Hybrid Direct-Current Circuit Breaker
NASA Technical Reports Server (NTRS)
Wang, Ruxi (Inventor); Premerlani, William James (Inventor); Caiafa, Antonio (Inventor); Pan, Yan (Inventor)
2017-01-01
A circuit breaking system includes a first branch including at least one solid-state snubber; a second branch coupled in parallel to the first branch and including a superconductor and a cryogenic contactor coupled in series; and a controller operatively coupled to the at least one solid-state snubber and the cryogenic contactor and programmed to, when a fault occurs in the load circuit, activate the at least one solid-state snubber for migrating flow of the electrical current from the second branch to the first branch, and, when the fault is cleared in the load circuit, activate the cryogenic contactor for migrating the flow of the electrical current from the first branch to the second branch.
Schwartz, David P.; Haeussler, Peter J.; Seitz, Gordon G.; Dawson, Timothy E.
2012-01-01
The propagation of the rupture of the Mw7.9 Denali fault earthquake from the central Denali fault onto the Totschunda fault has provided a basis for dynamic models of fault branching in which the angle of the regional or local prestress relative to the orientation of the main fault and branch plays a principal role in determining which fault branch is taken. GeoEarthScope LiDAR and paleoseismic data allow us to map the structure of the Denali-Totschunda fault intersection and evaluate controls of fault branching from a geological perspective. LiDAR data reveal the Denali-Totschunda fault intersection is structurally simple with the two faults directly connected. At the branch point, 227.2 km east of the 2002 epicenter, the 2002 rupture diverges southeast to become the Totschunda fault. We use paleoseismic data to propose that differences in the accumulated strain on each fault segment, which express differences in the elapsed time since the most recent event, was one important control of the branching direction. We suggest that data on event history, slip rate, paleo offsets, fault geometry and structure, and connectivity, especially on high slip rate-short recurrence interval faults, can be used to assess the likelihood of branching and its direction. Analysis of the Denali-Totschunda fault intersection has implications for evaluating the potential for a rupture to propagate across other types of fault intersections and for characterizing sources of future large earthquakes.
Modeling of a latent fault detector in a digital system
NASA Technical Reports Server (NTRS)
Nagel, P. M.
1978-01-01
Methods of modeling the detection time or latency period of a hardware fault in a digital system are proposed that explain how a computer detects faults in a computational mode. The objectives were to study how software reacts to a fault, to account for as many variables as possible affecting detection and to forecast a given program's detecting ability prior to computation. A series of experiments were conducted on a small emulated microprocessor with fault injection capability. Results indicate that the detecting capability of a program largely depends on the instruction subset used during computation and the frequency of its use and has little direct dependence on such variables as fault mode, number set, degree of branching and program length. A model is discussed which employs an analog with balls in an urn to explain the rate of which subsequent repetitions of an instruction or instruction set detect a given fault.
[The Application of the Fault Tree Analysis Method in Medical Equipment Maintenance].
Liu, Hongbin
2015-11-01
In this paper, the traditional fault tree analysis method is presented, detailed instructions for its application characteristics in medical instrument maintenance is made. It is made significant changes when the traditional fault tree analysis method is introduced into the medical instrument maintenance: gave up the logic symbolic, logic analysis and calculation, gave up its complicated programs, and only keep its image and practical fault tree diagram, and the fault tree diagram there are also differences: the fault tree is no longer a logical tree but the thinking tree in troubleshooting, the definition of the fault tree's nodes is different, the composition of the fault tree's branches is also different.
Criteria for Seismic Splay Fault Activation During Subduction Earthquakes
NASA Astrophysics Data System (ADS)
Dedontney, N.; Templeton, E.; Bhat, H.; Dmowska, R.; Rice, J. R.
2008-12-01
As sediment is added to the accretionary prism or removed from the forearc, the material overlying the plate interface must deform to maintain a wedge structure. One of the ways this internal deformation is achieved is by slip on splay faults branching from the main detachment, which are possibly activated as part of a major seismic event. As a rupture propagates updip along the plate interface, it will reach a series of junctions between the shallowly dipping detachment and more steeply dipping splay faults. The amount and distribution of slip on these splay faults and the detachment determines the seafloor deformation and the tsunami waveform. Numerical studies by Kame et al. [JGR, 2003] of fault branching during dynamic slip-weakening rupture in 2D plane strain showed that branch activation depends on the initial stress state, rupture velocity at the branching junction, and branch angle. They found that for a constant initial stress state, with the maximum principal stress at shallow angles to the main fault, branch activation is favored on the compressional side of the fault for a range of branch angles. By extending the part of their work on modeling the branching behavior in the context of subduction zones, where critical taper wedge concepts suggest the angle that the principal stress makes with the main fault is shallow, but not horizontal, we hope to better understand the conditions for splay fault activation and the criteria for significant moment release on the splay. Our aim is to determine the range of initial stresses and relative frictional strengths of the detachment and splay fault that would result in seismic splay fault activation. In aid of that, we conduct similar dynamic rupture analyses to those of Kame et al., but use explicit finite element methods, and take fuller account of overall structure of the zone (rather than focusing just on the branching junction). Critical taper theory requires that the basal fault be weaker than the overlying material, so we build on previous work by incorporating the effect of strength contrasts between the basal and splay faults. The relative weakness of the basal fault is often attributed to high pore pressures, which lowers the effective normal stress and brings the basal fault closer to failure. We vary the initial stress state, while maintaining a constant principal stress orientation, to see how the closeness to failure affects the branching behavior for a variety of branch step-up angles.
NASA Astrophysics Data System (ADS)
Elbanna, A. E.
2013-12-01
Numerous field and experimental observations suggest that faults surfaces are rough at multiple scales and tend to produce a wide range of branch sizes ranging from micro-branching to large scale secondary faults. The development and evolution of fault roughness and branching is believed to play an important role in rupture dynamics and energy partitioning. Previous work by several groups has succeeded in determining conditions under which a main rupture may branch into a secondary fault. Recently, there great progress has been made in investigating rupture propagation on rough faults with and without off-fault plasticity. Nonetheless, in most of these models the heterogeneity, whether the roughness profile or the secondary faults orientation, was built into the system from the beginning and consequently the final outcome depends strongly on the initial conditions. Here we introduce an adaptive mesh technique for modeling mode-II crack propagation on slip weakening frictional interfaces. We use a Finite Element Framework with random mesh topology that adapts to crack dynamics through element splitting and sequential insertion of frictional interfaces dictated by the failure criterion. This allows the crack path to explore non-planar paths and develop the roughness profile that is most compatible with the dynamical constraints. It also enables crack branching at different scales. We quantify energy dissipation due to the roughening process and small scale branching. We compare the results of our model to a reference case for propagation on a planar fault. We show that the small scale processes of roughening and branching influence many characteristics of the rupture propagation including the energy partitioning, rupture speed and peak slip rates. We also estimate the fracture energy required for propagating a crack on a planar fault that will be required to produce comparable results. We anticipate that this modeling approach provides an attractive methodology that complements the current efforts in modeling off-fault plasticity and damage.
Cost-effective and monitoring-active technique for TDM-passive optical networks
NASA Astrophysics Data System (ADS)
Chi, Chang-Chia; Lin, Hong-Mao; Tarn, Chen-Wen; Lin, Huang-Liang
2014-08-01
A reliable, detection-active and cost-effective method which employs the hello and heartbeat signals for branched node distinguishing to monitor fiber fault in any branch of distribution fibers of a time division multiplexing passive optical network (TDM-PON) is proposed. With this method, the material cost of building an optical network monitor system for a TDM-PON with 168 ONUs and the time of identifying a multiple branch faults is significantly reduced in a TDM-PON system of any scale. A fault location in a 1 × 32 TDM-PON system using this method to identify the fault branch is demonstrated.
NASA Astrophysics Data System (ADS)
Williams, P. L.; Phillips, D. A.; Bowles-Martinez, E.; Masana, E.; Stepancikova, P.
2010-12-01
Terrestrial and airborne LiDAR data, and low altitude aerial photography have been utilized in conjunction with field work to identify and map single and multiple-event stream-offsets along all strands of the San Andreas fault in the Coachella Valley. Goals of the work are characterizing the range of displacements associated with the fault’s prehistoric surface ruptures, evaluating patterns of along-fault displacement, and disclosing processes associated with the prominent Banning-Mission Creek fault junction. Preservation offsets is associated with landscape conditions including: (1) well-confined and widely spaced source streams up-slope of the fault; (2) persistent geomorphic surfaces below the fault; (3) slope directions oriented approximately perpendicular to the fault. Notably, a pair of multiple-event offset sites have been recognized in coarse fan deposits below the Mission Creek fault near 1000 Palms oasis. Each of these sites is associated with a single source drainage oriented approximately perpendicular to the fault, and preserves a record of individual fault displacements affecting the southern portion of the Mission Creek branch of the San Andreas fault. The two sites individually record long (>10 event) slip-per-event histories. Documentation of the sites indicates a prevalence of moderate displacements and a small number of large offsets. This is consistent with evidence developed in systematic mapping of individual and multiple event stream offsets in the area extending 70 km south to Durmid Hill. Challenges to site interpretation include the presence of closely spaced en echelon fault branches and indications of stream avulsion in the area of the modern fault crossing. Conversely, strong bar and swale topography produce high quality offset indicators that can be identified across en echelon branches in most cases. To accomplish the detailed mapping needed to fully recover the complex yet well-preserved geomorphic features under investigation, a program of terrestrial laser scanning (TLS) was conducted at the 1000 Palms oasis stream offset sites. Data products and map interpretations will be presented along with initial applications of the study to characterizing San Andreas fault rupture hazard. Continuing work will seek to more fully populate the dataset of larger offsets, evaluate means to objectively date the larger offsets, and, as completely as possible, to characterize magnitudes of past surface ruptures of the San Andreas fault in the Coachella Valley.
An experiment in software reliability
NASA Technical Reports Server (NTRS)
Dunham, J. R.; Pierce, J. L.
1986-01-01
The results of a software reliability experiment conducted in a controlled laboratory setting are reported. The experiment was undertaken to gather data on software failures and is one in a series of experiments being pursued by the Fault Tolerant Systems Branch of NASA Langley Research Center to find a means of credibly performing reliability evaluations of flight control software. The experiment tests a small sample of implementations of radar tracking software having ultra-reliability requirements and uses n-version programming for error detection, and repetitive run modeling for failure and fault rate estimation. The experiment results agree with those of Nagel and Skrivan in that the program error rates suggest an approximate log-linear pattern and the individual faults occurred with significantly different error rates. Additional analysis of the experimental data raises new questions concerning the phenomenon of interacting faults. This phenomenon may provide one explanation for software reliability decay.
Rogozhin, E.A.; Imaev, V.S.; Smekalin, O.P.; Schwartz, D.P.
2008-01-01
The earthquake source, reaching the surface in the form of an extended system of faults, encompassed the N-S and NW-SE planes of two large faults near their juncture zone. A revised seismotectonic study of the system of coseismic ruptures performed after many years revealed a complex structure of primary coseismic ruptures in the juncture area of fault branches of different directions. In addition to the two major faults, the juncture zone consists of intersecting or parallel branches of both structural directions. The trench study and detailed mapping of the shallow structure of the seismic rupture characterizes it as a right-lateral-thrust fault on the N-S branch and a strike-slip-reverse fault on the NW-SE branch. Results of our paleoseismogeological study indicate that equally strong earthquakes are likely to have occurred in the same seismic source in the past (about 8000 and 160 years ago). ?? Pleiades Publishing, Ltd. 2008.
Research of influence of open-winding faults on properties of brushless permanent magnets motor
NASA Astrophysics Data System (ADS)
Bogusz, Piotr; Korkosz, Mariusz; Powrózek, Adam; Prokop, Jan; Wygonik, Piotr
2017-12-01
The paper presents an analysis of influence of selected fault states on properties of brushless DC motor with permanent magnets. The subject of study was a BLDC motor designed by the authors for unmanned aerial vehicle hybrid drive. Four parallel branches per each phase were provided in the discussed 3-phase motor. After open-winding fault in single or few parallel branches, a further operation of the motor can be continued. Waveforms of currents, voltages and electromagnetic torque were determined in discussed fault states based on the developed mathematical and simulation models. Laboratory test results concerning an influence of open-windings faults in parallel branches on properties of BLDC motor were presented.
NASA Astrophysics Data System (ADS)
Barın, Burcu; Okay, Seda; Çifçi, Günay; Dondurur, Derman; Cormier, Marie Helene; Sorlien, Christopher; Meriç İlkimen, Elif
2015-04-01
The North Anatolian Fault (NAF) is a major right-lateral transform fault in northern Turkey that branches westward into several strands in the vicinity of the Sea of Marmara. The main northern branch bisects the Marmara Sea from east to west, and seismic reflection profiles acquired over the past 15 years have revealed its complex geometry. Further, the several basins that developed along that branch record stratigraphic sequences that provide the needed framework to interpret the relative timing of tectonic deformation in the Marmara Sea. In contrast, the central branch, which snakes across the shallow southern shelf of the Marmara Sea, has been much less investigated. Here, we analyze a comprehensive dataset of high-resolution multi-channel, sparker, and CHIRP seismic profiles, which were collected with the facilities of Seismic Laboratory (SeisLab) in the Institute of Marine Sciences and Technology and R/V K. Piri Reis belonging to Dokuz Eylül University, along the central branch in 2008 (TAMAM expedition) and in 2013-2014 (SoMAR expedition), within the framework of a bilateral TÜBİTAK - NSF project. In combination with other existing seismic profiles, these new data reveal that the Central Branch consists of multiple faults strands that are distributed across the broad southern shelf. They also reveal that many of these strands are Holocene-active, although they slip at slower rates than the northern branch and are associated with slower basin subsidence or local uplift. Lastly, seismic data image a system of half-grabens across the southern shelf that are associated with the strands of the central branch. Strata within these half-grabens are progressively tilted and consistently dip to the south. Further analysis will be conducted to determine whether the formation of these grabens are controlled by oblique slip on the strands of the central branch, or by slip on detachment faults beneath the southern shelf.
Fault Branching and Long-Term Earthquake Rupture Scenario for Strike-Slip Earthquake
NASA Astrophysics Data System (ADS)
Klinger, Y.; CHOI, J. H.; Vallage, A.
2017-12-01
Careful examination of surface rupture for large continental strike-slip earthquakes reveals that for the majority of earthquakes, at least one major branch is involved in the rupture pattern. Often, branching might be either related to the location of the epicenter or located toward the end of the rupture, and possibly related to the stopping of the rupture. In this work, we examine large continental earthquakes that show significant branches at different scales and for which ground surface rupture has been mapped in great details. In each case, rupture conditions are described, including dynamic parameters, past earthquakes history, and regional stress orientation, to see if the dynamic stress field would a priori favor branching. In one case we show that rupture propagation and branching are directly impacted by preexisting geological structures. These structures serve as pathways for the rupture attempting to propagate out of its shear plane. At larger scale, we show that in some cases, rupturing a branch might be systematic, hampering possibilities for the development of a larger seismic rupture. Long-term geomorphology hints at the existence of a strong asperity in the zone where the rupture branched off the main fault. There, no evidence of throughgoing rupture could be seen along the main fault, while the branch is well connected to the main fault. This set of observations suggests that for specific configurations, some rupture scenarios involving systematic branching are more likely than others.
Optical fiber-fault surveillance for passive optical networks in S-band operation window
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Chi, Sien
2005-07-01
An S-band (1470 to 1520 nm) fiber laser scheme, which uses multiple fiber Bragg grating (FBG) elements as feedback elements on each passive branch, is proposed and described for in-service fault identification in passive optical networks (PONs). By tuning a wavelength selective filter located within the laser cavity over a gain bandwidth, the fiber-fault of each branch can be monitored without affecting the in-service channels. In our experiment, an S-band four-branch monitoring tree-structured PON system is demonstrated and investigated experimentally.
Optical fiber-fault surveillance for passive optical networks in S-band operation window.
Yeh, Chien-Hung; Chi, Sien
2005-07-11
An S-band (1470 to 1520 nm) fiber laser scheme, which uses multiple fiber Bragg grating (FBG) elements as feedback elements on each passive branch, is proposed and described for in-service fault identification in passive optical networks (PONs). By tuning a wavelength selective filter located within the laser cavity over a gain bandwidth, the fiber-fault of each branch can be monitored without affecting the in-service channels. In our experiment, an S-band four-branch monitoring tree-structured PON system is demonstrated and investigated experimentally.
NASA Astrophysics Data System (ADS)
Coussement, C.; Gente, P.; Rolet, J.; Tiercelin, J.-J.; Wafula, M.; Buku, S.
1994-10-01
The two branches of the East African Rift system include numerous hydrothermal fields, which are closely related to the present fault motion and to volcanic and seismic activity. In this study structural data from Pemba and Cape Banza hydrothermal fields (western branch, North Tanganyika, Zaire) are discussed in terms of neotectonic phenomena. Different types of records, such as fieldwork (onshore and underwater) and LANDSAT and SPOT imagery, are used to explain structural controls on active and fossil hydrothermal systems and their significance. The Pemba site is located at the intersection of 000-020°-trending normal faults belonging to the Uvira Border Fault System and a 120-130°-trending transtensional fault zone and is an area of high seismicity, with events of relatively large magnitude ( Ms < 6.5). The Cape Banza site occurs at the northern end of the Ubawari Peninsula horst. It is bounded by two fault systems trending 015° and is characterized seismically by events of small magnitude ( Ms < 4). The hydrothermal area itself is tectonically controlled by structures striking 170-180° and 080°. The analysis of both hydrothermal areas demonstrates the rejuvenation of older Proterozoic structures during Recent rift faulting and the location of the hydrothermal activity at the junctions of submeridian and transverse faults. The fault motion is compatible with a regional direction of extension of 090-110°. The Cape Banza and Pemba hydrothermal fields may testify to magma chambers existing below the junctions of the faults. They appear to form at structural nodes and may represent a future volcanic province. Together with the four surface volcanic provinces existing along the western branch, they possibly indicate an incipient rift segmentation related to 'valley-valley' or 'transverse fault-valley' junctions, contrasting with the spacing of the volcanoes measured in the eastern branch. These spacings appear to express the different elastic thicknesses between the eastern and western branches of the East African Rift system, perhaps related to a difference in stage of evolution of the two branches.
Protection Relaying Scheme Based on Fault Reactance Operation Type
NASA Astrophysics Data System (ADS)
Tsuji, Kouichi
The theories of operation of existing relays are roughly divided into two types: one is the current differential types based on Kirchhoff's first law and the other is impedance types based on second law. We can apply the Kirchhoff's laws to strictly formulate fault phenomena, so the circuit equations are represented non linear simultaneous equations with variables fault point k and fault resistance Rf. This method has next two defect. 1) heavy computational burden for the iterative calculation on N-R method, 2) relay operator can not easily understand principle of numerical matrix operation. The new protection relay principles we proposed this paper focuses on the fact that the reactance component on fault point is almost zero. Two reactance Xf(S), Xf(R) on branch both ends are calculated by operation of solving linear equations. If signs of Xf(S) and Xf(R) are not same, it can be judged that the fault point exist in the branch. This reactance Xf corresponds to difference of branch reactance between actual fault point and imaginaly fault point. And so relay engineer can to understand fault location by concept of “distance". The simulation results using this new method indicates the highly precise estimation of fault locations compared with the inspected fault locations on operating transmission lines.
Distributing Earthquakes Among California's Faults: A Binary Integer Programming Approach
NASA Astrophysics Data System (ADS)
Geist, E. L.; Parsons, T.
2016-12-01
Statement of the problem is simple: given regional seismicity specified by a Gutenber-Richter (G-R) relation, how are earthquakes distributed to match observed fault-slip rates? The objective is to determine the magnitude-frequency relation on individual faults. The California statewide G-R b-value and a-value are estimated from historical seismicity, with the a-value accounting for off-fault seismicity. UCERF3 consensus slip rates are used, based on geologic and geodetic data and include estimates of coupling coefficients. The binary integer programming (BIP) problem is set up such that each earthquake from a synthetic catalog spanning millennia can occur at any location along any fault. The decision vector, therefore, consists of binary variables, with values equal to one indicating the location of each earthquake that results in an optimal match of slip rates, in an L1-norm sense. Rupture area and slip associated with each earthquake are determined from a magnitude-area scaling relation. Uncertainty bounds on the UCERF3 slip rates provide explicit minimum and maximum constraints to the BIP model, with the former more important to feasibility of the problem. There is a maximum magnitude limit associated with each fault, based on fault length, providing an implicit constraint. Solution of integer programming problems with a large number of variables (>105 in this study) has been possible only since the late 1990s. In addition to the classic branch-and-bound technique used for these problems, several other algorithms have been recently developed, including pre-solving, sifting, cutting planes, heuristics, and parallelization. An optimal solution is obtained using a state-of-the-art BIP solver for M≥6 earthquakes and California's faults with slip-rates > 1 mm/yr. Preliminary results indicate a surprising diversity of on-fault magnitude-frequency relations throughout the state.
On the stochastic dissemination of faults in an admissible network
NASA Technical Reports Server (NTRS)
Kyrala, A.
1987-01-01
The dynamic distribution of faults in a general type network is discussed. The starting point is a uniquely branched network in which each pair of nodes is connected by a single branch. Mathematical expressions for the uniquely branched network transition matrix are derived to show that sufficient stationarity exists to ensure the validity of the use of the Markov Chain model to analyze networks. In addition the conditions for the use of Semi-Markov models are discussed. General mathematical expressions are derived in an examination of branch redundancy techniques commonly used to increase reliability.
Slip-rate measurements on the Karakorum Fault may imply secular variations in fault motion.
Chevalier, M-L; Ryerson, F J; Tapponnier, P; Finkel, R C; Van Der Woerd, J; Haibing, Li; Qing, Liu
2005-01-21
Beryllium-10 surface exposure dating of offset moraines on one branch of the Karakorum Fault west of the Gar basin yields a long-term (140- to 20-thousand-year) right-lateral slip rate of approximately 10.7 +/- 0.7 millimeters per year. This rate is 10 times larger than that inferred from recent InSAR analyses ( approximately 1 +/- 3 millimeters per year) that span approximately 8 years and sample all branches of the fault. The difference in slip-rate determinations suggests that large rate fluctuations may exist over centennial or millennial time scales. Such fluctuations would be consistent with mechanical coupling between the seismogenic, brittle-creep, and ductile shear sections of faults that reach deep into the crust.
NASA Astrophysics Data System (ADS)
Suter, Max
2015-01-01
During the 3 May 1887 Mw 7.5 Sonora earthquake (surface rupture end-to-end length: 101.8 km), an array of three north-south striking Basin-and-Range Province faults (from north to south Pitáycachi, Teras, and Otates) slipped sequentially along the western margin of the Sierra Madre Occidental Plateau. This detailed field survey of the 1887 earthquake rupture zone along the Pitáycachi fault includes mapping the rupture scarp and measurements of surface deformation. The surface rupture has an endpoint-to-endpoint length of ≥41.0 km, dips 70°W, and is characterized by normal left-lateral extension. The maximum surface offset is 487 cm and the mean offset 260 cm. The rupture trace shows a complex pattern of second-order segmentation. However, this segmentation is not expressed in the 1887 along-rupture surface offset profile, which indicates that the secondary segments are linked at depth into a single coherent fault surface. The Pitáycachi surface rupture shows a well-developed bipolar branching pattern suggesting that the rupture originated in its central part, where the polarity of the rupture bifurcations changes. Most likely the rupture first propagated bilaterally along the Pitáycachi fault. The southern rupture front likely jumped across a step over to the Teras fault and from there across a major relay zone to the Otates fault. Branching probably resulted from the lateral propagation of the rupture after breaching the seismogenic part of the crust, given that the much shorter ruptures of the Otates and Teras segments did not develop branches.
Microseismicity at the North Anatolian Fault in the Sea of Marmara offshore Istanbul, NW Turkey
Bulut, Fatih; Bohnhoff, Marco; Ellsworth, William L.; Aktar, Mustafa; Dresen, Georg
2009-01-01
The North Anatolian Fault Zone (NAFZ) below the Sea of Marmara forms a “seismic gap” where a major earthquake is expected to occur in the near future. This segment of the fault lies between the 1912 Ganos and 1999 İzmit ruptures and is the only NAFZ segment that has not ruptured since 1766. To monitor the microseismic activity at the main fault branch offshore of Istanbul below the Çınarcık Basin, a permanent seismic array (PIRES) was installed on the two outermost Prince Islands, Yassiada and Sivriada, at a few kilometers distance to the fault. In addition, a temporary network of ocean bottom seismometers was deployed throughout the Çınarcık Basin. Slowness vectors are determined combining waveform cross correlation and P wave polarization. We jointly invert azimuth and traveltime observations for hypocenter determination and apply a bootstrap resampling technique to quantify the location precision. We observe seismicity rates of 20 events per month for M < 2.5 along the basin. The spatial distribution of hypocenters suggests that the two major fault branches bounding the depocenter below the Çınarcık Basin merge to one single master fault below ∼17 km depth. On the basis of a cross-correlation technique we group closely spaced earthquakes and determine composite focal mechanisms implementing recordings of surrounding permanent land stations. Fault plane solutions have a predominant right-lateral strike-slip mechanism, indicating that normal faulting along this part of the NAFZ plays a minor role. Toward the west we observe increasing components of thrust faulting. This supports the model of NW trending, dextral strike-slip motion along the northern and main branch of the NAFZ below the eastern Sea of Marmara.
NASA Astrophysics Data System (ADS)
Rodríguez, Luz; Diederix, Hans; Torres, Eliana; Audemard, Franck; Hernández, Catalina; Singer, André; Bohórquez, Olga; Yepez, Santiago
2018-03-01
An interesting variety of field evidence that collectively cover the three branches of Earthquake Geology: Neotectonics, Paleoseismology and Historical seismicity, has been collected in the border area between Venezuela and Colombia, near the town of San José de Cúcuta, as part of a study aimed at establishing the seismic source of the great Cucuta Earthquake, that occurred on May 18th, 1875, and that caused heavy losses of life and destruction on both sides of the border, between the Department of Norte de Santander in Colombia and Táchira state in Venezuela. This region is affected by the activity of several cross-border fault systems that converge in the zone of the so-called Pamplona Indenter. Among these seismic sources, the potential candidates of this destructive seismic event in 1875 are those related to the Boconó Fault System, of the northwestern foothills of the Mérida Andes and in particular it's most northwestern expression, the Aguas Calientes Fault System, as suggested by previous research carried out by FUNVISIS for the Venezuelan oil industry in the late 80s. In order to confirm whether this was the responsible system for the earthquake or not, the following studies were carried out: 1) In Neotectonics, a detailed binational surface mapping of the active faults of this system was carried out. This system consists of three branches referred to in this paper as: the North, Central and South branch respectively; 2) In Paleoseismology, two trenches were excavated. The first trench was excavated across the South branch and the second one across the North branch, which confirmed fault activity during the Holocene epoch; 3) In historical seismicity the direct coseismic surface effects that occurred in the epicentral area of the earthquake were assessed. All evidence collected and integrated in these three lines of research, made it possible to conclude that the Central branch of the Aguas Calientes fault system is the most likely candidate to have been the cause of this seismic event.
Reliability Practice at NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Pruessner, Paula S.; Li, Ming
2008-01-01
This paper describes in brief the Reliability and Maintainability (R&M) Programs performed directly by the reliability branch at Goddard Space Flight Center (GSFC). The mission assurance requirements flow down is explained. GSFC practices for PRA, reliability prediction/fault tree analysis/reliability block diagram, FMEA, part stress and derating analysis, worst case analysis, trend analysis, limit life items are presented. Lessons learned are summarized and recommendations on improvement are identified.
Investigation of lineaments on Skylab and ERTS images of Peninsular Ranges, Southwestern California
NASA Technical Reports Server (NTRS)
Merifield, P. M. (Principal Investigator); Lamar, D. L.
1974-01-01
The author has identified the following significant results. Northwest trending faults such as the Elsinore and San Jacinto are prominently displayed on Skylab and ERTS images of the Peninsular Ranges, southern California. Northeast, north-south, and west-north-west trending lineaments and faults are also apparent on satellite imagery. Several of the lineaments represent previously unmapped faults. Other lineaments are due to erosion along foliation directions and sharp bends in basement rock contacts rather than faulting. The northeast trending Thing Valley fault appears to be offset by the south branch of the Elsinore fault near Agua Caliente Hot Springs. Larger horizontal displacement along the Elsinore fault further northwest may be distributed along several faults which branch from the Elsinore fault in the Peninsular Ranges. The northeast and west-northwest trending faults are truncated by the major northwest trending faults and appear to be restricted to basement terrane. Limited data on displacement direction suggests that the northeast and west-northwest trending faults formed in response to an earlier period of east-northeast, west-southwest crustal shortening. Such a stress system is consistent with the plate tectonic model of a subduction zone parallel to the continental margin suggested in the late Mesozoic and early Tertiary.
NASA Astrophysics Data System (ADS)
Gutscher, Marc-Andre; Dominguez, Stephane; Mercier de Lepinay, Bernard; Pinheiro, Luis; Babonneau, Nathalie; Cattaneo, Antonio; LeFaou, Yann; Barreca, Giovanni; Micallef, Aaron; Rovere, Marzia
2014-05-01
The relation between deep crustal faults and the origin of Mount Etna, the largest and most active volcano in Europe has long been suspected due to its unusual geodynamic location. Results from a new marine geophysical survey offshore Eastern Sicily reveal the detailed geometry (location, length, dip and orientation) of a two-branched 200-km long, lithospheric scale fault system, long sought for as being the cause of Mount Etna. Using high-resolution bathymetry and seismic profiling, we image a 60-km long, previously unidentified, NW trending fault with evidence of recent displacement at the seafloor, offsetting Holocene sediments. This newly identified fault connects NE of Catania, to a known 40-km long, offshore-onshore fault system dissecting the southeastern flank of Mount Etna, generally interpreted as purely gravitational collapse structures. Geological and morphological field studies together with earthquake focal mechanisms indicate active dextral strike-slip motion along the onshore and shallow offshore portion of this 40 + 60 km long segment. The southern 100 km branch of the fault is associated with a sub-vertical lithospheric scale tear fault showing pure down to the East normal faulting and a 500+m thick elongate basin marked by syn-tectonic Plio-quaternary sediment fill. Together they represent two kinematically distinct strands of the long sought "STEP" (Subduction Tear Edge Propagator) fault, whose expression at depth controls the position of Mount Etna. Both 100-km long branches of the fault system are mechanically capable of generating magnitude 7 earthquakes (e.g. - like the 1693 Catania earthquake, the strongest in Italian history, causing 40,000 deaths). We conclude this deep-rooted lithospheric weakness guides gradual down slope creep of Mount Etna and may lead to long-term catastrophic flank collapse with associated tsunami by large-scale mass wasting.
Active faults in Africa: a review
NASA Astrophysics Data System (ADS)
Skobelev, S. F.; Hanon, M.; Klerkx, J.; Govorova, N. N.; Lukina, N. V.; Kazmin, V. G.
2004-03-01
The active fault database and Map of active faults in Africa, in scale of 1:5,000,000, were compiled according to the ILP Project II-2 "World Map of Major Active Faults". The data were collected in the Royal Museum of Central Africa, Tervuren, Belgium, and in the Geological Institute, Moscow, where the final edition was carried out. Active faults of Africa form three groups. The first group is represented by thrusts and reverse faults associated with compressed folds in the northwest Africa. They belong to the western part of the Alpine-Central Asian collision belt. The faults disturb only the Earth's crust and some of them do not penetrate deeper than the sedimentary cover. The second group comprises the faults of the Great African rift system. The faults form the known Western and Eastern branches, which are rifts with abnormal mantle below. The deep-seated mantle "hot" anomaly probably relates to the eastern volcanic branch. In the north, it joins with the Aden-Red Sea rift zone. Active faults in Egypt, Libya and Tunis may represent a link between the East African rift system and Pantellerian rift zone in the Mediterranean. The third group included rare faults in the west of Equatorial Africa. The data were scarce, so that most of the faults of this group were identified solely by interpretation of space imageries and seismicity. Some longer faults of the group may continue the transverse faults of the Atlantic and thus can penetrate into the mantle. This seems evident for the Cameron fault line.
NASA Astrophysics Data System (ADS)
Hsieh, Cheng-En; Huang, Wen-Jeng; Chang, Ping-Yu; Lo, Wei
2016-04-01
An unmanned aerial vehicle (UAV) with a digital camera is an efficient tool for geologists to investigate structure patterns in the field. By setting ground control points (GCPs), UAV-based photogrammetry provides high-quality and quantitative results such as a digital surface model (DSM) and orthomosaic and elevational images. We combine the elevational outcrop 3D model and a digital surface model together to analyze the structural characteristics of Sanyi active fault in Houli-Fengyuan area, western Taiwan. Furthermore, we collect resistivity survey profiles and drilling core data in the Fengyuan District in order to build the subsurface fault geometry. The ground sample distance (GSD) of an elevational outcrop 3D model is 3.64 cm/pixel in this study. Our preliminary result shows that 5 fault branches are distributed 500 meters wide on the elevational outcrop and the width of Sanyi fault zone is likely much great than this value. Together with our field observations, we propose a structural evolution model to demonstrate how the 5 fault branches developed. The resistivity survey profiles show that Holocene gravel was disturbed by the Sanyi fault in Fengyuan area.
Premonitory acoustic emissions and stick-slip in natural and smooth-faulted Westerly granite
Thompson, B.D.; Young, R.P.; Lockner, David A.
2009-01-01
A stick-slip event was induced in a cylindrical sample of Westerly granite containing a preexisting natural fault by loading at constant confining pressure of 150 MPa. Continuously recorded acoustic emission (AE) data and computer tomography (CT)-generated images of the fault plane were combined to provide a detailed examination of microscale processes operating on the fault. The dynamic stick-slip event, considered to be a laboratory analog of an earthquake, generated an ultrasonic signal that was recorded as a large-amplitude AE event. First arrivals of this event were inverted to determine the nucleation site of slip, which is associated with a geometric asperity on the fault surface. CT images and AE locations suggest that a variety of asperities existed in the sample because of the intersection of branch or splay faults with the main fault. This experiment is compared with a stick-slip experiment on a sample prepared with a smooth, artificial saw-cut fault surface. Nearly a thousand times more AE were observed for the natural fault, which has a higher friction coefficient (0.78 compared to 0.53) and larger shear stress drop (140 compared to 68 MPa). However at the measured resolution, the ultrasonic signal emitted during slip initiation does not vary significantly between the two experiments, suggesting a similar dynamic rupture process. We propose that the natural faulted sample under triaxial compression provides a good laboratory analogue for a field-scale fault system in terms of the presence of asperities, fault surface heterogeneity, and interaction of branching faults. ?? 2009.
