, have been developed for improving the measurement of evoked potentials (EP) performed by conventional averaging (CA). In many of these methods, one of the major challenges is the exploitation of a priori knowledge. In this paper, we present a new method where the 2nd-order statistical information on the background EEG and on the unknown EP, necessary for the optimal filtering of each sweep in a Bayesian estimation framework, is, respectively, estimated from pre-stimulus data and obtained through a multiple integration of a white noise process model. The latter model is flexible (i.e. it can be employed for a large class of EP) and simple enough to be easily identifiable from the post-stimulus data thanks to a smoothing criterion. The mean EP is determined as the weighted average of the filtered sweeps, where each weight is inversely proportional to the expected value of the norm of the correspondent filter error, a quantity determinable thanks to the employment of the Bayesian approach. The performance of the new approach is shown on both simulated and real auditory EP. A signal-to-noise ratio enhancement is obtained that can allow the (possibly automatic) identification of peak latencies and amplitudes with less sweeps than those required by CA. For cochlear EP, the method also allows the audiology investigator to gather new and clinically important information. The possibility of handling single-sweep analysis with further development of the method is also addressed.

  14. [Determination of irreversibility of clinical brain death. Electroencephalography and evoked potentials].

    PubMed

    Buchner, H; Ferbert, A

    2016-02-01

    Principally, in the fourth update of the rules for the procedure to finally determine the irreversible cessation of function of the cerebrum, the cerebellum and the brainstem, the importance of an electroencephalogram (EEG), somatosensory evoked potentials (SEP) and brainstem auditory evoked potentials (BAEP) are confirmed. This paper presents the reliability and validity of the electrophysiological diagnosis, discusses the amendments in the fourth version of the guidelines and introduces the practical application, problems and sources of error.An EEG is the best established supplementary diagnostic method for determining the irreversibility of clinical brain death syndrome. It should be noted that residual brain activity can often persist for many hours after the onset of brain death syndrome, particularly in patients with primary brainstem lesions. The derivation and analysis of an EEG requires a high level of expertise to be able to safely distinguish artefacts from primary brain activity. The registration of EEGs to demonstrate the irreversibility of clinical brain death syndrome is extremely time consuming.The BAEPs can only be used to confirm the irreversibility of brain death syndrome in serial examinations or in the rare cases of a sustained wave I or sustained waves I and II. Very often, an investigation cannot be reliably performed because of existing sound conduction disturbances or failure of all potentials even before the onset of clinical brain death syndrome. This explains why BAEPs are only used in exceptional cases.The SEPs of the median nerve can be very reliably derived, are technically simple and with few sources of error. A serial investigation is not required and the time needed for examination is short. For these reasons SEPs are given preference over EEGs and BAEPs for establishing the irreversibility of clinical brain death syndrome.

  15. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FAILS TO ALTER BRAINSTEM AUDITORY EVOKED RESPONSE (BAERS) IN RATS.

    EPA Science Inventory

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Cholinergic transmission is involved in auditory structures in the periphery and the brainstem and is altered following chlorpyrifos exposure. This study e...

  16. Electroretinography and Visual Evoked Potentials in Childhood Brain Tumor Survivors.

    PubMed

    Pietilä, Sari; Lenko, Hanna L; Oja, Sakari; Koivisto, Anna-Maija; Pietilä, Timo; Mäkipernaa, Anne

    2016-07-01

    This population-based cross-sectional study evaluates the clinical value of electroretinography and visual evoked potentials in childhood brain tumor survivors. A flash electroretinography and a checkerboard reversal pattern visual evoked potential (or alternatively a flash visual evoked potential) were done for 51 survivors (age 3.8-28.7 years) after a mean follow-up time of 7.6 (1.5-15.1) years. Abnormal electroretinography was obtained in 1 case, bilaterally delayed abnormal visual evoked potentials in 22/51 (43%) cases. Nine of 25 patients with infratentorial tumor location, and altogether 12 out of 31 (39%) patients who did not have tumors involving the visual pathways, had abnormal visual evoked potentials. Abnormal electroretinographies are rarely observed, but abnormal visual evoked potentials are common even without evident anatomic lesions in the visual pathway. Bilateral changes suggest a general and possibly multifactorial toxic/adverse effect on the visual pathway. Electroretinography and visual evoked potential may have clinical and scientific value while evaluating long-term effects of childhood brain tumors and tumor treatment.

  17. Click- and chirp-evoked human compound action potentials.

    PubMed

    Chertoff, Mark; Lichtenhan, Jeffery; Willis, Marie

    2010-05-01

    In the experiments reported here, the amplitude and the latency of human compound action potentials (CAPs) evoked from a chirp stimulus are compared to those evoked from a traditional click stimulus. The chirp stimulus was created with a frequency sweep to compensate for basilar membrane traveling wave delay using the O-Chirp equations from Fobel and Dau [(2004). J. Acoust. Soc. Am. 116, 2213-2222] derived from otoacoustic emission data. Human cochlear traveling wave delay estimates were obtained from derived compound band action potentials provided by Eggermont [(1979). J. Acoust. Soc. Am. 65, 463-470]. CAPs were recorded from an electrode placed on the tympanic membrane (TM), and the acoustic signals were monitored with a probe tube microphone attached to the TM electrode. Results showed that the amplitude and latency of chirp-evoked N1 of the CAP differed from click-evoked CAPs in several regards. For the chirp-evoked CAP, the N1 amplitude was significantly larger than the click-evoked N1s. The latency-intensity function was significantly shallower for chirp-evoked CAPs as compared to click-evoked CAPs. This suggests that auditory nerve fibers respond with more unison to a chirp stimulus than to a click stimulus.

  18. The usefulness of EEG, exogenous evoked potentials, and cognitive evoked potentials in the acute stage of post-anoxic and post-traumatic coma.

    PubMed

    Guérit, J M

    2000-12-01

    Three-modality evoked potentials (TMEPs) have been used for several years in association with the EEG as a diagnostic and prognostic tool in acute anoxic or traumatic coma. Cognitive EPs have been recently introduced. EEG and cognitive EPs provide functional assessment of the cerebral cortex. TMEP parameters can be described by two indices: the index of global cortical function (IGCF) and the index of brainstem conduction (IBSC). Although it remains a unique tool for epilepsy assessment, the value of EEG is largely limited by its high sensitivity to the electrical environmental noise, its dependence on sedative drugs, and its inability to test the brainstem. Major TMEP alterations (absence of cortical activities more than 24 hours after the onset of post-anoxic coma, major pontine involvement in head trauma) are associated in all cases with an ominous prognosis (death or vegetative state). However, even if mild TMEP changes are associated with a good prognosis in 65% (post-anoxic coma) to 90% (head trauma) of cases, some patients never recover despite exogenous TMEPs that are only mildly altered in the acute stage. Thus, cognitive EPs can usefully complement exogenous EPs as a prognostic tool in coma. Indeed, even if the absence of cognitive EPs in comatose patients does not have any prognostic value, their presence implies a very high (more than 90%) probability of consciousness recovery. The major technical challenge for the future will be the development of reliable tools for continuous EEG and TMEP monitoring.

  19. Evoked potentials are useful for diagnosis of neuromyelitis optica spectrum disorder.

    PubMed

    Ohnari, Keiko; Okada, Kazumasa; Takahashi, Toshiyuki; Mafune, Kosuke; Adachi, Hiroaki

    2016-05-15

    Neuromyelitis optica spectrum disorder (NMOSD) has been differentiated from relapsing-remitting multiple sclerosis (RRMS) by clinical, laboratory, and pathological findings, including the presence of the anti-aquaporin 4 antibody. Measurement of evoked potentials (EPs) is often used for the diagnosis of RRMS, although the possibility of applying EPs to the diagnosis of NMOSD has not been investigated in detail. Eighteen patients with NMOSD and 28 patients with RRMS were included in this study. The patients' neurological symptoms and signs were examined and their EPs were recorded. Characteristic findings were absence of visual evoked potentials and absence of motor evoked potentials in the lower extremities in patients with NMOSD, and a delay in these potentials in patients with RRMS. Most patients with NMOSD did not present abnormal subclinical EPs, whereas many patients with RRMS did. None of the patients with NMOSD showed abnormalities in auditory brainstem responses. NMOSD can be differentiated from RRMS by EP data obtained in the early stages of these diseases.

  20. Postural sway and brain potentials evoked by visual depth stimuli.

    PubMed

    Kiyota, Takeo; Fujiwara, Katsuo

    2008-07-01

    This study measured the postural sway and brain potentials evoked by a visual depth stimulus. Thirteen subjects maintained standing posture on a force platform, and were administered two types of depth stimuli, strong and weak. The latency and amplitude of evoked potentials as well as changes in center of foot pressure (CFP) and the electromyogram (EMG) were examined. CFP displacement was found to change according to stimulus intensity. In the occipital lobe, evoked potentials exhibited a triphasic peak, with the first positive peak at approximately 120 ms (P120), the first negative peak at approximately 160 ms (N200), and the second positive peak at approximately 260 ms (P250). Brain evoked potentials correlated with CFP displacement as well as the latency of onset of EMG response. Onset of EMG response was probably related to the P120 component, whereas CFP displacement was related to the P250 component.

  1. The utility of median somatosensory evoked potentials in anoxic-ischemic coma.

    PubMed

    Rothstein, Ted L

    2009-01-01

    The early recognition of comatose patients with a hopeless prognosis--regardless of how aggressively they are managed--is of utmost importance. Median somatosensory evoked potentials (SSEP) supplement and enhance neurological examination findings in anoxic-ischemic coma and are useful as an early guide in predicting outcome. The key finding is that bilateral absence of cortical evoked potentials reliably predicts unfavorable outcome in comatose patients after cardiac arrest. The author studied 50 comatose patients with preserved brainstem function after cardiac arrest. All 23 patients with bilateral absence of cortical evoked potentials died without awakening. Neuropathological study in seven patients disclosed widespread ischemic changes or frank cortical laminar necrosis. The remaining 27 patients with normal or delayed central conduction times had an uncertain prognosis because some died without awakening or entered a persistent vegetative state. The majority of patients with normal central conduction times had a good outcome, whereas a delay in central conduction times increased the likelihood of neurological deficit or death. Greater use of SSEP in anoxic-ischemic coma would identify those patients unlikely to recover and would avoid costly medical care that is to no avail.

  2. [A Case of Left Vertebral Artery Aneurysm Showing Evoked Potentials on Bilateral Electrode by the Left Vagus Nerve Stimulation to Electromyographic Tracheal Tube].

    PubMed

    Kadoya, Tatsuo; Uehara, Hirofumi; Yamamoto, Toshinori; Shiraishi, Munehiro; Kinoshita, Yuki; Joyashiki, Takeshi; Enokida, Kengo

    2016-02-01

    Previously, we reported a case of brainstem cavernous hemangioma showing false positive responses to electromyographic tracheal tube (EMG tube). We concluded that the cause was spontaneous respiration accompanied by vocal cord movement. We report a case of left vertebral artery aneurysm showing evoked potentials on bilateral electrodes by the left vagus nerve stimulation to EMG tube. An 82-year-old woman underwent clipping of a left unruptured vertebral artery-posterior inferior cerebellar artery aneurysm. General anesthesia was induced with remifentanil, propofol and suxamethonium, and was maintained with oxygen, air, remifentanil and propofol. We monitored somatosensory evoked potentials, motor evoked potentials, and electromyogram of the vocal cord. When the manipulation reached brainstem and the instrument touched the left vagus nerve, evoked potentials appeared on bilateral electrodes. EMG tube is equipped with two electrodes on both sides. We concluded that the left vagus nerve stimulation generated evoked potentials of the left laryngeal muscles, and they were simultaneously detected as potential difference between two electrodes on both sides. EMG tube is used to identify the vagus nerve. However, it is necessary to bear in mind that each vagus nerve stimulation inevitably generates evoked potentials on bilateral electrodes.

  3. Multiple Color Stimulus Induced Steady State Visual Evoked Potentials

    DTIC Science & Technology

    2007-11-02

    MULTIPLE COLOR STIMULUS INDUCED STEADY STATE VISUAL EVOKED POTENTIALS M. Cheng, X. Gao, S. Gao, D. Xu Institute of Biomedical Engineering...characteristics of high SNR and effectiveness in short-term identification of evoked responses. In most of the SSVEP experiments, single high...frequency stimuli are used. To characterize the complex rhythms in SSVEP, a new multiple color stimulus pattern is proposed in this paper. FFT and

  4. Vestibular receptors contribute to cortical auditory evoked potentials.

    PubMed

    Todd, Neil P M; Paillard, Aurore C; Kluk, Karolina; Whittle, Elizabeth; Colebatch, James G

    2014-03-01

    Acoustic sensitivity of the vestibular apparatus is well-established, but the contribution of vestibular receptors to the late auditory evoked potentials of cortical origin is unknown. Evoked potentials from 500 Hz tone pips were recorded using 70 channel EEG at several intensities below and above the vestibular acoustic threshold, as determined by vestibular evoked myogenic potentials (VEMPs). In healthy subjects both auditory mid- and long-latency auditory evoked potentials (AEPs), consisting of Na, Pa, N1 and P2 waves, were observed in the sub-threshold conditions. However, in passing through the vestibular threshold, systematic changes were observed in the morphology of the potentials and in the intensity dependence of their amplitude and latency. These changes were absent in a patient without functioning vestibular receptors. In particular, for the healthy subjects there was a fronto-central negativity, which appeared at about 42 ms, referred to as an N42, prior to the AEP N1. Source analysis of both the N42 and N1 indicated involvement of cingulate cortex, as well as bilateral superior temporal cortex. Our findings are best explained by vestibular receptors contributing to what were hitherto considered as purely auditory evoked potentials and in addition tentatively identify a new component that appears to be primarily of vestibular origin.

  5. A Comprehensive Review on Methodologies Employed for Visual Evoked Potentials

    PubMed Central

    Kothari, Ruchi; Bokariya, Pradeep; Singh, Smita; Singh, Ramji

    2016-01-01

    Visual information is fundamental to how we appreciate our environment and interact with others. The visual evoked potential (VEP) is among those evoked potentials that are the bioelectric signals generated in the striate and extrastriate cortex when the retina is stimulated with light which can be recorded from the scalp electrodes. In the current paper, we provide an overview of the various modalities, techniques, and methodologies which have been employed for visual evoked potentials over the years. In the first part of the paper, we cast a cursory glance on the historical aspect of evoked potentials. Then the growing clinical significance and advantages of VEPs in clinical disorders have been briefly described, followed by the discussion on the earlier and currently available methods for VEPs based on the studies in the past and recent times. Next, we mention the standards and protocols laid down by the authorized agencies. We then summarize the recently developed techniques for VEP. In the concluding section, we lay down prospective research directives related to fundamental and applied aspects of VEPs as well as offering perspectives for further research to stimulate inquiry into the role of visual evoked potentials in visual processing impairment related disorders. PMID:27034907

  6. Suboccipital craniotomy for Chiari I results in evoked potential conduction changes

    PubMed Central

    Chen, Jason A.; Coutin-Churchman, Pedro E.; Nuwer, Marc R.; Lazareff, Jorge A.

    2012-01-01

    Background: Management of Chiari I is controversial, in part because there is no widely used quantitative measurement of decompression. It has been demonstrated that brainstem auditory evoked responses (BAER) and somatosensory evoked potentials (SSEP) have decreased conduction latencies after wide craniectomy. We analyzed these parameters in a suboccipital craniectomy/craniotomy procedure. Methods: Thirteen consecutive patients underwent suboccipital decompression for treatment of symptomatic Chiari I. Craniectomy was restricted to the inferior aspect of the nuchal line, and in most cases the bone flap was replaced. Neuronal conduction was monitored continuously with median nerve somatosensory evoked potentials (M-SEP), posterior tibial nerve somatosensory evoked potentials (T-SEP), BAER, or a combination. The M-SEP N20, T-SEP P37, and BAER V latencies were recorded at four milestones – preoperatively, following craniotomy, following durotomy, and following closure. Results: Five males and eight females, with average age of 9 years, were studied. Clinical improvement was noted in all 13 patients. M-SEP N20 latency decreased from a mean of 18.55 at baseline to 17.75 ms after craniotomy (P = 0.01); to 17.06 ms after durotomy (P = 0.01); and to 16.68 ms after closing (P = 0.02). T-SEP P37 latency did not change significantly. BAER V latency decreased from a mean of 6.25 ms at baseline to 6.14 ms after craniotomy (P = 0.04); to 5.98 ms after durotomy (P = 0.01); and to 5.95 ms after closing (P = 0.45). Conclusion: Significant improvements in conduction followed both craniectomy and durotomy. Bone replacement did not affect these results. PMID:23372981

  7. CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture

    PubMed Central

    Forsberg, David; Horn, Zachi; Tserga, Evangelia; Smedler, Erik; Silberberg, Gilad; Shvarev, Yuri; Kaila, Kai; Uhlén, Per; Herlenius, Eric

    2016-01-01

    Inflammation-induced release of prostaglandin E2 (PGE2) changes breathing patterns and the response to CO2 levels. This may have fatal consequences in newborn babies and result in sudden infant death. To elucidate the underlying mechanisms, we present a novel breathing brainstem organotypic culture that generates rhythmic neural network and motor activity for 3 weeks. We show that increased CO2 elicits a gap junction-dependent release of PGE2. This alters neural network activity in the preBötzinger rhythm-generating complex and in the chemosensitive brainstem respiratory regions, thereby increasing sigh frequency and the depth of inspiration. We used mice lacking eicosanoid prostanoid 3 receptors (EP3R), breathing brainstem organotypic slices and optogenetic inhibition of EP3R+/+ cells to demonstrate that the EP3R is important for the ventilatory response to hypercapnia. Our study identifies a novel pathway linking the inflammatory and respiratory systems, with implications for inspiration and sighs throughout life, and the ability to autoresuscitate when breathing fails. DOI: http://dx.doi.org/10.7554/eLife.14170.001 PMID:27377173

  8. Some effects of room acoustics on evoked auditory potentials.

    PubMed

    MARSH, J T; WORDEN, F G; HICKS, L

    1962-07-27

    Auditory potentials were recorded from bipolar electrodes chronically implanted in the cochlear nuclei of four cats. In a training box modified to reduce echoes these animals were exposed to clicks and tone pulses presented from an overhead speaker. Slight changes in the position of the animal in the resulting sound field produced marked changes in the potentials evoked from the cochlear nucleus. These phenomena were observed in the unanesthetized, unrestrained subjects as well as in those under Nembutal anesthesia. It is suggested that these acoustic effects complicate the analysis and interpretation of potentials evoked from the cochlear nucleus under conditions of habituation, shifts in attention, and learning.

  9. Auditory- and Vestibular-Evoked Potentials Correlate with Motor and Non-Motor Features of Parkinson’s Disease

    PubMed Central

    Shalash, Ali Soliman; Hassan, Dalia Mohamed; Elrassas, Hanan Hani; Salama, Mohamed Mosaad; Méndez-Hernández, Edna; Salas-Pacheco, José M.; Arias-Carrión, Oscar

    2017-01-01

    Degeneration of several brainstem nuclei has been long related to motor and non-motor symptoms (NMSs) of Parkinson’s disease (PD). Nevertheless, due to technical issues, there are only a few studies that correlate that association. Brainstem auditory-evoked potential (BAEP) and vestibular-evoked myogenic potential (VEMP) responses represent a valuable tool for brainstem assessment. Here, we investigated the abnormalities of BAEPs, ocular VEMPs (oVEMPs), and cervical VEMPs (cVEMPs) in patients with PD and its correlation to the motor and NMSs. Fifteen patients diagnosed as idiopathic PD were evaluated by Unified Parkinson’s Disease Rating Scale and its subscores, Hoehn and Yahr scale, Schwab and England scale, and Non-Motor Symptoms Scale. PD patients underwent pure-tone, speech audiometry, tympanometry, BAEP, oVEMPs, and cVEMPs, and compared to 15 age-matched control subjects. PD subjects showed abnormal BAEP wave morphology, prolonged absolute latencies of wave V and I–V interpeak latencies. Absent responses were the marked abnormality seen in oVEMP. Prolonged latencies with reduced amplitudes were seen in cVEMP responses. Rigidity and bradykinesia were correlated to the BAEP and cVEMP responses contralateral to the clinically more affected side. Contralateral and ipsilateral cVEMPs were significantly correlated to sleep (p = 0.03 and 0.001), perception (p = 0.03), memory/cognition (p = 0.025), and urinary scores (p = 0.03). The oVEMP responses showed significant correlations to cardiovascular (p = 0.01) and sexual dysfunctions (p = 0.013). PD is associated with BAEP and VEMP abnormalities that are correlated to the motor and some non-motor clinical characteristics. These abnormalities could be considered as potential electrophysiological biomarkers for brainstem dysfunction and its associated motor and non-motor features. PMID:28289399

  10. Auditory- and Vestibular-Evoked Potentials Correlate with Motor and Non-Motor Features of Parkinson's Disease.

    PubMed

    Shalash, Ali Soliman; Hassan, Dalia Mohamed; Elrassas, Hanan Hani; Salama, Mohamed Mosaad; Méndez-Hernández, Edna; Salas-Pacheco, José M; Arias-Carrión, Oscar

    2017-01-01

    Degeneration of several brainstem nuclei has been long related to motor and non-motor symptoms (NMSs) of Parkinson's disease (PD). Nevertheless, due to technical issues, there are only a few studies that correlate that association. Brainstem auditory-evoked potential (BAEP) and vestibular-evoked myogenic potential (VEMP) responses represent a valuable tool for brainstem assessment. Here, we investigated the abnormalities of BAEPs, ocular VEMPs (oVEMPs), and cervical VEMPs (cVEMPs) in patients with PD and its correlation to the motor and NMSs. Fifteen patients diagnosed as idiopathic PD were evaluated by Unified Parkinson's Disease Rating Scale and its subscores, Hoehn and Yahr scale, Schwab and England scale, and Non-Motor Symptoms Scale. PD patients underwent pure-tone, speech audiometry, tympanometry, BAEP, oVEMPs, and cVEMPs, and compared to 15 age-matched control subjects. PD subjects showed abnormal BAEP wave morphology, prolonged absolute latencies of wave V and I-V interpeak latencies. Absent responses were the marked abnormality seen in oVEMP. Prolonged latencies with reduced amplitudes were seen in cVEMP responses. Rigidity and bradykinesia were correlated to the BAEP and cVEMP responses contralateral to the clinically more affected side. Contralateral and ipsilateral cVEMPs were significantly correlated to sleep (p = 0.03 and 0.001), perception (p = 0.03), memory/cognition (p = 0.025), and urinary scores (p = 0.03). The oVEMP responses showed significant correlations to cardiovascular (p = 0.01) and sexual dysfunctions (p = 0.013). PD is associated with BAEP and VEMP abnormalities that are correlated to the motor and some non-motor clinical characteristics. These abnormalities could be considered as potential electrophysiological biomarkers for brainstem dysfunction and its associated motor and non-motor features.

  11. Evoked potential recording during echolocation in a false killer whale Pseudorca crassidens (L)

    NASA Astrophysics Data System (ADS)

    Supin, Alexander Ya.; Nachtigall, Paul E.; Pawloski, Jeffrey; Au, Whitlow W. L.

    2003-05-01

    Auditory brainstem responses (ABRs) were recorded in a false killer whale while the animal echolocated a target. The ABR collection was triggered by echolocation clicks of the animal. In these conditions, the recorded ABR pattern contained a duplicate set of waves. A comparison of ABR wave delays recorded during echolocation with those recorded during regular external stimulation with experimenter generated clicks showed that the first set of waves may be a response to the emitted click whereas the second one may be a response to the echo. Both responses, to the emitted click and to the echo, were of comparable amplitude in spite of the intensity difference of these two sounds that may differ by more than 40 dB near the animal's head. This finding indicates the presence of some mechanism of releasing responses to echoes from masking by loud emitted clicks. The evoked-potential method may be productive to investigate these mechanisms.

  12. [Prediction by means of endogenous and exogenous evoked potentials of the favorable evolution of a prolonged coma].

    PubMed

    Michel, C; Denison, S; Minne, C; Guérit, J M

    1998-09-01

    A neurophysiological follow-up (EEG, exogenous and endogenous evoked potentials--EP) was performed over a 4-month period in a patient who presented a long-lasting coma following a cardiac arrest and an amniotic embolism. A pure anoxic aetiology was ruled out starting from the second day on the basis of a dissociation between mildly altered flash visual EP and markedly altered somatosensory EP, indicating focal brain-stem pathology. Endogenous EP reappeared after 12 days. This patient recovered consciousness after 51 days. Despite the absence of MRI abnormalities, we put forward the hypothesis that a brain-stem embolism had, in fact, worsened the clinical picture of an actually moderate anoxia. This case exemplifies the interest of an integrated neurophysiological approach (EEG, exogenous three-modality EP and endogenous EP) in the early evaluation of coma. It also illustrates the complement between structural imaging and functional assessment of the nervous system.

  13. Obtaining single stimulus evoked potentials with wavelet denoising

    NASA Astrophysics Data System (ADS)

    Quian Quiroga, R.

    2000-11-01

    We present a method for the analysis of electroencephalograms (EEG). In particular, small signals due to stimulation, so-called evoked potentials (EPs), have to be detected in the background EEG. This is achieved by using a denoising implementation based on the wavelet decomposition. One recording of visual evoked potentials, and recordings of auditory evoked potentials from four subjects corresponding to different age groups are analyzed. We find higher variability in older individuals. Moreover, since the EPs are identified at the single stimulus level (without need of ensemble averaging), this will allow the calculation of better resolved averages. Since the method is parameter free (i.e. it does not need to be adapted to the particular characteristics of each recording), implementations in clinical settings are imaginable.

  14. N10 potential as an antidromic motor evoked potential in a median nerve short-latency somatosensory evoked potential study.

    PubMed

    Inoue, Ken; Mimori, Yasuyo; Nakamura, Shigenobu

    2002-01-01

    When stimulating the mixed nerve to record evoked potential, both sensory and motor fibers are activated before entering the spinal cord. The N10 potential has been described as an antidromic motor evoked potential based on results obtained by recording at the anterior midneck. In the present study, we examined the changes in latencies of Erb's potential, N10, and N13 by stimulating the median nerve distally at the wrist and proximally at the elbow. The conduction velocity of N10 calculated by the difference between N10 latencies at the two stimulation points was consistent with motor conduction velocity, although N13 conduction velocity estimated by the same method reflected a sensory conduction velocity. A positive relation was also observed between the indirect latency from the stimulation point to the anterior root as calculated using the equation (F - M - 1) / 2 (ms) and the direct latency to the negative peak of the N10 potential. Our data support the notion that N10 represents antidromic motor potential originating in the spinal entry zone of the anterior root.

  15. Poisson distribution to analyze near-threshold motor evoked potentials.

    PubMed

    Kaelin-Lang, Alain; Conforto, Adriana B; Z'Graggen, Werner; Hess, Christian W

    2010-11-01

    Motor unit action potentials (MUAPs) evoked by repetitive, low-intensity transcranial magnetic stimulation can be modeled as a Poisson process. A mathematical consequence of such a model is that the ratio of the variance to the mean of the amplitudes of motor evoked potentials (MEPs) should provide an estimate of the mean size of the individual MUAPs that summate to generate each MEP. We found that this is, in fact, the case. Our finding thus supports the use of the Poisson distribution to model MEP generation and indicates that this model enables characterization of the motor unit population that contributes to near-threshold MEPs.

  16. Recording and assessment of evoked potentials with electrode arrays.

    PubMed

    Miljković, N; Malešević, N; Kojić, V; Bijelić, G; Keller, T; Popović, D B

    2015-09-01

    In order to optimize procedure for the assessment of evoked potentials and to provide visualization of the flow of action potentials along the motor systems, we introduced array electrodes for stimulation and recording and developed software for the analysis of the recordings. The system uses a stimulator connected to an electrode array for the generation of evoked potentials, an electrode array connected to the amplifier, A/D converter and computer for the recording of evoked potentials, and a dedicated software application. The method has been tested for the assessment of the H-reflex on the triceps surae muscle in six healthy humans. The electrode array with 16 pads was positioned over the posterior aspect of the thigh, while the recording electrode array with 16 pads was positioned over the triceps surae muscle. The stimulator activated all the pads of the stimulation electrode array asynchronously, while the signals were recorded continuously at all the recording sites. The results are topography maps (spatial distribution of evoked potentials) and matrices (spatial visualization of nerve excitability). The software allows the automatic selection of the lowest stimulation intensity to achieve maximal H-reflex amplitude and selection of the recording/stimulation pads according to predefined criteria. The analysis of results shows that the method provides rich information compared with the conventional recording of the H-reflex with regard the spatial distribution.

  17. Effects of remote cutaneous pain on trigeminal laser-evoked potentials in migraine patients.

    PubMed

    de Tommaso, Marina; Difruscolo, Olimpia; Sardaro, Michele; Libro, Giuseppe; Pecoraro, Carla; Serpino, Claudia; Lamberti, Paolo; Livrea, Paolo

    2007-06-01

    The present study aimed to evaluate heat pain thresholds and evoked potentials following CO(2) laser thermal stimulation (laser-evoked potentials, LEPs), during remote application of capsaicin, in migraine patients vs. non-migraine healthy controls. Twelve outpatients suffering from migraine without aura were compared with 10 healthy controls. The LEPs were recorded by 6 scalp electrodes, stimulating the dorsum of the right hand and the right supraorbital zone in basal condition, during the application of 3% capsaicin on the dorsum of the left hand and after capsaicin removal. In normal subjects, the laser pain and the N2-P2 vertex complex obtained by the hand and face stimulation were significantly reduced during remote capsaicin application, with respect to pre-and post-capsaicin conditions, while in migraine LEPs and laser pain were not significantly modified during remote painful stimulation. In migraine a defective brainstem inhibiting control may coexist with cognitive factors of focalised attention to facial pain, less sensitive to distraction by a second pain.

  18. On hemispheric differences in evoked potentials to speech stimuli

    NASA Technical Reports Server (NTRS)

    Galambos, R.; Benson, P.; Smith, T. S.; Schulman-Galambos, C.; Osier, H.

    1975-01-01

    Confirmation is provided for the belief that evoked potentials may reflect differences in hemispheric functioning that are marginal at best. Subjects were right-handed and audiologically normal men and women, and responses were recorded using standard EEG techniques. Subjects were instructed to listen for the targets while laying in a darkened sound booth. Different stimuli, speech and tone signals, were used. Speech sounds were shown to evoke a response pattern that resembles that to tone or clicks. Analysis of variances on peak amplitude and latency measures showed no significant differences between hemispheres, however, a Wilcoxon test showed significant differences in hemispheres for certain target tasks.

  19. Somatosensory-evoked potentials and MRI in tuberculous spondylodiscitis.

    PubMed

    Titlic, M; Isgum, V; Buca, A; Kolic, K; Tonkic, A; Jukic, I; Milas, I

    2007-01-01

    Early diagnosis of spondylodiscitis is a condition of efficient conservative treatment. Somatosensory-evoked potentials with clinical examination results are used in assessing the diagnosis, as well as in monitoring the course of disease and healing. MRI clearly shows the inflammatory process, healing and scars. We report a 46-year-old woman suffering from non-specific interscapular pains. The evoked somatosensory potentials of the tibial nerveshow potential conductivity being slowed down through the thoracic spine, which is clearly evident from the prolonged latency and the decreased amplitude of the evoked response. The performed thoracic spine MRI shows spondylodiscitis at the Thl0-11 level. The subject is a nurse administering BCG therapy at a urology clinic, due to the fact of which this was deemed to have been a case of tuberculous spondylodiscitis. Due to the possibility of scattering the causative agent by needle, the biopsy was given up and antituberculous therapy was administered ex juvantibus. The disease was followed up by clinical examinations, somatosensory-evoked potentials and MRI up to fully successful and final recovery from spondylodiscitis. The above examinations are of great help in diagnosing the tuberculous spondylodiscitis and monitoring the recovery (Fig. 6, Ref. 16).

  20. Cortical Auditory Evoked Potentials in Unsuccessful Cochlear Implant Users

    ERIC Educational Resources Information Center

    Munivrana, Boska; Mildner, Vesna

    2013-01-01

    In some cochlear implant users, success is not achieved in spite of optimal clinical factors (including age at implantation, duration of rehabilitation and post-implant hearing level), which may be attributed to disorders at higher levels of the auditory pathway. We used cortical auditory evoked potentials to investigate the ability to perceive…

  1. Evaluation of Evoked Potentials to Dyadic Tones after Cochlear Implantation

    ERIC Educational Resources Information Center

    Sandmann, Pascale; Eichele, Tom; Buechler, Michael; Debener, Stefan; Jancke, Lutz; Dillier, Norbert; Hugdahl, Kenneth; Meyer, Martin

    2009-01-01

    Auditory evoked potentials are tools widely used to assess auditory cortex functions in clinical context. However, in cochlear implant users, electrophysiological measures are challenging due to implant-created artefacts in the EEG. Here, we used independent component analysis to reduce cochlear implant-related artefacts in event-related EEGs of…

  2. Thermal grill conditioning: Effect on contact heat evoked potentials

    PubMed Central

    Jutzeler, Catherine R.; Warner, Freda M.; Wanek, Johann; Curt, Armin; Kramer, John L. K.

    2017-01-01

    The ‘thermal grill illusion’ (TGI) is a unique cutaneous sensation of unpleasantness, induced through the application of interlacing warm and cool stimuli. While previous studies have investigated optimal parameters and subject characteristics to evoke the illusion, our aim was to examine the modulating effect as a conditioning stimulus. A total of 28 healthy control individuals underwent three testing sessions on separate days. Briefly, 15 contact heat stimuli were delivered to the right hand dorsum, while the left palmar side of the hand was being conditioned with either neutral (32 °C), cool (20 °C), warm (40 °C), or TGI (20/40 °C). Rating of perception (numeric rating scale: 0–10) and evoked potentials (i.e., N1 and N2P2 potentials) to noxious contact heat stimuli were assessed. While cool and warm conditioning decreased cortical responses to noxious heat, TGI conditioning increased evoked potential amplitude (N1 and N2P2). In line with other modalities of unpleasant conditioning (e.g., sound, visual, and olfactory stimulation), cortical and possibly sub-cortical modulation may underlie the facilitation of contact heat evoked potentials. PMID:28079118

  3. Auditory evoked potentials and impairments to psychomotor activity evoked by falling asleep.

    PubMed

    Dorokhov, V B; Verbitskaya, Yu S; Lavrova, T P

    2010-05-01

    Sounds provide the most suitable stimuli for studies of information processes occurring in the brain during falling asleep and at different stages of sleep. The widely used analysis of evoked potentials averaged for groups of subjects has a number of disadvantages associated with their individual variability. Thus, in the present study, measures of the individual components of auditory evoked potentials were determined and selectively summed for individual subjects, with subsequent analysis by group. The aim of the present work was to identify measures of auditory evoked potentials providing quantitative assessment of the dynamics of the brain's functional state during the appearance of errors in activity associated with decreases in the level of waking and falling asleep. A monotonous psychomotor test was performed in the lying position with the eyes closed; this consisted of two alternating parts: the first was counting auditory stimuli from 1 to 10 with simultaneous pressing of a button, and the second was counting stimuli from 1 to 5 silently without pressing the button, and so on. Computer-generated sound stimuli (duration 50 msec, envelope filling frequency 1000 Hz, intensity 60 dB) were presented binaurally with interstimulus intervals of 2.4-2.7 sec. A total of 41 subjects took part (both genders, mean age 25 years), of which only 23 fell asleep; data for 14 subjects with sufficient episodes of falling asleep were analyzed. Comparison of measures of auditory evoked potentials (the latencies and amplitudes of the N1, P2, N2, and P3 components) during correct and erroneous psychomotor test trials showed that decreases in the level of consciousness elicited significant increases in the amplitudes of the components of the vertex N1-P2-N2 complex in series without button pressing. The greatest changes in auditory evoked potentials in both series were seen in the N2 component, with latency 330-360 msec, which has a common origin with the EEG theta rhythm and is

  4. Potential Asphyxia and Brainstem Abnormalities in Sudden and Unexpected Death in Infants

    PubMed Central

    Randall, Bradley B.; Paterson, David S.; Haas, Elisabeth A.; Broadbelt, Kevin G.; Duncan, Jhodie R.; Mena, Othon J.; Krous, Henry F.; Trachtenberg, Felicia L.

    2013-01-01

    OBJECTIVE: Sudden and unexplained death is a leading cause of infant mortality. Certain characteristics of the sleep environment increase the risk for sleep-related sudden and unexplained infant death. These characteristics have the potential to generate asphyxial conditions. We tested the hypothesis that infants may be exposed to differing degrees of asphyxia in sleep environments, such that vulnerable infants with a severe underlying brainstem deficiency in serotonergic, γ-aminobutyric acid-ergic, or 14-3-3 transduction proteins succumb even without asphyxial triggers (eg, supine), whereas infants with intermediate or borderline brainstem deficiencies require asphyxial stressors to precipitate death. METHODS: We classified cases of sudden infant death into categories relative to a “potential asphyxia” schema in a cohort autopsied at the San Diego County Medical Examiner’s Office. Controls were infants who died with known causes of death established at autopsy. Analysis of covariance tested for differences between groups. RESULTS: Medullary neurochemical abnormalities were present in both infants dying suddenly in circumstances consistent with asphyxia and infants dying suddenly without obvious asphyxia-generating circumstances. There were no differences in the mean neurochemical measures between these 2 groups, although mean measures were both significantly lower (P < .05) than those of controls dying of known causes. CONCLUSIONS: We found no direct relationship between the presence of potentially asphyxia conditions in the sleep environment and brainstem abnormalities in infants dying suddenly and unexpectedly. Brainstem abnormalities were associated with both asphyxia-generating and non–asphyxia generating conditions. Heeding safe sleep messages is essential for all infants, especially given our current inability to detect underlying vulnerabilities. PMID:24218471

  5. Motor evoked potentials in thoracoabdominal aortic surgery: CON.

    PubMed

    Coselli, Joseph S; Tsai, Peter I

    2010-05-01

    Thoracoabdominal aortic aneurysms (TAAAs) have a dismal natural history that frequently necessitates surgical repair, but such repairs sometimes result in paraplegia and paraparesis. To reduce the risk of these complications, intraoperative monitoring of spinal cord motor evoked potentials (MEPs) can be used to guide TAAA repair procedures and may potentially minimize spinal cord ischemia. However, the use of MEP monitoring techniques requires important changes to anesthetic management, entails certain risks, and has important contraindications.

  6. The relationship between sudden severe hypoxia and ischemia-associated spreading depolarization in adult rat brainstem in vivo.

    PubMed

    Richter, Frank; Bauer, Reinhard; Lehmenkühler, Alfred; Schaible, Hans-Georg

    2010-07-01

    Severe ischemia can induce spreading depolarization (SD) in the cerebral cortex, which is thought to contribute significantly to cerebral dysfunction. Whether the mature brainstem shows SD upon reduced oxygen supply has not been investigated although SDs may significantly influence brainstem functions. In anesthetized adult rats, we induced severe short-lasting hypoxia (SSH) by stopping artificial respiration for about 1 min or by ventilation with pure nitrogen for 1, 2 or 3 min, and milder hypoxia by ventilation with 6% O(2) in N(2) for 10 min. We measured DC potentials in the brainstem and cerebral cortex, systemic arterial blood pressure, heart rate and local blood flow at the brainstem or cerebral cortex surface. SSH lasting up to 1 min did not induce DC shifts in native brainstem but reduced heart rate, systemic blood pressure and blood flow in cortex and brainstem. Longer lasting SSH protocols both reduced systemic blood pressure and induced SD in the brainstem, but the magnitude of the cardiovascular response was not influenced by the simultaneous occurrence of SD. When neuronal excitability in the brainstem was artificially enhanced, SSH of 1 min evoked SD but again the magnitude of cardiovascular changes during SSH was not increased. SSH lasting 3 min evoked non-reversible sustained depolarization. SSH did not render the brainstem more excitable for classical SD evoked by local KCl application. Thus, sudden severe hypoxia/ischemia evokes SDs in the brainstem, but the occurrence of the so-elicited SD does not influence the immediate cardiovascular response to SSH.

  7. Identification of Dynamic Patterns of Speech-Evoked Auditory Brainstem Response Based on Ensemble Empirical Mode Decomposition and Nonlinear Time Series Analysis Methods

    NASA Astrophysics Data System (ADS)

    Mozaffarilegha, Marjan; Esteki, Ali; Ahadi, Mohsen; Nazeri, Ahmadreza

    The speech-evoked auditory brainstem response (sABR) shows how complex sounds such as speech and music are processed in the auditory system. Speech-ABR could be used to evaluate particular impairments and improvements in auditory processing system. Many researchers used linear approaches for characterizing different components of sABR signal, whereas nonlinear techniques are not applied so commonly. The primary aim of the present study is to examine the underlying dynamics of normal sABR signals. The secondary goal is to evaluate whether some chaotic features exist in this signal. We have presented a methodology for determining various components of sABR signals, by performing Ensemble Empirical Mode Decomposition (EEMD) to get the intrinsic mode functions (IMFs). Then, composite multiscale entropy (CMSE), the largest Lyapunov exponent (LLE) and deterministic nonlinear prediction are computed for each extracted IMF. EEMD decomposes sABR signal into five modes and a residue. The CMSE results of sABR signals obtained from 40 healthy people showed that 1st, and 2nd IMFs were similar to the white noise, IMF-3 with synthetic chaotic time series and 4th, and 5th IMFs with sine waveform. LLE analysis showed positive values for 3rd IMFs. Moreover, 1st, and 2nd IMFs showed overlaps with surrogate data and 3rd, 4th and 5th IMFs showed no overlap with corresponding surrogate data. Results showed the presence of noisy, chaotic and deterministic components in the signal which respectively corresponded to 1st, and 2nd IMFs, IMF-3, and 4th and 5th IMFs. While these findings provide supportive evidence of the chaos conjecture for the 3rd IMF, they do not confirm any such claims. However, they provide a first step towards an understanding of nonlinear behavior of auditory system dynamics in brainstem level.

  8. High frequency bone conduction auditory evoked potentials in the guinea pig: Assessing cochlear injury after ossicular chain manipulation.

    PubMed

    Bergin, M J; Bird, P A; Vlajkovic, S M; Thorne, P R

    2015-12-01

    Permanent high frequency (>4 kHz) sensorineural hearing loss following middle ear surgery occurs in up to 25% of patients. The aetiology of this loss is poorly understood and may involve transmission of supra-physiological forces down the ossicular chain to the cochlea. Investigating the mechanisms of this injury using animal models is challenging, as evaluating cochlear function with evoked potentials is confounded when ossicular manipulation disrupts the normal air conduction (AC) pathway. Bone conduction (BC) using clinical bone vibrators in small animals is limited by poor transducer output at high frequencies sensitive to trauma. The objectives of the present study were firstly to evaluate a novel high frequency bone conduction transducer with evoked auditory potentials in a guinea pig model, and secondly to use this model to investigate the impact of middle ear surgical manipulation on cochlear function. We modified a magnetostrictive device as a high frequency BC transducer and evaluated its performance by comparison with a calibrated AC transducer at frequencies up to 32 kHz using the auditory brainstem response (ABR), compound action potential (CAP) and summating potential (SP). To mimic a middle ear traumatising stimulus, a rotating bur was brought in to contact with the incudomalleal complex and the effect on evoked cochlear potentials was observed. BC-evoked potentials followed the same input-output function pattern as AC potentials for all ABR frequencies. Deterioration in CAP and SP thresholds was observed after ossicular manipulation. It is possible to use high frequency BC to evoke responses from the injury sensitive basal region of the cochlea and so not rely on AC with the potential confounder of conductive hearing loss. Ongoing research explores how these findings evolve over time, and ways in which injury may be reduced and the cochlea protected during middle ear surgery.

  9. The combined monitoring of brain stem auditory evoked potentials and intracranial pressure in coma. A study of 57 patients.

    PubMed Central

    García-Larrea, L; Artru, F; Bertrand, O; Pernier, J; Mauguière, F

    1992-01-01

    Continuous monitoring of brainstem auditory evoked potentials (BAEPs) was carried out in 57 comatose patients for periods ranging from 5 hours to 13 days. In 53 cases intracranial pressure (ICP) was also simultaneously monitored. The study of relative changes of evoked potentials over time proved more relevant to prognosis than the mere consideration of "statistical normality" of waveforms; thus progressive degradation of the BAEPs was associated with a bad outcome even if the responses remained within normal limits. Contrary to previous reports, a normal BAEP obtained during the second week of coma did not necessarily indicate a good vital outcome; it could, however, do so in cases with a low probability of secondary insults. The simultaneous study of BAEPs and ICP showed that apparently significant (greater than 40 mm Hg) acute rises in ICP were not always followed by BAEP changes. The stability of BAEP's despite "significant" ICP rises was associated in our patients with a high probability of survival, while prolongation of central latency of BAEPs in response to ICP modifications was almost invariably followed by brain death. Continuous monitoring of brainstem responses provided a useful physiological counterpart to physical parameters such as ICP. Serial recording of cortical EPs should be added to BAEP monitoring to permit the early detection of rostrocaudal deterioration. Images PMID:1402970

  10. Evaluation of optimal masking levels in place-specific low-frequency chirp-evoked auditory brainstem responses.

    PubMed

    Baljić, Izet; Eßer, Dirk; Foerst, Astrid; Walger, Martin

    2017-01-01

    The aim of the study is the experimental determination of the optimal required masking level for a given stimulus level when using a band limited "low-frequency chirp" in order to improve frequency and place specificity of auditory brainstem responses (ABRs). A low-frequency chirp (100-850 Hz) at stimulation levels between 40 and 80 dB normalized hearing level was presented to 12 normal hearing subjects. During presentation of each stimulus, the level of a high-pass noise with a low cutoff frequency of 1100 Hz was varied between 0 and 25 dB signal-to-noise ratio (SNR) by using 5 dB steps (at 0 dB SNR the same level of both the chirp and the masker in dB sound pressure level was presented). Measurements without masking were used as a reference. In all masking conditions, the latency of wave V was significantly increased compared to unmasked ABRs. The amplitude of wave V decreased when reaching the effective and therefore optimal masking level. Accordingly, in order to ensure place specificity of the ABR, ipsilateral masking is essential. At lower stimulus levels the SNR can be substantially increased (i.e., the masker level decreased) without loss of place specificity.

  11. Visual evoked potentials in a patient with prosopagnosia.

    PubMed

    Small, M

    1988-01-01

    Visual evoked potentials (VEPs) were recorded from a 53-year-old man with prosopagnosia during presentation of slides of known and unknown faces and under two control conditions. ANOVA comparisons with a normal male group showed no differences in P100 amplitude, P300 amplitude or P300 latency. There were no significant evoked potential differences between the patient and controls specifically related to the face conditions. There was, however, a significant delay in the latency of P100 from both hemispheres during all types of stimuli. This prolonged latency was asymmetrical, showing a right sided emphasis with the control conditions: pattern reversal and slides of geometric designs. This finding, of a dissociation in the interhemispheric delay, provides physiological evidence of stimulus-specific organisation at an early, sensory level. The fact that the P100 component showed a marked delay, yet P300 fell within normal limits for amplitude and latency, suggests that this patient's problem lies at a perceptual level.

  12. Establishing an evoked-potential vision-tracking system

    NASA Technical Reports Server (NTRS)

    Skidmore, Trent A.

    1991-01-01

    This paper presents experimental evidence to support the feasibility of an evoked-potential vision-tracking system. The topics discussed are stimulator construction, verification of the photic driving response in the electroencephalogram, a method for performing frequency separation, and a transient-analysis example. The final issue considered is that of object multiplicity (concurrent visual stimuli with different flashing rates). The paper concludes by discussing several applications currently under investigation.

  13. Harmonic coupling of steady-state visual evoked potentials.

    PubMed

    Krusienski, Dean J; Allison, Brendan Z

    2008-01-01

    Steady-state visual evoked potentials (SSVEPs) are oscillating components of the electroencephalogram (EEG) that are detected over the occipital areas, having frequencies corresponding to visual stimulus frequencies. SSVEPs have been demonstrated to be reliable control signals for operating a brain-computer interface (BCI). This study uses offline analyses to investigate the characteristics of SSVEP harmonic amplitude and phase coupling and the impact of using this information to construct a matched filter for continuously tracking the signal.

  14. Human Auditory and Visual Unimodal and Biomodal Continuous Evoked Potentials

    DTIC Science & Technology

    1988-03-01

    to amplitude-modulated light stimuli, have been extensively investigated and applied in various fields: system identification studies ( Tweel and Lund...msec ( Tweel and Lunel, 1965, for MFs > 35 Hz; Regan, 1972; Spekreijse et al., 1977). 4.1.2 Auditory continuous evoked potentials Contrary to the visual...researchers ( Tweel and Lunel, 1965; Regan, 1966, 1972; Spckreijse, 1966; Spekreijse et al., 1977; Diamond, 1977; Junker, 1984; Junker and Peio, 1984

  15. Topographic mapping of single sweep evoked potentials in the brain.

    PubMed

    Liberati, D; DiCorrado, S; Mandelli, S

    1992-09-01

    Single trial analysis of brain-evoked potentials via stochastic parametric identification and filtering is here extended to multichannel recordings, leading to the topographic mapping of the brain activity elicited by a single stimulus, instead of the usual averaged mapping. The temporal dynamics of the subsequent sweeps in the protocol of a neurophysiologic experiment can thus be recovered and quantified also on its spatial characteristic.

  16. Perceptual learning of acoustic noise generates memory-evoked potentials.

    PubMed

    Andrillon, Thomas; Kouider, Sid; Agus, Trevor; Pressnitzer, Daniel

    2015-11-02

    Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics.

  17. Determination of sources using brain-evoked potential maps

    NASA Astrophysics Data System (ADS)

    Amir, Avner; Jewett, Don L.

    1993-08-01

    Methods to localize the sources of Brain Evoked Potential Maps based on modeling of the sources as point dipoles have been widely used for more than twenty years. Such methods still lack a basic theory which can answer questions regarding the resolution and uniqueness of the results in the context of a realistic head model, with no a prior restrictions on the sources. In the first part of the paper we present simple physical models for the origin of far-field potentials associated with the auditory and somatosensory systems. An action potential travels along a straight axon can only produce a quadrupole field at far distances. We show that the far field potentials must originate when the action potential passes through a bent axon or through changes in the conductivities or in the external boundaries of the volume conductor surrounding the axon. We discuss the question of uniqueness of the solution for the 'inverse problem' of evoked potentials. This problem involved the reconstruction of the location and pattern of activity of the neuronal generators in the brain, given the map of the scalp electric potentials. We show that in a head shape with a realistic geometry spatially distinct points, line or open surface generators cannot create the same scalp potential map. The same applies to two non-overlapping generators occupying finite volumes.

  18. Evaluation of the occurrence of canine congenital sensorineural deafness in puppies of predisposed dog breeds using the brainstem auditory evoked response.

    PubMed

    Płonek, Marta; Giza, Elżbieta; Niedźwiedź, Artur; Kubiak, Krzysztof; Nicpoń, Józef; Wrzosek, Marcin

    2016-12-01

    Canine congenital sensorineural deafness (CCSD) affects predisposed breeds of dogs and is primarily caused by an atrophy of the stria vascularis of the organ of Corti. The analysis of the brainstem auditory evoked response (BAER) is a reliable method for the evaluation of hearing in animals as it allows an accurate detection of unilateral or bilateral deafness. The occurrence of unilateral and bilateral deafness using the BAER was determined in a representative group of dogs in Poland, including Bull Terriers (n = 117), Australian Cattle Dogs (n = 62), English Setters (n = 32) and the Dogo Argentino (n = 32). Overall deafness, deafness in each dog breed and an association between deafness and phenotype were studied. Among the 243 dogs tested, 156 (81%) had a normal BAER, 27 (11%) were unilaterally deaf, and 12 (5%) were bilaterally deaf. The amplitudes and latencies of waves I, II, III, V, the V/I wave amplitude ratio, and wave I-V, I-III and III-V inter-peak intervals were recorded for each dog. Unilaterally and bilaterally deaf dogs were present in all the dog breeds studied. There were 17 (14.5%) deaf Bull Terriers, three (4.8%) deaf Australian Cattle Dogs, seven (21.9%) deaf English Setters, and 12 (37.5%) deaf Dogos Argentinos. Preventive BAER screening should be routinely performed in these four breeds to prevent the spread of genes responsible for deafness.

  19. Evoked potentials in the management of patients with cochlear implants: research and clinical applications.

    PubMed

    Kileny, Paul R

    2007-04-01

    Evoked potential measures are integral to the treatment of patients with cochlear implants. In particular, these techniques are useful in the management of the pediatric patient. This brief report describes three categories of evoked potentials including clinical and research examples: electrically evoked auditory brain stem responses with transtympanic stimulation, middle-latency responses with cochlear implant stimulation, and cognitive evoked potentials elicited by speech stimuli.

  20. Auditory evoked potential could reflect emotional sensitivity and impulsivity

    PubMed Central

    Kim, Ji Sun; Kim, Sungkean; Jung, Wookyoung; Im, Chang-Hwan; Lee, Seung-Hwan

    2016-01-01

    Emotional sensitivity and impulsivity could cause interpersonal conflicts and neuropsychiatric problems. Serotonin is correlated with behavioral inhibition and impulsivity. This study evaluated whether the loudness dependence of auditory evoked potential (LDAEP), a potential biological marker of central serotonergic activity, could reflect emotional sensitivity and impulsivity. A total of 157 healthy individuals were recruited, who performed LDAEP and Go/Nogo paradigms during electroencephalogram measurement. Barratt impulsivity scale (BIS), Conners’ Adult ADHD rating scale (CAARS), and affective lability scale (ALS) were evaluated. Comparison between low and high LDAEP groups was conducted for behavioural, psychological, and event-related potential (ERP) measures. The high LDAEP group showed significantly increased BIS, a subscale of the CAARS, ALS, and false alarm rate of Nogo stimuli compared to the low LDAEP group. LDAEP showed significant positive correlations with the depression scale, ALS scores, subscale of the CAARS and Nogo-P3 amplitude. In the source activity of Nogo-P3, the cuneus, lingual gyrus, and precentral gyrus activities were significantly increased in the high LDAEP group. Our study revealed that LDAEP could reflect emotional sensitivity and impulsivity. LDAEP, an auditory evoked potential could be a useful tool to evaluate emotional regulation. PMID:27910865

  1. Short latency vestibular evoked potentials in the chicken embryo

    NASA Technical Reports Server (NTRS)

    Jones, S. M.; Jones, T. A.

    1996-01-01

    Electrophysiological responses to pulsed linear acceleration stimuli were recorded in chicken embryos incubated for 19 or 20 days (E19/E20). Responses occurred within the first 16 ms following the stimulus onset. The evoked potentials disappeared following bilateral labyrinthectomy, but persisted following cochlear destruction alone, thus demonstrating that the responses were vestibular. Approximately 8 to 10 response peaks could be identified. The first 4 positive and corresponding negative components (early peaks with latencies < 6.0 ms) were scored and latencies and amplitudes quantified. Vestibular response latencies were significantly longer (P < 0.01) and amplitudes significantly smaller (P < 0.001) than those observed in 2-week-old birds. Mean response threshold for anesthetized embryos was -15.9dBre 1.0 g/ms, which was significantly higher (P < 0.03) than those observed in 2-week-old birds (-23.0dBre 1.0 g/ms). Latency/intensity functions (that is, slopes) were not significantly different between embryos and 2-week-old animals, but amplitude/intensity functions for embryos were significantly shallower than those for 2-week-old birds (P < 0.001). We presume that these differences reflect the refinement of sensory function that occurs following 19 to 20 days of incubation. The recording of vestibular evoked potentials provides an objective, direct and noninvasive measure of peripheral vestibular function in the embryo and, as such, the method shows promise as an investigative tool. The results of the present study form the definitive basis for using vestibular evoked potentials in the detailed study of avian vestibular ontogeny and factors that may influence it.

  2. Clinical application of vestibular evoked myogenic potential (VEMP).

    PubMed

    Murofushi, Toshihisa

    2016-08-01

    The author reviewed clinical aspects of vestibular evoked myogenic potentials (VEMPs). Now two types of VEMPs are available. The first one is cervical VEMP, which is recorded in the sternocleidomastoid muscle and predominantly reflects sacculo-collic reflex. The other is ocular VEMP, which is usually recorded below the lower eye lid and predominantly reflects utriculo-ocular reflex. VEMPs play important roles not only for assessment of common vestibular diseases but also for establishment of new clinical entities. Clinical application in Meniere's disease, vestibular neuritis, benign paroxysmal positional vertigo, vestibular migraine, idiopathic otolithic vertigo, and central vertigo/dizziness was reviewed.

  3. A Nonlinear Regression Procedure for Evoked Potential Data Analysis.

    DTIC Science & Technology

    1985-06-01

    XBAR+X (I) YBAR - YBAR +V (I) CONTINUE XBAR=XBAR/N VBAR= YBAR /N A-0. B-O. DO 10 I=19N C-X(I)-XBAR A=A+ Y (I)*C -36- B=B+C**2 *10 CONTINUE BSLP=A/B BI NT=YDAR...and duration of the latency effect following impact, the following exponential model was proposed: y = B + St + h(t)D + h(t)Aexp(t/T) + £(t) (1) where... y is the value of the shift in latency with respect to the preimpact baseline average evoked potential (AEP

  4. Visual evoked potentials and heart rate during white noise stimulation.

    PubMed

    Lucchese, F; Mecacci, L

    1999-03-01

    Visual evoked potentials (VEPs) were recorded in 12 adult participants as a function of the temporal frequency of a phase-reversed checkerboard, with or without a simultaneously presented white noise. During the VEP recordings also the pulse rate was measured. VEP amplitude changed as function of temporal frequency, but it was not affected by noise. Pulse rate was stable during the session without noise, but it increased during the white noise stimulation at high temporal frequencies. Heart acceleration might be associated to conditions when processing at low levels of visual sensitivity (high temporal frequencies) is furthermore disturbed by interfering stimulation (noise).

  5. The division of attention and the human auditory evoked potential

    NASA Technical Reports Server (NTRS)

    Hink, R. F.; Van Voorhis, S. T.; Hillyard, S. A.; Smith, T. S.

    1977-01-01

    The sensitivity of the scalp-recorded, auditory evoked potential to selective attention was examined while subjects responded to stimuli presented to one ear (focused attention) and to both ears (divided attention). The amplitude of the N1 component was found to be largest to stimuli in the ear upon which attention was to be focused, smallest to stimuli in the ear to be ignored, and intermediate to stimuli in both ears when attention was divided. The results are interpreted as supporting a capacity model of attention.

  6. Intraoperative Monitoring: Recent Advances in Motor Evoked Potentials.

    PubMed

    Koht, Antoun; Sloan, Tod B

    2016-09-01

    Advances in electrophysiological monitoring have improved the ability of surgeons to make decisions and minimize the risks of complications during surgery and interventional procedures when the central nervous system (CNS) is at risk. Individual techniques have become important for identifying or mapping the location and pathway of critical neural structures. These techniques are also used to monitor the progress of procedures to augment surgical and physiologic management so as to reduce the risk of CNS injury. Advances in motor evoked potentials have facilitated mapping and monitoring of the motor tracts in newer, more complex procedures.

  7. Enhancement Of Visual Evoked Potentials By Adaptive Processing

    NASA Astrophysics Data System (ADS)

    Wolf, W.; Appel, U.; Rauner, H.