NASA Astrophysics Data System (ADS)
Donnellan, A.; Grant Ludwig, L.; Rundle, J. B.; Parker, J. W.; Granat, R.; Heflin, M. B.; Pierce, M. E.; Wang, J.; Gunson, M.; Lyzenga, G. A.
2017-12-01
The 2010 M7.2 El Mayor - Cucapah earthquake caused extensive triggering of slip on faults proximal to the Salton Trough in southern California. Triggered slip and postseismic motions that have continued for over five years following the earthquake highlight connections between the El Mayor - Cucapah rupture and the network of faults that branch out along the southern Pacific - North American Plate Boundary. Coseismic triggering follows a network of conjugate faults from the northern end of the rupture to the Coachella segment of the southernmost San Andreas fault. Larger aftershocks and postseismic motions favor connections to the San Jacinto and Elsinore faults further west. The 2012 Brawley Swarm can be considered part of the branching on the Imperial Valley or east side of the plate boundary. Cluster analysis of long-term GPS velocities using Lloyds Algorithm, identifies bifurcation of the Pacific - North American plate boundary; The San Jacinto fault joins with the southern San Andreas fault, and the Salton Trough and Coachella segment of the San Andreas fault join with the Eastern California Shear Zone. The clustering analysis does not identify throughgoing deformation connecting the Coachella segment of the San Andreas fault with the rest of the San Andreas fault system through the San Gorgonio Pass. This observation is consistent with triggered slip from both the 1992 Landers and 2010 El Mayor - Cucapah earthquakes that follows the plate boundary bifurcation and with paleoseismic evidence of smaller earthquakes in the San Gorgonio Pass.
SSME digital control design characteristics
NASA Technical Reports Server (NTRS)
Mitchell, W. T.; Searle, R. F.
1985-01-01
To protect against a latent programming error (software fault) existing in an untried branch combination that would render the space shuttle out of control in a critical flight phase, the Backup Flight System (BFS) was chartered to provide a safety alternative. The BFS is designed to operate in critical flight phases (ascent and descent) by monitoring the activities of the space shuttle flight subsystems that are under control of the primary flight software (PFS) (e.g., navigation, crew interface, propulsion), then, upon manual command by the flightcrew, to assume control of the space shuttle and deliver it to a noncritical flight condition (safe orbit or touchdown). The problems associated with the selection of the PFS/BFS system architecture, the internal BFS architecture, the fault tolerant software mechanisms, and the long term BFS utility are discussed.
NASA Astrophysics Data System (ADS)
Agnon, A.; Rockwell, T. K.; Stein, S.; Raphael, K.
2017-12-01
The DST, accommodating most of the displacement across the boundary zone between the Arabian and Sinai plates, is an ideal plate boundary on which to study earthquake sequences because of 1) a long (>2 kyr) record of historical earthquakes (corroborated and extended several millennia back with ancient ruins); 2) deformed sediments and rockfalls, offering datable archives of strong shaking at various distances from the fault, spanning 300 kyr; 3) a moderate fault slip rate, allowing separation and dating of individual earthquakes for comparison to the historical record, and 4) a growing body of paleoseismic trench data on both timing and displacement across some sectors of the fault. Here we explore the role of a secondary fault branch on clustering using a new approach for the analysis of earthquake bursts. The CFZ is a ≥100 km long shear zone, branching northwestward from the N-S trending Jordan Valley segment of the DST. GPS monitoring of the CFZ indicates a slip rate of <1 mm/yr, absorbing up to 20% of the slip between Arabia Plate and the Sinai-Levant Block across the DST. CFZ seismicity is recorded by three datasets with different time scales and maximum magnitudes: 1) Instrumental seismicity, M≤5.3 (1984); 2) Historic documents suggesting a M>6 event in 363 CE, with ruins distributed up to 100 km from the CFZ; 3) 5 ka cave deposits showing damage greater than from any subsequent earthquake, implying 6The CFZ branch events interact with ruptures on the main DST. At 5 ka destruction was widespread along the DST. The 363 CE earthquake was accompanied by another event in the Arava Valley. The pair skipped the 100 km long Dead Sea segment of the DST. An earlier pair in the northern Levant preceded that pair by several decades: 303 & 347 CE, following a two-century long quiescence, and a harbinger for a shaky millennium. We suggest that the 363 CE pair reflects a rare state that enables a CFZ rupture. This oblique branch is unfavorably oriented for slip under the state of stress that drives the sinistral shear on the N-S DST. As local stress fields evolve after earthquakes, the CFZ can slip and then trigger instability on the entire DST. It is tempting to relate the 363 pair to the triggering of the 365 CE East Mediterranean earthquake burst.
San Andreas fault zone drilling project: scientific objectives and technological challenges
Hickman, Stephen; Younker, Leland; Zobeck, Mark; Cooper, George; ,
1994-01-01
We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through an integrated program of coring, fluid sampling, in-situ and laboratory experimentation and long-term monitoring, we hope to provide fundamental constraints on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300??C; 2) continuous coring of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6 and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of seismicity and a broad range of physical and chemical properties over periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the regions of greatest scientific interest.
San Andreas fault zone drilling project: scientific objectives and technological challenges
Hickman, S.H.; Younker, L.W.; Zoback, M.D.
1995-01-01
We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through a comprehensive program of coring, fluid sampling, downhole measurements, laboratory experimentation, and long-term monitoring, we hope to obtain critical information on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300°C; 2) continuous coring and completion of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6, and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of earthquake activity, fluid pressure, deformation and other parameters for periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the region of greatest scientific interest.
Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Caskey, S. John
2014-01-01
Surface creep rate, observed along five branches of the dextral San Andreas fault system in northern California, varies considerably from one section to the next, indicating that so too may the depth at which the faults are locked. We model locking on 29 fault sections using each section’s mean long‐term creep rate and the consensus values of fault width and geologic slip rate. Surface creep rate observations from 111 short‐range alignment and trilateration arrays and 48 near‐fault, Global Positioning System station pairs are used to estimate depth of creep, assuming an elastic half‐space model and adjusting depth of creep iteratively by trial and error to match the creep observations along fault sections. Fault sections are delineated either by geometric discontinuities between them or by distinctly different creeping behaviors. We remove transient rate changes associated with five large (M≥5.5) regional earthquakes. Estimates of fraction locked, the ratio of moment accumulation rate to loading rate, on each section of the fault system provide a uniform means to inform source parameters relevant to seismic‐hazard assessment. From its mean creep rates, we infer the main branch (the San Andreas fault) ranges from only 20%±10% locked on its central creeping section to 99%–100% on the north coast. From mean accumulation rates, we infer that four urban faults appear to have accumulated enough seismic moment to produce major earthquakes: the northern Calaveras (M 6.8), Hayward (M 6.8), Rodgers Creek (M 7.1), and Green Valley (M 7.1). The latter three faults are nearing or past their mean recurrence interval.
NASA Astrophysics Data System (ADS)
Ando, R.; Kaneko, Y.
2017-12-01
The coseismic rupture of the 2016 Kaikoura earthquake propagated over the distance of 150 km along the NE-SW striking fault system in the northern South Island of New Zealand. The analysis of In-SAR, GPS and field observations (Hamling et al., 2017) revealed that the most of the rupture occurred along the previously mapped active faults, involving more than seven major fault segments. These fault segments, mostly dipping to northwest, are distributed in a quite complex manner, manifested by fault branching and step-over structures. Back-projection rupture imaging shows that the rupture appears to jump between three sub-parallel fault segments in sequence from the south to north (Kaiser et al., 2017). The rupture seems to be terminated on the Needles fault in Cook Strait. One of the main questions is whether this multi-fault rupture can be naturally explained with the physical basis. In order to understand the conditions responsible for the complex rupture process, we conduct fully dynamic rupture simulations that account for 3-D non-planar fault geometry embedded in an elastic half-space. The fault geometry is constrained by previous In-SAR observations and geological inferences. The regional stress field is constrained by the result of stress tensor inversion based on focal mechanisms (Balfour et al., 2005). The fault is governed by a relatively simple, slip-weakening friction law. For simplicity, the frictional parameters are uniformly distributed as there is no direct estimate of them except for a shallow portion of the Kekerengu fault (Kaneko et al., 2017). Our simulations show that the rupture can indeed propagate through the complex fault system once it is nucleated at the southernmost segment. The simulated slip distribution is quite heterogeneous, reflecting the nature of non-planar fault geometry, fault branching and step-over structures. We find that optimally oriented faults exhibit larger slip, which is consistent with the slip model of Hamling et al. (2017). We conclude that the first order characteristics of this event may be interpreted by the effect of irregularity in the fault geometry.
Tectonic implications of the 2017 Ayvacık (Çanakkale) earthquakes, Biga Peninsula, NW Turkey
NASA Astrophysics Data System (ADS)
Özden, Süha; Över, Semir; Poyraz, Selda Altuncu; Güneş, Yavuz; Pınar, Ali
2018-04-01
The west to southwestward motion of the Anatolian block results from the relative motions between the Eurasian, Arabian and African plates along the right-lateral North Anatolian Fault Zone in the north and left-lateral East Anatolian Fault Zone in the east. The Biga Peninsula is tectonically influenced by the Anatolian motion originating along the North Anatolian Fault Zone which splits into two main (northern and southern) branches in the east of Marmara region: the southern branch extends towards the Biga Peninsula which is characterized by strike-slip to oblique normal faulting stress regime in the central to northern part. The southernmost part of peninsula is characterized by a normal to oblique faulting stress regime. The analysis of both seismological and structural field data confirms the change of stress regime from strike-slip character in the center and north to normal faulting character in the south of peninsula where the earthquake swarm recently occurred. The earthquakes began on 14 January 2017 (Mw: 4.4) on Tuzla Fault and migrated southward along the Kocaköy and Babakale's stepped-normal faults of over three months. The inversion of focal mechanisms yields a normal faulting stress regime with an approximately N-S (N4°E) σ3 axis. The inversion of earthquakes occurring in central and northern Biga Peninsula and the north Aegean region gives a strike-slip stress regime with approximately WNW-ESE (N85°W) σ1 and NNE-SSW (N17°E) σ3 axis. The strike-slip stress regime is attributed to westward Anatolian motion, while the normal faulting stress regime is attributed to both the extrusion of Anatolian block and the slab-pull force of the subducting African plate along the Hellenic arc.
Failure Accommodation Tested in Magnetic Suspension Systems for Rotating Machinery
NASA Technical Reports Server (NTRS)
Provenza, Andy J.
2000-01-01
The NASA Glenn Research Center at Lewis Field and Texas A&M University are developing techniques for accommodating certain types of failures in magnetic suspension systems used in rotating machinery. In recent years, magnetic bearings have become a viable alternative to rolling element bearings for many applications. For example, industrial machinery such as machine tool spindles and turbomolecular pumps can today be bought off the shelf with magnetically supported rotating components. Nova Gas Transmission Ltd. has large gas compressors in Canada that have been running flawlessly for years on magnetic bearings. To help mature this technology and quiet concerns over the reliability of magnetic bearings, NASA researchers have been investigating ways of making the bearing system tolerant to faults. Since the potential benefits from an oil-free, actively controlled bearing system are so attractive, research that is focused on assuring system reliability and safety is justifiable. With support from the Fast Quiet Engine program, Glenn's Structural Mechanics and Dynamics Branch is working to demonstrate fault-tolerant magnetic suspension systems targeted for aerospace engine applications. The Flywheel Energy Storage Program is also helping to fund this research.
NASA Astrophysics Data System (ADS)
Ilik, Semih C.; Arsoy, Aysen B.
2017-07-01
Integration of distributed generation (DG) such as renewable energy sources to electrical network becomes more prevalent in recent years. Grid connection of DG has effects on load flow directions, voltage profile, short circuit power and especially protection selectivity. Applying traditional overcurrent protection scheme is inconvenient when system reliability and sustainability are considered. If a fault happens in DG connected network, short circuit contribution of DG, creates additional branch element feeding the fault current; compels to consider directional overcurrent (OC) protection scheme. Protection coordination might get lost for changing working conditions when DG sources are connected. Directional overcurrent relay parameters are determined for downstream and upstream relays when different combinations of DG connected singular or plural, on radial test system. With the help of proposed flow chart, relay parameters are updated and coordination between relays kept sustained for different working conditions in DigSILENT PowerFactory program.
Crustal dynamics studies in China
NASA Technical Reports Server (NTRS)
Wu, F. T.
1985-01-01
Geodynamics of Mainland China and Taiwan are discussed. The following research was performed: (1) the tectonics along the Tanlu fault in eastern China; (2) tectonics in the Taiwan Strait behind the collision zone in Taiwan; and (3) analysis of faulting in the vicinity of the Altyn Tagn fault. It is found that the existence of the fault is traced back to at least Jurassic with the deposition of conglomerate sandstones in the troungh along the present Tanlu fault branches in the Shantung Province. Taiwan is the product of collision between the Phillipine plate and the Asian plate and Taiwan came into being because of a former island arc.
NASA Astrophysics Data System (ADS)
Ikeda, M.; Toda, S.; Nishizaka, N.; Onishi, K.; Suzuki, S.
2015-12-01
Rupture patterns of a long fault system are controlled by spatial heterogeneity of fault strength and stress associated with geometrical characteristics and stress perturbation history. Mechanical process for sequential ruptures and multiple simultaneous ruptures, one of the characteristics of a long fault such as the North Anatolian fault, governs the size and frequency of large earthquakes. Here we introduce one of the cases in southwest Japan and explore what controls rupture initiation, sequential ruptures and fault branching on a long fault system. The Median Tectonic Line active fault zone (hereinafter MTL) is the longest and most active fault in Japan. Based on historical accounts, a series of M ≥ 7 earthquakes occurred on at least a 300-km-long portion of the MTL in 1596. On September 1, the first event occurred on the Kawakami fault segment, in Central Shikoku, and the subsequent events occurred further west. Then on September 5, another rupture initiated from the Central to East Shikoku and then propagated toward the Rokko-Awaji fault zone to Kobe, a northern branch of the MTL, instead of the eastern main extent of the MTL. Another rupture eventually extended to near Kyoto. To reproduce this progressive failure, we applied two numerical models: one is a coulomb stress transfer; the other is a slip-tendency analysis under the tectonic stress. We found that Coulomb stress imparted from historical ruptures have triggered the subsequent ruptures nearby. However, stress transfer does not explain beginning of the sequence and rupture directivities. Instead, calculated slip-tendency values show highly variable along the MTL: high and low seismic potential in West and East Shikoku. The initiation point of the 1596 progressive failure locates near the boundary in the slip-tendency values. Furthermore, the slip-tendency on the Rokko-Awaji fault zone is far higher than that of the MTL in Wakayama, which may explain the rupture directivity toward Kobe-Kyoto.
Fault Protection Design and Testing for the Cassini Spacecraft in a "Mixed" Thruster Configuration
NASA Technical Reports Server (NTRS)
Bates, David; Lee, Allan; Meakin, Peter; Weitl, Raquel
2013-01-01
NASA's Cassini Spacecraft, launched on October 15th, 1997 and arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. In order to meet the challenging attitude control and navigation requirements of the orbit profile at Saturn, Cassini is equipped with a monopropellant thruster based Reaction Control System (RCS), a bipropellant Main Engine Assembly (MEA) and a Reaction Wheel Assembly (RWA). In 2008, after 11 years of reliable service, several RCS thrusters began to show signs of end of life degradation, which led the operations team to successfully perform the swap from the A-branch to the B-branch RCS system. If similar degradation begins to occur on any of the B-branch thrusters, Cassini might have to assume a "mixed" thruster configuration, where a subset of both A and B branch thrusters will be designated as prime. The Cassini Fault Protection FSW was recently updated to handle this scenario. The design, implementation, and testing of this update is described in this paper.
NASA Astrophysics Data System (ADS)
Akinci, A.; Pace, B.
2017-12-01
In this study, we discuss the seismic hazard variability of peak ground acceleration (PGA) at 475 years return period in the Southern Apennines of Italy. The uncertainty and parametric sensitivity are presented to quantify the impact of the several fault parameters on ground motion predictions for 10% exceedance in 50-year hazard. A time-independent PSHA model is constructed based on the long-term recurrence behavior of seismogenic faults adopting the characteristic earthquake model for those sources capable of rupturing the entire fault segment with a single maximum magnitude. The fault-based source model uses the dimensions and slip rates of mapped fault to develop magnitude-frequency estimates for characteristic earthquakes. Variability of the selected fault parameter is given with a truncated normal random variable distribution presented by standard deviation about a mean value. A Monte Carlo approach, based on the random balanced sampling by logic tree, is used in order to capture the uncertainty in seismic hazard calculations. For generating both uncertainty and sensitivity maps, we perform 200 simulations for each of the fault parameters. The results are synthesized both in frequency-magnitude distribution of modeled faults as well as the different maps: the overall uncertainty maps provide a confidence interval for the PGA values and the parameter uncertainty maps determine the sensitivity of hazard assessment to variability of every logic tree branch. These branches of logic tree, analyzed through the Monte Carlo approach, are maximum magnitudes, fault length, fault width, fault dip and slip rates. The overall variability of these parameters is determined by varying them simultaneously in the hazard calculations while the sensitivity of each parameter to overall variability is determined varying each of the fault parameters while fixing others. However, in this study we do not investigate the sensitivity of mean hazard results to the consideration of different GMPEs. Distribution of possible seismic hazard results is illustrated by 95% confidence factor map, which indicates the dispersion about mean value, and coefficient of variation map, which shows percent variability. The results of our study clearly illustrate the influence of active fault parameters to probabilistic seismic hazard maps.
Active geodynamics of the Caucasus/Caspian region educed from GPS, and seismic Observations
NASA Astrophysics Data System (ADS)
Gadirov (Kadirov), Fakhraddin; Floyd, Michael; Reilinger, Robert; Alizadeh, Akif; Guliyev, Ibrahim; Mammadov, Samir; Safarov, Rafig
2017-04-01
The geodynamic and earthquake activity in the Caucasus/Caspian region is due to the ongoing collision of the Arabian plate with Eurasia. The Caucasus and Caspian Sea are historically among the most seismically active regions on earth. These earthquakes have caused thousands of deaths and great economic distress. Future earthquakes in the Caucasus and Caspian Sea must be considered and planned for in order to limit their impact on the people, ecology, and infrastructure of the region. Within this plate tectonics context, we examine deformation of the Caucasus region and show that most crustal shortening in the collision zone is accommodated by the Greater Caucasus Fold-and-Thrust Belt (GCFTB) along the southern edge of the Greater Caucasus Mountains. The eastern GCFTB appears to bifurcate west of Baku, with one branch following the accurate geometry of the Greater Caucasus, turning towards the south and traversing the Neftchala Peninsula. A second branch may extend directly into the Caspian Sea south of Baku, likely connecting to the Central Caspian Seismic Zone. We model deformation in terms of a locked thrust fault that coincides in general with the main surface trace of the GCFTB. We consider two end-member models, each of which tests the likelihood of one or other of the branches being the dominant cause of observed deformation. Our models indicate that strain is actively accumulating on the fault along the 200 km segment of the fault west of Baku (approximately between longitudes 47-49°E). Parts of this segment of the fault broke in major earthquakes historically (1191, 1859, 1902) suggesting that significant future earthquakes (M 6-7) are likely on the central and western segment of the fault. We observe a similar deformation pattern across the eastern end of the GCFTB along a profile crossing the Kura Depression and Greater Caucasus Mountains in the vicinity of Baku. Along this eastern segment, a branch of the fault changes from a NW-SE striking thrust to an N-S oriented strike-slip fault. The similar deformation pattern along the eastern and central GCFTB segments raises the possibility that major earthquakes may also occur in eastern Azerbaijan. However, the eastern segment of the GCFTB has no record of large historic earthquakes, and is characterized by thick, highly saturated and over-pressured sediments within the Kura Depression and adjacent Caspian Basin that may inhibit elastic strain accumulation in favour of fault creep, and/or distributed faulting and folding. Thus, while our analyses suggest that large earthquakes are likely in central and western Azerbaijan, it is still uncertain whether significant earthquakes are also likely along the eastern segment, and on which structure. Ongoing and future focused studies of active deformation promise to shed further light on the tectonics and earthquake hazards in this highly populated and developed part of Azerbaijan.
NASA Astrophysics Data System (ADS)
DuRoss, C. B.; Bunds, M. P.; Reitman, N. G.; Gold, R. D.; Personius, S. F.; Briggs, R. W.; Toke, N. A.; Johnson, K. L.; Lajoie, L. J.
2017-12-01
In 1983, about 36 km of the 130-km-long multisegment Lost River fault zone (LRFZ) (Idaho, USA) ruptured in the M 6.9 Borah Peak earthquake. Normal-faulting surface rupture propagated along the entire 24-km-long Thousand Springs section, then branched to the northwest along a 4-km-long fault (western section) that continues into the Willow Creek Hills, a prominent bedrock ridge that forms a structural boundary between the Thousand Springs section and Warms Springs section to the north. North of the Willow Creek Hills, the 1983 rupture continued onto the southern 8 km of the 16-km-long Warm Springs section. To improve our understanding of the Borah Peak earthquake and the role of structural boundaries in normal-fault rupture propagation, we acquired low-altitude aerial imagery of the southern 8 km of the Warm Springs section and northern 6 km of the Thousand Springs section, including the western section branch fault. Using 5-10-cm-pixel digital surface models generated from this dataset, we measured vertical surface offsets across both 1983 and prehistoric scarps. On the Warm Springs section, 1983 displacement is minor (mean of 0.3 m) compared to at least two prehistoric events having mean displacements of 1.1 m and 1.7 m inferred from displacement difference curves. Prehistoric scarps on the western section indicate rupture of this branch fault prior to 1983. Correcting for 1983 displacement, mean prehistoric displacement on the western section is 0.9 m compared to a mean of 0.7 m in 1983. Using these data and previous paleoseismic displacements, we evaluate the spatial distribution of cumulative and per-earthquake displacement. Our results suggest that at least one prehistoric rupture of the Thousand Springs section occurred with a similar length and displacement to that in 1983. Further, the 1983 spillover rupture from the Thousand Springs section to the southernmost Warm Springs section appears unique from larger displacement, prehistoric ruptures that may have spanned the majority of the Warm Springs section and possibly continued south into the Willow Creek Hills based on paleoseismic and surface-offset data. We conclude that the Willow Creek Hills structural boundary has likely moderated, but not completely impeded both prehistoric and 1983 ruptures of the northern LRFZ.
NASA Astrophysics Data System (ADS)
Bergh, Steffen; Sylvester, Arthur; Damte, Alula; Indrevær, Kjetil
2014-05-01
The San Andreas fault in southern California records only few large-magnitude earthquakes in historic time, and the recent activity is confined primarily on irregular and discontinuous strike-slip and thrust fault strands at shallow depths of ~5-20 km. Despite this fact, slip along the San Andreas fault is calculated to c. 35 mm/yr based on c.160 km total right lateral displacement for the southern segment of the fault in the last c. 8 Ma. Field observations also reveal complex fault strands and multiple events of deformation. The presently diffuse high-magnitude crustal movements may be explained by the deformation being largely distributed along more gently dipping reverse faults in fold-thrust belts, in contrast to regions to the north where deformation is less partitioned and localized to narrow strike-slip fault zones. In the Mecca Hills of the Salton trough transpressional deformation of an uplifted segment of the San Andreas fault in the last ca. 4.0 My is expressed by very complex fault-oblique and fault-parallel (en echelon) folding, and zones of uplift (fold-thrust belts), basement-involved reverse and strike-slip faults and accompanying multiple and pervasive cataclasis and conjugate fracturing of Miocene to Pleistocene sedimentary strata. Our structural analysis of the Mecca Hills addresses the kinematic nature of the San Andreas fault and mechanisms of uplift and strain-stress distribution along bent fault strands. The San Andreas fault and subsidiary faults define a wide spectrum of kinematic styles, from steep localized strike-slip faults, to moderate dipping faults related to oblique en echelon folds, and gently dipping faults distributed in fold-thrust belt domains. Therefore, the San Andreas fault is not a through-going, steep strike-slip crustal structure, which is commonly the basis for crustal modeling and earthquake rupture models. The fault trace was steep initially, but was later multiphase deformed/modified by oblique en echelon folding, renewed strike-slip movements and contractile fold-thrust belt structures. Notably, the strike-slip movements on the San Andreas fault were transformed outward into the surrounding rocks as oblique-reverse faults to link up with the subsidiary Skeleton Canyon fault in the Mecca Hills. Instead of a classic flower structure model for this transpressional uplift, the San Andreas fault strands were segmented into domains that record; (i) early strike-slip motion, (ii) later oblique shortening with distributed deformation (en echelon fold domains), followed by (iii) localized fault-parallel deformation (strike-slip) and (iv) superposed out-of-sequence faulting and fault-normal, partitioned deformation (fold-thrust belt domains). These results contribute well to the question if spatial and temporal fold-fault branching and migration patterns evolving along non-vertical strike-slip fault segments can play a role in the localization of earthquakes along the San Andreas fault.
Ben-Zion, Y.; Peng, Z.; Okaya, D.; Seeber, L.; Armbruster, J.G.; Ozer, N.; Michael, A.J.; Baris, S.; Aktar, M.
2003-01-01
We discuss the subsurface structure of the Karadere-Duzce branch of the North Anatolian Fault based on analysis of a large seismic data set recorded by a local PASSCAL network in the 6 months following the Mw = 7.4 1999 Izmit earthquake. Seismograms observed at stations located in the immediate vicinity of the rupture zone show motion amplification and long-period oscillations in both P- and S-wave trains that do not exist in nearby off-fault stations. Examination of thousands of waveforms reveals that these characteristics are commonly generated by events that are well outside the fault zone. The anomalous features in fault-zone seismograms produced by events not necessarily in the fault may be referred to generally as fault-zone-related site effects. The oscillatory shear wave trains after the direct S arrival in these seismograms are analysed as trapped waves propagating in a low-velocity fault-zone layer. The time difference between the S arrival and trapped waves group does not grow systematically with increasing source-receiver separation along the fault. These observations imply that the trapping of seismic energy in the Karadere-Duzce rupture zone is generated by a shallow fault-zone layer. Traveltime analysis and synthetic waveform modelling indicate that the depth of the trapping structure is approximately 3-4 km. The synthetic waveform modelling indicates further that the shallow trapping structure has effective waveguide properties consisting of thickness of the order of 100 m, a velocity decrease relative to the surrounding rock of approximately 50 per cent and an S-wave quality factor of 10-15. The results are supported by large 2-D and 3-D parameter space studies and are compatible with recent analyses of trapped waves in a number of other faults and rupture zones. The inferred shallow trapping structure is likely to be a common structural element of fault zones and may correspond to the top part of a flower-type structure. The motion amplification associated with fault-zone-related site effects increases the seismic shaking hazard near fault-zone structures. The effect may be significant since the volume of sources capable of generating motion amplification in shallow trapping structures is large.
Structure and kinematics of the Sumatran Fault System in North Sumatra (Indonesia)
NASA Astrophysics Data System (ADS)
Fernández-Blanco, David; Philippon, Melody; von Hagke, Christoph
2016-12-01
Lithospheric-scale faults related to oblique subduction are responsible for some of the most hazardous earthquakes reported worldwide. The mega-thrust in the Sunda sector of the Sumatran oblique subduction has been intensively studied, especially after the infamous 2004 Mw 9.1 earthquake, but its onshore kinematic complement within the Sumatran subduction, the transform Sumatran Fault System, has received considerably less attention. In this paper, we apply a combination of analysis of Digital Elevation Models (ASTER GDEM) and field evidence to resolve the kinematics of the leading edge of deformation of the northern sector of the Sumatran Fault System. To this end, we mapped the northernmost tip of Sumatra, including the islands to the northwest, between 4.5°N and 6°N. Here, major topographic highs are related to different faults. Using field evidence and our GDEM structural mapping, we can show that in the area where the fault bifurcates into two fault strands, two independent kinematic regimes evolve, both consistent with the large-scale framework of the Sumatran Fault System. Whereas the eastern branch is a classic Riedel system, the western branch features a fold-and-thrust belt. The latter contractional feature accommodated significant amounts (c. 20%) of shortening of the system in the study area. Our field observations of the tip of the NSFS match a strain pattern with a western contractional domain (Pulau Weh thrust splay) and an eastern extensional domain (Pulau Aceh Riedel system), which are together characteristic of the tip of a propagating strike-slip fault, from a mechanical viewpoint. For the first time, we describe the strain partitioning resulting from the propagation of the NSFS in Sumatra mainland. Our study helps understanding complex kinematics of an evolving strike-slip system, and stresses the importance of field studies in addition to remote sensing and geophysical studies.
NASA Astrophysics Data System (ADS)
Dura-Gomez, I.; Addison, A.; Knapp, C. C.; Talwani, P.; Chapman, A.
2005-12-01
During the 1886 Charleston earthquake, two parallel tabby walls of Fort Dorchester broke left-laterally, and a strike of ~N25°W was inferred for the causative Sawmill Branch fault. To better define this fault, which does not have any surface expression, we planned to cut trenches across it. However, as Fort Dorchester is a protected archeological site, we were required to locate the fault accurately away from the fort, before permission could be obtained to cut short trenches. The present GPR investigations were planned as a preliminary step to determine locations for trenching. A pulseEKKO 100 GPR was used to collect data along eight profiles (varying in length from 10 m to 30 m) that were run across the projected strike of the fault, and one 50 m long profile that was run parallel to it. The locations of the profiles were obtained using a total station. To capture the signature of the fault, sixteen common-offset (COS) lines were acquired by using different antennas (50, 100 and 200 MHz) and stacking 64 times to increase the signal-to-noise ratio. The location of trees and stumps were recorded. In addition, two common-midpoint (CMP) tests were carried out, and gave an average velocity of about 0.097 m/ns. Processing included the subtraction of the low frequency "wow" on the trace (dewow), automatic gain control (AGC) and the application of bandpass filters. The signals using the 50 MHz, 100 MHz and 200 MHz antennas were found to penetrate up to about 30 meters, 20 meters and 12 meters respectively. Vertically offset reflectors and disruptions of the electrical signal were used to infer the location of the fault(s). Comparisons of the locations of these disruptions on various lines were used to infer the presence of a N30°W fault zone We plan to confirm these locations by cutting shallow trenches.
Determination of Aseismic Creep or Strain Field on the Main Marmara Fault
NASA Astrophysics Data System (ADS)
Özbey, V.; Yavasoglu, H.; Masson, F.; Klein, E.; Alkan, M. N.; Alkan, R. M.
2016-12-01
Plate motion affecting the Earth's crust have occurred for millions of years. Determination of strain accumulation based on the plate motion is commonly monitored with GPS in recent years. The North Anatolian Fault (NAF) Zone, which is one of the fastest faults in the world, extends along all North Anatolia from Bingöl to Saros Gulf. Several destructive earthquakes occurred there, such as Izmit (in 1999, Mw=7.4) and Duzce (in 1999, Mw=7.2) in last century. The NAFZ is dividing into southern and northern branches to the east of Marmara region and the Northern branch (Main Marmara Fault-MMF) is crossing the Marmara Sea, starting in from the Gulf of Izmit - Adapazarı and reaching the Gulf of Saros. According to recent studies, the MMF is the largest unbroken part of the fault and is divided into segments (among which the Central Marmara-CM and Prince's Island-PI segments). The determination of the deformation accumulated on the MMF has become extremely important especially after the 1999 Izmit earthquake. Recent studies have demonstrated that the Prince's Island segment is fully locked. However, studies that are focused on the Central Marmara segment, that is located offshore Istanbul, a giant metropole that has more than 14 million population, do not conclude about the presence of a seismic gap, capable of generating a big earthquake. Therefore, in the scope of this study, a new GPS network will be established at short and long distance from the Main Marmara Fault, to densify the existing GPS network. several campaign measurements will be necessary to compute a velocity field. The velocity field will reveal the compression and variations of accumulation rate on the fault. Also, the amount of aseismic creep deep within the fault will be determined using Elastic Displacement Modeling method, allowing to conclude about the existence of a seismic gap on the Main Marmara Fault originated from aseismic deformation or not.
NASA Astrophysics Data System (ADS)
Nedorub, O. I.; Knapp, C. C.
2012-12-01
The tectonic history of the Eastern North American Margin (ENAM) incorporates two cycles of continental assembly, multiple pulses of orogeny, rifting, and post-rift geodynamic evolution. This is reflected in the heterogeneous lithosphere of the ENAM which contains fault structures originated in Paleozoic to Mesozoic eras. The South Georgia Rift basin is probably the largest Mesozoic graben within its boundaries that is associated with the breakup of Pangea. It is composed of smaller sub-basins which appear to be bounded by high-angle normal faults, some of which may have been inverted in late Cretaceous and Cenozoic eras. Paleozoic structures may have been reactivated in Cenozoic time as well. The ENAM is characterized by N-NE maximum horizontal compressive stress direction. This maximum compressional stress field is sub-parallel to the strike of the Atlantic Coast province fault systems. Camden, Augusta, Allendale, and Pen Branch faults are four of the many such reactivated faults along the southern part of ENAM. These faults are now buried under the 0-400 m of loosely consolidated Cretaceous and Cenozoic age sediments and thus are either only partially mapped or currently not recognized. Some of the objectives of this study are to map the subsurface expression and geometry of these faults and to investigate the post Cretaceous deformation and possible causes of fault reactivation on a passive margin. This study employs an integrated geophysical approach to investigate the upper 200 m of identified locations of the above mentioned faults. 2-D high-resolution shallow seismic reflection and refraction methods, gravity surveys, GPR, 2-D electrical resistivity and well data are used for analyses and interpretation. Preliminary results suggest that Camden fault shows signs of Cenozoic reactivation through an approximately 30 m offset NW side up mainly along a steeply dipping fault zone in the basal contact of Coastal Plain sediments with the Carolina Piedmont. Drill-hole and seismic data along the Augusta profile show that there is a significant offset (approximately 7m) down to the SE of Pinehurst and older Cretaceous deposits. The Pen Branch fault seismic profile shows evidence of Cenozoic reactivation and inversion. The youngest discontinuous reflector (the top of the Dry Branch Formation) is offset by 1-4m and constrains the latest fault movement to be Middle Eocene in age. A NW-SE well derived cross-section across the Allendale fault shows that there is no significant offset above 50m below sea level (top of the Late Eocene Black Mingo Group), however a SW-NE cross section shows an approximately 21m offset NE side up across the newly postulated fault striking NW-SE. The top of the oldest undeformed formation (Middle Eocene Santee Limestone) and the top of the youngest deformed unit (Late Eocene Black Mingo Group) constrain a time frame for the latest deformation of the Coastal Plain sediments to be between approximately 50 and 40 Ma. The results of this research provide an opportunity to address the Cenozoic tectonism in SC, advance the knowledge and current understanding of the structure of the rift basins, update the database used for the ongoing CO2 sequestration project, the local hydrology, and the Savannah River Site safety evaluation.