    1982-11-01

    Transient evoked potentials (EP) are variations of the on-going electroencephalogram (EEG) in response to the application of sensory stimuli. Since their amplitudes are very small in comparison to the spontaneous EEG, signal extraction methods must be applied to them before their characteristics are measureable. Several signal ex-traction methods which are actually used in EP research are outlined, especially those showing an adaptive characteristic. As a further development, a new method is proposed which considers the on-going EEG preceding the stimulus application for the EP processing. The computational procedure will be described and some preliminary results are given.

  8. Conditioning effect of transcranial magnetic stimulation evoking motor-evoked potential on V-wave response.

    PubMed

    Grosprêtre, Sidney; Martin, Alain

    2014-12-01

    The aim of this study was to examine the collision responsible for the volitional V-wave evoked by supramaximal electrical stimulation of the motor nerve during voluntary contraction. V-wave was conditioned by transcranial magnetic stimulation (TMS) over the motor cortex at several inter-stimuli intervals (ISI) during weak voluntary plantar flexions (n = 10) and at rest for flexor carpi radialis muscle (FCR; n = 6). Conditioning stimulations were induced by TMS with intensity eliciting maximal motor-evoked potential (MEPmax). ISIs used were ranging from -20 to +20 msec depending on muscles tested. The results showed that, for triceps surae muscles, conditioning TMS increased the V-wave amplitude (~ +250%) and the associated mechanical response (~ +30%) during weak voluntary plantar flexion (10% of the maximal voluntary contraction -MVC) for ISIs ranging from +6 to +18 msec. Similar effect was observed at rest for the FCR with ISI ranging from +6 to +12 msec. When the level of force was increased from 10 to 50% MVC or the conditioning TMS intensity was reduced to elicit responses of 50% of MEPmax, a significant decrease in the conditioned V-wave amplitude was observed for the triceps surae muscles, linearly correlated to the changes in MEP amplitude. The slope of this correlation, as well as the electro-mechanical efficiency, was closed to the identity line, indicating that V-wave impact at muscle level seems to be similar to the impact of cortical stimulation. All these results suggest that change in V-wave amplitude is a great index to reflect changes in cortical neural drive addressed to spinal motoneurons.

  9. Statistical model applied to motor evoked potentials analysis.

    PubMed

    Ma, Ying; Thakor, Nitish V; Jia, Xiaofeng

    2011-01-01

    Motor evoked potentials (MEPs) convey information regarding the functional integrity of the descending motor pathways. Absence of the MEP has been used as a neurophysiological marker to suggest cortico-spinal abnormalities in the operating room. Due to their high variability and sensitivity, detailed quantitative studies of MEPs are lacking. This paper applies a statistical method to characterize MEPs by estimating the number of motor units and single motor unit potential amplitudes. A clearly increasing trend of single motor unit potential amplitudes in the MEPs after each pulse of the stimulation pulse train is revealed by this method. This statistical method eliminates the effects of anesthesia, and provides an objective assessment of MEPs. Consequently this statistical method has high potential to be useful in future quantitative MEPs analysis.

  10. A joint sparse representation-based method for double-trial evoked potentials estimation.

    PubMed

    Yu, Nannan; Liu, Haikuan; Wang, Xiaoyan; Lu, Hanbing

    2013-12-01

    In this paper, we present a novel approach to solving an evoked potentials estimating problem. Generally, the evoked potentials in two consecutive trials obtained by repeated identical stimuli of the nerves are extremely similar. In order to trace evoked potentials, we propose a joint sparse representation-based double-trial evoked potentials estimation method, taking full advantage of this similarity. The estimation process is performed in three stages: first, according to the similarity of evoked potentials and the randomness of a spontaneous electroencephalogram, the two consecutive observations of evoked potentials are considered as superpositions of the common component and the unique components; second, making use of their characteristics, the two sparse dictionaries are constructed; and finally, we apply the joint sparse representation method in order to extract the common component of double-trial observations, instead of the evoked potential in each trial. A series of experiments carried out on simulated and human test responses confirmed the superior performance of our method.

  11. Using evoked potentials to match interaural electrode pairs with bilateral cochlear implants.

    PubMed

    Smith, Zachary M; Delgutte, Bertrand

    2007-03-01

    Bilateral cochlear implantation seeks to restore the advantages of binaural hearing to the profoundly deaf by providing binaural cues normally important for accurate sound localization and speech reception in noise. Psychophysical observations suggest that a key issue for the implementation of a successful binaural prosthesis is the ability to match the cochlear positions of stimulation channels in each ear. We used a cat model of bilateral cochlear implants with eight-electrode arrays implanted in each cochlea to develop and test a noninvasive method based on evoked potentials for matching interaural electrodes. The arrays allowed the cochlear location of stimulation to be independently varied in each ear. The binaural interaction component (BIC) of the electrically evoked auditory brainstem response (EABR) was used as an assay of binaural processing. BIC amplitude peaked for interaural electrode pairs at the same relative cochlear position and dropped with increasing cochlear separation in either direction. To test the hypothesis that BIC amplitude peaks when electrodes from the two sides activate maximally overlapping neural populations, we measured multiunit neural activity along the tonotopic gradient of the inferior colliculus (IC) with 16-channel recording probes and determined the spatial pattern of IC activation for each stimulating electrode. We found that the interaural electrode pairings that produced the best aligned IC activation patterns were also those that yielded maximum BIC amplitude. These results suggest that EABR measurements may provide a method for assigning frequency-channel mappings in bilateral implant recipients, such as pediatric patients, for which psychophysical measures of pitch ranking or binaural fusion are unavailable.

  12. Vestibular evoked myogenic potentials in patients with rheumatoid arthritis

    PubMed Central

    Heydari, Nahid; Hajiabolhassani, Fahimeh; Fatahi, Jamileh; Movaseghi, Shafieh; Jalaie, Shohreh

    2015-01-01

    Background: Rheumatoid arthritis (RA) is an autoimmune systemic disease. Most common autoimmune diseases are multisystem disorders that may also present with otological manifestations, and autoimmune inner ear disease accompanied by vestibular dysfunction. This study aimed to compare the vestibular function between RA patients and normal subjects using cervical vestibular evoked myogenic potentials (cVEMPs). Methods: In this cross- sectional study, 25patients with RA (19 female and 6 male: mean (±SD) age, 40.00 (±7.92) years) and 20 healthy subjects (15 female and 5 male: mean (±SD) age, 35.35 (±10.48) years) underwent cVEMPs, using 500 Hz-tone bursts at 95 dB nHL intensity level. Data were analyzed using independent sample t-test through SPSS software v. 16. Results: The mean peak latency of p13 was significantly higher in RA patients (p<0.001). The mean peak latency of n23 was significantly higher in patients in the left ear (p=0.03). Vestibular evoked myogenic potential (VEMP) responses were present in all (100%) of the participants. There were no significant differences in mean peak to peak amplitude and amplitude ratio between the two groups. Conclusion: According to the prolonged latency of VEMP responses in RA patients, lesions in the retrolabyrinthine, especially in the vestibulospinal tract are suspected. PMID:26478874

  13. Band limited chirp stimulation in vestibular evoked myogenic potentials.

    PubMed

    Walther, Leif Erik; Cebulla, Mario

    2016-10-01

    Air conducted vestibular evoked myogenic potentials (VEMP) can be elicited by various low frequency and intense sound stimuli, mainly clicks or short tone bursts (STB). Chirp stimuli are increasingly used in diagnostic audiological evaluations as an effective means to obtain acoustically evoked responses in narrowed or extended frequency ranges. We hypothesized in this study that band limited chirp stimulation, which covers the main sensitivity range of sound sensitive otolithic afferents (around 500 Hz), might be useful for application in cervical and ocular VEMP to air conduction. For this purpose we designed a chirp stimulus ranging 250-1000 Hz (up chirp). The chirp stimulus was delivered with a stimulus intensity of 100 dB nHL in normal subjects (n = 10) and patients with otolith involvement (vestibular neuritis) (n = 6). Amplitudes of the designed chirp ("CW-VEMP-chirp, 250-1000 Hz") were compared with amplitudes of VEMPs evoked by click stimuli (0.1 ms) and a short tone burst (STB, 1-2-1, 8 ms, 500 Hz). CVEMPs and oVEMPs were detectable in 9 of 10 normal individuals. Statistical evaluation in healthy patients revealed significantly larger cVEMP and oVEMP amplitudes for CW-VEMP-chirp (250-1000 Hz) stimuli. CVEMP amplitudes evoked by CW-VEMP-chirp (250-1000 Hz) showed a high stability in comparison with click and STB stimulation. CW-VEMP-chirp (250-1000 Hz) showed abnormal cVEMP and oVEMP amplitudes in patients with vestibular neuritis, with the same properties as click and STB stimulated VEMPs. We conclude that the designed CW-VEMP-chirp (250-1000 Hz) is an effective stimulus which can be further used in VEMP diagnostic. Since a chirp stimulus can be easily varied in its properties, in particular with regard to frequency, this might be a promising tool for further investigations.

  14. Detection of temporal gaps in noise in dolphins: evoked-potential study.

    PubMed

    Popov, V V; Supin AYa

    1997-08-01

    Temporal resolution of hearing was studied in bottlenosed dolphins by recording the auditory brain-stem response (ABR) evoked by gap in noise. Gaps shorter than 0.5 ms evoked a response combining both off- and on-components; longer gaps evoked separate off- and on-responses. Both the response to a short gap and on-response to the end of a long gap increased with increasing gap duration. On-response recovered completely at gap duration of 5-10 ms. Small but detectable response arose at gap duration as short as 0.1 ms. Contrary to the on-response after a long silence, the response to a short gap was less dependent on noise intensity. From these data, the temporal transfer function of the supposed integrator was derived assuming nonlinear transform of the integrator output to ABR amplitude. Equivalent rectangular duration of the found temporal transfer function was 0.27 ms.

  15. Automatic denoising of single-trial evoked potentials.

    PubMed

    Ahmadi, Maryam; Quian Quiroga, Rodrigo

    2013-02-01

    We present an automatic denoising method based on the wavelet transform to obtain single trial evoked potentials. The method is based on the inter- and intra-scale variability of the wavelet coefficients and their deviations from baseline values. The performance of the method is tested with simulated event related potentials (ERPs) and with real visual and auditory ERPs. For the simulated data the presented method gives a significant improvement in the observation of single trial ERPs as well as in the estimation of their amplitudes and latencies, in comparison with a standard denoising technique (Donoho's thresholding) and in comparison with the noisy single trials. For the real data, the proposed method largely filters the spontaneous EEG activity, thus helping the identification of single trial visual and auditory ERPs. The proposed method provides a simple, automatic and fast tool that allows the study of single trial responses and their correlations with behavior.

  16. Automatic Parametrization of Somatosensory Evoked Potentials With Chirp Modeling.

    PubMed

    Vayrynen, Eero; Noponen, Kai; Vipin, Ashwati; Thow, X Y; Al-Nashash, Hasan; Kortelainen, Jukka; All, Angelo

    2016-09-01

    In this paper, an approach using polynomial phase chirp signals to model somatosensory evoked potentials (SEPs) is proposed. SEP waveforms are assumed as impulses undergoing group velocity dispersion while propagating along a multipath neural connection. Mathematical analysis of pulse dispersion resulting in chirp signals is performed. An automatic parameterization of SEPs is proposed using chirp models. A Particle Swarm Optimization algorithm is used to optimize the model parameters. Features describing the latencies and amplitudes of SEPs are automatically derived. A rat model is then used to evaluate the automatic parameterization of SEPs in two experimental cases, i.e., anesthesia level and spinal cord injury (SCI). Experimental results show that chirp-based model parameters and the derived SEP features are significant in describing both anesthesia level and SCI changes. The proposed automatic optimization based approach for extracting chirp parameters offers potential for detailed SEP analysis in future studies. The method implementation in Matlab technical computing language is provided online.

  17. Brainstem Auditory Evoked Potentials (BAEP)- A Pilot Study Conducted on Young Healthy Adults from Central India

    PubMed Central

    Gandhe, Mahendra Bhauraoji; Gandhe, Swapnali Mahendra; Puttewar, A.N.; Saraf, Chhaya; Singh, Ramji

    2014-01-01

    Objective: To Evaluate I, II, III, IV, V wave latencies and I-III, III-V, I-V inter-peak latencies and V/I wave amplitude ratio in Normal subjects in Central India. Methods: We recorded BAEP from 50 healthy normal subjects from the community of same sex and geographical setup. The absolute, interpeak and wave V/I amplitude ratio were measurement and recording was done using RMS EMG EP MARK II machine manufactured by RMS recorders and Medicare system, Chandigarh. Result: Absolute, interpeak and wave V/I amplitude ratio were measured in normal subjects and compared with other previous studies. Conclusion: This study was conducted as exploratory pilot study only on male healthy controls. Since, the study conducted in different regions, there are some differences in the latencies and interpeak latencies and amplitude ratio but they are within range, so reference range of this study can be used for future studies in this Wardha region of Central India. PMID:25120971

  18. Reliability of Brainstem Auditory Evoked Potentials (BAEP) Using the Nicolet Pathfinder II.

    DTIC Science & Technology

    1989-06-01

    point for latency measurements ( Chiappa , 1983). The exact origin of the other peaks is still under study, but there is general agreement that the...midbrain ( Chiappa , 1983; Jewett & Williston, 1971; Owens & Davis, 1985; and Spehlman, 1985). These latencies are nearly constant not only within the same...subject across time but also between different subjects (Amadeo & Shagass, 1973; Chiappa , Gladstone & Young, 1979; Edwards, Buchwald, Tanguay & Schwafel

  19. [EEG and brain-stem evoked potentials in 125 recent concussions].

    PubMed

    Geets, W; Louette, N

    1983-12-01

    EEG and ipsi/contralateral BEPs have been recorded in 125 cases of concussion at most 48 h after the cerebral trauma. In 100 cases of minor concussion the temporary loss of consciousness lasted not more than 2 min. In 25 cases of mild concussion, the loss of consciousness lasted until their arrival at the hospital. In minor concussions an abnormal EEG was found in 17% of the cases and in mild concussions, in 56%. The abnormalities of the BEP, more often seen in mild concussions (60%) than in minor concussions (8%), are an increase of interpeak latencies or distorted responses with average to bad reproducibility. The results are discussed.

  20. [Brainstem auditory evoked potentials latencies, by age and sex, among Mexican adult population].

    PubMed

    Aguilar-Madrid, Guadalupe; Torres-Valenzuela, Arturo; Hinojos-Escobar, Wendoly; Cabello-López, Alejandro; Gopar-Nieto, Rodrigo; Ravelo-Cortés, Perla Estela; Haro-García, Luis Cuauhtémoc; Juárez-Pérez, Cuauhtémoc Arturo

    2016-01-01

    Introducción: los potenciales evocados auditivos del tallo cerebral (PEATC) evalúan la vía auditiva central y son una herramienta complementaria de la audiometría tonal para analizar enfermedades auditivas. El objetivo de este estudio fue determinar el tiempo promedio de las latencias de las ondas y los intervalos de los potenciales evocados auditivos en adultos sanos. Métodos: estudio transversal que contó con 196 participantes, de 16 a 65 años de edad normo-oyentes, a quienes se investigaron antecedentes familiares y personales patológicos, se realizó exploración física y se obtuvieron estudios de laboratorio, audiometría tonal e impedanciometría normales, y potenciales evocados auditivos. Resultados: Se estudiaron 107 hombres y 89 mujeres. El promedio de las latencias de las ondas I, III y V e intervalos I-III, III-V y I-V de ambos oídos fueron similares. Los predictores que incrementaron el tiempo de latencia en los modelos de regresión lineal múltiple de las ondas e intervalos fueron el sexo masculino y la edad ≥ 45 años. Conclusiones: la edad y el sexo fueron las variables que mostraron mayor poder estadístico para explicar las diferencias de las latencias en este grupo de personas.

  1. Are hormones psychoactive? Evoked potential investigations in man.

    PubMed

    Saletu, B; Saletu, M; Herrmann, W M; Itil, T M

    1975-08-01

    The somatosensory evoked potential (SEP) of physically and mentally healthy male subjects was recorded before as well as 4 hours after administration of one single dose of placebo, cyproterone acetate (an antiandrogen), and mesterolone (an androgen). Quantitative evaluation of drug-induced changes in SEP latencies and amplitudes, which, when plotted in terms of t-values, result in the so-called "SEP profiles", did not demonstrate any significant alterations after placebo. Contrary to this, cyproterone acetate induced systematic and significant changes characterized by a latency increase in the early peaks and latency decrease in the late peaks of the SEP. Apart from the non-significant amplitude changes, such alterations were previously described by us as typical for drugs of the anxiolytic class. Mesterolone on the other hand, produced a significant latency decrease in the early part and a latency increase in the late part of the evoked response which was found to be typical for the SEP profiles of tricyclic antidepressants. The amplitude did not show any systematic changes. Based on step-wise discriminant analysis of these data we could significantly differentiate both hormones from placebo as well as from each other. A comparative analysis of low and high doses did not yield any significant differences between the two levels. It was concluded that both test substances have psychoactive properties; whereas cyproterone acetate reveals anxiolytic qualities, mesterolone exhibits antidepressant ones. These findings are discussed from the clinical as well as from the neurophysiological point of view.

  2. Vestibular evoked myogenic potentials: past, present and future.

    PubMed

    Rosengren, S M; Welgampola, M S; Colebatch, J G

    2010-05-01

    Since the first description of sound-evoked short-latency myogenic reflexes recorded from neck muscles, vestibular evoked myogenic potentials (VEMPs) have become an important part of the neuro-otological test battery. VEMPs provide a means of assessing otolith function: stimulation of the vestibular system with air-conducted sound activates predominantly saccular afferents, while bone-conducted vibration activates a combination of saccular and utricular afferents. The conventional method for recording the VEMP involves measuring electromyographic (EMG) activity from surface electrodes placed over the tonically-activated sternocleidomastoid (SCM) muscles. The "cervical VEMP" (cVEMP) is thus a manifestation of the vestibulo-collic reflex. However, recent research has shown that VEMPs can also be recorded from the extraocular muscles using surface electrodes placed near the eyes. These "ocular VEMPs" (oVEMPs) are a manifestation of the vestibulo-ocular reflex. Here we describe the historical development and neurophysiological properties of the cVEMP and oVEMP and provide recommendations for recording both reflexes. While the cVEMP has documented diagnostic utility in many disorders affecting vestibular function, relatively little is known as yet about the clinical value of the oVEMP. We therefore outline the known cVEMP and oVEMP characteristics in common central and peripheral disorders encountered in neuro-otology clinics.

  3. Maximally reliable spatial filtering of steady state visual evoked potentials.

    PubMed

    Dmochowski, Jacek P; Greaves, Alex S; Norcia, Anthony M

    2015-04-01

    Due to their high signal-to-noise ratio (SNR) and robustness to artifacts, steady state visual evoked potentials (SSVEPs) are a popular technique for studying neural processing in the human visual system. SSVEPs are conventionally analyzed at individual electrodes or linear combinations of electrodes which maximize some variant of the SNR. Here we exploit the fundamental assumption of evoked responses--reproducibility across trials--to develop a technique that extracts a small number of high SNR, maximally reliable SSVEP components. This novel spatial filtering method operates on an array of Fourier coefficients and projects the data into a low-dimensional space in which the trial-to-trial spectral covariance is maximized. When applied to two sample data sets, the resulting technique recovers physiologically plausible components (i.e., the recovered topographies match the lead fields of the underlying sources) while drastically reducing the dimensionality of the data (i.e., more than 90% of the trial-to-trial reliability is captured in the first four components). Moreover, the proposed technique achieves a higher SNR than that of the single-best electrode or the Principal Components. We provide a freely-available MATLAB implementation of the proposed technique, herein termed "Reliable Components Analysis".

  4. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    EPA Science Inventory

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats

    " NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo.

    " The pattern evok...

  5. AMPD2 Regulates GTP Synthesis and is Mutated in a Potentially-Treatable Neurodegenerative Brainstem Disorder

    PubMed Central

    Akizu, Naiara; Cantagrel, Vincent; Schroth, Jana; Cai, Na; Vaux, Keith; McCloskey, Douglas; Naviaux, Robert K.; Vleet, Jeremy Van; Fenstermaker, Ali G.; Silhavy, Jennifer L.; Scheliga, Judith S.; Toyama, Keiko; Morisaki, Hiroko; Sonmez, Fatma Mujgan; Celep, Figen; Oraby, Azza; Zaki, Maha S.; Al-Baradie, Raidah; Faqeih, Eissa; Saleh, Mohammad; Spencer, Emily; Rosti, Rasim Ozgur; Scott, Eric; Nickerson, Elizabeth; Gabriel, Stacey; Morisaki, Takayuki; Holmes, Edward W.; Gleeson, Joseph G.

    2013-01-01

    Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acids synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a new distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH), due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a new, potentially treatable early-onset neurodegenerative disease. PMID:23911318

  6. The I' potential of the human auditory brainstem response to paired click stimuli.

    PubMed

    Davis-Gunter, M J; Löwenheim, H; Gopal, K V; Moore, E J

    2001-01-01

    When stimulated with an appropriate stimulus, the hair cells of the organ of Corti depolarize, causing the release of a neurotransmitter substance, which excites afferent VIIIth nerve dendrites. It is reasonable to hypothesize that excitatory postsynaptic potentials (EPSPs) generated by the dendrites of the auditory nerve in turn initiate a compound action potential (CAP). The EPSP is thought to be the generator potential for the CAP, and may be recorded in auditory brainstem responses (ABRs) as the I' potential. Determining the anatomical origin of I' may enhance the sensitivity of the ABR technique in hair cell/dendrite/auditory nerve evaluations. Whether I' is of sensory or of neural origin is equivocal, and therefore I' is not well understood. To investigate this dilemma, ABRs were recorded from human subjects using standard and paired-click stimuli, and using subtraction methods to generate a derived ABR. Two early peaks, designated as I degree and I', occurred before wave I in the derived ABR. It was hypothesized that peaks I degrees and I' represent the summating potential and the generator potential, generated by the cochlea and VIIIth nerve dendrites, respectively.

  7. Visual evoked potentials in neuromyelitis optica and its spectrum disorders.

    PubMed

    Ringelstein, Marius; Kleiter, Ingo; Ayzenberg, Ilya; Borisow, Nadja; Paul, Friedemann; Ruprecht, Klemens; Kraemer, Markus; Cohn, Eva; Wildemann, Brigitte; Jarius, Sven; Hartung, Hans-Peter; Aktas, Orhan; Albrecht, Philipp

    2014-04-01

    Optic neuritis (ON) is a key feature of neuromyelitis optica (NMO). Recently, NMO patients of predominantly Afro-Brazilian origin were evaluated by visual evoked potentials (VEPs) and showed marked amplitude reductions. Here, we analyzed VEPs in a predominantly Caucasian cohort, consisting of 43 patients with definite NMO, 18 with anti-aquaporin (AQP) 4 antibody-seropositive NMO spectrum disorders and 61 matched healthy controls. We found reduced amplitudes in only 12.3%, prolonged latencies in 41.9% and a lack of response in 14.0% of NMO eyes. Delayed P100 latencies in eyes without prior ON suggested this was a subclinical affection. The data indicate heterogenous patterns in NMO, warranting further investigation.

  8. Visual evoked potential findings in Behcet's disease without neurological manifestations.

    PubMed

    Anlar, Omer; Akdeniz, Necmettin; Tombul, Temel; Calka, Omer; Bilgili, Serap G

    2006-03-01

    Behçet's disease (BD) is a chronic, recurrent multisystem inflammatory disorder firstly described by Turkish dermatologist Dr. Hulusi Behçet in 1937. The classic triad consists of recurrent oral and genital ulcerations and uveitis. The article presents the value of visual evoked potential findings of a series of 44 patients with BD without neurological manifestations seen at the Medical Hospital in Neurology and Dermatology clinics over the past 8 years. The mean latency value of positive peak P100 in BD patients was significantly delayed compared to that of control subjects (patients's mean: 105.6 ms in right eye and 107.7 ms in left eye; control subject's mean: 101.4 ms in right eye and 101.7 ms in left eye).

  9. Identification of diagnostic evoked response potential segments in Alzheimer's disease.

    PubMed

    Benvenuto, James; Jin, Yi; Casale, Malcolm; Lynch, Gary; Granger, Richard

    2002-08-01

    Evoked response potentials (ERPs) to brief flashes of light were analyzed for constituent features that could be used to distinguish individuals with Alzheimer's disease (AD, n = 15) from matched control subjects (n = 17). Statistical k nearest-neighbor methods distinguished AD from control with a maximum sensitivity of 29% and false alarm rate of 12%. The comparable sensitivity/false-alarm values for a statistical projection pursuit method and an extended projection pursuit method, which selectively identify discriminative features for classification, were 75%/18% and 100%/6%, respectively. The results demonstrate that combinations of selected ERP time segments across different electrodes contain signal features that discriminate AD from control subjects with high sensitivity and specificity.

  10. Transient visually evoked potentials to sinusoidal gratings in optic neuritis.

    PubMed Central

    Plant, G T

    1983-01-01

    Transient visually evoked potentials (VEPs) to sinusoidal gratings over a range of spatial frequencies have been recorded in cases of optic neuritis. The use of the response to pattern onset in addition to the response to pattern reversal extended the range to higher spatial frequencies by up to two octaves. There was an increase in VEP delay and a greater degree of discrimination from a control group at higher spatial frequencies. This finding is discussed in the light of previous reports of luminance and checkerboard VEPs in demyelinating optic nerve disease. An attempt is made to relate amplitude changes in various VEP components to contrast sensitivity measurements in this group of patients. PMID:6663312

  11. Laser-evoked potentials in primary headaches and cranial neuralgias.

    PubMed

    de Tommaso, Marina

    2008-09-01

    Using neurophysiological methods to explore nociceptive pathways may improve knowledge of the functional changes subtending pain processing in the different forms of headache and facial pain. Laser-evoked potentials (LEPs) are a reliable neurophysiological assay for the clinical assessment of pain syndromes. Reduced amplitude of LEPs seems to characterize trigeminal neuralgia and painful temporomandibular disorders, suggesting the neuropathic origin of pain. In tension-type headache, as well as in fibromyalgia, enhanced pericranial LEP amplitude suggests the psychogenic origin of pain. In migraine, a normal amplitude of basal LEPs with reduced habituation and altered attentive modulation seems to express a general dysfunction of cortical pain processing, which may also contribute, other than to predispose, to the persistence of migraine. LEPs may be employed in the clinical evaluation of the neurophysiological and psychophysiological aspects of pain in the different forms of headaches and facial pain to improve the therapeutic approach and provide an objective measure of treatment efficacy.

  12. Visual evoked potentials and selective attention to points in space

    NASA Technical Reports Server (NTRS)

    Van Voorhis, S.; Hillyard, S. A.

    1977-01-01

    Visual evoked potentials (VEPs) were recorded to sequences of flashes delivered to the right and left visual fields while subjects responded promptly to designated stimuli in one field at a time (focused attention), in both fields at once (divided attention), or to neither field (passive). Three stimulus schedules were used: the first was a replication of a previous study (Eason, Harter, and White, 1969) where left- and right-field flashes were delivered quasi-independently, while in the other two the flashes were delivered to the two fields in random order (Bernoulli sequence). VEPs to attended-field stimuli were enhanced at both occipital (O2) and central (Cz) recording sites under all stimulus sequences, but different components were affected at the two scalp sites. It was suggested that the VEP at O2 may reflect modality-specific processing events, while the response at Cz, like its auditory homologue, may index more general aspects of selective attention.

  13. Spatial coincidence modulates interaction between visual and somatosensory evoked potentials.

    PubMed

    Schürmann, Martin; Kolev, Vasil; Menzel, Kristina; Yordanova, Juliana

    2002-05-07

    The time course of interaction between concurrently applied visual and somatosensory stimulation with respect to evoked potentials (EPs) was studied. Visual stimuli, either in the left or right hemifield, and electric stimuli to the left wrist were delivered either alone or simultaneously. Visual and somatosensory EPs were summed and compared to bimodal EPs (BiEP, response to actual combination of both modalities). Temporal coincidence of stimuli lead to sub-additive or over-additive amplitudes in BiEPs in several time windows between 75 and 275 ms. Additional effects of spatial coincidence (left wrist with left hemifield) were found between 75 and 300 ms and beyond 450 ms. These interaction effects hint at a temporo-spatial pattern of multiple brain areas participating in the process of multimodal integration.

  14. Auditory Evoked Potential Response and Hearing Loss: A Review

    PubMed Central

    Paulraj, M. P; Subramaniam, Kamalraj; Yaccob, Sazali Bin; Adom, Abdul H. Bin; Hema, C. R

    2015-01-01

    Hypoacusis is the most prevalent sensory disability in the world and consequently, it can lead to impede speech in human beings. One best approach to tackle this issue is to conduct early and effective hearing screening test using Electroencephalogram (EEG). EEG based hearing threshold level determination is most suitable for persons who lack verbal communication and behavioral response to sound stimulation. Auditory evoked potential (AEP) is a type of EEG signal emanated from the brain scalp by an acoustical stimulus. The goal of this review is to assess the current state of knowledge in estimating the hearing threshold levels based on AEP response. AEP response reflects the auditory ability level of an individual. An intelligent hearing perception level system enables to examine and determine the functional integrity of the auditory system. Systematic evaluation of EEG based hearing perception level system predicting the hearing loss in newborns, infants and multiple handicaps will be a priority of interest for future research. PMID:25893012

  15. The visual evoked potential in acute primary angle closure glaucoma.

    PubMed Central

    Mitchell, K. W.; Wood, C. M.; Howe, J. W.; Church, W. H.; Smith, G. T.; Spencer, S. R.

    1989-01-01

    Visual evoked potentials (VEPs) were elicited from 29 patients who had experienced a previous attack of acute primary angle closure glaucoma. The VEPs were shown to be abnormal in at least one of the measures (latency, amplitude, contrast threshold, or slope) in 72.4% of affected eyes, whereas only 41.4% indicated obvious optic nerve damage. It is notable that 48.1% of fellow eyes with no (known) history of acute pressure rise also showed some form of VEP abnormality. The possible pathophysiological mechanisms operating in both affected and fellow eyes are discussed. It is concluded that, despite the presence of possible artefactual influences, the results probably reflect the presence of primary angle closure glaucoma. PMID:2751978

  16. BAER - brainstem auditory evoked response

    MedlinePlus

    ... be a sign of hearing loss , multiple sclerosis , acoustic neuroma , or stroke. Abnormal results may also be ... PA: Elsevier Saunders; 2016:chap 34. Read More Acoustic neuroma Central pontine myelinolysis Hearing loss Multiple sclerosis ...

  17. Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.

    PubMed

    Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.

  18. Mapping human brain networks with cortico-cortical evoked potentials.

    PubMed

    Keller, Corey J; Honey, Christopher J; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D

    2014-10-05

    The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex.

  19. Mapping human brain networks with cortico-cortical evoked potentials

    PubMed Central

    Keller, Corey J.; Honey, Christopher J.; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D.

    2014-01-01

    The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex. PMID:25180306

  20. Visual Evoked Potentials in Children Prenatally Exposed to Methylmercury

    PubMed Central

    Yorifuji, Takashi; Murata, Katsuyuki; Bjerve, Kristian S.; Choi, Anna L; Weihe, Pal; Grandjean, Philippe

    2013-01-01

    Prenatal exposure to methylmercury can cause both neurobehavioral deficits and neurophysiological changes. However, evidence of neurotoxic effects within the visual nervous system is inconsistent, possibly due to incomplete statistical adjustment for beneficial nutritional factors. We evaluated the effect of prenatal methylmercury exposure on visual evoked potential (VEP) latencies in Faroese children with elevated prenatal methylmercury exposure. A cohort of 182 singleton term births was assembled in the Faroe Islands during 1994–1995. At age 7 years, VEP tracings were obtained from 139 cohort subjects after exclusion of subjects with abnormal vision conditions. We used multiple regression analysis to evaluate the association of mercury concentrations in cord blood and maternal hair at parturition with VEP latencies after adjustment for potential confounders that included the cord-serum phospholipid concentration of n-3 polyunsaturated fatty acids (PUFAs) and the duration of breastfeeding. Unadjusted correlations between mercury exposure and VEP latencies were equivocal. Multiple regression models showed that increased mercury concentrations, especially in maternal hair, were associated with delayed latencies for VEP peak N145. After covariate adjustment, a delay of 2.22 ms (p=0.02) was seen for each doubling of the mercury concentration in maternal hair. In agreement with neuropsychological findings, the present study suggests that prenatal methylmercury exposure may have an adverse effect on VEP findings despite the absence of clinical toxicity to the visual system. However, this association was apparent only after adjustment for n-3 PUFA status. PMID:23548974

  1. Laser Evoked Potentials in Early and Presymptomatic Huntington's Disease

    PubMed Central

    de Tommaso, Marina; Franco, Giovanni; Ricci, Katia; Montemurno, Anna; Sciruicchio, Vittorio

    2016-01-01

    Pain was rarely studied in Huntington's disease (HD). We presently aimed to extend our previous study on pain pathways functions by laser evoked potentials (LEPs) to a larger cohort of early unmedicated HD patients and a small group of presymptomatic HD (PHD) subjects. Forty-two early HD patients, 10 PHD patients, and 64 controls were submitted to LEPs by right-hand stimulation. Two series of 30 laser stimuli were delivered, and artifact-free responses were averaged. The N1, N2, and P2 latencies were significantly increased and the N2P2 amplitude significantly reduced in HD patients compared to controls. In the HD group, the LEPs abnormalities correlated with functional decline. PHD subjects showed a slight and insignificant increase in LEPs latencies, which was inversely correlated with the possible age of HD clinical onset. Data of the present study seem to suggest that the functional state of nociceptive pathways as assessed by LEPs may be a potential biomarker of disease onset and progression. The assessment of pain symptoms in premanifest and manifest HD may also open a new scenario in terms of subtle disturbances of pain processing, which may have a role in the global burden of the disease. PMID:27087746

  2. An Intelligent Decision System for Intraoperative Somatosensory Evoked Potential Monitoring.

    PubMed

    Fan, Bi; Li, Han-Xiong; Hu, Yong

    2016-02-01

    Somatosensory evoked potential (SEP) is a useful, noninvasive technique widely used for spinal cord monitoring during surgery. One of the main indicators of a spinal cord injury is the drop in amplitude of the SEP signal in comparison to the nominal baseline that is assumed to be constant during the surgery. However, in practice, the real-time baseline is not constant and may vary during the operation due to nonsurgical factors, such as blood pressure, anaesthesia, etc. Thus, a false warning is often generated if the nominal baseline is used for SEP monitoring. In current practice, human experts must be used to prevent this false warning. However, these well-trained human experts are expensive and may not be reliable and consistent due to various reasons like fatigue and emotion. In this paper, an intelligent decision system is proposed to improve SEP monitoring. First, the least squares support vector regression and multi-support vector regression models are trained to construct the dynamic baseline from historical data. Then a control chart is applied to detect abnormalities during surgery. The effectiveness of the intelligent decision system is evaluated by comparing its performance against the nominal baseline model by using the real experimental datasets derived from clinical conditions.

  3. Polar bear Ursus maritimus hearing measured with auditory evoked potentials.

    PubMed

    Nachtigall, Paul E; Supin, Alexander Y; Amundin, Mats; Röken, Bengt; Møller, Thorsten; Mooney, T Aran; Taylor, Kristen A; Yuen, Michelle

    2007-04-01

    While there has been recent concern about the effects of sound on marine mammals, including polar bears, there are no data available measuring the hearing of any bear. The in-air hearing of three polar bears was measured using evoked auditory potentials obtained while tone pips were played to three individually anaesthetized bears at the Kolmården Djurpark. Hearing was tested in half-octave steps from 1 to 22.5 kHz. Measurements were not obtainable at 1 kHz and best sensitivity was found in the range from 11.2-22.5 kHz. Considering the tone pips were short and background noise measurements were available, absolute measurements were estimated based on an assumed mammalian integration time of 300 ms. These data show sensitive hearing in the polar bear over a wide frequency range and should cause those concerned with the introduction of anthropogenic noise into the polar bear's environment to operate with caution.

  4. A Subspace Method for Dynamical Estimation of Evoked Potentials

    PubMed Central

    Georgiadis, Stefanos D.; Ranta-aho, Perttu O.; Tarvainen, Mika P.; Karjalainen, Pasi A.

    2007-01-01

    It is a challenge in evoked potential (EP) analysis to incorporate prior physiological knowledge for estimation. In this paper, we address the problem of single-channel trial-to-trial EP characteristics estimation. Prior information about phase-locked properties of the EPs is assesed by means of estimated signal subspace and eigenvalue decomposition. Then for those situations that dynamic fluctuations from stimulus-to-stimulus could be expected, prior information can be exploited by means of state-space modeling and recursive Bayesian mean square estimation methods (Kalman filtering and smoothing). We demonstrate that a few dominant eigenvectors of the data correlation matrix are able to model trend-like changes of some component of the EPs, and that Kalman smoother algorithm is to be preferred in terms of better tracking capabilities and mean square error reduction. We also demonstrate the effect of strong artifacts, particularly eye blinks, on the quality of the signal subspace and EP estimates by means of independent component analysis applied as a prepossessing step on the multichannel measurements. PMID:18288257

  5. Long-latency evoked potentials to irrelevant, deviant stimuli

    NASA Technical Reports Server (NTRS)

    Snyder, E.; Hillyard, S. A.

    1976-01-01

    Occasional shifts of loudness in a repetitive train of clicks elicited a late-positive wave (P3a) in nonattending subjects which peaked at a mean latency of 258 msec and had a frontocentral scalp distribution; P3a was typically preceded by an 'N2' component at 196 msec. The P3a wave was distinguishable from the longer-latency (378 msec) parietocentrally distributed 'P3b' wave that was evoked by the same stimulus in an actively attending subject, thus confirming the findings of Squires et al. (1975). Infrequently presented single sounds did not produce large or consistent N2-P3a components; the critical condition for the generation of an N2-P3a wave seemed to be that the infrequent sounds represent a deviation (intensity increment or decrement) from a repetitive background. Furthermore, increasing the repetition rate of the background clicks drastically reduced N1-P2 amplitude but had little effect on the amplitude of N2-P3a. This suggests that N2-P3a is not simply a delayed N1-P2 'vertex potential', but rather reflects the operation of a 'mismatch' detector, which registers deviations from an ongoing auditory background.

  6. Visual evoked potentials in infants exposed to methadone in utero.

    PubMed

    McGlone, L; Mactier, H; Hamilton, R; Bradnam, M S; Boulton, R; Borland, W; Hepburn, M; McCulloch, D L

    2008-09-01

    We investigated the effects of maternal drug misuse on neonatal visual evoked potentials (VEPs). Flash VEPs were recorded within 4 days of birth from 21 term infants of mothers misusing drugs and prescribed substitute methadone and 20 controls. Waveforms were classified as typical, atypical, immature or non-detectable, and amplitude and latencies were measured. VEPs from drug-exposed infants were less likely to be of typical waveform and more likely to be immature or non-detectable (p<0.01) than those of control infants. They were also smaller in amplitude (median 10.8 vs 24.4 microV, p<0.001). VEPs of drug-exposed infants had matured after 1 week but remained of lower amplitude than VEPs of newborn controls (p<0.01) and were non-detectable in 15%. Flash VEPs differ between maternal drug-exposed and non-drug-exposed newborns. Future research should address the specific effects of maternal methadone and/or other illicit drug misuse on infant VEPs, and associations between neonatal VEPs and subsequent visual development.

  7. Intraoperative monitoring of flash visual evoked potential under general anesthesia.

    PubMed

    Hayashi, Hironobu; Kawaguchi, Masahiko

    2017-04-01

    In neurosurgical procedures that may cause visual impairment in the intraoperative period, the monitoring of flash visual evoked potential (VEP) is clinically used to evaluate visual function. Patients are unconscious during surgery under general anesthesia, making flash VEP monitoring useful as it can objectively evaluate visual function. The flash stimulus input to the retina is transmitted to the optic nerve, optic chiasm, optic tract, lateral geniculate body, optic radiation (geniculocalcarine tract), and visual cortical area, and the VEP waveform is recorded from the occipital region. Intraoperative flash VEP monitoring allows detection of dysfunction arising anywhere in the optic pathway, from the retina to the visual cortex. Particularly important steps to obtain reproducible intraoperative flash VEP waveforms under general anesthesia are total intravenous anesthesia with propofol, use of retinal flash stimulation devices using high-intensity light-emitting diodes, and a combination of electroretinography to confirm that the flash stimulus has reached the retina. Relatively major postoperative visual impairment can be detected by intraoperative decreases in the flash VEP amplitude.

  8. Vestibular evoked myogenic potentials in patients with BPPV

    PubMed Central

    Korres, Stavros; Gkoritsa, Eleni; Giannakakou-Razelou, Dimitra; Yiotakis, Ioannis; Riga, Maria; Nikolpoulos, Thomas P.

    2011-01-01

    Summary Background The probable cause of Benign Paroxysmal Positional Vertigo (BPPV) is a degeneration of the oto lithic organs (utricle and saccule). The aim of the study is to find possible alterations in Vestibular Evoked Myogenic Potentials (VEMP) recordings in BPPV patients, because the saccule is part of the VEMP pathway. Material/Methods 27 BPPV patients (24 unilateral and 3 bilateral) aged 20 to 70 years and 30 healthy age matched controls. BPPV was diagnosed by the upbeating geotropic nystagmus found in the supine position with the head overextended towards one side. The subjects were investigated with pure tone audiometry, bi-thermal caloric test with electronystagmographic (ENG) recording, and VEMP recording. Results P1 latency and N1 latency did not present any statistical difference between control ears and affected ears of the BPPV population. The percentage of abnormal VEMP in the BPPV population was statistically higher than in the control ears (p<0.005). No significant relationship could be shown between the occurrence of Canal Paresis and abnormal VEMP. No relationship was found between the side (right or left ear) where BPPV appeared clinically and the side where abnormal VEMP was registered. Conclusions BPPV is a clinical entity associated with increased occurrence of abnormal VEMP recordings, possibly due to degeneration of the saccular macula, which is part of the neural VEMP pathway. PMID:21169909

  9. Flash visual evoked potentials in diurnal birds of prey

    PubMed Central

    Biaggi, Fabio; Di Ianni, Francesco; Dodi, Pier Luigi; Quintavalla, Fausto

    2016-01-01

    The objective of this pilot study was to evaluate the feasibility of Flash Visual Evoked Potentials (FVEPs) testing in birds of prey in a clinical setting and to describe the protocol and the baseline data for normal vision in this species. FVEP recordings were obtained from 6 normal adult birds of prey: n. 2 Harris’s Hawks (Parabuteo unicinctus), n. 1 Lanner Falcon (Falco biarmicus), n. 2 Gyrfalcons (Falco rusticolus) and n. 1 Saker Falcon (Falco cherrug). Before carrying out VEP tests, all animals underwent neurologic and ophthalmic routine examination. Waveforms were analysed to identify reproducible peaks from random variation of baseline. At least three positive and negative peaks were highlighted in all tracks with elevated repeatability. Measurements consisted of the absolute and relative latencies of these peaks (P1, N1, P2, N2, P3, and N3) and their peak-to-peak amplitudes. Both the peak latency and wave morphology achieved from normal animals were similar to those obtained previously in other animal species. This test can be easily and safely performed in a clinical setting in birds of prey and could be useful for an objective assessment of visual function. PMID:27547536

  10. Pattern Visual Evoked Potential Changes in Diabetic Patients without Retinopathy

    PubMed Central

    Sungur, Gulten; Yakin, Mehmet; Unlu, Nurten; Balta, Oyku Bezen; Ornek, Firdevs

    2017-01-01

    Purpose. To assess the different check sizes of pattern visual evoked potential (PVEP) in diabetic patients without retinopathy according to HbA1c levels and diabetes duration. Methods. Fifty-eight eligible patients with type 2 diabetes mellitus and 26 age- and sex-matched healthy controls were included in the study. Only the right eye of each patient was analyzed. All of the patients underwent a comprehensive ophthalmic examination, and the PVEPs were recorded. Results. There was a statistically significant difference in P100 latency in 1-degree check size and in N135 latency in 2-degree check size between controls and patient groups which have different HbA1c levels. There were statistically significant, positive, and weak correlations with diabetes duration and P100 latency in 7-minute and 15-minute check sizes and N135 latency in 15-minute check size. Conclusions. It was showed that there were prolongations in P100 latency only in 1-degree check size and in N135 only in 2-degree check size in diabetic patients without retinopathy. There was statistically significant correlation between diabetes duration and P100 and N135 latencies in different check sizes. PMID:28392940

  11. Cortical processing of human gut sensation: an evoked potential study.

    PubMed

    Hobday, David I; Hobson, Anthony R; Sarkar, Sanchoy; Furlong, Paul L; Thompson, David G; Aziz, Qasim

    2002-08-01

    The rectum has a unique physiological role as a sensory organ and differs in its afferent innervation from other gut organs that do not normally mediate conscious sensation. We compared the central processing of human esophageal, duodenal, and rectal sensation using cortical evoked potentials (CEP) in 10 healthy volunteers (age range 21-34 yr). Esophageal and duodenal CEP had similar morphology in all subjects, whereas rectal CEP had two different but reproducible morphologies. The rectal CEP latency to the first component P1 (69 ms) was shorter than both duodenal (123 ms; P = 0.008) and esophageal CEP latencies (106 ms; P = 0.004). The duodenal CEP amplitude of the P1-N1 component (5.0 microV) was smaller than that of the corresponding esophageal component (5.7 microV; P = 0.04) but similar to that of the corresponding rectal component (6.5 microV; P = 0.25). This suggests that rectal sensation is either mediated by faster-conducting afferent pathways or that there is a difference in the orientation or volume of cortical neurons representing the different gut organs. In conclusion, the physiological and anatomic differences between gut organs are reflected in differences in the characteristics of their afferent pathways and cortical processing.

  12. Intraoperative monitoring of flash visual evoked potential under general anesthesia

    PubMed Central

    Hayashi, Hironobu

    2017-01-01

    In neurosurgical procedures that may cause visual impairment in the intraoperative period, the monitoring of flash visual evoked potential (VEP) is clinically used to evaluate visual function. Patients are unconscious during surgery under general anesthesia, making flash VEP monitoring useful as it can objectively evaluate visual function. The flash stimulus input to the retina is transmitted to the optic nerve, optic chiasm, optic tract, lateral geniculate body, optic radiation (geniculocalcarine tract), and visual cortical area, and the VEP waveform is recorded from the occipital region. Intraoperative flash VEP monitoring allows detection of dysfunction arising anywhere in the optic pathway, from the retina to the visual cortex. Particularly important steps to obtain reproducible intraoperative flash VEP waveforms under general anesthesia are total intravenous anesthesia with propofol, use of retinal flash stimulation devices using high-intensity light-emitting diodes, and a combination of electroretinography to confirm that the flash stimulus has reached the retina. Relatively major postoperative visual impairment can be detected by intraoperative decreases in the flash VEP amplitude. PMID:28367282

  13. Does speaker presentation affect auditory evoked potential thresholds in goldfish?

    PubMed

    Ladich, Friedrich; Wysocki, Lidia Eva

    2009-11-01

    The auditory evoked potential (AEP) recording technique has proved to be a very versatile and successful approach in studying auditory sensitivities in fishes. The AEP protocol introduced by Kenyon, Ladich and Yan in 1998 using an air speaker with the fish positioned at the water surface gave auditory thresholds in goldfish very close to behavioural values published before. This approach was subsequently modified by several laboratories, raising the question whether speaker choice (air vs. underwater) or the position of subjects affect auditory threshold determination. To answer these questions, the hearing specialist Carassius auratus was measured using an air speaker, an underwater speaker and alternately positioning the fish directly at or 5cm below the water surface. Mean hearing thresholds obtained using these 4 different setups varied by 5.6dB, 3.7dB and 4dB at 200Hz, 500Hz and 1000Hz, respectively. Accordingly, pronounced differences in AEP thresholds in goldfish measured in different laboratories reflect other factors than speaker used and depth of the test subjects, namely variations in threshold definition, background noise, population differences, or calibration errors.

  14. A model of evoked potentials in spinal cord stimulation.

    PubMed

    Laird, James H; Parker, John L

    2013-01-01

    Electrical stimulation of the spinal cord is used for pain relief, and is in use for hundreds of thousands of cases of chronic neuropathic pain. In spinal cord stimulation (SCS), an array of electrodes is implanted in the epidural space of the cord, and electrical currents are used to stimulate nearby nerve fibers, believed to be in the dorsal columns of the cord. Despite the long history of SCS for pain, stretching over 30 years, its underlying mechanisms are poorly understood, and the therapy has evolved very little in this time. Recent work has resulted in the ability to record complex compound action potential waveforms during therapy. These waveforms reflect the neural activity evoked by the therapeutic stimulation, and reveal information about the underlying physiological processes. We aim to simulate these processes to the point of reproducing these recordings. We establish a hybrid model of SCS, composed of a three dimensional electrical model and a neural model. The 3D model describes the geometry of the spinal regions under consideration, and the electric fields that result from any flow of current within them. The neural model simulates the behaviour of spinal nerve fibers, which are the target tissues of the therapy. The combination of these two models is used to predict which fibers may be recruited by a given stimulus, as well as to predict the ensuing recorded waveforms. The model is shown to reproduce major features of spinal compound action potentials, such as threshold and propagation behaviour, which have been observed in experiments. The model's coverage of processes from stimulation to recording allows it to be compared side-by-side with actual experimental data, and will permit its refinement to a substantial level of accuracy.

  15. [Origin of olfactory and rhinosensory evoked cortical potentials in diseases of the central nervous system].

    PubMed

    Westhofen, M; Herberhold, C; Thayssen, G; Jend, H H

    1985-08-01

    This is the first report to be published on olfactory evoked potentials in patients with well-defined lesions of the central nervous system and the trigeminal nerve. Absence of olfactory evoked potentials is seen in post-central and parietotemporal lesions. The first peak of the so-called olfactory evoked twin potential is absent in lesions of the basal nuclei and sectioning of the trigeminal or ophthalmic nerve, whereas there is no second peak in subcortico-frontal and cortico-temporal lesions. Tumours of the corpus callosum and sectioning of the maxillary and mandibular nerves do not disturb the olfactory evoked potentials. The anatomically different localisation and the functional synergism of the olfactory and trigeminal systems in the perception of odours and the processing of olfactory evoked potentials are pointed out.

  16. Visual function with acupuncture tested by visual evoked potential.

    PubMed

    Sagara, Yoshiko; Fuse, Nobuo; Seimiya, Motohiko; Yokokura, Syunji; Watanabe, Kei; Nakazawa, Toru; Kurusu, Masayuki; Seki, Takashi; Tamai, Makoto

    2006-07-01

    Visual evoked potential (VEP) testing is used frequently and is an important ophthalmologic physiological test to examine visual functions objectively. The VEP is a complicated waveform consisting of negative waveform named N75 and N135, and positive waveform named P100. Delayed P100 latency and greatly attenuated amplitude on VEP are known characteristics for diagnosing optic nerve disease. Acupuncture has been used to treat wide clinical symptoms with minimal side effects. The confirmation of the efficacy of acupuncture generally relies on subjective symptoms. There is not much scientific evidence supporting the acupuncture treatments for eye diseases up to today. However, the VEP test can evaluate objectively and numerically the efficacy of the treatment by the acupuncture. We analyzed 19 healthy subjects (38 eyes). The P100 latencies in the group of less than 101.7 msec (total average) before acupuncture stimulations were not different than those after treatment (98.2 +/- 3.0 msec, 98.2 +/- 4.0 msec, respectively, p = 0.88, n = 17), but the latencies in those subjects with longer or equal to 101.7 msec were statistically different after acupuncture (104.6 +/- 2.8 msec, 101.9 +/- 3.7 msec, respectively, p = 0.006, n = 21). These results show that the acupuncture stimulation contributes to the P100 latencies of pattern reversal (PR)-VEP to some subjects who have delayed latencies, and this electrophysiological method is a valuable technique in monitoring the effectiveness of acupuncture therapy in the improvements of visual functions. The purpose of this study is to evaluate the physiological effects by acupuncture stimulations using PR-VEP in normal subjects.

  17. Predicting perception in noise using cortical auditory evoked potentials.

    PubMed

    Billings, Curtis J; McMillan, Garnett P; Penman, Tina M; Gille, Sun Mi

    2013-12-01

    Speech perception in background noise is a common challenge across individuals and health conditions (e.g., hearing impairment, aging, etc.). Both behavioral and physiological measures have been used to understand the important factors that contribute to perception-in-noise abilities. The addition of a physiological measure provides additional information about signal-in-noise encoding in the auditory system and may be useful in clarifying some of the variability in perception-in-noise abilities across individuals. Fifteen young normal-hearing individuals were tested using both electrophysiology and behavioral methods as a means to determine (1) the effects of signal-to-noise ratio (SNR) and signal level and (2) how well cortical auditory evoked potentials (CAEPs) can predict perception in noise. Three correlation/regression approaches were used to determine how well CAEPs predicted behavior. Main effects of SNR were found for both electrophysiology and speech perception measures, while signal level effects were found generally only for speech testing. These results demonstrate that when signals are presented in noise, sensitivity to SNR cues obscures any encoding of signal level cues. Electrophysiology and behavioral measures were strongly correlated. The best physiological predictors (e.g., latency, amplitude, and area of CAEP waves) of behavior (SNR at which 50 % of the sentence is understood) were N1 latency and N1 amplitude measures. In addition, behavior was best predicted by the 70-dB signal/5-dB SNR CAEP condition. It will be important in future studies to determine the relationship of electrophysiology and behavior in populations who experience difficulty understanding speech in noise such as those with hearing impairment or age-related deficits.

  18. Motor evoked potentials in unilateral lingual paralysis after monohemispheric ischaemia

    PubMed Central

    Muellbacher, W.; Artner, C.; Mamoli, B.

    1998-01-01

    OBJECTIVES—The occurrence of a lingual paralysis after unilateral upper motor neuron lesions is an infrequent clinical phenomenon, and the underlying pathophysiological mechanisms are poorly understood. We studied the cortical motor representations of ipsilateral and contralateral lingual muscles in healthy controls and in a selected group of stroke patients, to clarify the variable occurrence of a lingual paralysis after recent monohemispheric ischaemia.
METHODS—A special bipolar surface electrode was used to record the ipsilateral and contralateral compound muscle action potentials (CMAPs) from the lingual muscles after transcranial magnetic stimulation (TMS) of the human motor cortex and peripheral electrical stimulation (PES) of the hypoglossal nerve medial to the angle of the jaw. Four patients with a lingual paralysis (group 1) and four patients with symmetric lingual movements (group 2) after monohemispheric first ever stroke were studied and compared with 40 healthy controls.
RESULTS—In controls, TMS of either hemisphere invariably produces CAMPs in the ipsilateral and contralateral lingual muscles, elicited through crossed and uncrossed central motor pathways, respectively. In the 40 healthy controls, TMS of either hemisphere elicited CMAPs of significantly greater amplitudes and shorter onset latencies from the contralateral muscles compared with the ipsilateral responses (p<0.0001). In the patient groups, TMS of the affected hemisphere failed to evoke any CMAP from either lingual side; TMS of the unsevered hemisphere always produced normal ipsilateral and contralateral responses, irrespective of whether the ipsilateral muscles were paralysed or not.
CONCLUSIONS—Bilateral crossed and uncrossed corticonuclear projections are invariably existent in humans. After unilateral interruption of these pathways, some people do exhibit a lingual paralysis whereas others do not. The development of a central lingual paralysis is most likely dependent on

  19. Diagnostic accuracy of laser evoked potentials in diabetic neuropathy.

    PubMed

    Di Stefano, G; La Cesa, S; Leone, C; Pepe, A; Galosi, E; Fiorelli, M; Valeriani, M; Lacerenza, M; Pergolini, M; Biasiotta, A; Cruccu, G; Truini, A

    2017-03-04

    Although the most widely agreed neurophysiological tool for investigating small fibre damage is laser evoked potential (LEP) recording, no study has documented its diagnostic accuracy. In this clinical, neurophysiological and skin biopsy study we collected age-corrected LEP normative ranges, verified the association of LEPs with pinprick sensory disturbances in the typical diabetic mixed-fibre polyneuropathy and assessed the sensitivity and specificity of LEPs in diabetic small-fibre neuropathy.From 288 LEP recordings from the face, hand and foot in 73 healthy subjects we collected age-corrected normative ranges for LEPs. We then selected 100 patients with mixed-fibre diabetic neuropathy and 25 patients with possible small-fibre diabetic neuropathy. In the 100 patients with mixed-fibre neuropathy we verified how LEP abnormalities were associated with clinically evident pinprick sensory disturbances. In the 25 patients with possible pure small-fibre neuropathy, using the skin biopsy for assessing the intraepidermal nerve fibre density, as a reference standard, we calculated LEP sensitivity and specificity.In healthy participants, age strongly influenced normative ranges for all LEP variables. By applying age-corrected normative ranges for LEPs, we found that LEPs were strongly associated with pinprick sensory disturbances. In relation to the skin biopsy findings, LEPs yielded 78% sensitivity and 81% specificity in the diagnosis of diabetic small-fibre neuropathy.Our study, providing age-corrected normative ranges for the main LEP data and their diagnostic accuracy, helps to make LEPs more reliable as a clinical diagnostic tool, and proposes this technique as a less invasive alternative to skin biopsy for diagnosing diabetic small-fibre neuropathy.

  20. Neuroplastic changes related to pain occur at multiple levels of the human somatosensory system: A somatosensory-evoked potentials study in patients with cervical radicular pain.

    PubMed

    Tinazzi, M; Fiaschi, A; Rosso, T; Faccioli, F; Grosslercher, J; Aglioti, S M

    2000-12-15

    Studies suggest that pain may play a major role in determining cortical rearrangements in the adult human somatosensory system. Most studies, however, have been performed under conditions whereby pain coexists with massive deafferentation (e.g., amputations). Moreover, no information is available on whether spinal and brainstem changes contribute to pain-related reorganizational processes in humans. Here we assess the relationships between pain and plasticity by recording somatosensory-evoked potentials (SEPs) in patients who complained of pain to the right thumb after a right cervical monoradiculopathy caused by compression of the sixth cervical root, but did not present with clinical or neurophysiological signs of deafferentation. Subcortical and cortical potentials evoked by stimulation of digital nerves of the right thumb and middle finger were compared with those obtained after stimulation of the left thumb and middle finger and with those obtained in a control group tested in comparable conditions. Amplitudes of spinal N13, brainstem P14, parietal N20 and P27, and frontal N30 potentials after stimulation of the painful right thumb were greater than those of the nonpainful left thumb and showed a positive correlation with magnitude of pain. This right-left asymmetry was absent after stimulation of the patients' middle fingers and in control subjects. Results suggest that chronic cervical radicular pain is associated with changes in neural activity at multiple levels of the somatosensory system. The absence of correlation between the amplitude of spinal, brainstem, and cortical components of SEPs suggests that enhancement of cortical activity is not a simple amplification of subcortical enhancement.

  1. Are evoked potentials clinically useful in the study of patients with Chiari malformation Type 1?

    PubMed

    Moncho, Dulce; Poca, Maria A; Minoves, Teresa; Ferré, Alejandro; Cañas, Victoria; Sahuquillo, Juan

    2017-02-01

    OBJECTIVE In this study, the authors describe the brainstem auditory evoked potential (BAEP) and somatosensory evoked potential (SSEP) alterations found in a large cohort of patients with Chiari malformation Type 1 (CM-1), the relationship between the BAEPs/SSEPs and the clinical findings, the abnormalities in patients with associated syringomyelia, and the clinical and neuroradiological risk factors that are associated with abnormal evoked potentials (EPs). METHODS A prospectively collected database containing 545 patients with CM-1 was queried to search for patients satisfying the following criteria: 1) an age of at least 14 years, 2) neuroradiological criteria of CM-1, 3) no prior Chiari-related surgeries, and 4) preoperative EP studies conducted at the authors' institution. The 200 patients included in this cohort were classified into CM-0, CM-1, and CM-1.5 subtypes. Linear, planimetric, and angular measurements of the posterior fossa were conducted, as well as syringomyelia measurements. Two separate multiple logistic regression models were used, one to predict the covariates associated with abnormal BAEPs, and a second model to explore the variables associated with an abnormal SSEP. In these models, the BAEPs and SSEPs were dichotomized as being normal or abnormal. RESULTS Headaches were the main symptom in 70.5% of the patients, and Valsalva-induced headaches were most frequent in patients with CM-1 and CM-1.5 compared with patients with CM-0 (p = 0.031). BAEPs were abnormal in 38.5% of patients, and abnormal SSEPs were found in 43.5% of the entire cohort. Syringomyelia was most frequent in patients with CM-0 (64.3%) and CM-1 (51.1%) compared with those with CM-1.5 (34.7%; p = 0.03). Age (OR 1.03, 95% CI 1.00-1.06), the degree of tonsillar herniation (OR 1.08, 95% CI 1.01-1.16), and lower cranial nerve dysfunction (OR 3.99, 95% CI 1.29-14.01) had a statistically significant correlation with abnormal BAEPs. Only age (OR 1.07, 95% CI 1.04-1.10) and the degree

  2. Adaptation of the cortical somatosensory evoked potential following pulsed pneumatic stimulation of the lower face in adults.

    PubMed

    Custead, Rebecca; Oh, Hyuntaek; Rosner, Austin Oder; Barlow, Steven

    2015-10-05

    Cortical adaptation to sustained sensory input is a pervasive form of short-term plasticity in neurological systems. Its role in sensory perception in health and disease, or predicting long-term plastic changes resulting from sensory training offers insight into the mechanisms of somatosensory and sensorimotor processing. A 4-channel electroencephalography (EEG) recording montage was placed bilaterally (C3-P3, C4-P4, F7-P3, F8-P4) to characterize the short-term effects of pulsed pneumatic orofacial stimulation on the cortical somatosensory evoked potential (cSEP) in twenty neurotypical adults (mean age=21±2.88 years). A servo-controlled pneumatic amplifier was used to deliver a repetitive series of pneumatic pulse trains (six 50-ms pulses, 5-second intertrain interval) through a linked pair of custom acetal homopolymer probes (aka TAC-Cells) adhered to the nonglabrous skin of the lower face proximal to the right oral angle to synchronously activate mechanoreceptive afferents in the trigeminal nerve. Blocks of pulse trains were counterbalanced among participants and delivered at two rates, 2 and 4Hz. TAC-Cell stimulation of the lower face consistently evoked a series of cSEPs at P7, N20, P28, N38, P75, N85, and P115. The spatial organization and adaptation of the evoked cSEP was dependent on stimulus pulse index (1-6 within the pulse train, p=.012), frequency of stimulus presentation (2 vs 4Hz, p<.001), component (P7-P115, p<.001), and recording montage (channels 1-4, p<.001). Early component latencies (P7-N20) were highly stable in polarity (sign) and latency, and consistent with putative far-field generators (e.g., trigeminal brainstem, ventroposteromedial thalamus).

  3. Pedunculopontine nucleus evoked potentials from subthalamic nucleus stimulation in Parkinson's disease.

    PubMed

    Neagu, Bogdan; Tsang, Eric; Mazzella, Filomena; Hamani, Clement; Moro, Elena; Hodaie, Mojgan; Lozano, Andres M; Chen, Robert

    2013-12-01

    The effects of subthalamic nucleus (STN) stimulation on the pedunculopontine nucleus area (PPNR) evoked activities were examined in two patients with Parkinson's disease. The patients had previously undergone bilateral STN deep brain stimulation (DBS) and subsequently received unilateral DBS electrodes in the PPNR. Evoked potentials were recorded from the local field potentials (LFP) from the PPNR with STN stimulation at different frequencies and bipolar contacts. Ipsilateral and contralateral short latency (<2ms) PPNR responses were evoked from left but not from right STN stimulation. In both patients, STN stimulation evoked contralateral PPNR responses at medium latencies between 41 and 45ms. Cortical evoked potentials to single pulse STN stimulation were observed at latencies between 18 and 27ms. These results demonstrate a functional connection between the STN and the PPNR. It likely involves direct projections between the STN and PPNR or polysynaptic pathways with thalamic or cortical relays.

  4. A Perturbation Based Decomposition of Compound-Evoked Potentials for Characterization of Nerve Fiber Size Distributions.

    PubMed

    Szlavik, Robert B

    2016-02-01

    The characterization of peripheral nerve fiber distributions, in terms of diameter or velocity, is of clinical significance because information associated with these distributions can be utilized in the differential diagnosis of peripheral neuropathies. Electro-diagnostic techniques can be applied to the investigation of peripheral neuropathies and can yield valuable diagnostic information while being minimally invasive. Nerve conduction velocity studies are single parameter tests that yield no detailed information regarding the characteristics of the population of nerve fibers that contribute to the compound-evoked potential. Decomposition of the compound-evoked potential, such that the velocity or diameter distribution of the contributing nerve fibers may be determined, is necessary if information regarding the population of contributing nerve fibers is to be ascertained from the electro-diagnostic study. In this work, a perturbation-based decomposition of compound-evoked potentials is proposed that facilitates determination of the fiber diameter distribution associated with the compound-evoked potential. The decomposition is based on representing the single fiber-evoked potential, associated with each diameter class, as being perturbed by contributions, of varying degree, from all the other diameter class single fiber-evoked potentials. The resultant estimator of the contributing nerve fiber diameter distribution is valid for relatively large separations in diameter classes. It is also useful in situations where the separation between diameter classes is small and the concomitant single fiber-evoked potentials are not orthogonal.

  5. Exploring the Mechanisms of Exercise-Induced Hypoalgesia Using Somatosensory and Laser Evoked Potentials

    PubMed Central

    Jones, Matthew D.; Taylor, Janet L.; Booth, John; Barry, Benjamin K.

    2016-01-01

    Exercise-induced hypoalgesia is well described, but the underlying mechanisms are unclear. The aim of this study was to examine the effect of exercise on somatosensory evoked potentials, laser evoked potentials, pressure pain thresholds and heat pain thresholds. These were recorded before and after 3-min of isometric elbow flexion exercise at 40% of the participant's maximal voluntary force, or an equivalent period of rest. Exercise-induced hypoalgesia was confirmed in two experiments (Experiment 1–SEPs; Experiment 2–LEPs) by increased pressure pain thresholds at biceps brachii (24.3 and 20.6% increase in Experiment 1 and 2, respectively; both d > 0.84 and p < 0.001) and first dorsal interosseous (18.8 and 21.5% increase in Experiment 1 and 2, respectively; both d > 0.57 and p < 0.001). In contrast, heat pain thresholds were not significantly different after exercise (forearm: 10.8% increase, d = 0.35, p = 0.10; hand: 3.6% increase, d = 0.06, p = 0.74). Contrasting effects of exercise on the amplitude of laser evoked potentials (14.6% decrease, d = −0.42, p = 0.004) and somatosensory evoked potentials (10.9% increase, d = −0.02, p = 1) were also observed, while an equivalent period of rest showed similar habituation (laser evoked potential: 7.3% decrease, d = −0.25, p = 0.14; somatosensory evoked potential: 20.7% decrease, d = −0.32, p = 0.006). The differential response of pressure pain thresholds and heat pain thresholds to exercise is consistent with relative insensitivity of thermal nociception to the acute hypoalgesic effects of exercise. Conflicting effects of exercise on somatosensory evoked potentials and laser evoked potentials were observed. This may reflect non-nociceptive contributions to the somatosensory evoked potential, but could also indicate that peripheral nociceptors contribute to exercise-induced hypoalgesia. PMID:27965587

  6. Exploring the Mechanisms of Exercise-Induced Hypoalgesia Using Somatosensory and Laser Evoked Potentials.

    PubMed

    Jones, Matthew D; Taylor, Janet L; Booth, John; Barry, Benjamin K

    2016-01-01

    Exercise-induced hypoalgesia is well described, but the underlying mechanisms are unclear. The aim of this study was to examine the effect of exercise on somatosensory evoked potentials, laser evoked potentials, pressure pain thresholds and heat pain thresholds. These were recorded before and after 3-min of isometric elbow flexion exercise at 40% of the participant's maximal voluntary force, or an equivalent period of rest. Exercise-induced hypoalgesia was confirmed in two experiments (Experiment 1-SEPs; Experiment 2-LEPs) by increased pressure pain thresholds at biceps brachii (24.3 and 20.6% increase in Experiment 1 and 2, respectively; both d > 0.84 and p < 0.001) and first dorsal interosseous (18.8 and 21.5% increase in Experiment 1 and 2, respectively; both d > 0.57 and p < 0.001). In contrast, heat pain thresholds were not significantly different after exercise (forearm: 10.8% increase, d = 0.35, p = 0.10; hand: 3.6% increase, d = 0.06, p = 0.74). Contrasting effects of exercise on the amplitude of laser evoked potentials (14.6% decrease, d = -0.42, p = 0.004) and somatosensory evoked potentials (10.9% increase, d = -0.02, p = 1) were also observed, while an equivalent period of rest showed similar habituation (laser evoked potential: 7.3% decrease, d = -0.25, p = 0.14; somatosensory evoked potential: 20.7% decrease, d = -0.32, p = 0.006). The differential response of pressure pain thresholds and heat pain thresholds to exercise is consistent with relative insensitivity of thermal nociception to the acute hypoalgesic effects of exercise. Conflicting effects of exercise on somatosensory evoked potentials and laser evoked potentials were observed. This may reflect non-nociceptive contributions to the somatosensory evoked potential, but could also indicate that peripheral nociceptors contribute to exercise-induced hypoalgesia.

  7. Origin of subcortical somatosensory evoked potentials in response to posterior tibial nerve stimulation in humans.

    PubMed

    Urasaki, E; Wada, S; Yokota, A; Tokimura, T; Yasukouchi, H

    1993-06-01

    To identify the origin of short latency somatosensory evoked potentials (SSEPs) to posterior tibial nerve stimulation, direct recordings were made from the cervical cord, the ventricular system and the frontal subcortex during 8 neurosurgical operations. The origin of each component of SSEPs was also studied in 7 selected patients with various lesions in the central nervous system. In addition, SSEPs to median nerve stimulation were investigated in 4 of 8 surgical cases and all 7 cases of the lesion study group. Bilateral posterior tibial nerve stimulation in 10 normal subjects showed spinal N28 on the skin of the posterior neck and far-field P30 and N33 components followed by a cortical P38 component at the scalp. Direct recordings made to the mid-brain through the medulla oblongata showed a negative potential with gradually increasing latency. The peak of the negativity in the vicinity of the dorsal column nucleus showed almost the same latency as that of the scalp far-field P30, and positivity with a stationary peak was found above the dorsal column nucleus. Above the mid-pons, there was a stationary negativity with no latency shift, showing the same peak latency as that of scalp N33. The spatiotemporal distributions of P30 and N33 to posterior tibial nerve stimulation were analogous to those of P14 and N18 by median nerve stimulation. Transesophageal and direct cervical cord recordings showed that the spinal N13 phase to median nerve stimulation was reversed between the dorsal and ventral sides of the cervical cord. No such reversal occurred for the spinal N28 potential. Clinical lesion studies showed that changes in P30 and P14, and in N33 and N18 correlated with one another: that is, 1) prolongation of latency of N33 was also observed for N18; 2) absence of P30 was paralleled by the absence of P14. These data suggest that spinal N28 originates from ascending activity such as a dorsal column volley, and scalp P30 comes from activity near the dorsal column

  8. Evoked potentials in immobilized cats to a combination of clicks with painful electrocutaneous stimuli

    NASA Technical Reports Server (NTRS)

    Gilinskiy, M. A.; Korsakov, I. A.

    1979-01-01

    Averaged evoked potentials in the auditory, somatosensory, and motor cortical zones, as well as in the mesencephalic reticular formation were recorded in acute experiments on nonanesthetized, immobilized cats. Omission of the painful stimulus after a number of pairings resulted in the appearance of a delayed evoked potential, often resembling the late phases of the response to the painful stimulus. The characteristics of this response are discussed in comparison with conditioned changes of the sensory potential amplitudes.

  9. Ocular Vestibular Evoked Myogenic Potentials Using Head Striker Stimulation

    NASA Technical Reports Server (NTRS)

    De Dios, Y. E.; Gadd, N. E.; Kofman, I. S.; Peters, B. T.; Reschke, M.; Bloomberg, J. J.; Wood, S. J.; Noohibezanjani, F.; Kinnaird, C.; Seidler, R. D.; Mulavara, A. P.

    2016-01-01

    Introduction: Over the last two decades, several studies have been published on the impact of long-duration (i.e., 22 days or longer) spaceflight on the central nervous system (CNS). In consideration of the health and performance of crewmembers in flight and post-flight, we are conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor, cognitive, and neural changes. Multiple studies have demonstrated the effects of spaceflight on the vestibular system. One of the supporting tests conducted in this protocol is the Vestibular Evoked Myogenic Potential (VEMP) test that provides a unilateral measure of otolith (saccule and utricle) function. A different approach was taken for ocular VEMP (oVEMP) testing using a head striker system (Wackym et al. 2012). The oVEMP is generally considered to be a measure of utricle function. The the otolithic input to the inferior oblique muscle is predominately from the utricular macula. Thus, quantitatively, oVEMP tests utricular function. Another practical extension of these relationships is that the oVEMP reflects the superior vestibular nerve function. Methods: Ground testing was administered on 16 control subjects and for 8 subjects over four repeated sessions spanning 70 days. The oVEMP was elicitied via a hand held striker by a vibrotactile pulse presented at the rate of 1 Hz for 24 seconds on the side of the head as subjects lay supine on a gurney. Subjects were directed to gaze approximately 25 degrees above straight ahead in semi-darkness. For the oVEMP electromyograms will be recorded with active bipolar electrodes (Delsys Inc., Boston, MA) on the infra-orbital ridge 1 cm below the eyelid with a reference electrode on the below the knee cap. The EMG potentials were amplified; band-pass filtered using a BagnoliTM Desktop EMG System (Delsys Inc., Boston, MA, USA). This EMG signal is sampled at 10 kHz and the data stimulus onset to

  10. Somatosensory amplification and its relationship to somatosensory, auditory, and visual evoked and event-related potentials (P300).

    PubMed

    Nakao, Mutsuhiro; Barsky, Arthur J; Nishikitani, Mariko; Yano, Eiji; Murata, Katsuyuki

    2007-03-26

    Somatosensory amplification refers to the tendency to experience benign and ambiguous somatic sensation as intense, noxious, and disturbing. The construct is helpful in assessing the perceptual style of a variety of somatizing conditions, but there is no human study clarifying the effects of neurological function on somatosensory amplification. The present study examines the relationship between somatosensory amplification and different types of evoked potentials. In 33 healthy volunteers (mean age 24 years, 18 men), latencies and amplitudes were recorded using the following parameters: short-latency somatosensory, brainstem-auditory, and visual evoked potentials (SSEP, BAEP, and VEP, respectively) and auditory event-related potentials (ERP). All subjects completed questionnaires for the Somatosensory Amplification Scale (SSAS), 20-item Toronto Alexithymia Scale (TAS-20), and Profile of Mood State (POMS). The SSAS scores were significantly associated with the P200 latency (p=0.020) and P300 amplitude of ERP (p=0.041), controlling for the significant effect of the TAS and POMS depression and tension-anxiety scales. The SSEP, BAEP, and VEP latencies or amplitudes were not statistically significant (all p>0.05). When the subjects were divided into high and low SSAS groups based on the median of the SSAS scores, the P300 amplitude of ERP significantly discriminated the two groups (p=0.023) by multiple logistic regression analysis. Although the findings should be viewed as preliminary because of the small sample size, somatosensory amplification appears to reflect some aspects of long-latency cognitive processing rather than short-latency interceptive sensitivity from the viewpoint of encephalography.

  11. Unanticipated Disturbance in Somatosensory Evoked Potentials in a Patient in Park-Bench Position.

    PubMed

    Babakhani, Babak; Schott, Martin; Hosseinitabatabaei, Narges; Jantzen, Jan-Peter

    2015-06-01

    Perioperative neuropathy is a known complication of malpositioning during anaesthesia. Somatosensory evoked potentials are used for detecting such a complication in selected surgeries. Most reports of intraoperative nerve injuries due to malpositioning are limited to injuries to the peripheral nervous system, and there have been no previously reported cases of somatosensory evoked potential monitoring disturbance attributable to position-related cerebral ischemia in the park-bench position. We present the case of a patient with glioblastoma in the park-bench position whose somatosensory evoked potential waveforms disappeared after head and neck repositioning. A prompt diagnosis of this complication and elimination of the underlying cause led to the return of somatosensory evoked potential waveforms, and there was no relevant neurologic deficit at the end of the surgery.

  12. Investigation of brachial plexus traction lesions by peripheral and spinal somatosensory evoked potentials.

    PubMed Central

    Jones, S J

    1979-01-01

    Peripheral, spinal and cortical somatosensory evoked potentials were recorded in 26 patients with unilateral traction injuries of the brachial plexus ganglia. Of 10 cases explored surgically the recordings correctly anticipated the major site of the lesion in eight. PMID:422958

  13. Chromatic visual evoked potentials in young patients with demyelinating disease.

    PubMed

    Pompe, Manca Tekavčič; Brecelj, Jelka; Kranjc, Branka Stirn

    2014-04-01

    The purpose of this study was to evaluate color vision in young patients with demyelinating disease both clinically and electrophysiologically. Thirty young patients (8-28 years, mean age 19 years) with demyelinating disease with or without a history of optic neuritis (ON) were investigated. Color vision was evaluated clinically with the Ishihara test and the Farnsworth-Munsell 100 hue (FM 100 hue) test and electrophysiologically with chromatic visual evoked potentials (cVEPs). Color deficiency axis and error score (ES) obtained with the FM 100 hue test were analyzed. cVEPs to isoluminant red-green (R-G) and blue-yellow (B-Y) stimuli were recorded. The stimulus was a 7 deg circle composed of horizontal sinusoidal gratings with a spatial frequency of 2 cycles/deg and 90% chromatic contrast. Onset-offset mode of stimulation (ON:OFF=300∶700  ms) was used. Since the majority of the patients were adults (>18  years), the negative wave (N wave) of the cVEP respones is the prominent part and therefore was analyzed. Sixty eyes were studied-22 with at least one episode of ON (ON group) and 38 without any clinically evident episode of ON (nON group). The average ES in the ON group was 179.18±171.8, whereas in the nON group it was 87.60±65.34. The average N-wave latency in the ON group was 144±44  ms for the R-G stimulus and 146±56  ms for the B-Y stimulus, whereas in the nON group, it was 117±13  ms for the R-G stimulus and 121±22  ms for the B-Y one. The average N-wave amplitude in the ON group was 9.3±7.1  μV for the R-G stimulus and 5.1±3.9  μV for the B-Y one, whereas in the nON group, it was 10.8±8.3  μV for the R-G stimulus and 6.4±4.3  μV for the B-Y one. A significant difference between the ON and the nON group was found: in the ON group, ES was higher (p=0.01) and N-wave latency was longer (p=0.01) compared with those in the nON group. The study showed that color vision is expectedly more affected in the ON

  14. Evaluation of brain function in acute carbon monoxide poisoning with multimodality evoked potentials

    SciTech Connect

    He, Fengsheng; Liu, Xibao; Yang, Shi; Zhang, Shoulin ); Xu, Guanghua; Fang, Guangchai; Pan, Xiaowen )

    1993-02-01

    The median nerve somatosensory evoked potentials (SEP), pattern reversal visual evoked potentials (VEP), and brain stem auditory evoked potentials (BAEP) were studied in 109 healthy adults and in 88 patients with acute carbon monoxide (CO) poisoning. The upper limits for normal values of peak and interpeak latencies of multimodalities of evoked potentials in the reference group were established by a stepwise multiple regression analysis. SEP changes selectively affecting N32 and N60 were found in 78.8% of patients. There was prolonged PI00 latency of VEP in 58.2% of the cases examined. The prevalence of BAEP abnormalities in comatose patients (36%) was significantly higher than that (8.6%) in conscious patients. BAEP abnormalities were most frequently seen in comatose patients who had diminished brain stem reflexes (77.8%). It has been found that a consistent abnormality involving N2O and subsequent peaks in SEP, a remarkable prolongation of PI00 latency in VEP, or a prolongation of Ill-V interpeak latency in BAEP as well as the reoccurrence of evoked potential abnormalities after initial recovery all indicate unfavorable outcomes in patients with acute CO poisoning. The multimodality evoked potentials have proved to be sensitive indicators in the evaluation of brain dysfunction and in the prediction of prognosis of acute CO poisoning and the development of delayed encephalopathy. 16 refs., 4 figs., 6 tabs.

  15. Auditory evoked potentials in two short-finned pilot whales (Globicephala macrorhynchus).

    PubMed

    Schlundt, Carolyn E; Dear, Randall L; Houser, Dorian S; Bowles, Ann E; Reidarson, Tom; Finneran, James J

    2011-02-01

    The hearing sensitivities of two short-finned pilot whales (Globicephala macrorhynchus) were investigated by measuring auditory evoked potentials generated in response to clicks and sinusoidal amplitude modulated (SAM) tones. The first whale tested, an adult female, was a long-time resident at SeaWorld San Diego with a known health history. Click-evoked responses in this animal were similar to those measured in other echolocating odontocetes. Auditory thresholds were comparable to dolphins of similar age determined with similar evoked potential methods. The region of best sensitivity was near 40 kHz and the upper limit of functional hearing was between 80 and 100 kHz. The second whale tested, a juvenile male, was recently stranded and deemed non-releasable. Click-evoked potentials were not detected in this animal and testing with SAM tones suggested severe hearing loss above 10 kHz.

  16. Evoked Potentials in Motor Cortical Local Field Potentials Reflect Task Timing and Behavioral Performance

    PubMed Central

    Confais, Joachim; Ponce-Alvarez, Adrián; Diesmann, Markus; Riehle, Alexa

    2010-01-01

    Evoked potentials (EPs) are observed in motor cortical local field potentials (LFPs) during movement execution (movement-related potentials [MRPs]) and in response to relevant visual cues (visual evoked potentials [VEPs]). Motor cortical EPs may be directionally selective, but little is known concerning their relation to other aspects of motor behavior, such as task timing and performance. We recorded LFPs in motor cortex of two monkeys during performance of a precued arm-reaching task. A time cue at the start of each trial signaled delay duration and thereby the pace of the task and the available time for movement preparation. VEPs and MRPs were strongly modulated by the delay duration, VEPs being systematically larger in short-delay trials and MRPs larger in long-delay trials. Despite these systematic modulations related to the task timing, directional selectivity was similar in short and long trials. The behavioral reaction time was positively correlated with MRP size and negatively correlated with VEP size, within sessions. In addition, the behavioral performance improved across sessions, in parallel with a slow decrease in the size of VEPs and MRPs. Our results clearly show the strong influence of the behavioral context and performance on motor cortical population activity during movement preparation and execution. PMID:20884766

  17. Long-term potentiation (LTP) of human sensory-evoked potentials.

    PubMed

    Kirk, Ian J; McNair, Nicolas A; Hamm, Jeffrey P; Clapp, Wesley C; Mathalon, Daniel H; Cavus, Idil; Teyler, Timothy J

    2010-09-01

    Long-term potentiation (LTP) is the principal candidate synaptic mechanism underlying learning and memory, and has been studied extensively at the cellular and molecular level in laboratory animals. Inquiry into the functional significance of LTP has been hindered by the absence of a human model as, until recently, LTP has only been directly demonstrated in humans in isolated cortical tissue obtained from patients undergoing surgery, where it displays properties identical to those seen in non-human preparations. In this brief review, we describe the results of paradigms recently developed in our laboratory for inducing LTP-like changes in visual-, and auditory-evoked potentials. We describe how rapid, repetitive presentation of sensory stimuli leads to a persistent enhancement of components of sensory-evoked potential in normal humans. Experiments to date, investigating the locus, stimulus specificity, and NMDA receptor dependence of these LTP-like changes suggest that they have the essential characteristics of LTP seen in experimental animals. The ability to elicit LTP from non-surgical patients will provide a human model system allowing the detailed examination of synaptic plasticity in normal subjects and may have future clinical applications in the assessment of cognitive disorders. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website.

  18. Cortico-cortical evoked potentials for sites of early versus late seizure spread in stereoelectroencephalography.

    PubMed

    Lega, Bradley; Dionisio, Sasha; Flanigan, Patrick; Bingaman, William; Najm, Imad; Nair, Dileep; Gonzalez-Martinez, Jorge

    2015-09-01

    Cortico-cortical evoked potentials offer the possibility of understanding connectivity within seizure networks to improve diagnosis and more accurately identify candidates for seizure surgery. We sought to determine if cortico-cortical evoked potentials and post-stimulation oscillatory changes differ for sites of EARLY versus LATE ictal spread. 37 patients undergoing stereoelectroencephalography were tested using a cortico-cortical evoked potential paradigm. All electrodes were classified according to the speed of ictal spread. EARLY spread sites were matched to a LATE spread site equidistant from the onset zone. Root-mean-square was used to quantify evoked responses and post-stimulation gamma band power and coherence were extracted and compared. Sites of EARLY spread exhibited significantly greater evoked responses after stimulation across all patients (t(36)=2.973, p=0.004). Stimulation elicited enhanced gamma band activity at EARLY spread sites (t(36)=2.61, p=0.03, FDR corrected); this gamma band oscillation was highly coherent with the onset zone. Cortico-cortical evoked potentials and post-stimulation changes in gamma band activity differ between sites of EARLY versus LATE ictal spread. The oscillatory changes can help visualize connectivity within the seizure network.

  19. Characterization of Motor and Somatosensory Evoked Potentials in the Yucatan Micropig Using Transcranial and Epidural Stimulation.

    PubMed

    Benavides, Francisco D; Santamaria, Andrea J; Bodoukhin, Nikita; Guada, Luis G; Solano, Juan P; Guest, James D

    2016-11-28

    Yucatan micropigs have brain and spinal cord dimensions similar to humans and are useful for certain spinal cord injury (SCI) translational studies. Micropigs are readily trained in behavioral tasks, allowing consistent testing of locomotor loss and recovery. However, there has been little description of their motor and sensory pathway neurophysiology. We established methods to assess motor and sensory cortical evoked potentials in the anesthetized, uninjured state. We also evaluated epidurally evoked motor and sensory stimuli from the T6 and T9 levels, spanning the intended contusion injury epicenter. Response detection frequency, mean latency and amplitude values, and variability of evoked potentials were determined. Somatosensory evoked potentials were reliable and best detected during stimulation of peripheral nerve and epidural stimulation by referencing the lateral cortex to midline Fz. The most reliable hindlimb motor evoked potential (MEP) occurred in tibialis anterior. We found MEPs in forelimb muscles in response to thoracic epidural stimulation likely generated from propriospinal pathways. Cranially stimulated MEPs were easier to evoke in the upper limbs than in the hindlimbs. Autopsy studies revealed substantial variations in cortical morphology between animals. This electrophysiological study establishes that neurophysiological measures can be reliably obtained in micropigs in a time frame compatible with other experimental procedures, such as SCI and transplantation. It underscores the need to better understand the motor control pathways, including the corticospinal tract, to determine which therapeutics are suitable for testing in the pig model.

  20. Assessing stimulus and subject influences on auditory evoked potentials and their relation to peripheral physiology in green treefrogs (Hyla cinerea).

    PubMed

    Buerkle, Nathan P; Schrode, Katrina M; Bee, Mark A

    2014-12-01

    Anurans (frogs and toads) are important models for comparative studies of communication, auditory physiology, and neuroethology, but to date, most of our knowledge comes from in-depth studies of a relatively small number of model species. Using the well-studied green treefrog (Hyla cinerea), this study sought to develop and evaluate the use of auditory evoked potentials (AEPs) as a minimally invasive tool for investigating auditory sensitivity in a larger diversity of anuran species. The goals of the study were to assess the effects of frequency, signal level, sex, and body size on auditory brainstem response (ABR) amplitudes and latencies, characterize gross ABR morphology, and generate an audiogram that could be compared to several previously published audiograms for green treefrogs. Increasing signal level resulted in larger ABR amplitudes and shorter latencies, and these effects were frequency dependent. There was little evidence for an effect of sex or size on ABRs. Analyses consistently distinguished between responses to stimuli in the frequency ranges of the three previously-described populations of afferents that innervate the two auditory end organs in anurans. The overall shape of the audiogram shared prominent features with previously published audiograms. This study highlights the utility of AEPs as a valuable tool for the study of anuran auditory sensitivity.

  1. Human auditory evoked potentials in the assessment of brain function during major cardiovascular surgery.

    PubMed

    Rodriguez, Rosendo A

    2004-06-01

    Focal neurologic and intellectual deficits or memory problems are relatively frequent after cardiac surgery. These complications have been associated with cerebral hypoperfusion, embolization, and inflammation that occur during or after surgery. Auditory evoked potentials, a neurophysiologic technique that evaluates the function of neural structures from the auditory nerve to the cortex, provide useful information about the functional status of the brain during major cardiovascular procedures. Skepticism regarding the presence of artifacts or difficulty in their interpretation has outweighed considerations of its potential utility and noninvasiveness. This paper reviews the evidence of their potential applications in several aspects of the management of cardiac surgery patients. The sensitivity of auditory evoked potentials to the effects of changes in brain temperature makes them useful for monitoring cerebral hypothermia and rewarming during cardiopulmonary bypass. The close relationship between evoked potential waveforms and specific anatomic structures facilitates the assessment of the functional integrity of the central nervous system in cardiac surgery patients. This feature may also be relevant in the management of critical patients under sedation and coma or in the evaluation of their prognosis during critical care. Their objectivity, reproducibility, and relative insensitivity to learning effects make auditory evoked potentials attractive for the cognitive assessment of cardiac surgery patients. From a clinical perspective, auditory evoked potentials represent an additional window for the study of underlying cerebral processes in healthy and diseased patients. From a research standpoint, this technology offers opportunities for a better understanding of the particular cerebral deficits associated with patients who are undergoing major cardiovascular procedures.

  2. To Study Brain Stem Auditory Evoked Potential in Patients with Type 2 Diabetes Mellitus- A Cross- Sectional Comparative Study

    PubMed Central

    Muneshwar, J.N.; Afroz, Sayeeda

    2016-01-01

    Introduction Neuropathy is one of the commonest complications of Diabetes Mellitus (DM). Apart from having peripheral and autonomic neuropathy patients with type 2 DM may also suffer from sensory neural hearing loss, which is more severe at higher frequencies. However, few studies have done detailed evaluation of sensory pathway in these patients. In this study brain stem auditory evoked potential is used to detect the acoustic and central neuropathy in a group of patients with type 2 DM with controlled and uncontrolled blood sugar. Aim To study brain stem auditory evoked potential in patients of type 2 DM with controlled and uncontrolled blood sugar and to correlate the various parameters e.g., age (years), weight (kilograms), height (meters), BMI (kg/m2), HbA1c (%) in patients with type 2 DM with controlled and uncontrolled blood sugar. Materials and Methods Cross-sectional comparative study conducted from January 2014 to January 2015. Total 60 patients with type 2 DM of either sex, between age groups of 35-50 years were enrolled from the Diabetic Clinic of Medicine department, of a tertiary care hospital. Based on the value of HbA1c, patients were divided in two groups with controlled and uncontrolled blood sugar and with each group comprising of 30 patients. BERA (Brainstem Evoked Response Audiometry) was done in both the groups on RMS ALERON 201/401. Recordings were taken at 70dB, 80dB and 90dB at 2KHz frequency. Absolute latency of wave I, III, V and interpeak latencies I–III, III-V and I-V were recorded. Results Mean±SD of the absolute latency of BERA waves I, III, V and interpeak latencies I–III, III-V and I-V at 2 KHz and at varying intensity of 70dB, 80dB and 90dB in uncontrolled group of DM were delayed and were significant as compared to controlled group of DM. Conclusion If BERA is done in diabetic patients, central neuropathy can be detected earlier in uncontrolled groups of diabetic patients. PMID:28050358

  3. A comparison of auditory evoked potentials to acoustic beats and to binaural beats.

    PubMed

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2010-04-01

    The purpose of this study was to compare cortical brain responses evoked by amplitude modulated acoustic beats of 3 and 6 Hz in tones of 250 and 1000 Hz with those evoked by their binaural beats counterparts in unmodulated tones to indicate whether the cortical processes involved differ. Event-related potentials (ERPs) were recorded to 3- and 6-Hz acoustic and binaural beats in 2000 ms duration 250 and 1000 Hz tones presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to beats-evoked oscillations were determined and compared across beat types, beat frequencies and base (carrier) frequencies. All stimuli evoked tone-onset components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude in response to acoustic than to binaural beats, to 250 than to 1000 Hz base frequency and to 3 Hz than to 6 Hz beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left temporal lobe areas. Differences between estimated sources of potentials to acoustic and binaural beats were not significant. The perceptions of binaural beats involve cortical activity that is not different than acoustic beats in distribution and in the effects of beat- and base frequency, indicating similar cortical processing.

  4. Evoked potentials for the prediction of vegetative state in the acute stage of coma.

    PubMed

    Fischer, Catherine; Luauté, Jacques

    2005-01-01

    For comatose patients in intensive care units, it is important to anticipate their functional outcome as soon and as reliably as possible. Among clinical variables the Glasgow Coma Score (GCS) and the patient's pupil reactivity are the strongest predictive variables. Evoked potentials help to assess objectively brain function. Over the past 20 years, numerous studies have assessed their prognostic utility in terms of awakening from coma. Fewer studies, however, have focused upon the utility of evoked potentials in predicting progression to the vegetative state. In this area evoked potentials appear to have a highly predictive value. In anoxic coma the abolition of somatosensory evoked potentials (SEPs) is related to a poor outcome, defined as death or survival in a vegetative state, with a 100% specificity. Following traumatic brain injury, the predictive value for unfavourable outcome is 98.5% when there are no focal injuries likely to abolish SEP cortical components. In contrast, the presence of event-related evoked potentials, and particularly mismatched negativity (MMN), is a strong predictor of awakening and precludes comatose patients from moving to a permanent vegetative state (PVS).

  5. Effect of body temperature on visual evoked potential delay and visual perception in multiple sclerosis.

    PubMed Central

    Regan, D; Murray, T J; Silver, R

    1977-01-01

    Seven multiple sclerosis patients were cooled and four heated, but evoked potential delay changed in only five out 11 experiments. Control limits were set by cooling eight and heating four control subjects. One patient gave anomalous results in that although heating degraded perceptual delay and visual acuity, and depressed the sine wave grating MTF, double-flash resolution was improved. An explanation is proposed in terms of the pattern of axonal demyelination. The medium frequency flicker evoked potential test seems to be a less reliable means of monitoring the progress of demyelination in multiple sclerosis patients than is double-flash campimetry or perceptual delay campimetry, although in some situations the objectivity of the evoked potential test would be advantageous. PMID:599356

  6. Vertex evoked potentials in a rating-scale detection task: Relation to signal probability

    NASA Technical Reports Server (NTRS)

    Squires, K. C.; Squires, N. K.; Hillyard, S. A.

    1974-01-01

    Vertex evoked potentials were recorded from human subjects performing in an auditory detection task with rating scale responses. Three values of a priori probability of signal presentation were tested. The amplitudes of the N1 and P3 components of the vertex potential associated with correct detections of the signal were found to be systematically related to the strictness of the response criterion and independent of variations in a priori signal probability. No similar evoked potential components were found associated with signal absent judgements (misses and correct rejections) regardless of the confidence level of the judgement or signal probability. These results strongly support the contention that the form of the vertex evoked response is closely correlated with the subject's psychophysical decision regarding the presence or absence of a threshold level signal.

  7. Real-time adaptive microstimulation increases reliability of electrically evoked cortical potentials.

    PubMed

    Brugger, Dominik; Butovas, Sergejus; Bogdan, Martin; Schwarz, Cornelius

    2011-05-01

    Cortical neuroprostheses that employ repeated electrical stimulation of cortical areas with fixed stimulus parameters, are faced with the problem of large trial-by-trial variability of evoked potentials. This variability is caused by the ongoing cortical signal processing, but it is an unwanted phenomenon if one aims at imprinting neural activity as precisely as possible. Here, we use local field potentials measured by one microelectrode, located at a distance of 200 microns from the stimulation site, to drive the electrically evoked potential toward a desired target potential by real-time adaptation of the stimulus intensity. The functional relationship between ongoing cortical activity, evoked potential, and stimulus intensity was estimated by standard machine learning techniques (support vector regression with problem-specific kernel function) from a set of stimulation trials with randomly varied stimulus intensities. The smallest deviation from the target potential was achieved for low stimulus intensities. Further, the observed precision effect proved time sensitive, since it was abolished by introducing a delay between data acquisition and stimulation. These results indicate that local field potentials contain sufficient information about ongoing local signal processing to stabilize electrically evoked potentials. We anticipate that adaptive low intensity microstimulation will play an important role in future cortical prosthetic devices that aim at restoring lost sensory functions.

  8. Evidence of Visual Memory in the Cortical Evoked Potential of Human Infants.

    ERIC Educational Resources Information Center

    Hofmann, Martin J.; And Others

    Averaged evoked potential (AEP) is an event-related brain response obtained by averaging the scalp electrical potentials elicited by repeated presentations of the same event. It has proven to be an accurate measure of the activity of the mature human brain when involved in a wide variety of psychological tasks. Distinct psychological processes…

  9. Visual evoked potentials monitoring in a case of transient post-operative visual loss

    PubMed Central

    Capon, Marie; Boven, Michel Van; van Pesch, Vincent; Hantson, Philippe

    2016-01-01

    Post-operative visual loss (POVL) is a rare, albeit potentially serious complication of general anaesthesia. This report describes the case of a 54-year-old woman who developed transient POVL after general anaesthesia following a left posterior parietal meningioma surgery in the prone position and discusses the usefulness of visual evoked potentials monitoring in such situations. PMID:27601743

  10. Properties of rectified averaging of an evoked-type signal: theory and application to the vestibular-evoked myogenic potential.

    PubMed

    Colebatch, J G

    2009-11-01

    The properties of rectified averages were investigated using the VEMP (vestibular-evoked myogenic potential) as an example of an evoked-type response. Recordings were made of surface EMG from the sternocleidomastoid (SCM) muscles of six volunteers, unstimulated, at different levels of tonic activation and then in response to clicks of different intensities. The stochastic properties of the surface EMG recorded were shown to be well modelled using a zero mean normal distribution with a standard deviation equivalent to the mean RMS (root mean squared) value (mean residual error variance 0.87%). Assuming a normal distribution, equations were derived for the expected value of both the rectified and RMS average with the addition of constant waveforms of different sizes. A simulation using recorded EMG and added sine waves of different amplitudes demonstrated that the equations predicted the rectified averages accurately. It also confirmed the importance of the relative amplitude of the added signal in determining whether it was detected using rectified averages. The same equations were then applied to actual data consisting of VEMPs of different relative amplitudes recorded from the volunteers. Whilst the signal-to-noise ratio (measured by corrected amplitude) was a major determinant of the nature of the rectified average, consistent deviations were detected between the predicted and actual rectified averages. Deviations from predicted values indicated that the VEMP did not behave simply like a constant signal added to tonic background EMG. A more complicated model, which included temporal jitter as well as inhibition of background EMG during the VEMP, was required to fit the physiological recordings. Rectified averages are sensitive to physiological properties, which are not apparent when using unrectified averages alone. Awareness of the properties of rectified averages should improve their interpretation.

  11. Effects of single cycle binaural beat duration on auditory evoked potentials.

    PubMed

    Mihajloski, Todor; Bohorquez, Jorge; Özdamar, Özcan

    2014-01-01

    Binaural beat (BB) illusions are experienced as continuous central pulsations when two sounds with slightly different frequencies are delivered to each ear. It has been shown that steady-state auditory evoked potentials (AEPs) to BBs can be captured and investigated. The authors recently developed a new method of evoking transient AEPs to binaural beats using frequency modulated stimuli. This methodology was able to create single BBs in predetermined intervals with varying carrier frequencies. This study examines the effects of the BB duration and the frequency modulating component of the stimulus on the binaural beats and their evoked potentials. Normal hearing subjects were tested with a set of four durations (25, 50, 100, and 200 ms) with two stimulation configurations, binaural dichotic (binaural beats) and diotic (frequency modulation). The results obtained from the study showed that out of the given durations, the 100 ms beat, was capable of evoking the largest amplitude responses. The frequency modulation effect showed a decrease in peak amplitudes with increasing beat duration until their complete disappearance at 200 ms. Even though, at 200 ms, the frequency modulation effects were not present, the binaural beats were still perceived and captured as evoked potentials.

  12. Effect Of Electromagnetic Waves Emitted From Mobile Phone On Brain Stem Auditory Evoked Potential In Adult Males.

    PubMed

    Singh, K

    2015-01-01

    Mobile phone (MP) is commonly used communication tool. Electromagnetic waves (EMWs) emitted from MP may have potential health hazards. So, it was planned to study the effect of electromagnetic waves (EMWs) emitted from the mobile phone on brainstem auditory evoked potential (BAEP) in male subjects in the age group of 20-40 years. BAEPs were recorded using standard method of 10-20 system of electrode placement and sound click stimuli of specified intensity, duration and frequency.Right ear was exposed to EMW emitted from MP for about 10 min. On comparison of before and after exposure to MP in right ear (found to be dominating ear), there was significant increase in latency of II, III (p < 0.05) and V (p < 0.001) wave, amplitude of I-Ia wave (p < 0.05) and decrease in IPL of III-V wave (P < 0.05) after exposure to MP. But no significant change was found in waves of BAEP in left ear before vs after MP. On comparison of right (having exposure routinely as found to be dominating ear) and left ears (not exposed to MP), before exposure to MP, IPL of IIl-V wave and amplitude of V-Va is more (< 0.001) in right ear compared to more latency of III and IV wave (< 0.001) in left ear. After exposure to MP, the amplitude of V-Va was (p < 0.05) more in right ear compared to left ear. In conclusion, EMWs emitted from MP affects the auditory potential.

  13. Predictability of Painful Stimulation Modulates the Somatosensory-Evoked Potential in the Rat

    PubMed Central

    Schaap, Manon W. H.; van Oostrom, Hugo; Doornenbal, Arie; Baars, Annemarie M.; Arndt, Saskia S.; Hellebrekers, Ludo J.

    2013-01-01

    Somatosensory-evoked potentials (SEPs) are used in humans and animals to increase knowledge about nociception and pain. Since the SEP in humans increases when noxious stimuli are administered unpredictably, predictability potentially influences the SEP in animals as well. To assess the effect of predictability on the SEP in animals, classical fear conditioning was applied to compare SEPs between rats receiving SEP-evoking electrical stimuli either predictably or unpredictably. As in humans, the rat’s SEP increased when SEP-evoking stimuli were administered unpredictably. These data support the hypothesis that the predictability of noxious stimuli plays a distinctive role in the processing of these stimuli in animals. The influence of predictability should be considered when studying nociception and pain in animals. Additionally, this finding suggests that animals confronted with (un)predictable noxious stimuli can be used to investigate the mechanisms underlying the influence of predictability on central processing of noxious stimuli. PMID:23613862

  14. Effect of mechanical tactile noise on amplitude of visual evoked potentials: multisensory stochastic resonance

    PubMed Central

    Huidobro, Nayeli; Silva, Mayte; Flores, Amira; Trenado, Carlos; Quintanar, Luis; Arias-Carrión, Oscar; Kristeva, Rumyana

    2015-01-01

    The present investigation documents the electrophysiological occurrence of multisensory stochastic resonance in the human visual pathway elicited by tactile noise. We define multisensory stochastic resonance of brain evoked potentials as the phenomenon in which an intermediate level of input noise of one sensory modality enhances the brain evoked response of another sensory modality. Here we examined this phenomenon in visual evoked potentials (VEPs) modulated by the addition of tactile noise. Specifically, we examined whether a particular level of mechanical Gaussian noise applied to the index finger can improve the amplitude of the VEP. We compared the amplitude of the positive P100 VEP component between zero noise (ZN), optimal noise (ON), and high mechanical noise (HN). The data disclosed an inverted U-like graph for all the subjects, thus demonstrating the occurrence of a multisensory stochastic resonance in the P100 VEP. PMID:26156387

  15. Effect of mechanical tactile noise on amplitude of visual evoked potentials: multisensory stochastic resonance.

    PubMed

    Méndez-Balbuena, Ignacio; Huidobro, Nayeli; Silva, Mayte; Flores, Amira; Trenado, Carlos; Quintanar, Luis; Arias-Carrión, Oscar; Kristeva, Rumyana; Manjarrez, Elias

    2015-10-01

    The present investigation documents the electrophysiological occurrence of multisensory stochastic resonance in the human visual pathway elicited by tactile noise. We define multisensory stochastic resonance of brain evoked potentials as the phenomenon in which an intermediate level of input noise of one sensory modality enhances the brain evoked response of another sensory modality. Here we examined this phenomenon in visual evoked potentials (VEPs) modulated by the addition of tactile noise. Specifically, we examined whether a particular level of mechanical Gaussian noise applied to the index finger can improve the amplitude of the VEP. We compared the amplitude of the positive P100 VEP component between zero noise (ZN), optimal noise (ON), and high mechanical noise (HN). The data disclosed an inverted U-like graph for all the subjects, thus demonstrating the occurrence of a multisensory stochastic resonance in the P100 VEP.

  16. [Mechanism of the generation of evoked potentials in the rabbit neocortex].

    PubMed

    Pockberger, H; Rappelsberger, P

    1983-12-01

    This paper describes the analyses of evoked potentials recorded in different neocortical areas (Area precentralis 1 and 2, occipitalis 1 and 2) and elicited by different stimulation techniques (antidromic stimulation of the pyramidal tract, electrical stimulation of thalamic nuclei, the optic nerve and finally random dot stimulation of the retina). Field potentials were recorded intracortically with a 16-fold electrode. The analyses of field potentials with the current-source-density method yielded an estimation of the current source and sink density distributions within the six neocortical layers. Hence spatio-temporal patterns of layer specific activation processes (sinks and sources) can be described for the various evoked potentials. The results can be summarized as follows: every evoked potential shows a spatio-temporal pattern of sources and sinks which is independent of the neocortical area and the mode of stimulation. However, the late components of the evoked potentials show great variations in their generation mechanisms, thus indicating regional differences in neocortical architectonics. These observations are discussed with regard to morphology, electrical activity and functional properties of the studied neocortical areas.

  17. Diagnostic accuracy of evoked potentials for functional impairment after contusive spinal cord injury in adult rats.

    PubMed

    Thirumala, Parthasarathy; Zhou, James; Krishnan, Rohan; Manem, Nihita; Umredkar, Shreya; Hamilton, D K; Balzer, Jeffrey R; Oudega, Martin

    2016-03-01

    Iatrogenic spinal cord injury (SCI) is a cause of potentially debilitating post-operative neurologic complications. Currently, intra-operative neurophysiological monitoring (IONM) via somatosensory evoked potentials and motor-evoked potentials is used to detect and prevent impending SCI. However, no empirically validated interventions exist to halt the progression of iatrogenic SCI once it is detected. This is in part due to the lack of a suitable translational model that mimics the circumstances surrounding iatrogenic SCI detected via IONM. Here, we evaluate a model of simulated contusive iatrogenic SCI detected via IONM in adult female Sprague-Dawley rats. We show that transient losses of somatosensory evoked potentials responses are 88.24% sensitive (95% confidence interval [CI] 63.53-98.20) and 80% specific (95% CI 51.91-95.43) for significant functional impairment following simulated iatrogenic SCI. Similarly, we show that transient losses in motor-evoked potentials responses are 70.83% sensitive (95% CI 48.91-87.33) and 100% specific (95% CI 62.91-100.00) for significant functional impairment following simulated iatrogenic SCI. These results indicate that our model is a suitable replica of the circumstances surrounding clinical iatrogenic SCI.

  18. Comparison of chirp versus click and tone pip stimulation for cervical vestibular evoked myogenic potentials.

    PubMed

    Wang, Bo-Chen; Liang, Yong; Liu, Xiao-Long; Zhao, Jing; Liu, You-Li; Li, Yan-Fei; Zhang, Wei; Li, Qi

    2014-12-01

    The current study explored differences among cervical vestibular evoked myogenic potentials (cVEMP) that were evoked by CE-chirp and click and tone pip in healthy controls, and tried to explain the differences of cVEMP between the three of them. Thirty normal volunteers were used as subjects for CE-chirp and click and tone-pip (Blackman pip) stimuli. The latency of P1, N1, peak-to-peak P1-N1 amplitude, and cVEMP interaural difference were obtained and analyzed. The response rates of cVEMP were 93 % for click and 100 % for both Blackman pip and CE-chirp, respectively. The P1 and N1 latencies of cVEMP evoked by CE-chirp were the shortest, followed by click, with Blackman pip the longest (F = 6,686.852, P < 0.001). All indices of cVEMP evoked by the three stimuli showed no significant difference between the left and right ears or between genders. cVEMP responses were significantly different between the three stimuli. Compared with the currently used stimulus, CE-chirp can evoke cVEMP with shorter latencies and demonstrates increased speed and reliability.

  19. Human Short-Latency Somatosensory Evoked Potentials in Impact Acceleration Research: Equipment, Procedures and Techniques

    DTIC Science & Technology

    1990-10-01

    Instrumentation Data Sheet .......................... 10 Figure 8. Human Physiology Screen One ....................................... 1I1 Figure 9. Human ... Physiology Screen Two...................................... 12 Figure 10. Human Physiology Screen Three ..................................... 12 Figure...Short-Latency Somatosensory Evoked Potentials in Impact Acceleration Research ***** HUMAN PHYSIOLOGY SCREEN***** Please Read First To move from one

  20. Pediatric multiple sclerosis: detection of clinically silent lesions by multimodal evoked potentials.

    PubMed

    Pohl, Daniela; Rostasy, Kevin; Treiber-Held, Stephanie; Brockmann, Knut; Gärtner, Jutta; Hanefeld, Folker

    2006-07-01

    Pediatric patients with multiple sclerosis (MS) frequently do not meet MRI criteria for diagnosis because of lack of evidence of dissemination in space. We assessed the diagnostic utility of multimodal evoked potentials (EP). In 46% of 85 childhood patients with MS, spatial dissemination was detected by EP before the second clinical attack. EP may constitute an important tool for earlier diagnosis of pediatric MS.

  1. Negative Component of Visual Evoked Potential in Children with Cognitive Processing.

    ERIC Educational Resources Information Center

    Yanagihara, Masafumi; Sako, Akihito

    This study investigates a negative component (N220) of visual evoked potential (VEP) which increases as certain cognitive processes are activated. Nine experimental conditions were designed by combining three stimulus and three task conditions. Letters were used as verbal stimuli, matrix patterns were used as nonverbal stimuli, and white light was…

  2. Attentional Modulation of Visual-Evoked Potentials by Threat: Investigating the Effect of Evolutionary Relevance

    ERIC Educational Resources Information Center

    Brown, Christopher; El-Deredy, Wael; Blanchette, Isabelle

    2010-01-01

    In dot-probe tasks, threatening cues facilitate attention to targets and enhance the amplitude of the target P1 peak of the visual-evoked potential. While theories have suggested that evolutionarily relevant threats should obtain preferential neural processing, this has not been examined empirically. In this study we examined the effects of…

  3. Intelligence and Complexity of the Averaged Evoked Potential: An Attentional Theory.

    ERIC Educational Resources Information Center

    Bates, Tim; And Others

    1995-01-01

    A study measuring average evoked potentials in 21 college students finds that intelligence test scores correlate significantly with the difference between string length in attended and nonattended conditions, a finding that suggests that previous inconsistencies in reporting string length-intelligence correlations may have resulted from confound…

  4. Feasibility and performance evaluation of generating and recording visual evoked potentials using ambulatory Bluetooth based system.

    PubMed

    Ellingson, Roger M; Oken, Barry

    2010-01-01

    Report contains the design overview and key performance measurements demonstrating the feasibility of generating and recording ambulatory visual stimulus evoked potentials using the previously reported custom Complementary and Alternative Medicine physiologic data collection and monitoring system, CAMAS. The methods used to generate visual stimuli on a PDA device and the design of an optical coupling device to convert the display to an electrical waveform which is recorded by the CAMAS base unit are presented. The optical sensor signal, synchronized to the visual stimulus emulates the brain's synchronized EEG signal input to CAMAS normally reviewed for the evoked potential response. Most importantly, the PDA also sends a marker message over the wireless Bluetooth connection to the CAMAS base unit synchronized to the visual stimulus which is the critical averaging reference component to obtain VEP results. Results show the variance in the latency of the wireless marker messaging link is consistent enough to support the generation and recording of visual evoked potentials. The averaged sensor waveforms at multiple CPU speeds are presented and demonstrate suitability of the Bluetooth interface for portable ambulatory visual evoked potential implementation on our CAMAS platform.

  5. A Steady State Visually Evoked Potential Investigation of Memory and Ageing

    ERIC Educational Resources Information Center

    Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard

    2009-01-01

    Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and…

  6. On the uniqueness of the surface sources of evoked potentials.

    PubMed

    Cabo, A; Handy, C; Bessis, D

    2001-10-01

    The uniqueness of a surface density of sources localized inside a spatial region R and producing a given electric potential distribution in its boundary B0 is revisited. The situation in which R is filled with various subregions, each one having a definite constant value for the electric conductivity is considered. It is argued that the knowledge of the potential in all B0 fully determines the surface-located sources for a general class of surfaces supporting them and also a wide type of those sources. The class of surfaces can be defined as a union of an arbitrary but finite number of open or closed surfaces. The only restriction upon them is that no one of the closed surfaces contains inside it another (nesting) of the closed or open ones. The types of sources are surface charge densities and double layer (dipolar) densities for the open surfaces and more restrictively, only surface charge densities for the closed ones. A two-dimensional analytically solvable example illustrating the drastic appearance of uniqueness after arbitrarily small holes are opened in nested surfaces is discussed.

  7. Pre-stimulus alpha power affects vertex N2-P2 potentials evoked by noxious stimuli.

    PubMed

    Babiloni, Claudio; Del Percio, Claudio; Brancucci, Alfredo; Capotosto, Paolo; Le Pera, Domenica; Marzano, Nicola; Valeriani, Massimiliano; Romani, Gian Luca; Arendt-Nielsen, Lars; Rossini, Paolo Maria

    2008-03-28

    It is well known that scalp potentials evoked by nonpainful visual and auditory stimuli are enhanced in amplitude when preceded by pre-stimulus low-amplitude alpha rhythms. This study tested the hypothesis that the same holds for the amplitude of vertex N2-P2 potentials evoked by brief noxious laser stimuli, an issue of interest for clinical perspective. EEG data were recorded in 10 subjects from 30 electrodes during laser noxious stimulation. The artifact-free vertex N2-P2 complex was spatially enhanced by surface Laplacian transformation. Pre-stimulus alpha power was computed at three alpha sub-bands according to subject's individual alpha frequency peak (i.e. about 6-8Hz for alpha 1, 8-10Hz for alpha 2 and 10-12Hz for alpha 3 sub-band). Individual EEG single trials were divided in two sub-groups. The strong-alpha sub-group (high band power) included halfway of all EEG single trials, namely those having the highest pre-stimulus alpha power. Weak-alpha sub-group (low band power) included the remaining trials. Averaging procedure provided laser evoked potentials for both trial sub-groups. No significant effect was found for alpha 1 and alpha 2 sub-bands. Conversely, compared to strong-alpha 3 sub-group, weak-alpha 3 sub-group showed vertex N2-P2 potentials having significantly higher amplitude (p<0.05). These results extend to the later phases of pain processing systems the notion that generation mechanisms of pre-stimulus alpha rhythms and (laser) evoked potentials are intrinsically related and subjected to fluctuating "noise". That "noise" could explain the trial-by-trial variability of laser evoked potentials and perception.

  8. Auditory evoked potential P300 in adults: reference values

    PubMed Central

    Didoné, Dayane Domeneghini; Garcia, Michele Vargas; Oppitz, Sheila Jacques; da Silva, Thalisson Francisco Finamôr; dos Santos, Sinéia Neujahr; Bruno, Rúbia Soares; Filha, Valdete Alves Valentins dos Santos; Cóser, Pedro Luis

    2016-01-01

    ABSTRACT Objective To establish reference intervals for cognitive potential P300 latency using tone burst stimuli. Methods This study involved 28 participants aged between 18 and 59 years. P300 recordings were performed using a two-channel device (Masbe, Contronic). Electrode placement was as follows: Fpz (ground electrode), Cz (active electrode), M1 and M2 (reference electrodes). Intensity corresponded to 80 dB HL and frequent and rare stimulus frequencies to 1,000Hz and 2,000Hz, respectively. Stimuli were delivered binaurally. Results Mean age of participants was 35 years. Average P300 latency was 305ms. Conclusion Maximum acceptable P300 latency values of 362.5ms (305 + 2SD 28.75) were determined for adults aged 18 to 59 years using the protocol described. PMID:27462895

  9. [Localization of attention related cortical structures by evoked potentials].

    PubMed

    Szelenberger, W

    2000-01-01

    Attention is an ambiguous concept, difficult to direct implementation in neurophysiological studies. The paper presents application of the Continuous Attention Test (CAT) items as stimuli in event related potential (ERP) studies on attention. Stimuli with high demand of attention result in enlarged N1 component in occipital derivations. Spatial analysis revealed increased positivity in frontal derivations. Three-dimensional image of cortical current density by means of Low Resolution Electromagnetic Tomography (LORETA) revealed sources of N1 component in occipital, parietal and postero-temporal derivations with the maximal current value at 17 Brodmann area. After target stimuli increase of current density in frontal derivations was observed, with the maximal value in the left 9 Brodmann area.

  10. Differential effects of duration for ocular and cervical vestibular evoked myogenic potentials evoked by air- and bone-conducted stimuli.

    PubMed

    Lim, Louis J Z; Dennis, Danielle L; Govender, Sendhil; Colebatch, James G

    2013-02-01

    We investigated the changes in cervical (cVEMP) and ocular (oVEMP) vestibular evoked myogenic potentials in response to differing stimulus durations. cVEMPs (n = 12 subjects) and oVEMPs (n = 13 subjects) were recorded using air-conducted (AC: 500 Hz) and bone-conducted (BC: 500 Hz) tone burst stimuli with durations varying from 2 to 10 ms. BC stimulation was applied both frontally and to the mastoid. AC cVEMPs showed an increase in amplitude with stimuli up to 6-ms duration associated with a prolonged latency, as previously reported. In contrast, AC oVEMP amplitude decreased with increasing stimulus duration. BC stimuli showed no significant increase in amplitude with increasing stimulus duration for either reflex using either location of stimulation. BC cVEMPS following forehead stimulation showed a significant decrease as duration increased, and BC oVEMPs to mastoid stimulation were largest at 2 ms and decreased thereafter. We conclude that an increase in amplitude with increasing stimulus duration, using 500 Hz stimuli, only occurs for AC cVEMPs. There is no definite benefit in using longer stimuli than 2 ms for BC or oVEMP studies. Shorter stimuli also minimise subject exposure to sound and vibration.