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2011-01-01
The Controls and Dynamics Branch (CDB) at National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research and Exploration Systems Missions. This paper provides a brief overview of the various CDB tasks in support of the NASA programs. The programmatic structure of the CDB activities is described along with a brief overview of each of the CDB tasks including research objectives, technical challenges, and recent accomplishments. These tasks include active control of propulsion system components, intelligent propulsion diagnostics and control for reliable fault identification and accommodation, distributed engine control, and investigations into unsteady propulsion systems.
NASA Astrophysics Data System (ADS)
Choi, Jin-Hyuck; Klinger, Yann; Ferry, Matthieu; Ritz, Jean-François; Kurtz, Robin; Rizza, Magali; Bollinger, Laurent; Davaasambuu, Battogtokh; Tsend-Ayush, Nyambayar; Demberel, Sodnomsambuu
2018-02-01
In 1905, 14 days apart, two M 8 continental strike-slip earthquakes, the Tsetserleg and Bulnay earthquakes, occurred on the Bulnay fault system, in Mongolia. Together, they ruptured four individual faults, with a total length of 676 km. Using submetric optical satellite images "Pleiades" with ground resolution of 0.5 m, complemented by field observation, we mapped in detail the entire surface rupture associated with this earthquake sequence. Surface rupture along the main Bulnay fault is 388 km in length, striking nearly E-W. The rupture is formed by a series of fault segments that are 29 km long on average, separated by geometric discontinuities. Although there is a difference of about 2 m in the average slip between the western and eastern parts of the Bulnay rupture, along-fault slip variations are overall limited, resulting in a smooth slip distribution, except for local slip deficit at segment boundaries. We show that damage, including short branches and secondary faulting, associated with the rupture propagation, occurred significantly more often along the western part of the Bulnay rupture, while the eastern part of the rupture appears more localized and thus possibly structurally simpler. Eventually, the difference of slip between the western and eastern parts of the rupture is attributed to this difference of rupture localization, associated at first order with a lateral change in the local geology. Damage associated to rupture branching appears to be located asymmetrically along the extensional side of the strike-slip rupture and shows a strong dependence on structural geologic inheritance.
NASA Astrophysics Data System (ADS)
Havazli, E.; Wdowinski, S.; Amelung, F.
2017-12-01
The North Anatolian Fault Zone (NAFZ) is one of the most active continental transform faults in the world. A westward migrating earthquake sequence has started in 1939 in Erzincan and the last two events of this sequence occurred in 1999 in Izmit and Duzce manifesting the importance of NAFZ on the seismic hazard potential of the region. NAFZ exhibits slip rates ranging from 14-30 mm/yr along its 1500 km length with a right lateral strike slip characteristic. In the East of the Marmara Sea, the NAFZ splits into two branches. The Gazikoy-Saros segment (Ganos Fault) is the westernmost and onshore segment of the northern branch. The ENE-WSW oriented Ganos Fault is seismically active. It produced a Ms 7.2 earthquake in 1912, which was followed by several large aftershocks, including Ms 6.3 and Ms 6.9 events. Since 1912, the Ganos Fault did not produce any significant earthquakes (> M 5), in contrast to its adjacent segments, which produced 20 M>5 earthquakes, including a M 6.7 event, offshore in Gulf of Saros. Interseismic strain accumulation along the Ganos Fault was assessed from sparse GPS measurements along a single transect located perpendicular to the fault zone, suggesting strain accumulation rate of 20-25 mm/yr. Insofar, InSAR studies, based on C-band data, didn't produce conclusive results due to low coherence over the fault zone area, which is highly vegetated. In this study, we present a detailed interseismic velocity map of the Ganos Fault zone derived from L-band InSAR observations. We use 21 ALOS PALSAR scenes acquired over a 5-year period, from 2007 to 2011. We processed the ALOS data using the PySAR software, which is the University of Miami version of the Small Baseline (SB) method. The L-band observations enabled us to overcome the coherence issue in the study area. Our initial results indicate a maximum velocity of 15 mm/yr across the fault zone. The high spatial resolution of the InSAR-based interseismic velocity map will enable us to better to resolve locking depth variations and structural complexities along the seismically active Ganos Fault segment of the NAFZ.
The Najd Fault System of Saudi Arabia
NASA Astrophysics Data System (ADS)
Stüwe, Kurt; Kadi, Khalid; Abu-Alam, Tamer; Hassan, Mahmoud
2014-05-01
The Najd Fault System of the Arabian-Nubian Shield is considered to be the largest Proterozoic Shear zone system on Earth. The shear zone was active during the late stages of the Pan African evolution and is known to be responsible for the exhumation of fragments of juvenile Proterozoic continental crust that form a series of basement domes across the shield areas of Egypt and Saudi Arabia. A three year research project funded by the Austrian Science Fund (FWF) and supported by the Saudi Geological Survey (SGS) has focused on structural mapping, petrology and geochronology of the shear zone system in order to constrain age and mechanisms of exhumation of the domes - with focus on the Saudi Arabian side of the Red Sea. We recognise important differences in comparison with the basement domes in the Eastern desert of Egypt. In particular, high grade metamorphic rocks are not exclusively confined to basement domes surrounded by shear zones, but also occur within shear zones themselves. Moreover, we recognise both exhumation in extensional and in transpressive regimes to be responsible for exhumation of high grade metamorphic rocks in different parts of the shield. We suggest that these apparent structural differences between different sub-regions of the shield largely reflect different timing of activity of various branches of the Najd Fault System. In order to tackle the ill-resolved timing of the Najd Fault System, zircon geochronology is performed on intrusive rocks with different cross cutting relationships to the shear zone. We are able to constrain an age between 580 Ma and 605 Ma for one of the major branches of the shear zone, namely the Ajjaj shear zone. In our contribution we present a strain map for the shield as well as early geochronological data for selected shear zone branches.
Zablocki, Charles J.; Hajnour, M.O.
1987-01-01
Telluric-electric and auto-magnetotelluric measurements obtained in and around the Raha fault zone in the Buqaya area indicate that it dips steeply to the southwest. Large contrasts in the electrical properties of Qarnayn and Maraghan metasedimentary rocks located on either side of the fault are characteristic of the rocks within the fault zone. However, no large electrical contrasts were detected along several segments of a southern branch of the main fault in the Shiaila area, indicating that the rocks on either side of the fault are of similar composition. Extremely low resistivity readings in the Buqaya and Shiaila areas are associated with fracturing and clay-bearing gouge that accompany known shear zones. The locations of several shallow plutons have been inferred from these studies, one of which is probably a source of gold-bearing quartz veins in the metasedimentary rocks of the Shiaila area.
The crustal structure along the 1999 Izmit/Düzce rupture of the North-Anatolian Fault
NASA Astrophysics Data System (ADS)
Sebastian, Rost; David, Cornwell; David, Thompson; Greg, Houseman; Metin, Kahraman; Ugur, Teoman; Selda, Altuncu-Poyraz; Niyazi, Turkelli; Andrew, Frederiksen; Stephane, Rondenay; Tim, Wright
2015-04-01
Deformation along continental strike-slip faults is localized onto narrow fault zones at the surface, which may slip suddenly and catastrophically in earthquakes. On the other hand, strain in the upper mantle is more broadly distributed and is thought to occur by continuous ductile creep. The transition between these two states is poorly understood although it controls the behaviour of the fault zone during the earthquake loading cycle. To understand the structure of and strain distribution across the North-Anatolian Fault Zone (NAFZ) we deployed temporary seismic stations in the region of the 1999 Izmit (M7.5) and Düzce (M7.2) earthquakes. The rectangular array consisted of 66 seismic stations with a nominal station spacing of 7 km and seven additional stations forming a semi-circular ring towards the east (Dense Array for Northern Anatolia - DANA). Using this very dense seismic dataset and a combination of established (e.g. H-k stacking and common conversion point migration) and novel (scattering migration and scattering inversion) seismic processing techniques allows unprecedented resolution of the crustal structure in this region. This study resolves sharp changes in crustal structure across and along the surface expression of the two branches of the NAFZ at scale lengths less than 10 km at mid to lower-crustal depths. The results indicate that the northern NAFZ branch depth extent varies from the mid-crust to the upper mantle and it is likely to be less than 5 km wide throughout the crust. We furthermore resolve a high velocity lower crust and a region of crustal underthrusting that might add strength to a heterogeneous crust and may play a role in dictating the variation in faulting style and postseismic deformation in this region of the NAFZ. The results are consistent with a narrow fault zone accommodating postseismic deformation in the lower crust, as opposed to a broad ductile region below the seismogenic region of the fault.
Low Velocity Zones along the San Jacinto Fault, Southern California, inferred from Local Earthquakes
NASA Astrophysics Data System (ADS)
Li, Z.; Yang, H.; Peng, Z.; Ben-Zion, Y.; Vernon, F.
2013-12-01
Natural fault zones have regions of brittle damage leading to a low-velocity zone (LVZ) in the immediate vicinity of the main fault interface. The LVZ may amplify ground motion, modify rupture propagation, and impact derivation of earthquke properties. Here we image low-velocity fault zone structures along the San Jacinto Fault (SJF), southern California, using waveforms of local earthquakes that are recorded at several dense arrays across the SJFZ. We use generalized ray theory to compute synthetic travel times to track the direct and FZ-reflected waves bouncing from the FZ boundaries. This method can effectively reduce the trade-off between FZ width and velocity reduction relative to the host rock. Our preliminary results from travel time modeling show the clear signature of LVZs along the SJF, including the segment of the Anza seismic gap. At the southern part near the trifrication area, the LVZ of the Clark Valley branch (array JF) has a width of ~200 m with ~55% reduction in Vp and Vs. This is consistent with what have been suggested from previous studies. In comparison, we find that the velocity reduction relative to the host rock across the Anza seismic gap (array RA) is ~50% for both Vp and Vs, nearly as prominent as that on the southern branches. The width of the LVZ is ~230 m. In addition, the LVZ across the Anza gap appears to locate in the northeast side of the RA array, implying potential preferred propagation direction of past ruptures.
Earth Observations taken by Expedition 30 crewmember
2012-01-14
ISS030-E-035487 (14 Jan. 2012) --- The East African Rift Valley in Kenya is featured in this image photographed by an Expedition 30 crew member on the International Space Station. This photograph highlights classical geological structures associated with a tectonic rift valley, in this case the Eastern Branch of the East African Rift near Kenya’s southern border with Tanzania and just south of the Equator. The East African Rift is one of the great tectonic features of Africa, caused by fracturing of Earth’s crust. The Nubian (or African) plate includes the older continental crust of Africa to the west, while the Somalian plate that is moving away includes the Horn of Africa to the northeast; the tectonic boundary stretches from the southern Red Sea to central Mozambique. Landscapes in the rift valley can appear confusing. The most striking features in this view are the numerous, nearly parallel, linear fault lines that occupy the floor of the valley (most of the image). Shadows cast by the late afternoon sun make the fault scarps (steps in the landscape caused by slip motion along individual faults) more prominent. The faults are aligned with the north-south axis of the valley (lower left to top right). A secondary trend of less linear faults cuts the main fault trend at an acute angle, the fault steps throwing large shadows. The Eastern Branch of the East African Rift is arid (compared with the Western Branch which lies on the border of the Congolese rainforest). Evidence of this can be seen in the red, salt-loving algae of the shallow and salty Lake Magadi (center). A neighboring small lake to the north has deeper water and appears dark in the image. The white salt deposits of the dry part of the Lake Magadi floor (center) host a few small commercial salt pans. The lakes appear to be located where the main and secondary fault trends intersect. The East African rift system is marked by substantial volcanic activity, including lavas erupted from fissures along the rift in the region. Much of the faulting observed in this image cuts through such lavas. Elsewhere along the rift system individual volcanoes form. Some of those volcanoes are very large, including Mt. Kilimanjaro and Mt. Kenya. In this image, rising 400 meters above the valley floor, a volcano appears to be superimposed on the faults—indicating that the volcano is younger than the faults it covers. Deeply eroded slopes also suggest that the volcano has not been active for a long time. The largest vegetated area (lower left)—in an desert zone with no vegetation visible to the naked eye from space—is the green floor of a valley which drains an area large enough for water to exist near the surface so that plants can thrive. For a sense of scale, the vegetated valley floor is 17 kilometers long (10.5 miles).
McElroy, Lisa M; Khorzad, Rebeca; Rowe, Theresa A; Abecassis, Zachary A; Apley, Daniel W; Barnard, Cynthia; Holl, Jane L
The purpose of this study was to use fault tree analysis to evaluate the adequacy of quality reporting programs in identifying root causes of postoperative bloodstream infection (BSI). A systematic review of the literature was used to construct a fault tree to evaluate 3 postoperative BSI reporting programs: National Surgical Quality Improvement Program (NSQIP), Centers for Medicare and Medicaid Services (CMS), and The Joint Commission (JC). The literature review revealed 699 eligible publications, 90 of which were used to create the fault tree containing 105 faults. A total of 14 identified faults are currently mandated for reporting to NSQIP, 5 to CMS, and 3 to JC; 2 or more programs require 4 identified faults. The fault tree identifies numerous contributing faults to postoperative BSI and reveals substantial variation in the requirements and ability of national quality data reporting programs to capture these potential faults. Efforts to prevent postoperative BSI require more comprehensive data collection to identify the root causes and develop high-reliability improvement strategies.
Measuring and Specifying Combinatorial Coverage of Test Input Configurations
Kuhn, D. Richard; Kacker, Raghu N.; Lei, Yu
2015-01-01
A key issue in testing is how many tests are needed for a required level of coverage or fault detection. Estimates are often based on error rates in initial testing, or on code coverage. For example, tests may be run until a desired level of statement or branch coverage is achieved. Combinatorial methods present an opportunity for a different approach to estimating required test set size, using characteristics of the test set. This paper describes methods for estimating the coverage of, and ability to detect, t-way interaction faults of a test set based on a covering array. We also develop a connection between (static) combinatorial coverage and (dynamic) code coverage, such that if a specific condition is satisfied, 100% branch coverage is assured. Using these results, we propose practical recommendations for using combinatorial coverage in specifying test requirements. PMID:28133442
NASA Astrophysics Data System (ADS)
Accardo, N. J.; Shillington, D. J.; Gaherty, J. B.; Scholz, C. A.; Ebinger, C.; Nyblade, A.; McCartney, T.; Chindandali, P. R. N.; Kamihanda, G.; Ferdinand-Wambura, R.
2017-12-01
A long-standing debate surrounds controls on the development and ultimately abandonment of basin bounding border faults. The Malawi Rift in the the Western Branch of the East African Rift System presents an ideal location to investigate normal fault development. The rift is composed of a series of half graben basins bound by large border faults, which cross several terranes and pre-existing features. To delineate rift basin structure, we undertook 3D first arrival tomography across the North and Central basins of the Malawi Rift based on seismic refraction data acquired in Lake Malawi. The resulting 3D velocity model allows for the first-ever mapping of 3D basin structure in the Western Branch of the EAR. We estimate fault displacement profiles along the two border faults and find that each accommodated 7.2 km of throw. Previous modeling studies suggest that given the significant lengths (>140 km) and throws of these faults, they may be nearing their maximum dimensions or may have already been abandoned. While both faults accommodate similar throws, their lengths differ by 40 km, likely due to the influence of both preexisting basement fabric and large-scale preexisting structures crossing the rift. Over 4 km of sediment exists where the border faults overlap in the accommodation zone indicating that these faults likely established their lengths early. Portions of both basins contain packages of sediment with anomalously fast velocities (> 4 km/s), which we interpret to represent sediment packages from prior rifting episodes. In the Central Basin, this preexisting sediment traces along the inferred offshore continuation of the Karoo-aged Ruhuhu Basin that intersects Lake Malawi at the junction between the North and Central basins. This feature may have influenced the length of the border fault bounding the Central Basin. In the North Basin, the preexisting sediment is thicker ( 4 km) and likely represents the offshore continuation of a series of preexisting rift basins that extend from the Malawi Rift north to the Rukwa Rift. The presence of this offshore basin confirms that the corridor between the Rukwa and Malawi Rifts has experienced prolonged periods of extension, likely thinning the lithosphere there, and thus providing a mechanism for focusing of long-lived magmatism at the Rungwe Volcanic Center.
Rymer, Michael J.; Treiman, Jerome A.; Kendrick, Katherine J.; Lienkaemper, James J.; Weldon, Ray J.; Bilham, Roger; Wei, Meng; Fielding, Eric J.; Hernandez, Janis L.; Olson, Brian P.E.; Irvine, Pamela J.; Knepprath, Nichole; Sickler, Robert R.; Tong, Xiaopeng; Siem, Martin E.
2011-01-01
Triggered slip in the Yuha Desert area occurred along more than two dozen faults, only some of which were recognized before the April 4, 2010, El Mayor-Cucapah earthquake. From east to northwest, slip occurred in seven general areas: (1) in the Northern Centinela Fault Zone (newly named), (2) along unnamed faults south of Pinto Wash, (3) along the Yuha Fault (newly named), (4) along both east and west branches of the Laguna Salada Fault, (5) along the Yuha Well Fault Zone (newly revised name) and related faults between it and the Yuha Fault, (6) along the Ocotillo Fault (newly named) and related faults to the north and south, and (7) along the southeasternmost section of the Elsinore Fault. Faults that slipped in the Yuha Desert area include northwest-trending right-lateral faults, northeast-trending left-lateral faults, and north-south faults, some of which had dominantly vertical offset. Triggered slip along the Ocotillo and Elsinore Faults appears to have occurred only in association with the June 14, 2010 (Mw5.7), aftershock. This aftershock also resulted in slip along other faults near the town of Ocotillo. Triggered offset on faults in the Yuha Desert area was mostly less than 20 mm, with three significant exceptions, including slip of about 50–60 mm on the Yuha Fault, 40 mm on a fault south of Pinto Wash, and about 85 mm on the Ocotillo Fault. All triggered slips in the Yuha Desert area occurred along preexisting faults, whether previously recognized or not.
NASA Astrophysics Data System (ADS)
Plaza-Faverola, A.; Henrys, S.; Pecher, I.; Wallace, L.; Klaeschen, D.
2016-12-01
Prestack depth migration data across the Hikurangi margin, East Coast of the North Island, New Zealand, are used to derive subducting slab geometry, upper crustal structure, and seismic velocities resolved to ˜14 km depth. We investigate the potential relationship between the crustal architecture, fluid migration, and short-term geodetically determined slow slip events. The subduction interface is a shallow dipping thrust at <7 km depth near the trench and steps down to 14 km depth along an ˜18 km long ramp, beneath Porangahau Ridge. This apparent step in the décollement is associated with splay fault branching and coincides with a zone of maximum slip (90 mm) inferred on the subduction interface during slow slip events in June and July 2011. A low-velocity zone beneath the plate interface, updip of the plate interface ramp, is interpreted as fluid-rich overpressured sediments capped with a low permeability condensed layer of chalk and interbedded mudstones. Fluid-rich sediments have been imbricated by splay faults in a region that coincides with the step down in the décollement from the top of subducting sediments to the oceanic crust and contribute to spatial variation in frictional properties of the plate interface that may promote slow slip behavior in the region. Further, transient fluid migration along splay faults at Porangahau Ridge may signify stress changes during slow slip.
Cai, J.; McMechan, G.A.; Fisher, M.A.
1996-01-01
In many geologic environments, ground-penetrating radar (GPR) provides high-resolution images of near-surface Earth structure. GPR data collection is nondestructive and very economical. The scale of features detected by GPR lies between those imaged by high-resolution seismic reflection surveys and those exposed in trenches and is therefore potentially complementary to traditional techniques for fault location and mapping. Sixty-two GPR profiles were collected at 12 sites in the San Francisco Bay region. Results show that GPR data correlate with large-scale features in existing trench observations, can be used to locate faults where they are buried or where their positions are not well known, and can identify previously unknown fault segments. The best data acquired were on a profile across the San Andreas fault, traversing Pleistocene terrace deposits south of Olema in Marin County; this profile shows a complicated multi-branched fault system from the ground surface down to about 40 m, the maximum depth for which data were recorded.
Late Quaternary paleoseismicity and seismic potential of the Yilan-Yitong Fault Zone in NE China
NASA Astrophysics Data System (ADS)
Yu, Zhongyuan; Yin, Na; Shu, Peng; Li, Jincheng; Wei, Qinghai; Min, Wei; Zhang, Peizhen
2018-01-01
The Yilan-Yitong Fault Zone (YYFZ), which is composed of two nearly parallel branches with a spacing of 5-30 km and a length of ∼1100 km, is considered to be the key branch of the Tancheng-Lujiang Fault Zone (TLFZ) in NE China. It was traditionally believed that the YYFZ experienced weak activity or was inactive during the Late Quaternary, without the capability to generate strong earthquakes (M ≥ 7), based on the absence of typical outcrops and large historical or instrumental earthquakes (M > 6). However, our paleoseismic study shows that the YYFZ is the primary seismotectonic structure (M ≥ 7) that poses significant earthquake threats to NE China. The synthesis of data collected from geologic investigations, geomorphic mapping, trench logging and the dating of samples indicates that the YYFZ is an active structure that has undergone segmented strong tectonic deformation since the Late Quaternary with a characteristic assemblage of landforms, including linear scarps and troughs, offset or deflected streams, linear sag ponds, small horsts and grabens. The latest ruptures of the YYFZ migrated from previous boundary faults into the basin interior, forming a left-stepping en echelon pattern in plain view, and the kinematics of these events in the Late Quaternary were dominated by reverse dextral slipping. Multi-segment cluster faulting might have occurred during three cluster periods, i.e., ∼34750-35812 a BP, ∼21700-22640 a BP, and ∼4000 a BP-present, which implies that the recurrence interval of large earthquakes along the YYFZ may be as long as tens of thousands of years.
Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California
Lozos, Julian C.; Harris, Ruth A.; Murray, Jessica R.; Lienkaemper, James J.
2015-01-01
The Bartlett Springs Fault (BSF), the easternmost branch of the northern San Andreas Fault system, creeps along much of its length. Geodetic data for the BSF are sparse, and surface creep rates are generally poorly constrained. The two existing geodetic slip rate inversions resolve at least one locked patch within the creeping zones. We use the 3-D finite element code FaultMod to conduct dynamic rupture models based on both geodetic inversions, in order to determine the ability of rupture to propagate into the creeping regions, as well as to assess possible magnitudes for BSF ruptures. For both sets of models, we find that the distribution of aseismic creep limits the extent of coseismic rupture, due to the contrast in frictional properties between the locked and creeping regions.
Fault Diagnosis of Power Systems Using Intelligent Systems
NASA Technical Reports Server (NTRS)
Momoh, James A.; Oliver, Walter E. , Jr.
1996-01-01
The power system operator's need for a reliable power delivery system calls for a real-time or near-real-time Al-based fault diagnosis tool. Such a tool will allow NASA ground controllers to re-establish a normal or near-normal degraded operating state of the EPS (a DC power system) for Space Station Alpha by isolating the faulted branches and loads of the system. And after isolation, re-energizing those branches and loads that have been found not to have any faults in them. A proposed solution involves using the Fault Diagnosis Intelligent System (FDIS) to perform near-real time fault diagnosis of Alpha's EPS by downloading power transient telemetry at fault-time from onboard data loggers. The FDIS uses an ANN clustering algorithm augmented with a wavelet transform feature extractor. This combination enables this system to perform pattern recognition of the power transient signatures to diagnose the fault type and its location down to the orbital replaceable unit. FDIS has been tested using a simulation of the LeRC Testbed Space Station Freedom configuration including the topology from the DDCU's to the electrical loads attached to the TPDU's. FDIS will work in conjunction with the Power Management Load Scheduler to determine what the state of the system was at the time of the fault condition. This information is used to activate the appropriate diagnostic section, and to refine if necessary the solution obtained. In the latter case, if the FDIS reports back that it is equally likely that the faulty device as 'start tracker #1' and 'time generation unit,' then based on a priori knowledge of the system's state, the refined solution would be 'star tracker #1' located in cabinet ITAS2. It is concluded from the present studies that artificial intelligence diagnostic abilities are improved with the addition of the wavelet transform, and that when such a system such as FDIS is coupled to the Power Management Load Scheduler, a faulty device can be located and isolated from the rest of the system. The benefit of these studies provides NASA with the ability to quickly restore the operating status of a space station from a critical state to a safe degraded mode, thereby saving costs in experimentation rescheduling, fault diagnostics, and prevention of loss-of-life.
NASA Astrophysics Data System (ADS)
Matrau, Rémi; Klinger, Yann; Van der Woerd, Jérôme; Liu-Zeng, Jing; Li, Zhanfei; Xu, Xiwei
2017-04-01
Late Quaternary slip rate determination by CRN dating on the Haiyuan fault, China, and implication for complex geometry fault systems Matrau Rémi, Klinger Yann, Van der Woerd Jérôme, Liu-Zeng Jing, Li Zhanfei, Xu Xiwei The Haiyuan fault in Gansu Province, China, is a major left-lateral strike-slip fault forming the northeastern boundary of the Tibetan plateau and accommodating part of the deformation from the India-Asia collision. Geomorphic and geodetic studies of the Haiyuan fault show slip rates ranging from 4 mm/yr to 19 mm/yr from east to west along 500 km of the fault. Such discrepancy could be explained by the complex geometry of the fault system, leading to slip distribution on multiple branches. Combining displacement measurements of alluvial terraces from high-resolution Pléiades images and 10Be - 26Al cosmogenic radionuclides (CRN) dating, we bracket the late Quaternary slip rate along the Hasi Shan fault segment (37°00' N, 104°25' E). At our calibration site, terrace riser offsets for 5 terraces ranging from 6 m to 227 m and CRN ages ranging from 6.5±0.6 kyr to 41±4 kyr - yield geological left-lateral slip rates from 2.0 mm/yr to 4.4 mm/yr. We measured consistent terrace riser offset values along the entire 25 km-long segment, which suggests that some external forcing controls the regional river-terrace emplacement, regardless of each specific catchment. Hence, we extend our slip rate determination to the entire Hasi Shan fault segment to be 4.0±1.0 mm/yr since the last 40 kyr. This rate is consistent with other long-term rates of 4 mm/yr to 5 mm/yr east and west of Hasi Shan - as well as geodetic rates of 4 mm/yr to 6 mm/yr west of Hasi Shan. However, Holocene terraces and moraines offsets have suggested higher rates of 15 to 20 mm/yr further west. Such disparate rates may be explained by slip distribution on multiple branches. In particular, the Zhongwei fault splay in the central part of the Haiyuan fault, with a slip rate of 4-5 mm/yr could partly explain the faster rates on the western single stranded Haiyuan fault. In addition we constrained 0.55±0.1 mm/yr of uplift rate along the Hasi Shan, where the fault strike veers southward, indicating slip partitioning. Our slip rate along the Hasi Shan segment is consistent with most of the long-term and short-term slip rates ( 5 mm/yr) measured along the central and eastern parts of the Haiyuan fault. However the discrepancy with other studies to the west highlights the major implication of complex geometries on the slip distribution over large fault systems.
NASA Astrophysics Data System (ADS)
Chen, C.; Lee, J.; Chan, Y.; Lu, C.
2010-12-01
The Taipei Metropolis, home to around 10 million people, is subject to seismic hazard originated from not only distant faults or sources scattered throughout the Taiwan region, but also active fault lain directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Penglai arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for its subsurface structure and activities. Boreholes records in the central portion of the fault were analyzed to document the stacking of post- Last Glacial Maximum growth sediments, and a tulip flower structure is illuminated with averaged vertical slip rate of about 3 mm/yr. Similar fault zone architecture and post-LGM tectonic subsidence rate is also found in the northern portion of the fault. A correlation between geomorphology and structural geology in the Shanchiao Fault zone demonstrates an array of subtle geomorphic scarps corresponds to the branch fault while the surface trace of the main fault seems to be completely erased by erosion and sedimentation. Such constraints and knowledge are crucial in earthquake hazard evaluation and mitigation in the Taipei Metropolis, and in understanding the kinematics of transtensional tectonics in northern Taiwan. Schematic 3D diagram of the fault zone in the central portion of the Shanchiao Fault, displaying regional subsurface geology and its relation to topographic features.
Expert System Detects Power-Distribution Faults
NASA Technical Reports Server (NTRS)
Walters, Jerry L.; Quinn, Todd M.
1994-01-01
Autonomous Power Expert (APEX) computer program is prototype expert-system program detecting faults in electrical-power-distribution system. Assists human operators in diagnosing faults and deciding what adjustments or repairs needed for immediate recovery from faults or for maintenance to correct initially nonthreatening conditions that could develop into faults. Written in Lisp.
A New Kinematic Model for Polymodal Faulting: Implications for Fault Connectivity
NASA Astrophysics Data System (ADS)
Healy, D.; Rizzo, R. E.
2015-12-01
Conjugate, or bimodal, fault patterns dominate the geological literature on shear failure. Based on Anderson's (1905) application of the Mohr-Coulomb failure criterion, these patterns have been interpreted from all tectonic regimes, including normal, strike-slip and thrust (reverse) faulting. However, a fundamental limitation of the Mohr-Coulomb failure criterion - and others that assume faults form parallel to the intermediate principal stress - is that only plane strain can result from slip on the conjugate faults. However, deformation in the Earth is widely accepted as being three-dimensional, with truly triaxial stresses and strains. Polymodal faulting, with three or more sets of faults forming and slipping simultaneously, can generate three-dimensional strains from truly triaxial stresses. Laboratory experiments and outcrop studies have verified the occurrence of the polymodal fault patterns in nature. The connectivity of polymodal fault networks differs significantly from conjugate fault networks, and this presents challenges to our understanding of faulting and an opportunity to improve our understanding of seismic hazards and fluid flow. Polymodal fault patterns will, in general, have more connected nodes in 2D (and more branch lines in 3D) than comparable conjugate (bimodal) patterns. The anisotropy of permeability is therefore expected to be very different in rocks with polymodal fault patterns in comparison to conjugate fault patterns, and this has implications for the development of hydrocarbon reservoirs, the genesis of ore deposits and the management of aquifers. In this contribution, I assess the published evidence and models for polymodal faulting before presenting a novel kinematic model for general triaxial strain in the brittle field.
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Boerschlein, David P.
1993-01-01
Fault-Tree Compiler (FTC) program, is software tool used to calculate probability of top event in fault tree. Gates of five different types allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language easy to understand and use. In addition, program supports hierarchical fault-tree definition feature, which simplifies tree-description process and reduces execution time. Set of programs created forming basis for reliability-analysis workstation: SURE, ASSIST, PAWS/STEM, and FTC fault-tree tool (LAR-14586). Written in PASCAL, ANSI-compliant C language, and FORTRAN 77. Other versions available upon request.
Symbolic discrete event system specification
NASA Technical Reports Server (NTRS)
Zeigler, Bernard P.; Chi, Sungdo
1992-01-01
Extending discrete event modeling formalisms to facilitate greater symbol manipulation capabilities is important to further their use in intelligent control and design of high autonomy systems. An extension to the DEVS formalism that facilitates symbolic expression of event times by extending the time base from the real numbers to the field of linear polynomials over the reals is defined. A simulation algorithm is developed to generate the branching trajectories resulting from the underlying nondeterminism. To efficiently manage symbolic constraints, a consistency checking algorithm for linear polynomial constraints based on feasibility checking algorithms borrowed from linear programming has been developed. The extended formalism offers a convenient means to conduct multiple, simultaneous explorations of model behaviors. Examples of application are given with concentration on fault model analysis.
NASA Astrophysics Data System (ADS)
Ma, S.; Ma, J.; Liu, L.; Liu, P.
2007-12-01
Digital speckle correlation method (DSCM) is one kind of photomechanical deformation measurement method. DSCM could obtain continuous deformation field contactlessly by just capturing speckle images from specimen surface. Therefore, it is suitable to observe high spatial resolution deformation field in tectonophysical experiment. However, in the general DSCM experiment, the inspected surface of specimen needs to be painted to bear speckle grains in order to obtain the high quality speckle image. This also affects the realization of other measurement techniques. In this study, an improved DSCM system is developed and utilized to measure deformation field of rock specimen without surface painting. The granodiorite with high contrast nature grains is chosen to manufacture the specimen, and a specially designed DSCM algorithm is developed to analyze this kind of nature speckle images. Verification and calibration experiments show that the system could inspect a continuous (about 15Hz) high resolution displacement field (with resolution of 5μm) and strain field (with resolution of 50μɛ), dispensing with any preparation on rock specimen. Therefore, it could be conveniently utilized to study the failure of rock structure. Samples with compressive en echelon faults and extensional en echelon faults are studied on a two-direction servo-control test machine. The failure process of the samples is discussed based on the DSCM results. Experiment results show that: 1) The contours of displacement field could clearly indicate the activities of faults and new cracks. The displacement gradient adjacent to active faults and cracks is much greater than other areas. 2) Before failure of the samples, the mean strain of the jog area is largest for the compressive en echelon fault, while that is smallest for the extensional en echelon fault. This consists with the understanding that the jog area of compressive fault subjects to compression and that of extensional fault subjects to tension. 3) For the extensional en echelon sample, the dislocation across fault on load-driving end is greater than that cross fault on fixed end. Within the same fault, the dislocation across branch far from the jog area is greater than that across branch near the jog area. This indicates the restriction effect of jog area on the activity of fault. Moreover, the average dislocation across faults is much greater than that across the cracks. 4) For the compressive en echelon fault, the wing cracks initialized firstly and propagate outwards the jog area. Subsequently, a wedge strain concentration area is initialized and developed in the jog area because of the interaction of the two faults. Finally, the jog area failed when one crack propagates rapidly and connects the two ends of faults. The DSCM system used in this study could clearly show the deformation and failure process of the en echelon fault sample. The experiment using DSCM could be performed dispensing with any preparation on specimen and not affecting other inspection. Therefore, DSCM is expected to be a suitable tool for experimental study of fault samples in laboratory.