  11. Middle latency auditory evoked potentials during total intravenous anesthesia with droperidol, ketamine and fentanyl.

    PubMed

    Kudoh, A; Matsuki, A

    1999-04-01

    We investigated whether total intravenous anesthesia with ketamine, fentanyl and droperidol would affect middle latency auditory evoked potentials and explicit memory, and whether dreams during the anesthesia are related to plasma concentrations of fentanyl and the infusion technique. A total number of 40 patients were the subjects for this study. Twenty patients (group A) were maintained with intravenous ketamine 2 mg kg-1 hr-1 and fentanyl 5 micrograms kg-1 hr-1 for the first 60 min and 3 micrograms kg-1 hr-1 for the next 90 min, and droperidol 0.1 mg kg-1. The remaining 20 patients (group B) were maintained with intravenous ketamine 2 mg kg-1 hr-1, droperidol 0.1 mg kg-1 and fentanyl 50-100 micrograms in a bolus intermittently as needed by vital signs such as increases in heart rate and arterial blood pressure. Middle latency auditory evoked potentials, plasma fentanyl and ketamine levels were measured; explicit memory and dreams were also estimated. There were no patients who recollected explicit memories of intraoperative events in both groups. The middle latency auditory evoked potentials were not significantly changed during the anesthesia in both groups. We could find no significant differences in latencies and amplitudes of the middle latency auditory evoked potentials between the both groups. Plasma fentanyl levels of group B patients were significantly lower than those of group A patients and the incidence of the dreams was significantly higher in group B patients. We conclude that the anesthesia with ketamine, fentanyl and droperidol is not associated with the explicit memories, though the middle latency auditory evoked potentials were not significantly changed as compared with those in the waking state. In addition, dreams during the anesthesia may correlate with plasma fentanyl concentrations or the infusion technique.

  12. Analytical comparison of transient and steady state visual evoked cortical potentials

    NASA Technical Reports Server (NTRS)

    Junker, A. M.; Kenner, K. M.; Kleinman, D. L.; Mcclurg, T. D.

    1986-01-01

    To better describe the linear-dynamic properties of the human visual-cortical response system, transient and steady state Visual Evoked Response Potentials (VERP) were observed. The stimulus presentation device provided both the evoking stimulus (flickering or pulsing lights) and a video task display. The steady state stimulus was modulated by a complex, ten frequency, sum-of-sines, wave. The transient VERP was the time-locked average of the EEG to a series of narrow light pulses (pulse width of 10 msec). The Fourier transform of the averaged pulses had properties that approximate band limited white noise, i.e., a flat spectrum over the frequency region spanned by the 10 summed sines. The Fourier transform of both the steady state and the transient evoked potentials resulted in transfer that are equivalent and therefore comparable. To investigate the effects of task loading on evoked potentials, a grammatical reasoning task was provided. Results support the relevancy of continued application of a systems engineering approach for describing neurosensory functioning.

  13. Disturbances of stem circumnutations evoked by wound-induced variation potentials in Helianthus annuus L.

    PubMed

    Stolarz, Maria; Dziubińska, Halina; Krupa, Maciej; Buda, Agnieszka; Trebacz, Kazimierz; Zawadzki, Tadeusz

    2003-01-01

    The relationship between evoked electrical activity and stem movements in three-week old sunflowers was demonstrated. Electrical potential changes (recorded by Ag/AgCl extracellular electrodes) and time-lapse images (from a top view camera) were recorded and analyzed. A heat stimulus applied to the tip of one of the second pair of leaves evoked a variation potential, transmitted basipetally along one side of the stem. After stimulation, disturbances of circumnutations occurred. They included: changes in the period, disorders in the elliptical shape, and, in some cases, reversion of direction (of movement). We suggest that asymmetrically propagated variation potential induces asymmetric stem shrinking and bending, which strongly disturbs circumnutations. Our results confirm the involvement of electrical potential changes in the mechanism of stem nutations.

  14. Stimulus novelty, task relevance and the visual evoked potential in man

    NASA Technical Reports Server (NTRS)

    Courchesne, E.; Hillyard, S. A.; Galambos, R.

    1975-01-01

    The effect of task relevance on P3 (waveform of human evoked potential) waves and the methodologies used to deal with them are outlined. Visual evoked potentials (VEPs) were recorded from normal adult subjects performing in a visual discrimination task. Subjects counted the number of presentations of the numeral 4 which was interposed rarely and randomly within a sequence of tachistoscopically flashed background stimuli. Intrusive, task-irrelevant (not counted) stimuli were also interspersed rarely and randomly in the sequence of 2s; these stimuli were of two types: simples, which were easily recognizable, and novels, which were completely unrecognizable. It was found that the simples and the counted 4s evoked posteriorly distributed P3 waves while the irrelevant novels evoked large, frontally distributed P3 waves. These large, frontal P3 waves to novels were also found to be preceded by large N2 waves. These findings indicate that the P3 wave is not a unitary phenomenon but should be considered in terms of a family of waves, differing in their brain generators and in their psychological correlates.

  15. Reduced evoked motor and sensory potential amplitudes in obstructive sleep apnea patients.

    PubMed

    Mihalj, Mario; Lušić, Linda; Đogaš, Zoran

    2016-06-01

    It is unknown to what extent chronic intermittent hypoxaemia in obstructive sleep apnea causes damage to the motor and sensory peripheral nerves. It was hypothesized that patients with obstructive sleep apnea would have bilaterally significantly impaired amplitudes of both motor and sensory peripheral nerve-evoked potentials of both lower and upper limbs. An observational study was conducted on 43 patients with obstructive sleep apnea confirmed by the whole-night polysomnography, and 40 controls to assess the relationship between obstructive sleep apnea and peripheral neuropathy. All obstructive sleep apnea subjects underwent standardized electroneurographic testing, with full assessment of amplitudes of evoked compound muscle action potentials, sensory neural action potentials, motor and sensory nerve conduction velocities, and distal motor and sensory latencies of the median, ulnar, peroneal and sural nerves, bilaterally. All nerve measurements were compared with reference values, as well as between the untreated patients with obstructive sleep apnea and control subjects. Averaged compound muscle action potential and sensory nerve action potential amplitudes were significantly reduced in the nerves of both upper and lower limbs in patients with obstructive sleep apnea compared with controls (P < 0.001). These results confirmed that patients with obstructive sleep apnea had significantly lower amplitudes of evoked action potentials of both motor and sensory peripheral nerves. Clinical/subclinical axonal damage exists in patients with obstructive sleep apnea to a greater extent than previously thought.

  16. Grating visual evoked cortical potentials in the evaluation of laser bioeffects: instrumentation

    SciTech Connect

    Randolph, D.I.; Lund, D.J.; Van Sice, C.W.; Esgandarian, G.E.

    1982-12-01

    A system was designed to permit simultaneous viewing of the ocular fundus of the rhesus monkey (Macaca mulatta), the accurate placement of laser radiation on the retina, and the stimulation of the site to produce a grating visual evoked cortical potential (VECP). A fundus camera was modified to incorporate a grating whose image was projected onto the retina at specific locations. The evoked potential could thus be obtained for any rate of alternation before, during, and after the exposure of the fovea to any one of many laser sources. An example is shown of the use of this system to monitor the grating VECP before and after exposure of the animal's fundus to a 900 nm gallium arsenide laser source for 60 sec. In this case, changes were observed in the variability of the latency of components of the VECP when compared to the prelaser exposure potentials.

  17. Steady-State Somatosensory Evoked Potential for Brain-Computer Interface—Present and Future

    PubMed Central

    Ahn, Sangtae; Kim, Kiwoong; Jun, Sung Chan

    2016-01-01

    Brain-computer interface (BCI) performance has achieved continued improvement over recent decades, and sensorimotor rhythm-based BCIs that use motor function have been popular subjects of investigation. However, it remains problematic to introduce them to the public market because of their low reliability. As an alternative resolution to this issue, visual-based BCIs that use P300 or steady-state visually evoked potentials (SSVEPs) seem promising; however, the inherent visual fatigue that occurs with these BCIs may be unavoidable. For these reasons, steady-state somatosensory evoked potential (SSSEP) BCIs, which are based on tactile selective attention, have gained increasing attention recently. These may reduce the fatigue induced by visual attention and overcome the low reliability of motor activity. In this literature survey, recent findings on SSSEP and its methodological uses in BCI are reviewed. Further, existing limitations of SSSEP BCI and potential future directions for the technique are discussed. PMID:26834611

  18. Grating visual evoked cortical potentials in the evaluation of laser bioeffects: instrumentation.

    PubMed

    Randolph, D I; Lund, D J; Van Sice, C W; Esgandarian, G E

    1982-12-01

    A system was designed to permit simultaneous viewing of the ocular fundus of the rhesus monkey (Macaca mulatta), the accurate placement of laser radiation on the retina, and the stimulation of the site to produce a grating visual evoked cortical potential (VECP). A fundus camera was modified to incorporate a grating whose image was projected onto the retina at specific locations. The evoked potential could thus be obtained for any rate of alternation before, during, and after the exposure of the fovea to any one of many laser sources. An example is shown of the use of this system to monitor the grating VECP before and after exposure of the animal's fundus to a 900 nm gallium arsenide laser source for 60 sec. In this case, changes were observed in the variability of the latency of components of the VECP when compared to the prelaser exposure potentials.

  19. Single sweep analysis of visual evoked potentials through a model of parametric identification.

    PubMed

    Cerutti, S; Baselli, G; Liberati, D; Pavesi, G

    1987-01-01

    An original method is presented for the single sweep analysis of visual evoked potentials (VEP's). The introduced algorithm bases upon an AutoRegressive with eXogenous input (ARX) modeling. A Least Squares procedure estimates the coefficients of the model and allows to obtain a complete black-box description of the signal generation mechanism, besides providing a filtered version of the single sweep potential. The performance of the algorithm is verified on proper simulation tests and the experimental results put into evidence the noticeable improvement of signal-to-noise ratio with a consequent better recognition of the classical parameters of the peaks (latencies and amplitudes). The possibility of measuring these parameters on a single sweep basis enables to evaluate the dynamics of the Central Nervous System response during the entire course of the examination. A classification of the estimated evoked potentials in a small number of subsets, on the basis of their morphology, is also possible.

  20. Steady-state evoked potentials possibilities for mental-state estimation

    NASA Technical Reports Server (NTRS)

    Junker, Andrew M.; Schnurer, John H.; Ingle, David F.; Downey, Craig W.

    1988-01-01

    The use of the human steady-state evoked potential (SSEP) as a possible measure of mental-state estimation is explored. A method for evoking a visual response to a sum-of-ten sine waves is presented. This approach provides simultaneous multiple frequency measurements of the human EEG to the evoking stimulus in terms of describing functions (gain and phase) and remnant spectra. Ways in which these quantities vary with the addition of performance tasks (manual tracking, grammatical reasoning, and decision making) are presented. Models of the describing function measures can be formulated using systems engineering technology. Relationships between model parameters and performance scores during manual tracking are discussed. Problems of unresponsiveness and lack of repeatability of subject responses are addressed in terms of a need for loop closure of the SSEP. A technique to achieve loop closure using a lock-in amplifier approach is presented. Results of a study designed to test the effectiveness of using feedback to consciously connect humans to their evoked response are presented. Findings indicate that conscious control of EEG is possible. Implications of these results in terms of secondary tasks for mental-state estimation and brain actuated control are addressed.

  1. Spectrum pattern resolution after noise exposure in a beluga whale, Delphinapterus leucas: Evoked potential study.

    PubMed

    Popov, Vladimir V; Nechaev, Dmitry I; Sysueva, Evgenia V; Rozhnov, Viatcheslav V; Supin, Alexander Ya

    2015-07-01

    Temporary threshold shift (TTS) and the discrimination of spectrum patterns after fatiguing noise exposure (170 dB re 1 μPa, 10 min duration) was investigated in a beluga whale, Delphinapterus leucas, using the evoked potential technique. Thresholds were measured using rhythmic (1000/s) pip trains of varying levels and recording the rhythmic evoked responses. Discrimination of spectrum patterns was investigated using rippled-spectrum test stimuli of various levels and ripple densities, recording the rhythmic evoked responses to ripple phase reversals. Before noise exposure, the greatest responses to rippled-spectrum probes were evoked by stimuli with a low ripple density with a decrease in the response magnitude occurring with an increasing ripple density. After noise exposure, both a TTS and a reduction of the responses to rippled-spectrum probes appeared and recovered in parallel. The reduction of the responses to rippled-spectrum probes was maximal for high-magnitude responses at low ripple densities and was negligible for low-magnitude responses at high ripple densities. It is hypothesized that the impacts of fatiguing sounds are not limited by increased thresholds and decreased sensitivity results in reduced ability to discriminate fine spectral content with the greatest impact on the discrimination of spectrum content that may carry the most obvious information about stimulus properties.

  2. Visual evoked potentials in dementia: a meta-analysis and empirical study of Alzheimer's disease patients.

    PubMed

    Pollock, V E; Schneider, L S; Chui, H C; Henderson, V; Zemansky, M; Sloane, R B

    1989-04-15

    A meta-analytic review of flash and pattern reversal visual evoked potential research indicates that elderly demented patients have longer P100 latencies than age-matched control subjects. In the present empirical research, patients with research diagnoses of probable Alzheimer's disease were compared with sex- and age-matched control subjects using P100 latencies of visual evoked potentials (VEP) elicited by flash and pattern reversal. As compared to control subjects, Alzheimer's disease patients showed significantly longer P100 latencies of the VEP elicited by pattern reversal; the flash P100 only marginally distinguished them. These findings are discussed within the context of VEP recording practices, patient selection, sex and age matching of control subjects, and the visual system.

  3. Brain-evoked potentials as a tool for diagnosing neuropathic pain.

    PubMed

    Pazzaglia, Costanza; Valeriani, Massimiliano

    2009-05-01

    Neuropathic pain is a complex subject, not completely understood yet, and it is quite common in clinical practice, even outside of a neurological context. Neuropathic pain, often being a chronic process, alters and profoundly affects the quality of life. Therefore, the management of neuropathic pain involves a multidimensional approach, as physicians have to take care not only of the objective aspects of the problem, but also of the subjective experiences of pain. This explains why the attainment of a diagnosis becomes so important, as it allows clinicians to treat the patients with the best therapeutic approach. Several studies report the use of brain-evoked potentials for studying patients suffering from neuropathic pain. In particular, laser- and contact heat-evoked potentials have proved useful for the diagnosis of clinical conditions characterized by neuropathic pain. However, although these tools are reliable and safe instruments to assess function of the nociceptive system, their use is still largely confined to research purposes.

  4. The steady-state visual evoked potential in vision research: A review

    PubMed Central

    Norcia, Anthony M.; Appelbaum, L. Gregory; Ales, Justin M.; Cottereau, Benoit R.; Rossion, Bruno

    2015-01-01

    Periodic visual stimulation and analysis of the resulting steady-state visual evoked potentials were first introduced over 80 years ago as a means to study visual sensation and perception. From the first single-channel recording of responses to modulated light to the present use of sophisticated digital displays composed of complex visual stimuli and high-density recording arrays, steady-state methods have been applied in a broad range of scientific and applied settings.The purpose of this article is to describe the fundamental stimulation paradigms for steady-state visual evoked potentials and to illustrate these principles through research findings across a range of applications in vision science. PMID:26024451

  5. Adaptive regularization network based neural modeling paradigm for nonlinear adaptive estimation of cerebral evoked potentials.

    PubMed

    Zhang, Jian-Hua; Böhme, Johann F

    2007-11-01

    In this paper we report an adaptive regularization network (ARN) approach to realizing fast blind separation of cerebral evoked potentials (EPs) from background electroencephalogram (EEG) activity with no need to make any explicit assumption on the statistical (or deterministic) signal model. The ARNs are proposed to construct nonlinear EEG and EP signal models. A novel adaptive regularization training (ART) algorithm is proposed to improve the generalization performance of the ARN. Two adaptive neural modeling methods based on the ARN are developed and their implementation and performance analysis are also presented. The computer experiments using simulated and measured visual evoked potential (VEP) data have shown that the proposed ARN modeling paradigm yields computationally efficient and more accurate VEP signal estimation owing to its intrinsic model-free and nonlinear processing characteristics.

  6. Visual evoked potentials in multiple sclerosis before and after two years of interferon therapy.

    PubMed

    Anlar, Omer; Kisli, Mesude; Tombul, Temel; Ozbek, Hanefi

    2003-04-01

    Magnetic resonance imaging (MRI) is important in the diagnosis of and follow-up for the treatment of multiple sclerosis (MS); evoked potentials may be important if MRI is normal or cannot be performed. We assessed serial visual evoked potentials (VEPs) and cranial MRI in a group of clinically relapsing-remitting multiple sclerosis (N = 15) treated with interferon beta-lb (INFB-1b) and in normal subjects (N = 15). The investigations were done 1 week before INFB-lb therapy, 1 year later (N = 15), and 2 years later (N = 10). VEPs were abnormal in most of the patients; MRIs were abnormal in all patients. We used P100 latency as an electrophysiological index for the progress of illness. There were significant differences in VEPs between the beginning and ending of the interferon treatment. We concluded that VEPs would be a reliable index for following up the progress of MS under interferon therapy.

  7. Evaluating long-latency auditory evoked potentials in the diagnosis of cortical hearing loss in children

    PubMed Central

    Lopez-Soto, Teresa; Postigo-Madueno, Amparo; Nunez-Abades, Pedro

    2016-01-01

    In centrally related hearing loss, there is no apparent damage in the auditory system, but the patient is unable to hear sounds. In patients with cortical hearing loss (and in the absence of communication deficit, either total or partial, as in agnosia or aphasia), some attention-related or language-based disorders may lead to a wrong diagnosis of hearing impairment. The authors present two patients (8 and 11 years old) with no anatomical damage to the ear, the absence of neurological damage or trauma, but immature cortical auditory evoked potentials. Both patients presented a clinical history of multiple diagnoses over several years. Because the most visible symptom was moderate hearing loss, the patients were recurrently referred to audiological testing, with no improvement. This report describes the use of long-latency evoked potentials to determine cases of cortical hearing loss, where hearing impairment is a consequence of underdevelopment at the central nervous system. PMID:27006780

  8. Stimulus-evoked potentials contribute to map the epileptogenic zone during stereo-EEG presurgical monitoring.

    PubMed

    Boido, Davide; Kapetis, Dimos; Gnatkovsky, Vadym; Pastori, Chiara; Galbardi, Barbara; Sartori, Ivana; Tassi, Laura; Cardinale, Francesco; Francione, Stefano; de Curtis, Marco

    2014-09-01

    Presurgical monitoring with intracerebral electrodes in patients with drug-resistant focal epilepsy represents a standard invasive procedure to localize the sites of seizures origin, defined as the epileptogenic zone (EZ). During presurgical evaluation, intracerebral single-pulse electrical stimulation (SPES) is performed to define the boundaries of eloquent areas and to evoke seizure-associated symptoms. Extensive intracranial exploration and stimulation generate a large dataset on brain connectivity that can be used to improve EZ detection and to understand the organization of the human epileptic brain. We developed a protocol to analyse field responses evoked by intracranial stimulation. Intracerebral recordings were performed with 105-162 recording sites positioned in fronto-temporal regions in 12 patients with pharmacoresistant focal epilepsy. Recording sites were used for bipolar SPES at 1 Hz. Reproducible early and late phases (<60 ms and 60-500 ms from stimulus artefact, respectively) were identified on averaged evoked responses. Phase 1 and 2 responses recorded at all and each recording sites were plotted on a 3D brain reconstructions. Based on connectivity properties, electrode contacts were primarily identified as receivers, mainly activators or bidirectional. We used connectivity patterns to construct networks and applied cluster partitioning to study the proprieties between potentials evoked/stimulated in different regions. We demonstrate that bidirectional connectivity during phase 1 is a prevalent feature that characterize contacts included in the EZ. This study shows that the application of an analytical protocol on intracerebral stimulus-evoked recordings provides useful information that may contribute to EZ detection and to the management of surgical-remediable epilepsies.

  9. Therapeutic hypothermia and reliability of somatosensory evoked potentials in predicting outcome after cardiopulmonary arrest.

    PubMed

    Rothstein, Ted Laurence

    2012-08-01

    The loss of the N20 component on testing median somatosensory evoked potentials (SSEP) has been established as the most reliable indicator of unfavorable prognosis in post-cardiopulmonary arrest patients. With the intervention of therapeutic hypothermia in the management of patients who remain comatose following cardiopulmonary arrest that association is now in dispute. Abandoning SSEP as a key prognostic indicator of neurologic outcome would be a serious loss and cannot be justified.

  10. Palliation of recurrent Ewing sarcoma of the pelvis with cryoablation and somatosensory-evoked potentials.

    PubMed

    Lessard, Anne-Marie I; Gilchrist, James; Schaefer, Leah; Dupuy, Damian E

    2009-01-01

    Palliation of recurrent Ewing sarcoma can be difficult to treat due to tumor resistance to chemotherapy and previously received maximum dose radiotherapy. We report the successful use of cryoablation for pain palliation in a patient with recurrent pelvic Ewing sarcoma. Tumor location necessitated use of somatosensory-evoked potentials to prevent nerve damage to the S1 nerve root. Clinical and imaging aspects of the case are discussed.

  11. Evoked potential correlates of selective attention with multi-channel auditory inputs

    NASA Technical Reports Server (NTRS)

    Schwent, V. L.; Hillyard, S. A.

    1975-01-01

    Ten subjects were presented with random, rapid sequences of four auditory tones which were separated in pitch and apparent spatial position. The N1 component of the auditory vertex evoked potential (EP) measured relative to a baseline was observed to increase with attention. It was concluded that the N1 enhancement reflects a finely tuned selective attention to one stimulus channel among several concurrent, competing channels. This EP enhancement probably increases with increased information load on the subject.

  12. Ruggedized Portable Instrumentation Package for Marine Mammal Evoked Potential Hearing Measurements

    DTIC Science & Technology

    2012-09-30

    12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited 13. SUPPLEMENTARY NOTES The original document contains...the Beach testing the hearing of a stranded dolphin RESULTS This ruggedized device for measuring the hearing of stranded cetaceans allows us to...and Echolocation Mechanisms of Marine Mammals: Measured Auditory Evoked Potential and Behavioral Experiments: Award Number: N00014-08-1-1160. Self

  13. Evoked potential, cardiac, blink, and respiration measures of pilot workload in air-to-ground missions.

    PubMed

    Wilson, G F; Fullenkamp, P; Davis, I

    1994-02-01

    Brain evoked potentials were successfully recorded from F-4 pilots during air-to-ground training missions. They were recorded during two flight segments. During one the pilot was flying, and during the other, the weapon systems officer was flying the aircraft. The P2 component of the brain-evoked potential evidenced reduced amplitude during the pilot-flying segment, while the N1 component was reduced during both flight tasks compared to ground-based tasks. These data indicate that the P2 amplitude is sensitive to the level of pilot workload. These results were further substantiated using simultaneously recorded physiological data and subjective workload measures. For example, cardiac inter-beat intervals decreased during flight segments relative to those recorded when performing a tracking task, and further reduced for the pilot-flying vs. the weapon systems officer-flying segment. Eye blink measures were sensitive to the visual demands of the various tasks. These data show that evoked potentials can be recorded during flight, and that, together with cardiac and eye blink data, they provide a composite picture of operator state.

  14. Lack of habituation of evoked visual potentials in analytic information processing style: evidence in healthy subjects.

    PubMed

    Buonfiglio, Marzia; Toscano, M; Puledda, F; Avanzini, G; Di Clemente, L; Di Sabato, F; Di Piero, V

    2015-03-01

    Habituation is considered one of the most basic mechanisms of learning. Habituation deficit to several sensory stimulations has been defined as a trait of migraine brain and also observed in other disorders. On the other hand, analytic information processing style is characterized by the habit of continually evaluating stimuli and it has been associated with migraine. We investigated a possible correlation between lack of habituation of evoked visual potentials and analytic cognitive style in healthy subjects. According to Sternberg-Wagner self-assessment inventory, 15 healthy volunteers (HV) with high analytic score and 15 HV with high global score were recruited. Both groups underwent visual evoked potentials recordings after psychological evaluation. We observed significant lack of habituation in analytical individuals compared to global group. In conclusion, a reduced habituation of visual evoked potentials has been observed in analytic subjects. Our results suggest that further research should be undertaken regarding the relationship between analytic cognitive style and lack of habituation in both physiological and pathophysiological conditions.

  15. Improving the ensemble average of visual evoked potentials. II. Simulations and experiments.

    PubMed

    Cuypers, M H; Thijssen, J M

    1995-03-01

    Ensemble averaging is generally used for the estimation of Evoked Potentials. This paper deals with the assessment of correction procedures for the time variability of the ensemble components, this time variability reduces the improvement of the signal-to-noise ratio (SNR) by averaging. Evoked potentials were estimated by ensemble averaging, synchronized to a periodic stimulus. It is assumed that VEP-instability is partly caused by time-variability of the evoked potentials. Two time-variate models were used, from which procedures were derived to correct the single VEP-responses prior to ensemble averaging. The models are: (1) variation in response delay (jitter), (2) variable compression/expansion of the time scale of the response (wow). The Spectral Phase Difference method was applied to estimate both the delay time jitter and the wow factor of single responses with respect to a template (conventional ensemble average). The effects of the devised correction on the average VEP waveform and on the SNR of the ensemble were investigated by using data from realistic simulations and from experiments (n = 23) with a number of healthy human volunteers (n = 17). Jitter- and wow-corrections were effective on simulations with time variability due to delay time jitter and time scale distortion (wow), respectively. Both wow- and jitter correction of the single responses improved the SNR of the VEP measurements significantly and to the same amount. A combined wow-jitter approach resulted in significantly better results than the exclusive application of jitter- or wow correction.

  16. Nociceptive-Evoked Potentials Are Sensitive to Behaviorally Relevant Stimulus Displacements in Egocentric Coordinates

    PubMed Central

    Di Stefano, G.; Stubbs, M. T.; Djeugam, B.; Liang, M.

    2016-01-01

    Abstract Feature selection has been extensively studied in the context of goal-directed behavior, where it is heavily driven by top-down factors. A more primitive version of this function is the detection of bottom-up changes in stimulus features in the environment. Indeed, the nervous system is tuned to detect fast-rising, intense stimuli that are likely to reflect threats, such as nociceptive somatosensory stimuli. These stimuli elicit large brain potentials maximal at the scalp vertex. When elicited by nociceptive laser stimuli, these responses are labeled laser-evoked potentials (LEPs). Although it has been shown that changes in stimulus modality and increases in stimulus intensity evoke large LEPs, it has yet to be determined whether stimulus displacements affect the amplitude of the main LEP waves (N1, N2, and P2). Here, in three experiments, we identified a set of rules that the human nervous system obeys to identify changes in the spatial location of a nociceptive stimulus. We showed that the N2 wave is sensitive to: (1) large displacements between consecutive stimuli in egocentric, but not somatotopic coordinates; and (2) displacements that entail a behaviorally relevant change in the stimulus location. These findings indicate that nociceptive-evoked vertex potentials are sensitive to behaviorally relevant changes in the location of a nociceptive stimulus with respect to the body, and that the hand is a particularly behaviorally important site. PMID:27419217

  17. Cortico-centric effects of general anesthetics on cerebrocortical evoked potentials.

    PubMed

    Voss, Logan J; Sleigh, James W

    2015-12-01

    Despite their ubiquitous use for rendering patients unconscious for surgery, our understanding of how general anesthetics cause hypnosis remains rudimentary at best. Recent years have seen increased interest in "top-down" cortico-centric theories of anesthetic action. The aim of this study was to explore this by investigating direct cortical effects of anesthetics on cerebrocortical evoked potentials in isolated mouse brain slices. Evoked potentials were elicited in cortical layer IV by electrical stimulation of the underlying white matter. The effects of three anesthetics (ketamine, etomidate, and isoflurane) on the amplitude, latency, and slope of short-latency evoked potentials were quantified. The N2/P3/N4 potentials–which represent the early cortical response–were enhanced by etomidate (increased P3-N4 slope, P <0.01), maintained by ketamine, and reduced by isoflurane (lower N2/P3 amplitude, P <0.01). These effects closely resemble those seen in vivo for the same drugs and point to a cortical mechanism independent of effects on subcortical structures such as the thalamus.

  18. Vestibular evoked potentials (VsEPs) of cortical origin produced by impulsive acceleration applied at the nasion.

    PubMed

    Todd, Neil P M; McLean, Aisha; Paillard, Aurore; Kluk, Karolina; Colebatch, James G

    2014-12-01

    We report the results of a study to record vestibular evoked potentials (VsEPs) of cortical origin produced by impulsive acceleration (IA). In a sample of 12 healthy participants, evoked potentials recorded by 70 channel electroencephalography were obtained by IA stimulation at the nasion and compared with evoked potentials from the same stimulus applied to the forefingers. The nasion stimulation gave rise to a series of positive and negative deflections in the latency range of 26-72 ms, which were dependent on the polarity of the applied IA. In contrast, evoked potentials from the fingers were characterised by a single N50/P50 deflection at about 50 ms and were polarity invariant. Source analysis confirmed that the finger evoked potentials were somatosensory in origin, i.e. were somatosensory evoked potentials, and suggested that the nasion evoked potentials plausibly included vestibular midline and frontal sources, as well as contributions from the eyes, and thus were likely VsEPs. These results show considerable promise as a new method for assessment of the central vestibular system by means of VsEPs produced by IA applied to the head.

  19. Action potential evoked transmitter release in central synapses: insights from the developing calyx of Held

    PubMed Central

    2009-01-01

    Chemical synapses are the fundamental units that mediate communication between neurons in the mammalian brain. In contrast to the enormous progress made in mapping out postsynaptic contributions of receptors, scaffolding structures and receptor trafficking to synaptic transmission and plasticity, the small size of nerve terminals has largely precluded direct analyses of presynaptic modulation of excitability and transmitter release in central synapses. Recent studies performed in accessible synapses such as the calyx of Held, a giant axosomatic synapse in the sound localization circuit of the auditory brainstem, have provided tremendous insights into how central synapses regulate the dynamic gain range of synaptic transmission. This review will highlight experimental evidence that resolves several long-standing issues with respect to intricate interplays between the waveform of action potentials, Ca2+ currents and transmitter release and further conceptualize their relationships in a physiological context with theoretical models of the spatial organization of voltage-gated Ca2+ channels and synaptic vesicles at release sites. PMID:19939269

  20. Motor potentials evoked by navigated transcranial magnetic stimulation in healthy subjects.

    PubMed

    Säisänen, Laura; Julkunen, Petro; Niskanen, Eini; Danner, Nils; Hukkanen, Taina; Lohioja, Tarja; Nurkkala, Jouko; Mervaala, Esa; Karhu, Jari; Könönen, Mervi

    2008-12-01

    Navigated transcranial magnetic stimulation (TMS) is a tool for targeted, noninvasive stimulation of cerebral cortex. Transcranial stimuli can depolarize neurons and evoke measurable effects which are unique in two ways: the effects are caused directly and without a consciousness of the subject, and, the responses from peripheral muscles provide a direct measure for the integrity of the whole motor pathway. The clinical relevance of the method has not always been fully exposed because localizing the optimal stimulation site and determining the optimal stimulation strength have been dependent on time-consuming experimentation and skill. Moreover, in many disorders it has been uncertain, whether the lack of motor responses is the result of true pathophysiological changes or merely because of unoptimal stimulation. We characterized the muscle responses from human primary motor cortex system by navigated TMS to provide normative values for the clinically relevant TMS parameters on 65 healthy volunteers aged 22 to 81 years. We delivered focal TMS pulses on the primary motor area (M1) and recorded muscle responses on thenar and anterior tibial muscles. Motor threshold, latencies and amplitudes of motor-evoked potentials, and silent period duration were measured. The correction of the motor-evoked potential latency for subjects' height is provided. In conclusion, we provide a modified baseline of TMS-related parameters for healthy subjects. Earlier such large-scale baseline material has not been available.

  1. [Anesthetic and physiologic implications of neurophysiologic monitoring with evoked potentials during spinal surgery].

    PubMed

    Valverde Junguito, J L; Aldana Díaz, E M; Pérez Lorensu, P J; González Miranda, F

    2007-04-01

    Neurophysiologic monitoring with somatosensory and motor evoked potentials in spinal surgery is now widely applied in order to reduce the risk of neural injury and facilitate intraoperative decision making. Most anesthetics affect such monitoring by altering both somatosensory and motor evoked responses and these effects may place constraints on the choice of anesthetic. Intraoperative management includes maintaining stable physiologic conditions, which involves adjusting hemodynamic parameters, maintaining normal blood flow to promote proper oxygen exchange, ensuring proper ventilation, and avoiding variations in temperature. Close collaboration between the anesthetist, the surgeon, and the neurophysiologist will ensure the success of intraoperative monitoring and make it possible to avoid neural injury by making timely changes in the surgical approach.

  2. Steady-state visually evoked potentials: focus on essential paradigms and future perspectives.

    PubMed

    Vialatte, François-Benoît; Maurice, Monique; Dauwels, Justin; Cichocki, Andrzej

    2010-04-01

    After 40 years of investigation, steady-state visually evoked potentials (SSVEPs) have been shown to be useful for many paradigms in cognitive (visual attention, binocular rivalry, working memory, and brain rhythms) and clinical neuroscience (aging, neurodegenerative disorders, schizophrenia, ophthalmic pathologies, migraine, autism, depression, anxiety, stress, and epilepsy). Recently, in engineering, SSVEPs found a novel application for SSVEP-driven brain-computer interface (BCI) systems. Although some SSVEP properties are well documented, many questions are still hotly debated. We provide an overview of recent SSVEP studies in neuroscience (using implanted and scalp EEG, fMRI, or PET), with the perspective of modern theories about the visual pathway. We investigate the steady-state evoked activity, its properties, and the mechanisms behind SSVEP generation. Next, we describe the SSVEP-BCI paradigm and review recently developed SSVEP-based BCI systems. Lastly, we outline future research directions related to basic and applied aspects of SSVEPs.

  3. Age-related decline in thermal adaptation capacities: an evoked potentials study.

    PubMed

    Kemp, Jennifer; Després, Olivier; Pebayle, Thierry; Dufour, André

    2014-06-01

    Aging is associated with changes in thermosensitivity and decreases in the functionality of the autonomic thermoregulation. The underlying mechanisms are, however, not fully understood. Elderly subjects may undergo functional changes in the integration process of the thermal sensory system, especially in their thermal adaptation capacities. To verify this hypothesis, we compared thermal evoked responses in younger and older subjects exposed to thermoneutral (27 °C) and warm (30 °C) environments. In the warm environment, the amplitudes of thermal evoked potentials (EPs) were significantly lower in older than in younger subjects, whereas in the thermoneutral environment, the EP amplitudes were similar in both groups. These findings suggest that thermal adaptation capacities are reduced in elderly individuals, due to a dysfunction of C-fibers with aging, particularly expressed by lowered adaptation capacities to temperature variations.

  4. Temperature effects on evoked potentials of hippocampal slices from euthermic chipmunks, hamsters and rats

    NASA Technical Reports Server (NTRS)

    Hooper, D. C.; Martin, S. M.; Horowitz, J. M.

    1985-01-01

    1. Neural activity was recorded in hippocampal slices from euthermic chipmunks, hamsters and rats. 2. While recording the evoked potentials, the temperature of the Ringer's solution bathing the slice was varied by controlling the temperature of an outer chamber jacketing the recording chamber. 3. The temperature just below that at which a population spike could be evoked, Tt, was 10.4 +/- 0.3 degrees C (mean +/- SEM) for chipmunk slices, 14.1 +/- 0.4 degrees C for rat slices and 14.8 +/- 0.4 degrees C for hamster slices. Tt was significantly lower in the chipmunk slices (P<0.01) than in the rat and hamster slices. 4. Data were interpreted as consistent with the hypothesis that chipmunk hippocampal neurons are intrinsically cold resistant.

  5. Spatial smoothing of canonical correlation analysis for steady state visual evoked potential based brain computer interfaces.

    PubMed

    Ryu, Shingo; Higashi, Hiroshi; Tanaka, Toshihisa; Nakauchi, Shigeki; Minami, Tetsuto

    2016-08-01

    Brain computer interface (BCI) is a system for communication between people and computers via brain activity. Steady-state visual evoked potentials (SSVEPs), a brain response observed in EEG, are evoked by flickering stimuli. SSVEP is one of the promising paradigms for BCI. Canonical correlation analysis (CCA) is widely used for EEG signal processing in SSVEP-based BCIs. However, the classification accuracy of CCA with short signal length is low. In order to solve the problem, we propose a regularization which works in such a way that the CCA spatial filter becomes spatially smooth to give robustness in short signal length condition. The spatial filter is designed in a parameter space spanned by a spatially smooth basis which are given by a graph Fourier transform of three dimensional electrode coordinates. We compared the classification accuracy of the proposed regularized CCA with the standard CCA. The result shows that the proposed CCA outperforms the standard CCA in short signal length condition.

  6. Noise-induced tinnitus: auditory evoked potential in symptomatic and asymptomatic patients

    PubMed Central

    dos Santos-Filha, Valdete Alves Valentins; Samelli, Alessandra Giannella; Matas, Carla Gentile

    2014-01-01

    OBJECTIVES: We evaluated the central auditory pathways in workers with noise-induced tinnitus with normal hearing thresholds, compared the auditory brainstem response results in groups with and without tinnitus and correlated the tinnitus location to the auditory brainstem response findings in individuals with a history of occupational noise exposure. METHOD: Sixty individuals participated in the study and the following procedures were performed: anamnesis, immittance measures, pure-tone air conduction thresholds at all frequencies between 0.25–8 kHz and auditory brainstem response. RESULTS: The mean auditory brainstem response latencies were lower in the Control group than in the Tinnitus group, but no significant differences between the groups were observed. Qualitative analysis showed more alterations in the lower brainstem in the Tinnitus group. The strongest relationship between tinnitus location and auditory brainstem response alterations was detected in individuals with bilateral tinnitus and bilateral auditory brainstem response alterations compared with patients with unilateral alterations. CONCLUSION: Our findings suggest the occurrence of a possible dysfunction in the central auditory nervous system (brainstem) in individuals with noise-induced tinnitus and a normal hearing threshold. PMID:25029581

  7. [Long-latency components (N100, N200 and P300) of acoustic evoked potentials in prediction of mental recovery in severe traumatic brain injury].

    PubMed

    Oknina, L B; Sharova, E V; Zaĭtsev, O S; Zakharova, N E; Masherov, E L; Shekut'ev, G A; Kornienko, V N; Potapov, A A

    2011-01-01

    The authors analyzed correlations of amplitude and latency levels of N100, N200 and P300 components of acoustic evoked potentials (AEP) registered during sonic stimulation and counting of target-oriented stimuli in 22 patients in vegetative state and mutism as an outcome of traumatic brain injury. Results were analyzed with association of electrophysiological findings with data of diffusion-tensor MRI. 55 healthy volunteers were included into control group. It is described that patients in vegetative state with formal recovery to the level of clear consciousness develop all three components of AEP in response to target-oriented tone. The instruction "to counts" leads to their better development. Patients with restoration to minimal level of consciousness produce all components during audition of sounds and only N100 and N200 in response to standard tone after instruction "to count". It is discovered that levels of amplitude have bigger correlation according to Spearman's criterion with outcome in comparison to latency. There changes are more prominent in N100 and N200 components rather in P300. In addition, after instruction "to count sounds" the registered changes between stages of vegetative state and mutism are significant for leads of left hemisphere, and during audition of sounds--for sagittal leads. The study showed correspondence of acquired changes with MRI data. Chronic unconscious state is associated with changes in corpus callosum (degeneration fibers) and corticospinal tracts in the brainstem. The data are discussed in light of hypothesis of the role of morphofunctional disconnections (brainstem-thalamus and interhemispheric) in impairment of attention and in genesis of different forms of posttraumatic unconscious state.

  8. Attenuation of auditory evoked potentials for hand and eye-initiated sounds.

    PubMed

    Mifsud, Nathan G; Beesley, Tom; Watson, Tamara L; Whitford, Thomas J

    2016-10-01

    Reduction of auditory event-related potentials (ERPs) to self-initiated sounds has been considered evidence for a predictive model in which copies of motor commands suppress sensory representations of incoming stimuli. However, in studies which involve arbitrary auditory stimuli evoked by sensory-unspecific motor actions, learned associations may underlie ERP differences. Here, in a new paradigm, eye motor output generated auditory sensory input, a naïve action-sensation contingency. We measured the electroencephalogram (EEG) of 40 participants exposed to pure tones, which they produced with either a button-press or volitional saccade. We found that button-press-initiated stimuli evoked reduced amplitude compared to externally initiated stimuli for both the N1 and P2 ERP components, whereas saccade-initiated stimuli evoked intermediate attenuation at N1 and no reduction at P2. These results indicate that the motor-to-sensory mapping involved in speech production may be partly generalized to other contingencies, and that learned associations also contribute to the N1 attenuation effect.

  9. Basic Principles and Recent Trends of Transcranial Motor Evoked Potentials in Intraoperative Neurophysiologic Monitoring

    PubMed Central

    TSUTSUI, Shunji; YAMADA, Hiroshi

    2016-01-01

    Transcranial motor evoked potentials (TcMEPs), which are muscle action potentials elicited by transcranial brain stimulation, have been the most popular method for the last decade to monitor the functional integrity of the motor system during surgery. It was originally difficult to record reliable and reproducible potentials under general anesthesia, especially when inhalation-based anesthetic agents that suppressed the firing of anterior horn neurons were used. Advances in anesthesia, including the introduction of intravenous anesthetic agents, and progress in stimulation techniques, including the use of pulse trains, improved the reliability and reproducibility of TcMEP responses. However, TcMEPs are much smaller in amplitude compared with compound muscle action potentials evoked by maximal peripheral nerve stimulation, and vary from one trial to another in clinical practice, suggesting that only a limited number of spinal motor neurons innervating the target muscle are excited in anesthetized patients. Therefore, reliable interpretation of the critical changes in TcMEPs remains difficult and controversial. Additionally, false negative cases have been occasionally encountered. Recently, several facilitative techniques using central or peripheral stimuli, preceding transcranial electrical stimulation, have been employed to achieve sufficient depolarization of motor neurons and augment TcMEP responses. These techniques might have potentials to improve the reliability of intraoperative motor pathway monitoring using TcMEPs. PMID:26935781

  10. Task-specific role of ipsilateral pathways: somatosensory evoked potentials during cooperative hand movements.

    PubMed

    Schrafl-Altermatt, Miriam; Dietz, Volker

    2014-12-17

    Task-specific neural coupling during cooperative hand movements has been described in healthy volunteers, manifested by bilateral reflex electromyographic responses in forearm muscles following unilateral ulnar nerve stimulation and by task-specific activation of secondary somatosensory cortical areas (S2) in functional MRI. The aim of this study was to investigate the role of sensory input to the ipsilateral and contralateral cortex during a cooperative task. Somatosensory evoked potentials from the ulnar nerve were recorded over the ipsilateral and contralateral cortex during resting and during cooperative and noncooperative hand movements. Ipsilateral potentials with smaller amplitude were present under all conditions in almost all participants. In relation to the resting condition, the amplitudes of both the ipsilateral and the contralateral potential were reduced during the cooperative and the noncooperative tasks. Nevertheless, the reduction in amplitude was similar for the ipsilateral and the contralateral potentials in the noncooperative task, but less on the ipsilateral compared with the contralateral side during the cooperative task. The ratio of ipsilateral/contralateral somatosensory evoked potential amplitude was thus significantly larger during the cooperative task compared with the control task and the resting condition. This indicates a functional role of ipsilateral pathways connecting the cervical spinal cord with the cortex during the cooperative task. These observations favor the idea of a task-specific mediation of sensory input from both hands to the ipsilateral and contralateral hemispheres as the basis of neuronal coupling.

  11. Direct comparison of two statistical methods for determination of evoked-potential thresholds

    NASA Astrophysics Data System (ADS)

    Langford, Ted L.; Patterson, James H., Jr.

    1994-07-01

    Several statistical procedures have been proposed as objective methods for determining evoked-potential thresholds. Data have been presented to support each of the methods, but there have not been direct comparisons using the same data. The goal of the present study was to evaluate correlation and variance ratio statistics using common data. A secondary goal was to evaluate the utility of a derived potential for determining thresholds. Chronic, bipolar electrodes were stereotaxically implanted in the inferior colliculi of six chinchillas. Evoked potentials were obtained at 0.25, 0.5, 1.0, 2.0, 4.0 and 8.0 kHz using 12-ms tone bursts and 12-ms tone bursts superimposed on 120-ms pedestal tones which were of the same frequency as the bursts, but lower in amplitude by 15 dB. Alternate responses were averaged in blocks of 200 to 4000 depending on the size of the response. Correlations were calculated for the pairs of averages. A response was deemed present if the correlation coefficient reached the 0.05 level of significance in 4000 or fewer averages. Threshold was defined as the mean of the level at which the correlation was significant and a level 5 dB below that at which it was not. Variance ratios were calculated as described by Elberling and Don (1984) using the same data. Averaged tone burst and tone burst-plus pedestal data were differenced and the resulting waveforms subjected to the same statistical analyses described above. All analyses yielded thresholds which were essentially the same as those obtained using behavioral methods. When the difference between stimulus durations is taken into account, however, evoked-potential methods produced lower thresholds than behavioral methods.

  12. Concomitant hypertension, bradycardia, and loss of transcranial electric motor evoked potentials during pedicle hook removal: report of a case.

    PubMed

    Ambardekar, A P; Sestokas, A K; Schwartz, D M; Flynn, J M; Rehman, M

    2010-12-01

    Neurophysiologic monitors in the form of transcranial electric motor evoked potentials (tceMEPs) and somatosensory evoked potentials (SSEPs) have become widely used modalities to monitor spinal cord function during major orthopedic spine procedures. In combination with invasive and non-invasive clinical monitoring and an anesthesia information management system (AIMS), we promptly recognized an acute change in hemodynamic and neurophysiologic parameters, managed intraoperative spinal cord contusion, and successfully minimized iatrogenic injury to the spinal cord during corrective spine surgery.

  13. The Investigation of Cortical Auditory Evoked Potentials Responses in Young Adults Having Musical Education

    PubMed Central

    Polat, Zahra; Ataş, Ahmet

    2014-01-01

    Background: In the literature, music education has been shown to enhance auditory perception for children and young adults. When compared to young adult non-musicians, young adult musicians demonstrate increased auditory processing, and enhanced sensitivity to acoustic changes. The evoked response potentials associated with the interpretation of sound are enhanced in musicians. Studies show that training also changes sound perception and cortical responses. The earlier training appears to lead to larger changes in the auditory cortex. Aims: Most cortical studies in the literature have used pure tones or musical instrument sounds as stimuli signals. The aim of those studies was to investigate whether musical education would enhance auditory cortical responses when speech signals were used. In this study, the speech sounds extracted from running speech were used as sound stimuli. Study Design: Non-randomized controlled study. Methods: The experimental group consists of young adults up to 21 years-old, all with a minimum of 4 years of musical education. The control group was selected from young adults of the same age without any musical education. The experiments were conducted by using a cortical evoked potential analyser and /m/, /t/ /g/ sound stimulation at the level of 65 dB SPL. In this study, P1 / N1 / P2 amplitude and latency values were measured. Results: Significant differences were found in the amplitude values of P1 and P2 (p<0.05). The differences among the latencies were not found to be significantly important (p>0.05). Conclusion: The results obtained in our study indicate that musical experience has an effect on the nervous system and this can be seen in cortical auditory evoked potentials recorded when the subjects hear speech. PMID:25667787

  14. Neuronal current magnetic resonance imaging of evoked potentials and neural oscillations

    NASA Astrophysics Data System (ADS)

    Jiang, Xia

    Despite its great success, the current functional magnetic resonance imaging (MRI) technique relies on changes in cerebral hemodynamic parameters to infer the underlying neural activities, and as a result is limited in its spatial and temporal resolutions. In this dissertation, we discuss the feasibility of neuronal current MRI (nc-MRI), a novel technique in which the small magnetic field changes caused by neuronal electrical activities are directly measured by MRI. Two studies are described. In the first study, we investigated the feasibility of detecting the magnetic field produced by sensory evoked potentials. To eliminate the blood-oxygen-level-dependent (BOLD) effect on the MRI signal, which confounded most previous studies, an octopus visual system model was developed, which, for the first time, allowed for an in vivo investigation of nc-MRI in a BOLD-free environment. Electrophysiological responses were measured in the octopus retina and optical lobe to guide the nc-MRI acquisition. Our results indicated that no nc-MRI signal change related to neuronal activation could be detected at 0.2°/0.2% threshold for signal phase/magnitude respectively, while robust electrophysiological responses were recorded. In the second study, we discuss the feasibility of detecting neural oscillations with MRI, Based on previous studies, a novel approach was proposed in which an external oscillatory field was exploited as the excitation pulse under a spin-locked condition. This approach has the advantages of increased sensitivity and lowered physiological noise. Successful detection of sub-nanotesla field was demonstrated in phantom. Our results suggest that evoked potentials are too weak for nc-MRI detection with the current hardware, and that previous positive findings were likely due to hemodynamic confounders. On the other hand, oscillatory magnetic field can be efficiently detected in phantom. Given the stronger equivalent current dipoles produced by neural oscillations

  15. Intensity dependence of auditory evoked potentials during light interference in migraine.

    PubMed

    Ambrosini, Anna; Coppola, Gianluca; Gérardy, Pierre-Yves; Pierelli, Francesco; Schoenen, Jean

    2011-04-01

    Migraine patients show interictally a strong intensity dependence of auditory evoked cortical potentials (IDAP) and a lack of habituation of evoked potentials. Photic drive on high-frequency flash stimulation is another well-known interictal feature in migraineurs, associated with alpha-rhythm hyper-synchronisation. We compared therefore the influence of light stimulation on IDAP in healthy volunteers (HV) and migraine patients. A continuous flash stimulation was delivered during the recording of auditory evoked potentials at suprathreshold increasing stimulation intensities. IDAP was measured as the amplitude/stimulus intensity function (ASF) slope. In HV, the ASF slope decreased during flash stimulation, whereas, on average, there was no significant change in migraineurs. A closer analysis of migraineurs disclosed two subgroups of patients with no detectable clinical differences: one, the largest, in which the ASF slope was normal at baseline, but increased during light stimulation, the other with an increased ASF slope at rest and a decrease during light interference. Visual sensory overload is able to increase IDAP in the majority of migraineurs, which contrasts with HV. We hypothesise that this could be due to hyper-synchronisation of the alpha rhythm because of photic drive and possibly thalamo-cortical dysfunction. A minority of migraineurs have, like HV, an IDAP reduction during light interference. They are, however, characterised, unlike most HV, by a high IDAP at baseline. Besides underscoring the pathophysiological heterogeneity of migraine, these results suggest that light interference might improve the phenotyping of migraine patients who have a normal IDAP in the resting condition.

  16. ’Short-Latency’ Somatosensory Evoked Potentials during Experimentally Induced Biodynamic Stress in Humans.

    DTIC Science & Technology

    1985-12-01

    BP, a negative-going * ."" near-field wave originating in the brachial plexus, the A and B waves of Chiappa , et a]. (1980), and the NI, N2, and P2...1981) and by Chiappa , et al. (1980). Table 2 shows the baseline means and standard deviations of the SSEP peaks for all five Ss, derived from the loose...Head and Spine. Charles Thomas, Springfield, 1982, 324-378. Chiappa , K.H., Choi, S.K. and Young, R.R. Short latency somatosensory evoked potentials

  17. Somatosensory evoked potentials aid prediction after hypoxic-ischaemic brain injury.

    PubMed

    Kane, Nick; Oware, Agyepong

    2015-10-01

    Cardiopulmonary resuscitation, basic life support and early defibrillation are leading to more survivors of out-of-hospital cardiac arrest reaching hospital. Once stabilised on an intensive care unit, it can be difficult to predict the neurological outcome using clinical criteria alone, particularly with modern management using sedation, neuromuscular blockade and hypothermia. If we are to prevent ongoing futile life support, it is important to try to identify the majority of patients who, despite best efforts, will not make a meaningful recovery. Somatosensory evoked potentials are widely available electrophysiological tests that can provide an objective biomarker of a poor neurological outcome and assist in predicting the prognosis.

  18. Effect of acupuncture on the auditory evoked brain stem potential in Parkinson's disease.

    PubMed

    Wang, Lingling; He, Chong; Liu, Yueguang; Zhu, Lili

    2002-03-01

    Under the auditory evoked brain stem potential (ABP) examination, the latent period of V wave and the intermittent periods of III-V peak and I-V peak were significantly shortened in Parkinson's disease patients of the treatment group (N = 29) after acupuncture treatment. The difference of cumulative scores in Webster's scale was also decreased in correlation analysis. The increase of dopamine in the brain and the excitability of the dopamine neurons may contribute to the therapeutic effects, in TCM terms, of subduing the pathogenic wind and tranquilizing the mind.

  19. Underwater Anesthesia of Diamondback Terrapins (Malaclemys terrapin) for Measurement of Auditory Evoked Potentials

    PubMed Central

    Christiansen, Emily F; Piniak, Wendy E D; Lester, Lori A; Harms, Craig A

    2013-01-01

    Investigations into the biology of aquatic and semiaquatic species, including those involving sensory specialization, often require creative solutions to novel questions. We developed a technique for safely anesthetizing a semiaquatic chelonian species, the diamondback terrapin (Malaclemys terrapin), for measurement of auditory evoked potentials while animals were completely submerged in water. Custom-modified endotracheal tubes were used to obtain a watertight seal on both sides of the glottis and prevent aspiration of water during testing. No adverse effects were seen after the procedures, and assessment of venous blood-gas partial pressures and lactate concentrations indicated that sufficient gas exchange was maintained under anesthesia through manual ventilation. PMID:24351768

  20. Underwater anesthesia of diamondback terrapins (Malaclemys terrapin) for measurement of auditory evoked potentials.

    PubMed

    Christiansen, Emily F; Piniak, Wendy E D; Lester, Lori A; Harms, Craig A

    2013-11-01

    Investigations into the biology of aquatic and semiaquatic species, including those involving sensory specialization, often require creative solutions to novel questions. We developed a technique for safely anesthetizing a semiaquatic chelonian species, the diamondback terrapin (Malaclemys terrapin), for measurement of auditory evoked potentials while animals were completely submerged in water. Custom-modified endotracheal tubes were used to obtain a watertight seal on both sides of the glottis and prevent aspiration of water during testing. No adverse effects were seen after the procedures, and assessment of venous blood-gas partial pressures and lactate concentrations indicated that sufficient gas exchange was maintained under anesthesia through manual ventilation.

  1. Average evoked potential correlates of two-flash perceptual discrimination in cats.

    NASA Technical Reports Server (NTRS)

    Peck, C. K.; Lindsley, D. B.

    1972-01-01

    Average evoked potentials (AEPs) were recorded from the optic tract, lateral geniculate nucleus, and visual cortex of cats trained to discriminate between two successive flashes of light at various interflash intervals (IFI) and a single flash. The percent of correct responses to two-flash stimuli decreased sharply as IFI decreased from 100 to 20 msec. This behavioral response decrement was paralleled by a progressive overlapping of the AEPs to the two flashes and at 20 msec the AEPs resembled those to a single flash at all levels of the visual pathways. Implications for the coding of the information relevant to the discrimination of two flashes are discussed.

  2. Influences of the cholecystokinin analog ceruletide on human sleep and evoked potentials.

    PubMed

    Pietrowsky, R; Fehm, H L; Er, A; Bathelt, B; Born, J

    1990-01-01

    Two experiments are reported, investigating the effects of the cholecystokinin analog ceruletide on central nervous activation in man. In experiment I, 0.55 micrograms/h ceruletide was infused at a constant rate during the night to study its effects on spontaneous EEG activity during sleep. In experiment II, we examined the effects of a bolus injection of ceruletide (0.5 micrograms) on components of the auditory evoked potential reflecting exogenously provoked central nervous arousal. While ceruletide had no effect on sleep, it attenuated stimulus-induced cortical arousal.

  3. Middle ear muscle contractions and their relation to pulse and echo evoked potentials in the bat

    NASA Technical Reports Server (NTRS)

    Henson, O. W., Jr.; Henson, M. M.

    1972-01-01

    An analysis is made of pulse and echo orientation cries of the Mustache Bat. That bat's cries are characterized by a long, 60 to 30 msec, pure tone component and brief beginning and terminal FM sweeps. In addition to obvious echo overlap and middle ear muscle contractions, the following are examined: (1) characteristics of pulse- and echo-evoked potential under various conditions, (2) evidence of changes in hearing sensitivity during and after pulse emission, and (3) the role of the middle ear muscles in bringing about these changes.

  4. Auditory evoked potential: a proposal for further evaluation in children with learning disabilities.

    PubMed

    Frizzo, Ana C F

    2015-01-01

    The information presented in this paper demonstrates the author's experience in previews cross-sectional studies conducted in Brazil, in comparison with the current literature. Over the last 10 years, auditory evoked potential (AEP) has been used in children with learning disabilities. This method is critical to analyze the quality of the processing in time and indicates the specific neural demands and circuits of the sensorial and cognitive process in this clinical population. Some studies with children with dyslexia and learning disabilities were shown here to illustrate the use of AEP in this population.

  5. Control of humanoid robot via motion-onset visual evoked potentials

    PubMed Central

    Li, Wei; Li, Mengfan; Zhao, Jing

    2015-01-01

    This paper investigates controlling humanoid robot behavior via motion-onset specific N200 potentials. In this study, N200 potentials are induced by moving a blue bar through robot images intuitively representing robot behaviors to be controlled with mind. We present the individual impact of each subject on N200 potentials and discuss how to deal with individuality to obtain a high accuracy. The study results document the off-line average accuracy of 93% for hitting targets across over five subjects, so we use this major component of the motion-onset visual evoked potential (mVEP) to code people's mental activities and to perform two types of on-line operation tasks: navigating a humanoid robot in an office environment with an obstacle and picking-up an object. We discuss the factors that affect the on-line control success rate and the total time for completing an on-line operation task. PMID:25620918

  6. Control of humanoid robot via motion-onset visual evoked potentials.

    PubMed

    Li, Wei; Li, Mengfan; Zhao, Jing

    2014-01-01

    This paper investigates controlling humanoid robot behavior via motion-onset specific N200 potentials. In this study, N200 potentials are induced by moving a blue bar through robot images intuitively representing robot behaviors to be controlled with mind. We present the individual impact of each subject on N200 potentials and discuss how to deal with individuality to obtain a high accuracy. The study results document the off-line average accuracy of 93% for hitting targets across over five subjects, so we use this major component of the motion-onset visual evoked potential (mVEP) to code people's mental activities and to perform two types of on-line operation tasks: navigating a humanoid robot in an office environment with an obstacle and picking-up an object. We discuss the factors that affect the on-line control success rate and the total time for completing an on-line operation task.

  7. Motor evoked potentials enable differentiation between motor and sensory branches of peripheral nerves in animal experiments.

    PubMed

    Turkof, Edvin; Jurasch, Nikita; Knolle, Erik; Schwendenwein, Ilse; Habib, Danja; Unger, Ewald; Reichel, Martin; Losert, Udo

    2006-10-01

    Differentiation between motor and sensory fascicles is frequently necessary in reconstructive peripheral nerve surgery. The goal of this experimental study was to verify if centrally motor evoked potentials (MEP) could be implemented to differentiate sensory from motor fascicles, despite the well-known intermingling between nerve fascicles along their course to their distant periphery. This new procedure would enable surgeons to use MEP for placing nerve grafts at corresponding fascicles in the proximal and distal stumps without the need to use time-consuming staining. In ten sheep, both ulnar nerves were exposed at the terminal bifurcation between the last sensory and motor branch. Animals were then relaxed to avoid volume conduction. On central stimulation, the evoked nerve compound action potentials were simultaneously recorded from both terminal branches. In all cases, neurogenic motor nerve action potentials were recorded only from the terminal motor branch. The conclusion was that MEPs can be used for intraoperative differentiation between sensory and motor nerves. Further studies are necessary to develop this method for in situ measurements on intact nerve trunks.

  8. Monitoring of Motor and Somatosensory Evoked Potentials During Spine Surgery: Intraoperative Changes and Postoperative Outcomes

    PubMed Central

    2016-01-01

    Objective To evaluate whether the combination of muscle motor evoked potentials (mMEPs) and somatosensory evoked potentials (SEPs) measured during spinal surgery can predict immediate and permanent postoperative motor deficits. Methods mMEP and SEP was monitored in patients undergoing spinal surgery between November 2012 and July 2014. mMEPs were elicited by a train of transcranial electrical stimulation over the motor cortex and recorded from the upper/lower limbs. SEPs were recorded by stimulating the tibial and median nerves. Results Combined mMEP/SEP recording was successfully achieved in 190 operations. In 117 of these, mMEPs and SEPs were stable and 73 showed significant changes. In 20 cases, motor deficits in the first 48 postoperative hours were observed and 6 patients manifested permanent neurological deficits. The two potentials were monitored in a number of spinal surgeries. For surgery on spinal deformities, the sensitivity and specificity of combined mMEP/SEP monitoring were 100% and 92.4%, respectively. In the case of spinal cord tumor surgeries, sensitivity was only 50% but SEP changes were observed preceding permanent motor deficits in some cases. Conclusion Intraoperative monitoring is a useful tool in spinal surgery. For spinal deformity surgery, combined mMEP/SEP monitoring showed high sensitivity and specificity; in spinal tumor surgery, only SEP changes predicted permanent motor deficits. Therefore, mMEP, SEP, and joint monitoring may all be appropriate and beneficial for the intraoperative monitoring of spinal surgery. PMID:27446784

  9. Steady-State Motion Visual Evoked Potential (SSMVEP) Based on Equal Luminance Colored Enhancement

    PubMed Central

    Han, Chengcheng; Zhang, Sicong; Luo, Ailing; Chen, Chaoyang

    2017-01-01

    Steady-state visual evoked potential (SSVEP) is one of the typical stimulation paradigms of brain-computer interface (BCI). It has become a research approach to improve the performance of human-computer interaction, because of its advantages including multiple objectives, less recording electrodes for electroencephalogram (EEG) signals, and strong anti-interference capacity. Traditional SSVEP using light flicker stimulation may cause visual fatigue with a consequent reduction of recognition accuracy. To avoid the negative impacts on the brain response caused by prolonged strong visual stimulation for SSVEP, steady-state motion visual evoked potential (SSMVEP) stimulation method was used in this study by an equal-luminance colored ring-shaped checkerboard paradigm. The movement patterns of the checkerboard included contraction and expansion, which produced less discomfort to subjects. Feature recognition algorithms based on power spectrum density (PSD) peak was used to identify the peak frequency on PSD in response to visual stimuli. Results demonstrated that the equal-luminance red-green stimulating paradigm within the low frequency spectrum (lower than 15 Hz) produced higher power of SSMVEP and recognition accuracy than black-white stimulating paradigm. PSD-based SSMVEP recognition accuracy was 88.15±6.56%. There was no statistical difference between canonical correlation analysis (CCA) (86.57±5.37%) and PSD on recognition accuracy. This study demonstrated that equal-luminance colored ring-shaped checkerboard visual stimulation evoked SSMVEP with better SNR on low frequency spectrum of power density and improved the interactive performance of BCI. PMID:28060906

  10. The impact of synaptic conductance on action potential waveform: evoking realistic action potentials with a simulated synaptic conductance.

    PubMed

    Johnston, Jamie; Postlethwaite, Michael; Forsythe, Ian D

    2009-10-15

    Most current clamp studies trigger action potentials (APs) by step current injection through the recording electrode and assume that the resulting APs are essentially identical to those triggered by orthodromic synaptic inputs. However this assumption is not always valid, particularly when the synaptic conductance is of large magnitude and of close proximity to the axon initial segment. We addressed this question of similarity using the Calyx of Held/MNTB synapse; we compared APs evoked by long duration step current injections, short step current injections and orthodromic synaptic stimuli. Neither injected current protocol evoked APs that matched the evoked orthodromic AP waveform, showing differences in AP height, half-width and after-hyperpolarization. We postulated that this 'error' could arise from changes in the instantaneous conductance during the combined synaptic and AP waveforms, since the driving forces for the respective ionic currents are integrating and continually evolving over this time-course. We demonstrate that a simple Ohm's law manipulation of the EPSC waveform, which accounts for the evolving driving force on the synaptic conductance during the AP, produces waveforms that closely mimic those generated by physiological synaptic stimulation. This stimulation paradigm allows supra-threshold physiological stimulation (single stimuli or trains) without the variability caused by quantal fluctuation in transmitter release, and can be implemented without a specialised dynamic clamp system. Combined with pharmacological tools this method provides a reliable means to assess the physiological roles of postsynaptic ion channels without confounding affects from the presynaptic input.

  11. Use of magnetic stimulation to elicit motor evoked potentials, somatosensory evoked potentials, and H-reflexes in non-sedated rodents.

    PubMed

    Zhang, Yi Ping; Shields, Lisa B E; Zhang, Yongjie; Pei, Jiong; Xu, Xiao-Ming; Hoskins, Rachel; Cai, Jun; Qiu, Meng Sheng; Magnuson, David S K; Burke, Darlene A; Shields, Christopher B

    2007-09-15

    Assessment of locomotor function of rodents may be supplemented using electrophysiological tests which monitor the integrity of ascending and descending tracts as well as the focal circuitry of the spinal cord in non-sedated rodents. Magnetically induced SSEPs (M-SSEPs) were elicited in rats by activating the hindpaw using magnetic stimulation (MS). M-SSEP response latencies were slightly longer than those elicited by electrical stimulation. M-SSEPs were eliminated following selective dorsal column lacerations of the spinal cord, indicating that they were transmitted via this tract. Magnetically induced motor evoked potentials (M-MEPs) were elicited in mice following transcranial MS and recorded from the gastrocnemius muscles. M-MEPs performed on myelin deficient mice demonstrated longer onset latencies and smaller amplitudes than in wild-type mice. Magnetically induced H-reflexes (MH-reflexes) which assess local circuitry in the lumbosacral area of the spinal cord were performed in rats. This response disappeared following an L3 contusion spinal cord injury, however, kainic acid (KA) injection at L3, known to selectively destroy interneurons, caused a shorter latency and an increase in the amplitude of the MH-reflex. M-SSEPs and MH-reflexes in rats and M-MEPs in mice compliment locomotor evaluation in assessing the functional integrity of the spinal cord under normal and pathological conditions in the non-sedated animal.

  12. Brain stem evoked potentials and visual evoked potentials in relation to the length of occupational exposure to low levels of toluene.

    PubMed

    Vrca, A; Bozicević, D; Bozikov, V; Fuchs, R; Malinar, M

    1997-01-01

    In 49 printing-press workers occupationally exposed to toluene for approximately 21.6 years, the values of BEAP and VEP parameters were examined in relation to the length of exposure. With the exception of P2 wave, there was a significant increase in the latencies of all the BEAP waves examined as well as in the interpeak latency (IPL) P3-P4, whereas IPL P4-P5 decreased significantly with the length of exposure. The amplitude of all the VEP examined decreased significantly with the length of exposure. Toluene exposure was evaluated by measuring the concentration of toluene in peripheral blood and of hippuric acid in urine on Wednesday morning prior to the workshift, and of hippuric acid in urine after the workshift on the same day. According to the average concentration of hippuric acid in urine after the workshift, the levels of toluene exposure were estimated to range from 40-60 ppm. Evoked potentials were determined on Mondays 10-12 hours after a nonworking weekend.

  13. Electromagnetic interference in intraoperative monitoring of motor evoked potentials and a wireless solution.

    PubMed

    Farajidavar, Aydin; Seifert, Jennifer L; Delgado, Mauricio R; Sparagana, Steven; Romero-Ortega, Mario I; Chiao, J-C

    2016-02-01

    Intraoperative neurophysiological monitoring (IONM) is utilized to minimize neurological morbidity during spine surgery. Transcranial motor evoked potentials (TcMEPs) are principal IONM signals in which the motor cortex of the subject is stimulated with electrical pulses and the evoked potentials are recorded from the muscles of interest. Currently available monitoring systems require the connection of 40-60 lengthy lead wires to the patient. These wires contribute to a crowded and cluttered surgical environment, and limit the maneuverability of the surgical team. In this work, it was demonstrated that the cumbersome wired system is vulnerable to electromagnetic interference (EMI) produced by operating room (OR) equipment. It was hypothesized that eliminating the lengthy recording wires can remove the EMI induced in the IONM signals. Hence, a wireless system to acquire TcMEPs was developed and validated through bench-top and animal experiments. Side-by-side TcMEPs acquisition from the wired and wireless systems in animal experiments under controlled conditions (absence of EMI from OR equipment) showed comparable magnitudes and waveforms, thus demonstrating the fidelity in the signal acquisition of the wireless solution. The robustness of the wireless system to minimize EMI was compared with a wired-system under identical conditions. Unlike the wired-system, the wireless system was not influenced by the electromagnetic waves from the C-Arm X-ray machine and temperature management system in the OR.

  14. Color vision in attention-deficit/hyperactivity disorder: A pilot visual evoked potential study

    PubMed Central

    Kim, Soyeon; Banaschewski, Tobias; Tannock, Rosemary

    2014-01-01

    Background Individuals with attention-deficit/hyperactivity disorder (ADHD) are reported to manifest visual problems (including ophthalmological and color perception, particularly for blue–yellow stimuli), but findings are inconsistent. Accordingly, this study investigated visual function and color perception in adolescents with ADHD using color Visual Evoked Potentials (cVEP), which provides an objective measure of color perception. Method Thirty-one adolescents (aged 13–18), 16 with a confirmed diagnosis of ADHD, and 15 healthy peers, matched for age, gender, and IQ participated in the study. All underwent an ophthalmological exam, as well as electrophysiological testing color Visual Evoked Potentials (cVEP), which measured the latency and amplitude of the neural P1 response to chromatic (blue–yellow, red–green) and achromatic stimuli. Result No intergroup differences were found in the ophthalmological exam. However, significantly larger P1 amplitude was found for blue and yellow stimuli, but not red/green or achromatic stimuli, in the ADHD group (particularly in the medicated group) compared to controls. Conclusion Larger amplitude in the P1 component for blue–yellow in the ADHD group compared to controls may account for the lack of difference in color perception tasks. We speculate that the larger amplitude for blue–yellow stimuli in early sensory processing (P1) might reflect a compensatory strategy for underlying problems including compromised retinal input of s-cones due to hypo-dopaminergic tone. PMID:25435188

  15. [Detection of intraoperative awareness via auditory evoked potentials in an infant].

    PubMed

    Feuerecker, M S; Daunderer, M; Pape, N-B; Kuhnle, G E H

    2006-10-01

    Intraoperative wakefulness is not only limited to adults and can also be found at a similar percentage (0.8%) in paediatric anaesthesia. For prevention of awareness neurophysiologic methods like auditory evoked potentials might be helpful. We report a case of a 2-year-old boy receiving balanced anaesthesia with sevoflurane and alfentanil. Midlatency auditory evoked potentials (MLAEPs) were recorded continuously before, during and after the surgical procedure. During the surgical procedure sevoflurane was withdrawn unintentionally. After a short period of time the boy started coughing and moved his legs, which was interpreted as insufficient analgesia. Several boli of alfentanil did not lead to the expected clinical effect on the depth of anaesthesia. After a recheck of the anaesthetic ventilator the error was determined and delivery of the volatile anaesthetic restored. The postoperative evaluation of the MLAEPs revealed the inadequate suppression of auditory processing during this incident with latencies comparable to the awake state. After reapplication of sevoflurane the MLAEPs were almost completely suppressed demonstrating adequate anesthetic depth. Exemplarily this case suggests that MLAEPs could be used to detect intraoperative awareness also in paediatric anaesthesia. Investigations to prove the validity and reproducibility of MLAEPs in children will be necessary.

  16. Onset Latency of Motor Evoked Potentials in Motor Cortical Mapping with Neuronavigated Transcranial Magnetic Stimulation.

    PubMed

    Kallioniemi, Elisa; Pitkänen, Minna; Säisänen, Laura; Julkunen, Petro

    2015-01-01

    Cortical motor mapping in pre-surgical applications can be performed using motor evoked potential (MEP) amplitudes evoked with neuronavigated transcranial magnetic stimulation. The MEP latency, which is a more stable parameter than the MEP amplitude, has not so far been utilized in motor mapping. The latency, however, may provide information about the stress in damaged motor pathways, e.g. compression by tumors, which cannot be observed from the MEP amplitudes. Thus, inclusion of this parameter could add valuable information to the presently used technique of MEP amplitude mapping. In this study, the functional cortical representations of first dorsal interosseous (FDI), abductor pollicis brevis (APB) and abductor digiti minimi (ADM) muscles were mapped in both hemispheres of ten healthy righthanded volunteers. The cortical muscle representations were evaluated by the area and centre of gravity (CoG) by using MEP amplitudes and latencies. As expected, the latency and amplitude CoGs were congruent and were located in the centre of the maps but in a few subjects, instead of a single centre, several loci with short latencies were observed. In conclusion, MEP latencies may be useful in distinguishing the cortical representation areas with the most direct pathways from those pathways with prolonged latencies. However, the potential of latency mapping to identify stressed motor tract connections at the subcortical level will need to be verified in future studies with patients.

  17. Somatosensory Evoked Potentials in Patients with Hypoxic-Ischemic Brain Injury.

    PubMed

    Horn, Janneke; Tjepkema-Cloostermans, Marleen C

    2017-02-01

    Predicting the future of patients with hypoxic-ischemic encephalopathy after successful cardiopulmonary resuscitation is often difficult. Registration of the median nerve somatosensory evoked potential (SSEP) can assist in the neurologic evaluation in these patients. In this article, the authors discuss the principles, applications, and limitations of SSEP registration in the intensive care unit, with a focus on prognostication. Registration of the SSEP is a very reliable and reproducible method, if it is performed and interpreted correctly. During SSEP recordings, great care should be taken to improve the signal-to-noise ratio. If the noise level is too high, the peripheral responses are abnormal or the response is not reproducible in a second set of stimuli; therefore, interpretation of the SSEPs cannot be done reliably. A bilaterally absent cortical SSEP response is a very reliable predictor of poor neurologic outcome in patients with HIE. It has a high specificity, but a low sensitivity, indicating that present cortical responses are a weak predictor of a good recovery. Further research is being done to increase the sensitivity. Somatosensory evoked potentials can be used in a multimodal approach for prognostication of outcome.

  18. Diminished n1 auditory evoked potentials to oddball stimuli in misophonia patients.

    PubMed

    Schröder, Arjan; van Diepen, Rosanne; Mazaheri, Ali; Petropoulos-Petalas, Diamantis; Soto de Amesti, Vicente; Vulink, Nienke; Denys, Damiaan

    2014-01-01

    Misophonia (hatred of sound) is a newly defined psychiatric condition in which ordinary human sounds, such as breathing and eating, trigger impulsive aggression. In the current study, we investigated if a dysfunction in the brain's early auditory processing system could be present in misophonia. We screened 20 patients with misophonia with the diagnostic criteria for misophonia, and 14 matched healthy controls without misophonia, and investigated any potential deficits in auditory processing of misophonia patients using auditory event-related potentials (ERPs) during an oddball task. Subjects watched a neutral silent movie while being presented a regular frequency of beep sounds in which oddball tones of 250 and 4000 Hz were randomly embedded in a stream of repeated 1000 Hz standard tones. We examined the P1, N1, and P2 components locked to the onset of the tones. For misophonia patients, the N1 peak evoked by the oddball tones had smaller mean peak amplitude than the control group. However, no significant differences were found in P1 and P2 components evoked by the oddball tones. There were no significant differences between the misophonia patients and their controls in any of the ERP components to the standard tones. The diminished N1 component to oddball tones in misophonia patients suggests an underlying neurobiological deficit in misophonia patients. This reduction might reflect a basic impairment in auditory processing in misophonia patients.

  19. Parkinson's disease rigidity: magnetic motor evoked potentials in a small hand muscle.

    PubMed

    Cantello, R; Gianelli, M; Bettucci, D; Civardi, C; De Angelis, M S; Mutani, R

    1991-09-01

    We studied the EMG potentials evoked in the bilateral first dorsal interosseus muscle by electromagnetic stimulation of the corticomotoneuronal descending system in 10 Parkinson's disease patients and in 10 age- and sex-matched normal controls. We selected patients who did not have tremor but had predominant rigidity with asymmetric body involvement. On the rigid side of the PD patients, the threshold to cortical stimulation was lower than on the contralateral side or than normal values. On average, patients had normal central conduction times, but their motor evoked potentials (MEPs) on the rigid side were larger than those of controls when the cortical stimulus was at rest or during slight tonic contraction of the target muscle. In the latter condition, a silent period shorter than that of controls followed MEPs, whereas the peripheral silent period following ulnar nerve stimulation at the wrist was prolonged. Alpha motor neuron excitability, tested by the F-wave method, was enhanced on the rigid side at rest. In rigidity, spinal motor nuclei may be more responsive than normal to descending inputs from motor cortex, or the entire corticomotoneuron system may prove hyperexcitable under given conditions.

  20. Single-trial evoked potentials study by combining wavelet denoising and principal component analysis methods.

    PubMed

    Zou, Ling; Zhang, Yingchun; Yang, Laurence T; Zhou, Renlai

    2010-02-01

    The authors have developed a new approach by combining the wavelet denoising and principal component analysis methods to reduce the number of required trials for efficient extraction of brain evoked-related potentials (ERPs). Evoked-related potentials were initially extracted using wavelet denoising to enhance the signal-to-noise ratio of raw EEG measurements. Principal components of ERPs accounting for 80% of the total variance were extracted as part of the subspace of the ERPs. Finally, the ERPs were reconstructed from the selected principal components. Computer simulation results showed that the combined approach provided estimations with higher signal-to-noise ratio and lower root mean squared error than each of them alone. The authors further tested this proposed approach in single-trial ERPs extraction during an emotional process and brain responses analysis to emotional stimuli. The experimental results also demonstrated the effectiveness of this combined approach in ERPs extraction and further supported the view that emotional stimuli are processed more intensely.

  1. Axono-cortical evoked potentials: A proof-of-concept study.

    PubMed

    Mandonnet, E; Dadoun, Y; Poisson, I; Madadaki, C; Froelich, S; Lozeron, P

    2016-04-01

    Awake surgery is currently considered the best method to tailor intraparenchymatous resections according to functional boundaries. However, the exact mechanisms by which electrical stimulation disturbs behavior remain largely unknown. In this case report, we describe a new method to explore the propagation toward cortical sites of a brief pulse applied to an eloquent white matter pathway. We present a patient, operated on in awake condition for removal of a cavernoma of the left ventral premotor cortex. At the end of the resection, the application of 60Hz stimulation in the white matter of the operculum induced anomia. Stimulating the same site at a frequency of 1Hz during 70seconds allowed to record responses on electrodes put over Broca's area and around the inferior part of central sulcus. Axono-cortical evoked potentials were then obtained by averaging unitary responses, time-locked to the stimulus. We then discuss the origin of these evoked axono-cortical potentials and the likely pathway connecting the stimulation site to the recorded cortical sites.

  2. Visual Evoked Potentials as a Readout of Cortical Function in Infants With Tuberous Sclerosis Complex.

    PubMed

    Varcin, Kandice J; Nelson, Charles A; Ko, Jordan; Sahin, Mustafa; Wu, Joyce Y; Jeste, Shafali Spurling

    2016-02-01

    Tuberous sclerosis complex is an autosomal dominant genetic disorder that confers a high risk for neurodevelopmental disorders, such as autism spectrum disorder and intellectual disability. Studies have demonstrated specific delays in visual reception skills that may predict the development of autism spectrum disorder and intellectual disability. Based on evidence for alterations in the retinogeniculate pathway in animal models of tuberous sclerosis complex, we asked whether children with tuberous sclerosis complex demonstrate alterations in early visual processing that may undermine the development of higher-level visual behaviors. Pattern-reversal visual evoked potentials were recorded in infants with tuberous sclerosis complex (n = 16) and typically developing infants (n = 18) at 12 months of age. Infants with tuberous sclerosis complex demonstrated remarkably intact visual evoked potentials even within the context of intellectual disability and epilepsy. Infants with tuberous sclerosis complex show intact visual cortical processing, suggesting that delays in visually mediated behaviors in tuberous sclerosis complex may not be rooted in early visual processing deficits.

  3. Evoked Potentials and Neuropsychological Tests Validate Positron Emission Topography (PET) Brain Metabolism in Cognitively Impaired Patients

    PubMed Central

    Braverman, Eric R.; Blum, Kenneth; Damle, Uma J.; Kerner, Mallory; Dushaj, Kristina; Oscar-Berman, Marlene

    2013-01-01

    Fluorodeoxyglucose (FDG) Positron Emission Topography (PET) brain hypometabolism (HM) correlates with diminished cognitive capacity and risk of developing dementia. However, because clinical utility of PET is limited by cost, we sought to determine whether a less costly electrophysiological measure, the P300 evoked potential, in combination with neuropsychological test performance, would validate PET HM in neuropsychiatric patients. We found that patients with amnestic and non-amnestic cognitive impairment and HM (n = 43) evidenced significantly reduced P300 amplitudes, delayed latencies, and neuropsychological deficits, compared to patients with normal brain metabolism (NM; n = 187). Data from patients with missing cognitive test scores (n = 57) were removed from the final sample, and logistic regression modeling was performed on the modified sample (n = 173, p = .000004). The logistic regression modeling, based on P300 and neuropsychological measures, was used to validate membership in the HM vs. NM groups. It showed classification validation in 13/25 HM subjects (52.0%) and in 125/148 NM subjects (84.5%), correlating with total classification accuracy of 79.8%. In this paper, abnormal P300 evoked potentials coupled with cognitive test impairment validates brain metabolism and mild/moderate cognitive impairment (MCI). To this end, we cautiously propose incorporating electrophysiological and neuropsychological assessments as cost-effective brain metabolism and MCI indicators in primary care. Final interpretation of these results must await required additional studies confirming these interesting results. PMID:23526928

  4. Correlation between acceleration magnitude and ocular vestibular-evoked myogenic potential.

    PubMed

    Wang, Shou-Jen; Jaw, Fu-Shan; Young, Yi-Ho

    2012-05-10

    This study combined bone-conducted vibration (BCV) stimulation with triaxial accelerometry to correlate the acceleration magnitudes of BCV stimuli with ocular vestibular-evoked myogenic potential (oVEMP) test results. Fourteen healthy volunteers underwent oVEMP test using BCV stimuli with simultaneous monitoring the triaxial acceleration. All (100%) subjects exhibited clear oVEMPs in response to BCV stimuli from a vibrator. The lowest acceleration magnitudes for eliciting oVEMPs along the x-, y- and z-axes were 0.05±0.01 g, 0.16±0.08 g, and 0.04±0.01 g, respectively, exhibiting significantly higher acceleration magnitude along the y-axis than those along the x- and z-axes. In addition, significantly positive correlations were noted between the acceleration magnitude along each axis and the oVEMP amplitude. In conclusion, measuring the acceleration magnitude throughout oVEMP testing revealed a significant correlation between linear acceleration and oVEMP responses. Restated, increasing acceleration magnitude may have more synchronization of firing of vestibular afferents, resulting in more synchronized evoked potentials and greater oVEMP amplitude.

  5. Effect of color of flash stimulus on variability of flash visual evoked potential latencies.

    PubMed

    Subramanian, Senthil Kumar; Gaur, Giriwar Singh; Narayan, Sunil K

    2012-01-01

    Visual Evoked Potentials (VEPs) are evoked potentials generated in response to visual stimuli. The flash VEP (FVEP) is used less frequently than pattern-reversal VEP (PR-VEP) because; it shows great variations in both latency and amplitude in normal subjects. The advantage of FVEP is its feasibility in non-cooperative subjects, which circumvents the major limitation of PR-VEP. The present study was undertaken to assess the effect of change of color of flashlight on variability of FVEP latencies. Healthy subjects in the age group of 18-30 years underwent the standard stimulus using white light, followed by altered stimuli done with red and blue light. 2 trials were given for each eye, for each type of stimulus. The same set of studies was repeated at the same clock time the following day. The inter-individual and intra-individual variability in the peak latency of P2 and N2 waveforms was assessed using coefficient of variation (COV). Both inter-individual and intra-individual variability was less when monochromatic light was used. Between red and blue FVEP, inter-individual variability was less in blue FVEP and the results of intra-individual variability was inconclusive. Monochromatic stimulation preferably with blue light reduced both inter-individual and intra-individual variability seen in latency of P2 and N2 waveforms in FVEP and hence recommended in preference to standard white stimulus for FVEP recording.

  6. Diagnostic use of dermatomal somatosensory-evoked potentials in spinal disorders: Case series

    PubMed Central

    Dikmen, Pinar Yalinay; Oge, A. Emre

    2013-01-01

    Objective/Context Dermatomal somatosensory-evoked potentials (dSEPs) may be valuable for diagnostic purposes in selected cases with spinal disorders. Design Reports on cases with successful use of dSEPs. Findings Cases 1 and 2 had lesions causing multiple root involvement (upper to middle lumbar region in Case 1 and lower sacral region in Case 2). Cystic lesions in both cases seemed to compress more than one nerve root, and stimulation at the center of the involved dermatomes in dSEPs helped to reveal the functional abnormality. Cases 3 and 4 had lesions involving the spinal cord with or without nerve root impairment. In Case 3, an magnetic resonance imaging (MRI)-verified lesion seemed to occupy a considerable volume of the lower spinal cord, causing only very restricted clinical sensory and motor signs. In Case 4, a cervical MRI showed a small well-circumscribed intramedullary lesion at right C2 level. All neurophysiological investigations were normal in the latter two patients (motor, tibial, and median somatosensory-evoked potentials in Case 3, and electromyography in both) except for the dSEPs. Conclusions Objectifying the presence and degree of sensory involvement in spinal disorders may be helpful for establishing diagnoses and in therapeutic decision-making. Valuable information could be provided by dSEPs in selected patients with multiple root or spinal cord involvement. PMID:24089995

  7. [Evoked potentials and regional cerebral blood flow changes in conversion disorder: a case report and review].

    PubMed

    Gürses, Nadide; Temuçin, Cağri Mesut; Lay Ergün, Eser; Ertuğrul, Aygün; Ozer, Suzan; Demir, Başaran

    2008-01-01

    Conversion disorder is defined as the presence of functional impairment in motor, sensory or neurovegetative systems which cannot be explained by a general medical condition. Although the diagnostic systems emphasize the absence of an organic basis for the dysfunction in conversion disorder, there has been a growing interest in the specific functional brain correlates of conversion symptoms in recent years, particularly by examining neuroimaging and neurophysiological measures. In this case report, regional cerebral blood flow changes and evoked potentials of a patient with conversion symptoms are presented. Somatosensory evoked potentials (SEP) of this patient with conversion disorder who had signs of movement disorder revealed that the latency to N20, P 25 waves were in normal limits while the amplitudes of the P25 and N33 components were extremely high (giant SEP). Regional cerebral blood flow assessment revealed hypoperfusion in the left parietal and temporal lobes of the brain. Three months after the first assessment, the control scans showed that the left parietal hypoperfusion disappeared while the left temporal hypoperfusion was still present. The following SEP evaluations which were repeated twice in three months intervals after the initial recordings, showed the persistence of the abnormalities in somatosensorial measures. The neurophysiological and neuroimaging findings in conversion disorder were reviewed and the results of the evaluations of this case were discussed in this article.

  8. Ground-truthing evoked potential measurements against behavioral conditioning in the goldfish, Carassius auratus

    NASA Astrophysics Data System (ADS)

    Hill, Randy J.; Mann, David A.

    2005-04-01

    Auditory evoked potentials (AEPs) have become commonly used to measure hearing thresholds in fish. However, it is uncertain how well AEP thresholds match behavioral hearing thresholds and what effect variability in electrode placement has on AEPs. In the first experiment, the effect of electrode placement on AEPs was determined by simultaneously recording AEPs from four locations on each of 12 goldfish, Carassius auratus. In the second experiment, the hearing sensitivity of 12 goldfish was measured using both classical conditioning and AEP's in the same setup. For behavioral conditioning, the fish were trained to reduce their respiration rate in response to a 5 s sound presentation paired with a brief shock. A modified staircase method was used in which 20 reversals were completed for each frequency, and threshold levels were determined by averaging the last 12 reversals. Once the behavioral audiogram was completed, the AEP measurements were made without moving the fish. The recording electrode was located subdermally over the medulla, and was inserted prior to classical conditioning to minimize handling of animal. The same sound stimuli (pulsed tones) were presented and the resultant evoked potentials were recorded for 1000-6000 averages. AEP input-output functions were then compared to the behavioral audiogram to compare techniques for estimating behavioral thresholds from AEP data.

  9. Modeling neural correlates of auditory attention in evoked potentials using corticothalamic feedback dynamics.

    PubMed

    Trenado, Carlos; Haab, Lars; Strauss, Daniel J

    2007-01-01

    Auditory evoked cortical potentials (AECP) are well established as diagnostic tool in audiology and gain more and more impact in experimental neuropsychology, neuro-science, and psychiatry, e.g., for the attention deficit disorder, schizophrenia, or for studying the tinnitus decompensation. The modulation of AECP due to exogenous and endogenous attention plays a major role in many clinical applications and has experimentally been studied in neuropsychology. However the relation of corticothalamic feedback dynamics to focal and non-focal attention and its large-scale effect reflected in AECPs is far from being understood. In this paper, we model neural correlates of auditory attention reflected in AECPs using corticothalamic feedback dynamics. We present a mapping of a recently developed multiscale model of evoked potentials to the hearing path and discuss for the first time its neurofunctionality in terms of corticothalamic feedback loops related to focal and non-focal attention. Our model reinforced recent experimental results related to online attention monitoring using AECPs with application as objective tinnitus decompensation measure. It is concluded that our model presents a promising approach to gain a deeper understanding of the neurodynamics of auditory attention and might be use as an efficient forward model to reinforce hypotheses that are obtained from experimental paradigms involving AECPs.

  10. Peripheral and segmental spinal abnormalities of median and ulnar somatosensory evoked potentials in Hirayama's disease

    PubMed Central

    Polo, A; Dossi, M; Fiaschi, A; Zanette, G; Rizzuto, N

    2003-01-01

    Objectives: To investigate the origin of juvenile muscle atrophy of the upper limbs (Hirayama's disease, a type of cervical myelopathy of unknown origin). Subjects: Eight male patients were studied; data from 10 normal men were used as control. Methods: Median and ulnar nerve somatosensory evoked potentials (SEP) were recorded. Brachial plexus potentials at Erb's point (EP), dorsal horn responses (N13), and subcortical (P14) and cortical potentials (N20) were evaluated. Tibial nerve SEP and motor evoked potentials (MEP) were also recorded from scalp and spinal sites to assess posterior column and pyramidal tract conduction, respectively. Results: The most important SEP findings were: a very substantial attenuation of both the EP potentials and the N13 spinal responses; normal amplitude of the scalp N20; and normal latency of the individual peaks (EP-N9-N13-P14-N20). Although both nerves were involved, abnormalities in response to median nerve stimulation were more significant than those in response to ulnar nerve stimulation. There was little correlation between the degree of alterations observed and the clinical state. Latencies of both spinal and cortical potentials were normal following tibial nerve stimulation. The mean latency of cervical MEP and the central conduction time from the thenar eminence were slightly but significantly longer in patients than in controls. Conclusions: The findings support the hypothesis that this disease, which is clinically defined as a focal spinal muscle atrophy of the upper limb, may also involve the sensory system; if traumatic injury caused by stretching plays a role in the pathogenesis, the damage cannot be confined to the anterior horn of the spinal cord. PMID:12700306

  11. Cortical Auditory Evoked Potentials Recorded from Nucleus Hybrid Cochlear Implant Users

    PubMed Central

    Jeon, Eun Kyung; Chiou, Li-Kuei; Kirby, Benjamin; Karsten, Sue; Turner, Christopher; Abbas, Paul

    2015-01-01

    Objective Nucleus Hybrid CI users hear low-frequency sounds via acoustic stimulation and high frequency sounds via electrical stimulation. This within-subject study compares three different methods of coordinating programming of the acoustic and electrical components of the Hybrid device. Speech perception and cortical auditory evoked potentials (CAEP) were used to assess differences in outcome. The goals of this study were to determine (1) if the evoked potential measures could predict which programming strategy resulted either in better outcome on the speech perception task or was preferred by the listener, and (2) whether CAEPs could be used to predict which subjects benefitted most from having access to the electrical signal provided by the Hybrid implant. Design CAEPs were recorded from 10 Nucleus Hybrid CI users. Study participants were tested using three different experimental MAPs that differed in terms of how much overlap there was between the range of frequencies processed by the acoustic component of the Hybrid device and range of frequencies processed by the electrical component. The study design included allowing participants to acclimatize for a period of up to 4 weeks with each experimental program prior to speech perception and evoked potential testing. Performance using the experimental MAPs was assessed using both a closed-set consonant recognition task and an adaptive test that measured the signal to noise ratio that resulted in 50% correct identification of a set of 12 spondees presented in background noise (SNR-50). Long-duration, synthetic vowels were used to record both the cortical P1-N1-P2 “onset” response and the auditory “change” or ACC response. Correlations between the evoked potential measures and performance on the speech perception tasks are reported. Results Differences in performance using the three programming strategies were not large. Peak-to-peak amplitude of the AAC response was not found to be sensitive enough to

  12. Auditory Brainstem Implant: Electrophysiologic Responses and Subject Perception

    PubMed Central

    Herrmann, Barbara S.; Brown, M Christian; Eddington, Donald K; Hancock, Kenneth E; Lee, Daniel L

    2014-01-01

    Objectives The primary aim of this study was to compare the perceptual sensation produced by bipolar electrical stimulation of auditory brainstem implant (ABI) electrodes to the morphology of electrically–evoked responses elicited by the same bipolar stimulus in the same unanesthetized, post-surgical state. Secondary aims were to 1) examine the relationships between sensations elicited by the bipolar stimulation used for evoked potential recording and the sensations elicited by the monopolar pulse-train stimulation used by the implant processor and 2) to examine the relationships between evoked-potential morphology (elicited by bipolar stimulation) to the sensations elicited by monopolar stimulation. Design Electrically-evoked early latency and middle-latency responses to bipolar, biphasic low-rate pulses were recorded post-operatively in four adults with auditory brainstem implants. Prior to recording, the perceptual sensations elicited by these bipolar stimuli were obtained and categorized as: 1) Auditory sensations only, 2) Mixed sensations (both auditory and non-auditory), 3) Side Effect (non-auditory sensations) or 4) No Sensation. In addition, the sensations elicited by monopolar higher-rate pulse-train stimuli similar to that used in processor programming were also measured for all electrodes in the ABI array and classified using the same categories. Comparisons were made between evoked response morphology, bipolar stimulation sensation and monopolar stimulation sensation. Results Sensations were classified for 33 bipolar pairs as follows: 21 pairs were Auditory, 6 were Mixed, 5 were Side Effect and 1 was No Sensation. When these sensations were compared to the electrically-evoked response morphology for these signals, P3 of the electrically-evoked auditory brainstem response (eABR) and the presence of a middle-latency positive wave, usually between 15 and 25 ms (eMLR), were only present when the perceptual sensation had an auditory component (either

  13. Sensitivity of the late positive potentials evoked by emotional pictures to neuroticism during the menstrual cycle.

    PubMed

    Zhang, Wenjuan; Zhou, Renlai; Wang, Qingguo; Zhao, Yan; Liu, Yanfeng

    2013-10-11

    The present event-related potentials (ERPs) study set out to investigate the effect of neuroticism on emotion evaluation during the menstrual cycle, with high and low neuroticism females viewing and evaluating valence and arousal of emotional pictures in the menstruation, late follicular and luteal phases. Behavioral results revealed no group or phase effect. ERPs data showed modulations of the menstrual cycle and neuroticism on the late positive potential (LPP), with the larger LPP (300-1000 ms post-stimulus) during the late follicular phase than that during the luteal phase and larger LPP (1000-3000 ms post-stimulus) in the high neuroticism group than that in the low neuroticism group. Furthermore, significant positive correlations between the LPP amplitudes and valence and arousal evaluations were observed mainly in the high neuroticism group. The present study provides electrophysiological evidences that the LPP evoked by emotional pictures are modulated both by the menstrual cycle and neuroticism.

  14. Effect of raising body temperature on visual and somatosensory evoked potentials in patients with multiple sclerosis.

    PubMed Central

    Matthews, W B; Read, D J; Pountney, E

    1979-01-01

    The effects of raising body temperature on the visual (VEP) and somatosensory (SEP) evoked potentials were observed in normal subjects and in patients with multiple sclerosis. The amplitude of the VEP was significantly reduced to the same degree after heating in normal subjects and in patients with multiple sclerosis but there was no effect on the latency of the potential. Changes in amplitude could not be related to reduction in acuity. In contrast, the cervical SEP was greatly disorganised after heating in many patients with multiple sclerosis while the only effect in normal subjects was to reduce the latency by increasing peripheral conduction velocity. These results suggest that heat caused conduction block in demyelinated axons in the sensory pathways of the cervical spinal cord. PMID:438834

  15. Vestibular-dependent inter-stimulus interval effects on sound evoked potentials of central origin.

    PubMed

    Todd, N P M; Govender, S; Colebatch, J G

    2016-11-01

    Todd et al. (2014ab) have recently demonstrated the presence of vestibular-dependent contributions to auditory evoked potentials (AEPs) when passing through the vestibular threshold as determined by vestibular evoked myogenic potentials (VEMPs), including a particular deflection labeled as an N42/P52 prior to the long-latency AEPs N1 and P2. In this paper we report the results of an experiment to determine the effect of inter-stimulus interval (ISI) and regularity on potentials recorded above and below VEMP threshold. Five healthy, right-handed subjects were recruited and evoked potentials were recorded to binaurally presented sound stimulation, above and below vestibular threshold, at seven stimulus rates with ISIs of 212, 300, 424, 600, 848, 1200 and 1696 ms. The inner five intervals, i.e. 300, 424, 600, 848, 1200 ms, were presented twice in both regular and irregular conditions. ANOVA on the global field power (GFP) were conducted for each of four waves, N42, P52, N1 and P2 with factors of intensity, ISI and regularity. Both N42 and P52 waves showed significant ANOVA effects of intensity but no other main effects or interactions. In contrast both N1 and P2 showed additional effects of ISI, as well as intensity, and evidence of non-linear interactions between ISI and intensity. A source analysis was carried out consistent with prior work suggesting that when above vestibular threshold, in addition to bilateral superior temporal cortex, ocular, cerebellar and cingulate sources are recruited. Further statistical analysis of the source currents indicated that the origin of the interactions with intensity may be the ISI sensitivity of the vestibular-dependent sources. This in turn may reflect a specific vestibular preference for stimulus rates associated with locomotion, i.e. rates close to 2 Hz, or ISIs close to 500 ms, where saccular afferents show increased gain and the corresponding reflexes are most sensitive.

  16. Effects of hearing aid amplification and stimulus intensity on cortical auditory evoked potentials.

    PubMed

    Billings, Curtis J; Tremblay, Kelly L; Souza, Pamela E; Binns, Malcolm A

    2007-01-01

    Hearing aid amplification can be used as a model for studying the effects of auditory stimulation on the central auditory system (CAS). We examined the effects of stimulus presentation level on the physiological detection of sound in unaided and aided conditions. P1, N1, P2, and N2 cortical evoked potentials were recorded in sound field from 13 normal-hearing young adults in response to a 1000-Hz tone presented at seven stimulus intensity levels. As expected, peak amplitudes increased and peak latencies decreased with increasing intensity for unaided and aided conditions. However, there was no significant effect of amplification on latencies or amplitudes. Taken together, these results demonstrate that 20 dB of hearing aid gain affects neural responses differently than 20 dB of stimulus intensity change. Hearing aid signal processing is discussed as a possible contributor to these results. This study demonstrates (1) the importance of controlling for stimulus intensity when evoking responses in aided conditions, and (2) the need to better understand the interaction between the hearing aid and the CAS.

  17. Epidural motor cortex stimulation suppresses somatosensory evoked potentials in the primary somatosensory cortex of the rat.

    PubMed

    Chiou, Ruei-Jen; Lee, Hsiao-Yun; Chang, Chen-Wei; Lin, Kuan-Hung; Kuo, Chung-Chih

    2012-06-29

    Motor cortex stimulation (MCS) is a promising clinical procedure to help alleviate chronic pain. Animal models demonstrated that MCS is effective in lessening nocifensive behaviors. The present study explored the effects of MCS on cortical somatosensory evoked potentials (SEPs) recorded at the primary somatosensory cortex (SI) of the rat. SEPs were evoked by electrical stimulation applied to the contralateral forepaws. Effects of different intensities, frequencies, and durations of MCS were tested. MCS at ≥2V suppressed SEPs of the ipsilateral SI. Suppression lasted 120 min at an intensity of 5 V. The optimal frequency was 50 Hz, and the duration was 30s. In contrast, MCS did not affect SEPs recorded on the contralateral SI. Cortical stimulation out of the motor cortex did not induce a decrease in the ipsilateral SEPs. We also investigated involvement of the endogenous opioid system in this inhibition of SEPs induced by MCS. The opioid antagonist, naloxone (0.5 mg/kg), was administered 30 min before MCS. Application of naloxone completely prevented the inhibitory effect of MCS on ipsilateral SEPs. These results demonstrate that MCS blocked the transmission of somatosensory information to the primary somatosensory cortex, and this interference was mediated by the endogenous opioid system. This inhibitory effect on sensory transmission induced by MCS may reflect its antinociceptive effect.

  18. A brain-computer interface using motion-onset visual evoked potential.

    PubMed

    Guo, Fei; Hong, Bo; Gao, Xiaorong; Gao, Shangkai

    2008-12-01

    This paper presents a novel brain-computer interface (BCI) based on motion-onset visual evoked potentials (mVEPs). mVEP has never been used in BCI research, but has been widely studied in basic research. For the BCI application, the brief motion of objects embedded into onscreen virtual buttons is used to evoke mVEP that is time locked to the onset of motion. EEG data registered from 15 subjects are used to investigate the spatio-temporal pattern of mVEP in this paradigm. N2 and P2 components, with distinct temporo-occipital and parietal topography, respectively, are selected as the salient features of the brain response to the attended target that the subject selects by gazing at it. The computer determines the attended target by finding which button elicited prominent N2/P2 components. Besides a simple feature extraction of N2/P2 area calculation, the stepwise linear discriminant analysis is adopted to assess the target detection accuracy of a five-class BCI. A mean accuracy of 98% is achieved when ten trials data are averaged. Even with only three trials, the accuracy remains above 90%, suggesting that the proposed mVEP-based BCI could achieve a high information transfer rate in online implementation.

  19. Neuromodulation of motor-evoked potentials during stepping in spinal rats

    PubMed Central

    Gad, Parag; Lavrov, Igor; Shah, Prithvi; Zhong, Hui; Roy, Roland R.; Gerasimenko, Yury

    2013-01-01

    The rat spinal cord isolated from supraspinal control via a complete low- to midthoracic spinal cord transection produces locomotor-like patterns in the hindlimbs when facilitated pharmacologically and/or by epidural electrical stimulation. To evaluate the role of epidural electrical stimulation in enabling motor control (eEmc) for locomotion and posture, we recorded potentials evoked by epidural spinal cord stimulation in selected hindlimb muscles during stepping and standing in adult spinal rats. We hypothesized that the temporal details of the phase-dependent modulation of these evoked potentials in selected hindlimb muscles while performing a motor task in the unanesthetized state would be predictive of the potential of the spinal circuitries to generate stepping. To test this hypothesis, we characterized soleus and tibialis anterior (TA) muscle responses as middle response (MR; 4–6 ms) or late responses (LRs; >7 ms) during stepping with eEmc. We then compared these responses to the stepping parameters with and without a serotoninergic agonist (quipazine) or a glycinergic blocker (strychnine). Quipazine inhibited the MRs induced by eEmc during nonweight-bearing standing but facilitated locomotion and increased the amplitude and number of LRs induced by eEmc during stepping. Strychnine facilitated stepping and reorganized the LRs pattern in the soleus. The LRs in the TA remained relatively stable at varying loads and speeds during locomotion, whereas the LRs in the soleus were strongly modulated by both of these variables. These data suggest that LRs facilitated electrically and/or pharmacologically are not time-locked to the stimulation pulse but are highly correlated to the stepping patterns of spinal rats. PMID:23761695

  20. Neuromodulation of motor-evoked potentials during stepping in spinal rats.

    PubMed

    Gad, Parag; Lavrov, Igor; Shah, Prithvi; Zhong, Hui; Roy, Roland R; Edgerton, V Reggie; Gerasimenko, Yury

    2013-09-01

    The rat spinal cord isolated from supraspinal control via a complete low- to midthoracic spinal cord transection produces locomotor-like patterns in the hindlimbs when facilitated pharmacologically and/or by epidural electrical stimulation. To evaluate the role of epidural electrical stimulation in enabling motor control (eEmc) for locomotion and posture, we recorded potentials evoked by epidural spinal cord stimulation in selected hindlimb muscles during stepping and standing in adult spinal rats. We hypothesized that the temporal details of the phase-dependent modulation of these evoked potentials in selected hindlimb muscles while performing a motor task in the unanesthetized state would be predictive of the potential of the spinal circuitries to generate stepping. To test this hypothesis, we characterized soleus and tibialis anterior (TA) muscle responses as middle response (MR; 4-6 ms) or late responses (LRs; >7 ms) during stepping with eEmc. We then compared these responses to the stepping parameters with and without a serotoninergic agonist (quipazine) or a glycinergic blocker (strychnine). Quipazine inhibited the MRs induced by eEmc during nonweight-bearing standing but facilitated locomotion and increased the amplitude and number of LRs induced by eEmc during stepping. Strychnine facilitated stepping and reorganized the LRs pattern in the soleus. The LRs in the TA remained relatively stable at varying loads and speeds during locomotion, whereas the LRs in the soleus were strongly modulated by both of these variables. These data suggest that LRs facilitated electrically and/or pharmacologically are not time-locked to the stimulation pulse but are highly correlated to the stepping patterns of spinal rats.

  1. Micro-field evoked potentials recorded from the porcine sub-dural cortical surface utilizing a microelectrode array.

    PubMed

    Kitzmiller, Joseph P; Hansford, Derek J; Fortin, Linda D; Obrietan, Karl H; Bergdall, Valerie K; Beversdorf, David Q

    2007-05-15

    A sub-dural surface microelectrode array designed to detect micro-field evoked potentials has been developed. The device is comprised of an array of 350-microm square gold contacts, with bidirectional spacing of 150 microm, contained within a polyimide Kapton material. Cytotoxicity testing suggests that the device is suitable for use with animal and human patients. Implementation of the device in animal studies revealed that reliable evoked potentials could be acquired. Further work will be needed to determine how these micro-field potentials, which demonstrate selectivity for one eye, relate to the distribution of the ocular dominance columns of the occipital cortex.

  2. Addition of visual noise boosts evoked potential-based brain-computer interface

    PubMed Central

    Xie, Jun; Xu, Guanghua; Wang, Jing; Zhang, Sicong; Zhang, Feng; Li, Yeping; Han, Chengcheng; Li, Lili

    2014-01-01

    Although noise has a proven beneficial role in brain functions, there have not been any attempts on the dedication of stochastic resonance effect in neural engineering applications, especially in researches of brain-computer interfaces (BCIs). In our study, a steady-state motion visual evoked potential (SSMVEP)-based BCI with periodic visual stimulation plus moderate spatiotemporal noise can achieve better offline and online performance due to enhancement of periodic components in brain responses, which was accompanied by suppression of high harmonics. Offline results behaved with a bell-shaped resonance-like functionality and 7–36% online performance improvements can be achieved when identical visual noise was adopted for different stimulation frequencies. Using neural encoding modeling, these phenomena can be explained as noise-induced input-output synchronization in human sensory systems which commonly possess a low-pass property. Our work demonstrated that noise could boost BCIs in addressing human needs. PMID:24828128

  3. Cerebral hypoxia, missing cortical somatosensory evoked potentials and recovery of consciousness

    PubMed Central

    2014-01-01

    Background Bilaterally absent N20 components of the sensory evoked potentials (SEP) from the median nerve are regarded as accurately predicting poor outcome after cardiac arrest. Case presentation We are reporting on a patient, who regained consciousness despite this ominous finding. Early after cardiac arrest, MRI showed signal alterations in diffusion weighted imaging (DWI) bilaterally in the primary visual and sensorimotor cortex and in the basal ganglia. SEP were repeatedly absent. The patient survived shut out form sensory and visual experience and locked in for voluntary movements, but kept her verbal competence in several languages. Conclusion SEP inform about integrity only of a narrow cortical strip. It is unguarded, but common practice, to conclude from absent SEP, that a patient has suffered diffuse cortical damage after cardiac arrest. Cerebral MRI with DWI helps to avoid this prognostic error and furthers understanding of the sometimes very peculiar state of mind after cardiac arrest. PMID:24720818

  4. A periodogram-based method for the detection of steady-state visually evoked potentials.

    PubMed

    Liavas, A P; Moustakides, G V; Henning, G; Psarakis, E Z; Husar, P

    1998-02-01

    The task of objective perimetry is to scan the visual field and find an answer about the function of the visual system. Flicker-burst stimulation--a physiological sensible combination of transient and steady-state stimulation--is used to generate deterministic sinusoidal responses or visually evoked potentials (VEP's) at the visual cortex, which are derived from the electroencephalogram by a suitable electrode array. In this paper we develop a new method for the detection of VEP's. Based on the periodogram of a time-series, we test the data for the presence of hidden periodic components, which correspond to steady-state VEP's. The method is applied successfully to real data.

  5. Effects of peripherally and centrally acting analgesics on somato-sensory evoked potentials.

    PubMed Central

    Moore, U J; Marsh, V R; Ashton, C H; Seymour, R A

    1995-01-01

    1. The effects of aspirin 1000 mg, paracetamol 1000 mg, codeine 60 mg on somatosensory evoked potentials (SEPs) were measured in a four-way cross-over study. 2. SEPs were elicited by electrical stimulation of the skin overlying the digital nerve at intensities close to pain threshold. 3. Amplitudes and latencies of both early and late SEPs were recorded, as well as first sensory threshold and subjective pain threshold. 4. None of the study medications affected the amplitude or latency of the late SEP components (100-250 ms post-stimulus). The amplitude of early components (15-30 ms post-stimulus) was also unaffected, but aspirin shortened the latency 30 min after ingestion. 5. Sensory detection and pain threshold to electrical skin stimulation were also unaffected by any of the study medications despite subjective central effects with codeine. PMID:8562292

  6. [Focal evoked potentials in the rabbit visual cortex: density analysis of current sources].

    PubMed

    Supin, A Ia

    1981-01-01

    Focal evoked potentials were elicited in the rabbit visual cortex by punctiform light stimuli and analyzed by the current source density technique. They contained two main components. The first component was generated by local sink at depths form 0.6 to 1.0 mm (layer IV) with 30 ms latency and peak time about 50 ms. The second one was generated by less local sink at depths form 0.2-0.3 to 1.3-1.5 mm (layers III-VI) with peak time 90-100 ms. These two sinks are considered as active and indicating the localization of depolarizing synapses. Passive sources are dissipated around the zone of the active sinks.

  7. Event-related evoked potentials in Alzheimer's disease by a tool-using gesture paradigm.

    PubMed

    Chan, Hsiao-Lung; Hsu, Wen-Chun; Meng, Ling-Fu; Sun, Mu-Hui

    2013-01-01

    The Alzheimer's disease (AD) has a wide spectrum of symptoms, ranging from cognition dysfunction to behavior disturbances and functional impairment. The evoked cerebral potentials by specific paradigms are useful for disclosing neuropsychological activities. The evolution of AD is accompanied by progressive cognitive impairment which may result in a difficulty to recognize or comprehend gestures. In the present study, a visual tool-using gesture paradigm was employed to assess the cognitive functions of 16 probable AD patients, 17 subjects mild cognitive impairment (MCI), and 17 age-matched control subjects. Each subject was conducted by visual stimuli by a series of pictures, each displaying randomly a gesture with correctly or incorrectly using a tool. The P300 amplitude was further used as a parameter to build classifiers based on support vector machine.

  8. Linking perception to neural activity as measured by visual evoked potentials.

    PubMed

    Norcia, Anthony M

    2013-11-01

    Linking propositions have played an important role in refining our understanding of the relationship between neural activity and perception. Over the last 40 years, visual evoked potentials (VEPs) have been used in many different ways to address questions of the relationship between neural activity and perception. This review organizes and discusses this research within the linking proposition framework developed by Davida Teller, and her colleagues. A series of examples from the VEP literature illustrates each of the five classes of linking propositions originally proposed by Davida Teller. The related concept of the bridge locus-the site at which neural activity can be said to first be proscriptive of perception-is discussed and a suggestion is made that the concept be expanded to include an evolution over time and cortical area.

  9. Motor evoked potentials in a case of stiff-man syndrome: a longitudinal study.

    PubMed

    Logullo, F; Di Bella, P; Provinciali, L

    1999-04-01

    The clinical and neurophysiological findings in a patient with a typical stiff-man syndrome and their three-year evolution are described. The patient had high titers of anti-glutamic acid decarboxylase antibodies in both serum and cerebrospinal fluid. Magnetic resonance imaging (MRI) of brain and spinal cord was normal. Transcranial magnetic stimulation (TMS) revealed a distinctive motor evoked potential (MEP) pattern in proximal lower limb muscles consisting of markedly increased MEP amplitudes and MEP/M ratios, reduced excitability thresholds, and absent silent period. However, MEP latencies, central and peripheral conduction times and amplitudes obtained by magnetic spinal root stimulation were normal. Treatment with benzodiazepine and baclofen normalized both the clinical picture and the MEP values. TMS may be useful both as a diagnostic tool and to monitor the response to drug treatment.

  10. Cortical stimulation and tooth pulp evoked potentials in rats: a model of direct anti-nociception.

    PubMed

    Rusina, Robert; Barek, Stephane; Vaculin, Simon; Azérad, Jean; Rokyta, Richard

    2010-01-01

    While the effect of cortex stimulation on pain control is widely accepted, its physiological basis remains poorly understood. We chose an animal model of pain to study the influence of sensorimotor cortex stimulation on tooth pulp stimulation evoked potentials (TPEPs). Fifteen awake rats implanted with tooth pulp, cerebral cortex, and digastric muscle electrodes were divided into three groups, receiving 60 Hz, 40 Hz and no cortical stimulation, respectively. TPEPs were recorded before, one, three and five hours after continuous stimulation. We observed an inverse relationship between TPEP amplitude and latency with increasing tooth pulp stimulation. The amplitudes of the early components of TPEPs increased and their latency decreased with increasing tooth pulp stimulation intensity. Cortical stimulation decreased the amplitude of TPEPs; however, neither the latencies of TPEPs nor the jaw-opening reflex were changed after cortical stimulation. The decrease in amplitude of TPEPs after cortical stimulation may reflect its anti-nociceptive effect.

  11. Magnetic resonance imaging and motor-evoked potentials in spinal cord infarction: report of two cases.

    PubMed

    Nardone, Raffaele; Bergmann, Jürgen; Kronbichler, Martin; Lochner, Piergiorgio; Caleri, Francesca; Tezzon, Frediano; Ladurner, Gunther; Golaszewski, Stefan

    2010-08-01

    Because in the early phases of spinal cord ischemia magnetic resonance imaging (MRI) can be normal, its clinical diagnosis is often difficult. We aimed to explore if motor-evoked potentials (MEPs) recordings may contribute to earlier diagnosis of spinal cord stroke. The clinical, MRI, and MEP findings in one case each of cervical and lumbar spinal cord infarction were reported. Spinal MRI at admission was unremarkable in both patients. At this time, MEPs were abnormal in both patients, to the upper and lower limbs in the first patient, exclusively to the lower limbs in the second. Follow-up MRI examinations documented an infarction in the territory of the anterior spinal artery and of the Adamkiewicz artery, respectively. MEP study can be useful in demonstrating spinal cord involvement also when radiological evidence for spinal cord damage is absent or equivocal. Early diagnosis may allow earlier intervention and contribute to improved patient management.

  12. Long-latency components of somatosensory evoked potentials during passive tactile perception of gratings.

    PubMed

    Genna, C; Artoni, F; Fanciullacci, C; Chisari, C; Oddo, C M; Micera, S

    2016-08-01

    Perception of tactile stimuli elicits Somatosensory Evoked Potentials (SEPs) that can be recorded via non-invasive electroencephalography (EEG). However, it is not yet clear how SEPs localization, shape and latency are modulated by different stimuli during mechanical tactile stimulation of fingertips. The aim of this work is thus to characterize SEPs generated by the tactile perception of gratings during dynamic passive stimulation of the dominant fingertip by means of a mechatronic platform. Results show that a random sequence of stimuli elicited SEPs with two long-latency components: (i) a negative deflection around 140 ms located in the frontal-central-parietal side in the contralateral hemisphere; (ii) a positive deflection around 250 ms located in the frontal-central midline. Time-frequency analysis revealed significant continuous bilateral desynchronization in the alpha band throughout the passive stimulation. These results are a fundamental step towards building a model of brain responses during perception of tactile stimuli for future benchmarking studies.

  13. Clinical utility of ocular vestibular-evoked myogenic potentials (oVEMPs).

    PubMed

    Weber, Konrad P; Rosengren, Sally M

    2015-05-01

    Over the last years, vestibular-evoked myogenic potentials (VEMPs) have been established as clinical tests of otolith function. Complementary to the cervical VEMPs, which assess mainly saccular function, ocular VEMPs (oVEMPs) test predominantly utricular otolith function. oVEMPs are elicited either with air-conducted (AC) sound or bone-conducted (BC) skull vibration and are recorded from beneath the eyes during up-gaze. They assess the vestibulo-ocular reflex and are a crossed excitatory response originating from the inferior oblique eye muscle. Enlarged oVEMPs have proven to be sensitive for screening of superior canal dehiscence, while absent oVEMPs indicate a loss of superior vestibular nerve otolith function, often seen in vestibular neuritis (VN) or vestibular Schwannoma.

  14. Ageing Effect on Air-Conducted Ocular Vestibular Evoked Myogenic Potential.

    PubMed

    Kumar, Kaushlendra; Bhat, Jayashree S; Sequeira, Nimalka Maria; Bhojwani, Kiran M

    2015-06-11

    One of the recent diagnostic tests to assess the function of otolithic organs is through vestibular evoked myogenic potential (VEMP) testing. There are equivocal findings on effect of aging on ocular VEMP (oVEMP) parameters with reference to latencies. Hence this study was taken up to investigate the age related changes in oVEMP parameters. This present study considered 30 participants in each age group i.e., young adults, middle-aged adults and older adults. oVEMP were recorded using insert earphone at 100dBnHL at 500hZ short duration tone burst. The results showed in older adult significant difference in response rate, latencies and amplitude as compared to young and middle adult. Hence age should be taken into consideration when interpreting oVEMP results.