Measurement of fault latency in a digital avionic miniprocessor
NASA Technical Reports Server (NTRS)
Mcgough, J. G.; Swern, F. L.
1981-01-01
The results of fault injection experiments utilizing a gate-level emulation of the central processor unit of the Bendix BDX-930 digital computer are presented. The failure detection coverage of comparison-monitoring and a typical avionics CPU self-test program was determined. The specific tasks and experiments included: (1) inject randomly selected gate-level and pin-level faults and emulate six software programs using comparison-monitoring to detect the faults; (2) based upon the derived empirical data develop and validate a model of fault latency that will forecast a software program's detecting ability; (3) given a typical avionics self-test program, inject randomly selected faults at both the gate-level and pin-level and determine the proportion of faults detected; (4) determine why faults were undetected; (5) recommend how the emulation can be extended to multiprocessor systems such as SIFT; and (6) determine the proportion of faults detected by a uniprocessor BIT (built-in-test) irrespective of self-test.
GUI Type Fault Diagnostic Program for a Turboshaft Engine Using Fuzzy and Neural Networks
NASA Astrophysics Data System (ADS)
Kong, Changduk; Koo, Youngju
2011-04-01
The helicopter to be operated in a severe flight environmental condition must have a very reliable propulsion system. On-line condition monitoring and fault detection of the engine can promote reliability and availability of the helicopter propulsion system. A hybrid health monitoring program using Fuzzy Logic and Neural Network Algorithms can be proposed. In this hybrid method, the Fuzzy Logic identifies easily the faulted components from engine measuring parameter changes, and the Neural Networks can quantify accurately its identified faults. In order to use effectively the fault diagnostic system, a GUI (Graphical User Interface) type program is newly proposed. This program is composed of the real time monitoring part, the engine condition monitoring part and the fault diagnostic part. The real time monitoring part can display measuring parameters of the study turboshaft engine such as power turbine inlet temperature, exhaust gas temperature, fuel flow, torque and gas generator speed. The engine condition monitoring part can evaluate the engine condition through comparison between monitoring performance parameters the base performance parameters analyzed by the base performance analysis program using look-up tables. The fault diagnostic part can identify and quantify the single faults the multiple faults from the monitoring parameters using hybrid method.
Surface Rupture Characteristics and Rupture Mechanics of the Yushu Earthquake (Ms7.1), 14/04/2010
NASA Astrophysics Data System (ADS)
Pan, J.; Li, H.; Xu, Z.; Li, N.; Wu, F.; Guo, R.; Zhang, W.
2010-12-01
On April 14th 2010, a disastrous earthquake (Ms 7.1) struck Yushu County, Qinghai Province, China, killing thousands of people. This earthquake occurred as a result of sinistral strike-slip faulting on the western segment of the Xianshuihe Fault zone in eastern Tibetan Plateau. Our group conducted scientific investigation in the field on co-seismic surface rupture and active tectonics in the epicenter area immediately after the earthquake. Here, we introduce our preliminary results on the surface ruptures and rupture mechanics of the Yushu Earthquake. The surface rupture zone of Yushu earthquake, which is about 49 km-long, consists of 3 discontinuous left stepping rupture segments, which are 19 km, 22 km, and about 8 km, respectively, from west to east. Each segment consists of a series of right stepping en-echelon branch ruptures. The branch ruptures consist of interphase push-up and tension fissures or simply en-echelon tension fissures. The co-seismic displacements had been surveyed with a total station in detail on landmarks such as rivers, gullies, roads, farmlands, wire poles, and fences. The maximum offset measured is 2.3m, located near the Guoyangyansongduo Village. There are 3 offset peaks along the rupture zone corresponding to the 3 segments of the surface rupture zone. The maximum offsets in the west, central, and east segment rupture zones are 1.4m, 2.3m, and 1.6m respectively. The surface rupture zone of Yushu earthquake strikes in a 310°NW direction. The fault plane dips to the northeast and the dip angle is about 81°. The rupture zone is developed in transtension setting. Tension normal fault developed during the sinistral strike-slip process of the fault. The valley west of Yushu City and the Longbao Lake are both pull-apart basins formed during the transtension activity of the fault.
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Martensen, Anna L.
1992-01-01
FTC, Fault-Tree Compiler program, is reliability-analysis software tool used to calculate probability of top event of fault tree. Five different types of gates allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language of FTC easy to understand and use. Program supports hierarchical fault-tree-definition feature simplifying process of description of tree and reduces execution time. Solution technique implemented in FORTRAN, and user interface in Pascal. Written to run on DEC VAX computer operating under VMS operating system.
Khan, F I; Abbasi, S A
2000-07-10
Fault tree analysis (FTA) is based on constructing a hypothetical tree of base events (initiating events) branching into numerous other sub-events, propagating the fault and eventually leading to the top event (accident). It has been a powerful technique used traditionally in identifying hazards in nuclear installations and power industries. As the systematic articulation of the fault tree is associated with assigning probabilities to each fault, the exercise is also sometimes called probabilistic risk assessment. But powerful as this technique is, it is also very cumbersome and costly, limiting its area of application. We have developed a new algorithm based on analytical simulation (named as AS-II), which makes the application of FTA simpler, quicker, and cheaper; thus opening up the possibility of its wider use in risk assessment in chemical process industries. Based on the methodology we have developed a computer-automated tool. The details are presented in this paper.
Stafford fault system: 120 million year fault movement history of northern Virginia
Powars, David S.; Catchings, Rufus D.; Horton, J. Wright; Schindler, J. Stephen; Pavich, Milan J.
2015-01-01
The Stafford fault system, located in the mid-Atlantic coastal plain of the eastern United States, provides the most complete record of fault movement during the past ~120 m.y. across the Virginia, Washington, District of Columbia (D.C.), and Maryland region, including displacement of Pleistocene terrace gravels. The Stafford fault system is close to and aligned with the Piedmont Spotsylvania and Long Branch fault zones. The dominant southwest-northeast trend of strong shaking from the 23 August 2011, moment magnitude Mw 5.8 Mineral, Virginia, earthquake is consistent with the connectivity of these faults, as seismic energy appears to have traveled along the documented and proposed extensions of the Stafford fault system into the Washington, D.C., area. Some other faults documented in the nearby coastal plain are clearly rooted in crystalline basement faults, especially along terrane boundaries. These coastal plain faults are commonly assumed to have undergone relatively uniform movement through time, with average slip rates from 0.3 to 1.5 m/m.y. However, there were higher rates during the Paleocene–early Eocene and the Pliocene (4.4–27.4 m/m.y), suggesting that slip occurred primarily during large earthquakes. Further investigation of the Stafford fault system is needed to understand potential earthquake hazards for the Virginia, Maryland, and Washington, D.C., area. The combined Stafford fault system and aligned Piedmont faults are ~180 km long, so if the combined fault system ruptured in a single event, it would result in a significantly larger magnitude earthquake than the Mineral earthquake. Many structures most strongly affected during the Mineral earthquake are along or near the Stafford fault system and its proposed northeastward extension.
NASA Astrophysics Data System (ADS)
Atekwana, E. A.
2010-12-01
The Okavango Rift Zone (ORZ) is suggested to be a zone of incipient continental rifting occuring at the distal end of the southwestern branch of the East African Rift System (EARS), therefore providing a unique opportunity to investigate neotectonic processes during the early stages of rifting. We used geophysical (aeromagnetic, magnetotelluric), Shuttle Radar Tomography Mission, Digital Elevation Model (SRTM-DEM), and sedimentological data to characterize the growth and propagation of faults associated with continental extension in the ORZ, and to elucidate the interplay between neotectonics and surficial processes. The results suggest that: (1) fault growth occurs by along axis linkage of fault segments, (2) an immature border fault is developing through the process of “Fault Piracy” by fault-linkages between major fault systems, (3) significant discrepancies exits between the height of fault scarps and the throws across the faults compared to their lengths in the basement, (4) utilization of preexisting zones of weakness allowed the development of very long faults (> 25-100 km) at a very early stage of continental rifting, explaining the apparent paradox between the fault length versus throw for this young rift, (5) active faults are characterized by conductive anomalies resulting from fluids, whereas, inactive faults show no conductivity anomaly; and 6) sedimentlogical data reveal a major perturbation in lake sedimentation between 41 ka and 27 ka. The sedimentation perturbation is attributed to faulting associated with the rifting and may have resulted in the alteration of hydrology forming the modern day Okavango delta. We infer that this time period may represent the age of the latest rift reactivation and fault growth and propagation within the ORZ.
Controls on Patterns of Repeated Fault Rupture: Examples From the Denali and Bear River Faults
NASA Astrophysics Data System (ADS)
Schwartz, D. P.; Hecker, S.
2013-12-01
A requirement for estimating seismic hazards is assigning magnitudes to earthquake sources. This relies on anticipating rupture length and slip along faults. Fundamental questions include whether lengths of past surface ruptures can be reasonably determined from fault zone characteristics and whether the variability in length and slip during repeated faulting can be constrained. To address these issues, we look at rupture characteristics and their possible controls from examples in very different tectonic settings: the high slip rate (≥15 mm/yr) Denali fault system, Alaska, and the recently activated Bear River normal fault, Wyoming-Utah. The 2002 rupture of the central Denali fault (CDF) is associated with two noteworthy geometric features. First, rupture initiated where the Susitna Glacier thrust fault (SG) intersects the CDF at depth, near the apex of a structurally complex restraining bend along the Denali. Paleoseismic data show that for the past 700 years the timing of large surface ruptures on the Denali fault west of the 2002 rupture has been distinct from those along the CDF. For the past ~6ka the frequency of SG to Denali ruptures has been ~1:12, indicating that this complexity of the 2002 rupture has not been common. Second, rupture propagated off of one strike-slip fault (CDF) onto another (the Totschunda fault, TF), an occurrence that seldom has been observed. LiDAR mapping of the intersection shows direct connectivity of the two faults--the CDF simply branches into both the TF and the eastern Denali fault (EDF). Differences in the timing of earthquakes during the past 700-800 years at sites surrounding this intersection, and estimates of accumulated slip from slip rates, indicate that for the 2002 rupture sufficient strain had accumulated on the TF to favor its failure. In contrast, the penultimate CDF rupture, with the same slip distribution as in 2002, appears to have stopped at or near the branch point, implying that neither the TF nor the EDF was stressed sufficiently to fail at that time. The Bear River fault zone (BRFZ) is a young normal fault along the eastern margin of basin-range extension that appears to have reactivated a ramp in the Laramide-age Darby-Hogsback thrust. The entire Cenozoic history of the BRFZ may consist of only two surface-rupturing events in the late Holocene (one at ~5 ka and the most recent at ~2.5 ka). The 40-km-long fault comprises synthetic and antithetic scarps extending across a zone up to 5 km wide. Remote sensing, including airborne LiDAR, and field studies show that, despite the complexity, the pattern of faulting was similar (in location and amount) for each of the two events and, at the south end, was strongly influenced by the east-west-trending Uinta Arch. Pre-existing structure clearly has exerted a first-order control on moment release on this immature fault. As shown by these examples, data on timing of surface ruptures, coseismic slip, slip rate, and fault geometry can provide a basis to constrain lengths of past and future earthquake ruptures, including possible alternative rupture scenarios. The difficult question for hazard analysis is whether the available data capture the full range of behavior and with what relative frequency do the alternatives occur?
Automatic translation of digraph to fault-tree models
NASA Technical Reports Server (NTRS)
Iverson, David L.
1992-01-01
The author presents a technique for converting digraph models, including those models containing cycles, to a fault-tree format. A computer program which automatically performs this translation using an object-oriented representation of the models has been developed. The fault-trees resulting from translations can be used for fault-tree analysis and diagnosis. Programs to calculate fault-tree and digraph cut sets and perform diagnosis with fault-tree models have also been developed. The digraph to fault-tree translation system has been successfully tested on several digraphs of varying size and complexity. Details of some representative translation problems are presented. Most of the computation performed by the program is dedicated to finding minimal cut sets for digraph nodes in order to break cycles in the digraph. Fault-trees produced by the translator have been successfully used with NASA's Fault-Tree Diagnosis System (FTDS) to produce automated diagnostic systems.
Tectonic reversal of the western Doruneh Fault System: Implications for Central Asian tectonics
NASA Astrophysics Data System (ADS)
Javadi, Hamid Reza; Esterabi Ashtiani, Marzieh; Guest, Bernard; Yassaghi, Ali; Ghassemi, Mohammad Reza; Shahpasandzadeh, Majid; Naeimi, Amir
2015-10-01
The left-lateral Doruneh Fault System (DFS) bounds the north margin of the Central Iranian microplate and has played an important role in the structural evolution of the Turkish-Iranian plateau. The western termination of the DFS is a sinistral synthetic branch fault array that shows clear kinematic evidence of having undergone recent slip sense inversion from a dextral array to a sinistral array in the latest Neogene or earliest Quaternary. Similarly, kinematic evidence from the Anarak Metamorphic complex suggests that this complex initially developed at a transpressive left-stepping termination of the DFS and that it was inverted in the latest Neogene to a transtensional fault termination. The recognition that the DFS and other faults in NE Iran were inverted from dextral to sinistral strike slip in the latest Neogene and the likely connection between the DFS and the Herat Fault of Afghanistan suggests that prior to the latest Miocene, all of the north Iranian and northern Afghan ranges were part of a distributed dextral fault network that extended from the west Himalayan syntaxes to the western Alborz. Also, the recognition that regional slip sense inversion occurred across northern and northeastern Iran after the latest Miocene invalidates tectonic models that extrapolate Pleistocene to recent fault slip kinematics and rates back beyond this time.
Probabilistic seismic hazard study based on active fault and finite element geodynamic models
NASA Astrophysics Data System (ADS)
Kastelic, Vanja; Carafa, Michele M. C.; Visini, Francesco
2016-04-01
We present a probabilistic seismic hazard analysis (PSHA) that is exclusively based on active faults and geodynamic finite element input models whereas seismic catalogues were used only in a posterior comparison. We applied the developed model in the External Dinarides, a slow deforming thrust-and-fold belt at the contact between Adria and Eurasia.. is the Our method consists of establishing s two earthquake rupture forecast models: (i) a geological active fault input (GEO) model and, (ii) a finite element (FEM) model. The GEO model is based on active fault database that provides information on fault location and its geometric and kinematic parameters together with estimations on its slip rate. By default in this model all deformation is set to be released along the active faults. The FEM model is based on a numerical geodynamic model developed for the region of study. In this model the deformation is, besides along the active faults, released also in the volumetric continuum elements. From both models we calculated their corresponding activity rates, its earthquake rates and their final expected peak ground accelerations. We investigated both the source model and the earthquake model uncertainties by varying the main active fault and earthquake rate calculation parameters through constructing corresponding branches of the seismic hazard logic tree. Hazard maps and UHS curves have been produced for horizontal ground motion on bedrock conditions VS 30 ≥ 800 m/s), thereby not considering local site amplification effects. The hazard was computed over a 0.2° spaced grid considering 648 branches of the logic tree and the mean value of 10% probability of exceedance in 50 years hazard level, while the 5th and 95th percentiles were also computed to investigate the model limits. We conducted a sensitivity analysis to control which of the input parameters influence the final hazard results in which measure. The results of such comparison evidence the deformation model and with their internal variability together with the choice of the ground motion prediction equations (GMPEs) are the most influencing parameter. Both of these parameters have significan affect on the hazard results. Thus having good knowledge of the existence of active faults and their geometric and activity characteristics is of key importance. We also show that PSHA models based exclusively on active faults and geodynamic inputs, which are thus not dependent on past earthquake occurrences, provide a valid method for seismic hazard calculation.
NASA Astrophysics Data System (ADS)
Matsumoto, T.; Shinjo, R.; Nakamura, M.; Kubo, A.; Doi, A.; Tamanaha, S.
2011-12-01
Ryukyu Arc is located on the southwestern extension of Japanese Island-arc towards the east of Taiwan Island along the margin of the Asian continent off China. The island-arc forms an arcuate trench-arc-backarc system. A NW-ward subduction of the Philippine Sea Plate (PSP)at a rate of 6-8 cm/y relative to the Eurasian Plate (EP) causes frequent earthquakes. The PSP is subducting almost normally in the north-central area and more obliquely around the southwestern area. Behind the arc-trench system, the Okinawa Trough (OT) was formed by back-arc rifting, where active hydrothermal vent systems have been discovered. Several across-arc submarine faults are located in the central and southern Ryukyu Arc. The East Ishigaki Fault (EIF) is one of the across-arc normal faults located in the southwestern Ryukyu Arc, ranging by 44km and extending from SE to NW. This fault was surveyed by SEABAT8160 multibeam echo sounder and by ROV Hyper-Dolphin in 2005 and 2008. The result shows that the main fault consists of five fault segments. A branched segment from the main fault was also observed. The southernmost segment is most mature (oldest but still active) and the northernmost one is most nascent. This suggests the north-westward propagation of the fault rupture corresponding to the rifting of the southwestern OT and the southward retreat of the arc-trench system. Considering that the fault is segmented and in some part branched, propagation might take place episodically rather than continuously from SE to NW. The ROV survey also revealed the rupture process of the limestone basement along this fault from the nascent stage to the mature stage. Most of the rock samples collected from the basement outcrop were limestone blocks (or calcareous sedimentary rocks). Limestone basement was observed to the west on the hanging wall far away from the main fault scarp. Then fine-grained sand with ripple marks was observed towards the main scarp. Limestone basement was observed on the main scarp and on the footwall. These suggest that basically the both sides are composed of the same material, that the whole study area is characterised by Ryukyu limestone exposure and that the basement was split by the across-arc normal fault. Coarse-grained sand and gravels/rubbles were observed towards and on the trough of the fault. On the main scarp an outcrop of limestone basement was exposed and in some part it was broken into rubbles. These facts suggest that crash of the basement due to rupturing is taking place repeatedly on the scarp and the trough. The observed fine-grained sand on the hanging wall might be the final product by the process of the crash of the limestone basement.
Three-dimensional curved grid finite-difference modelling for non-planar rupture dynamics
NASA Astrophysics Data System (ADS)
Zhang, Zhenguo; Zhang, Wei; Chen, Xiaofei
2014-11-01
In this study, we present a new method for simulating the 3-D dynamic rupture process occurring on a non-planar fault. The method is based on the curved-grid finite-difference method (CG-FDM) proposed by Zhang & Chen and Zhang et al. to simulate the propagation of seismic waves in media with arbitrary irregular surface topography. While keeping the advantages of conventional FDM, that is computational efficiency and easy implementation, the CG-FDM also is flexible in modelling the complex fault model by using general curvilinear grids, and thus is able to model the rupture dynamics of a fault with complex geometry, such as oblique dipping fault, non-planar fault, fault with step-over, fault branching, even if irregular topography exists. The accuracy and robustness of this new method have been validated by comparing with the previous results of Day et al., and benchmarks for rupture dynamics simulations. Finally, two simulations of rupture dynamics with complex fault geometry, that is a non-planar fault and a fault rupturing a free surface with topography, are presented. A very interesting phenomenon was observed that topography can weaken the tendency for supershear transition to occur when rupture breaks out at a free surface. Undoubtedly, this new method provides an effective, at least an alternative, tool to simulate the rupture dynamics of a complex non-planar fault, and can be applied to model the rupture dynamics of a real earthquake with complex geometry.
Runtime Speculative Software-Only Fault Tolerance
2012-06-01
reliability of RSFT, a in-depth analysis on its window of vulnerability is also discussed and measured via simulated fault injection. The performance...propagation of faults through the entire program. For optimal performance, these techniques have to use herotic alias analysis to find the minimum set of...affect program output. No program source code or alias analysis is needed to analyze the fault propagation ahead of time. 2.3 Limitations of Existing
The Trans-Rocky Mountain Fault System - A Fundamental Precambrian Strike-Slip System
Sims, P.K.
2009-01-01
Recognition of a major Precambrian continental-scale, two-stage conjugate strike-slip fault system - here designated as the Trans-Rocky Mountain fault system - provides new insights into the architecture of the North American continent. The fault system consists chiefly of steep linear to curvilinear, en echelon, braided and branching ductile-brittle shears and faults, and local coeval en echelon folds of northwest strike, that cut indiscriminately across both Proterozoic and Archean cratonic elements. The fault system formed during late stages of two distinct tectonic episodes: Neoarchean and Paleoproterozoic orogenies at about 2.70 and 1.70 billion years (Ga). In the Archean Superior province, the fault system formed (about 2.70-2.65 Ga) during a late stage of the main deformation that involved oblique shortening (dextral transpression) across the region and progressed from crystal-plastic to ductile-brittle deformation. In Paleoproterozoic terranes, the fault system formed about 1.70 Ga, shortly following amalgamation of Paleoproterozoic and Archean terranes and the main Paleoproterozoic plastic-fabric-producing events in the protocontinent, chiefly during sinistral transpression. The postulated driving force for the fault system is subcontinental mantle deformation, the bottom-driven deformation of previous investigators. This model, based on seismic anisotropy, invokes mechanical coupling and subsequent shear between the lithosphere and the asthenosphere such that a major driving force for plate motion is deep-mantle flow.
Slicken 1.0: Program for calculating the orientation of shear on reactivated faults
NASA Astrophysics Data System (ADS)
Xu, Hong; Xu, Shunshan; Nieto-Samaniego, Ángel F.; Alaniz-Álvarez, Susana A.
2017-07-01
The slip vector on a fault is an important parameter in the study of the movement history of a fault and its faulting mechanism. Although there exist many graphical programs to represent the shear stress (or slickenline) orientations on faults, programs to quantitatively calculate the orientation of fault slip based on a given stress field are scarce. In consequence, we develop Slicken 1.0, a software to rapidly calculate the orientation of maximum shear stress on any fault plane. For this direct method of calculating the resolved shear stress on a planar surface, the input data are the unit vector normal to the involved plane, the unit vectors of the three principal stress axes, and the stress ratio. The advantage of this program is that the vertical or horizontal principal stresses are not necessarily required. Due to its nimble design using Java SE 8.0, it runs on most operating systems with the corresponding Java VM. The software program will be practical for geoscience students, geologists and engineers and will help resolve a deficiency in field geology, and structural and engineering geology.
A-Priori Rupture Models for Northern California Type-A Faults
Wills, Chris J.; Weldon, Ray J.; Field, Edward H.
2008-01-01
This appendix describes how a-priori rupture models were developed for the northern California Type-A faults. As described in the main body of this report, and in Appendix G, ?a-priori? models represent an initial estimate of the rate of single and multi-segment surface ruptures on each fault. Whether or not a given model is moment balanced (i.e., satisfies section slip-rate data) depends on assumptions made regarding the average slip on each segment in each rupture (which in turn depends on the chosen magnitude-area relationship). Therefore, for a given set of assumptions, or branch on the logic tree, the methodology of the present Working Group (WGCEP-2007) is to find a final model that is as close as possible to the a-priori model, in the least squares sense, but that also satisfies slip rate and perhaps other data. This is analogous the WGCEP- 2002 approach of effectively voting on the relative rate of each possible rupture, and then finding the closest moment-balance model (under a more limiting set of assumptions than adopted by the present WGCEP, as described in detail in Appendix G). The 2002 Working Group Report (WCCEP, 2003, referred to here as WGCEP-2002), created segmented earthquake rupture forecast models for all faults in the region, including some that had been designated as Type B faults in the NSHMP, 1996, and one that had not previously been considered. The 2002 National Seismic Hazard Maps used the values from WGCEP-2002 for all the faults in the region, essentially treating all the listed faults as Type A faults. As discussed in Appendix A, the current WGCEP found that there are a number of faults with little or no data on slip-per-event, or dates of previous earthquakes. As a result, the WGCEP recommends that faults with minimal available earthquake recurrence data: the Greenville, Mount Diablo, San Gregorio, Monte Vista-Shannon and Concord-Green Valley be modeled as Type B faults to be consistent with similarly poorly-known faults statewide. As a result, the modified segmented models discussed here only concern the San Andreas, Hayward-Rodgers Creek, and Calaveras faults. Given the extensive level of effort given by the recent Bay-Area WGCEP-2002, our approach has been to adopt their final average models as our preferred a-prior models. We have modified the WGCEP-2002 models where necessary to match data that were not available or not used by that WGCEP and where the models needed by WGCEP-2007 for a uniform statewide model require different assumptions and/or logic-tree branch weights. In these cases we have made what are usually slight modifications to the WGCEP-2002 model. This Appendix presents the minor changes needed to accomodate updated information and model construction. We do not attempt to reproduce here the extensive documentation of data, model parameters and earthquake probablilities in the WG-2002 report.
NASA Astrophysics Data System (ADS)
Wollherr, Stephanie; Gabriel, Alice-Agnes; Igel, Heiner
2015-04-01
In dynamic rupture models, high stress concentrations at rupture fronts have to to be accommodated by off-fault inelastic processes such as plastic deformation. As presented in (Roten et al., 2014), incorporating plastic yielding can significantly reduce earlier predictions of ground motions in the Los Angeles Basin. Further, an inelastic response of materials surrounding a fault potentially has a strong impact on surface displacement and is therefore a key aspect in understanding the triggering of tsunamis through floor uplifting. We present an implementation of off-fault-plasticity and its verification for the software package SeisSol, an arbitrary high-order derivative discontinuous Galerkin (ADER-DG) method. The software recently reached multi-petaflop/s performance on some of the largest supercomputers worldwide and was a Gordon Bell prize finalist application in 2014 (Heinecke et al., 2014). For the nonelastic calculations we impose a Drucker-Prager yield criterion in shear stress with a viscous regularization following (Andrews, 2005). It permits the smooth relaxation of high stress concentrations induced in the dynamic rupture process. We verify the implementation by comparison to the SCEC/USGS Spontaneous Rupture Code Verification Benchmarks. The results of test problem TPV13 with a 60-degree dipping normal fault show that SeisSol is in good accordance with other codes. Additionally we aim to explore the numerical characteristics of the off-fault plasticity implementation by performing convergence tests for the 2D code. The ADER-DG method is especially suited for complex geometries by using unstructured tetrahedral meshes. Local adaptation of the mesh resolution enables a fine sampling of the cohesive zone on the fault while simultaneously satisfying the dispersion requirements of wave propagation away from the fault. In this context we will investigate the influence of off-fault-plasticity on geometrically complex fault zone structures like subduction zones or branched faults. Studying the interplay of stress conditions and angle dependence of neighbouring branches including inelastic material behaviour and its effects on rupture jumps and seismic activation helps to advance our understanding of earthquake source processes. An application is the simulation of a real large-scale subduction zone scenario including plasticity to validate the coupling of our dynamic rupture calculations to a tsunami model in the framework of the ASCETE project (http://www.ascete.de/). Andrews, D. J. (2005): Rupture dynamics with energy loss outside the slip zone, J. Geophys. Res., 110, B01307. Heinecke, A. (2014), A. Breuer, S. Rettenberger, M. Bader, A.-A. Gabriel, C. Pelties, A. Bode, W. Barth, K. Vaidyanathan, M. Smelyanskiy and P. Dubey: Petascale High Order Dynamic Rupture Earthquake Simulations on Heterogeneous Supercomputers. In Supercomputing 2014, The International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, New Orleans, LA, USA, November 2014. Roten, D. (2014), K. B. Olsen, S.M. Day, Y. Cui, and D. Fäh: Expected seismic shaking in Los Angeles reduced by San Andreas fault zone plasticity, Geophys. Res. Lett., 41, 2769-2777.
NASA Astrophysics Data System (ADS)
Altuncu Poyraz, Selda; Teoman, M. Uğur; Türkelli, Niyazi; Kahraman, Metin; Cambaz, Didem; Mutlu, Ahu; Rost, Sebastian; Houseman, Gregory A.; Thompson, David A.; Cornwell, David; Utkucu, Murat; Gülen, Levent
2015-08-01
With the aim of extensively investigating the crustal structure beneath the western segment of the North Anatolian Fault Zone where it splays into northern and southern branches, a temporary seismic network (dense array for North Anatolia-DANA) consisting of 70 stations was deployed in early May 2012 and operated for 18 months in the Sakarya region during the FaultLab experiment. Out of 2437 events contaminated by explosions, we extracted 1371 well located earthquakes. The enhanced station coverage having a nominal station spacing of 7 km, lead to a minimum magnitude calculation of 0.1. Horizontal and vertical location uncertainties within the array do not exceed 0.8 km and 0.9 km, respectively. We observe considerable seismic activity along both branches of the fault where the depth of the seismogenic zone was mostly confined to 15 km. Using our current earthquake catalog we obtained a b-value of 1. We also mapped the b-value variation with depth and observed a gradual decrease. Furthermore, we determined the source parameters of 41 earthquakes with magnitudes greater than 1.8 using P-wave first motion polarity method. Regional Moment Tensor Inversion method was also applied to earthquakes with magnitudes greater than 3.0. Focal mechanism solutions confirm that Sakarya and its vicinity is stressed by a compressional regime showing a primarily oblique-slip motion character. Stress tensor analysis indicates that the maximum principal stress is aligned in WNW-ESE direction and the tensional axis is aligned in NNE-SSW direction.
NASA Astrophysics Data System (ADS)
Ghosal, D.; Singh, S. C.; Chauhan, A. P. S.; Hananto, N. D.
2012-11-01
Over the last 20 years, the Great Sumatran Fault (GSF) has been studied on land, but we have very little information about its offshore extension NW of Sumatra and its link with the West Andaman Fault to the north. The problem is further complicated by its vicinity to the volcanic arc. Here we present detailed analyses of the offshore extension of the GSF based on recently acquired high-resolution bathymetry, multichannel seismic reflection data and some old single channel seismic reflection data. Our findings demonstrate that the branches of the GSF near Banda Aceh proceed further northwestward producing two 15-20 km wide adjacent basins. The southwestern transpressional Breueh basin is 1-2 km deep and has a flower structure with a push-up ridge in the center, suggesting the presence of an active strike-slip fault. The presence of strike-slip earthquakes beneath this basin further suggests that one active branch of the GSF passes through this basin. The northeastern transtensional Weh basin is up to 3.4 km deep and the absence of recent sediments on the basin floor suggests that the basin is very young. The presence of a chain of volcanoes in the center of the basin suggests that the Sumatran volcanic arc passes through this basin. The anomalous depth of the Weh basin might be a site of early back-arc spreading or may have resulted from pull-apart extension. We examine all these new observations in the light of plate motion, local deformation and possible seismic risk.
Duchek, A.B.; McBride, J.H.; Nelson, W.J.; Leetaru, H.E.
2004-01-01
The Cottage Grove fault system in southern Illinois has long been interpreted as an intracratonic dextral strike-slip fault system. We investigated its structural geometry and kinematics in detail using (1) outcrop data, (2) extensive exposures in underground coal mines, (3) abundant borehole data, and (4) a network of industry seismic reflection profiles, including data reprocessed by us. Structural contour mapping delineates distinct monoclines, broad anticlines, and synclines that express Paleozoic-age deformation associated with strike slip along the fault system. As shown on seismic reflection profiles, prominent near-vertical faults that cut the entire Paleozoic section and basement-cover contact branch upward into outward-splaying, high-angle reverse faults. The master fault, sinuous along strike, is characterized along its length by an elongate anticline, ???3 km wide, that parallels the southern side of the master fault. These features signify that the overall kinematic regime was transpressional. Due to the absence of suitable piercing points, the amount of slip cannot be measured, but is constrained at less than 300 m near the ground surface. The Cottage Grove fault system apparently follows a Precambrian terrane boundary, as suggested by magnetic intensity data, the distribution of ultramafic igneous intrusions, and patterns of earthquake activity. The fault system was primarily active during the Alleghanian orogeny of Late Pennsylvanian and Early Permian time, when ultramatic igneous magma intruded along en echelon tensional fractures. ?? 2004 Geological Society of America.
NASA Astrophysics Data System (ADS)
Taylor, G.; Rost, S.; Houseman, G. A.; Hillers, G.
2017-12-01
By utilising short period surface waves present in the noise field, we can construct images of shallow structure in the Earth's upper crust: a depth-range that is usually poorly resolved in earthquake tomography. Here, we use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the North Anatolian Fault Zone (NAFZ) in the source region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends 1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We obtain maps of group velocity variation using surface wave tomography applied to short period (1- 6 s) Rayleigh and Love waves to construct high-resolution images of SV and SH-wave velocity in the upper 5 km of a 70 km x 35 km region centred on the eastern end of the fault segment that ruptured in the 1999 Izmit earthquake. The average Rayleigh wave group velocities in the region vary between 1.8 km/s at 1.5 s period, to 2.2 km/s at 6 s period. The NAFZ bifurcates into northern and southern strands in this region; both are active but only the northern strand ruptured in the 1999 event. The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in seismic velocity that also denote the boundaries of major tectonic units. This observation implies that the fault zone exploits the pre-existing structure of the Intra-Pontide suture zone. To the north of the NAFZ, we observe low S-wave velocities ( 2.0 km/s) associated with the unconsolidated sediments of the Adapazari basin, and blocks of weathered terrigenous clastic sediments. To the south of the northern branch of the NAFZ in the Armutlu block, we detect higher velocities ( 2.9 km/s) associated with a shallow crystalline basement, in particular a block of metamorphosed schists and marbles that bound the northern branch of the NAFZ.
Evolution of the Median Tectonic Line fault zone, SW Japan, during exhumation
NASA Astrophysics Data System (ADS)
Shigematsu, Norio; Kametaka, Masao; Inada, Noriyuki; Miyawaki, Masahiro; Miyakawa, Ayumu; Kameda, Jun; Togo, Tetsuhiro; Fujimoto, Koichiro
2017-01-01
Like many crustal-scale fault zones, the Median Tectonic Line (MTL) fault zone in Japan preserves fault rocks that formed across a broad range of physical conditions. We examined the architecture of the MTL at a large new outcrop in order to understand fault behaviours under different crustal levels. The MTL here strikes almost E-W, dips to the north, and juxtaposes the Sanbagawa metamorphic rocks to the south against the Izumi Group sediments to the north. The fault core consists mainly of Sanbagawa-derived fault gouges. The fault zone can be divided into several structural units, including two slip zones (upper and lower slip zones), where the lower slip zone is more conspicuous. Crosscutting relationships among structures and kinematics indicate that the fault zone records four stages of deformation. Microstructures and powder X-ray diffraction (XRD) analyses indicate that the four stages of deformation occurred under different temperature conditions. The oldest deformation (stage 1) was widely distributed, and had a top-to-the-east (dextral) sense of slip at deep levels of the seismogenic zone. Deformation with the same sense of slip, then became localised in the lower slip zone (stage 2). Subsequently, the slip direction in the lower slip zone changed to top-to-the-west (sinistral-normal) (stage 3). The final stage of deformation (stage 4) involved top-to-the-north normal faulting along the two slip zones within the shallow crust (near the surface). The widely distributed stage 1 damage zone characterises the deeper part of the seismogenic zone, while the sets of localised principal slip zones and branching faults of stage 4 characterise shallow depths. The fault zone architecture described in this paper leads us to suggest that fault zones display different behaviours at different crustal levels.
NASA Astrophysics Data System (ADS)
Chevalier, Marie-Luce; Leloup, Philippe Hervé; Li, Haibing
2016-06-01
The northern part of the already highly debated Karakorum fault (KF) in western Tibet (regarding its initiation age, total geological offset and slip-rate) has been argued by Robinson (2009a) and Robinson et al. (2015) to be inactive. This is based on field investigation and satellite images interpretation showing a few km of Quaternary deposits from the southern Tashkorgan basin in the Chinese Pamir, that appear undisturbed by the main branch of the KF. In particular, Robinson et al. (2015) suggested that the Kongur Shan extensional system (KES) is not kinematically related to the KF, and that the latter is only a local fault. Here, we use basic definitions of what is an active strike-slip fault system, as well as re-emphasize the importance of the timescale of observation to discuss whether a fault is active, to demonstrate that the KF and the KES are part of the same fault system. We argue that they together play a significant role in accommodating deformation at the western Himalayan syntaxis, under the form of extensional displacement in the Chinese Pamir.
NASA Astrophysics Data System (ADS)
Le Beon, M.; Tseng, Y. C.; Klinger, Y.; Elias, A.; Kunz, A.; Sursock, A.; Daeron, M.; Tapponnier, P.; Jomaa, R.
2017-12-01
The Yammouneh fault is the main strike-slip branch of the Dead Sea fault system in Lebanon. The morphology of the northern Yammouneh fault is characterized by a series of basins that represent archives for Late Pleistocene paleo-environments and paleo-earthquakes. We excavated a 4-m-deep trench across the fault in the Jbab el-Homr basin that revealed a succession of remarkable, very thin palustrine and lacustrine layers, ruptured by at least 17 earthquakes. Absolute ages of 4 samples from 0.5 to 3.7 m depth are obtained by optically stimulated luminescence dating on fine-grain quartz and on fine-grain K-feldspar using both infrared luminescence at 50˚C (IRSL50) and at a high temperature of 225˚C (pIRIR225). A fair agreement is obtained between the quartz ages (from 26.5 ± 3.1 ka at 0.5 m depth to 30.3 ± 3.4 ka at 3.7 m depth) and the pIRIR225 ages (from 26.2 ± 2.3 ka at 0.5 m depth to 25.8 ± 2.1 ka at 3.7 m depth), while the fading-corrected IRSL50 ages are systematically younger (from 18.3 ± 1.6 ka at 0.5 m depth to 21.4 ± 1.8 ka at 3.7 m depth). As proposed in earlier studies, we hypothesize that the IRSL50 fading rate is underestimated. The sedimentary sequence may reflect deposition in a marsh or shallow lake in a pro-glacial environment at a time when a glacier may have occupied the summits of Mount Lebanon. Erosion may have been dominant after the Last Glacial Maximum. Regarding paleo-earthquakes, 14 surface-rupturing events occurred during 3.8 ka with a mean return time of 270 years and probable clustering, while only 2-11 events occurred since 26.5 ka. Firstly, we explain the lack of events since 26.5 ka by the existence of another fault branch, which suggests that the active fault zone migrated with time. Secondly, the shorter mean recurrence time in Jbab compared to the Yammouneh site, located 30 km south may be explained by temporal variations in the earthquake cycle, different locations relative to fault segmentation, or by high-resolution of the stratigraphy in Jbab that allowed recording smaller-magnitude events that may have been missed in the thicker strata of Yammouneh.
NASA Astrophysics Data System (ADS)
Gabriel, Alice; Pelties, Christian
2014-05-01
In this presentation we will demonstrate the benefits of using modern numerical methods to support physic-based ground motion modeling and research. For this purpose, we utilize SeisSol an arbitrary high-order derivative Discontinuous Galerkin (ADER-DG) scheme to solve the spontaneous rupture problem with high-order accuracy in space and time using three-dimensional unstructured tetrahedral meshes. We recently verified the method in various advanced test cases of the 'SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise' benchmark suite, including branching and dipping fault systems, heterogeneous background stresses, bi-material faults and rate-and-state friction constitutive formulations. Now, we study the dynamic rupture process using 3D meshes of fault systems constructed from geological and geophysical constraints, such as high-resolution topography, 3D velocity models and fault geometries. Our starting point is a large scale earthquake dynamic rupture scenario based on the 1994 Northridge blind thrust event in Southern California. Starting from this well documented and extensively studied event, we intend to understand the ground-motion, including the relevant high frequency content, generated from complex fault systems and its variation arising from various physical constraints. For example, our results imply that the Northridge fault geometry favors a pulse-like rupture behavior.
The 2017 Jiuzhaigou Earthquake: A Complicated Event Occurred in a Young Fault System
NASA Astrophysics Data System (ADS)
Sun, Jianbao; Yue, Han; Shen, Zhengkang; Fang, Lihua; Zhan, Yan; Sun, Xiangyu
2018-03-01
The Minshan Uplift Zone (MUZ) is located at the eastern margin of the Tibetan Plateau, which is the junction of three tectonic terranes. The observed discrepancy between a high uplifting and low shortening rate over the MUZ is attributed to the intrusion of a viscous lower crust. In the last 50 years, several significant earthquakes occurred at the boundaries of the MUZ, that is, the Huya and Mingjiang faults. On 8 August 2017, the Jiuzhaigou earthquake (Mw 6.5) occurred on the northern extension of the Huya fault. We adopt a joint inversion of the interferometric synthetic aperture radar and teleseismic body wave data to investigate the rupture process of this event. The obtained slip model is dominated by left-lateral strike slips on a subvertical fault presenting significant shallow slip deficit. The rupture initiation is composed of both thrust and strike-slip mechanisms producing a non-double-couple solution. We also resolve a secondary fault branch forming an obtuse angle with the main fault plane at its northern end. These phenomena indicate that the northern Huya fault is a young (less mature) fault system. Focal mechanisms of the regional earthquakes demonstrate that the northern and southern Huya faults present different combinations of strike-slip and reversed motion. We attribute such discrepancy to the lateral extension of the viscous lower crust, which appears to extrude to the east beyond the northern Huya fault, in comparison with that confined under the MUZ near the southern Huya fault. This conceptual model is also supported by geomorphological and magnetotelluric observations.
NASA Astrophysics Data System (ADS)
Goto, J.; Miwa, T.; Tsuchi, H.; Karasaki, K.
2009-12-01
The Nuclear Waste Management Organization of Japan (NUMO), after volunteering municipalities arise, will start a three-staged program for selecting a HLW and TRU waste repository site. It is recognized from experiences from various site characterization programs in the world that the hydrologic property of faults is one of the most important parameters in the early stage of the program. It is expected that numerous faults of interest exist in an investigation area of several tens of square kilometers. It is, however, impossible to characterize all these faults in a limited time and budget. This raises problems in the repository designing and safety assessment that we may have to accept unrealistic or over conservative results by using a single model or parameters for all the faults in the area. We, therefore, seek to develop an efficient and practical methodology to characterize hydrologic property of faults. This project is a five year program started in 2007, and comprises the basic methodology development through literature study and its verification through field investigations. The literature study tries to classify faults by correlating their geological features with hydraulic property, to search for the most efficient technology for fault characterization, and to develop a work flow diagram. The field investigation starts from selection of a site and fault(s), followed by existing site data analyses, surface geophysics, geological mapping, trenching, water sampling, a series of borehole investigations and modeling/analyses. Based on the results of the field investigations, we plan to develop a systematic hydrologic characterization methodology of faults. A classification method that correlates combinations of geological features (rock type, fault displacement, fault type, position in a fault zone, fracture zone width, damage zone width) with widths of high permeability zones around a fault zone was proposed through a survey on available documents of the site characterization programs. The field investigation started in 2008, by selecting the Wildcat Fault that cut across the Laurence Berkeley National Laboratory (LBNL) site as the target. Analyses on site-specific data, surface geophysics, geological mapping and trenching have confirmed the approximate location and characteristics of the fault (see Session H48, Onishi, et al). The plan for the remaining years includes borehole investigations at LBNL, and another series of investigations in the northern part of the Wildcat Fault.
NASA Astrophysics Data System (ADS)
Ghedhoui, R.; Deffontaines, B.; Rabia, M. C.
2012-04-01
Contrasting to the northward African plate motion toward Eurasia and due to its geographic position in the North African margin, since early cretaceous, Tunisia seems to be submitted to an eastward migration. The aim of this work is to study the southern branch of this inferred tectonic splay that may guide the Tunisian extrusion characterised to the east by the Mediterranean sea as a free eastern boundary. The Jeffara Fault zone (southern Tunisia), represent a case example of such deformation faced by Tunisia. Helped by the results of previous researchers (Bouaziz, 1995 ; Rabiaa, 1998 ; Touati et Rodgers, 1998 ; Sokoutis D. et al., 2000 ; Bouaziz et al., 2002 ; Jallouli et al., 2005 ; Deffontaines et al., 2008…), and new evidences developed in this study, we propose a geodynamic Tunisian east extrusion model, due to such the northern African plate migration to the Eurasian one. In this subject, structural geomorphology is undertaken herein based on both geomorphometric drainage network analysis (Deffontaines et al., 1990), the Digital Terrain Model photo-interpretation (SRTM) combined with photo-interpretation of detailed optical images (Landsat ETM+), and confirmed by field work and numerous seismic profiles at depth. All these informations were then integrated within a GIS (Geodatabase) (Deffontaines 1990 ; Deffontaines et al. 1994 ; Deffontaines, 2000 ; Slama, 2008 ; Deffontaines, 2008) and are coherent with the eastern extrusion of the Sahel block. We infer that the NW-SE Gafsa-Tozeur, which continue to the Jeffara major fault zone acting as a transtensive right lateral motion since early cretaceous is the southern branch of the Sahel block extrusion. Our structural analyses prove the presence of NW-SE right lateral en-echelon tension gashes, NW-SE aligned salt diapirs, numerous folds offsets, en-echelon folds, and so on that parallel this major NW-SE transtensive extrusion fault zone.These evidences confirm the fact that the NW-SE Jeffara faults correspond to the tectonic accident, located in the south of the Tunisian extrusion, in favour of the eastern migration of the Sahel block toward the free Mediterranean sea boundary. Therefore this geodynamic movement explains the presence, in offshore area, of small elongated NW-SE, N-S &NE-SW petroleum transtensive basins and grabens. To conclude, at the regional scale, the structural geomorphologic approach combined with both field work and reflexion seismic profile analyses appear to be an excellent tool to prove & confirm the east Sahel block extrusion of the central Tunisian part caused by the northward migration of African plate. _______________________________________ Keywords : Geodynamics, Neotectonics, right lateral transtensive fault, Extrusion, Petroleum exploration, Geomorphometry, Digital Elevation Model, Geographic Information System (GIS), Geodatabase, Jeffara, South Tunisia.
Quaternary crustal deformation along a major branch of the San Andreas fault in central California
Weber, G.E.; Lajoie, K.R.; Wehmiller, J.F.
1979-01-01
Deformed marine terraces and alluvial deposits record Quaternary crustal deformation along segments of a major, seismically active branch of the San Andreas fault which extends 190 km SSE roughly parallel to the California coastline from Bolinas Lagoon to the Point Sur area. Most of this complex fault zone lies offshore (mapped by others using acoustical techniques), but a 4-km segment (Seal Cove fault) near Half Moon Bay and a 26-km segment (San Gregorio fault) between San Gregorio and Point Ano Nuevo lie onshore. At Half Moon Bay, right-lateral slip and N-S horizontal compression are expressed by a broad, synclinal warp in the first (lowest: 125 ka?) and second marine terraces on the NE side of the Seal Cove fault. This structure plunges to the west at an oblique angle into the fault plane. Linear, joint0controlled stream courses draining the coastal uplands are deflected toward the topographic depression along the synclinal axis where they emerge from the hills to cross the lowest terrace. Streams crossing the downwarped part of this terrace adjacent to Half Moon Bay are depositing alluvial fans, whereas streams crossing the uplifted southern limb of the syncline southwest of the bay are deeply incised. Minimum crustal shortening across this syncline parallel to the fault is 0.7% over the past 125 ka, based on deformation of the shoreline angle of the first terrace. Between San Gregorio and Point Ano Nuevo the entire fault zone is 2.5-3.0 km wide and has three primary traces or zones of faulting consisting of numerous en-echelon and anastomozing secondary fault traces. Lateral discontinuities and variable deformation of well-preserved marine terrace sequences help define major structural blocks and document differential motions in this area and south to Santa Cruz. Vertical displacement occurs on all of the fault traces, but is small compared to horizontal displacement. Some blocks within the fault zone are intensely faulted and steeply tilted. One major block 0.8 km wide east of Point Ano Nuevo is downdropped as much as 20 m between two primary traces to form a graben presently filling with Holocene deposits. Where exposed in the sea cliff, these deposits are folded into a vertical attitude adjacent to the fault plane forming the south-west margin of the graben. Near Point Ano Nuevo sedimentary deposits and fault rubble beneath a secondary high-angle reverse fault record three and possibly six distinct offset events in the past 125 ka. The three primary fault traces offset in a right-lateral sense the shoreline angles of the two lowest terraces east of Point Ano Nuevo. The rates of displacement on the three traces are similar. The average rate of horizontal offset across the entire zone is between 0.63 and 1.30 cm/yr, based on an amino-acid age estimate of 125 ka for the first terrace, and a reasonable guess of 200-400 ka for the second terrace. Rates of this magnitude make up a significant part of the deficit between long-term relative plate motions (estimated by others to be about 6 cm/yr) and present displacement rates along other parts of the San Andreas fault system (about 3.2 cm/yr). Northwestward tilt and convergence of six marine terraces northeast of Ano Nuevo (southwest side of the fault zone) indicate continuous gentle warping associated with right-lateral displacement since early or middle Pleistocene time. Minimum local crustal shortening of this block parallel to the fault is 0.2% based on tilt of the highest terrace. Five major, evenly spaced terraces southeast of Ano Nuevo on the southwest flank of Mt. Ben Lomond (northeast side of the fault zone) rise to an elevation of 240 m, indicating relatively constant uplift (about 0.19 m/ka and southwestward tilt since Early or Middle Pleistocene time (Bradley and Griggs, 1976). ?? 1979.
NASA Astrophysics Data System (ADS)
Redfield, T. F.; Scholl, D. W.; Fitzgerald, P. G.
2010-12-01
The ~2000 km long Denali Fault System (DFS) of Alaska is an example of an extra-regional strike-slip fault system that terminates in a zone of widely-distributed deformation. The ~1200 km long Liquiñe-Ofqui Fault Zone (LOFZ) of Patagonia (southern Chile) is another. Both systems are active, having undergone large-magnitude seismic rupture is 2002 (DFS) and 2007 (LOFZ). Both systems appear to be long-lived: the DFS juxtaposes terranes that docked in at least early Tertiary time, whilst the central LOFZ appears to also record early Tertiary or Mesozoic deformation. Both fault systems comprise a relatively well-defined central zone where individual fault traces can be identified from topographic features or zones of deformed rock. In both cases the proximal and distal traces are much more diffuse tributary and distributary systems of individual, branching fault traces. However, since their inception the DFS and LOFZ have followed very different evolutionary paths. Copious Alaskan paleomagnetic data are consistent with vertical axis small block rotation, long-distance latitudinal translation, and a recently-postulated tectonic extrusion towards a distributary of subordinate faults that branch outward towards the Aleution subduction zone (the North Pacific Rim orogenic Stream; see Redfield et al., 2007). Paleomagnetic data from the LOFZ region are consistent with small block rotation but preclude statistically-significant latitudinal transport. Limited field data from the southernmost LOFZ suggest that high-angle normal and reverse faults dominate over oblique to strike-slip structures. Rather than the high-angle oblique 'slivering regime' of the southeasternmost DFS, the initiation of the LOFZ appears to occur across a 50 to 100 km wide zone of brittly-deformed granitic and gneissic rock characterized by bulk compression and vertical pathways of exhumation. In both cases, relative plate motions are consistent with the hypothetical style, and degree, of offset, leading us to speculate towards the role of obliquity of plate tectonic convergence for the along-strike evolution of extra-regional strike-slip systems. Highly-oblique initiation of the DFS encourages detachment of fault-bounded terranes and provides a driver that encourages a westward-fanning pattern of extrusion towards the free face of the Beringian margin. Plausibly, its less-oblique central segment promotes vertical pathway exhumation observed at (for example) Denali itself. A more orthogonal regime drives the entire LOFZ, precluding slivering at its initiation and promoting upstream buttressing (Beck et al., 1993). The convergent plate boundary setting opens a window through time and space on the evolution of large-magnitude fault-systems. Escape, or not to escape ~ what best answers the question ? Citations Redfield, T. F., Scholl, D. W., Fitzgerald, P. G., and Beck, M. E., & 2007. Escape tectonics and the extrusion of Alaska: past, present, and future. Geology. 35, 11, 1039-1042 Beck, M.E., Rojas, C. and Cembrano, J. (1993). “On the nature of buttressing in margin-parallel strike-fault systems.” Geology, Vol. 21, pp. 755-758.
77 FR 48425 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-14
... FURTHER INFORMATION CONTACT: Vladimir Ulyanov, Aerospace Engineer, International Branch, ANM-116... an unsafe condition for the specified products. The MCAI states: * * * [T]he FAA issued a set of new... requirements set by SFAR88 and JAA INT/POL 25/12, this [EASA] AD requires that Ground Fault Interrupters (GFI...
The timing of strike-slip shear along the Ranong and Khlong Marui faults, Thailand
NASA Astrophysics Data System (ADS)
Watkinson, Ian; Elders, Chris; Batt, Geoff; Jourdan, Fred; Hall, Robert; McNaughton, Neal J.
2011-09-01
The timing of shear along many important strike-slip faults in Southeast Asia, such as the Ailao Shan-Red River, Mae Ping and Three Pagodas faults, is poorly understood. We present 40Ar/39Ar, U-Pb SHRIMP and microstructural data from the Ranong and Khlong Marui faults of Thailand to show that they experienced a major period of ductile dextral shear during the middle Eocene (48-40 Ma, centered on 44 Ma) which followed two phases of dextral shear along the Ranong Fault, before the Late Cretaceous (>81 Ma) and between the late Paleocene and early Eocene (59-49 Ma). Many of the sheared rocks were part of a pre-kinematic crystalline basement complex, which partially melted and was intruded by Late Cretaceous (81-71 Ma) and early Eocene (48 Ma) tin-bearing granites. Middle Eocene dextral shear at temperatures of ˜300-500°C formed extensive mylonite belts through these rocks and was synchronous with granitoid vein emplacement. Dextral shear along the Ranong and Khlong Marui faults occurred at the same time as sinistral shear along the Mae Ping and Three Pagodas faults of northern Thailand, a result of India-Burma coupling in advance of India-Asia collision. In the late Eocene (<37 Ma) the Ranong and Khlong Marui faults were reactivated as curved sinistral branches of the Mae Ping and Three Pagodas faults, which were accommodating lateral extrusion during India-Asia collision and Himalayan orogenesis.
The Fault Tree Compiler (FTC): Program and mathematics
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Martensen, Anna L.
1989-01-01
The Fault Tree Compiler Program is a new reliability tool used to predict the top-event probability for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, AND m OF n gates. The high-level input language is easy to understand and use when describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify the tree description and decrease program execution time. The current solution technique provides an answer precisely (within the limits of double precision floating point arithmetic) within a user specified number of digits accuracy. The user may vary one failure rate or failure probability over a range of values and plot the results for sensitivity analyses. The solution technique is implemented in FORTRAN; the remaining program code is implemented in Pascal. The program is written to run on a Digital Equipment Corporation (DEC) VAX computer with the VMS operation system.
NASA Astrophysics Data System (ADS)
Troiani, Francesco; Menichetti, Marco
2014-05-01
The Chihuahua Basin and Range (CBR) is the eastern branch of the northern Mexican Basin and Range Province that, from a morphostructural point of view, presently is one amongst the lesser-known zones of the southern portion of the North America Basin and Range Province. The study area covers an approximately 800 km2-wide portion of the CBR and encompasses the fault-bounded Charco basin and its surrounding areas. The bedrock of the area pertains to the large siliceous-igneous province of the Sierra Madre Occidental and consists of volcanoclastic rocks including Oligocene dacite, rhyolite, rhyolitic tuffs, and polimitic conglomerates. The region is characterized by a series of NW-SE oriented valleys delimited by tilted monoclinal blocks bounded by high angle, SW-dipping, normal faults. Abrupt changes in elevation, alternating between narrow faulted mountain chains and flat arid valleys or basins are the main morphological elements of the area. The valleys correspond to structural grabens filled with Plio-Pleistocene continental sediments. These grabens are about 10 km wide, while the extensional fault system extend over a distance of more than 15 km. The mountain ranges are in most cases continuous over distances that range from 10 to 70 km including different branches of the extensional and transfer faults. The morphogenesis is mainly erosive in character: erosional landforms (such as rocky scarps, ridges, strath-terraces, erosional pediment, reverse slopes, landslide scar zones, litho-structural flat surfaces) dominate the landscape. In contrast, Quaternary depositional landforms are mainly concentrated within the flat valleys or basins. The Quaternary deposits consist of wide alluvial fans extending to the foot of the main ridges, fluvial and debris-slope deposits. The morphostructural characterization of the area integrated different methodologies, including: i) geomorphological and structural field analyses; ii) remote sensing and geo-morphometric investigations based on aerial photos and Digital Elevation Models (a 28x28 m DEM and high-resolution LIDAR dataset in key sites), and iii) geophysical investigations (high resolution reflection seismic profiling combined with refraction seismic tomography). The main outputs of this research are as follows: i) the Charco basin master-faults and their conjugate extensional system were geometrically characterized and their main associated landforms mapped and described; ii) the morphostratigraphic correlations amongst both deformed and tectonically unaffected Quaternary deposits revealed that the Charco basin master fault has been inactive over the Holocene; iii) the main extensional fault system is associated with conjugate faults, oriented approximately SSW-NNE, that segmented the Charco basin master faults and favored the deposition of the most recent piedmont fans along the eastern margin of the basin; iv) the local morphostructures had played a dominant influence on the Quaternary evolution of both drainage network and relief landforms.
System and method for bearing fault detection using stator current noise cancellation
Zhou, Wei; Lu, Bin; Habetler, Thomas G.; Harley, Ronald G.; Theisen, Peter J.
2010-08-17
A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.
NASA Astrophysics Data System (ADS)
Inoue, N.; Kitada, N.; Kusumoto, S.; Itoh, Y.; Takemura, K.
2011-12-01
The Osaka basin surrounded by the Rokko and Ikoma Ranges is one of the typical Quaternary sedimentary basins in Japan. The Osaka basin has been filled by the Pleistocene Osaka group and the later sediments. Several large cities and metropolitan areas, such as Osaka and Kobe are located in the Osaka basin. The basin is surrounded by E-W trending strike slip faults and N-S trending reverse faults. The N-S trending 42-km-long Uemachi faults traverse in the central part of the Osaka city. The Uemachi faults have been investigated for countermeasures against earthquake disaster. It is important to reveal the detailed fault parameters, such as length, dip and recurrence interval, so on for strong ground motion simulation and disaster prevention. For strong ground motion simulation, the fault model of the Uemachi faults consist of the two parts, the north and south parts, because of the no basement displacement in the central part of the faults. The Ministry of Education, Culture, Sports, Science and Technology started the project to survey of the Uemachi faults. The Disaster Prevention Institute of Kyoto University is carried out various surveys from 2009 to 2012 for 3 years. The result of the last year revealed the higher fault activity of the branch fault than main faults in the central part (see poster of "Subsurface Flexure of Uemachi Fault, Japan" by Kitada et al., in this meeting). Kusumoto et al. (2001) reported that surrounding faults enable to form the similar basement relief without the Uemachi faults model based on a dislocation model. We performed various parameter studies for dislocation model and gravity changes based on simplified faults model, which were designed based on the distribution of the real faults. The model was consisted 7 faults including the Uemachi faults. The dislocation and gravity change were calculated based on the Okada et al. (1985) and Okubo et al. (1993) respectively. The results show the similar basement displacement pattern to the Kusumoto et al. (2001) and no characteristic gravity change pattern. The Quantitative estimation is further problem.
Integrated Approach To Design And Analysis Of Systems
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Iverson, David L.
1993-01-01
Object-oriented fault-tree representation unifies evaluation of reliability and diagnosis of faults. Programming/fault tree described more fully in "Object-Oriented Algorithm For Evaluation Of Fault Trees" (ARC-12731). Augmented fault tree object contains more information than fault tree object used in quantitative analysis of reliability. Additional information needed to diagnose faults in system represented by fault tree.
NASA Technical Reports Server (NTRS)
Rogers, William H.; Schutte, Paul C.
1993-01-01
Advanced fault management aiding concepts for commercial pilots are being developed in a research program at NASA Langley Research Center. One aim of this program is to re-evaluate current design principles for display of fault information to the flight crew: (1) from a cognitive engineering perspective and (2) in light of the availability of new types of information generated by advanced fault management aids. The study described in this paper specifically addresses principles for organizing fault information for display to pilots based on their mental models of fault management.
Determination of Seismic Activity on the Main Marmara Fault with GPS Measurements
NASA Astrophysics Data System (ADS)
Alkan, M. N.; Alkan, R. M.; Yavaşoğlu, H.; Köse, Z.; Aladoğan, K.; Özbey, V.
2017-12-01
The tectonic plates that creates the Earth have always been an important topic to work on for Geosciences. Plate motion affecting the Earth's crust have occurred for millions of years. This slow but continuous movement that has been going on for millions of years can only be followed by instrumental measurements. In recent years, this process has been done with GPS very accurately. The North Anatolian Fault (NAF) is a major right-lateral, strike-slip fault that extends more than 1200 km extends along all North Anatolia from Bingol to Saros Gulf. The NAFZ is divided into Southern and Northern Branches to the east of Marmara region that several destructive earthquakes occurred, such as Izmit (in 1999, Mw=7.4) and Duzce (in 1999, Mw=7.2) in the last century. MMF (Main Marmara Fault) which is the part of the Northern Branch in the Marmara Sea, starting in from the Gulf of Izmit-Adapazarı and reaching the Gulf of Saros. The determination of the deformation accumulated on the MMF has become extremely important especially after the 1999 Izmit earthquake. According to the recent studies, the MMF is the largest unbroken part of the fault and is divided into segments. These segments are Cinarcik, Prince Island, Central Marmara and Tekirdag. Recent studies have demonstrated that the Prince Island segment is fully locked. However, studies that are focused on the Central Marmara segment, that is located offshore Istanbul, a giant metropole that has more than 14 million populations, do not conclude about the presence of a seismic gap, capable of generating a big earthquake. Therefore, in the scope of this study, a new GPS network was established at short and long distance from the Main Marmara Fault, to densify the existing GPS network. 3 campaign GPS measurements were done in 2015, 2016, 2017. The evaluation of the datasets were done by GAMIT/GLOBK software. For the evaluation, 30 continuous observation stations, 14 stations connected to the IGS network and 16 stations connected to the local networks CORS-TR and ISKI-UKBS, and 18 campaign stations that located in the study area were used. The evaluation was made between 12-26 August for each year and thus intended to determine the kinematics of the Main Marmara Fault.
NASA Astrophysics Data System (ADS)
Pinar, Ali; Coskun, Zeynep; Mert, Aydin; Kalafat, Dogan
2015-04-01
The general consensus based on historical earthquake data point out that the last major moment release on the Prince's islands fault was in 1766 which in turn signals an increased seismic risk for Istanbul Metropolitan area considering the fact that most of the 20 mm/yr GPS derived slip rate for the region is accommodated mostly by that fault segment. The orientation of the Prince's islands fault segment overlaps with the NW-SE direction of the maximum principle stress axis derived from the focal mechanism solutions of the large and moderate sized earthquakes occurred in the Marmara region. As such, the NW-SE trending fault segment translates the motion between the two E-W trending branches of the North Anatolian fault zone; one extending from the Gulf of Izmit towards Çınarcık basin and the other extending between offshore Bakırköy and Silivri. The basic relation between the orientation of the maximum and minimum principal stress axes, the shear and normal stresses, and the orientation of a fault provides clue on the strength of a fault, i.e., its frictional coefficient. Here, the angle between the fault normal and maximum compressive stress axis is a key parameter where fault normal and fault parallel maximum compressive stress might be a necessary and sufficient condition for a creeping event. That relation also implies that when the trend of the sigma-1 axis is close to the strike of the fault the shear stress acting on the fault plane approaches zero. On the other hand, the ratio between the shear and normal stresses acting on a fault plane is proportional to the coefficient of frictional coefficient of the fault. Accordingly, the geometry between the Prince's islands fault segment and a maximum principal stress axis matches a weak fault model. In the frame of the presentation we analyze seismological data acquired in Marmara region and interpret the results in conjuction with the above mentioned weak fault model.
NASA Astrophysics Data System (ADS)
Kahraman, Metin; Cornwell, David G.; Thompson, David A.; Rost, Sebastian; Houseman, Gregory A.; Türkelli, Niyazi; Teoman, Uğur; Altuncu Poyraz, Selda; Utkucu, Murat; Gülen, Levent
2015-11-01
Continental scale deformation is often localised along strike-slip faults constituting considerable seismic hazard in many locations. Nonetheless, the depth extent and precise geometry of such faults, key factors in how strain is accumulated in the earthquake cycle and the assessment of seismic hazard, are poorly constrained in the mid to lower crust. Using a dense broadband network of 71 seismic stations with a nominal station spacing of 7 km in the vicinity of the 1999 Izmit earthquake we map previously unknown small-scale structure in the crust and upper mantle along this part of the North Anatolian Fault Zone (NAFZ). We show that lithological and structural variations exist in the upper, mid and lower crust on length scales of less than 10 km and less than 20 km in the upper mantle. The surface expression of the NAFZ in this region comprises two major branches; both are shown to continue at depth with differences in dip, depth extent and (possibly) width. We interpret a <10 km wide northern branch that passes downward into a shear zone that traverses the entire crust and penetrates the upper mantle to a depth of at least 50 km. The dip of this structure appears to decrease west-east from ∼90° to ∼65° to the north over a distance of 30 to 40 km. Deformation along the southern branch may be accommodated over a wider (>10 km) zone in the crust with a similar variation of dip but there is no clear evidence that this shear zone penetrates the Moho. Layers of anomalously low velocity in the mid crust (20-25 km depth) and high velocity in the lower crust (extending from depths of 28-30 km to the Moho) are best developed in the Armutlu-Almacik block between the two shear zones. A mafic lower crust, possibly resulting from ophiolitic obduction or magmatic intrusion, can best explain the coherent lower crustal structure of this block. Our images show that strain has developed in the lower crust beneath both northern and southern strands of the North Anatolian Fault. Our new high resolution images provide new insights into the structure and evolution of the NAFZ and show that a small and dense passive seismic network is able to image previously undetectable crust and upper mantle heterogeneity on lateral length scales of less than 10 km.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiercelin, J.J.; Lezzar, K.E.; Richert, J.P.
Oil is known from lacustrine basins of the east African rift. The geology of such basins is complex and different depending on location in the eastern and western branches. The western branch has little volcanism, leading to long-lived basins, such as Lake Tanganyika, whereas a large quantity of volcanics results in the eastern branch characterized by ephemeral basins, as the Baringo-Bogoria basin in Kenya. The Baringo-Bogoria basin is a north-south half graben formed in the middle Pleistocene and presently occupied by the hypersaline Lake Bogoria and the freshwater Lake Baringo. Lake Bogoria is fed by hot springs and ephemeral streamsmore » controlled by grid faults bounding the basin to the west. The sedimentary fill is formed by cycles of organic oozes having a good petroleum potential and evaporites. On the other hand, and as a consequence of the grid faults, Lake Baringo is fed by permanent streams bringing into the basin large quantities of terrigenous sediments. Lake Tanganyika is a meromictic lake 1470 m deep and 700 km long, of middle Miocene age. It is subdivided into seven asymmetric half grabens separated by transverse ridges. The sedimentary fill is thick and formed by organic oozes having a very good petroleum potential. In contrast to Bogoria, the lateral distribution of organic matter is characterized by considerable heterogeneity due to the existence of structural blocks or to redepositional processes.« less
NASA Astrophysics Data System (ADS)
Henrys, S. A.; Plaza-Faverola, A. A.; Pecher, I. A.; Klaeschen, D.; Wallace, L.
2016-12-01
Seismic reflection data along the East Coast of the New Zealand North Island are used to map the offshore character and geometry of the central Hikurangi subduction thrust and outer wedge in a region of short term ( 2-3 weeks duration) geodetically determined slow-slip events (SSEs). Pre-stack depth migration of line 05CM-38 was used to derive subducting slab geometry and upper crustal structure together with a Vp image of the crust that is resolved to 14 km depth. The subduction interface is a shallow dipping thrust at < 7 km deep near the trench and steps down to 14 km depth along an approximately 18 km long ramp, beneath Porangahau Ridge. This bend in the subducted plate is associated with splay fault branching and coincides with the zone of maximum slip (90 mm) inferred on the subduction interface during slow slip events in June and July 2011. We infer that the step down in the décollement transfers slip on the plate interface from the top of subducting sediments to the oceanic crust and drives underplating beneath the inner margin of central Hikurangi margin. Low-velocity subducting sediments (LVZ) beneath the plate interface, updip of the plate interface ramp, are interpreted as being capped with a low permeability condensed layer of chalk and interbedded mudstones. We interpret this LVZ as fluid-rich overpressured sediments that have been displaced and later imbricated by splay faults in a region that may mark the up-dip transition from seismic to aseismic behavior. Further, we hypothesize that fluids derived from the overpressured sediment are channeled along splay faults to the shallow sub-seafloor near Porangahau Ridge where seafloor seepage and an upwarping of the gas hydrate Bottom-Simulating Reflector have been documented.