  15. The relationship between obligatory cortical auditory evoked potentials (CAEPs) and functional measures in young infants.

    PubMed

    Golding, Maryanne; Pearce, Wendy; Seymour, John; Cooper, Alison; Ching, Teresa; Dillon, Harvey

    2007-02-01

    Finding ways to evaluate the success of hearing aid fittings in young infants has increased in importance with the implementation of hearing screening programs. Cortical auditory evoked potentials (CAEP) can be recorded in infants and provides evidence for speech detection at the cortical level. The validity of this technique as a tool of hearing aid evaluation needs, however, to be demonstrated. The present study examined the relationship between the presence/absence of CAEPs to speech stimuli and the outcomes of a parental questionnaire in young infants who were fitted with hearing aids. The presence/absence of responses was determined by an experienced examiner as well as by a statistical measure, Hotelling's T(2). A statistically significant correlation between CAEPs and questionnaire scores was found using the examiner's grading (rs = 0.45) and using the statistical grading (rs = 0.41), and there was reasonably good agreement between traditional response detection methods and the statistical analysis.

  16. Effect of atropine on intracortical evoked potentials during classical aversive conditioning in cats.

    PubMed

    Molnár, M; Karmos, G; Csépe, V

    1988-12-01

    In this article, intracortical evoked potentials (EPs) were recorded simultaneously from six different depths of the auditory cortex of freely moving cats. The effect of (a) different states of vigilance and that of atropine, (b) classical aversive conditioning, and (c) the effect of atropine during conditioning was studied on the intracortical EP profiles. Atropine induced EP changes that were similar to those seen in slow wave sleep. During classical aversive conditioning signal stimuli elicited a middle-latency negative EP component which was localized to the superficial cortical layers. Atropine (2 mg/kg body weight) did not abolish the appearance of this component but only increased its latency. It is proposed that the cholinergic part of the ascending activating system did not play an essential role in its generation.

  17. Reciprocal facilitation of motor evoked potentials immediately before voluntary movements in Parkinson's disease.

    PubMed

    Imai, T; Yamamoto, T; Ohkubo, Y; Kashiwagi, M; Chiba, S; Matsumoto, H

    1999-06-01

    Changes of motor evoked potentials (MEPs) from the agonist and antagonist forearm muscles were investigated in 13 patients with Parkinson's disease and age-matched controls, in whom transcranial magnetic stimulation (TCMS) was delivered to the cortical hand motor area immediately before voluntary wrist flexion. MEPs recorded from the agonist muscles, namely the wrist flexors, were gradually facilitated in accordance with a shortening of the interval between TCMS and wrist flexion in both groups. In contrast, MEPs recorded from the antagonist muscles, namely the wrist extensors, were gradually facilitated as the intervals were shortened only in parkinsonian patients. The reciprocal facilitation of the antagonist MEPs was statistically significant when TCMS was delivered within 80 msec before the voluntary movements, suggesting the presence of the same underlying mechanism of symptomatic cocontraction observed in patients with Parkinson's disease.

  18. Cognitive evoked potentials VEP P300 persons occupationally exposed to low concentrations of toluene.

    PubMed

    Vrca, A; Karacić, V; Bozicević, D; Fuchs, R; Malinar, M

    1997-09-01

    Cognitive evoked potentials VEP P300 were examined in 49 workers at printing press occupationally exposed to low concentrations of toluene for averagely 20 years, and in 59 control subjects. The exposure level of toluene was evaluated in randomly selected subgroups comprising 36 exposed and 27 control subjects. The concentrations of toluene were measured in peripheral blood on Wednesday morning before entering the work area, while the hippuric acid in urine was measured before and after entering the work area. The results show that the absolute number of exposed subjects displaying lower amplitude of cognitive wave VEP P300R and prolonged latency of the accompanying spontaneous wave VEP P300F was significantly greater than that of the controls.

  19. Multiple time scales of adaptation in the auditory system as revealed by human evoked potentials.

    PubMed

    Costa-Faidella, Jordi; Grimm, Sabine; Slabu, Lavinia; Díaz-Santaella, Francisco; Escera, Carles

    2011-06-01

    Single neurons in the primary auditory cortex of the cat show faster adaptation time constants to short- than long-term stimulus history. This ability to encode the complex past auditory stimulation in multiple time scales would enable the auditory system to generate expectations of the incoming stimuli. Here, we tested whether large neural populations exhibit this ability as well, by recording human auditory evoked potentials (AEP) to pure tones in a sequence embedding short- and long-term aspects of stimulus history. Our results yielded dynamic amplitude modulations of the P2 AEP to stimulus repetition spanning from milliseconds to tens of seconds concurrently, as well as amplitude modulations of the mismatch negativity AEP to regularity violations. A simple linear model of expectancy accounting for both short- and long-term stimulus history described our results, paralleling the behavior of neurons in the primary auditory cortex.

  20. Motor evoked potentials in the preoperative and postoperative assessment of normal pressure hydrocephalus.

    PubMed Central

    Zaaroor, M; Bleich, N; Chistyakov, A; Pratt, H; Feinsod, M

    1997-01-01

    Motor evoked potentials and central motor conduction time (CMCT) were examined from both upper and lower limbs in patients with normal pressure hydrocephalus to find a predictor for the success of shunting procedures. The hypotheses that walking disturbances are due to pyramidal tract compression as well as the possibility that the upper limbs are affected subclinically in these patients were also studied. The study suggests that the walking disturbances are not the result of a major pyramidal tract dysfunction but probably involve the sensorimotor integration leading to normal gait. Furthermore, CMCT measured with electromagnetic motor stimulation can help in selecting the patients that will benefit from shunting. The study does not provide electrophysiological evidence of upper limb involvement in normal pressure hydrocephalus. PMID:9153613

  1. [Correlation of evoked potentials in the frontal cortex and hippocampus of cats in emotional stress].

    PubMed

    Vanetsian, G L; Pavlova, I V

    2002-01-01

    Averaged auditory evoked potentials (AEPs) were recorded in symmetric points of the frontal cortex and dorsal hippocampus of cats performing acquired conditioned food-procuring reaction reinforced in 100% cases, urgent transition to 30%-reinforcement, and return to 100%-reinforcement. Emotional stress estimated by a heart rate rise developed during increased food motivation of a cat as well as during change in ordinary food-procuring stereotype. The emotional stress was accompanied by a high positive correlation of cortical and hippocampal AEPs. Decrease in the stress level led to a drop between AEP correlations and appearance of their negative values. In emotional stress, the interactions between the frontal cortex and dorsal hippocampus were asymmetric: right-side correlations were higher.

  2. Effect of refractive error on visual evoked potentials with pattern stimulation in dogs

    PubMed Central

    ITO, Yosuke; MAEHARA, Seiya; ITOH, Yoshiki; MATSUI, Ai; HAYASHI, Miri; KUBO, Akira; UCHIDE, Tsuyoshi

    2015-01-01

    The purpose of this study was to investigate the effects of refractive error on canine visual evoked potentials with pattern stimulation (P-VEP). Six normal beagle dogs were used. The refractive power of the recorded eyes was measured by skiascopy. The refractive power was corrected to −4 diopters (D) to +2 D using contact lens. P-VEP was recorded at each refractive power. The stimulus pattern size and distance were 50.3 arc-min and 50 cm. The P100 appeared at almost 100 msec at −2 D (at which the stimulus monitor was in focus). There was significant prolongation of the P100 implicit time at −4, −3, 0 and +1 D compared with −2 D, respectively. We concluded that the refractive power of the eye affected the P100 implicit time in canine P-VEP recording. PMID:26655769

  3. Statistical modeling and analysis of laser-evoked potentials of electrocorticogram recordings from awake humans.

    PubMed

    Chen, Zhe; Ohara, Shinji; Cao, Jianting; Vialatte, François; Lenz, Fred A; Cichocki, Andrzej

    2007-01-01

    This article is devoted to statistical modeling and analysis of electrocorticogram (ECoG) signals induced by painful cutaneous laser stimuli, which were recorded from implanted electrodes in awake humans. Specifically, with statistical tools of factor analysis and independent component analysis, the pain-induced laser-evoked potentials (LEPs) were extracted and investigated under different controlled conditions. With the help of wavelet analysis, quantitative and qualitative analyses were conducted regarding the LEPs' attributes of power, amplitude, and latency, in both averaging and single-trial experiments. Statistical hypothesis tests were also applied in various experimental setups. Experimental results reported herein also confirm previous findings in the neurophysiology literature. In addition, single-trial analysis has also revealed many new observations that might be interesting to the neuroscientists or clinical neurophysiologists. These promising results show convincing validation that advanced signal processing and statistical analysis may open new avenues for future studies of such ECoG or other relevant biomedical recordings.

  4. Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCIs

    NASA Astrophysics Data System (ADS)

    Wu, Zhenghua; Yao, Dezhong

    2008-03-01

    Due to the relative noise and artifact insensitivity, steady-state visual evoked potential (SSVEP) has been used increasingly in the study of a brain-computer interface (BCI). However, SSVEP is still influenced by the same frequency component in the spontaneous EEG, and it is meaningful to find a parameter that can avoid or decrease this influence to improve the transfer rate and the accuracy of the SSVEP-based BCI. In this work, with wavelet analysis, a new parameter named stability coefficient (SC) was defined to measure the stability of a frequency, and then the electrode with the highest stability was selected as the signal electrode for further analysis. After that, the SC method and the traditional power spectrum (PS) method were used comparatively to recognize the stimulus frequency from an analogous BCI data constructed from a real SSVEP data, and the results showed that the SC method is better for a short time window data.

  5. Abnormal visual-evoked potentials in leukemic children after cranial radiation

    SciTech Connect

    Russo, A.; Tomarchio, S.; Pero, G.; Consoli, G.; Marina, R.; Rizzari, C.; Schiliro, G.

    1985-01-01

    Visual-evoked potentials (VEPs) were studied in 55 asymptomatic children with leukemia or solid tumors in remission in order to detect subclinical demyelination of the optic pathway after CNS prophylaxis. In group I (11 patients with ALL studied prospectively), VEP latency was increased in ten after cranial radiation (CR) as compared with previous values. Group II (18 patients with ALL in maintenance) and group III (16 patients with ALL off therapy) were studied retrospectively and VEP latency was found above normal limits in 33 and 31%, respectively. In group IV (four patients with solid tumors and six with leukemia, all of whom received no CR), VEP latency was normal despite periodical intrathecal methotrexate administrations to five of them. The authors conclude that CR determines a slowing of conduction on VEP test, probably due to demyelination of the optic pathway, in a high proportion of patients. The future clinical significance of these findings must be established throughout a prolonged follow-up period.

  6. The N2-P3 complex of the evoked potential and human performance

    NASA Technical Reports Server (NTRS)

    Odonnell, Brian F.; Cohen, Ronald A.

    1988-01-01

    The N2-P3 complex and other endogenous components of human evoked potential provide a set of tools for the investigation of human perceptual and cognitive processes. These multidimensional measures of central nervous system bioelectrical activity respond to a variety of environmental and internal factors which have been experimentally characterized. Their application to the analysis of human performance in naturalistic task environments is just beginning. Converging evidence suggests that the N2-P3 complex reflects processes of stimulus evaluation, perceptual resource allocation, and decision making that proceed in parallel, rather than in series, with response generation. Utilization of these EP components may provide insights into the central nervous system mechanisms modulating task performance unavailable from behavioral measures alone. The sensitivity of the N2-P3 complex to neuropathology, psychopathology, and pharmacological manipulation suggests that these components might provide sensitive markers for the effects of environmental stressors on the human central nervous system.

  7. Asymmetric vestibular evoked myogenic potentials in unilateral Menière patients.

    PubMed

    Kingma, C M; Wit, H P

    2011-01-01

    Vestibular evoked myogenic potentials (VEMPs) were measured in 22 unilateral Menière patients with monaural and binaural stimulation with 250 and 500 Hz tone bursts. For all measurement situations significantly lower VEMP amplitudes were on average measured at the affected side compared to the unaffected side. Unilateral Menière patients have, in contrast to normal subjects, asymmetric VEMPs, indicating a permanently affected vestibular (most likely otolith) system at the side of hearing loss. The diagnostic value of VEMP amplitude asymmetry measurement in individual patients is low, because of the large overlap of the VEMP amplitude asymmetry range for unilateral Menière patients with that for normal subjects.

  8. An objective method for color vision deficiencies measurement based on visual evoked potential

    NASA Astrophysics Data System (ADS)

    Xiong, Kai; Hou, Minxian; Ye, Guanrong

    2005-07-01

    The equi-luminance of color stimulus in normal subjects is characterized by L-cone and M-cone activation in retina. For the protanopes and deuternopes, only the activations of one relevant remaining cone type should be considered. The equi-luminance turning curve was established for the recorded visual evoked potentials (VEPs) of the luminance changes of the red and green color stimulus, and the position of the equi-luminance was used to define the kind and degree of color vision deficiencies. In the test of 47 volunteers we got the VEP traces and the equi-luminance turning curves, which was in accordance with the judgment by the pseudoisochromatic plate used in clinic. The method fulfills the objective and quantitative requirements in color vision deficiencies test.

  9. Does athletic training in volleyball modulate the components of visual evoked potentials? A preliminary investigation.

    PubMed

    Zwierko, Teresa; Lubiński, Wojciech; Lesiakowski, Piotr; Steciuk, Hanna; Piasecki, Leszek; Krzepota, Justyna

    2014-01-01

    This longitudinal study investigated visual evoked potentials (VEPs) in 11 young female volleyball players who participated in extensive training for 2 years. The control group consisted of 7 age-matched female students who were not involved in any regular sports activity. Recordings of VEPs were performed twice: baseline recording (i.e., before training began) and after 2 years of systematic, volleyball-specific athletic training. The effect of athletic training on visual signal conductivity was assessed by recording the latency of N75, P100 and N135 components of the VEPs waveform. Extensive experience with volleyball training reduced signal conductivity time through visual pathway. Specifically, the latency of P100 was reduced on average by 2.2 ms during binocular viewing. Moreover, athletes had reduced N75 latency (difference of 3.3 ms) for visual stimuli that generated greater response from peripheral retina. These results indicate that sport training can affect very early sensory processing in athletes.

  10. Serial visual evoked potentials in 90 untreated patients with acute optic neuritis.

    PubMed

    Frederiksen, J L; Petrera, J

    1999-10-01

    To establish the value of visual evoked potentials (VEPs) for monitoring disease evolution, we undertook a population-based study of 90 untreated patients 12 to 57 years of age (median, 32 years) at the onset of optic neuritis (ON) and after 2, 4, 12, and 52 weeks. Optic neuritis was monosymptomatic (AMON) in 58 patients and part of the clinically definite multiple sclerosis (CDMS) in 32 patients. The VEP was abnormal in eyes with acute ON in 69 (77%) of 90 patients at onset and in 80 (89%) of 90 patients at one or more of the follow-up sessions. In eyes with acute ON, normalization of an initially abnormal VEP was observed during 1-year follow-up in 13 (19%) of 69 patients. At onset of ON, VEP was abnormal in 35% of the clinically unaffected eyes. By parametric analysis of variance, the latencies (P = 0.0058), the amplitudes (P = 0.0298), and the combined VEP scores (P = 0.0345) in the eyes with acute ON were significantly associated with the time after onset. The latencies were influenced by the presence of CDMS (P = 0.0033), whereas the amplitudes were influenced by visual acuity (P = 0.0000). When visual acuity was included in a multifactor model, the time after onset was, however, not significantly associated with the amplitude (P = 0.8826). The mean latency of the VEPs in eyes with acute ON was significantly shorter in AMON than in ON as part of CDMS. This study provides evidence that VEP abnormality is often transitory, and that VEP often normalizes during follow-up. The diagnostic yield is increased by repeating VEP in the spontaneous course of acute ON. Visual evoked potential is a sensitive tool for revealing subclinical lesions.

  11. Early abnormalities of evoked potentials and future disability in patients with multiple sclerosis.

    PubMed

    Kallmann, B A; Fackelmann, S; Toyka, K V; Rieckmann, P; Reiners, K

    2006-02-01

    Evoked potentials (EP) have a role in making the diagnosis of multiple sclerosis (MS) but their implication for predicting the future disease course in MS is under debate. EP data of 94 MS patients examined at first presentation, and after five and ten years were retrospectively analysed. Patients were divided into two groups in relation to the prior duration of disease at the time point of first examination: group 1 patients (n=44) were first examined within two years after disease onset, and group 2 patients (n=50) at later time points. As primary measures sum scores were calculated for abnormalities of single and combined EP (visual (VEP), somatosensory (SEP), magnetic motor evoked potentials (MEP)). In patients examined early after disease onset (group 1), a significant predictive value for abnormal EP was found with MEP and SEP sum scores at first presentation correlating significantly with Expanded Disability Status Scale (EDSS) values after five years, while the VEP sum score was not. The cumulative number of abnormal MEP, SEP and VEP results also indicated higher degrees of disability (EDSS > or = 3.5) after five years. Combined pathological SEP and MEP findings at first presentation best predicted clinical disability (EDSS > or = 3.5) after five years (odds ratio 11.0). EP data and EDSS at first presentation were not significantly linked suggesting that EP abnormalities at least in part represented clinically silent lesions not mirrored by EDSS. For patients in later disease phases (group 2), no significant associations between EP data at first presentation and EDSS at five and ten years were detected. Together with clinical findings and MR imaging, combined EP data may help to identify patients at high risk of long-term clinical deterioration and guide decisions as to immunomodulatory treatment.

  12. Real-Time Detection and Monitoring of Acute Brain Injury Utilizing Evoked Electroencephalographic Potentials.

    PubMed

    Fisher, Jonathan A N; Huang, Stanley; Ye, Meijun; Nabili, Marjan; Wilent, W Bryan; Krauthamer, Victor; Myers, Matthew R; Welle, Cristin G

    2016-09-01

    Rapid detection and diagnosis of a traumatic brain injury (TBI) can significantly improve the prognosis for recovery. Helmet-mounted sensors that detect impact severity based on measurements of acceleration or pressure show promise for aiding triage and transport decisions in active, field environments such as professional sports or military combat. The detected signals, however, report on the mechanics of an impact rather than directly indicating the presence and severity of an injury. We explored the use of cortical somatosensory evoked electroencephalographic potentials (SSEPs) to detect and track, in real-time, neural electrophysiological abnormalities within the first hour following head injury in an animal model. To study the immediate electrophysiological effects of injury in vivo, we developed an experimental paradigm involving focused ultrasound that permits continuous, real-time measurements and minimizes mechanical artifact. Injury was associated with a dramatic reduction of amplitude over the damaged hemisphere directly after the injury. The amplitude systematically improved over time but remained significantly decreased at one hour, compared with baseline. In contrast, at one hour there was a concomitant enhancement of the cortical SSEP amplitude evoked from the uninjured hemisphere. Analysis of the inter-trial electroencephalogram (EEG) also revealed significant changes in low-frequency components and an increase in EEG entropy up to 30 minutes after injury, likely reflecting altered EEG reactivity to somatosensory stimuli. Injury-induced alterations in SSEPs were also observed using noninvasive epidermal electrodes, demonstrating viability of practical implementation. These results suggest cortical SSEPs recorded at just a few locations by head-mounted sensors and associated multiparametric analyses could potentially be used to rapidly detect and monitor brain injury in settings that normally present significant levels of mechanical and electrical

  13. Cerebral information processing in personality disorders: I. Intensity dependence of auditory evoked potentials.

    PubMed

    Wang, Wei; Wang, Yehan; Fu, Xianming; Liu, Jianhui; He, Chengsen; Dong, Yi; Livesley, W John; Jang, Kerry L

    2006-02-28

    Patients with personality disorders such as the histrionic type exaggerate their responses when receiving external social or environmental stimuli. We speculated that they might also show an augmenting pattern of the auditory evoked potential N1-P2 component in response to stimuli with increasing levels of intensity, a response pattern that is thought to be inversely correlated with cerebral serotonin (5-HT) activity. To test this hypothesis, we collected auditory evoked potentials in 191 patients with personality disorders (19 patients with the paranoid type, 12 schizoid, 14 schizotypal, 18 antisocial, 15 borderline, 13 histrionic, 17 narcissistic, 25 avoidant, 30 dependent and 28 obsessive-compulsive) and 26 healthy volunteers. Their personality traits were measured using the Dimensional Assessment of Personality Pathology-Basic Questionnaire (DAPP-BQ). Compared with healthy subjects and other patient groups, the histrionic group scored higher on the basic traits Affective Instability, Stimulus Seeking, Rejection and Narcissism, and on the higher traits Emotional Dysregulation and Dissocial, than the other groups, and the schizoid group scored lower on most of the DAPP-BQ basic and higher traits. In addition, the histrionic group showed steeper amplitude/stimulus intensity function (ASF) slopes at three midline scalp electrodes than the healthy controls or the other patient groups. The ASF slopes were not correlated with any DAPP-BQ traits in the total sample of 217 subjects. However, the DAPP-BQ basic trait Rejection was positively correlated with the ASF slopes at all three electrode sites in the histrionic group. The increased intensity dependence of the auditory N1-P2 component might indicate that cerebral 5-HT neuronal activity is, on average, weak in the histrionic patients.

  14. Topography of Synchronization of Somatosensory Evoked Potentials Elicited by Stimulation of the Sciatic Nerve in Rat

    PubMed Central

    Qu, Xuefeng; Yan, Jiaqing; Li, Xiaoli; Zhang, Peixun; Liu, Xianzeng

    2016-01-01

    Purpose: Traditionally, the topography of somatosensory evoked potentials (SEPs) is generated based on amplitude and latency. However, this operation focuses on the physical morphology and field potential-power, so it suffers from difficulties in performing identification in an objective manner. In this study, measurement of the synchronization of SEPs is proposed as a method to explore brain functional networks as well as the plasticity after peripheral nerve injury. Method: SEPs elicited by unilateral sciatic nerve stimulation in twelve adult male Sprague-Dawley (SD) rats in the normal group were compared with SEPs evoked after unilateral sciatic nerve hemisection in four peripheral nerve injured SD rats. The characterization of synchronized networks from SEPs was conducted using equal-time correlation, correlation matrix analysis, and comparison to randomized surrogate data. Eigenvalues of the correlation matrix were used to identify the clusters of functionally synchronized neuronal activity, and the participation index (PI) was calculated to indicate the involvement of each channel in the cluster. The PI value at the knee point of the PI histogram was used as a threshold to demarcate the cortical boundary. Results: Ten out of the twelve normal rats showed only one synchronized brain network. The remaining two normal rats showed one strong and one weak network. In the peripheral nerve injured group, only one synchronized brain network was found in each rat. In the normal group, all network shapes appear regular and the network is largely contained in the posterior cortex. In the injured group, the network shapes appear irregular, the network extends anteriorly and posteriorly, and the network area is significantly larger. There are considerable individual variations in the shape and location of the network after peripheral nerve injury. Conclusion: The proposed method can detect functional brain networks. Compared to the results of the traditional SEP

  15. NMDA antagonists increase recovery of evoked potentials from slices of rat olfactory cortex after anoxia.

    PubMed Central

    Yassin, M.; Scholfield, C. N.

    1994-01-01

    1. The role of glutamate in producing tissue damage during cerebral anoxia was investigated in brain slices using antagonists to the NMDA and AMPA receptor types. 2. Tissue function was assessed by field recordings of the synaptically evoked potentials elicited by stimulating the main afferent input to the olfactory cortex, the lateral olfactory tract. Anoxia was produced by bathing the slice in glucose-free solution equilibrated with 95% N2/5% CO2. 3. The amount of recovery of the evoked potential was inversely dependent on the period of anoxia and temperature: at 24 degrees C, 15 min of anoxia followed by reoxygenation produced a 14.6 +/- 4.1% recovery whereas there was no recovery at 35 degrees C. 4. Dizocilpine and ketamine had no effect on synaptic transmission in oxygenated media but following anoxia they produced an increased recovery of the responses: from 14.6 +/- 4.1% to 48.3 +/- 7.8% for dizocilpine (10 microM) and 21.6 +/- 7.7% to 87.2 +/- 7.1% for ketamine (200 microM); the tissue endurance to anoxia was increased by around 5 min. 5. Blockade of the AMPA receptors did not influence recovery in spite of the depressed synaptic transmission. A similar synaptic attenuation produced by lignocaine provided some increase in post-anoxic recovery. 6. The NMDA receptor antagonist, AP5, antagonized NMDA at 50 microM by 3.7 fold and at 200 microM by 15 fold but only 200 microM increased post-anoxic recovery. This suggests that a substantial degree of NMDA antagonist is required before anoxic tissue damage due to NMDA receptor activation can be nullified. The antagonist to the glycine binding site, 7-chlorokynurenic acid also increased recovery.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7913373

  16. Learned control over spinal nociception reduces supraspinal nociception as quantified by late somatosensory evoked potentials.

    PubMed

    Ruscheweyh, Ruth; Bäumler, Maximilian; Feller, Moritz; Krafft, Stefanie; Sommer, Jens; Straube, Andreas

    2015-12-01

    We have recently shown that subjects can learn to use cognitive-emotional strategies to suppress their spinal nociceptive flexor reflex (RIII reflex) under visual RIII feedback and proposed that this reflects learned activation of descending pain inhibition. Here, we investigated whether learned RIII suppression also affects supraspinal nociception and whether previous relaxation training increases success. Subjects were trained over 3 sessions to reduce their RIII size by self-selected cognitive-emotional strategies. Two groups received true RIII feedback (with or without previous relaxation training) and a sham group received false feedback (15 subjects per group). RIII reflexes, late somatosensory evoked potentials (SEPs), and F-waves were recorded and pain intensity ratings collected. Both true feedback groups achieved significant (P < 0.01) but similar RIII suppression (to 79% ± 21% and 70% ± 17% of control). Somatosensory evoked potential amplitude (100-150 milliseconds after stimulation) was reduced in parallel with the RIII size (r = 0.57, P < 0.01). In the sham group, neither RIII size nor SEP amplitude was significantly reduced during feedback training. Pain intensity was significantly reduced in all 3 groups and also correlated with RIII reduction (r = 0.44, P < 0.01). F-wave parameters were not affected during RIII suppression. The present results show that learned RIII suppression also affects supraspinal nociception as quantified by SEPs, although effects on pain ratings were less clear. Lower motor neuron excitability as quantified by F-waves was not affected. Previous relaxation training did not significantly improve RIII feedback training success.

  17. Frequency domain dipole localization: extensions of the method and applications to auditory and visual evoked potentials.

    PubMed

    Raz, J; Biggins, C A; Turetsky, B; Fein, G

    1993-09-01

    We describe a statistical frequency domain approach to localizing equivalent dipole generators of human brain evoked potentials. The frequency domain representation allows considerable data reduction, constrains the magnitude function of the dipoles to be smooth, and accounts for the statistical properties of the background EEG. A previous paper described a restrictive model in which the dipole orientations were assumed to be fixed over time, and only one dipole was allowed. In this paper, we consider the more general model in which the orientation can vary over time, and which includes multiple dipole generators. The varying orientation model has the practical advantage of being more nearly linear and more flexible than the fixed orientation model, which facilitates convergence of the iterative fitting algorithm. We suggest a measure of goodness-of-fit that compares the likelihood of the dipole model with the likelihoods of saturated and null models. We report the results of fitting the model to recorded auditory and visual evoked potentials. A single dipole with fixed orientation seems to be an adequate model of the auditory midlatency response, while two dipoles with varying orientation are needed to fit the later P200 component. Analysis of the visual P100 response to unilateral stimulation localized a generator in the contralateral occipital cortex, as expected from anatomical considerations. A two-dipole model fit the visual P100 response of bilateral stimulations, and the locations of the two dipoles were similar to the locations obtained by single-dipole fits to the responses to left and right unilateral stimuli.

  18. The Relationship between Parameters of Long-Latency Evoked Potentials in a Multisensory Design.

    PubMed

    Hernández, Oscar H; García-Martínez, Rolando; Monteón, Victor

    2016-10-01

    In previous papers, we have shown that parameters of the omitted stimulus potential (OSP), which occurs at the end of a train of sensory stimuli, strongly depend on the modality. A train of stimuli also produces long-latency evoked potentials (LLEP) at the beginning of the train. This study is an extension of the OSP research, and it tested the relationship between parameters (ie, rate of rise, amplitude, and peak latency) of the P2 waves when trains of auditory, visual, or somatosensory stimuli were applied. The dynamics of the first 3 potentials in the train, related to habituation, were also studied. Twenty healthy young college volunteers participated in the study. As in the OSP, the P2 was faster and higher for auditory than for visual or somatosensory stimuli. The first P2 was swifter and higher than the second and the third potentials. The strength of habituation depends on the sensory modality and the parameter used. All these findings support the view that many long-latency brain potentials could share neural mechanisms related to wave generation.

  19. Methamphetamine-related brainstem haemorrhage.

    PubMed

    Chiu, Zelia K; Bennett, Iwan E; Chan, Patrick; Rosenfeld, Jeffrey V

    2016-10-01

    We report the case of an otherwise healthy 29-year-old woman who presented with a brainstem haemorrhage following intravenous methamphetamine use. Extensive investigation did not reveal an underlying pathology, and the development of symptoms was temporally related to methamphetamine injection. Although intracerebral haemorrhage secondary to methamphetamine use is well documented, this report describes a haemorrhage within the brainstem which is a rare location. While animal studies have demonstrated the potential of methamphetamines to produce brainstem haemorrhages, there has only been one previous report describing a haemorrhage in this location due to amphetamine use in humans. We conclude with a brief discussion of the clinical features and aetiology of methamphetamine-related stroke.

  20. Middle Latency Auditory Evoked Potential (MLAEP) in Workers with and without Tinnitus who are Exposed to Occupational Noise

    PubMed Central

    dos Santos Filha, Valdete Alves Valentins; Samelli, Alessandra Giannella; Matas, Carla Gentile

    2015-01-01

    Background Tinnitus is an important occupational health concern, but few studies have focused on the central auditory pathways of workers with a history of occupational noise exposure. Thus, we analyzed the central auditory pathways of workers with a history of occupational noise exposure who had normal hearing threshold, and compared middle latency auditory evoked potential in those with and without noise-induced tinnitus. Material/Methods Sixty individuals (30 with and 30 without tinnitus) underwent the following procedures: anamnesis, immittance measures, pure-tone air conduction thresholds at all frequencies between 0.25–8 kHz, and middle latency auditory evoked potentials. Results Quantitative analysis of latencies and amplitudes of middle latency auditory evoked potential showed no significant differences between the groups with and without tinnitus. In the qualitative analysis, we found that both groups showed increased middle latency auditory evoked potential latencies. The study group had more alterations of the “both” type regarding the Na-Pa amplitude, while the control group had more “electrode effect” alterations, but these alterations were not significantly different when compared to controls. Conclusions Individuals with normal hearing with or without tinnitus who are exposed to occupational noise have altered middle latency auditory evoked potential, suggesting impairment of the auditory pathways in cortical and subcortical regions. Although differences did not reach significance, individuals with tinnitus seemed to have more abnormalities in components of the middle latency auditory evoked potential when compared to individuals without tinnitus, suggesting alterations in the generation and transmission of neuroelectrical impulses along the auditory pathway. PMID:26358094

  1. Low-frequency rTMS inhibitory effects in the primary motor cortex: Insights from TMS-evoked potentials.

    PubMed

    Casula, Elias P; Tarantino, Vincenza; Basso, Demis; Arcara, Giorgio; Marino, Giuliana; Toffolo, Gianna Maria; Rothwell, John C; Bisiacchi, Patrizia S

    2014-09-01

    The neuromodulatory effects of repetitive transcranial magnetic stimulation (rTMS) have been mostly investigated by peripheral motor-evoked potentials (MEPs). New TMS-compatible EEG systems allow a direct investigation of the stimulation effects through the analysis of TMS-evoked potentials (TEPs). We investigated the effects of 1-Hz rTMS over the primary motor cortex (M1) of 15 healthy volunteers on TEP evoked by single pulse TMS over the same area. A second experiment in which rTMS was delivered over the primary visual cortex (V1) of 15 healthy volunteers was conducted to examine the spatial specificity of the effects. Single-pulse TMS evoked four main components: P30, N45, P60 and N100. M1-rTMS resulted in a significant decrease of MEP amplitude and in a significant increase of P60 and N100 amplitude. There was no effect after V1-rTMS. 1-Hz rTMS appears to increase the amount of inhibition following a TMS pulse, as demonstrated by the higher N100 and P60, which are thought to originate from GABAb-mediated inhibitory post-synaptic potentials. Our results confirm the reliability of the TMS-evoked N100 as a marker of cortical inhibition and provide insight into the neuromodulatory effects of 1-Hz rTMS. The present finding could be of relevance for therapeutic and diagnostic purposes.

  2. Binocular summation in normal, monocularly deprived, and strabismic cats: visual evoked potentials.

    PubMed

    Sclar, G; Ohzawa, I; Freeman, R D

    1986-01-01

    We have studied visual evoked potentials (VEP) in the cat using dichoptically presented sinusoidal gratings. Our goals were to determine if binocular disparity causes differential responses in the VEP, and to examine the effects of monocular deprivation and convergent or divergent strabismus on the degree of binocular summation. Binocular disparity in stimuli causes no regular alterations of visual evoked responses, except at very low spatial frequencies. However, this apparent selectivity is probably due to luminance modulation in the central retina at low frequencies. The insensitivity to binocular disparity establishes that binocular summation in the VEP may be estimated without regard to the relative phase of gratings presented to the two eyes. Binocular summation of the VEP was examined in normal animals. We found that the ratio of the binocularly evoked response to the largest monocular response (averaged across spatial frequency) ranged from 1.27 to 2.12 (4 animals) and had a mean of 1.48. These values fall within the range which has been reported for human subjects. The degree of summation might be expected to be greatly reduced in strabismic and monocularly deprived animals, in which the majority of the cells are functionally monocular. While summation was found to be reduced in 5 esotropic (convergent) animals (range = 1.13-1.24; mean = 1.18) it was approximately normal in three exotropic (divergent) animals (range = 1.29-2.12; mean = 1.61). However, single unit recordings carried out on the same animals show similar reductions of cells that can be driven through either eye for both groups of animals. Recordings from three monocularly deprived animals, on the other hand, show evidence of binocular interaction in the form of suppression. In this case, response amplitudes obtained using binocular stimulation were consistently and substantially smaller than those obtained from the normal eye alone (range = 0.76-0.85; mean = 0.80). We conclude that convergent

  3. Brain stem auditory evoked potentials: effects of ovarian steroids correlated with increased incidence of Bell's palsy in pregnancy.

    PubMed

    Ben David, Y; Tal, J; Podoshin, L; Fradis, M; Sharf, M; Pratt, H; Faraggi, D

    1995-07-01

    To investigate the effect of ovarian steroids on the brain stem during changes of estrogen and progesterone blood levels, we recorded brain stem auditory evoked potentials with increased stimulus rates from 26 women treated for sterility by menotropins (Pergonal and Metrodin). These women were divided into three groups according to their estrogen and progesterone blood levels. The brain stem auditory evoked potential results revealed a significant delay of peak III only, with an increased stimulus rate in the group with the highest estrogen level. Estrogen may cause a brain stem synaptic impairment, presumably because of ischemic changes, and thus also may be responsible for a higher incidence of Bell's palsy during pregnancy.

  4. A Preclinical Study of Laryngeal Motor-Evoked Potentials as a Marker Vagus Nerve Activation.

    PubMed

    Grimonprez, Annelies; Raedt, Robrecht; De Taeye, Leen; Larsen, Lars Emil; Delbeke, Jean; Boon, Paul; Vonck, Kristl

    2015-12-01

    Vagus nerve stimulation (VNS) is a treatment for refractory epilepsy and depression. Previous studies using invasive recording electrodes showed that VNS induces laryngeal motor-evoked potentials (LMEPs) through the co-activation of the recurrent laryngeal nerve and subsequent contractions of the laryngeal muscles. The present study investigates the feasibility of recording LMEPs in chronically VNS-implanted rats, using a minimally-invasive technique, to assess effective current delivery to the nerve and to determine optimal VNS output currents for vagal fiber activation. Three weeks after VNS electrode implantation, signals were recorded using an electromyography (EMG) electrode in the proximity of the laryngeal muscles and a reference electrode on the skull. The VNS output current was gradually ramped up from 0.1 to 1.0 mA in 0.1 mA steps. In 13/27 rats, typical LMEPs were recorded at low VNS output currents (median 0.3 mA, IQR 0.2-0.3 mA). In 11/27 rats, significantly higher output currents were required to evoke electrophysiological responses (median 0.7 mA, IQR 0.5-0.7 mA, p < 0.001). The latencies of these responses deviated significantly from LMEPs (p < 0.05). In 3/27 rats, no electrophysiological responses to simulation were recorded. Minimally invasive LMEP recordings are feasible to assess effective current delivery to the vagus nerve. Furthermore, our results suggest that low output currents are sufficient to activate vagal fibers.

  5. Modulation of cortical motor evoked potential after stroke during electrical stimulation of the lateral cerebellar nucleus

    PubMed Central

    Park, Hyun-Joo; Furmaga, Havan; Cooperrider, Jessica; Gale, John T.; Baker, Kenneth B.; Machado, Andre G.

    2015-01-01

    Background Deep brain stimulation (DBS) targeting the dentato-thalamo-cortical (DTC) pathway at its origin in the lateral cerebellar nucleus (LCN) has been shown to enhance motor recovery in a rodent model of cortical ischemia. LCN DBS also yielded frequency specific changes in motor cortex excitability in the normal brain, indexed by motor evoked potential (MEP) amplitude. Objective To investigate the effect of cortical stroke on cortical motor excitability in a rodent ischemia model and to measure the effects of LCN DBS on post-ischemia excitability as a function of stimulation parameters. Methods Adult Sprague-Dawley rats were divided into two groups: naïve and stroke, with cortical ischemia induced through multiple, unilateral endothelin-1 injections. All animals were implanted with a bipolar electrode in the LCN opposite the affected hemisphere. MEPs were elicited from the affected hemisphere using intracortical microstimulation (ICMS) techniques. Multiple LCN DBS parameters were examined, including isochronal stimulation at 20, 30, 50, and 100 Hz as well as a novel burst stimulation pattern. Results ICMS-evoked MEPs were reduced in stroke (n=10) relative to naïve (n=12) animals. However, both groups showed frequency-dependent augmentation of cortical excitability in response to LCN DBS. In the naïve group, LCN DBS increased MEPs by 22–58%, while in the stroke group, MEPs were enhanced by 9–41% compared to OFF DBS conditions. Conclusions Activation of the DTC pathway increases cortical excitability in both naïve and post-stroke animals. These effects may underlie, at least partially, functional reorganization and therapeutic benefits associated with chronic LCN DBS in post-stroke animals. PMID:26215752

  6. Effect of higher frequency on the classification of steady-state visual evoked potentials

    NASA Astrophysics Data System (ADS)

    Won, Dong-Ok; Hwang, Han-Jeong; Dähne, Sven; Müller, Klaus-Robert; Lee, Seong-Whan

    2016-02-01

    Objective. Most existing brain-computer interface (BCI) designs based on steady-state visual evoked potentials (SSVEPs) primarily use low frequency visual stimuli (e.g., <20 Hz) to elicit relatively high SSVEP amplitudes. While low frequency stimuli could evoke photosensitivity-based epileptic seizures, high frequency stimuli generally show less visual fatigue and no stimulus-related seizures. The fundamental objective of this study was to investigate the effect of stimulation frequency and duty-cycle on the usability of an SSVEP-based BCI system. Approach. We developed an SSVEP-based BCI speller using multiple LEDs flickering with low frequencies (6-14.9 Hz) with a duty-cycle of 50%, or higher frequencies (26-34.7 Hz) with duty-cycles of 50%, 60%, and 70%. The four different experimental conditions were tested with 26 subjects in order to investigate the impact of stimulation frequency and duty-cycle on performance and visual fatigue, and evaluated with a questionnaire survey. Resting state alpha powers were utilized to interpret our results from the neurophysiological point of view. Main results. The stimulation method employing higher frequencies not only showed less visual fatigue, but it also showed higher and more stable classification performance compared to that employing relatively lower frequencies. Different duty-cycles in the higher frequency stimulation conditions did not significantly affect visual fatigue, but a duty-cycle of 50% was a better choice with respect to performance. The performance of the higher frequency stimulation method was also less susceptible to resting state alpha powers, while that of the lower frequency stimulation method was negatively correlated with alpha powers. Significance. These results suggest that the use of higher frequency visual stimuli is more beneficial for performance improvement and stability as time passes when developing practical SSVEP-based BCI applications.

  7. Giant early components of somatosensory evoked potentials to tibial nerve stimulation in cortical myoclonus.

    PubMed

    Anzellotti, Francesca; Onofrj, Marco; Bonanni, Laura; Saracino, Antonio; Franciotti, Raffaella

    2016-01-01

    Enlarged cortical components of somatosensory evoked potentials (giant SEPs) recorded by electroencephalography (EEG) and abnormal somatosensory evoked magnetic fields (SEFs) recorded by magnetoencephalography (MEG) are observed in the majority of patients with cortical myoclonus (CM). Studies on simultaneous recordings of SEPs and SEFs showed that generator mechanism of giant SEPs involves both primary sensory and motor cortices. However the generator sources of giant SEPs have not been fully understood as only one report describes clearly giant SEPs following lower limb stimulation. In our study we performed a combined EEG-MEG recording on responses elicited by electric median and tibial nerve stimulation in a patient who developed consequently to methyl bromide intoxication CM with giant SEPs to median and tibial nerve stimuli. SEPs wave shapes were identified on the basis of polarity-latency components (e.g. P15-N20-P25) as defined by earlier studies and guidelines. At EEG recording, the SEP giant component did not appear in the latency range of the first cortical component for median nerve SEP (N20), but appeared instead in the range of the P37 tibial nerve SEP, which is currently identified as the first cortical component elicited by tibial nerve stimuli. Our MEG and EEG SEPs recordings also showed that components in the latency range of P37 were preceded by other cortical components. These findings suggest that lower limb P37 does not correspond to upper limb N20. MEG results confirmed that giant SEFs are the second component from both tibial (N43m-P43m) and median (N27m-P27m) nerve stimulation. MEG dipolar sources of these giant components were located in the primary sensory and motor area.

  8. Anxiety affects the amplitudes of red and green color-elicited flash visual evoked potentials in humans.

    PubMed

    Hosono, Yuki; Kitaoka, Kazuyoshi; Urushihara, Ryo; Séi, Hiroyoshi; Kinouchi, Yohsuke

    2014-01-01

    It has been reported that negative emotional changes and conditions affect the visual faculties of humans at the neural level. On the other hand, the effects of emotion on color perception in particular, which are based on evoked potentials, are unknown. In the present study, we investigated whether different anxiety levels affect the color information processing for each of 3 wavelengths by using flash visual evoked potentials (FVEPs) and State-Trait Anxiety Inventory. In results, significant positive correlations were observed between FVEP amplitudes and state or trait anxiety scores in the long (sensed as red) and middle (sensed as green) wavelengths. On the other hand, short-wavelength-evoked FVEPs were not correlated with anxiety level. Our results suggest that negative emotional conditions may affect color sense processing in humans.

  9. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials.

    PubMed

    Myllymaa, Sami; Myllymaa, Katja; Korhonen, Hannu; Töyräs, Juha; Jääskeläinen, Juha E; Djupsund, Kaj; Tanila, Heikki; Lappalainen, Reijo

    2009-06-15

    Modern microfabrication techniques make it possible to develop microelectrode arrays that may be utilized not only in neurophysiological research but also in the clinic, e.g. in neurosurgery and as elements of neural prostheses. The aim of this study was to test whether a flexible microelectrode array is suitable for recording cortical surface field potentials in rats. Polyimide-based microelectrode arrays were fabricated by utilizing microfabrication techniques e.g. photolithography and magnetron sputter deposition. The present microelectrode array consists of eight platinum microelectrodes (round-shaped, Ø: 200 microm), transmission lines and connector pads sandwiched between two thin layers of biocompatible polyimide. The microelectrode arrays were electrochemically characterized by impedance spectroscopy in physiological saline solution and successfully tested in vivo by conducting acute and chronic measurements of evoked potentials on the surface of rat cortex. The arrays proved excellent flexibility and mechanical strength during handling and implantation onto the surface of cortex. The excellent electrochemical characteristics and stable in vivo recordings with high spatiotemporal resolution highlight the potential of these arrays. The fabrication protocol described here allows implementation of several other neural interfaces with different layouts, material selections or target areas either for recording or stimulation purposes.

  10. [Event-related EEG and evoked potential investigations in clinical practice].

    PubMed

    Rajna, Péter; Hidasi, Zoltán; Waldemar, Szelenberger

    2005-11-20

    Considering the limits of the traditional EEG techniques the authors review the main methods and clinical importance of the event-related EEG investigations. According to methods, these can be classified into the spectral analysis of task-related, pre-task and post-task recordings as well as stimulus-controlled measurements based on evoked potential techniques. The main results of clinical studies on the event-related EEG methods are summarized according to chief disease groups (Alzheimer's disease, epilepsy, schizophrenia, Parkinson's disease, dyslexia, depression). The authors discuss the stimulus-dependent EEG discharges (P300, cognitive potential) in detail. They present the meta-analysis of 224 recent publications on human application of these methods. They analyze the involved scientific areas and the frequency by which these methods were applied in each. Following this, the results of 83 selected clinical studies are summarized. The frequency of the application of the various event-related EEG methods and the tested wave components and other parameters are listed. Finally a summary of the main clinical results is presented again by groups of diseases (schizophrenia, behavioral disorders, traumatic lesions, enuresis nocturna, depression, memory disturbance and dementia, drug effect). Finally, the potential perspectives and the limitations of the event-related EEG methods are briefly discussed.

  11. Biomarkers of neuropathic pain in skin nerve degeneration neuropathy: contact heat-evoked potentials as a physiological signature.

    PubMed

    Wu, Shao-Wei; Wang, Yi-Chia; Hsieh, Paul-Chen; Tseng, Ming-Tsung; Chiang, Ming-Chang; Chu, Chih-Pang; Feng, Fang-Ping; Lin, Yea-Huey; Hsieh, Sung-Tsang; Chao, Chi-Chao

    2017-03-01

    Contact heat-evoked potentials (CHEPs) have become an established method of assessing small-fiber sensory nerves; however, their potential as a physiological signature of neuropathic pain symptoms has not been fully explored. To investigate the diagnostic efficacy in examining small-fiber sensory nerve degeneration, the relationship with skin innervations, and clinical correlates with sensory symptoms, we recruited 188 patients (115 men) with length-dependent sensory symptoms and reduced intraepidermal nerve fiber (IENF) density at the distal leg to perform CHEP, quantitative sensory testing, and nerve conduction study. Fifty-seven age- and sex-matched controls were enrolled for comparison of CHEP and skin innervation. Among patients with neuropathy, 144 patients had neuropathic pain and 64 cases had evoked pain. Compared with quantitative sensory testing and nerve conduction study parameters, CHEP amplitudes showed the highest sensitivity for diagnosing small-fiber sensory nerve degeneration and exhibited the strongest correlation with IENF density in multiple linear regression. Contact heat-evoked potential amplitudes were strongly correlated with the degree of skin innervation in both patients with neuropathy and controls, and the slope of the regression line between CHEP amplitude and IENF density was higher in patients with neuropathy than in controls. Patients with evoked pain had higher CHEP amplitude than those without evoked pain, independent of IENF density. Receiver operating characteristic analysis showed that CHEP had better performance in diagnosing small-fiber sensory nerve degeneration than thermal thresholds. Furthermore, CHEPs showed superior classification accuracy with respect to evoked pain. In conclusion, CHEP is a sensitive tool to evaluate pathophysiology of small-fiber sensory nerve and serves as a physiological signature of neuropathic pain symptoms.

  12. Influence of narcotics on luminance and frequency modulated visual evoked potentials in rats.

    PubMed

    Jehle, T; Ehlken, D; Wingert, K; Feuerstein, T J; Bach, M; Lagrèze, W A

    2009-06-01

    Quantification of visual function is essential for the impact of disease models and their treatment. Recently, we introduced a chronic implant model to record visual evoked potentials (VEP) in awake Brown-Norway rats. Here, we investigated the hemispheric distribution of VEP after monocular stimulation, the chronic electrode implantation and the influence of commonly used anesthetics. Potentials were recorded by electrodes, implanted epidurally over the superior colliculus. The entire visual field of the rat was stimulated. Flicker stimuli were modulated in luminance with a modulation depth from 5 to 80% at 7.5 Hz and flashes with a modulation depth of >95% in a frequency range of 2.9-38 Hz. Recordings were constant over 9 days. When one eye was blinded, the potentials recorded from the contralateral side were not affected, while the potentials of the ipsilateral side were markedly reduced. Further, potentials of awake animals were compared with those receiving general anesthetics. For one group of rats (n = 8), we administered isoflurane by inhalation in five concentrations. Four different groups (n = 7-11) were given choralhydrate (200 and 400 mg/kg) and the combination of ketamine/xyaline (65/7 or 130/14 mg/kg, respectively) intraperitoneally. Isoflurane depressed the VEP in a concentration-dependent manner. Treatment with chloralhydrate and ketamine/xyaline increased the VEP at low concentrations and depressed it in high concentrations. The new VEP paradigm assesses distinct qualities of contrast vision in rats. All tested narcotics alter VEP amplitudes and can be avoided.

  13. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.

    PubMed

    Beveridge, R; Wilson, S; Coyle, D

    2016-01-01

    A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming.

  14. Aroused with heart: Modulation of heartbeat evoked potential by arousal induction and its oscillatory correlates

    PubMed Central

    Luft, Caroline Di Bernardi; Bhattacharya, Joydeep

    2015-01-01

    Recent studies showed that the visceral information is constantly processed by the brain, thereby potentially influencing cognition. One index of such process is the heartbeat evoked potential (HEP), an ERP component related to the cortical processing of the heartbeat. The HEP is sensitive to a number of factors such as motivation, attention, pain, which are associated with higher levels of arousal. However, the role of arousal and its associated brain oscillations on the HEP has not been characterized, yet it could underlie the previous findings. Here we analysed the effects of high- (HA) and low-arousal (LA) induction on the HEP. Further, we investigated the brain oscillations and their role in the HEP in response to HA and LA inductions. As compared to LA, HA was associated with a higher HEP and lower alpha oscillations. Interestingly, individual differences in the HEP modulation by arousal induction were correlated with alpha oscillations. In particular, participants with higher alpha power during the arousal inductions showed a larger HEP in response to HA compared to LA. In summary, we demonstrated that arousal induction affects the cortical processing of heartbeats; and that the alpha oscillations may modulate this effect. PMID:26503014

  15. Effect of isoflurane on somatosensory evoked potentials in a rat model.

    PubMed

    Kortelainen, Jukka; Vipin, Ashwati; Thow Xin Yuan; Mir, Hasan; Thakor, Nitish; Al-Nashash, Hasan; All, Angelo

    2014-01-01

    Somatosensory evoked potentials (SEPs) are widely used in the clinic as well as research to study the functional integrity of the different parts of sensory pathways. However, most general anesthetics, such as isoflurane, are known to suppress SEPs, which might affect the interpretation of the signals. In animal studies, the usage of anesthetics during SEP measurements is inevitable due to which detailed effect of these drugs on the recordings should be known. In this paper, the effect of isoflurane on SEPs was studied in a rat model. Both time and frequency properties of the cortical recordings generated by stimulating the tibial nerve of rat's hindlimb were investigated at three different isoflurane levels. While the anesthetic agent is shown to generally suppress the amplitude of the SEP, the effect was found to be nonlinear influencing more substantially the latter part of waveform. This finding will potentially help us in future work aiming at separating the effects of anesthetics on SEP from those due to injury in the ascending neural pathways.

  16. Effects of Acute Administration of Ketorolac on Mammalian Vestibular Sensory Evoked Potentials

    PubMed Central

    Gaines, G Christopher; Jones, Timothy A

    2013-01-01

    The nonsteroidal antiinflammatory drug (NSAID) ketorolac is a candidate for use as a supplemental analgesic during major surgery in anesthetized rodents. The use of ketorolac during surgery is believed to reduce the anesthetic dose required to achieve and maintain an adequate surgical plane, thus improving the physiologic condition and survival of animals during long experimental procedures. Ketorolac has reported side effects that include dizziness, ear pain, hearing loss, tinnitus, and vertigo in humans, but ketorolac has not been reported to affect the vestibular system in animals. To investigate this possibility, we evaluated the acute effects of ketorolac on vestibular compound action potentials in C57BL/6 mice. Linear vestibular sensory-evoked potentials (VsEP) were recorded during the administration of ketorolac at doses 3 to 14 times the effective analgesic dose. VsEP results for ketorolac were compared with those from a control group maintained under anesthesia for the same period. Ketorolac did not significantly affect the temporal profiles of response latencies and amplitudes or the rate of change in response measures over time between controls and ketorolac-treated mice. These findings demonstrate that ketorolac can be used as an analgesic to supplement anesthesia in mice without concerns of modifying the amplitudes and latencies of the linear VsEP. PMID:23562034

  17. Normative data for the segmental acquisition of contact heat evoked potentials in cervical dermatomes

    PubMed Central

    Jutzeler, Catherine R.; Rosner, Jan; Rinert, Janosch; Kramer, John L. K.; Curt, Armin

    2016-01-01

    Contact heat evoked potentials (CHEPs) represent a neurophysiological approach to assess conduction in the spinothalamic tract. The aim of this study was to establish normative values of CHEPs acquired from cervical dermatomes (C4, C6, C8) and examine the potential confounds of age, sex, and height. 101 (49 male) healthy subjects of three different age groups (18–40, 41–60, and 61–80 years) were recruited. Normal (NB, 35–52 °C) followed by increased (IB, 42–52 °C) baseline stimulation protocols were employed to record CHEPs. Multi-variate linear models were used to investigate the effect of age, sex, and height on the CHEPs parameters (i.e., N2 latency, N2P2 amplitude, rating of perceived intensity). Compared to NB, IB stimulation reduced latency jitter within subjects, yielding larger N2P2 amplitudes, and decreased inter-subject N2 latency variability. Age was associated with reduced N2P2 amplitude and prolonged N2 latency. After controlling for height, male subjects had significantly longer N2 latencies than females during IB stimulation. The study provides normative CHEPs data in a large cohort of healthy subjects from segmentally examined cervical dermatomes. Age and sex were identified as important factors contributing to N2 latency and N2P2 amplitude. The normative data will improve the diagnosis of spinal cord pathologies. PMID:27708413

  18. Cortical Auditory Evoked Potentials in (Un)aided Normal-Hearing and Hearing-Impaired Adults

    PubMed Central

    Van Dun, Bram; Kania, Anna; Dillon, Harvey

    2016-01-01

    Cortical auditory evoked potentials (CAEPs) are influenced by the characteristics of the stimulus, including level and hearing aid gain. Previous studies have measured CAEPs aided and unaided in individuals with normal hearing. There is a significant difference between providing amplification to a person with normal hearing and a person with hearing loss. This study investigated this difference and the effects of stimulus signal-to-noise ratio (SNR) and audibility on the CAEP amplitude in a population with hearing loss. Twelve normal-hearing participants and 12 participants with a hearing loss participated in this study. Three speech sounds—/m/, /g/, and /t/—were presented in the free field. Unaided stimuli were presented at 55, 65, and 75 dB sound pressure level (SPL) and aided stimuli at 55 dB SPL with three different gains in steps of 10 dB. CAEPs were recorded and their amplitudes analyzed. Stimulus SNRs and audibility were determined. No significant effect of stimulus level or hearing aid gain was found in normal hearers. Conversely, a significant effect was found in hearing-impaired individuals. Audibility of the signal, which in some cases is determined by the signal level relative to threshold and in other cases by the SNR, is the dominant factor explaining changes in CAEP amplitude. CAEPs can potentially be used to assess the effects of hearing aid gain in hearing-impaired users. PMID:27587919

  19. Hemisection spinal cord injury in rat: The value of intraoperative somatosensory evoked potential monitoring

    PubMed Central

    Cloud, Beth A.; Ball, Bret G.; Chen, Bingkun; Knight, Andrew M.; Hakim, Jeffrey S.; Ortiz, Ana M.; Windebank, Anthony J.

    2012-01-01

    Techniques used to produce partial spinal cord injuries in animal models have the potential for creating variability in lesions. The amount of tissue affected may influence the functional outcomes assessed in the animals. The recording of somatosensory evoked potentials (SSEPs) may be a valuable tool for assessing the extent of lesion applied in animal models of traumatic spinal cord injury (SCI). Intraoperative tibial SSEP recordings were assessed during surgically induced lateral thoracic hemisection SCI in Sprague-Dawley rats. The transmission of SSEPs, or lack thereof, was determined and compared against the integrity of the dosal funiculi on each side of the spinal cord upon histological sectioning. An association was found between the presence of an SSEP signal and presence of intact dorsal funiculus tissue. The relative risk is 4.50 (95% confidence interval: 1.83 to 11.08) for having an intact dorsal funiculus when the ipsilateral SSEP was present compared to when it was absent. Additionally, the amount of spared spinal cord tissue correlates with final functional assessments at nine weeks post injury: BBB (linear regression, R2 = 0.618, p <0.001) and treadmill test (linear regression, R2 = 0.369, p = 0.016). Therefore, we propose intraoperative SSEP monitoring as a valuable tool to assess extent of lesion and reduce variability between animals in experimental studies of SCI. PMID:22960163

  20. Neurophysiological assessment of perceived image quality using steady-state visual evoked potentials

    NASA Astrophysics Data System (ADS)

    Bosse, Sebastian; Acqualagna, Laura; Porbadnigk, Anne K.; Curio, Gabriel; Müller, Klaus-Robert; Blankertz, Benjamin; Wiegand, Thomas

    2015-09-01

    An approach to the neural measurement of perceived image quality using electroencephalography (EEG) is presented. 6 different images were tested on 6 different distortion levels. The distortions were introduced by a hybrid video encoder. The presented study consists of two parts: In a first part, subjects were asked to evaluate the quality of the test stimuli behaviorally during a conventional psychophysical test using a degradation category rating procedure. In a second part, subjects were presented undistorted and distorted texture images in a periodically alternating fashion at a fixed frequency. This alternating presentation elicits so called steady-state visual evoked potentials (SSVEP) as a brain response that can be measured on the scalp. The amplitude of modulations in the brain signals is significantly and strongly negatively correlated with the magnitude of visual impairment reported by the subjects. This neurophysiological approach to image quality assessment may potentially lead to a more objective evaluation, as behavioral approaches suffer from drawbacks such as biases, inter-subject variances and limitations to test duration.