NASA Technical Reports Server (NTRS)
Harper, Richard
1989-01-01
In a fault-tolerant parallel computer, a functional programming model can facilitate distributed checkpointing, error recovery, load balancing, and graceful degradation. Such a model has been implemented on the Draper Fault-Tolerant Parallel Processor (FTPP). When used in conjunction with the FTPP's fault detection and masking capabilities, this implementation results in a graceful degradation of system performance after faults. Three graceful degradation algorithms have been implemented and are presented. A user interface has been implemented which requires minimal cognitive overhead by the application programmer, masking such complexities as the system's redundancy, distributed nature, variable complement of processing resources, load balancing, fault occurrence and recovery. This user interface is described and its use demonstrated. The applicability of the functional programming style to the Activation Framework, a paradigm for intelligent systems, is then briefly described.
Interim reliability evaluation program, Browns Ferry fault trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, M.E.
1981-01-01
An abbreviated fault tree method is used to evaluate and model Browns Ferry systems in the Interim Reliability Evaluation programs, simplifying the recording and displaying of events, yet maintaining the system of identifying faults. The level of investigation is not changed. The analytical thought process inherent in the conventional method is not compromised. But the abbreviated method takes less time, and the fault modes are much more visible.
User's guide to programming fault injection and data acquisition in the SIFT environment
NASA Technical Reports Server (NTRS)
Elks, Carl R.; Green, David F.; Palumbo, Daniel L.
1987-01-01
Described are the features, command language, and functional design of the SIFT (Software Implemented Fault Tolerance) fault injection and data acquisition interface software. The document is also intended to assist and guide the SIFT user in defining, developing, and executing SIFT fault injection experiments and the subsequent collection and reduction of that fault injection data. It is also intended to be used in conjunction with the SIFT User's Guide (NASA Technical Memorandum 86289) for reference to SIFT system commands, procedures and functions, and overall guidance in SIFT system programming.
Determining on-fault earthquake magnitude distributions from integer programming
NASA Astrophysics Data System (ADS)
Geist, Eric L.; Parsons, Tom
2018-02-01
Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106 variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions.
NASA Astrophysics Data System (ADS)
Pascal, Christophe
2004-04-01
Stress inversion programs are nowadays frequently used in tectonic analysis. The purpose of this family of programs is to reconstruct the stress tensor characteristics from fault slip data acquired in the field or derived from earthquake focal mechanisms (i.e. inverse methods). Until now, little attention has been paid to direct methods (i.e. to determine fault slip directions from an inferred stress tensor). During the 1990s, the fast increase in resolution in 3D seismic reflection techniques made it possible to determine the geometry of subsurface faults with a satisfactory accuracy but not to determine precisely their kinematics. This recent improvement allows the use of direct methods. A computer program, namely SORTAN, is introduced. The program is highly portable on Unix platforms, straightforward to install and user-friendly. The computation is based on classical stress-fault slip relationships and allows for fast treatment of a set of faults and graphical presentation of the results (i.e. slip directions). In addition, the SORTAN program permits one to test the sensitivity of the results to input uncertainties. It is a complementary tool to classical stress inversion methods and can be used to check the mechanical consistency and the limits of structural interpretations based upon 3D seismic reflection surveys.
NASA Technical Reports Server (NTRS)
Martensen, Anna L.; Butler, Ricky W.
1987-01-01
The Fault Tree Compiler Program is a new reliability tool used to predict the top event probability for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N gates. The high level input language is easy to understand and use when describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify the tree description and decrease program execution time. The current solution technique provides an answer precise (within the limits of double precision floating point arithmetic) to the five digits in the answer. The user may vary one failure rate or failure probability over a range of values and plot the results for sensitivity analyses. The solution technique is implemented in FORTRAN; the remaining program code is implemented in Pascal. The program is written to run on a Digital Corporation VAX with the VMS operation system.
Fenix, A Fault Tolerant Programming Framework for MPI Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamel, Marc; Teranihi, Keita; Valenzuela, Eric
2016-10-05
Fenix provides APIs to allow the users to add fault tolerance capability to MPI-based parallel programs in a transparent manner. Fenix-enabled programs can run through process failures during program execution using a pool of spare processes accommodated by Fenix.
System and method for motor fault detection using stator current noise cancellation
Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.
2010-12-07
A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.
NASA Astrophysics Data System (ADS)
Taylor, George; Rost, Sebastian; Houseman, Gregory; Hillers, Gregor
2017-04-01
By utilising short period surface waves present in the noise field, we can construct images of shallow structure in the Earth's upper crust: a region that is usually poorly resolved in earthquake tomography. Here, we use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ˜1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We obtain maps of group velocity variation using surface wave tomography applied to short period (1- 6 s) Rayleigh and Love waves to construct high-resolution images of the upper 5 km of a 70 km x 35 km region centred on the eastern end of the fault segment that ruptured in the 1999 Izmit earthquake. The average Rayleigh wave group velocities in the region vary between 1.8 km/s at 1.5 s period, to 2.2 km/s at 6 s period. The NAFZ bifurcates into northern and southern strands in this region; both are active but only the northern strand moved in the 1999 event. The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in surface wave group velocity. To the north of the NAFZ, we observe low Rayleigh wave group velocities ( 1.2 km/s) associated with the unconsolidated sediments of the Adapazari basin, and blocks of weathered terrigenous clastic sediments. To the south of the northern branch of the NAFZ, we detect high velocities ( 2.5 km/s) associated with a shallow crystalline basement, in particular a block of metamorphosed schists and marbles that bound the northern branch of the NAFZ.
Structure of the North Anatolian Fault Zone from the Autocorrelation of Ambient Seismic Noise
NASA Astrophysics Data System (ADS)
Taylor, George; Rost, Sebastian; Houseman, Gregory
2016-04-01
In recent years the technique of cross-correlating the ambient seismic noise wavefield at two seismometers to reconstruct empirical Green's Functions for the determination of Earth structure has been a powerful tool to study the Earth's interior without earthquakes or man-made sources. However, far less attention has been paid to using auto-correlations of seismic noise to reveal body wave reflections from interfaces in the subsurface. In principle, the Green's functions thus derived should be comparable to the Earth's impulse response to a co-located source and receiver. We use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the northern branch of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends ~1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We construct body wave images for the entire crust and the shallow upper mantle over the ~35 km by 70 km footprint of the 70-station DANA array. Using autocorrelations of the vertical component of ground motion, P-wave reflections can be retrieved from the wavefield to constrain crustal structure. We show that clear P-wave reflections from the crust-mantle boundary (Moho) can be retrieved using the autocorrelation technique, indicating topography on the Moho on horizontal scales of less than 10 km. Offsets in crustal structure can be identified that seem to be correlated with the surface expression of the northern branch of the fault zone, indicating that the NAFZ reaches the upper mantle as a narrow structure. The southern branch has a less clear effect on crustal structure. We also see evidence of several discontinuities in the mid-crust in addition to an upper mantle reflector that we interpret to represent the Hales discontinuity.
Seismicity and Tectonics of the West Kaibab Fault Zone, AZ
NASA Astrophysics Data System (ADS)
Wilgus, J. T.; Brumbaugh, D. S.
2014-12-01
The West Kaibab Fault Zone (WKFZ) is the westernmost bounding structure of the Kaibab Plateau of northern Arizona. The WKFZ is a branching complex of high angle, normal faults downthrown to the west. There are three main faults within the WKFZ, the Big Springs fault with a maximum of 165 m offset, the Muav fault with 350 m of displacement, and the North Road fault having a maximum throw of approximately 90 m. Mapping of geologically recent surface deposits at or crossing the fault contacts indicates that the faults are likely Quaternary with the most recent offsets occurring <1.6 Ma. Slip rates are estimated to be less than 0.2 mm/yr. No historic fault slip has been documented. The WKFZ is one of the most seismically active areas in Arizona and lies within the Northern Arizona Seismic Belt (NASB), which stretches across northern Arizona trending NW-SE. The data set for this study includes 156 well documented events with the largest being a M5.75 in 1959 and including a swarm of seven earthquakes in 2012. The seismic data set (1934-2014) reveals that seismic activity clusters in two regions within the study area, the Fredonia cluster located in the NW corner of the study area and the Kaibab cluster located in the south central portion of the study area. The fault plane solutions to date indicate NE-SW to EW extension is occurring in the study area. Source relationships between earthquakes and faults within the WKFZ have not previously been studied in detail. The goal of this study is to use the seismic data set, the available data on faults, and the regional physiography to search for source relationships for the seismicity. Analysis includes source parameters of the earthquake data (location, depth, and fault plane solutions), and comparison of this output to the known faults and areal physiographic framework to indicate any active faults of the WKFZ, or suggested active unmapped faults. This research contributes to a better understanding of the present nature of the WKFZ and the NASB as well.
Final Project Report. Scalable fault tolerance runtime technology for petascale computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnamoorthy, Sriram; Sadayappan, P
With the massive number of components comprising the forthcoming petascale computer systems, hardware failures will be routinely encountered during execution of large-scale applications. Due to the multidisciplinary, multiresolution, and multiscale nature of scientific problems that drive the demand for high end systems, applications place increasingly differing demands on the system resources: disk, network, memory, and CPU. In addition to MPI, future applications are expected to use advanced programming models such as those developed under the DARPA HPCS program as well as existing global address space programming models such as Global Arrays, UPC, and Co-Array Fortran. While there has been amore » considerable amount of work in fault tolerant MPI with a number of strategies and extensions for fault tolerance proposed, virtually none of advanced models proposed for emerging petascale systems is currently fault aware. To achieve fault tolerance, development of underlying runtime and OS technologies able to scale to petascale level is needed. This project has evaluated range of runtime techniques for fault tolerance for advanced programming models.« less
Research program of the Geodynamics Branch
NASA Technical Reports Server (NTRS)
Kahn, W. D. (Editor); Cohen, S. C. (Editor); Boccucci, B. S. (Editor)
1986-01-01
This report is the Fourth Annual Summary of the Research Program of the Geodynamics Branch. The branch is located within the Laboratory for Terrestrial Physics of the Space and Earth Sciences Directorate of the Goddard Space Flight Center. The research activities of the branch staff cover a broad spectrum of geoscience disciplines including: tectonophysics, space geodesy, geopotential field modeling, and dynamic oceanography. The NASA programs which are supported by the work described in this document include the Geodynamics and Ocean Programs, the Crustal Dynamics Project and the proposed Ocean Topography Experiment (TOPEX). The reports highlight the investigations conducted by the Geodynamics Branch staff during calendar year 1985. The individual papers are grouped into chapters on Crustal Movements and Solid Earth Dynamics, Gravity Field Modeling and Sensing Techniques, and Sea Surface Topography. Further information on the activities of the branch or the particular research efforts described herein can be obtained through the branch office or from individual staff members.
Dynamic wavefront creation for processing units using a hybrid compactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puthoor, Sooraj; Beckmann, Bradford M.; Yudanov, Dmitri
A method, a non-transitory computer readable medium, and a processor for repacking dynamic wavefronts during program code execution on a processing unit, each dynamic wavefront including multiple threads are presented. If a branch instruction is detected, a determination is made whether all wavefronts following a same control path in the program code have reached a compaction point, which is the branch instruction. If no branch instruction is detected in executing the program code, a determination is made whether all wavefronts following the same control path have reached a reconvergence point, which is a beginning of a program code segment tomore » be executed by both a taken branch and a not taken branch from a previous branch instruction. The dynamic wavefronts are repacked with all threads that follow the same control path, if all wavefronts following the same control path have reached the branch instruction or the reconvergence point.« less
Fault management for data systems
NASA Technical Reports Server (NTRS)
Boyd, Mark A.; Iverson, David L.; Patterson-Hine, F. Ann
1993-01-01
Issues related to automating the process of fault management (fault diagnosis and response) for data management systems are considered. Substantial benefits are to be gained by successful automation of this process, particularly for large, complex systems. The use of graph-based models to develop a computer assisted fault management system is advocated. The general problem is described and the motivation behind choosing graph-based models over other approaches for developing fault diagnosis computer programs is outlined. Some existing work in the area of graph-based fault diagnosis is reviewed, and a new fault management method which was developed from existing methods is offered. Our method is applied to an automatic telescope system intended as a prototype for future lunar telescope programs. Finally, an application of our method to general data management systems is described.
Program listing for fault tree analysis of JPL technical report 32-1542
NASA Technical Reports Server (NTRS)
Chelson, P. O.
1971-01-01
The computer program listing for the MAIN program and those subroutines unique to the fault tree analysis are described. Some subroutines are used for analyzing the reliability block diagram. The program is written in FORTRAN 5 and is running on a UNIVAC 1108.
KINKFOLD—an AutoLISP program for construction of geological cross-sections using borehole image data
NASA Astrophysics Data System (ADS)
Özkaya, Sait Ismail
2002-04-01
KINKFOLD is an AutoLISP program designed to construct geological cross-sections from borehole image or dip meter logs. The program uses the kink-fold method for cross-section construction. Beds are folded around hinge lines as angle bisectors so that bedding thickness remains unchanged. KINKFOLD may be used to model a wide variety of parallel fold structures, including overturned and faulted folds, and folds truncated by unconformities. The program accepts data from vertical or inclined boreholes. The KINKFOLD program cannot be used to model fault drag, growth folds, inversion structures or disharmonic folds where the bed thickness changes either because of deformation or deposition. Faulted structures and similar folds can be modelled by KINKFOLD by omitting dip measurements within fault drag zones and near axial planes of similar folds.
Diagnostic emulation: Implementation and user's guide
NASA Technical Reports Server (NTRS)
Becher, Bernice
1987-01-01
The Diagnostic Emulation Technique was developed within the System Validation Methods Branch as a part of the development of methods for the analysis of the reliability of highly reliable, fault tolerant digital avionics systems. This is a general technique which allows for the emulation of a digital hardware system. The technique is general in the sense that it is completely independent of the particular target hardware which is being emulated. Parts of the system are described and emulated at the logic or gate level, while other parts of the system are described and emulated at the functional level. This algorithm allows for the insertion of faults into the system, and for the observation of the response of the system to these faults. This allows for controlled and accelerated testing of system reaction to hardware failures in the target machine. This document describes in detail how the algorithm was implemented at NASA Langley Research Center and gives instructions for using the system.
Determining on-fault earthquake magnitude distributions from integer programming
Geist, Eric L.; Parsons, Thomas E.
2018-01-01
Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106 variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions.
Beyer, Larry A.; McCulloh, Thane H.; Denison, Rodger E.; Morin, Ronald W.; Enrico, Roy J.; Barron, John A.; Fleck, Robert J.
2009-01-01
The right lateral San Gabriel Fault Zone in southern California extends from the northwestern corner of the Ridge Basin southeastward to the eastern end of the San Gabriel Mountains. It bifurcates to the southeast in the northwestern San Gabriel Mountains. The northern and older branch curves eastward in the range interior. The southern younger branch, the Vasquez Creek Fault, curves southeastward to merge with the Sierra Madre Fault Zone, which separates the San Gabriel Mountains from the northern Los Angeles Basin margin. An isolated exposure of partly macrofossiliferous nearshore shallow-marine sandstone, designated the Gold Canyon beds, is part of the southwest wall of the fault zone 5.5 km northwest of the bifurcation. These beds contain multiple subordinate breccia-conglomerate lenses and are overlain unconformably by folded Pliocene-Pleistocene Saugus Formation fanglomerate. The San Gabriel Fault Zone cuts both units. Marine macrofossils from the Gold Canyon beds give an age of 5.2+-0.3 Ma by 87Sr/86Sr analyses. Magnetic polarity stratigraphy dates deposition of the overlying Saugus Formation to between 2.6 Ma and 0.78 Ma. Distinctive metaplutonic rocks of the Mount Lowe intrusive suite in the San Gabriel Range are the source of certain clasts in both the Gold Canyon beds and Saugus Formation. Angular clasts of nondurable Paleocene sandstone also occur in the Gold Canyon beds. The large size and angularity of some of the largest of both clast types in breccia-conglomerate lenses of the beds suggest landslides or debris flows from steep terrain. Sources of Mount Lowe clasts, originally to the north or northeast, are now displaced southeastward by faulting and are located between the San Gabriel and Vasquez Creek faults, indicating as much as 12+-2 km of post-Miocene Vasquez Creek Fault right separation, in accord with some prior estimates. Post-Miocene right slip thus transferred onto the Vasquez Creek Fault southeast of the bifurcation. The right separation on the Vasquez Creek Fault adds to the generally accepted 22-23 km of middle-late Miocene right separation established for the San Gabriel Fault east of the bifurcation, resulting in total right separation of 34-35 km northwest of the bifurcation. Clast sizes and lithologies in Saugus Formation deformed alluvial fan deposits in the Gold and Little Tujunga Canyons area indicate that alluvial stream flow was from the north or north-northeast. The alluvial fan complex is beheaded at the San Gabriel Fault Zone, and no correlative deposits have been found north of the fault zone. Likely sources of several distinctive clast types are east of the bifurcation and north of the Vasquez Creek Fault. Combining these data with right slip caused by the 34 deg +-6 deg of clockwise local block rotation suggests that post-Saugus Formation (<2.6 to 0.78 Ma) right separation along the fault zone is 4+-2 km. The fossils, lithology, and age of the Gold Canyon beds correlate with the basal Pico Formation. The beds presumably connected southward or southwestward to a more open marine setting. A search for correlative strata to the south and southwest found that some strata previously mapped as Towsley Formation correlate with the Modelo Formation. Oyster spat in some Modelo Formation beds are the first recorded fossil occurrences and are especially remarkable because of associations with Miocene bathyal benthic foraminifers, planktonic calcareous nannofossils, and diatoms. Topanga Group basalt resting on basement rocks between Little and Big Tujunga Canyons gives an age of 16.14+-0.05 Ma from 40Ar/39Ar analysis. Improved understanding of the upper Miocene stratigraphy indicates large early movement on the eastern Santa Susana Fault at about 7-6 Ma.
Map and database of Quaternary faults in Venezuela and its offshore regions
Audemard, F.A.; Machette, M.N.; Cox, J.W.; Dart, R.L.; Haller, K.M.
2000-01-01
As part of the International Lithosphere Program’s “World Map of Major Active Faults,” the U.S. Geological Survey is assisting in the compilation of a series of digital maps of Quaternary faults and folds in Western Hemisphere countries. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. They are accompanied by databases that describe these features and document current information on their activity in the Quaternary. The project is a key part of the Global Seismic Hazards Assessment Program (ILP Project II-0) for the International Decade for Natural Hazard Disaster Reduction.The project is sponsored by the International Lithosphere Program and funded by the USGS’s National Earthquake Hazards Reduction Program. The primary elements of the project are general supervision and interpretation of geologic/tectonic information, data compilation and entry for fault catalog, database design and management, and digitization and manipulation of data in †ARCINFO. For the compilation of data, we engaged experts in Quaternary faulting, neotectonics, paleoseismology, and seismology.
NASA Astrophysics Data System (ADS)
Wollherr, Stephanie; Gabriel, Alice-Agnes; Uphoff, Carsten
2018-05-01
The dynamics and potential size of earthquakes depend crucially on rupture transfers between adjacent fault segments. To accurately describe earthquake source dynamics, numerical models can account for realistic fault geometries and rheologies such as nonlinear inelastic processes off the slip interface. We present implementation, verification, and application of off-fault Drucker-Prager plasticity in the open source software SeisSol (www.seissol.org). SeisSol is based on an arbitrary high-order derivative modal Discontinuous Galerkin (ADER-DG) method using unstructured, tetrahedral meshes specifically suited for complex geometries. Two implementation approaches are detailed, modelling plastic failure either employing sub-elemental quadrature points or switching to nodal basis coefficients. At fine fault discretizations the nodal basis approach is up to 6 times more efficient in terms of computational costs while yielding comparable accuracy. Both methods are verified in community benchmark problems and by three dimensional numerical h- and p-refinement studies with heterogeneous initial stresses. We observe no spectral convergence for on-fault quantities with respect to a given reference solution, but rather discuss a limitation to low-order convergence for heterogeneous 3D dynamic rupture problems. For simulations including plasticity, a high fault resolution may be less crucial than commonly assumed, due to the regularization of peak slip rate and an increase of the minimum cohesive zone width. In large-scale dynamic rupture simulations based on the 1992 Landers earthquake, we observe high rupture complexity including reverse slip, direct branching, and dynamic triggering. The spatio-temporal distribution of rupture transfers are altered distinctively by plastic energy absorption, correlated with locations of geometrical fault complexity. Computational cost increases by 7% when accounting for off-fault plasticity in the demonstrating application. Our results imply that the combination of fully 3D dynamic modelling, complex fault geometries, and off-fault plastic yielding is important to realistically capture dynamic rupture transfers in natural fault systems.
Using Dynamic Sensitivity Analysis to Assess Testability
NASA Technical Reports Server (NTRS)
Voas, Jeffrey; Morell, Larry; Miller, Keith
1990-01-01
This paper discusses sensitivity analysis and its relationship to random black box testing. Sensitivity analysis estimates the impact that a programming fault at a particular location would have on the program's input/output behavior. Locations that are relatively \\"insensitive" to faults can render random black box testing unlikely to uncover programming faults. Therefore, sensitivity analysis gives new insight when interpreting random black box testing results. Although sensitivity analysis is computationally intensive, it requires no oracle and no human intervention.
Geology Report: Area 3 Radioactive Waste Management Site DOE/Nevada Test Site, Nye County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Management
2006-07-01
Surficial geologic studies near the Area 3 Radioactive Waste Management Site (RWMS) were conducted as part of a site characterization program. Studies included evaluation of the potential for future volcanism and Area 3 fault activity that could impact waste disposal operations at the Area 3 RWMS. Future volcanic activity could lead to disruption of the Area 3 RWMS. Local and regional studies of volcanic risk indicate that major changes in regional volcanic activity within the next 1,000 years are not likely. Mapped basalts of Paiute Ridge, Nye Canyon, and nearby Scarp Canyon are Miocene in age. There is a lackmore » of evidence for post-Miocene volcanism in the subsurface of Yucca Flat, and the hazard of basaltic volcanism at the Area 3 RWMS, within the 1,000-year regulatory period, is very low and not a forseeable future event. Studies included a literature review and data analysis to evaluate unclassified published and unpublished information regarding the Area 3 and East Branch Area 3 faults mapped in Area 3 and southern Area 7. Two trenches were excavated along the Area 3 fault to search for evidence of near-surface movement prior to nuclear testing. Allostratigraphic units and fractures were mapped in Trenches ST02 and ST03. The Area 3 fault is a plane of weakness that has undergone strain resulting from stress imposed by natural events and underground nuclear testing. No major vertical displacement on the Area 3 fault since the Early Holocene, and probably since the Middle Pleistocene, can be demonstrated. The lack of major displacement within this time frame and minimal vertical extent of minor fractures suggest that waste disposal operations at the Area 3 RWMS will not be impacted substantially by the Area 3 fault, within the regulatory compliance period. A geomorphic surface map of Yucca Flat utilizes the recent geomorphology and soil characterization work done in adjacent northern Frenchman Flat. The approach taken was to adopt the map unit boundaries (line work) of Swadley and Hoover (1990) and re-label these with map unit designations like those in northern Frenchman Flat (Huckins-Gang et al, 1995a,b,c; Snyder et al, 1995a,b,c,d).« less
Ontology-Based Method for Fault Diagnosis of Loaders.
Xu, Feixiang; Liu, Xinhui; Chen, Wei; Zhou, Chen; Cao, Bingwei
2018-02-28
This paper proposes an ontology-based fault diagnosis method which overcomes the difficulty of understanding complex fault diagnosis knowledge of loaders and offers a universal approach for fault diagnosis of all loaders. This method contains the following components: (1) An ontology-based fault diagnosis model is proposed to achieve the integrating, sharing and reusing of fault diagnosis knowledge for loaders; (2) combined with ontology, CBR (case-based reasoning) is introduced to realize effective and accurate fault diagnoses following four steps (feature selection, case-retrieval, case-matching and case-updating); and (3) in order to cover the shortages of the CBR method due to the lack of concerned cases, ontology based RBR (rule-based reasoning) is put forward through building SWRL (Semantic Web Rule Language) rules. An application program is also developed to implement the above methods to assist in finding the fault causes, fault locations and maintenance measures of loaders. In addition, the program is validated through analyzing a case study.
Ontology-Based Method for Fault Diagnosis of Loaders
Liu, Xinhui; Chen, Wei; Zhou, Chen; Cao, Bingwei
2018-01-01
This paper proposes an ontology-based fault diagnosis method which overcomes the difficulty of understanding complex fault diagnosis knowledge of loaders and offers a universal approach for fault diagnosis of all loaders. This method contains the following components: (1) An ontology-based fault diagnosis model is proposed to achieve the integrating, sharing and reusing of fault diagnosis knowledge for loaders; (2) combined with ontology, CBR (case-based reasoning) is introduced to realize effective and accurate fault diagnoses following four steps (feature selection, case-retrieval, case-matching and case-updating); and (3) in order to cover the shortages of the CBR method due to the lack of concerned cases, ontology based RBR (rule-based reasoning) is put forward through building SWRL (Semantic Web Rule Language) rules. An application program is also developed to implement the above methods to assist in finding the fault causes, fault locations and maintenance measures of loaders. In addition, the program is validated through analyzing a case study. PMID:29495646
Liu, Yadong; Xie, Xiaolei; Hu, Yue; Qian, Yong; Sheng, Gehao; Jiang, Xiuchen
2016-01-01
The accurate detection of high-frequency transient fault currents in overhead transmission lines is the basis of malfunction detection and diagnosis. This paper proposes a novel differential winding printed circuit board (PCB) Rogowski coil for the detection of transient fault currents in overhead transmission lines. The interference mechanism of the sensor surrounding the overhead transmission line is analyzed and the guideline for the interference elimination is obtained, and then a differential winding printed circuit board (PCB) Rogowski coil is proposed, where the branch and return line of the PCB coil were designed to be strictly symmetrical by using a joining structure of two semi-rings and collinear twisted pair differential windings in each semi-ring. A serial test is conducted, including the frequency response, linearity, and anti-interference performance as well as a comparison with commercial sensors. Results show that a PCB Rogowski coil has good linearity and resistance to various external magnetic field interferences, thus enabling it to be widely applied in fault-current-collecting devices. PMID:27213402
Spudich, Paul A.; Chiou, Brian
2015-01-01
We present a two-dimensional system of generalized coordinates for use with geometrically complex fault ruptures that are neither straight nor continuous. The coordinates are a generalization of the conventional strike-normal and strike-parallel coordinates of a single straight fault. The presented conventions and formulations are applicable to a single curved trace, as well as multiple traces representing the rupture of branching faults or noncontiguous faults. An early application of our generalized system is in the second round of the Next Generation of Ground-Motion Attenuation Model project for the Western United States (NGA-West2), where they were used in the characterization of the hanging-wall effects. We further improve the NGA-West2 strike-parallel formulation for multiple rupture traces with a more intuitive definition of the nominal strike direction. We also derive an analytical expression for the gradient of the generalized strike-normal coordinate. The direction of this gradient may be used as the strike-normal direction in the study of polarization effects on ground motions.
Interseismic Deformation across the Eastern Altyn Tagh Fault from Insar Measurements
NASA Astrophysics Data System (ADS)
Liu, C. J.; Zhao, C. Y.; Ji, L. Y.; Zhang, Z. R.; Sun, H.
2018-04-01
As a new type of earth observation technique, InSAR has a lot of advantages, such as all-weather, all-time, high precision, high density, wide coverage and low cost. It has been widely used in deformation monitoring. Taking the eastern segment of Altyn Tagh fault (ATF) as the object of the research, this paper discussed the application of multi-temporal InSAR technology in the field of interseismic deformation monitoring. We measured the interseismic deformation along the eastern section of ATF using three neighboring descending tracks SAR data from the ERS and Envisat missions. The results show that, first, the validation of InSAR results is better than 2.5 mm/yr, the calibration of InSAR results is about 1.06 mm/yr. Second, the fault slip rate in this segment is about 4-7 mm/yr, and is in the locked condition. Third, The InSAR velocity profile across the fault is the clear asymmetry with respect to ATF, it may be the combined effect of northern (NATF) and southern (SATF) branches of ATF.
NASA Astrophysics Data System (ADS)
Lin, S.; Luo, D.; Yanlin, F.; Li, Y.
2016-12-01
Shallow Seismic Reflection (SSR) is a major geophysical exploration method with its exploration depth range, high-resolution in urban active fault exploration. In this paper, we carried out (SSR) and High-resolution refraction (HRR) test in the Liangyun Basin to explore a buried fault. We used NZ distributed 64 channel seismic instrument, 60HZ high sensitivity detector, Geode multi-channel portable acquisition system and hammer source. We selected single side hammer hit multiple overlay, 48 channels received and 12 times of coverage. As there are some coincidence measuring lines of SSR and HRR, we chose multi chase and encounter observation system. Based on the satellite positioning, we arranged 11 survey lines in our study area with total length for 8132 meters. GEOGIGA seismic reflection data processing software was used to deal with the SSR data. After repeated tests from the aspects of single shot record compilation, interference wave pressing, static correction, velocity parameter extraction, dynamic correction, eventually got the shallow seismic reflection profile images. Meanwhile, we used Canadian technology company good refraction and tomographic imaging software to deal with HRR seismic data, which is based on nonlinear first arrival wave travel time tomography. Combined with drilling geological profiles, we explained 11 measured seismic profiles. Results show 18 obvious fault feature breakpoints, including 4 normal faults of south-west, 7 reverse faults of south-west, one normal fault of north-east and 6 reverse faults of north-east. Breakpoints buried depth is 15-18 meters, and the inferred fault distance is 3-12 meters. Comprehensive analysis shows that the fault property is reverse fault with northeast incline section, and fewer branch normal faults presenting southwest incline section. Since good corresponding relationship between the seismic interpretation results, drilling data and SEM results on the property, occurrence, broken length of the fault, we considered the Liangyun fault to be an active fault which has strong activity during the Neogene Pliocene and early Pleistocene, Middle Pleistocene period. The combined application of SSR and HRR can provide more parameters to explain the seismic results, and improve the accuracy of the interpretation.
NASA Astrophysics Data System (ADS)
Xiao, Qibin; Yu, Guo; Liu-Zeng, Jing; Oskin, Michael E.; Shao, Guihang
2017-05-01
Large restraining bends along active strike-slip faults locally enhance the accumulation of clamping tectonic normal stresses that may limit the size of major earthquakes. In such settings, uncertain fault geometry at depth limits understanding of how effectively a bend arrests earthquake ruptures. Here we demonstrate fault imaging within a major restraining bend along the Altyn Tagh Fault of western China using the magnetotelluric (MT) method. The new MT data were collected along two profiles across the Aksay restraining double bend, which is bounded by two subparallel strands of the Altyn Tagh Fault: Northern (NATF) and Southern (SATF). Both two-dimensional (2-D) and three-dimensional (3-D) inversion models show that the Aksay bend may be the center of a positive flower structure, imaged as a high-resistivity body extending to an 40 km depth and bounded by subvertical resistivity discontinuities corresponding to the NATF and SATF. In the western section of the Aksay bend, both the NATF and SATF show similar low-resistivity structure, whereas in the eastern part of the bend, the low-resistivity anomaly below the SATF is wider and more prominent than that below the NATF. This observation indicates that the SATF shear zone may be wider and host more fluid than the NATF, lending structural support to the contention that fault slip at depth is asymmetrically focused on the SATF, even though surface slip is focused on the NATF. A south dipping, low-resistivity interface branching upward from the SATF toward the NATF indicates a fault link between these strands at depth.
Deformation and seismicity of Taiwan.
Vita-Finzi, C
2000-10-10
14C-dated Holocene coastal uplift, conventional and satellite geodetic measurements, and coseismic and aseismic fault slip reveal the pattern of distributed deformation at Taiwan resulting from convergence between the Philippine Sea plate and Eurasia; as in other subduction orogenic settings, the locus of strain release and accumulation is strongly influenced by changes in fault geometry across strike. Uplift evidence from the islands of Lutao and Lanhsu is consistent with progressive oblique collision between the Luzon arc and the Chinese continental margin. In the Coastal Range, geodetic and seismic records show that shortening is taken up serially by discontinuous slip on imbricate faults. The geodetic data point to net extension across the Central Range, but deformed Holocene shorelines in the Hengchun Peninsula at its southern extremity suggest that the extension is a superficial effect partly caused by blind reverse faulting. The fastest shortening rates indicated by geodesy are recorded on the Longitudinal Valley fault and across the Chukou fault within the fold-and-thrust belt. In the former, the strain is dissipated mainly as aseismic reverse and strike-slip displacement. In contrast, the fold-and-thrust belt has witnessed five earthquakes with magnitudes of 6.5 or above in the 20th century, including the 1999.9.21 Chi-Chi earthquake (magnitude approximately 7.6) on a branch of the Chukou fault. The neotectonic and geodetic data for Taiwan as a whole suggest that the fold-and-thrust belt will continue to host the majority of great earthquakes on the island.
NASA Astrophysics Data System (ADS)
Qin, L.; Ben-Zion, Y.; Qiu, H.; Share, P.-E.; Ross, Z. E.; Vernon, F. L.
2018-04-01
We image the internal structure of the San Jacinto fault zone (SJFZ) in the trifurcation area southeast of Anza, California, with seismic records from dense linear and rectangular arrays. The examined data include recordings from more than 20 000 local earthquakes and nine teleseismic events. Automatic detection algorithms and visual inspection are used to identify P and S body waves, along with P- and S-types fault zone trapped waves (FZTW). The location at depth of the main branch of the SJFZ, the Clark fault, is identified from systematic waveform changes across lines of sensors within the dense rectangular array. Delay times of P arrivals from teleseismic and local events indicate damage asymmetry across the fault, with higher damage to the NE, producing a local reversal of the velocity contrast in the shallow crust with respect to the large-scale structure. A portion of the damage zone between the main fault and a second mapped surface trace to the NE generates P- and S-types FZTW. Inversions of high-quality S-type FZTW indicate that the most likely parameters of the trapping structure are width of ˜70 m, S-wave velocity reduction of 60 per cent, Q value of 60 and depth of ˜2 km. The local reversal of the shallow velocity contrast across the fault with respect to large-scale structure is consistent with preferred propagation of earthquake ruptures in the area to the NW.