  1. Comparison of Cervical and Ocular Vestibular Evoked Myogenic Potentials in Dancers and Non-Dancers

    PubMed Central

    Sinha, Sujeet Kumar; Bohra, Vaishnavi; Sanju, Himanshu Kumar

    2013-01-01

    The objective of the study was to assess the sacculocollic and otolith ocular pathway function using cervical vestibular evoked myogenic potentials (cVEMP) and ocular vestibular myogenic potentials (oVEMP) in dancers and non dancers. Total 16 subjects participated in the study. Out of 16 participants, 8 were trained in Indian classical form of dance (dancers) and other 8 participants who were not trained in any dance form (non dancers). cVEMP and oVEMP responses were recorded for all the subjects. Non Parametric Mann-Whitney U test revealed no significant difference between dancers and non dancers for the latency and amplitude parameter for cVEMP and oVEMP, i.e. P13, N23 latency and P13-N23 complex amplitude and N10, P14 latency, N10-P14 complex amplitude respectively. The vestibular system comprises of several structures. It is possible that the dance style practiced by the dancer’s group assessed in this study does not contribute towards improving the plasticity of the sacculocollic and otolith-ocular pathways. It can be concluded that not all forms of dance training brings about a change in the plasticity of the sacculocollic and otolithocular pathways. PMID:26557344

  2. The locus of color sensation: Cortical color loss and the chromatic visual evoked potential

    PubMed Central

    Crognale, Michael A.; Duncan, Chad S.; Shoenhard, Hannah; Peterson, Dwight J.; Berryhill, Marian E.

    2013-01-01

    Color losses of central origin (cerebral achromatopsia and dyschromatopsia) can result from cortical damage and are most commonly associated with stroke. Such cases have the potential to provide useful information regarding the loci of the generation of the percept of color. One available tool to examine this issue is the chromatic visual evoked potential (cVEP). The cVEP has been used successfully to objectively quantify losses in color vision capacity in both congenital and acquired deficiencies of retinal origin but has not yet been applied to cases of color losses of cortical origin. In addition, it is not known with certainty which cortical sites are responsible for the generation of the cVEP waveform components. Here we report psychophysical and electrophysiological examination of a patient with color deficits resulting from a bilateral cerebral infarct in the ventral occipitotemporal region. Although this patient demonstrated pronounced color losses of a general nature, the waveform of the cVEP remains unaffected. Contrast response functions of the cVEP are also normal for this patient. The results suggest that the percept of color arises after the origin of the cVEP and that normal activity in those areas that give rise to the characteristic negative wave of the cVEP are not sufficient to provide for the normal sensation of color. PMID:23986535

  3. Neurophysiological Effects of Meditation Based on Evoked and Event Related Potential Recordings

    PubMed Central

    Singh, Nilkamal; Telles, Shirley

    2015-01-01

    Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control. PMID:26137479

  4. Effect of sodium tungstate on visual evoked potentials in diabetic rats

    PubMed Central

    Bulut, Mehmet; Dönmez, Barış Özgür; Öztürk, Nihal; Başaranlar, Göksun; Kencebay Manas, Ceren; Derin, Narin; Özdemir, Semir

    2016-01-01

    AIM To evaluate the effect of sodium tungstate on visual evoked potentials (VEPs) in diabetic rats. METHODS Wistar rats were randomly divided into three groups as normal control, diabetic control and diabetic rats treated with sodium tungstate. Diabetes was induced by single intraperitoneal injection of streptozotocin (50 mg/kg). Sodium tungstate [40 mg/(kg·d)] was administered for 12wk and then VEPs were recorded. Additionally, thiobarbituric acid reactive substance (TBARS) levels were measured in brain tissues. RESULTS The latencies of P1, N1, P2, N2 and P3 waves were significantly prolonged in diabetic rats compared with control group. Diabetes mellitus caused an increase in the lipid peroxidation process that was accompanied by changes in VEPs. However, prolonged latencies of VEPs for all components returned to control levels in sodium tungstate-treated group. The treatment of sodium tungstate significantly decreased brain TBARS levels and depleted the prolonged latencies of VEP components compared with diabetic control group. CONCLUSION Sodium tungstate shows protective effects on visual pathway in diabetic rats, and it can be worthy of further study for potential use. PMID:27275420

  5. Hemisection spinal cord injury in rat: the value of intraoperative somatosensory evoked potential monitoring.

    PubMed

    Cloud, Beth A; Ball, Bret G; Chen, Bingkun K; Knight, Andrew M; Hakim, Jeffrey S; Ortiz, Ana M; Windebank, Anthony J

    2012-11-15

    Techniques used to produce partial spinal cord injuries in animal models have the potential for creating variability in lesions. The amount of tissue affected may influence the functional outcomes assessed in the animals. The recording of somatosensory evoked potentials (SSEPs) may be a valuable tool for assessing the extent of lesion applied in animal models of traumatic spinal cord injury (SCI). Intraoperative tibial SSEP recordings were assessed during surgically induced lateral thoracic hemisection SCI in Sprague-Dawley rats. The transmission of SSEPs, or lack thereof, was determined and compared against the integrity of the dorsal funiculi on each side of the spinal cord upon histological sectioning. An association was found between the presence of an SSEP signal and presence of intact dorsal funiculus tissue. The relative risk is 4.50 (95% confidence interval: 1.83-11.08) for having an intact dorsal funiculus when the ipsilateral SSEP was present compared to when it was absent. Additionally, the amount of spared spinal cord tissue correlates with final functional assessments at nine weeks post injury: BBB (linear regression, R²=0.618, p<0.001) and treadmill test (linear regression, R²=0.369, p=0.016). Therefore, we propose intraoperative SSEP monitoring as a valuable tool to assess extent of lesion and reduce variability between animals in experimental studies of SCI.

  6. Effects of acute administration of ketorolac on mammalian vestibular sensory evoked potentials.

    PubMed

    Gaines, G Christopher; Jones, Timothy A

    2013-01-01

    The nonsteroidal antiinflammatory drug (NSAID) ketorolac is a candidate for use as a supplemental analgesic during major surgery in anesthetized rodents. The use of ketorolac during surgery is believed to reduce the anesthetic dose required to achieve and maintain an adequate surgical plane, thus improving the physiologic condition and survival of animals during long experimental procedures. Ketorolac has reported side effects that include dizziness, ear pain, hearing loss, tinnitus, and vertigo in humans, but ketorolac has not been reported to affect the vestibular system in animals. To investigate this possibility, we evaluated the acute effects of ketorolac on vestibular compound action potentials in C57BL/6 mice. Linear vestibular sensory-evoked potentials (VsEP) were recorded during the administration of ketorolac at doses 3 to 14 times the effective analgesic dose. VsEP results for ketorolac were compared with those from a control group maintained under anesthesia for the same period. Ketorolac did not significantly affect the temporal profiles of response latencies and amplitudes or the rate of change in response measures over time between controls and ketorolac-treated mice. These findings demonstrate that ketorolac can be used as an analgesic to supplement anesthesia in mice without concerns of modifying the amplitudes and latencies of the linear VsEP.

  7. Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains.

    PubMed

    Nourski, Kirill V; Abbas, Paul J; Miller, Charles A; Robinson, Barbara K; Jeng, Fuh-Cherng

    2005-04-01

    This study investigated the effects of acoustic noise on the auditory nerve compound action potentials in response to electric pulse trains. Subjects were adult guinea pigs, implanted with a minimally invasive electrode to preserve acoustic sensitivity. Electrically evoked compound action potentials (ECAP) were recorded from the auditory nerve trunk in response to electric pulse trains both during and after the presentation of acoustic white noise. Simultaneously presented acoustic noise produced a decrease in ECAP amplitude. The effect of the acoustic masker on the electric probe was greatest at the onset of the acoustic stimulus and it was followed by a partial recovery of the ECAP amplitude. Following cessation of the acoustic noise, ECAP amplitude recovered over a period of approximately 100-200 ms. The effects of the acoustic noise were more prominent at lower electric pulse rates (interpulse intervals of 3 ms and higher). At higher pulse rates, the ECAP adaptation to the electric pulse train alone was larger and the acoustic noise, when presented, produced little additional effect. The observed effects of noise on ECAP were the greatest at high electric stimulus levels and, for a particular electric stimulus level, at high acoustic noise levels.

  8. Visual evoked potential in RCS rats with Okayama University-type retinal prosthesis (OUReP™) implantation.

    PubMed

    Alamusi; Matsuo, Toshihiko; Hosoya, Osamu; Uchida, Tetsuya

    2017-02-08

    Photoelectric dye-coupled polyethylene film, designated Okayama University type-retinal prosthesis or OUReP™, generates light-evoked surface electric potentials and stimulates neurons. The dye-coupled films or plain films were implanted subretinally in both eyes of 10 Royal College of Surgeons rats with hereditary retinal dystrophy at the age of 6 weeks. Visual evoked potentials in response to monocular flashing light stimuli were recorded from cranially-fixed electrodes, 4 weeks and 8 weeks after the implantation. After the recording, subretinal film implantation was confirmed histologically in 7 eyes with dye-coupled films and 7 eyes with plain films. The recordings from these 7 eyes in each group were used for statistical analysis. The amplitudes of visual evoked potentials in the consecutive time points from 125 to 250 ms after flash were significantly larger in the 7 eyes with dye-coupled film implantation, compared to the 7 eyes with plain film implantation at 8 weeks after the implantation (P < 0.05, repeated-measure ANOVA). The photoelectric dye-coupled polyethylene film, as retinal prosthesis, gave rise to visual evoked potential in response to flashing light.

  9. The role of visually evoked potentials in the management of hemispheric arachnoid cyst compressing the posterior visual pathways.

    PubMed

    Raja, Vignesh; Kumar, Anupma; Durnian, Jon; Hagan, Richard; Buxton, Neil; Newman, William

    2010-02-01

    We report a case of an occipital arachnoid cyst in an infant, managed on the basis of changes in visually evoked potentials (VEPs). A significant asymmetry of VEP responses prompted neurosurgical intervention, which improved visual behavior and electrical response to both pattern and flash stimuli.

  10. Longitudinal Study of Averaged Auditory Evoked Potentials in Normal Children from Birth to Three Years of Age.

    ERIC Educational Resources Information Center

    Ohlrich, Elizabeth S.; And Others

    This study examined individual patterns of the maturation of auditory evoked potential (AEP) in normal infants to determine whether longitudinal data show less variability than cross-sectional data, and to further assess the effect of stage of sleep on AEP. The AEPs for 10 children were examined by repeated testing between the ages of about two…

  11. Oesophageal sensation assessed by electrical stimuli and brain evoked potentials--a new model for visceral nociception.

    PubMed Central

    Frøbert, O; Arendt-Nielsen, L; Bak, P; Funch-Jensen, P; Bagger, J P

    1995-01-01

    Sensory thresholds and brain evoked potentials were determined in 12 healthy volunteers using electrical stimulation of the oesophagus 28 and 38 cm from the nares. The peaks of the evoked potentials were designated N for negative deflections and P for positive. Continuous electrical stimulation (40 Hz) at the 38 cm position resembled heartburn (five of 12 subjects) while non-specific ('electrical') sensations were provoked at 28 cm (10 of 12). Thresholds of sensation and of pain were lower at the initial than the second determination, but did not differ with respect to stimulation site. The pain summation threshold to repeated stimuli (2 Hz, 5 stimuli) was determined for the first time in a viscus. This threshold was lower than the pain threshold to single stimuli at 38 cm (p < 0.02). Evoked potential latencies did not change significantly over a six month period while the N1/P2 amplitude was higher at the first measurement (p < 0.05). P1 and N1 latencies were significantly shorter 38 cm (medians 100 and 141 ms) than 28 cm from the nares (102 and 148 ms) (p = 0.04 and p = 0.008). Electrical stimulation of the oesophagus may serve as a human experimental model for visceral pain. Longer evoked potential latencies from the proximal compared with distal stimulations provide new information about the sensory pathways of the oesophagus. PMID:8549932

  12. Altered Automatic Face Processing in Individuals with High-Functioning Autism Spectrum Disorders: Evidence from Visual Evoked Potentials

    ERIC Educational Resources Information Center

    Fujita, Takako; Kamio, Yoko; Yamasaki, Takao; Yasumoto, Sawa; Hirose, Shinichi; Tobimatsu, Shozo

    2013-01-01

    Individuals with autism spectrum disorders (ASDs) have different automatic responses to faces than typically developing (TD) individuals. We recorded visual evoked potentials (VEPs) in 10 individuals with high-functioning ASD (HFASD) and 10 TD individuals. Visual stimuli consisted of upright and inverted faces (fearful and neutral) and objects…

  13. Short-Latency Median-Nerve Somatosensory-Evoked Potentials and Induced Gamma-Oscillations in Humans

    ERIC Educational Resources Information Center

    Fukuda, Miho; Nishida, Masaaki; Juhasz, Csaba; Muzik, Otto; Sood, Sandeep; Chugani, Harry T.; Asano, Eishi

    2008-01-01

    Recent studies have suggested that cortical gamma-oscillations are tightly linked with various forms of physiological activity. In the present study, the dynamic changes of intracranially recorded median-nerve somatosensory-evoked potentials (SEPs) and somatosensory-induced gamma-oscillations were animated on a three-dimensional MR image, and the…

  14. INHIBITION OF BRAIN CHOLINESTERASE AND THE PHOTIC AFTER DISCHARGE OF FLASH EVOKED POTENTIALS PRODUCED BY CARBARYL IN LONG EVANS RATS.

    EPA Science Inventory

    Carbaryl is a widely used N-methyl carbamate pesticide that acts by inhibiting cholinesterases (ChE), which may lead to cholinergic toxicity. Flash evoked potentials (FEPs) are a neurophysiological response often used to detect central nervous system (CNS) changes following expos...

  15. Auditory Evoked Potentials and Hand Preference in 6-Month-Old Infants: Possible Gender-Related Differences in Cerebral Organization.

    ERIC Educational Resources Information Center

    Shucard, Janet L.; Shucard, David W.

    1990-01-01

    Verbal and musical stimuli were presented to infants in a study of the relations of evoked potential left-right amplitude asymmetries to gender and hand preference. There was a relation between asymmetry and hand preference, and for girls, between asymmetry and stimulus condition. Results suggest a gender difference in cerebral hemisphere…

  16. Click-evoked potentials in a large marine mammal, the adult male northern elephant seal (Mirounga angustirostris).

    PubMed

    Houser, Dorian S; Crocker, Daniel E; Finneran, James J

    2008-07-01

    Auditory evoked potential (AEP) hearing studies in marine mammals should consider an expected size-dependent reduction in AEP amplitude. This study is the first to measure the click-evoked response in a large marine mammal, the adult male elephant seal (Mirounga angustirostris). Click stimuli were presented at peak-peak equivalent sound pressure levels of 117-118 dB re: 20 microPa. Three positive peaks (P1-P3) and two negative peaks (N4 and N5) were observed in the AEP. Response latencies were longer than previously observed in a 1.8 yr old seal and the maximum peak-peak amplitude was comparatively reduced by more than 60%. The inverse relationship between size and AEP amplitude will likely require increased averaging with larger subjects and possibly modifications to electrode placement and design in order to increase the quality of recorded evoked responses.

  17. Reduced habituation to experimental pain in migraine patients: a CO(2) laser evoked potential study.

    PubMed

    Valeriani, M; de Tommaso, M; Restuccia, D; Le Pera, D; Guido, M; Iannetti, G D; Libro, G; Truini, A; Di Trapani, G; Puca, F; Tonali, P; Cruccu, G

    2003-09-01

    The habituation to sensory stimuli of different modalities is reduced in migraine patients. However, the habituation to pain has never been evaluated. Our aim was to assess the nociceptive pathway function and the habituation to experimental pain in patients with migraine. Scalp potentials were evoked by CO(2) laser stimulation (laser evoked potentials, LEPs) of the hand and facial skin in 24 patients with migraine without aura (MO), 19 patients with chronic tension-type headache (CTTH), and 28 control subjects (CS). The habituation was studied by measuring the changes of LEP amplitudes across three consecutive repetitions of 30 trials each (the repetitions lasted 5 min and were separated by 5-min intervals). The slope of the regression line between LEP amplitude and number of repetitions was taken as an index of habituation. The LEPs consisted of middle-latency, low-amplitude responses (N1, contralateral temporal region, and P1, frontal region) followed by a late, high-amplitude, negative-positive complex (N2/P2, vertex). The latency and amplitude of these responses were similar in both patients and controls. While CS and CTTH patients showed a significant habituation of the N2/P2 response, in MO patients this LEP component did not develop any habituation at all after face stimulation and showed a significantly lower habituation than in CS after hand stimulation. The habituation index of the vertex N2/P2 complex exceeded the normal limits in 13 out of the 24 MO patients and in none of the 19 CTTH patients (P<0.0001; Fisher's exact test). Moreover, while the N1-P1 amplitude showed a significant habituation in CS after hand stimulation, it did not change across repetitions in MO patients. In conclusion, no functional impairment of the nociceptive pathways, including the trigeminal pathways, was found in either MO or CTTH patients. But patients with migraine had a reduced habituation, which probably reflects an abnormal excitability of the cortical areas involved in

  18. Characterization of action potential-evoked calcium transients in mouse postganglionic sympathetic axon bundles.

    PubMed

    Jackson, V M; Trout, S J; Brain, K L; Cunnane, T C

    2001-11-15

    1. Action potential-evoked Ca(2+) transients in postganglionic sympathetic axon bundles in mouse vas deferens have been characterized using confocal microscopy and Ca(2+) imaging. 2. Axonal Ca(2+) transients were tetrodotoxin sensitive. The amplitude depended on both the frequency of stimulation and the number of stimuli in a train. 3. Removal of extracellular Ca(2+) abolished the Ca(2+) transient. Cd(2+)(100 microM) inhibited the Ca(2+) transient by 78 +/- 10 %. The N-type Ca(2+) channel blocker omega-conotoxin GVIA (0.1 microM) reduced the amplitude by -35 +/-4 %, whereas nifedipine (10 microM; L-type) and omega-conotoxin MVIIC (0.1 microM; P/Q type) were ineffective. 4. Caffeine (10 mM), ryanodine (10 microM), cyclopiazonic acid (30 microM) or CCCP (10 microM) had no detectable effects. 5. Blockade of large and small conductance Ca(2+)-dependent K+ channels with iberiotoxin (0.1 microM) and apamin (1 microM), respectively, or Ca(2+)-dependent Cl(-) channels by niflumic acid (100 microM) did not alter Ca(2+) transients. 6. In contrast, the non-specific K+ channel blockers tetraethylammonium (10 mM) and 4-aminopyridine (10 mM) markedly increased the amplitude of the Ca(2+) transient. Blockade of delayed rectifiers and A-like K+ channels, by tityustoxin-K (alpha) (0.1 microM) and pandinustoxin-K (alpha) (10 nM), respectively, also increased the Ca(2+) transient amplitude. 7. Thus, Ca(2+) transients are evoked by Na(+)-dependent action potentials in axons. These transients originate mainly from Ca(2+) entry through voltage-dependent Ca(2+) channels (80 % Cd(2+) sensitive of which 40 % was attributable to N-type). Twenty per cent of the Ca(2+) transient was not due to Ca(2+) entry through voltage-gated Ca(2+) channels. Intracellular stores and mitochondria were not involved in the generation of the transient. Ca(2+) transients are modulated by A-like K+ channels and delayed rectifiers (possibly K(V)1.2) but not by Ca(2+)-activated ion channels.

  19. Influence of stretch-evoked synaptic potentials on firing probability of cat spinal motoneurones.

    PubMed

    Gustafsson, B; McCrea, D

    1984-02-01

    Shapes of post-synaptic potentials (p.s.p.s) in cat motoneurones were compared with the time course of correlated changes in firing probability during repetitive firing. Excitatory and inhibitory post-synaptic potentials (e.p.s.p.s. and i.p.s.p.s) were evoked by brief triangular stretches of the triceps surae-plantaris muscles. Depolarizing current was injected through the recording micro-electrode to evoke repetitive firing and the post-stimulus time histogram of motoneurone spikes was obtained. E.p.s.p.s (n = 80) of different sizes (30-1040 microV) and rise times (1.1-8.2 ms) were investigated in fifty-nine motoneurones. The majority of the e.p.s.p.s were recorded in triceps surae-plantaris motoneurones with high levels of synaptic noise (estimated peak-to-peak fluctuations of 1.5-3.5 mV). This noise was generated by keeping the triceps surae-plantaris muscles stretched to a near maximal degree. The remaining e.p.s.p.s were recorded in motoneurones to other hind-limb muscles with a low level of synaptic noise. The height of the primary peak of the correlogram with respect to base-line firing rate increased in proportion to both amplitude and rising slope of the e.p.s.p.s. Using normalization procedures or using e.p.s.p.s of constant amplitude but different slopes and vice versa, the relative peak height increased with e.p.s.p. peak derivative with a slope of around 6/mV per millisecond and with e.p.s.p peak amplitude with a slope of about 1/mV. The shape of the correlogram (peak and trough) seemed well described by a linear combination of the shape of the e.p.s.p. derivative and that of the e.p.s.p. itself. The relative e.p.s.p. contribution (e.p.s.p.:e.p.s.p. derivative ratio) varied with e.p.s.p. amplitude and noise level, being largest (mostly 0.25-1.0) for small e.p.s.p.s (100-300 microV) in high levels of synaptic noise and smaller (0-0.25) for larger e.p.s.p.s and for e.p.s.p.s in a low noise background. In conformity with the above finding, a leaky

  20. Auditory Evoked Potentials with Different Speech Stimuli: a Comparison and Standardization of Values

    PubMed Central

    Didoné, Dayane Domeneghini; Oppitz, Sheila Jacques; Folgearini, Jordana; Biaggio, Eliara Pinto Vieira; Garcia, Michele Vargas

    2016-01-01

    Introduction Long Latency Auditory Evoked Potentials (LLAEP) with speech sounds has been the subject of research, as these stimuli would be ideal to check individualś detection and discrimination. Objective The objective of this study is to compare and describe the values of latency and amplitude of cortical potentials for speech stimuli in adults with normal hearing. Methods The sample population included 30 normal hearing individuals aged between 18 and 32 years old with ontological disease and auditory processing. All participants underwent LLAEP search using pairs of speech stimuli (/ba/ x /ga/, /ba/ x /da/, and /ba/ x /di/. The authors studied the LLAEP using binaural stimuli at an intensity of 75dBNPS. In total, they used 300 stimuli were used (∼60 rare and 240 frequent) to obtain the LLAEP. Individuals received guidance to count the rare stimuli. The authors analyzed latencies of potential P1, N1, P2, N2, and P300, as well as the ampleness of P300. Results The mean age of the group was approximately 23 years. The averages of cortical potentials vary according to different speech stimuli. The N2 latency was greater for /ba/ x /di/ and P300 latency was greater for /ba/ x /ga/. Considering the overall average amplitude, it ranged from 5.35 and 7.35uV for different speech stimuli. Conclusion It was possible to obtain the values of latency and amplitude for different speech stimuli. Furthermore, the N2 component showed higher latency with the / ba / x / di / stimulus and P300 for /ba/ x / ga /. PMID:27096012

  1. Use of auditory evoked potentials for intra-operative awareness in anesthesia: a consciousness-based conceptual model.

    PubMed

    Dong, Xuebao; Suo, Puxia; Yuan, Xin; Yao, Xuefeng

    2015-01-01

    Auditory evoked potentials (AEPs) have been used as a measure of the depth of anesthesia during the intra-operative process. AEPs are classically divided, on the basis of their latency, into first, fast, middle, slow, and late components. The use of auditory evoked potential has been advocated for the assessment of Intra-operative awareness (IOA), but has not been considered seriously enough to universalize it. It is because we have not explored enough the impact of auditory perception and auditory processing on the IOA phenomena as well as on the subsequent psychological impact of IOA on the patient. More importantly, we have seldom tried to look at the phenomena of IOP from the perspective of consciousness itself. This perspective is especially important because many of IOA phenomena exist in the subconscious domain than they do in the conscious domain of explicit recall. Two important forms of these subconscious manifestations of IOA are the implicit recall phenomena and post-operative dreams related to the operation. Here, we present an integrated auditory consciousness-based model of IOA. We start with a brief description of auditory awareness and the factors affecting it. Further, we proceed to the evaluation of conscious and subconscious information processing by auditory modality and how they interact during and after intra-operative period. Further, we show that both conscious and subconscious auditory processing affect the IOA experience and both have serious psychological implications on the patient subsequently. These effects could be prevented by using auditory evoked potential during monitoring of anesthesia, especially the mid-latency auditory evoked potentials (MLAERs). To conclude our model with present hypothesis, we propose that the use of auditory evoked potential should be universal with general anesthesia use in order to prevent the occurrences of distressing outcomes resulting from both conscious and subconscious auditory processing during

  2. Distortion product otoacoustic emissions and auditory evoked potentials in the hedgehog tenrec, Echinops telfairi.

    PubMed

    Drexl, Markus; Faulstich, Michael; Von Stebut, Boris; Radtke-Schuller, Susanne; Kössl, Manfred

    2003-12-01

    The hedgehog tenrec, Echinops telfairi, has certain basal mammalian features, like a cloaca and a sparsely differentiated brain with smooth cerebral hemispheres. The peripheral auditory capabilities of this species were investigated by means of distortion product otoacoustic emissions (DPOAE). For comparison, we determined auditory evoked potentials (AEP) in the inferior colliculus and the auditory cortex. Both methods show that the auditory range of E. telfairi extends well into ultrasonic frequencies, with a region of highest sensitivity at around 16 kHz. The total auditory range spans about 4 octaves at 40 dB SPL. The low-frequency limit of auditory processing is found at frequencies of about 2-3 kHz. The DPOAE and the AEP thresholds of E. telfairi do not run fully parallel in the high-frequency range. For a threshold value of 40 dB SPL, cochlear mechanical thresholds as measured with DPOAE extend up to 50 kHz, whereas neuronal thresholds reach the high-frequency limit at about 30 kHz. Frequency tuning, as assessed from DPOAE suppression tuning curves, was low to moderate with Q(10 dB) values ranging from 1.7 to 8. The lack of discontinuity in the group delay (derived from DPOAE measurements) reveals that cochlear frequency representation is tonotopic without any region of specialized mechanical tuning.

  3. Effects of narcotics, including morphine, on visual evoked potential in rats.

    PubMed

    Kuroda, Ken; Fujiwara, Akinori; Takeda, Yasuhiro; Kamei, Chiaki

    2009-01-14

    The side effects of narcotics, including morphine, on the visual system are still unclear; therefore, the present study was undertaken to examine the effects of narcotics on the visual system at each antinociceptive dose by using the evoked potential (VEP) in rats. Morphine (2 or 5 mg/kg) caused a significant increase in the amplitude of early and late VEP components (P(1)-N(1), N(1)-P(2), P(3)-N(3) and N(3)-P(4)). Fentanyl (0.02 mg/kg) also showed a significant increase in the amplitude of late VEP components (P(3)-N(3), N(3)-P(4)). The effects of morphine and fentanyl on VEP components were antagonized by naloxone (1 mg/kg). On the other hand, (+/-)-pentazocine (20 mg/kg) reduced the amplitude of the late VEP component (N(3)-P(4)), and this effect was not antagonized by naloxone. Butorphanol showed no significant changes in early and late VEP components. In conclusion, morphine stimulated the retino-geniculate-cortex pathway and the thalamus-cortical circuit through the opioid receptors, and fentanyl stimulated the thalamus-cortical circuit through the opioid receptors. It can therefore be assumed that VEP is a useful tool for examining the side effects of drugs, including narcotics, on the visual system.

  4. A convolutional neural network for steady state visual evoked potential classification under ambulatory environment

    PubMed Central

    Kwak, No-Sang; Müller, Klaus-Robert

    2017-01-01

    The robust analysis of neural signals is a challenging problem. Here, we contribute a convolutional neural network (CNN) for the robust classification of a steady-state visual evoked potentials (SSVEPs) paradigm. We measure electroencephalogram (EEG)-based SSVEPs for a brain-controlled exoskeleton under ambulatory conditions in which numerous artifacts may deteriorate decoding. The proposed CNN is shown to achieve reliable performance under these challenging conditions. To validate the proposed method, we have acquired an SSVEP dataset under two conditions: 1) a static environment, in a standing position while fixated into a lower-limb exoskeleton and 2) an ambulatory environment, walking along a test course wearing the exoskeleton (here, artifacts are most challenging). The proposed CNN is compared to a standard neural network and other state-of-the-art methods for SSVEP decoding (i.e., a canonical correlation analysis (CCA)-based classifier, a multivariate synchronization index (MSI), a CCA combined with k-nearest neighbors (CCA-KNN) classifier) in an offline analysis. We found highly encouraging SSVEP decoding results for the CNN architecture, surpassing those of other methods with classification rates of 99.28% and 94.03% in the static and ambulatory conditions, respectively. A subsequent analysis inspects the representation found by the CNN at each layer and can thus contribute to a better understanding of the CNN’s robust, accurate decoding abilities. PMID:28225827

  5. Effect of MOG Sensitization on Somatosensory Evoked Potential in Lewis Rats

    PubMed Central

    All, Angelo H.; Walczak, Piotr; Agrawal, Gracee; Gorelik, Michael; Lee, Christopher; Thakor, Nitish V.; Bulte, Jeff W.M.; Kerr, Douglas A.

    2009-01-01

    Myelin oligodendrocyte glycoprotein (MOG) is commonly used as an immunogen to induce an immune response against endogenous myelin, thereby modeling multiple sclerosis in rodents. When MOG is combined with complete Freund’s adjuvant (CFA), multifocal, multiphasic disease ensues; whereas when MOG is combined with incomplete Freund’s adjuvant (IFA), clinical disease is usually absent. MOG-IFA immunized animals can be induced to have neurological disease after intraspinal injections of cytokines and ethidium bromide (EtBr). In this study, we investigated whether MOG-IFA immunized rats exhibited subclinical injury as defined by Somatosensory Evoked Potential (SEP) recordings. The titration of Anti-MOG-125 antibodies showed robust peripheral mounting of immune response against myelin in MOG-immunized rats. However the SEP measures showed no significant change over time. Upon injecting cytokine-EtBr in the spinal cord after MOG sensitization, the SEP recordings showed reduced amplitude and prolonged latency, suggestive of axonal injury and demyelination in the dorsal column, respectively. These findings were later confirmed using T2-weighted MRI and histological hematoxilin-eosin stain of the spinal cord. This report establishes that MOG-IFA immunization alone does not alter neuronal conduction in SEP-related neural-pathways and that longitudinal in-vivo SSEP recordings provide a sensitive read-out for focal myelitis (MOG-IFA & intraspinal cytokine-EtBr) in rats. PMID:19423134

  6. Effect of MOG sensitization on somatosensory evoked potential in Lewis rats

    PubMed Central

    All, Angelo H.; Walczak, Piotr; Agrawal, Gracee; Gorelik, Michael; Lee, Christopher; Thakor, Nitish V.; Bulte, Jeff W.M.; Kerr, Douglas A.

    2011-01-01

    Myelin oligodendrocyte glycoprotein (MOG) is commonly used as an immunogen to induce an immune response against endogenous myelin, thereby modeling multiple sclerosis in rodents. When MOG is combined with complete Freund's adjuvant (CFA), multifocal, multiphasic disease ensues; whereas when MOG is combined with incomplete Freund's adjuvant (IFA), clinical disease is usually absent. MOG–IFA immunized animals can be induced to have neurological disease after intraspinal injections of cytokines and ethidium bromide (EtBr). In this study, we investigated whether MOG–IFA immunized rats exhibited subclinical injury as defined by somatosensory evoked potential (SEP) recordings. The titration of anti-MOG-125 antibodies showed robust peripheral mounting of immune response against myelin in MOG-immunized rats. However the SEP measures showed no significant change over time. Upon injecting cytokine–EtBr in the spinal cord after MOG sensitization, the SEP recordings showed reduced amplitude and prolonged latency, suggestive of axonal injury and demyelination in the dorsal column, respectively. These findings were later confirmed using T2-weighted MRI and histological hematoxylin–eosin stain of the spinal cord. This report establishes that MOG–IFA immunization alone does not alter neuronal conduction in SEP-related neural-pathways and that longitudinal in-vivo SEP recordings provide a sensitive read-out for focal myelitis (MOG–IFA and intraspinal cytokine–EtBr) in rats. PMID:20508959

  7. Effects of stimulus intensity on latency and conduction time of short-latency somatosensory evoked potentials.

    PubMed

    Shiga, Y; Yamada, T; Ofuji, A; Fujita, Y; Kawamura, T; Inoue, K; Hada, Y; Yamazaki, H; Cheng, M H; Yeh, M H

    2001-04-01

    We studied the effect of stimulus intensity on latencies of short-latency somatosensory evoked potentials (SSEP) by measuring both onset and peak latencies individually. The latencies of N9, N13, N20 and N9-N13 peripheral conduction time (PCT) of median nerve (MN) SSEP, and N8, N23, P37 and N8-N23 PCT of tibial nerve (TN) and sural nerve (SN) SSEP significantly shortened with increasing stimulus intensity by onset latency measurement. However, those latencies by peak latency measurement were less significantly shortened or had only a trend of latency shortening without statistical significance. In contrast to PCT, N13-N20 central conduction time (CCT) of MN-SSEP and N23-P37 CCT of TN- or SN-SSEP showed no latency changes with the increased stimulus intensity by both onset and peak latencies measurement. As peak latencies had greater interindividual variability than onset latencies shown by larger standard deviation, shortening of onset latencies were more consistent than that of peak latencies. We think shortening of onset latencies indicates the recruitment of faster conduction fiber along with increased stimulus intensity. As the degree of latency shortening was less if stimulus intensity was above 2.5 times sensory threshold, the stimulus intensity greater than 2.5 times the sensory threshold should be used for clinical application.

  8. Monaural and binaural hearing directivity in the bottlenose dolphin: evoked-potential study.

    PubMed

    Popov, Vladimir V; Supin, Alexander Ya; Klishin, Vladimir O; Bulgakova, Tatyana N

    2006-01-01

    Hearing thresholds as a function of sound-source azimuth were measured in bottlenose dolphins using an auditory evoked potential (AEP) technique. AEP recording from a region next to the ear allowed recording monaural responses. Thus, a monaural directivity diagram (a threshold-vs-azimuth function) was obtained. For comparison, binaural AEP components were recorded from the vertex to get standard binaural directivity diagrams. Both monaural and binaural diagrams were obtained at frequencies ranging from 8 to 128 kHz in quarter-octave steps. At all frequencies, the monaural diagram demonstrated asymmetry manifesting itself as: (1) lower thresholds at the ipsilateral azimuth as compared to the symmetrical contralateral azimuth and (2) ipsilateral shift of the lowest-threshold point. The directivity index increased with frequency: at the ipsilateral side it rose from 4.7 to 17.8 dB from 11.2 to 128 kHz, and from 10.5 to 15.6 dB at the contralateral side. The lowest-threshold azimuth shifted from 0 degrees at 90-128 kHz to 22.5 degrees at 8-11.2 kHz. The frequency-dependent variation of the lowest-threshold azimuth indicates the presence of two sound-receiving apertures at each head side: a high-frequency aperture with the axis directed frontally, and a low-frequency aperture with the axis directed laterally.

  9. Forward-masking based gain control in odontocete biosonar: an evoked-potential study.

    PubMed

    Supin, Alexander Ya; Nachtigall, Paul E; Breese, Marlee

    2009-04-01

    Auditory evoked potentials (AEPs) were recorded during echolocation in a false killer whale Pseudorca crassidens. An electronically synthesized and played-back ("phantom") echo was used. Each electronic echo was triggered by an emitted biosonar pulse. The echo had a spectrum similar to that of the emitted biosonar clicks, and its intensity was proportional to that of the emitted click. The attenuation of the echo relative to the emitted click and its delay was controlled by the experimenter. Four combinations of echo attenuation and delay were tested (-31 dB, 2 ms), (-40 dB, 4 ms), (-49 dB, 8 ms), and (-58 dB, 16 ms); thus, attenuation and delay were associated with a rate of 9 dB of increased attenuation per delay doubling. AEPs related to emitted clicks displayed a regular amplitude dependence on the click level. Echo-related AEPs did not feature amplitude dependence on echo attenuation or emitted click levels, except in a few combinations of the lowest values of these two variables. The results are explained by a hypothesis that partial forward masking of the echoes by the preceding emitted sonar pulses serves as a kind of automatic gain control in the auditory system of echolocating odontocetes.

  10. Behavioral and auditory evoked potential audiograms of a false killer whale (Pseudorca crassidens).

    PubMed

    Yuen, Michelle M L; Nachtigall, Paul E; Breese, Marlee; Supin, Alexander Ya

    2005-10-01

    Behavioral and auditory evoked potential (AEP) audiograms of a false killer whale were measured using the same subject and experimental conditions. The objective was to compare and assess the correspondence of auditory thresholds collected by behavioral and electrophysiological techniques. Behavioral audiograms used 3-s pure-tone stimuli from 4 to 45 kHz, and were conducted with a go/no-go modified staircase procedure. AEP audiograms used 20-ms sinusoidally amplitude-modulated tone bursts from 4 to 45 kHz, and the electrophysiological responses were received through gold disc electrodes in rubber suction cups. The behavioral data were reliable and repeatable, with the region of best sensitivity between 16 and 24 kHz and peak sensitivity at 20 kHz. The AEP audiograms produced thresholds that were also consistent over time, with range of best sensitivity from 16 to 22.5 kHz and peak sensitivity at 22.5 kHz. Behavioral thresholds were always lower than AEP thresholds. However, AEP audiograms were completed in a shorter amount of time with minimum participation from the animal. These data indicated that behavioral and AEP techniques can be used successfully and interchangeably to measure cetacean hearing sensitivity.

  11. Cholinergic gating of hippocampal auditory evoked potentials in freely moving rats.

    PubMed

    Klinkenberg, Inge; Sambeth, Anke; Blokland, Arjan

    2013-08-01

    As perturbations in auditory filtering appear to be a candidate trait marker of schizophrenia, there has been considerable interest in the development of translational rat models to elucidate the underlying neural and neurochemical mechanisms involved in sensory gating. This is the first study to investigate the effects of the non-selective muscarinic antagonist scopolamine, the muscarinic M1 antagonist biperiden and the cholinesterase inhibitor donepezil (also in combination with scopolamine and biperiden) on auditory evoked potentials (AEPs) and sensory gating. In the saline condition, only the N50 peak displayed sensory gating. Scopolamine and biperiden both disrupted sensory gating by increasing N50 amplitude for the S2 click. Donepezil was able to fully reverse the effects of biperiden on N50 sensory gating, but had residual effects when combined with scopolamine; i.e., it enhanced sensory gating by increasing N50 amplitude of the S1 stimulus. Donepezil by itself improved sensory gating by enhancing N50 amplitude of S1, and reducing N50 amplitude of the S2 click. In conclusion, due to its relatively more selective effects biperiden is to be preferred over scopolamine as a means for pharmacologically inducing cholinergic impairments in auditory processing in healthy rats. Changes in auditory processing and sensory gating induced by cholinergic drugs may serve as a translational model for aging instead of schizophrenia.

  12. A novel model incorporating two variability sources for describing motor evoked potentials

    PubMed Central

    Goetz, Stefan M.; Luber, Bruce; Lisanby, Sarah H.; Peterchev, Angel V.

    2014-01-01

    Objective Motor evoked potentials (MEPs) play a pivotal role in transcranial magnetic stimulation (TMS), e.g., for determining the motor threshold and probing cortical excitability. Sampled across the range of stimulation strengths, MEPs outline an input–output (IO) curve, which is often used to characterize the corticospinal tract. More detailed understanding of the signal generation and variability of MEPs would provide insight into the underlying physiology and aid correct statistical treatment of MEP data. Methods A novel regression model is tested using measured IO data of twelve subjects. The model splits MEP variability into two independent contributions, acting on both sides of a strong sigmoidal nonlinearity that represents neural recruitment. Traditional sigmoidal regression with a single variability source after the nonlinearity is used for comparison. Results The distribution of MEP amplitudes varied across different stimulation strengths, violating statistical assumptions in traditional regression models. In contrast to the conventional regression model, the dual variability source model better described the IO characteristics including phenomena such as changing distribution spread and skewness along the IO curve. Conclusions MEP variability is best described by two sources that most likely separate variability in the initial excitation process from effects occurring later on. The new model enables more accurate and sensitive estimation of the IO curve characteristics, enhancing its power as a detection tool, and may apply to other brain stimulation modalities. Furthermore, it extracts new information from the IO data concerning the neural variability—information that has previously been treated as noise. PMID:24794287

  13. Clinical evoked potentials in neurology: a review of techniques and indications.

    PubMed

    Lascano, Agustina M; Lalive, Patrice H; Hardmeier, Martin; Fuhr, Peter; Seeck, Margitta

    2017-02-24

    Evoked potentials (EPs) are a powerful and cost-effective tool for evaluating the integrity and function of the central nervous system. Although imaging techniques, such as MRI, have recently become increasingly important in the diagnosis of neurological diseases, over the past 30 years, many neurologists have continued to employ EPs in specific clinical applications. This review presents an overview of the recent evolution of 'classical' clinical applications of EPs in terms of early diagnosis and disease monitoring and is an extension of a previous review published in this journal in 2005 by Walsh and collaborators. We also provide an update on emerging EPs based on gustatory, olfactory and pain stimulation that may be used as clinically relevant markers of neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease and cortical or peripheral impaired pain perception. EPs based on multichannel electroencephalography recordings, known as high-density EPs, help to better differentiate between healthy subjects and patients and, moreover, they provide valuable spatial information regarding the site of the lesion. EPs are reliable disease-progression biomarkers of several neurological diseases, such as multiple sclerosis and other demyelinating disorders. Overall, EPs are excellent neurophysiological tools that will expand standard clinical practice in modern neurology.

  14. Amphibious auditory evoked potentials in four North American Testudines genera spanning the aquatic-terrestrial spectrum.

    PubMed

    Zeyl, Jeffrey N; Johnston, Carol E

    2015-10-01

    Animals exhibit unique hearing adaptations in relation to the habitat media in which they reside. This study was a comparative analysis of auditory specialization in relation to habitat medium in Testudines, a taxon that includes both highly aquatic and fully terrestrial members. Evoked potential audiograms were collected in four species groups representing diversity along the aquatic-terrestrial spectrum: terrestrial and fossorial Gopherus polyphemus, terrestrial Terrapene carolina carolina, and aquatic Trachemys scripta and Sternotherus (S. odoratus and S. minor). Additionally, underwater sensitivity was tested in T. c. carolina, T. scripta, and Sternotherus with tympana submerged just below the water surface. In aerial audiograms, T. c. carolina were most sensitive, with thresholds 18 dB lower than Sternotherus. At 100-300 Hz, thresholds in T. c. carolina, G. polyphemus, and T. scripta were similar to each other. At 400-800 Hz, G. polyphemus thresholds were elevated to 11 dB above T. c. carolina. The underwater audiograms of T. c. carolina, T. scripta, and Sternotherus were similar. The results suggest aerial hearing adaptations in emydids and high-frequency hearing loss associated with seismic vibration detection in G. polyphemus. The underwater audiogram of T. c. carolina could reflect retention of ancestral aquatic auditory function.

  15. Cognitive processing effects on auditory event-related potentials and the evoked cardiac response.

    PubMed

    Lawrence, Carlie A; Barry, Robert J

    2010-11-01

    The phasic evoked cardiac response (ECR) produced by innocuous stimuli requiring cognitive processing may be described as the sum of two independent response components. An initial heart rate (HR) deceleration (ECR1), and a slightly later HR acceleration (ECR2), have been hypothesised to reflect stimulus registration and cognitive processing load, respectively. This study investigated the effects of processing load in the ECR and the event-related potential, in an attempt to find similarities between measures found important in the autonomic orienting reflex context and ERP literature. We examined the effects of cognitive load within-subjects, using a long inter-stimulus interval (ISI) ANS-style paradigm. Subjects (N=40) were presented with 30-35 80dB, 1000Hz tones with a variable long ISI (7-9s), and required to silently count, or allowed to ignore, the tone in two counterbalanced stimulus blocks. The ECR showed a significant effect of counting, allowing separation of the two ECR components by subtracting the NoCount from the Count condition. The auditory ERP showed the expected obligatory processing effects in the N1, and substantial effects of cognitive load in the late positive complex (LPC). These data offer support for ANS-CNS connections worth pursuing further in future work.

  16. What Do TMS-Evoked Motor Potentials Tell Us About Motor Learning?

    PubMed

    Carson, Richard G; Ruddy, Kathy L; McNickle, Emmet

    2016-01-01

    Thirty years ago, the first magnetic device capable of stimulating the human brain without discomfort through the intact skull was unveiled in Sheffield, England (Barker et al. in Lancet 1:1106-1107, 1985). Since that time, transcranial magnetic stimulation (TMS) has become the tool of choice for many scientists investigating human motor control and learning. In light of the fact that there are limits to the information that can be provided by any experimental technique, we first make the case that the necessarily restricted explanatory scope of the TMS technique-and the motor-evoked potentials to which it gives rise, is not yet reflected adequately in the research literature. We also argue that this inattention, coupled with the pervasive adoption of TMS as an investigative tool, may be restricting the elaboration of knowledge concerning the neural processes that mediate human motor learning. In order to make these points, we use as an exemplar the study of cross-education-the interlimb transfer of functional capacity.

  17. Effects of caffeine on visual evoked potential (P300) and neuromotor performance.

    PubMed

    Deslandes, Andréa Camaz; Veiga, Heloisa; Cagy, Maurício; Piedade, Roberto; Pompeu, Fernando; Ribeiro, Pedro

    2004-06-01

    The stimulant effects of caffeine on cognitive performance have been widely investigated. The visual evoked potential, specially the P300 component, has been used in studies that explain the stimulant mechanisms of caffeine through neurophysiological methods. In this context, the present study aimed to investigate electrophysiological changes (P300 latency) and modification of cognitive and motor performance produced by caffeine. Fifteen healthy volunteers, 9 women and 6 men (26 +/- 5 years, 67 +/- 12.5 kg) were submitted three times to the following procedure: electroencefalographic recording, Word Color Stroop Test, and visual discrimination task. Subjects took a gelatin caffeine capsule (400 mg) or a placebo (P1 and P2), in a randomized, crossover, double-blind design. A one-factor ANOVA and Tukey post hoc test were used to compare dependent variables on the C, P1 and P2 moments. The statistical analyses indicated a non-significant decrease in reaction time, Stroop execution time and latency at Cz on the caffeine moment when compared to the others. Moreover, a non-significant increase in Stroop raw score and latency at Pz could be observed. The only significant result was found at Fz. These findings suggest that the positive tendency of caffeine to improve cognitive performance is probably associated with changes in the frontal cortex, a widely recognized attention area.

  18. Latency of auditory evoked potential monitoring the effects of general anesthetics on nerve fibers and synapses.

    PubMed

    Huang, Bowan; Liang, Feixue; Zhong, Lei; Lin, Minlin; Yang, Juan; Yan, Linqing; Xiao, Jinfan; Xiao, Zhongju

    2015-08-06

    Auditory evoked potential (AEP) is an effective index for the effects of general anesthetics. However, it's unknown if AEP can differentiate the effects of general anesthetics on nerve fibers and synapses. Presently, we investigated AEP latency and amplitude changes to different acoustic intensities during pentobarbital anesthesia. Latency more regularly changed than amplitude during anesthesia. AEP Latency monotonically decreased with acoustic intensity increase (i.e., latency-intensity curve) and could be fitted to an exponential decay equation, which showed two components, the theoretical minimum latency and stimulus-dependent delay. From the latency-intensity curves, the changes of these two components (∆L and ∆I) were extracted during anesthesia. ∆L and ∆I monitored the effect of pentobarbital on nerve fibers and synapses. Pentobarbital can induce anesthesia, and two side effects, hypoxemia and hypothermia. The hypoxemia was not related with ∆L and ∆I. However, ∆L was changed by the hypothermia, whereas ∆I was changed by the hypothermia and anesthesia. Therefore, we conclude that, AEP latency is superior to amplitude for the effects of general anesthetics, ∆L monitors the effect of hypothermia on nerve fibers, and ∆I monitors a combined effect of anesthesia and hypothermia on synapses. When eliminating the temperature factor, ∆I monitors the anesthesia effect on synapses.

  19. Ocular vestibular evoked myogenic potentials to air conduction (AC oVEMP): useful in clinical practice?

    PubMed

    Walther, L E; Rogowski, M; Hörmann, K; Schaaf, H; Löhler, J

    2011-01-01

    Cervical vestibular-evoked myogenic potential (cVEMP) and ocular VEMP (oVEMP) stimuli can be used to measure otolith function using air (AC) and bone conducted (BC) stimuli. Cervical VEMPs reflect saccular function and can be recorded using air conduction (AC), whereas oVEMPs reflect probably predominantly utricular function. Air- and bone-conducted vibration can be used, because AC oVEMP methodology seems to be fast and simple in clinical practice to measure otolith function. In this study we discuss the advantages and problems of AC oVEMP stimulation. AC oVEMP can be easily and quickly obtained within a few seconds. N10 (first negative peak) and p15 (first positive peak) latencies may be used as parameters for clinical interpretation but amplitude fluctuations are relatively large. For daily clinical use of VEMP visualization in a normogram seems feasible. Especially the AC oVEMP methodology (100 dB nHL, tone burst 500 Hz) is fast and efficient in clinical practice to measure otolith function, predominantly utricular function.

  20. Prediction of visual evoked potentials at any surface location from a set of three recording electrodes.

    PubMed

    Mazinani, Babac A E; Waberski, Till D; van Ooyen, Andre; Walter, Peter

    2008-05-01

    Purpose of this study was to introduce a mathematical model which allows the calculation of a source dipole as the origin of the evoked activity based on the data of three simultaneously recorded VEPs from different locations at the scalp surface to predict field potentials at any neighboring location and to validate this model by comparison with actual recordings. In 10 healthy subjects (25-38, mean 29 years) continuous VEPs were recorded via 96 channels. On the base of the recordings at the positions POz', O1' and O2', a source dipole vector was calculated for each time point of the recordings and VEP responses were back projected for any of the 96 electrode positions. Differences between the calculated and the actually recorded responses were quantified by coefficients of variation (CV). The prediction precision and response size depended on the distance between the electrode of the predicted response and the recording electrodes. After compensating this relationship using a polynomial function, the CV of the mean difference between calculated and recorded responses of the 10 subjects was 2.8 +/- 1.2%. In conclusion, the "Mini-Brainmapping" model can provide precise topographical information with minimal additional recording efforts with good reliability. The implementation of this method in a routine diagnostic setting as an "easy-to-do" procedure would allow to examine a large number of patients and normal subjects in a short time, and thus, a solid data base could be created to correlate well defined pathologies with topographical VEP changes.

  1. Enhancing detection of steady-state visual evoked potentials using individual training data.

    PubMed

    Wang, Yijun; Nakanishi, Masaki; Wang, Yu-Te; Jung, Tzyy-Ping

    2014-01-01

    Although the performance of steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) has improved gradually in the past decades, it still does not meet the requirement of a high communication speed in many applications. A major challenge is the interference of spontaneous background EEG activities in discriminating SSVEPs. An SSVEP BCI using frequency coding typically does not have a calibration procedure since the frequency of SSVEPs can be recognized by power spectrum density analysis (PSDA). However, the detection rate can be deteriorated by the spontaneous EEG activities within the same frequency range because phase information of SSVEPs is ignored in frequency detection. To address this problem, this study proposed to incorporate individual SSVEP training data into canonical correlation analysis (CCA) to improve the frequency detection of SSVEPs. An eight-class SSVEP dataset recorded from 10 subjects in a simulated online BCI experiment was used for performance evaluation. Compared to the standard CCA method, the proposed method obtained significantly improved detection accuracy (95.2% vs. 88.4%, p<0.05) and information transfer rates (ITR) (104.6 bits/min vs. 89.1 bits/min, p<0.05). The results suggest that the employment of individual SSVEP training data can significantly improve the detection rate and thereby facilitate the implementation of a high-speed BCI.

  2. Continuous- and discrete-time stimulus sequences for high stimulus rate paradigm in evoked potential studies.

    PubMed

    Wang, Tao; Huang, Jiang-hua; Lin, Lin; Zhan, Chang'an A

    2013-01-01

    To obtain reliable transient auditory evoked potentials (AEPs) from EEGs recorded using high stimulus rate (HSR) paradigm, it is critical to design the stimulus sequences of appropriate frequency properties. Traditionally, the individual stimulus events in a stimulus sequence occur only at discrete time points dependent on the sampling frequency of the recording system and the duration of stimulus sequence. This dependency likely causes the implementation of suboptimal stimulus sequences, sacrificing the reliability of resulting AEPs. In this paper, we explicate the use of continuous-time stimulus sequence for HSR paradigm, which is independent of the discrete electroencephalogram (EEG) recording system. We employ simulation studies to examine the applicability of the continuous-time stimulus sequences and the impacts of sampling frequency on AEPs in traditional studies using discrete-time design. Results from these studies show that the continuous-time sequences can offer better frequency properties and improve the reliability of recovered AEPs. Furthermore, we find that the errors in the recovered AEPs depend critically on the sampling frequencies of experimental systems, and their relationship can be fitted using a reciprocal function. As such, our study contributes to the literature by demonstrating the applicability and advantages of continuous-time stimulus sequences for HSR paradigm and by revealing the relationship between the reliability of AEPs and sampling frequencies of the experimental systems when discrete-time stimulus sequences are used in traditional manner for the HSR paradigm.

  3. New Approach for Exploring Cerebral Functional Connectivity: Review of Cortico-cortical Evoked Potential

    PubMed Central

    KUNIEDA, Takeharu; YAMAO, Yukihiro; KIKUCHI, Takayuki; MATSUMOTO, Riki

    2015-01-01

    There has been a paradigm shift in the understanding of brain function. The intrinsic architecture of neuronal connections forms a key component of the cortical organization in our brain. Many imaging studies, such as noninvasive magnetic resonance imaging (MRI) studies, have now enabled visualization of the white matter fiber tracts interconnecting the functional cortical areas in the living brain. Although such a structural connectome is essential for understanding of cortical function, the anatomical information alone is not sufficient. Practically, few techniques allow the investigation of the excitatory and inhibitory mechanisms of the cortex in vivo in humans. Several attempts have been made to track neuronal connectivity by applying direct electrical stimuli to the brain in order to stimulate subdural and/or depth electrodes and record responses from the functionally connected cortex. In vivo single-pulse electrical stimulation (SPES) and/or cortico-cortical evoked potential (CCEP) were recently introduced to track various brain networks. This article reviews the concepts, significance, methods, mechanisms, limitations, and clinical applications of CCEP in the analysis of these dynamic connections. PMID:25925755

  4. Intraoperative neurophysiological monitoring of somatosensory evoked potentials during hip arthroscopy surgery.

    PubMed

    Ochs, Barbara C; Herzka, Andrea; Yaylali, Ilker

    2012-12-01

    Arthroscopic hip surgery is used to treat many of the causes of hip pain, hip instability, and hip disorders. Hip pain and instability are often caused by injuries to the acetabular labrum. Repairing labral tears, suturing, and debridement involve stabilizing the hip and placing the operative side leg in traction (Phillipon 2006, Phillipon and Schenker 2006) to allow for instrument clearance and to avoid iatrogenic injury to the chondral surfaces. This places the sciatic nerve in a stretched position and may cause temporary or permanent nerve injury. Transient neuropraxia is the most common injury occurring in 5% of the patients undergoing arthroscopic hip surgery (McCarthy and Lee 2006). 35 patients; 24 women and 11 men, (a total of 36 surgeries) were monitored with intraoperative neurophysiological monitoring using somatosensory evoked potentials (SSEPs) during hip arthroscopy for labral repair and femoral head osteoplasty. They ranged in age from 15 to 59 years; mean age: 39.81 years. During surgery 19 (54%) patients experienced significant SSEP waveform changes. Time from placement of traction to loss of signals in those patients experiencing SSEP changes ranged from 7 minutes to 46 minutes. Recovery of SSEP signals ranged from 2 minutes to over 15 minutes when the traction of the leg was released. Surgeries ranged from 2 to 4 hours; mean: 2.78 hours. These findings show that neuromonitoring during hip arthroscopic labral repair and debridement procedures might be useful to prevent temporary and permanent neural tissue injuries.

  5. Skill-specific changes in somatosensory-evoked potentials and reaction times in baseball players.

    PubMed

    Yamashiro, Koya; Sato, Daisuke; Onishi, Hideaki; Yoshida, Takuya; Horiuchi, Yoko; Nakazawa, Sho; Maruyama, Atsuo

    2013-03-01

    Athletic training is known to induce neuroplastic alterations in specific somatosensory circuits, which are reflected by changes in short-latency somatosensory-evoked potentials (SEPs). The aim of this study is to clarify whether specific training in athletes affects the long-latency SEPs related to information processing of stimulation. The long-latency SEPs P100 and N140 were recorded at midline cortical electrode positions (Fz, Cz, and Pz) in response to stimulation of the index finger of the dominant hand in fifteen baseball players (baseball group) and in fifteen athletes in sports such as swimming, track and field events, and soccer (sports group) that do not require fine somatosensory discrimination or motor control of the hand. The long-latency SEPs were measured under a passive condition (no response required) and a reaction time (RT) condition in which subjects were instructed to rapidly push a button in response to stimulus presentation. The peak P100 and peak N140 latencies and RT were significantly shorter in the baseball group than the sports group. Moreover, there were significant positive correlations between RT and both the peak P100 and the peak N140 latencies. Specific athletic training regimens that involve the hand may induce neuroplastic alterations in the cortical hand representation areas playing a vital role in rapid sensory processing and initiation of motor responses.

  6. Quantifying interhemispheric symmetry of somatosensory evoked potentials with the intraclass correlation coefficient.

    PubMed

    van de Wassenberg, Wilma J G; van der Hoeven, Johannes H; Leenders, Klaus L; Maurits, Natasha M

    2008-06-01

    Although large intersubject variability is reported for cortical somatosensory evoked potentials (SEPs), variability between hemispheres within one subject is thought to be small. Therefore, interhemispheric comparison of SEP waveforms might be clinically useful to detect unilateral abnormalities in cortical sensory processing. We developed and evaluated a new technique to quantify interhemispheric SEP symmetry that uses a time interval including multiple SEP components, measures similarity of SEP waveforms between both hemispheres and results in high symmetry values even in the presence of small interhemispheric anatomic differences. Median nerve SEPs were recorded in 50 healthy subjects (20-70 years) using 128-channel EEG. Symmetry was quantified by the intraclass correlation coefficient and correlation coefficient between global field power of left and right median nerve SEPs. In 74% of subjects left-right intraclass correlation coefficient was higher than 0.60, implying high SEP hemispheric symmetry in terms of shape and amplitude. Left-right intraclass correlation coefficients lower than 0.60 were due to differences in amplitude, unilateral absence of peaks, or shape differences. We quantified SEP waveform interhemispheric symmetry and found it to be high in most healthy subjects. This technique may therefore be useful for detection of unilateral abnormalities in cortical sensory processing.

  7. Saccular function in otosclerosis patients: bone conducted-vestibular evoked myogenic potential analysis.

    PubMed

    Amali, Amin; Mahdi, Parvane; Karimi Yazdi, Alireza; Khorsandi Ashtiyani, Mohammad Taghi; Yazdani, Nasrin; Vakili, Varasteh; Pourbakht, Akram

    2014-01-01

    Vestibular involvements have long been observed in otosclerotic patients. Among vestibular structures saccule has the closest anatomical proximity to the sclerotic foci, so it is the most prone vestibular structure to be affected during the otosclerosis process. The aim of this study was to investigate the saccular function in patients suffering from otosclerosis, by means of Vestibular Evoked Myogenic Potential (VEMP). The material consisted of 30 otosclerosis patients and 20 control subjects. All participants underwent audiometric and VEMP testing. Analysis of tests results revealed that the mean values of Air-Conducted Pure Tone Average (AC-PTA) and Bone-Conducted Pure Tone Average (BC-PTA) in patients were 45.28 ± 15.57 and 19.68 ± 10.91, respectively and calculated 4 frequencies Air Bone Gap (ABG) was 25.64 ± 9.95. The VEMP response was absent in 14 (28.57%) otosclerotic ears. A statistically significant increase in latency of the p13 was found in the affected ears (P=0.004), differences in n23 latency did not reach a statistically significant level (P=0.112). Disparities in amplitude of p13-n23 in between two study groups was statistically meaningful (P=0.009), indicating that the patients with otosclerosis had lower amplitudes. This study tends to suggest that due to the direct biotoxic effect of the materials released from the otosclerosis foci on saccular receptors, there might be a possibility of vestibular dysfunction in otosclerotic patients.