MIRAP, microcomputer reliability analysis program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jehee, J.N.T.
1989-01-01
A program for a microcomputer is outlined that can determine minimal cut sets from a specified fault tree logic. The speed and memory limitations of the microcomputers on which the program is implemented (Atari ST and IBM) are addressed by reducing the fault tree's size and by storing the cut set data on disk. Extensive well proven fault tree restructuring techniques, such as the identification of sibling events and of independent gate events, reduces the fault tree's size but does not alter its logic. New methods are used for the Boolean reduction of the fault tree logic. Special criteria formore » combining events in the 'AND' and 'OR' logic avoid the creation of many subsuming cut sets which all would cancel out due to existing cut sets. Figures and tables illustrates these methods. 4 refs., 5 tabs.« less
NASA Astrophysics Data System (ADS)
Thompson, D. A.; Rost, S.; Houseman, G.; Cornwell, D. G.; Turkelli, N.; Teoman, U.; Kahraman, M.; Altuncu Poyraz, S.; Gülen, L.; Utkucu, M.; Rondenay, S.; Frederiksen, A. W.
2014-12-01
Deformation along major strike-slip faults is typically focussed into narrow damage zones at the surface, but the distribution at greater depths is more enigmatic. For instance, deformation in the lower crust beneath these faults is often attributed to much broader ductile shear zones. Deciphering how strain is distributed throughout the crust and lithospheric mantle is important because it has ramifications on the earthquake loading cycle. In order to better understand the structure of these systems at depth, we investigate the North Anatolian Fault Zone (NAFZ) as part of a multidisciplinary project entitled FaultLab. This fault system extends ~1200km across Turkey and has shown a clear west-east progression in seismicity over the last century, culminating in 2 catastrophic earthquakes located close to the population centers of Izmit and Duzce in 1999. In this contribution, we will present new data from a dense seismic array (Dense Array for North Anatolia, DANA, a 6x11 grid with a nominal station spacing of 7km) located across a part of the ruptured segment of the Izmit earthquake. Using the techniques of teleseismic scattering tomography and scattering migration, the excellent resolution afforded by DANA highlights sharp (< 5km) lateral variations in structure at mid- to lower-crustal depths (~20-25 km) across two branches of the NAFZ. This suggests that deformation zones between distinct crustal blocks remain narrow at these depths. Integrating complementary results from other parts of the FaultLab project (satellite geodesy, geodynamical modelling, structural geology), the results appear to be consistent with postseismic deformation being accommodated through afterslip on the deep extension of a narrow fault zone as opposed to a broad ductile region beneath the seismogenic extent of the fault.
NASA Astrophysics Data System (ADS)
Le Gall, B.; Rolet, J.; Gernigon, L.; Ebinger, C.; Gloaguen, R.
2003-04-01
The southern tip zone of the Kenya Rift on the eastern branch of the East African System is usually thought to occur in the so-called North Tanzanian Divergence. In this region, the narrow (50 km-wide) axial graben of southern Kenya splays southwards, via a major EW-trending volcanic lineament, into a 200 km-wide broad rifted zone with three separate arms of normal faulting and tilted fault blocks (Eyasi, Manyara and Pangani arms from W to E). Remote sensing analysis from Central Tanzania demonstrates that rift morphology exists over an area lying 400 km beyond the southern termination of the Kenya Rift. The most prominent rift structures are observed in the Kilombero region and consist of a 100 km-wide range of uplifted basement blocks fringed to the west by an E-facing half-graben inferred to reach depths of 6-8 km from aeromagnetic dataset. Physiographic features (fault scarps), and river drainage anomalies suggest that the present-day rift pattern in the Kilombero extensional province principally results from Recent/Neogene deformation. That assumption is also supported by the seismogenic character of a number of faults. The Kilombero half-graben is superimposed upon an earlier rift system, Karoo in age, which is totally overprinted and is only evidenced from its sedimentary infill. On the other hand, the nature and thickness of the inferred Neogene synrift section is still unknown. The Kilombero rifted zone is assumed to connect northwards into the central rift arm (Manyara) of the South Kenya Rift via a seismically active transverse fault zone that follows ductile fabrics within the Mozambican crystalline basement. The proposed rift model implies that incipient rifting propagates hroughout the cold and strong crust/lithosphere of Central Tanzania along Proterozoic (N140=B0E) basement weakness zones and earlier Karoo (NS)rift structures. A second belt of Recent-active linked fault/basins also extends further East from the Pangani rift arm to the offshore Zanzibar-Kerimbas graben system. The structural connection of the Kilombero rifted zone with the Lake Malawi rift further south is also envisaged and should imply the link of the eastern and western branchs of the East African Rift System south of the Tanzanian craton.
NASA Astrophysics Data System (ADS)
Yim, Keun Soo
This dissertation summarizes experimental validation and co-design studies conducted to optimize the fault detection capabilities and overheads in hybrid computer systems (e.g., using CPUs and Graphics Processing Units, or GPUs), and consequently to improve the scalability of parallel computer systems using computational accelerators. The experimental validation studies were conducted to help us understand the failure characteristics of CPU-GPU hybrid computer systems under various types of hardware faults. The main characterization targets were faults that are difficult to detect and/or recover from, e.g., faults that cause long latency failures (Ch. 3), faults in dynamically allocated resources (Ch. 4), faults in GPUs (Ch. 5), faults in MPI programs (Ch. 6), and microarchitecture-level faults with specific timing features (Ch. 7). The co-design studies were based on the characterization results. One of the co-designed systems has a set of source-to-source translators that customize and strategically place error detectors in the source code of target GPU programs (Ch. 5). Another co-designed system uses an extension card to learn the normal behavioral and semantic execution patterns of message-passing processes executing on CPUs, and to detect abnormal behaviors of those parallel processes (Ch. 6). The third co-designed system is a co-processor that has a set of new instructions in order to support software-implemented fault detection techniques (Ch. 7). The work described in this dissertation gains more importance because heterogeneous processors have become an essential component of state-of-the-art supercomputers. GPUs were used in three of the five fastest supercomputers that were operating in 2011. Our work included comprehensive fault characterization studies in CPU-GPU hybrid computers. In CPUs, we monitored the target systems for a long period of time after injecting faults (a temporally comprehensive experiment), and injected faults into various types of program states that included dynamically allocated memory (to be spatially comprehensive). In GPUs, we used fault injection studies to demonstrate the importance of detecting silent data corruption (SDC) errors that are mainly due to the lack of fine-grained protections and the massive use of fault-insensitive data. This dissertation also presents transparent fault tolerance frameworks and techniques that are directly applicable to hybrid computers built using only commercial off-the-shelf hardware components. This dissertation shows that by developing understanding of the failure characteristics and error propagation paths of target programs, we were able to create fault tolerance frameworks and techniques that can quickly detect and recover from hardware faults with low performance and hardware overheads.
Zinc and copper mineralization of the Vazante area, Minas Gerais, Brazil
Moore, Samuel L.
1956-01-01
A large body of zinc and copper mineralization is exposed in a line of low hills about 5 kilometers east of the small village of Vazante in the northwestern part of the state of Minas Gerais, Brazil. The Vazante area can be reached by roads leading north from the State of Sao Paulo, via Araxa; west from Balo Horizonte, Minas Gerais; and south from Paracatu, Minas Gerais. The deposit is in branching, sub-parallel fault breccia zones. Calamine (H2Zn2SiO5), and willomite (ZnSiO4), along with small quantities of smithsonite (ZnCO3), form the matrix of the fault breccia. The zinc mineralization is cut by narrow veins of chalcocite in platy crystal aggregate thought to be pseudomorphous after covellite. The chalcocite veins contain small quantities of sphalterite, galena, covellite and calamine. Faults that contain breccia zones displace shale and dolomite. The sedimentary rocks are thought to be Silurian in age. The fault breccia zones have a regional trend of N 40 degrees E and crop out over a strike length of more than four kilometers. The mineralization of the fault zones was observed to continue to the north for an additional four kilometers. The mineralized fault breccia zones range from a few meters to 60 meters in width. A large ore body is indicated that from available samples may average 35 percent zinc.
Diagnostics Tools Identify Faults Prior to Failure
NASA Technical Reports Server (NTRS)
2013-01-01
Through the SBIR program, Rochester, New York-based Impact Technologies LLC collaborated with Ames Research Center to commercialize the Center s Hybrid Diagnostic Engine, or HyDE, software. The fault detecting program is now incorporated into a software suite that identifies potential faults early in the design phase of systems ranging from printers to vehicles and robots, saving time and money.
Examples of Nonconservatism in the CARE 3 Program
NASA Technical Reports Server (NTRS)
Dotson, Kelly J.
1988-01-01
This paper presents parameter regions in the CARE 3 (Computer-Aided Reliability Estimation version 3) computer program where the program overestimates the reliability of a modeled system without warning the user. Five simple models of fault-tolerant computer systems are analyzed; and, the parameter regions where reliability is overestimated are given. The source of the error in the reliability estimates for models which incorporate transient fault occurrences was not readily apparent. However, the source of much of the error for models with permanent and intermittent faults can be attributed to the choice of values for the run-time parameters of the program.
Shear zone junctions: Of zippers and freeways
NASA Astrophysics Data System (ADS)
Passchier, Cees W.; Platt, John P.
2017-02-01
Ductile shear zones are commonly treated as straight high-strain domains with uniform shear sense and characteristic curved foliation trails, bounded by non-deforming wall rock. Many shear zones, however, are branched, and if movement on such branches is contemporaneous, the resulting shape can be complicated and lead to unusual shear sense arrangement and foliation geometries in the wall rock. For Y-shaped shear zone triple junctions with three joining branches and transport direction at a high angle to the branchline, only eight basic types of junction are thought to be stable and to produce significant displacement. The simplest type, called freeway junctions, have similar shear sense in all three branches. The other types show joining or separating behaviour of shear zone branches similar to the action of a zipper. Such junctions may have shear zone branches that join to form a single branch (closing zipper junction), or a single shear zone that splits to form two branches, (opening zipper junction). All categories of shear zone junctions show characteristic foliation patterns and deflection of markers in the wall rock. Closing zipper junctions are unusual, since they form a non-active zone with opposite deflection of foliations in the wall rock known as an extraction fault or wake. Shear zipper junctions can form domains of overprinting shear sense along their flanks. A small and large field example are given from NE Spain and Eastern Anatolia. The geometry of more complex, 3D shear zone junctions with slip parallel and oblique to the branchline is briefly discussed.
Certification of computational results
NASA Technical Reports Server (NTRS)
Sullivan, Gregory F.; Wilson, Dwight S.; Masson, Gerald M.
1993-01-01
A conceptually novel and powerful technique to achieve fault detection and fault tolerance in hardware and software systems is described. When used for software fault detection, this new technique uses time and software redundancy and can be outlined as follows. In the initial phase, a program is run to solve a problem and store the result. In addition, this program leaves behind a trail of data called a certification trail. In the second phase, another program is run which solves the original problem again. This program, however, has access to the certification trail left by the first program. Because of the availability of the certification trail, the second phase can be performed by a less complex program and can execute more quickly. In the final phase, the two results are compared and if they agree the results are accepted as correct; otherwise an error is indicated. An essential aspect of this approach is that the second program must always generate either an error indication or a correct output even when the certification trail it receives from the first program is incorrect. The certification trail approach to fault tolerance is formalized and realizations of it are illustrated by considering algorithms for the following problems: convex hull, sorting, and shortest path. Cases in which the second phase can be run concurrently with the first and act as a monitor are discussed. The certification trail approach are compared to other approaches to fault tolerance.
The effect of segmented fault zones on earthquake rupture propagation and termination
NASA Astrophysics Data System (ADS)
Huang, Y.
2017-12-01
A fundamental question in earthquake source physics is what can control the nucleation and termination of an earthquake rupture. Besides stress heterogeneities and variations in frictional properties, damaged fault zones (DFZs) that surround major strike-slip faults can contribute significantly to earthquake rupture propagation. Previous earthquake rupture simulations usually characterize DFZs as several-hundred-meter-wide layers with lower seismic velocities than host rocks, and find earthquake ruptures in DFZs can exhibit slip pulses and oscillating rupture speeds that ultimately enhance high-frequency ground motions. However, real DFZs are more complex than the uniform low-velocity structures, and show along-strike variations of damages that may be correlated with historical earthquake ruptures. These segmented structures can either prohibit or assist rupture propagation and significantly affect the final sizes of earthquakes. For example, recent dense array data recorded at the San Jacinto fault zone suggests the existence of three prominent DFZs across the Anza seismic gap and the south section of the Clark branch, while no prominent DFZs were identified near the ends of the Anza seismic gap. To better understand earthquake rupture in segmented fault zones, we will present dynamic rupture simulations that calculate the time-varying rupture process physically by considering the interactions between fault stresses, fault frictional properties, and material heterogeneities. We will show that whether an earthquake rupture can break through the intact rock outside the DFZ depend on the nucleation size of the earthquake and the rupture propagation distance in the DFZ. Moreover, material properties of the DFZ, stress conditions along the fault, and friction properties of the fault also have a critical impact on rupture propagation and termination. We will also present scenarios of San Jacinto earthquake ruptures and show the parameter space that is favorable for rupture propagation through the Anza seismic gap. Our results suggest that a priori knowledge of properties of segmented fault zones is of great importance for predicting sizes of future large earthquakes on major faults.
NASA Astrophysics Data System (ADS)
Brandsdottir, B.; Magnusdottir, S.; Karson, J. A.; Detrick, R. S.; Driscoll, N. W.
2015-12-01
The multi-branched plate boundary across Iceland is made up of divergent and oblique rifts, and transform zones, characterized by entwined extensional and transform tectonics. The Tjörnes Fracture Zone (TFZ), located on the coast and offshore Northern Iceland, is a complex transform linking the northern rift zone (NVZ) on land with the Kolbeinsey Ridge offshore. Extension across TFZ is partitioned across three N-S trending rift basins; Eyjafjarðaráll, Skjálfandadjúp (SB) and Öxarfjörður and three WNW-NW oriented seismic lineaments; the Grímsey Oblique Rift, Húsavík-Flatey Faults (HFFs) and Dalvík Lineament. We compile the tectonic framework of the TFZ ridge-transform from aerial photos, satellite images, multibeam bathymetry and high-resolution seismic reflection data (Chirp). The rift basins are made up of normal faults with vertical displacements of up to 50-60 m, and post-glacial sediments of variable thickness. The SB comprises N5°W obliquely trending, eastward dipping normal faults as well as N10°E striking, westward dipping faults oriented roughly perpendicular to the N104°E spreading direction, indicative of early stages of rifting. Correlation of Chirp reflection data and tephrachronology from a sediment core within SB reveal major rifting episodes between 10-12.1 kyrs BP activating the whole basin, followed by smaller-scale fault movements throughout Holocene. Onshore faults have the same orientations as those mapped offshore and provide a basis for the interpretation of the kinematics of the faults throughout the region. These include transform parallel right-lateral, strike-slip faults separating domains dominated by spreading parallel left-lateral bookshelf faults. Shearing is most prominent along the HFFs, a system of right-lateral strike-slip faults with vertical displacement up to 15 m. Vertical fault movements reflect increased tectonic activity during early postglacial time coinciding with isostatic rebound enhancing volcanism within Iceland.
Injecting Artificial Memory Errors Into a Running Computer Program
NASA Technical Reports Server (NTRS)
Bornstein, Benjamin J.; Granat, Robert A.; Wagstaff, Kiri L.
2008-01-01
Single-event upsets (SEUs) or bitflips are computer memory errors caused by radiation. BITFLIPS (Basic Instrumentation Tool for Fault Localized Injection of Probabilistic SEUs) is a computer program that deliberately injects SEUs into another computer program, while the latter is running, for the purpose of evaluating the fault tolerance of that program. BITFLIPS was written as a plug-in extension of the open-source Valgrind debugging and profiling software. BITFLIPS can inject SEUs into any program that can be run on the Linux operating system, without needing to modify the program s source code. Further, if access to the original program source code is available, BITFLIPS offers fine-grained control over exactly when and which areas of memory (as specified via program variables) will be subjected to SEUs. The rate of injection of SEUs is controlled by specifying either a fault probability or a fault rate based on memory size and radiation exposure time, in units of SEUs per byte per second. BITFLIPS can also log each SEU that it injects and, if program source code is available, report the magnitude of effect of the SEU on a floating-point value or other program variable.
Yehle, Lynn A.
1977-01-01
A program to study the engineering geology of most larger Alaska coastal communities and to evaluate their earthquake and other geologic hazards was started following the 1964 Alaska earthquake; this report about the Metlakatla area, Annette Island, is a product of that program. Field-study methods were of a reconnaissance nature, and thus the interpretations in the report are tentative. Landscape of the Metlakatla Peninsula, on which the city of Metlakatla is located, is characterized by a muskeg-covered terrane of very low relief. In contrast, most of the rest of Annette Island is composed of mountainous terrane with steep valleys and numerous lakes. During the Pleistocene Epoch the Metlakatla area was presumably covered by ice several times; glaciers smoothed the present Metlakatla Peninsula and deeply eroded valleys on the rest. of Annette Island. The last major deglaciation was completed probably before 10,000 years ago. Rebound of the earth's crust, believed to be related to glacial melting, has caused land emergence at Metlakatla of at least 50 ft (15 m) and probably more than 200 ft (61 m) relative to present sea level. Bedrock in the Metlakatla area is composed chiefly of hard metamorphic rocks: greenschist and greenstone with minor hornfels and schist. Strike and dip of beds are generally variable and minor offsets are common. Bedrock is of late Paleozoic to early Mesozoic age. Six types of surficial geologic materials of Quaternary age were recognized: firm diamicton, emerged shore, modern shore and delta, and alluvial deposits, very soft muskeg and other organic deposits, and firm to soft artificial fill. A combination map unit is composed of bedrock or diamicton. Geologic structure in southeastern Alaska is complex because, since at least early Paleozoic time, there have been several cycles of tectonic deformation that affected different parts of the region. Southeastern Alaska is transected by numerous faults and possible faults that attest to major movements of the earth's crust. The latest of the major tectonic events in the Metlakatla region occurred in middle Tertiary time; some minor fault activity probably continues today at depth. Along the outer coast of southeastern Alaska and British Columbia, major faulting activity occurs in the form of active, strike-slip movement along the Queen Charlotte fault about 100 mi (160 kin) west-southwest of Metlakatla. Some branching subsidiary faults also may be active, at least one of which may be the Sandspit fault. Many major and smaller earthquakes occur along the outer coast. These shocks are related to movements along the Queen Charlotte fault. A few small earthquakes occur in the region between the outer coast and the Coast Mountains, which includes Metlakatla. 0nly a few earthquakes have been reported as felt at Metlakatla; these shocks and others felt in the region are tabulated. Historically, the closest major earthquake was the magnitude 8.1 Queen Charlotte Islands earthquake of August 22, 1949, which occurred along the Queen Charlotte fault 125 mi (200 km) southwest of Metlakatla. No damage was reported at Metlakatla. The probability of destructive earthquakes affecting Metlakatla is unknown. A consideration of the tectonics and earthquake history of the region, however, suggests that sometime in the future an earthquake with a magnitude of about 8 will occur along that segment of the Queen Charlotte fault nearest to Metlakatla. Smaller earthquakes with magnitudes of 6 or more might occur elsewhere in the Metlakatla region or south-southeastward near Dixon Entrance or Hecate Strait. Several geologic effects that have characterized large earthquakes elsewh6re may be expected to accompany some of the possible major earthquakes that might affect the Metlakatla area in the future. Evaluation of effects indicates that fault displacement and tectonic uplift or subsidence are probably unlikely, and ground shaking in general probably would be strongest
Measurement of fault latency in a digital avionic mini processor, part 2
NASA Technical Reports Server (NTRS)
Mcgough, J.; Swern, F.
1983-01-01
The results of fault injection experiments utilizing a gate-level emulation of the central processor unit of the Bendix BDX-930 digital computer are described. Several earlier programs were reprogrammed, expanding the instruction set to capitalize on the full power of the BDX-930 computer. As a final demonstration of fault coverage an extensive, 3-axis, high performance flght control computation was added. The stages in the development of a CPU self-test program emphasizing the relationship between fault coverage, speed, and quantity of instructions were demonstrated.
Software For Fault-Tree Diagnosis Of A System
NASA Technical Reports Server (NTRS)
Iverson, Dave; Patterson-Hine, Ann; Liao, Jack
1993-01-01
Fault Tree Diagnosis System (FTDS) computer program is automated-diagnostic-system program identifying likely causes of specified failure on basis of information represented in system-reliability mathematical models known as fault trees. Is modified implementation of failure-cause-identification phase of Narayanan's and Viswanadham's methodology for acquisition of knowledge and reasoning in analyzing failures of systems. Knowledge base of if/then rules replaced with object-oriented fault-tree representation. Enhancement yields more-efficient identification of causes of failures and enables dynamic updating of knowledge base. Written in C language, C++, and Common LISP.
Procedures for Computing Site Seismicity
1994-02-01
Fourth World Conference on Earthquake Engineering, Santiago, Chile , 1969. Schnabel, P.B., J. Lysmer, and H.B. Seed (1972). SHAKE, a computer program for...This fault system is composed of the Elsinore and Whittier fault zones, Agua Caliente fault, and Earthquake Valley fault. Five recent earthquakes of
Uniform California earthquake rupture forecast, version 2 (UCERF 2)
Field, E.H.; Dawson, T.E.; Felzer, K.R.; Frankel, A.D.; Gupta, V.; Jordan, T.H.; Parsons, T.; Petersen, M.D.; Stein, R.S.; Weldon, R.J.; Wills, C.J.
2009-01-01
The 2007 Working Group on California Earthquake Probabilities (WGCEP, 2007) presents the Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2). This model comprises a time-independent (Poisson-process) earthquake rate model, developed jointly with the National Seismic Hazard Mapping Program and a time-dependent earthquake-probability model, based on recent earthquake rates and stress-renewal statistics conditioned on the date of last event. The models were developed from updated statewide earthquake catalogs and fault deformation databases using a uniform methodology across all regions and implemented in the modular, extensible Open Seismic Hazard Analysis framework. The rate model satisfies integrating measures of deformation across the plate-boundary zone and is consistent with historical seismicity data. An overprediction of earthquake rates found at intermediate magnitudes (6.5 ??? M ???7.0) in previous models has been reduced to within the 95% confidence bounds of the historical earthquake catalog. A logic tree with 480 branches represents the epistemic uncertainties of the full time-dependent model. The mean UCERF 2 time-dependent probability of one or more M ???6.7 earthquakes in the California region during the next 30 yr is 99.7%; this probability decreases to 46% for M ???7.5 and to 4.5% for M ???8.0. These probabilities do not include the Cascadia subduction zone, largely north of California, for which the estimated 30 yr, M ???8.0 time-dependent probability is 10%. The M ???6.7 probabilities on major strike-slip faults are consistent with the WGCEP (2003) study in the San Francisco Bay Area and the WGCEP (1995) study in southern California, except for significantly lower estimates along the San Jacinto and Elsinore faults, owing to provisions for larger multisegment ruptures. Important model limitations are discussed.
ERIC Educational Resources Information Center
Brusco, Michael J.; Stahl, Stephanie
2005-01-01
There are two well-known methods for obtaining a guaranteed globally optimal solution to the problem of least-squares unidimensional scaling of a symmetric dissimilarity matrix: (a) dynamic programming, and (b) branch-and-bound. Dynamic programming is generally more efficient than branch-and-bound, but the former is limited to matrices with…
NASA Astrophysics Data System (ADS)
Goto, J.; Moriya, T.; Yoshimura, K.; Tsuchi, H.; Karasaki, K.; Onishi, T.; Ueta, K.; Tanaka, S.; Kiho, K.
2010-12-01
The Nuclear Waste Management Organization of Japan (NUMO), in collaboration with Lawrence Berkeley National Laboratory (LBNL), has carried out a project to develop an efficient and practical methodology to characterize hydrologic property of faults since 2007, exclusively for the early stage of siting a deep underground repository. A preliminary flowchart of the characterization program and a classification scheme of fault hydrology based on the geological feature have been proposed. These have been tested through the field characterization program on the Wildcat Fault in Berkeley, California. The Wildcat Fault is a relatively large non-active strike-slip fault which is believed to be a subsidiary of the active Hayward Fault. Our classification scheme assumes the contrasting hydrologic features between the linear northern part and the split/spread southern part of the Wildcat Fault. The field characterization program to date has been concentrated in and around the LBNL site on the southern part of the fault. Several lines of electrical and reflection seismic surveys, and subsequent trench investigations, have revealed the approximate distribution and near-surface features of the Wildcat Fault (see also Onishi, et al. and Ueta, et al.). Three 150m deep boreholes, WF-1 to WF-3, have been drilled on a line normal to the trace of the fault in the LBNL site. Two vertical holes were placed to characterize the undisturbed Miocene sedimentary formations at the eastern and western sides of the fault (WF-1 and WF-2 respectively). WF-2 on the western side intersected the rock formation, which was expected only in WF-1, and several of various intensities. Therefore, WF-3, originally planned as inclined to penetrate the fault, was replaced by the vertical hole further to the west. It again encountered unexpected rocks and faults. Preliminary results of in-situ hydraulic tests suggested that the transmissivity of WF-1 is ten to one hundred times higher than WF-2. The monitoring of hydraulic pressure displayed different head distribution patterns between WF-1 and WF-2 (see also Karasaki, et al.). Based on these results, three hypotheses on the distribution of the Wildcat Fault were proposed: (a) a vertical fault in between WF-1 and WF-2, (b) a more gently dipping fault intersected in WF-2 and WF-3, and (c) a wide zone of faults extending between WF-1 and WF-3. At present, WF-4, an inclined hole to penetrate the possible (eastern?) master fault, is ongoing to test these hypotheses. After the WF-4 investigation, hydrologic and geochemical analyses and modeling of the southern part of the fault will be carried out. A simpler field characterization program will also be carried out in the northern part of the fault. Finally, all the results will be synthesized to improve the comprehensive methodology.
NASA Astrophysics Data System (ADS)
Muirhead, J.; Scholz, C. A.
2017-12-01
During continental breakup extension is accommodated in the upper crust largely through dike intrusion and normal faulting. The Eastern branch of the East African Rift arguably represents the premier example of active continental breakup in the presence magma. Constraining how faulting is distributed in both time and space in these regions is challenging, yet can elucidate how extensional strain localizes within basins as rifting progresses to sea-floor spreading. Studies of active rifts, such as the Turkana Rift, reveal important links between faulting and active magmatic processes. We utilized over 1100 km of high-resolution Compressed High Intensity Radar Pulse (CHIRP) 2D seismic reflection data, integrated with a suite of radiocarbon-dated sediment cores (3 in total), to constrain a 17,000 year history of fault activity in south Lake Turkana. Here, a set of N-S-striking intra-rift faults exhibit time-averaged slip-rates as high as 1.6 mm/yr, with the highest slip-rates occurring along faults within 3 km of the rift axis. Results show that strain has localized into a zone of intra-rift faults along the rift axis, forming an approximately 20 km-wide graben in central parts of the basin. Subsurface structural mapping and fault throw profile analyses reveal increasing basin subsidence and fault-related strain as this faulted graben approaches a volcanic island in the center of the basin (South Island). The long-axis of this island trends north-south, and it contains a number of elongate cones that support recent emplacement of N-S-striking dike intrusions, which parallel recently active intra-rift faults. Overall, these observations suggest strain localization into intra-rift faults in the rift center is likely a product of both volcanic loading and the mechanical and thermal effects of diking along the rift axis. These results support the establishment of magmatic segmentation in southern Lake Turkana, and highlight the importance of magmatism for focusing upper crustal strain as rifts evolve to sea-floor spreading.
NASA Astrophysics Data System (ADS)
Daout, S.; Jolivet, R.; Lasserre, C.; Doin, M.-P.; Barbot, S.; Tapponnier, P.; Peltzer, G.; Socquet, A.; Sun, J.
2016-04-01
Oblique convergence across Tibet leads to slip partitioning with the coexistence of strike-slip, normal and thrust motion on major fault systems. A key point is to understand and model how faults interact and accumulate strain at depth. Here, we extract ground deformation across the Haiyuan Fault restraining bend, at the northeastern boundary of the Tibetan plateau, from Envisat radar data spanning the 2001-2011 period. We show that the complexity of the surface displacement field can be explained by the partitioning of a uniform deep-seated convergence. Mountains and sand dunes in the study area make the radar data processing challenging and require the latest developments in processing procedures for Synthetic Aperture Radar interferometry. The processing strategy is based on a small baseline approach. Before unwrapping, we correct for atmospheric phase delays from global atmospheric models and digital elevation model errors. A series of filtering steps is applied to improve the signal-to-noise ratio across high ranges of the Tibetan plateau and the phase unwrapping capability across the fault, required for reliable estimate of fault movement. We then jointly invert our InSAR time-series together with published GPS displacements to test a proposed long-term slip-partitioning model between the Haiyuan and Gulang left-lateral Faults and the Qilian Shan thrusts. We explore the geometry of the fault system at depth and associated slip rates using a Bayesian approach and test the consistency of present-day geodetic surface displacements with a long-term tectonic model. We determine a uniform convergence rate of 10 [8.6-11.5] mm yr-1 with an N89 [81-97]°E across the whole fault system, with a variable partitioning west and east of a major extensional fault-jog (the Tianzhu pull-apart basin). Our 2-D model of two profiles perpendicular to the fault system gives a quantitative understanding of how crustal deformation is accommodated by the various branches of this thrust/strike-slip fault system and demonstrates how the geometry of the Haiyuan fault system controls the partitioning of the deep secular motion.
NASA Astrophysics Data System (ADS)
Martin, K. M.; Gulick, S. P.; Bangs, N. L.; Ashi, J.; Moore, G. F.; Nakamura, Y.; Tobin, H. J.
2008-12-01
A 12 km wide, 56 km long, three-dimensional (3-D) seismic volume acquired over the Nankai Trough offshore the Kii Peninsula, Japan images the Nankai accretionary prism, forearc basin and the subducting Philippine Sea Plate. We have analyzed an unusual, trench-parallel ~1200 m deep depression (a "notch") along the seaward edge of the Kumano forearc basin, just landward of the shallowest branch of the previously- mapped splay-fault system. The shape of this feature varies along strike, from a single, steep-walled, ~3.5 km wide notch in the northeast, to a broader, ~6 km wide zone with several shallower linear bathymetric lows in the southwest. We have mapped the area below the notch and found both vertical faults and faults which dip toward the central axis of the depression. Some dipping faults appear to have normal offset, consistent with the formation of a bathymetric low. Some of these dipping faults may join the central vertical fault(s) at depth, creating apparent flower structures. Offset on the vertical faults is more difficult to determine, but the dip and along-strike geometry of these faults makes predominantly normal or thrust motion unlikely. We conclude, therefore, that the notch feature is the bathymetric expression of a transtensional fault system. Possible causes for such a system in the forearc include variations in splay fault geometry and strain partitioning. By considering only the along-strike variability of the mapped splay fault, we were unable to explain a transform feature at the scale of the notch. Strike-slip faulting at the seaward edge of forearc basins is also observed in Sumatra and is there attributed to strain partitioning due to oblique convergence. The wedge and décollment strength variations which control the location of the forearc basins may therefore play a role in the position where the along-strike component of deformation is localized. While the obliquity of convergence in the Nankai trough is comparatively small (13-30 degrees), we believe it is still significant enough to account for the formation of the observed notch.
NASA Astrophysics Data System (ADS)
Funning, G.; Shakibay Senobari, N.; Swiatlowski, J. L.
2017-12-01
Surface observations of fault creep in the region north of San Francisco Bay are sporadic. While there are long-standing instances of creep-affected infrastructure on the Maacama and Bartlett Springs faults, the lateral and depth extents of creep on these and other faults in the region remain a question. Here, we supplement this sparse existing observation set with additional information from repeating earthquake sequences (REs) and InSAR, to illuminate, and significantly improve our knowledge of, creep across the region. Repeating earthquakes have long been considered indicators of creep on faults. We present the results of an extensive similarity search through over 600,000 archived waveforms from 43,000 events using a fast algorithm; from this we can identify 39 periodic repeating sequences and over 80 nonperiodic repeated event groups. We compare these with decadal line-of-sight velocity measurements made by applying the StaMPS time series InSAR code to ERS and Envisat data covering the region, that can be used to identify surface creep on faults. On the Rodgers Creek, Maacama and Bartlett Springs faults, both InSAR and REs show corroborating evidence for creep at locations where it was previously inferred. The REs additionally provide information on its depth extent. On the Maacama fault, we find REs extending almost to the southern limit of the mapped fault trace, south of Cloverdale, suggesting that creep may be pervasive on the fault. We can also identify structural complexity both in the stepover region with the Rodgers Creek fault, and in the northern segment of the fault close to Willits, potentially indicating parallel and/or down-dip branching creeping structures in both locations. REs on the Bartlett Springs fault indicate creep that extends across the full down-dip width of the brittle fault; here the proximity of InSAR creep rate estimates and a shallow RE sequence may permit a calibration of the RE `creepmeter', allowing us to estimate creep rates directly from RE source characteristics.
75 FR 2878 - National Cancer Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
..., Resources and Training Review Branch, Division of Extramural Activities, National Cancer Institute, 6116... Officer, Research Programs Review Branch, Division of Extramural Activities, National Cancer Institute... Ahmad, PhD, Scientific Review Officer, Research Programs Review Branch, Division of Extramural...
Reliability database development for use with an object-oriented fault tree evaluation program
NASA Technical Reports Server (NTRS)
Heger, A. Sharif; Harringtton, Robert J.; Koen, Billy V.; Patterson-Hine, F. Ann
1989-01-01
A description is given of the development of a fault-tree analysis method using object-oriented programming. In addition, the authors discuss the programs that have been developed or are under development to connect a fault-tree analysis routine to a reliability database. To assess the performance of the routines, a relational database simulating one of the nuclear power industry databases has been constructed. For a realistic assessment of the results of this project, the use of one of existing nuclear power reliability databases is planned.
PV Systems Reliability Final Technical Report: Ground Fault Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavrova, Olga; Flicker, Jack David; Johnson, Jay
We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.
NASA Astrophysics Data System (ADS)
Fabbri, O.; Oohashi, K.; Kanagawa, K.; Yamaguchi, A.