  8. Dolphin hearing during echolocation: evoked potential responses in an Atlantic bottlenose dolphin (Tursiops truncatus).

    PubMed

    Li, Songhai; Nachtigall, Paul E; Breese, Marlee

    2011-06-15

    Auditory evoked potential (AEP) responses were recorded during echolocation in an Atlantic bottlenose dolphin (Tursiops truncatus) trained to accept suction-cup EEG electrodes and detect targets by echolocation. AEP recording was triggered by the echolocation clicks of the animal. Three targets with target strengths of -34, -28 and -22 dB were used at a target distance of 2 to 6.5 m for each target. The results demonstrated that the AEP appeared to both outgoing echolocation clicks and echoes during echolocation, with AEP complexes consisting of alternative positive and negative waves. The echo-related AEP amplitudes were obviously lower than the outgoing click-related AEP amplitudes for all the targets at the investigated target distances. However, for targets with target strengths of -22 and -28 dB, the peak-to-peak amplitudes of the echo-related AEPs were dependent on the target distances. The echo-related AEP response amplitudes increased at further target distances, demonstrating an overcompensation of echo attenuation with target distance in the echo-perception system of the dolphin biosonar. Measurement and analysis of outgoing click intensities showed that the click levels increased with target distance (R) by a factor of approximately 10 to 17.5 logR depending on target strength. The results demonstrated that a dual-component biosonar control system formed by intensity compensation behavior in both the transmission and receiving phases of a biosonar cycle exists synchronously in the dolphin biosonar system.

  9. A comparison of commercial auditory evoked potential units: the midpriced and luxury units.

    PubMed

    Ferraro, J A; Ruth, R R

    1990-05-01

    This report represents the second of two providing a consumer-oriented comparison of commercially available auditory evoked potential units. The units compared here were those whose basic price was between $10,000-$30,000 ("midpriced"), and greater than $30,000 ("luxury"). The midpriced group included the Amplaid MK15, Bio-Logic Navigator and Traveler LT, Cadwell 5200A and Quantum 84, GSI-50, Nicolet CA-2000 and Compact Auditory, Nihon-Kohden Neuropak IV Mini, Madsen ERA2250, Siegen (Dantec) Neuroscope, and Tracor Nomad. The luxury units comprised the Bio-Logic Brain Atlas, Cadwell Spectrum 32 and Nicolet Pathfinder. Descriptive information and the names and addresses of users were solicited from the manufacturers for each of the above units. Questionnaires were sent to the users asking them for information on how their unit was used and to rate some of its features. The midpriced and luxury units offer more flexibility and options than less expensive (i.e., "economy") units. However, the basis for a given unit's price versus another's was not always apparent by a comparison of features or options. In general, users of the midpriced and luxury units rated the majority of their instruments' features highly. The lowest ratings were received for some aspect of the printer or print-out, and portability.

  10. Brain evoked potentials to noxious sural nerve stimulation in sciatalgic patients.

    PubMed

    Willer, J C; De Broucker, T; Barranquero, A; Kahn, M F

    1987-07-01

    In sciatalgic patients and before any treatment, the goal of this work was to compare the amplitude of the late component (N150-P220) of the brain evoked potential (BEP) between resting pain-free conditions and a neurological induced pain produced by the Lasègue manoeuvre. The study was carried out with 8 inpatients affected with a unilateral sciatica resulting from an X-ray identified dorsal root compression from discal origin. The sural nerve was electrically stimulated at the ankle level while BEPs were recorded monopolarly from the vertex. The stimulus intensity eliciting a liminal nociceptive reflex response in a knee-flexor muscle associated with a liminal pain was selected for this study. Both normal and affected side were alternatively stimulated during several conditions of controls and of Lasègue's manoeuvres performed on the normal and on the affected side. Results show that the Lasègue manoeuvre performed on the affected side induced a significant increase in the amplitude of N150-P220; performed on the normal side, this same manoeuvre resulted in a significant decrease of the N150-P220 amplitude. These variations were observed whatever was the side (normal or affected) under sural nerve stimulation. The possible neural mechanisms of these changes and clinical implications of these data are then discussed.

  11. Recovery function of the human brain stem auditory-evoked potential.

    PubMed

    Kevanishvili, Z; Lagidze, Z

    1979-01-01

    Amplitude reduction and peak latency prolongation were observed in the human brain stem auditory-evoked potential (BEP) with preceding (conditioning) stimulation. At a conditioning interval (CI) of 5 ms the alteration of BEP was greater than at a CI of 10 ms. At a CI of 10 ms the amplitudes of some BEP components (e.g. waves I and II) were more decreased than those of others (e.g. wave V), while the peak latency prolongation did not show any obvious component selectivity. At a CI of 5 ms, the extent of the amplitude decrement of individual BEP components differed less, while the increase in the peak latencies of the later components was greater than that of the earlier components. The alterations of the parameters of the test BEPs at both CIs are ascribed to the desynchronization of intrinsic neural events. The differential amplitude reduction at a CI of 10 ms is explained by the different durations of neural firings determining various effects of desynchronization upon the amplitudes of individual BEP components. The decrease in the extent of the component selectivity and the preferential increase in the peak latencies of the later BEP components observed at a CI of 5 ms are explained by the intensification of the mechanism of the relative refractory period.

  12. Auditory evoked potentials (AEP) methods for population-level assessment of hearing sensitivity in bottlenose dolphins

    NASA Astrophysics Data System (ADS)

    Houser, Dorian; Finneran, James

    2005-04-01

    A portable system for recording auditory evoked potentials (AEP) was developed to rapidly assess the hearing sensitivity of dolphins in air. The system utilizes a transducer embedded in a silicone suction cup to deliver amplitude modulated tones to the dolphin through the lower jaw. Frequencies tested range from 10-150 kHz and testing of both ears is completed within 90 min. AEP-determined thresholds from one subject were benchmarked against that subject's direct field behavioral audiogram to quantify variation between the two methods. To date, AEP audiograms have been obtained from over 30 bottlenose dolphins. Considerable individual variation in frequency-specific hearing sensitivity was observed. Some high-frequency hearing loss was observed in relatively young (early 20s) and old (35+ years) animals; conversely, age was not necessarily related to hearing loss as several animals greater than 40 years of age had good hearing sensitivity across the range of tested frequencies. Profound hearing loss typically occurred at higher frequencies. Decline in sensitivity was rapid in all cases and began between 50-60 kHz. Increased sample size of hearing sensitivity in dolphins suggest that the use of audiometric functions from single animals as representative of population level audiometry might be misleading.

  13. Behavioral and auditory evoked potential audiograms of a false killer whale (Pseudorca crassidens)

    NASA Astrophysics Data System (ADS)

    Yuen, Michelle M. L.; Nachtigall, Paul E.; Breese, Marlee; Supin, Alexander Ya.

    2005-10-01

    Behavioral and auditory evoked potential (AEP) audiograms of a false killer whale were measured using the same subject and experimental conditions. The objective was to compare and assess the correspondence of auditory thresholds collected by behavioral and electrophysiological techniques. Behavioral audiograms used 3-s pure-tone stimuli from 4 to 45 kHz, and were conducted with a go/no-go modified staircase procedure. AEP audiograms used 20-ms sinusoidally amplitude-modulated tone bursts from 4 to 45 kHz, and the electrophysiological responses were received through gold disc electrodes in rubber suction cups. The behavioral data were reliable and repeatable, with the region of best sensitivity between 16 and 24 kHz and peak sensitivity at 20 kHz. The AEP audiograms produced thresholds that were also consistent over time, with range of best sensitivity from 16 to 22.5 kHz and peak sensitivity at 22.5 kHz. Behavioral thresholds were always lower than AEP thresholds. However, AEP audiograms were completed in a shorter amount of time with minimum participation from the animal. These data indicated that behavioral and AEP techniques can be used successfully and interchangeably to measure cetacean hearing sensitivity.

  14. Toward brain-computer interface based wheelchair control utilizing tactually-evoked event-related potentials

    PubMed Central

    2014-01-01

    Background People with severe disabilities, e.g. due to neurodegenerative disease, depend on technology that allows for accurate wheelchair control. For those who cannot operate a wheelchair with a joystick, brain-computer interfaces (BCI) may offer a valuable option. Technology depending on visual or auditory input may not be feasible as these modalities are dedicated to processing of environmental stimuli (e.g. recognition of obstacles, ambient noise). Herein we thus validated the feasibility of a BCI based on tactually-evoked event-related potentials (ERP) for wheelchair control. Furthermore, we investigated use of a dynamic stopping method to improve speed of the tactile BCI system. Methods Positions of four tactile stimulators represented navigation directions (left thigh: move left; right thigh: move right; abdomen: move forward; lower neck: move backward) and N = 15 participants delivered navigation commands by focusing their attention on the desired tactile stimulus in an oddball-paradigm. Results Participants navigated a virtual wheelchair through a building and eleven participants successfully completed the task of reaching 4 checkpoints in the building. The virtual wheelchair was equipped with simulated shared-control sensors (collision avoidance), yet these sensors were rarely needed. Conclusion We conclude that most participants achieved tactile ERP-BCI control sufficient to reliably operate a wheelchair and dynamic stopping was of high value for tactile ERP classification. Finally, this paper discusses feasibility of tactile ERPs for BCI based wheelchair control. PMID:24428900

  15. A lower limb exoskeleton control system based on steady state visual evoked potentials

    NASA Astrophysics Data System (ADS)

    Kwak, No-Sang; Müller, Klaus-Robert; Lee, Seong-Whan

    2015-10-01

    Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Main results. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 ± 5.73%, a response time of 3.28 ± 1.82 s, an information transfer rate of 32.9 ± 9.13 bits/min, and a completion time of 1100 ± 154.92 s for the experimental parcour studied. Significance. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.

  16. Test-retest reliability of infant event related potentials evoked by faces.

    PubMed

    Munsters, N M; van Ravenswaaij, H; van den Boomen, C; Kemner, C

    2017-04-05

    Reliable measures are required to draw meaningful conclusions regarding developmental changes in longitudinal studies. Little is known, however, about the test-retest reliability of face-sensitive event related potentials (ERPs), a frequently used neural measure in infants. The aim of the current study is to investigate the test-retest reliability of ERPs typically evoked by faces in 9-10 month-old infants. The infants (N=31) were presented with neutral, fearful and happy faces that contained only the lower or higher spatial frequency information. They were tested twice within two weeks. The present results show that the test-retest reliability of the face-sensitive ERP components is moderate (P400 and Nc) to substantial (N290). However, there is low test-retest reliability for the effects of the specific experimental manipulations (i.e. emotion and spatial frequency) on the face-sensitive ERPs. To conclude, in infants the face-sensitive ERP components (i.e. N290, P400 and Nc) show adequate test-retest reliability, but not the effects of emotion and spatial frequency on these ERP components. We propose that further research focuses on investigating elements that might increase the test-retest reliability, as adequate test-retest reliability is necessary to draw meaningful conclusions on individual developmental trajectories of the face-sensitive ERPs in infants.

  17. Continuous- and Discrete-Time Stimulus Sequences for High Stimulus Rate Paradigm in Evoked Potential Studies

    PubMed Central

    Wang, Tao; Huang, Jiang-hua; Lin, Lin

    2013-01-01

    To obtain reliable transient auditory evoked potentials (AEPs) from EEGs recorded using high stimulus rate (HSR) paradigm, it is critical to design the stimulus sequences of appropriate frequency properties. Traditionally, the individual stimulus events in a stimulus sequence occur only at discrete time points dependent on the sampling frequency of the recording system and the duration of stimulus sequence. This dependency likely causes the implementation of suboptimal stimulus sequences, sacrificing the reliability of resulting AEPs. In this paper, we explicate the use of continuous-time stimulus sequence for HSR paradigm, which is independent of the discrete electroencephalogram (EEG) recording system. We employ simulation studies to examine the applicability of the continuous-time stimulus sequences and the impacts of sampling frequency on AEPs in traditional studies using discrete-time design. Results from these studies show that the continuous-time sequences can offer better frequency properties and improve the reliability of recovered AEPs. Furthermore, we find that the errors in the recovered AEPs depend critically on the sampling frequencies of experimental systems, and their relationship can be fitted using a reciprocal function. As such, our study contributes to the literature by demonstrating the applicability and advantages of continuous-time stimulus sequences for HSR paradigm and by revealing the relationship between the reliability of AEPs and sampling frequencies of the experimental systems when discrete-time stimulus sequences are used in traditional manner for the HSR paradigm. PMID:23606900

  18. Dominant Eye and Visual Evoked Potential of Patients with Myopic Anisometropia.

    PubMed

    Wang, Qing; Wu, Yili; Liu, Wenwen; Gao, Lin

    2016-01-01

    A prospective nonrandomized controlled study was conducted to explore the association between ocular dominance and degree of myopia in patients with anisometropia and to investigate the character of visual evoked potential (VEP) in high anisometropias. 1771 young myopia cases including 790 anisometropias were recruited. We found no significant relation between ocular dominance and spherical equivalent (SE) refraction in all subjects. On average for subjects with anisometropia 1.0-1.75 D, there was no significant difference in SE power between dominant and nondominant eyes, while, in SE anisometropia ≥1.75 D group, the degree of myopia was significantly higher in nondominant eyes than in dominant eyes. The trend was more significant in SE anisometropia ≥2.5 D group. There was no significant difference in higher-order aberrations between dominant eye and nondominant eye either in the whole study candidates or in any anisometropia groups. In anisometropias >2.0 D, the N75 latency of nondominant eye was longer than that of dominant eye. Our results suggested that, with the increase of anisometropia, nondominant eye had a tendency of higher refraction and N75 wave latency of nondominant eye was longer than that of dominant eye in high anisometropias.

  19. Do evoked potentials contribute to the functional follow-up and clinical prognosis of multiple sclerosis?

    PubMed

    Giffroy, Xavier; Maes, Nathalie; Albert, Adelin; Maquet, Pierre; Crielaard, Jean-Michel; Dive, Dominique

    2017-03-01

    The clinical variability and complexity of multiple sclerosis (MS) challenges the individual clinical course prognostication. This study aimed to find out whether multimodal evoked potentials (EP) correlate with the motor components of multiple sclerosis functional composite (MSFCm) and predict clinically relevant motor functional deterioration. One hundred MS patients were assessed at baseline (T 0) and about 7.5 years later (T 1), with visual, somatosensory and motor EP and rated on the Expanded Disability Status Scale (EDSS) and the MSFCm, including the 9 Hole Peg Test and the Timed 25 Foot Walk (T25FW). The Spearman correlation coefficient (r S) was used to evaluate the cross-sectional and longitudinal relationship between EP Z scores and clinical findings. The predictive value of baseline electrophysiological data for clinical worsening (EDSS, 9-HPT, T25FW, MSFCm) during follow-up was assessed by logistic regression analysis. Unlike longitudinal correlations, cross-sectional correlations between EP Z scores and clinical outcomes were all significant and ranged between 0.22 and 0.67 (p < 0.05). The global EP Z score was systematically predictive of EDSS and MSFCm worsening over time (all p < 0.05). EP latency was a better predictor than amplitude, although weaker than latency and amplitude aggregation in the global EP Z score. The study demonstrates that EP numerical scores can be used for motor function monitoring and outcome prediction in patients with MS.

  20. Short-term food deprivation increases amplitudes of heartbeat-evoked potentials.

    PubMed

    Schulz, André; Ferreira de Sá, Diana S; Dierolf, Angelika M; Lutz, Annika; van Dyck, Zoé; Vögele, Claus; Schächinger, Hartmut

    2015-05-01

    Nutritional state (i.e., fasting or nonfasting) may affect the processing of interoceptive signals, but mechanisms underlying this effect remain unclear. We investigated 16 healthy women on two separate days: when satiated (standardized food intake) and after an 18-h food deprivation period. On both days, heartbeat-evoked potentials (HEPs) and cardiac and autonomic nervous system activation indices (heart rate, normalized low frequency heart rate variability [nLF HRV]) were assessed. The HEP is an EEG pattern that is considered an index of cortical representation of afferent cardiovascular signals. Average HEP activity (R wave +455-595 ms) was enhanced during food deprivation compared to normal food intake. Cardiac activation did not differ between nutritional conditions. Our results indicate that short-term food deprivation amplifies an electrophysiological correlate of the cortical representation of visceral-afferent signals originating from the cardiovascular system. This effect could not be attributed to increased cardiac activation, as estimated by heart rate and nLF HRV, after food deprivation.

  1. Ketamine-Based Anesthetic Protocols and Evoked Potential Monitoring: A Risk/Benefit Overview

    PubMed Central

    Stoicea, Nicoleta; Versteeg, Gregory; Florescu, Diana; Joseph, Nicholas; Fiorda-Diaz, Juan; Navarrete, Víctor; Bergese, Sergio D.

    2016-01-01

    Since its discovery, ketamine, a non-competitive N-methyl D-aspartate (NMDA) receptor antagonist related to phencyclidine, has been linked to multiple adverse reactions sometimes described as “out of body” and “near death experiences,” including emergence phenomena, delusions, hallucinations, delirium, and confusion. Due to these effects, ketamine has been withdrawn from mainstream anesthetic use in adult patients. Evoked potentials (EPs) are utilized to monitor neural pathways during surgery, detect intraoperative stress or damage, detect and define the level of neural lesions, and define abnormalities. Unfortunately, many of the volatile anesthetics commonly used during spinal and neurologic procedures suppress EP amplitude and monitoring. Ketamine has been found in several preclinical and clinical studies to actually increase EP amplitude and thus has been used as an analgesic adjunct in procedures where EP monitoring is critical. Once the gap in our knowledge of ketamine's risks has been sufficiently addressed in animal models, informed clinical trials should be conducted in order to properly incorporate ketamine-based anesthetic regimens during EP-monitored neurosurgeries. PMID:26909017

  2. Affective touch and attachment style modulate pain: a laser-evoked potentials study

    PubMed Central

    Drabek, Marianne M.; Paloyelis, Yannis; Fotopoulou, Aikaterini

    2016-01-01

    Affective touch and cutaneous pain are two sub-modalities of interoception with contrasting affective qualities (pleasantness/unpleasantness) and social meanings (care/harm), yet their direct relationship has not been investigated. In 50 women, taking into account individual attachment styles, we assessed the role of affective touch and particularly the contribution of the C tactile (CT) system in subjective and electrophysiological responses to noxious skin stimulation, namely N1 and N2-P2 laser-evoked potentials. When pleasant, slow (versus fast) velocity touch was administered to the (non-CT-containing) palm of the hand, higher attachment anxiety predicted increased subjective pain ratings, in the same direction as changes in N2 amplitude. By contrast, when pleasant touch was administered to CT-containing skin of the arm, higher attachment anxiety predicted attenuated N1 and N2 amplitudes. Higher attachment avoidance predicted opposite results. Thus, CT-based affective touch can modulate pain in early and late processing stages (N1 and N2 components), with the direction of effects depending on attachment style. Affective touch not involving the CT system seems to affect predominately the conscious perception of pain, possibly reflecting socio-cognitive factors further up the neurocognitive hierarchy. Affective touch may thus convey information about available social resources and gate pain responses depending on individual expectations of social support. This article is part of the themed issue ‘Interoception beyond homeostasis: affect, cognition and mental health’. PMID:28080967

  3. Eliciting steady-state visual evoked potentials by means of stereoscopic displays

    NASA Astrophysics Data System (ADS)

    Calore, Enrico; Gadia, Davide; Marini, Daniele

    2014-03-01

    Brain-Computer Interfaces (BCIs) provide users communication and control capabilities by analyzing their brain activity. A technique to implement BCIs, used recently also in Virtual Reality (VR) environments, is based on the Steady State Visual Evoked Potentials (SSVEPs) detection. Exploiting the SSVEP response, BCIs could be implemented showing targets flickering at different frequencies and detecting which is gazed by the observer analyzing her/his electroencephalographic (EEG) signals. In this work, we evaluate the use of stereoscopic displays for the presentation of SSVEP eliciting stimuli, comparing their effectiveness between monoscopic and stereoscopic stimuli. Moreover we propose a novel method to elicit SSVEP responses exploiting the stereoscopic displays capability of presenting dichoptic stimuli. We have created an experimental scene to present flickering stimuli on an active stereoscopic display, obtaining reliable control of the targets' frequency independently for the two stereo views. Using an EEG acquisition device, we analyzed the SSVEP responses from a group of subjects. From the preliminary results, we got evidence that stereoscopic displays represent valid devices for the presentation of SSVEP stimuli. Moreover, the use of different flickering frequencies for the two views of a single stimulus proved to elicit non-linear interactions between the stimulation frequencies, clearly visible in the EEG signal. This suggests interesting applications for SSVEP-based BCIs in VR environments able to overcome some limitations imposed by the refresh frequency of standard displays, but also the use of commodity stereoscopic displays to implement binocular rivalry experiments.

  4. Steady-state visually evoked potential correlates of human body perception.

    PubMed

    Giabbiconi, Claire-Marie; Jurilj, Verena; Gruber, Thomas; Vocks, Silja

    2016-11-01

    In cognitive neuroscience, interest in the neuronal basis underlying the processing of human bodies is steadily increasing. Based on functional magnetic resonance imaging studies, it is assumed that the processing of pictures of human bodies is anchored in a network of specialized brain areas comprising the extrastriate and the fusiform body area (EBA, FBA). An alternative to examine the dynamics within these networks is electroencephalography, more specifically so-called steady-state visually evoked potentials (SSVEPs). In SSVEP tasks, a visual stimulus is presented repetitively at a predefined flickering rate and typically elicits a continuous oscillatory brain response at this frequency. This brain response is characterized by an excellent signal-to-noise ratio-a major advantage for source reconstructions. The main goal of present study was to demonstrate the feasibility of this method to study human body perception. To that end, we presented pictures of bodies and contrasted the resulting SSVEPs to two control conditions, i.e., non-objects and pictures of everyday objects (chairs). We found specific SSVEPs amplitude differences between bodies and both control conditions. Source reconstructions localized the SSVEP generators to a network of temporal, occipital and parietal areas. Interestingly, only body perception resulted in activity differences in middle temporal and lateral occipitotemporal areas, most likely reflecting the EBA/FBA.

  5. Visual Evoked Potential Response Among Drug Abusers- A Cross Sectional Study

    PubMed Central

    Sharma, Rajeev; Thapar, Satish; Mittal, Shilekh

    2016-01-01

    Introduction There is important preclinical evidence that substance abuse may produce neurophysiological disturbances particularly in relation to altered neural synchronization in Visual Evoked Potentials (VEP). Aim The purpose of current study was to compare the latencies and amplitudes of different waveforms of VEP among different drug abusers and controls and also to identify early neurological damage so that proper counseling and timely intervention can be undertaken. Materials and Methods VEP was assessed by Data Acquisition and Analysis system in a sample of 58 drug abusers, all males, within age group of 15-45 years as well as in age matched 30 healthy controls. The peak latencies and peak to peak amplitudes of different waveforms were measured by applying one-way Anova test and unpaired t-test using SPSS version 16. Results In between drug abusers and controls, the difference in the duration of N75 and P100 waveform of VEP was found to be statistically highly significant (p<0.001) in both the eyes. Also the amplitude of wave P100 was found to be decreased among drug abusers in both eyes. Conclusion Chronic intoxication by different drugs has been extensively associated with amplitude reduction of P100 and prolonged latency of N75 and P100 reflecting an adverse effects of drug dependence on neural transmission within primary visual areas of brain. PMID:27042456

  6. A MISO-ARX-Based Method for Single-Trial Evoked Potential Extraction

    PubMed Central

    Yu, Nannan; Wu, Lingling; Zou, Dexuan; Chen, Ying

    2017-01-01

    In this paper, we propose a novel method for solving the single-trial evoked potential (EP) estimation problem. In this method, the single-trial EP is considered as a complex containing many components, which may originate from different functional brain sites; these components can be distinguished according to their respective latencies and amplitudes and are extracted simultaneously by multiple-input single-output autoregressive modeling with exogenous input (MISO-ARX). The extraction process is performed in three stages: first, we use a reference EP as a template and decompose it into a set of components, which serve as subtemplates for the remaining steps. Then, a dictionary is constructed with these subtemplates, and EPs are preliminarily extracted by sparse coding in order to roughly estimate the latency of each component. Finally, the single-trial measurement is parametrically modeled by MISO-ARX while characterizing spontaneous electroencephalographic activity as an autoregression model driven by white noise and with each component of the EP modeled by autoregressive-moving-average filtering of the subtemplates. Once optimized, all components of the EP can be extracted. Compared with ARX, our method has greater tracking capabilities of specific components of the EP complex as each component is modeled individually in MISO-ARX. We provide exhaustive experimental results to show the effectiveness and feasibility of our method. PMID:28280739

  7. Visual evoked potentials in migraine patients: alterations depend on pattern spatial frequency.

    PubMed

    Oelkers, R; Grosser, K; Lang, E; Geisslinger, G; Kobal, G; Brune, K; Lötsch, J

    1999-06-01

    Visual information is conducted by two parallel pathways (luminance- and contour-processing pathways) which are thought to be differentially affected in migraine and can be investigated by means of pattern-reversal visual evoked potentials (VEPs). Components and habituation of VEPs at four spatial frequencies were compared between 26 migraineurs (13 without aura, MO; 13 with aura, MA) and 28 healthy volunteers. Migraineurs were recorded in the headache-free interval (at least 72 h before and after an attack). Five blocks of 50 responses to chequerboards of 0.5, 1, 2 and 4 cycles per degree (c.p.d.) were sequentially averaged and analysed for latency and amplitude. Differences in VEPs were dependent on spatial frequency. Only when small checks were presented, i.e. at high spatial frequency (2 and 4 c.p.d.), was the latency of N2 significantly prolonged in MA and did it tend to be delayed in MO subjects. Habituation behaviour was not significantly different between groups under the stimulating conditions employed. Prolonged N2 latency might be explained by the lack or attenuation of a contour-specific component N130 in migraineurs, indicating an imbalance of the two visual pathways with relative predominance of the luminance-processing Y system. These results reflect an interictally persisting dysfunction of precortical visual processing which might be relevant in the pathophysiology of migraine.

  8. Signal to noise ratio analysis of maximum length sequence deconvolution of overlapping evoked potentials.

    PubMed

    Bohórquez, Jorge; Ozdamar, Ozcan

    2006-05-01

    In this study a general formula for the signal to noise ratio (SNR) of the maximum length sequence (MLS) deconvolution averaging is developed using the frequency domain framework of the generalized continuous loop averaging deconvolution procedure [Ozdamar and Bohórquez, J. Acoust. Soc. Am. 119, 429-438 (2006)]. This formulation takes advantage of the well known equivalency of energies in the time and frequency domains (Parseval's theorem) to show that in MLS deconvolution, SNR increases with the square root of half of the number of stimuli in the sweep. This increase is less than that of conventional averaging which is the square root of the number of sweeps averaged. Unlike arbitrary stimulus sequences that can attenuate or amplify phase unlocked noise depending on the frequency characteristics, the MLS deconvolution attenuates noise in all frequencies consistently. Furthermore, MLS and its zero-padded variations present optimal attenuation of noise at all frequencies yet they present a highly jittered stimulus sequence. In real recordings of evoked potentials, the time advantage gained by noise attenuation could be lost by the signal amplitude attenuation due to neural adaptation at high stimulus rates.

  9. Steady-state visually evoked potential topography during the Wisconsin card sorting test.

    PubMed

    Silberstein, R B; Ciorciari, J; Pipingas, A

    1995-01-01

    This paper describes, for the first time, changes in steady-state visually evoked potential (SSVEP) topography associated with the performance of a computerised version of the Wisconsin card sort test (WCS). The SSVEP was recorded from 64 scalp sites and was elicited by a 13 Hz spatially uniform visual flicker presented continuously while 16 subjects performed the WCS. in the WCS, the sort criterion was automatically changed after subjects had sorted 10 cards correctly. Feedback on the 11th card always constituted a cue for a change in the sort criterion. It was found that in the 1-2 sec interval after the occurrence of the cue to change sort criterion, the prefrontal, central and right parieto-temporal regions showed a pronounced attenuation in SSVEP amplitude and an increase in phase lag. These changes, interpreted as an increase in regional cortical activity, are not apparent in the equivalent portions of the WCS when the sort criterion does not need to be changed. These results indicate that the levels of prefrontal and right parieto-temporal activity varied during the performance of the WCS, peaking at the times a change in sort criterion was required.

  10. The effect of stimulus rate upon common peroneal, posterior tibial, and sural nerve somatosensory evoked potentials.

    PubMed

    Onishi, H; Yamada, T; Saito, T; Emori, T; Fuchigami, T; Hasegawa, A; Nagaoka, T; Ross, M

    1991-12-01

    We examined the effect of stimulus rate on somatosensory evoked potentials (SEPs) following stimulation of the common peroneal nerve (CPN) at the knee, and the posterior tibial nerve (PTN) and sural nerve (SN) at the ankle. We measured the amplitude of P40-N50 and N50-P60 in the PTN-SEP and corresponding amplitude of CPN-SEP and SN-SEP at the rate of 2.3, 3.4, 4.1, and 5.1 Hz. When the stimulation rate was increased from 2.3 to 5.1 Hz, the P40-N50 amplitude decreased by 50% for the CPN-SEP and 20% for the PTN-SEP. Also, the N50-P60 amplitude was reduced by 30% in the CPN-SEP and 20% in the PTN-SEP. In contrast, this change in stimulus rate produced no significant amplitude decline in the SN-SEP. Blocking the peroneal nerve with lidocaine just distal to the stimulating electrodes eliminated the descending peroneal nerve volley and abolished the amplitude attenuation observed with the faster stimulus rate. The findings suggest that at higher rates of stimulation, the afferent volleys induced by the movements that follow mixed nerve stimulation interfere with the SEP produced by electrical activation of the sensory afferents. The interference is greater when the more proximal site of the mixed nerve is stimulated.

  11. Somatosensory evoked potentials following nerve and segmental stimulation do not confirm cervical radiculopathy with sensory deficit.

    PubMed Central

    Schmid, U D; Hess, C W; Ludin, H P

    1988-01-01

    Twenty eight patients with unilateral cervical radiculopathy were studied by somatosensory evoked potentials (SEPs) from nerve stimulation at the wrist and from skin stimulation at the first, third or fifth finger depending on the root involved. In order to evaluate the reliability of various "radicular SEP patterns" as described in the literature, absolute latencies and side-to-side differences of the brachial plexus component from the supraclavicular fossa (N9), the medullary component (N13) from the cervical vertebra Cv7, and the primary cortical component (N20, P25) were assessed. Side-to-side differences of the amplitudes of N20/P25 and of the conduction times across the intervertebral fossa (interval N9-N13) were analysed. After nerve stimulation, 68% of the patients had false negative findings on the symptomatic, while 36% had positive findings on the asymptomatic side. After segmental stimulation, 72% of the patients had false negative findings on the symptomatic, while 22% had positive findings on the asymptomatic side. It is concluded that SEPs following nerve and segmental stimulation do not reliably confirm clear-cut already established diagnoses of unilateral radiculopathy with sensory and motor deficit. Therefore, they will not be helpful in the electrophysiological investigation of cervicobrachialgias of unknown origin. PMID:2831303

  12. Comparative symptomatological and evoked potential studies with d-amphetamine, thioridazine, and placebo in hyperkinetic children.

    PubMed

    Saletu, B; Saletu, M; Simeon, J; Viamontes, G; Itil, T M

    1975-06-01

    In a double-blind study, 62 hyperkinetic children were randomly assigned to 8 weeks of treatment with either placebo, thioridazine, or d-amphetamine. The overall clinical symptomatology improved with all three substances, although d-amphetamine was significantly superior to placebo and thioridazine. Out of eight symptom clusters rated by the parents, two improved significantly with placebo, one with thioridazine, and six with d-amphetamine. The d-amphetamine was superior to placebo in reducing muscular tension and superior to thioridazine in decreasing hyperactive-impulsive behavior, psychosomatic problems, and muscular tension. Out of four teachers' symptom clusters, inattentive-passive behavior was significantly improved by thioridazine (which was also superior to placebo), while hyperactivity was reduced by d-amphetamine. Quantitative evaluation of visual evoked potentials (VEPs) revealed an increase in latencies and decrease in amplitudes during thioridazine treatment. Paradoxically, d-amphetamine also increased latencies, while tending to augment amplitudes. Regression and correlation analysis of clinical symptomatology with VEP variables showed that the shorter the pretreatment latencies and the higher the amplitudes, the more disturbed was the child. Short latencies and small amplitudes in the pretreatment period were predictors of good therapeutic outcome with subsequent thioridazine treatment, while short latencies and high amplitudes were indicative of such with d-amphetamine treatment. During therapy, the greater the drug-induced augmentation of latencies, the greater the clinical improvement. Finally, VEP differences between therapy-responsive and -resistant patients were explored and discussed.

  13. Stimulus and recording variables and their effects on mammalian vestibular evoked potentials

    NASA Technical Reports Server (NTRS)

    Jones, Sherri M.; Subramanian, Geetha; Avniel, Wilma; Guo, Yuqing; Burkard, Robert F.; Jones, Timothy A.

    2002-01-01

    Linear vestibular evoked potentials (VsEPs) measure the collective neural activity of the gravity receptor organs in the inner ear that respond to linear acceleration transients. The present study examined the effects of electrode placement, analog filtering, stimulus polarity and stimulus rate on linear VsEP thresholds, latencies and amplitudes recorded from mice. Two electrode-recording montages were evaluated, rostral (forebrain) to 'mastoid' and caudal (cerebellum) to 'mastoid'. VsEP thresholds and peak latencies were identical between the two recording sites; however, peak amplitudes were larger for the caudal recording montage. VsEPs were also affected by filtering. Results suggest optimum high pass filter cutoff at 100-300 Hz, and low pass filter cutoff at 10,000 Hz. To evaluate stimulus rate, linear jerk pulses were presented at 9.2, 16, 25, 40 and 80 Hz. At 80 Hz, mean latencies were longer (0.350-0.450 ms) and mean amplitudes reduced (0.8-1.8 microV) for all response peaks. In 50% of animals, late peaks (P3, N3) disappeared at 80 Hz. The results offer options for VsEP recording protocols. Copyright 2002 Elsevier Science B.V.

  14. Prognostic value of facial nerve antidromic evoked potentials in bell palsy: a preliminary study.

    PubMed

    Wenhao, Zhang; Minjie, Chen; Chi, Yang; Weijie, Zhang

    2012-01-01

    To analyze the value of facial nerve antidromic evoked potentials (FNAEPs) in predicting recovery from Bell palsy. Study Design. Retrospective study using electrodiagnostic data and medical chart review. Methods. A series of 46 patients with unilateral Bell palsy treated were included. According to taste test, 26 cases were associated with taste disorder (Group 1) and 20 cases were not (Group 2). Facial function was established clinically by the Stennert system after monthly follow-up. The result was evaluated with clinical recovery rate (CRR) and FNAEP. FNAEPs were recorded at the posterior wall of the external auditory meatus of both sides. Results. Mean CRR of Group 1 and Group 2 was 61.63% and 75.50%. We discovered a statistical difference between two groups and also in the amplitude difference (AD) of FNAEP. Mean ± SD of AD was -6.96% ± 12.66% in patients with excellent result, -27.67% ± 27.70% with good result, and -66.05% ± 31.76% with poor result. Conclusions. FNAEP should be monitored in patients with intratemporal facial palsy at the early stage. FNAEP at posterior wall of external auditory meatus was sensitive to detect signs of taste disorder. There was close relativity between FNAEPs and facial nerve recovery.

  15. Diagnostic Value of Vestibular Evoked Myogenic Potentials in Endolymphatic Hydrops: A Meta-Analysis

    PubMed Central

    Zhang, Sulin; Leng, Yangming; Liu, Bo; Shi, Hao; Lu, Meixia; Kong, Weijia

    2015-01-01

    In this study, we evaluated the clinical diagnostic value of vestibular evoked myogenic potentials (VEMPs) for endolymphatic hydrops (EH) by systematic review and Meta-analysis. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio and area under summary receiver operating characteristic curves (AUC) were calculated. Subgroup analysis and publication bias assessment were also conducted. The pooled sensitivity and the specificity were 49% (95% CI: 46% to 51%) and 95% (95% CI: 94% to 96%), respectively. The pooled positive likelihood ratio was 18.01 (95% CI: 9.45 to 34.29) and the pooled negative likelihood ratio was 0.54 (95% CI: 0.47 to 0.61). AUC was 0.78 and the pooled diagnostic odds ratio of VEMPs was 39.89 (95% CI: 20.13 to 79.03). In conclusion, our present meta-analysis has demonstrated that VEMPs test alone is not sufficient for Meniere’s disease or delayed endolymphatic hydrops diagnosis, but that it might be an important component of a test battery for diagnosing Meniere’s disease or delayed endolymphatic hydrops. Moreover, VEMPs, due to its high specificity and non-invasive nature, might be used as a screening tool for EH. PMID:26455332

  16. Ocular vestibular evoked myogenic potential frequency tuning in certain Menière's disease.

    PubMed

    Jerin, Claudia; Berman, Albert; Krause, Eike; Ertl-Wagner, Birgit; Gürkov, Robert

    2014-04-01

    Ocular vestibular evoked myogenic potentials (oVEMP) represent extraocular muscle activity in response to vestibular stimulation. To specify the value of oVEMP in the diagnostics of Menière's disease, the amplitude ratio between 500 and 1000 Hz stimuli was investigated. Thirty-nine patients with certain Menière's disease, i.e. definite Menière's disease with visualization of endolymphatic hydrops by magnetic resonance imaging and 19 age-matched healthy controls were enrolled in this study. oVEMP were recorded using 500 and 1000 Hz air-conducted tone bursts. For Menière's ears, the 500/1000 Hz amplitude ratio (mean ratio = 1.20) was significantly smaller when compared to unaffected ears of Menière's patients (mean ratio = 1.80; p = 0.008) or healthy controls (mean ratio = 1.81; p = 0.011). The amplitude ratio was neither correlated with the degree of endolymphatic hydrops nor with the duration of disease. While an older age was associated with a diminished amplitude ratio in healthy controls, there was no correlation between the amplitude ratio and age in Menière's ears. Hence, the calculation of the oVEMP 500/1000 Hz amplitude ratio may be a valuable diagnostic tool for Menière's disease.

  17. Analysis of Saccular Function With Vestibular Evoked Myogenic Potential Test in Meniere's Disease.

    PubMed

    Dabiri, Sasan; Yazdani, Nasrin; Esfahani, Mahdis; Tari, Niloufar; Adil, Susan; Mahvi, Zahra; Rezazadeh, Nima

    2017-02-01

    Meniere's disease is the disorder of inner ear characterized by vertigo, tinnitus and sensorineural hearing loss. The vestibular evoked myogenic potential (VEMP) test could be useful in the analysis of saccular function, and diagnosis of Meniere's disease. In this study, we've analyzed the saccular function, using VEMP test in different groups of Meniere's disease. Patients were categorized as possible, probable or definite Meniere's disease groups according to the guideline of American Academy of Otolaryngology-Head and Neck Surgery. The exclusion criteria were neuromuscular system diseases, diseases of central nervous system, inner ear disorders, conductive hearing loss, a history of ototoxic drug consumption, being a drug abuser and a positive history of inner ear surgery or manipulations. The VEMP test is the recording of positive and negative waves from sternocleidomastoid muscle that is made by an auditory click to the ear. From the total of 100 patients, the waves of VEMP test was seen in 59 patients which 19 patients had abnormal amplitude, and latency and 40 patients were with normally recorded waves. There was a significant relationship between the severity of hearing loss and a VEMP test without any recorded waves. Most of the cases with 'no wave recorded' VEMP test, were patients with severe hearing loss. However, there wasn't any relation between the pattern of hearing loss and 'no wave recorded' VEMP test. VEMP test could be a valuable diagnostic clue especially in patients with definite Meniere's disease.

  18. Attenuated Fast Steady-State Visual Evoked Potentials During Human Sleep.

    PubMed

    Sharon, Omer; Nir, Yuval

    2017-02-25

    During sleep, external sensory events rarely elicit a behavioral response or affect perception. However, how sensory processing differs between wakefulness and sleep remains unclear. A major difficulty in this field stems from using brief auditory stimuli that often trigger nonspecific high-amplitude "K-complex" responses and complicate interpretation. To overcome this challenge, here we delivered periodic visual flicker stimulation across sleep and wakefulness while recording high-density electroencephalography (EEG) in humans. We found that onset responses can be separated from frequency-specific steady-state visual evoked potentials (SSVEPs) selectively observed over visual cortex. Sustained SSVEPs in response to fast (8/10 Hz) stimulation are substantially stronger in wakefulness than in both nonrapid eye movement (NREM) and REM sleep, whereas SSVEP responses to slow (3/5 Hz) stimulation are stronger in both NREM and REM sleep than in wakefulness. Despite wake-like spontaneous activity, responses in REM sleep were similar to those in NREM sleep and different than wakefulness, in accordance with perceptual disconnection during REM sleep. Finally, analysis of amplitude and phase in single trials revealed that stronger fast SSVEPs in wakefulness are driven by more consistent phase locking and increased induced power. These results suggest that the sleeping brain is unable to effectively synchronize large neuronal populations in response to rapid sensory stimulation.

  19. [Recovery from rocuronium by sugammadex does not affect motor evoked potentials].

    PubMed

    Hashimoto, Yuko; Gotanda, Yuki; Ito, Takahiko; Ushijima, Kazuo

    2011-08-01

    Motor evoked potential (MEP) monitoring has been employed to detect the spinal cord injury during spinal, neurosurgical and cardiovascular operations. Muscle relaxants diminish the amplitude of MEP because MEP is the picture of electromyogram. In 5 cases undergoing MEP monitoring, we examined the effect of rocuronium followed by the administration of sugammadex on MEP Anesthesia was induced with propofol (target controlled infusion 3.0-3.5 microg x ml(-1)) and remifentanil 0.15-0.3 microg x kg(-1) x min(-1), and the trachea was intubated with the use of rocuronium 0.6 mg x kg(-1) without any muscle rigidity, bucking and laryngospasm. General anesthesia was maintained by total intravenous anesthesia using propofol and remifentanil with no muscle relaxants. Immediately after the tracheal intubation, sugammadex 4 mg x kg(-1) was intravenously given. The amplitude of MEP was measured just before the administration of rocuronium, immediately after the tracheal intubation, and 1, 2, 3, 5 min following the administration of sugammadex. Sugammadex restored the MEP amplitude, deteriorated by rocuronium, in 3 to 5 min to the level of non-paralytic muscles. In one case, it took 8 min to restore the MEP of hemiparetic leg. Taking these findings into consideration, it is likely that rocuronium might not affect the MEP when reversed by sugammadex, and should be safe for smooth tracheal intubation in patients who need MEP monitoring.

  20. Cortical inhibition of laser pain and laser-evoked potentials by non-nociceptive somatosensory input.

    PubMed

    Testani, Elisa; Le Pera, Domenica; Del Percio, Claudio; Miliucci, Roberto; Brancucci, Alfredo; Pazzaglia, Costanza; De Armas, Liala; Babiloni, Claudio; Rossini, Paolo Maria; Valeriani, Massimiliano

    2015-10-01

    Although the inhibitory action that tactile stimuli can have on pain is well documented, the precise timing of the interaction between the painful and non-painful stimuli in the central nervous system is unclear. The aim of this study was to investigate this issue by measuring the timing of the amplitude modulation of laser evoked potentials (LEPs) due to conditioning non-painful stimuli. LEPs were recorded from 31 scalp electrodes in 10 healthy subjects after painful stimulation of the right arm (C6-C7 dermatomes). Non-painful electrical stimuli were applied by ring electrodes on the second and third finger of the right hand. Electrical stimuli were delivered at +50, +150, +200 and +250 ms interstimulus intervals (ISIs) after the laser pulses. LEPs obtained without any conditioning stimulation were used as a baseline. As compared to the baseline, non-painful electrical stimulation reduced the amplitude of the vertex N2/P2 LEP component and the laser pain rating when electrical stimuli followed the laser pulses only at +150 and +200 ms ISIs. As at these ISIs the collision between the non-painful and painful input is likely to take place at the cortical level, we can conclude that the late processing of painful (thermal) stimuli is partially inhibited by the processing of non-painful (cutaneous) stimuli within the cerebral cortex. Moreover, our results do not provide evidence that non-painful inputs can inhibit pain at a lower level, including the spinal cord.

  1. Profiles in fibromyalgia: algometry, auditory evoked potentials and clinical characterization of different subtypes.

    PubMed

    Triñanes, Yolanda; González-Villar, Alberto; Gómez-Perretta, Claudio; Carrillo-de-la-Peña, María T

    2014-11-01

    The heterogeneity found in fibromyalgia (FM) patients has led to the investigation of disease subgroups, mainly based on clinical features. The aim of this study was to test the hypothesis that clinical FM subgroups are associated with different underlying pathophysiological mechanisms. Sixty-three FM patients were classified in type I or type II, according to the Fibromyalgia Impact Questionnaire (FIQ), and in mild/moderate versus severe FM, according to the severity of three cardinal symptoms considered in the American College of Rheumatology (ACR) 2010 criteria (unrefreshed sleep, cognitive problems and fatigue). To validate the subgroups obtained by these two classifications, we calculated the area under the receiver operating characteristic curves for various clinical variables and for two potential biomarkers of FM: Response to experimental pressure pain (algometry) and the amplitude/intensity slopes of the auditory evoked potentials (AEPs) obtained to stimuli of increasing intensity. The variables that best discriminated type I versus type II were those related to depression, while the indices of clinical or experimental pain (threshold or tolerance) did not significantly differ between them. The variables that best discriminated the mild/moderate versus severe subgroups were those related to the algometry. The AEPs did not allow discrimination among the generated subsets. The FIQ-based classification allows the identification of subgroups that differ in psychological distress, while the index based on the ACR 2010 criteria seems to be useful to characterize the severity of FM mainly based on hyperalgesia. The incorporation of potential biomarkers to generate or validate classification criteria is crucial to advance in the knowledge of FM and in the understanding of pathophysiological pathways.

  2. Noninvasive scalp recording of cortical auditory evoked potentials in the alert macaque monkey.

    PubMed

    Itoh, Kosuke; Nejime, Masafumi; Konoike, Naho; Nakada, Tsutomu; Nakamura, Katsuki

    2015-09-01

    Scalp-recorded evoked potentials (EP) provide researchers and clinicians with irreplaceable means for recording stimulus-related neural activities in the human brain, due to its high temporal resolution, handiness, and, perhaps more importantly, non-invasiveness. This work recorded the scalp cortical auditory EP (CAEP) in unanesthetized monkeys by using methods that are essentially identical to those applied to humans. Young adult rhesus monkeys (Macaca mulatta, 5-7 years old) were seated in a monkey chair, and their head movements were partially restricted by polystyrene blocks and tension poles placed around their head. Individual electrodes were fixated on their scalp using collodion according to the 10-20 system. Pure tone stimuli were presented while electroencephalograms were recorded from up to nineteen channels, including an electrooculogram channel. In all monkeys (n = 3), the recorded CAEP comprised a series of positive and negative deflections, labeled here as macaque P1 (mP1), macaque N1 (mN1), macaque P2 (mP2), and macaque N2 (mN2), and these transient responses to sound onset were followed by a sustained potential that continued for the duration of the sound, labeled the macaque sustained potential (mSP). mP1, mN2 and mSP were the prominent responses, and they had maximal amplitudes over frontal/central midline electrode sites, consistent with generators in auditory cortices. The study represents the first noninvasive scalp recording of CAEP in alert rhesus monkeys, to our knowledge.

  3. EEG-based classification of video quality perception using steady state visual evoked potentials (SSVEPs)

    NASA Astrophysics Data System (ADS)

    Acqualagna, Laura; Bosse, Sebastian; Porbadnigk, Anne K.; Curio, Gabriel; Müller, Klaus-Robert; Wiegand, Thomas; Blankertz, Benjamin

    2015-04-01

    Objective. Recent studies exploit the neural signal recorded via electroencephalography (EEG) to get a more objective measurement of perceived video quality. Most of these studies capitalize on the event-related potential component P3. We follow an alternative approach to the measurement problem investigating steady state visual evoked potentials (SSVEPs) as EEG correlates of quality changes. Unlike the P3, SSVEPs are directly linked to the sensory processing of the stimuli and do not require long experimental sessions to get a sufficient signal-to-noise ratio. Furthermore, we investigate the correlation of the EEG-based measures with the outcome of the standard behavioral assessment. Approach. As stimulus material, we used six gray-level natural images in six levels of degradation that were created by coding the images with the HM10.0 test model of the high efficiency video coding (H.265/MPEG-HEVC) using six different compression rates. The degraded images were presented in rapid alternation with the original images. In this setting, the presence of SSVEPs is a neural marker that objectively indicates the neural processing of the quality changes that are induced by the video coding. We tested two different machine learning methods to classify such potentials based on the modulation of the brain rhythm and on time-locked components, respectively. Main results. Results show high accuracies in classification of the neural signal over the threshold of the perception of the quality changes. Accuracies significantly correlate with the mean opinion scores given by the participants in the standardized degradation category rating quality assessment of the same group of images. Significance. The results show that neural assessment of video quality based on SSVEPs is a viable complement of the behavioral one and a significantly fast alternative to methods based on the P3 component.

  4. Whole-scalp EEG mapping of somatosensory evoked potentials in macaque monkeys.

    PubMed

    Gindrat, Anne-Dominique; Quairiaux, Charles; Britz, Juliane; Brunet, Denis; Lanz, Florian; Michel, Christoph M; Rouiller, Eric M

    2015-07-01

    High-density scalp EEG recordings are widely used to study whole-brain neuronal networks in humans non-invasively. Here, we validate EEG mapping of somatosensory evoked potentials (SSEPs) in macaque monkeys (Macaca fascicularis) for the long-term investigation of large-scale neuronal networks and their reorganisation after lesions requiring a craniotomy. SSEPs were acquired from 33 scalp electrodes in five adult anaesthetized animals after electrical median or tibial nerve stimulation. SSEP scalp potential maps were identified by cluster analysis and identified in individual recordings. A distributed, linear inverse solution was used to estimate the intracortical sources of the scalp potentials. SSEPs were characterised by a sequence of components with unique scalp topographies. Source analysis confirmed that median nerve SSEP component maps were in accordance with the somatotopic organisation of the sensorimotor cortex. Most importantly, SSEP recordings were stable both intra- and interindividually. We aim to apply this method to the study of recovery and reorganisation of large-scale neuronal networks following a focal cortical lesion requiring a craniotomy. As a prerequisite, the present study demonstrated that a 300-mm(2) unilateral craniotomy over the sensorimotor cortex necessary to induce a cortical lesion, followed by bone flap repositioning, suture and gap plugging with calcium phosphate cement, did not induce major distortions of the SSEPs. In conclusion, SSEPs can be successfully and reproducibly recorded from high-density EEG caps in macaque monkeys before and after a craniotomy, opening new possibilities for the long-term follow-up of the cortical reorganisation of large-scale networks in macaque monkeys after a cortical lesion.

  5. The Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury

    PubMed Central

    Ibitoye, Morufu Olusola; Estigoni, Eduardo H.; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M.

    2014-01-01

    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05) between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population. PMID:25025551

  6. Mild Cognitive Impairment Is Characterized by Deficient Brainstem and Cortical Representations of Speech.

    PubMed

    Bidelman, Gavin M; Lowther, Jill E; Tak, Sunghee H; Alain, Claude

    2017-03-29

    Mild cognitive impairment (MCI) is recognized as a transitional phase in the progression toward more severe forms of dementia and is an early precursor to Alzheimer's disease. Previous neuroimaging studies reveal that MCI is associated with aberrant sensory-perceptual processing in cortical brain regions subserving auditory and language function. However, whether the pathophysiology of MCI extends to speech processing before conscious awareness (brainstem) is unknown. Using a novel electrophysiological approach, we recorded both brainstem and cortical speech-evoked brain event-related potentials (ERPs) in older, hearing-matched human listeners who did and did not present with subtle cognitive impairment revealed through behavioral neuropsychological testing. We found that MCI was associated with changes in neural speech processing characterized as hypersensitivity (larger) brainstem and cortical speech encoding in MCI compared with controls in the absence of any perceptual speech deficits. Group differences also interacted with age differentially across the auditory pathway; brainstem responses became larger and cortical ERPs smaller with advancing age. Multivariate classification revealed that dual brainstem-cortical speech activity correctly identified MCI listeners with 80% accuracy, suggesting its application as a biomarker of early cognitive decline. Brainstem responses were also a more robust predictor of individuals' MCI severity than cortical activity. Our findings suggest that MCI is associated with poorer encoding and transfer of speech signals between functional levels of the auditory system and advance the pathophysiological understanding of cognitive aging by identifying subcortical deficits in auditory sensory processing mere milliseconds (<10 ms) after sound onset and before the emergence of perceptual speech deficits.SIGNIFICANCE STATEMENT Mild cognitive impairment (MCI) is a precursor to dementia marked by declines in communication skills. Whether

  7. Do pursuit movement tasks lead to differential changes in early somatosensory evoked potentials related to motor learning compared with typing tasks?

    PubMed

    Andrew, Danielle; Yielder, Paul; Murphy, Bernadette

    2015-02-15

    Central nervous system (CNS) plasticity is essential for development; however, recent research has demonstrated its role in pathology, particularly following overuse and repetition. Previous studies investigating changes in sensorimotor integration (SMI) have used relatively simple paradigms resulting in minimal changes in neural activity, as determined through the use of somatosensory evoked potentials (SEPs). This study sought to utilize complex tasks and compare separate motor paradigms to determine which one best facilitates long-term learning. Spinal, brainstem, and cortical SEPs were recorded following median nerve stimulation at the wrist pre- and postinterventions. Eighteen participants performed the same paradigms, a control condition of 10 min of mental recitation and two interventions, one consisting of 10 min of tracing and the other 10 min of repetitive typing. Significant increases in the N13, N20, P25, and N30 SEP peaks were seen for both interventions. A significant decrease in the N24 SEP peak was observed for both interventions. Significant improvements in accuracy were seen for both interventions postacquisition but only for tracing during retention. The changes seen following motor learning were congruent with those associated with long-term learning, which was also reflected by significant increases in accuracy during retention. Tracing or the pursuit movement paradigm was shown to be a more effective learning tool. The identification of a task that is sufficiently novel and complex, leading to robust changes in SEP peaks, indicates a task that can be utilized in future work to study clinical populations and the effect of experimental interventions on SMI.

  8. Brain potentials evoked by intraepidermal electrical stimuli reflect the central sensitization of nociceptive pathways

    PubMed Central

    Lee, M. C.; O'Neill, J.; Dickenson, A. H.; Iannetti, G. D.

    2016-01-01

    Central sensitization (CS), the increased sensitivity of the central nervous system to somatosensory inputs, accounts for secondary hyperalgesia, a typical sign of several painful clinical conditions. Brain potentials elicited by mechanical punctate stimulation using flat-tip probes can provide neural correlates of CS, but their signal-to-noise ratio is limited by poor synchronization of the afferent nociceptive input. Additionally, mechanical punctate stimulation does not activate nociceptors exclusively. In contrast, low-intensity intraepidermal electrical stimulation (IES) allows selective activation of type II Aδ-mechano-heat nociceptors (II-AMHs) and elicits reproducible brain potentials. However, it is unclear whether hyperalgesia from IES occurs and coexists with secondary mechanical punctate hyperalgesia, and whether the magnitude of the electroencephalographic (EEG) responses evoked by IES within the hyperalgesic area is increased. To address these questions, we explored the modulation of the psychophysical and EEG responses to IES by intraepidermal injection of capsaicin in healthy human subjects. We obtained three main results. First, the intensity of the sensation elicited by IES was significantly increased in participants who developed robust mechanical punctate hyperalgesia after capsaicin injection (i.e., responders), indicating that hyperalgesia from IES coexists with punctate mechanical hyperalgesia. Second, the N2 peak magnitude of the EEG responses elicited by IES was significantly increased after the intraepidermal injection of capsaicin in responders only. Third, a receiver-operator characteristics analysis showed that the N2 peak amplitude is clearly predictive of the presence of CS. These findings suggest that the EEG responses elicited by IES reflect secondary hyperalgesia and therefore represent an objective correlate of CS. PMID:27098022

  9. [Contribution of cognitive evoked potentials for detecting early cognitive disorders in multiple sclerosis].

    PubMed

    Magnié, M N; Bensa, C; Laloux, L; Bertogliati, C; Faure, S; Lebrun, C

    2007-11-01

    In Multiple Sclerosis (MS), one of the most frequent neurological diseases in young adults, cognitive dysfunctions have been under considered whereas their evolution may produce a fronto-sous-cortical deterioration and more than half of the MS patients present such dysfunctions. Nevertheless sensory evoked-potentials are classically used in this disease, event-related potentials (ERP) are not included in the clinical exploration of MS. Two studies are presented aimed at further tracking the usefulness of ERP for detecting early cognitive dysfunctions in MS. All of the patients presented a relapsing remitting MS for less than 5 years with a moderate physical handicap and complained from their memory. They performed a neuropsychological set and ERP were elicited using the oddball paradigm in both modalities, visual and auditory. In the first study, 10 patients without cognitive dysfunction at the neuropsychological evaluation and 10 patients with an attention deficit participated with 10 age-matched controls. In the second study, 10 patients with memory impairment at the neuropsychological evaluation and 10 age-matched controls were included. Our data argue for an earlier modification of ERP parameters in the visual modality than in the auditory one, even before the modification of cognitive scores. In both studies, P300 parameters were correlated to neuropsychological performances (and especially to the attention examination in the first study and to memory tests in the second study) in both modalities. Taking into account the clinical usefulness of ERPs, it is nowadays important to include this electrophysiological method in evaluation and follow-up of MS, and not only using the auditory modality but also the visual presentation in order to detect earlier cognitive dysfunctions even before modification of neuropsychological performances.

  10. Direct motor evoked potentials and cortical mapping using the NIM® nerve monitoring system: A technical note.

    PubMed

    Bharadwaj, Suparna; Haji, Faizal; Hebb, Matthew; Chui, Jason

    2017-04-01

    Motor evoked potentials (MEPs) are commonly used to prevent neurological injury when operating in close proximity to the motor cortex or corticospinal pathway. We report a novel application of the NIM® nerve monitoring system (Medtronic@ NIM response 3.0) for intraoperative direct cortical (dc)-MEPs monitoring. A 69-year-old female patient presented with a 4month history of progressive left hemiparesis resulting from a large right sided posterior frontal meningioma that abutted and compressed the motor cortex. Motor cortical mapping and MEPs were indicated. The patient was anesthetized and maintained on total intravenous anesthetics. Compound muscle action potentials (CMAP) of the right upper limb were monitored using the NIM system. After a craniotomy was performed, we first used the Ojemann stimulator (monopolar) for dc-stimulation and then switched to use the monopolar nerve stimulator probe of the NIM system. The CMAP response was successfully elicited using the NIM stimulating probe (pulse width=250s, train frequency=7pulses/s,