2013-12-01
Megasplay faults have been recognized on seismic reflection profiles across several convergent margins in the world. Understanding the behavior of these faults during large to very large inter-plate earthquakes is a major challenge in assessing strong-motion and tsunami hazards at or near subduction zones. One of the goals of the IODP NanTroSEIZE project is to drill across and to obtain data from the megasplay fault crossing the Nankai accretionary prism off Kii peninsula (Kumano transect), SW Japan. This fault is considered to have been activated during the 1944 Tonankai earthquake (Baba et al., 2006 ; Moore et al., 2007). Drilling and coring during IODP Expedition 316 (Expedition 316 Scientists, 2009) showed that the megasplay fault at 300 mbsf at Site C0004 consists in a 60 m thick package of fractured and brecciated rocks. Combined analysis of 3D reflection data in the vicinity of Site C0004 and core data from sites C0004 and C0008 (Strasser et al., 2009 ; Kimura et al., 2011) suggest that the lower boundary of the megasplay fault ceased activity at about 1.55 Ma while its upper boundary has remained active since about 1.95 Ma and probably 1.24 Ma. In order to determine whether the megasplay fault upper boundary crosscuts slope sediments or is sealed by them, drilling at IODP Site C0022 was carried out during Expedition 338. Two 420 m deep holes were drilled: C0022A (LWD) and C0022B (coring). At Hole C0022A, LWD resistivity images show that the 85-105.5 mbsf interval is fractured and extends above and below a ca. 1 m thick interval characterized by a low resistivity value at 100-101 mbsf. Structures observed in cores from Hole C0022B confirm LWD data. While gently dipping elsewhere, bedding in the 73-146 mbsf interval is steep, commonly exceeding 30°. This bedding dip increase may be a consequence of fault activity (folding ?). Though the low-resistivity interval at 100-101 mbsf could not be sampled at Hole C0022B (no recovery between 95.5 and 99.5 mbsf), cores immediately from above this interval show three ca. 2 cm thick zones of claystone characterized by a marked planar fabric bearing faint striations raking at about 90°. Preliminary biostratigraphic dating in Hole C0022B indicate age reversals at 80.5, 137.5 and 145.5 mbsf, suggesting reverse offset bringing older strata over younger strata. Drilling at IODP Site C0022 confirms that a branch of the megasplay fault previously cored at Expedition 316 Site C0004 extends upwards and southeastwards. The core zone of this branch lies at about 100 mbsf and is about 1 m thick. The presence of weakly foliated claystone suggests aseismic motion immediately above the core zone. The lack of samples from the core zone prevents to determine whether motion was aseismic or not.
NASA Astrophysics Data System (ADS)
Elifritz, E. A.; Johnson, S.; Beresh, S. C. M.; Mendez, K.; Mynatt, W. G.; Mayle, M.; Laó-Dávila, D. A.; Atekwana, E. A.; Chindandali, P. R. N.; Chisenga, C.; Gondwe, S.; Mkumbwa, M.; Kalindekafe, L.; Kalaguluka, D.; Salima, J.
2017-12-01
The NW-SE Bilila-Mtakataka Fault is suggested to be 100 km in length and is located in the Malawi Rift, a portion of the magma-poor Western Branch of the East African Rift System. This fault is exposed south of Lake Malawi and occurs close to the epicenter of the 1989 6.2 magnitude Salima Earthquake. Moreover, it traverses rocks with inherited Precambrian fabrics that may control the modern rifting process. The effect of the orientation of the pre-existing fabric on the formation of this potentially seismogenic fault has not been well studied. In this project, we measured the older foliations, dikes, and joints in addition to younger faults and striations to understand how the active faulting of the Bilila-Mtakataka Fault is affected by the older fabric. The Fault is divided into 5 segments and 4 linkage zones. All four linkage zones were studied in detail and a Brunton compass was used to determine orientations of structures. The linkage zone between segments 1 and 2 occurs between a regional WNW-ESE joint and the border fault, which is identified by a zig-zag pattern in SRTM data. Precambrian gneiss is cut by oblique steeply-dipping faults in this area. Striations and layer offsets suggest both right-lateral and normal components. This segment strikes NE-SW, in contrast with the NW-SE average strike of the entire fault. The foliations, faults, dikes, and joints collected in this area strike NE-SW, therefore running parallel to the segment. The last 3 southern linkage zones all strike NW-SE and the linkage zone between segment 3 and 4 has a steep dip angle. Dip angles of structures vary from segment to segment, having a wide range of results. Nonetheless, all four linkage zones show structures striking parallel to its segment direction. The results show that pre-existing meso-scale and regional structures and faults strike parallel to the fault scarp. The parallelism of the structures suggest that they serve as planes of weakness, controlling the localization of extension expressed as the border fault. Thus, further studies of the Precambrian foliation in the subsurface are necessary to understand the characterization of the fault where it is unexposed at depth.
M≥7 Earthquake rupture forecast and time-dependent probability for the Sea of Marmara region, Turkey
Murru, Maura; Akinci, Aybige; Falcone, Guiseppe; Pucci, Stefano; Console, Rodolfo; Parsons, Thomas E.
2016-01-01
We forecast time-independent and time-dependent earthquake ruptures in the Marmara region of Turkey for the next 30 years using a new fault-segmentation model. We also augment time-dependent Brownian Passage Time (BPT) probability with static Coulomb stress changes (ΔCFF) from interacting faults. We calculate Mw > 6.5 probability from 26 individual fault sources in the Marmara region. We also consider a multisegment rupture model that allows higher-magnitude ruptures over some segments of the Northern branch of the North Anatolian Fault Zone (NNAF) beneath the Marmara Sea. A total of 10 different Mw=7.0 to Mw=8.0 multisegment ruptures are combined with the other regional faults at rates that balance the overall moment accumulation. We use Gaussian random distributions to treat parameter uncertainties (e.g., aperiodicity, maximum expected magnitude, slip rate, and consequently mean recurrence time) of the statistical distributions associated with each fault source. We then estimate uncertainties of the 30-year probability values for the next characteristic event obtained from three different models (Poisson, BPT, and BPT+ΔCFF) using a Monte Carlo procedure. The Gerede fault segment located at the eastern end of the Marmara region shows the highest 30-yr probability, with a Poisson value of 29%, and a time-dependent interaction probability of 48%. We find an aggregated 30-yr Poisson probability of M >7.3 earthquakes at Istanbul of 35%, which increases to 47% if time dependence and stress transfer are considered. We calculate a 2-fold probability gain (ratio time-dependent to time-independent) on the southern strands of the North Anatolian Fault Zone.
DEM Simulated Results And Seismic Interpretation of the Red River Fault Displacements in Vietnam
NASA Astrophysics Data System (ADS)
Bui, H. T.; Yamada, Y.; Matsuoka, T.
2005-12-01
The Song Hong basin is the largest Tertiary sedimentary basin in Viet Nam. Its onset is approximately 32 Ma ago since the left-lateral displacement of the Red River Fault commenced. Many researches on structures, formation and tectonic evolution of the Song Hong basin have been carried out for a long time but there are still remained some problems that needed to put into continuous discussion such as: magnitude of the displacements, magnitude of movement along the faults, the time of tectonic inversion and right lateral displacement. Especially the mechanism of the Song Hong basin formation is still in controversy with many different hypotheses due to the activation of the Red River fault. In this paper PFC2D based on the Distinct Element Method (DEM) was used to simulate the development of the Red River fault system that controlled the development of the Song Hong basin from the onshore to the elongated portion offshore area. The numerical results show the different parts of the stress field such as compress field, non-stress field, pull-apart field of the dynamic mechanism along the Red River fault in the onshore area. This propagation to the offshore area is partitioned into two main branch faults that are corresponding to the Song Chay and Song Lo fault systems and said to restrain the east and west flanks of the Song Hong basin. The simulation of the Red River motion also showed well the left lateral displacement since its onset. Though it is the first time the DEM method was applied to study the deformation and geodynamic evolution of the Song Hong basin, the results showed reliably applied into the structural configuration evaluation of the Song Hong basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, P.Y.; Hao, E.; Patt, Y.
Conditional branches incur a severe performance penalty in wide-issue, deeply pipelined processors. Speculative execution and predicated execution are two mechanisms that have been proposed for reducing this penalty. Speculative execution can completely eliminate the penalty associated with a particular branch, but requires accurate branch prediction to be effective. Predicated execution does not require accurate branch prediction to eliminate the branch penalty, but is not applicable to all branches and can increase the latencies within the program. This paper examines the performance benefit of using both mechanisms to reduce the branch execution penalty. Predicated execution is used to handle the hard-to-protectmore » branches and speculative execution is used to handle the remaining branches. The hard-to-predict branches within the program are determined by profiling. We show that this approach can significantly reduce the branch execution penalty suffered by wide-issue processors.« less
Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing
2012-12-14
Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing Matei Zaharia Tathagata Das Haoyuan Li Timothy Hunter Scott Shenker Ion...SUBTITLE Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...time. However, current programming models for distributed stream processing are relatively low-level often leaving the user to worry about consistency of
Fault-Tolerant Control For A Robotic Inspection System
NASA Technical Reports Server (NTRS)
Tso, Kam Sing
1995-01-01
Report describes first phase of continuing program of research on fault-tolerant control subsystem of telerobotic visual-inspection system. Goal of program to develop robotic system for remotely controlled visual inspection of structures in outer space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almasi, Gheorghe; Blumrich, Matthias Augustin; Chen, Dong
Methods and apparatus perform fault isolation in multiple node computing systems using commutative error detection values for--example, checksums--to identify and to isolate faulty nodes. When information associated with a reproducible portion of a computer program is injected into a network by a node, a commutative error detection value is calculated. At intervals, node fault detection apparatus associated with the multiple node computer system retrieve commutative error detection values associated with the node and stores them in memory. When the computer program is executed again by the multiple node computer system, new commutative error detection values are created and stored inmore » memory. The node fault detection apparatus identifies faulty nodes by comparing commutative error detection values associated with reproducible portions of the application program generated by a particular node from different runs of the application program. Differences in values indicate a possible faulty node.« less
Detection of faults and software reliability analysis
NASA Technical Reports Server (NTRS)
Knight, John C.
1987-01-01
Multi-version or N-version programming is proposed as a method of providing fault tolerance in software. The approach requires the separate, independent preparation of multiple versions of a piece of software for some application. These versions are executed in parallel in the application environment; each receives identical inputs and each produces its version of the required outputs. The outputs are collected by a voter and, in principle, they should all be the same. In practice there may be some disagreement. If this occurs, the results of the majority are taken to be the correct output, and that is the output used by the system. A total of 27 programs were produced. Each of these programs was then subjected to one million randomly-generated test cases. The experiment yielded a number of programs containing faults that are useful for general studies of software reliability as well as studies of N-version programming. Fault tolerance through data diversity and analytic models of comparison testing are discussed.
Seismicity of the Earth 1900-2013 offshore British Columbia-southeastern Alaska and vicinity
Hayes, Gavin P.; Smoczyk, Gregory M.; Ooms, Jonathan G.; McNamara, Daniel E.; Furlong, Kevin P.; Benz, Harley M.; Villaseñor, Antonio
2014-01-01
The tectonics of the Pacific margin of North America between Vancouver Island and south-central Alaska are dominated by the northwest motion of the Pacific plate with respect to the North America plate at a velocity of approximately 50 mm/yr. In the south of this mapped region, convergence between the northern extent of the Juan de Fuca plate (also known as the Explorer microplate) and North America plate dominate. North from the Explorer, Pacific, and North America plate triple junction, Pacific:North America motion is accommodated along the ~650-km-long Queen Charlotte fault system. Offshore of Haida Gwaii and to the southwest, the obliquity of the Pacific:North America plate motion vector creates a transpressional regime, and a complex mixture of strike-slip and convergent (underthrusting) tectonics. North of the Haida Gwaii islands, plate motion is roughly parallel to the plate boundary, resulting in almost pure dextral strike-slip motion along the Queen Charlotte fault. To the north, the Queen Charlotte fault splits into multiple structures, continuing offshore of southwestern Alaska as the Fairweather fault, and branching east into the Chatham Strait and Denali faults through the interior of Alaska. The plate boundary north and west of the Fairweather fault ultimately continues as the Alaska-Aleutians subduction zone, where Pacific plate lithosphere subducts beneath the North America plate at the Aleutians Trench. The transition is complex, and involves intraplate structures such as the Transition fault. The Pacific margin offshore British Columbia is one of the most active seismic zones in North America and has hosted a number of large earthquakes historically.
NASA Astrophysics Data System (ADS)
Ramadhan, Aldis; Badai Samudra, Alexis; Jaenudin; Puji Lestari, Enik; Saputro, Julian; Sugiono; Hirosiadi, Yosi; Amrullah, Indi
2018-03-01
Geologically, Ketaling area consists of a local high considered as flexure margin of Tempino-Kenali Asam Deep in west part and graben in east part also known as East Ketaling Deep. Numerous proven plays were established in Ketaling area with reservoir in early Miocene carbonate and middle Miocene sand. This area underwent several major deformations. Faults are developed widely, yet their geometrical features and mechanisms of formation remained so far indistinct, which limited exploration activities. With new three-dimensional seismic data acquired in 2014, this area evidently interpreted as having strike-slip mechanism. The objective of this study is to examine characteristic of strike slip fault and its affect to hydrocarbon trapping in Ketaling Area. Structural pattern and characteristic of strike slip fault deformation was examined with integration of normal seismic with variance seismic attribute analysis and the mapping of Syn-rift to Post-rift horizon. Seismic flattening on 2D seismic cross section with NW-SE direction is done to see the structural pattern related to horst (paleohigh) and graben. Typical flower structure, branching strike-slip fault system and normal fault in synrift sediment clearly showed in section. An echelon pattern identified from map view as the result of strike slip mechanism. Detail structural geology analysis show the normal fault development which has main border fault in the southern of Ketaling area dipping to the Southeast-East with NE-SW lineament. These faults related to rift system in Ketaling area. NW-SE folds with reactive NE-SW fault which act as hydrocarbon trapping in the shallow zone. This polyphase tectonic formed local graben, horst and inverted structure developed a good kitchen area (graben) and traps (horst, inverted structure). Subsequently, hydrocarbon accumulation potentials such as basement fractures, inverted syn-rift deposit and shallow zone are very interesting to explore in this area.
Imaging the North Anatolian Fault using the scattered teleseismic wavefield
NASA Astrophysics Data System (ADS)
Thompson, D. A.; Rost, S.; Houseman, G. A.; Cornwell, D. G.; Turkelli, N.; Teoman, U.; Kahraman, M.; Altuncu Poyraz, S.; Gülen, L.; Utkucu, M.; Frederiksen, A. W.; Rondenay, S.
2013-12-01
The North Anatolian Fault Zone (NAFZ) is a major continental strike-slip fault system, similar in size and scale to the San Andreas system, that extends ˜1200 km across Turkey. In 2012, a new multidisciplinary project (FaultLab) was instigated to better understand deformation throughout the entire crust in the NAFZ, in particular the expected transition from narrow zones of brittle deformation in the upper crust to possibly broader shear zones in the lower crust/upper mantle and how these features contribute to the earthquake loading cycle. This contribution will discuss the first results from the seismic component of the project, a 73 station network encompassing the northern and southern branches of the NAFZ in the Sakarya region. The Dense Array for North Anatolia (DANA) is arranged as a 6×11 grid with a nominal station spacing of 7 km, with a further 7 stations located outside of the main grid. With the excellent resolution afforded by the DANA network, we will present images of crustal structure using the technique of teleseismic scattering tomography. The method uses a full waveform inversion of the teleseismic scattered wavefield coupled with array processing techniques to infer the properties and location of small-scale heterogeneities (with scales on the order of the seismic wavelength) within the crust. We will also present preliminary results of teleseismic scattering migration, another powerful method that benefits from the dense data coverage of the deployed seismic network. Images obtained using these methods together with other conventional imaging techniques will provide evidence for how the deformation is distributed within the fault zone at depth, providing constraints that can be used in conjunction with structural analyses of exhumed fault segments and models of geodetic strain-rate across the fault system. By linking together results from the complementary techniques being employed in the FaultLab project, we aim to produce a comprehensive picture of fault structure and dynamics throughout the crust and shallow upper mantle of this major active fault zone.
75 FR 55942 - Avocados Grown in South Florida; Increased Assessment Rate
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-15
.... Comments must be sent to the Docket Clerk, Marketing Order Administration Branch, Fruit and Vegetable... Marketing Field Office, Marketing Order Administration Branch, Fruit and Vegetable Programs, AMS, USDA... contacting Antoinette Carter, Marketing Order Administration Branch, Fruit and Vegetable Programs, AMS, USDA...
Experiments in fault tolerant software reliability
NASA Technical Reports Server (NTRS)
Mcallister, David F.; Vouk, Mladen A.
1989-01-01
Twenty functionally equivalent programs were built and tested in a multiversion software experiment. Following unit testing, all programs were subjected to an extensive system test. In the process sixty-one distinct faults were identified among the versions. Less than 12 percent of the faults exhibited varying degrees of positive correlation. The common-cause (or similar) faults spanned as many as 14 components. However, a majority of these faults were trivial, and easily detected by proper unit and/or system testing. Only two of the seven similar faults were difficult faults, and both were caused by specification ambiguities. One of these faults exhibited variable identical-and-wrong response span, i.e. response span which varied with the testing conditions and input data. Techniques that could have been used to avoid the faults are discussed. For example, it was determined that back-to-back testing of 2-tuples could have been used to eliminate about 90 percent of the faults. In addition, four of the seven similar faults could have been detected by using back-to-back testing of 5-tuples. It is believed that most, if not all, similar faults could have been avoided had the specifications been written using more formal notation, the unit testing phase was subject to more stringent standards and controls, and better tools for measuring the quality and adequacy of the test data (e.g. coverage) were used.
NASA Astrophysics Data System (ADS)
Chinn, L.; Blythe, A. E.; Fendick, A.
2012-12-01
New apatite fission-track ages show varying rates of vertical exhumation at the eastern terminus of the Garlock fault zone. The Garlock fault zone is a 260 km long east-northeast striking strike-slip fault with as much as 64 km of sinistral offset. The Garlock fault zone terminates in the east in the Avawatz Mountains, at the intersection with the dextral Southern Death Valley fault zone. Although motion along the Garlock fault west of the Avawatz Mountains is considered purely strike-slip, uplift and exhumation of bedrock in the Avawatz Mountains south of the Garlock fault, as recently as 5 Ma, indicates that transpression plays an important role at this location and is perhaps related to a restricting bend as the fault wraps around and terminates southeastward along the Avawatz Mountains. In this study we complement extant thermochronometric ages from within the Avawatz core with new low temperature fission-track ages from samples collected within the adjacent Garlock and Southern Death Valley fault zones. These thermochronometric data indicate that vertical exhumation rates vary within the fault zone. Two Miocene ages (10.2 (+5.0/-3.4) Ma, 9.0 (+2.2/-1.8) Ma) indicate at least ~3.3 km of vertical exhumation at ~0.35 mm/yr, assuming a 30°C/km geothermal gradient, along a 2 km transect parallel and adjacent to the Mule Spring fault. An older Eocene age (42.9 (+8.7/-7.3) Ma) indicates ~3.3 km of vertical exhumation at ~0.08 mm/yr. These results are consistent with published exhumation rates of 0.35 mm/yr between ~7 and ~4 Ma and 0.13 mm/yr between ~15 and ~9 Ma, as determined by apatite fission-track and U-Th/He thermochronometry in the hanging-wall of the Mule Spring fault. Similar exhumation rates on both sides of the Mule Spring fault support three separate models: 1) Thrusting is no longer active along the Mule Spring fault, 2) Faulting is dominantly strike-slip at the sample locations, or 3) Miocene-present uplift and exhumation is below detection levels using apatite fission-track thermochronometry. In model #1 slip on the Mule Spring fault may have propagated towards the range front, and may be responsible for the fault-propagation-folding currently observed along the northern branch of the Southern Death Valley fault zone. Model #2 may serve to determine where faulting has historically included a component of thrust faulting to the east of sample locations. Model #3 would further determine total offset along the Mule Spring fault from Miocene-present. Anticipated fission-track and U-Th/He data will help distinguish between these alternative models.
NASA Astrophysics Data System (ADS)
Dunbar, John A.; Cook, Richard W.
2003-07-01
Existing methods for the palinspastic reconstruction of structure maps do not adequately account for heterogeneous rock strain and hence cannot accurately treat features such as fault terminations and non-cylindrical folds. We propose a new finite element formulation of the map reconstruction problem that treats such features explicitly. In this approach, a model of the map surface, with internal openings that honor the topology of the fault-gap network, is constructed of triangular finite elements. Both model building and reconstruction algorithms are guided by rules relating fault-gap topology to the kinematics of fault motion and are fully automated. We represent the total strain as the sum of a prescribed component of locally homogeneous simple shear and a minimum amount of heterogeneous residual strain. The region within which a particular orientation of simple shear is treated as homogenous can be as small as an individual element or as large as the entire map. For residual strain calculations, we treat the map surface as a hyperelastic membrane. A globally optimum reconstruction is found that unfolds the map while faithfully honoring assigned strain mechanisms, closes fault gaps without overlap or gap and imparts the least possible residual strain in the restored surface. The amount and distribution of the residual strain serves as a diagnostic tool for identifying mapping errors. The method can be used to reconstruct maps offset by any number of faults that terminate, branch and offset each other in arbitrarily complex ways.
Investigation of DC hybrid circuit breaker based on high-speed switch and arc generator
NASA Astrophysics Data System (ADS)
Wu, Yifei; Rong, Mingzhe; Wu, Yi; Yang, Fei; Li, Mei; Zhong, Jianying; Han, Guohui; Niu, Chunping; Hu, Yang
2015-02-01
A new design of DC hybrid circuit breaker based on high-speed switch (HSS) and arc generator (AG), which can drastically profit from low heat loss in normal state and fast current breaking under fault state, is presented and analyzed in this paper. AG is designed according to the magnetic pinch effect of liquid metal. By utilizing the arc voltage generated across AG, the fault current is rapidly commutated from HSS into parallel connected branch. As a consequence, the arcless open of HSS is achieved. The post-arc conducting resume time (Δ tc) of AG and the commutation original voltage (Uc), two key factors in the commutation process, are investigated experimentally. Particularly, influences of the liquid metal channel diameter (Φ) of AG, fault current rate of rise (di/dt) and Uc on Δ tc are focused on. Furthermore, a suitable Uc is determined during the current commutation process, aiming at the reliable arcless open of HSS and short breaking time. Finally, the fault current breaking test is carried out for the current peak value of 11.8 kA, and the validity of the design is confirmed by the experimental results.
Investigation of DC hybrid circuit breaker based on high-speed switch and arc generator.
Wu, Yifei; Rong, Mingzhe; Wu, Yi; Yang, Fei; Li, Mei; Zhong, Jianying; Han, Guohui; Niu, Chunping; Hu, Yang
2015-02-01
A new design of DC hybrid circuit breaker based on high-speed switch (HSS) and arc generator (AG), which can drastically profit from low heat loss in normal state and fast current breaking under fault state, is presented and analyzed in this paper. AG is designed according to the magnetic pinch effect of liquid metal. By utilizing the arc voltage generated across AG, the fault current is rapidly commutated from HSS into parallel connected branch. As a consequence, the arcless open of HSS is achieved. The post-arc conducting resume time (Δ tc) of AG and the commutation original voltage (Uc), two key factors in the commutation process, are investigated experimentally. Particularly, influences of the liquid metal channel diameter (Φ) of AG, fault current rate of rise (di/dt) and Uc on Δ tc are focused on. Furthermore, a suitable Uc is determined during the current commutation process, aiming at the reliable arcless open of HSS and short breaking time. Finally, the fault current breaking test is carried out for the current peak value of 11.8 kA, and the validity of the design is confirmed by the experimental results.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-06
..., Energy Branch, Attention: BioRefinery Assistance Program, 1400 Independence Avenue, SW., STOP 3225... to USDA's Rural Development National Office: Energy Branch, Attention: BioRefinery Assistance Program...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busbey, A.B.
Seismic Processing Workshop, a program by Parallel Geosciences of Austin, TX, is discussed in this column. The program is a high-speed, interactive seismic processing and computer analysis system for the Apple Macintosh II family of computers. Also reviewed in this column are three products from Wilkerson Associates of Champaign, IL. SubSide is an interactive program for basin subsidence analysis; MacFault and MacThrustRamp are programs for modeling faults.
Teaching Machines and Programmed Instruction.
ERIC Educational Resources Information Center
Kay, Harry; And Others
The various devices used in programed instruction range from the simple linear programed book to branching and skip branching programs, adaptive teaching machines, and even complex computer based systems. In order to provide a background for the would-be programer, the essential principles of each of these devices is outlined. Different ideas of…
Chen, Rui; Branum, David M.; Wills, Chris J.; Hill, David P.
2014-06-30
As part of the U.S. Geological Survey’s (USGS) multi-hazards project in the Long Valley Caldera-Mono Lake area, the California Geological Survey (CGS) developed several earthquake scenarios and evaluated potential seismic hazards, including ground shaking, surface fault rupture, liquefaction, and landslide hazards associated with these earthquake scenarios. The results of these analyses can be useful in estimating the extent of potential damage and economic losses because of potential earthquakes and also for preparing emergency response plans.The Long Valley Caldera-Mono Lake area has numerous active faults. Five of these faults or fault zones are considered capable of producing magnitude ≥6.7 earthquakes according to the Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2) developed by the 2007 Working Group on California Earthquake Probabilities (WGCEP) and the USGS National Seismic Hazard Mapping Program. These five faults are the Fish Slough, Hartley Springs, Hilton Creek, Mono Lake, and Round Valley Faults. CGS developed earthquake scenarios for these five faults in the study area and for the White Mountains Fault Zone to the east of the study area.In this report, an earthquake scenario is intended to depict the potential consequences of significant earthquakes. A scenario earthquake is not necessarily the largest or most damaging earthquake possible on a recognized fault. Rather it is both large enough and likely enough that emergency planners should consider it in regional emergency response plans. In particular, the ground motion predicted for a given scenario earthquake does not represent a full probabilistic hazard assessment, and thus it does not provide the basis for hazard zoning and earthquake-resistant building design.Earthquake scenarios presented here are based on fault geometry and activity data developed by the WGCEP, and are consistent with the 2008 Update of the United States National Seismic Hazard Maps (NSHM). Alternatives to the NSHM scenario were developed for the Hilton Creek and Hartley Springs Faults to account for different opinions in how far these two faults extend into Long Valley Caldera. For each scenario, ground motions were calculated using the current standard practice: the deterministic seismic hazard analysis program developed by Art Frankel of USGS and three Next Generation Ground Motion Attenuation (NGA) models. Ground motion calculations incorporated the potential amplification of seismic shaking by near-surface soils defined by a map of the average shear wave velocity in the uppermost 30 m (VS30) developed by CGS.In addition to ground shaking and shaking-related ground failure such as liquefaction and earthquake induced landslides, earthquakes cause surface rupture displacement, which can lead to severe damage of buildings and lifelines. For each earthquake scenario, potential surface fault displacements are estimated using deterministic and probabilistic approaches. Liquefaction occurs when saturated sediments lose their strength because of ground shaking. Zones of potential liquefaction are mapped by incorporating areas where loose sandy sediments, shallow groundwater, and strong earthquake shaking coincide in the earthquake scenario. The process for defining zones of potential landslide and rockfall incorporates rock strength, surface slope, and existing landslides, with ground motions caused by the scenario earthquake.Each scenario is illustrated with maps of seismic shaking potential and fault displacement, liquefaction, and landslide potential. Seismic shaking is depicted by the distribution of shaking intensity, peak ground acceleration, and 1.0-second spectral acceleration. One-second spectral acceleration correlates well with structural damage to surface facilities. Acceleration greater than 0.2 g is often associated with strong ground shaking and may cause moderate to heavy damage. The extent of strong shaking is influenced by subsurface fault dip and near surface materials. Strong shaking is more widespread in the hanging wall regions of a normal fault. Larger ground motions also occur where young alluvial sediments amplify the shaking. Both of these effects can lead to strong shaking that extends farther from the fault on the valley side than on the hill side.The effect of fault rupture displacements may be localized along the surface trace of the mapped earthquake fault if fault geometry is simple and the fault traces are accurately located. However, surface displacement hazards can spread over a few hundred meters to a few kilometers if the earthquake fault has numerous splays or branches, such as the Hilton Creek Fault. Faulting displacements are estimated to be about 1 meter along normal faults in the study area and close to 2 meters along the White Mountains Fault Zone.All scenarios show the possibility of widespread ground failure. Liquefaction damage would likely occur in the areas of higher ground shaking near the faults where there are sandy/silty sediments and the depth to groundwater is 6.1 meters (20 feet) or less. Generally, this means damage is most common near lakes and streams in the areas of strongest shaking. Landslide potential exists throughout the study region. All steep slopes (>30 degrees) present a potential hazard at any level of shaking. Lesser slopes may have landslides within the areas of the higher ground shaking. The landslide hazard zones also are likely sources for snow avalanches during winter months and for large boulders that can be shaken loose and roll hundreds of feet down hill, which happened during the 1980 Mammoth Lakes earthquakes.Whereas methodologies used in estimating ground shaking, liquefaction, and landslides are well developed and have been applied in published hazard maps; methodologies used in estimating surface fault displacement are still being developed. Therefore, this report provides a more in-depth and detailed discussion of methodologies used for deterministic and probabilistic fault displacement hazard analyses for this project.
Micro-geomorphology Surveying and Analysis of Xiadian Fault Scarp, China
NASA Astrophysics Data System (ADS)
Ding, R.
2014-12-01
Historic records and field investigations reveal that the Mw 8.0 Sanhe-Pinggu (China) earthquake of 1679 produced a 10 to 18 km-long surface rupture zone, with dominantly dip-slip accompanied by a right-lateral component along the Xiadian fault, resulting in extensive damage throughout north China. The fault scarp that was coursed by the co-seismic ruptures from Dongliuhetun to Pangezhang is about 1 to 3 meters high, and the biggest vertical displacement locates in Pangezhuang, it is easily to be seen in the flat alluvial plain. But the 10 to 18 km-long surface rupture couldn't match the Mw 8.0 earthquake scale. After more than 300 years land leveling, the fault scarps in the meizoseismal zone which is farmland are retreat at different degree, some small scarps are becoming disappeared, so it is hard to identify by visual observation in the field investigations. The meizoseismal zone is located in the alluvial plain of the Chaobai river and Jiyun river, and the fault is perpendicular to the river. It is easy to distinguish fault scarps from erosion scarps. Land leveling just changes the slope of the fault scarp, but it can't eliminate the height difference between two side of the fault. So it is possible to recover the location and height of the fault scarp by using Digital Elevation Model (DEM) analysis and landform surveying which is constrained by 3D centimeter-precision RTK GPS surveying method in large scale crossing the fault zone. On the base of the high-precision DEM landform analysis, we carried out 15 GPS surveying lines which extends at least 10km for each crossing the meizoseismal zone. Our findings demonstrate that 1) we recover the complete rupture zone of the Sanhe-Pinggu earthquake in 1679, and survey the co-seismic displacement at 15 sites; 2) we conform that the Xiadian fault scarp is consist of three branches with left stepping. Height of the scarp is from 0.5 to 4.0 meters, and the total length of the scarp is at least 50km; 3) Combined with the analysis of offset strata of the trench, we conform that the middle segment of the fault scarp is made by 1679 earthquake; 4) The fault scarp strikes along with the Ju river at the northeast segment of the Xiadian fault which course the asymmetrical valley geomorphology.
NASA Astrophysics Data System (ADS)
Heesakkers, V.; Murphy, S.; Reches, Z.
2011-12-01
We analyze the structure of the Archaean Pretorius fault in TauTona mine, South Africa, as well as the rupture-zone that recently reactivated it. The analysis is part of the Natural Earthquake Laboratory in South African Mines (NELSAM) project that utilizes the access to 3.6 km depth provided by the mining operations. The Pretorius fault is a ~10 km long, oblique-strike-slip fault with displacement of up to 200 m that crosscuts fine to very coarse grain quartzitic rocks in TauTona mine. We identify here three structural zones within the fault-zone: (1) an outer damage zone, ~100 m wide, of brittle deformation manifested by multiple, widely spaced fractures and faults with slip up to 3 m; (2) an inner damage zone, 25-30 m wide, with high density of anastomosing conjugate sets of fault segments and fractures, many of which carry cataclasite zones; and (3) a dominant segment, with a cataclasite zone up to 50 cm thick that accommodated most of the Archaean slip of the Pretorius fault, and is regarded as the `principal slip zone' (PSZ). This fault-zone structure indicates that during its Archaean activity, the Pretorius fault entered the mature fault stage in which many slip events were localized along a single, PSZ. The mining operations continuously induce earthquakes, including the 2004, M2.2 event that rejuvenated the Pretorius fault in the NELSAM project area. Our analysis of the M2.2 rupture-zone shows that (1) slip occurred exclusively along four, pre-existing large, quasi-planer segments of the ancient fault-zone; (2) the slipping segments contain brittle cataclasite zones up to 0.5 m thick; (3) these segments are not parallel to each other; (4) gouge zones, 1-5 mm thick, composed of white `rock-flour' formed almost exclusively along the cataclasite-host rock contacts of the slipping segments; (5) locally, new, fresh fractures branched from the slipping segments and propagated in mixed shear-tensile mode; (6) the maximum observed shear displacement is 25 mm in oblique-normal slip. The mechanical analysis of this rupture-zone is presented in Part II (H eesakkers et al., Earthquake Rupture at Focal Depth, Part II: Mechanics of the 2004 M2.2 Earthquake Along the Pretorius Fault, TauTona mine, South Africa 2011, this volume).
Using certification trails to achieve software fault tolerance
NASA Technical Reports Server (NTRS)
Sullivan, Gregory F.; Masson, Gerald M.
1993-01-01
A conceptually novel and powerful technique to achieve fault tolerance in hardware and software systems is introduced. When used for software fault tolerance, this new technique uses time and software redundancy and can be outlined as follows. In the initial phase, a program is run to solve a problem and store the result. In addition, this program leaves behind a trail of data called a certification trail. In the second phase, another program is run which solves the original problem again. This program, however, has access to the certification trail left by the first program. Because of the availability of the certification trail, the second phase can be performed by a less complex program and can execute more quickly. In the final phase, the two results are accepted as correct; otherwise an error is indicated. An essential aspect of this approach is that the second program must always generate either an error indication or a correct output even when the certification trail it receives from the first program is incorrect. The certification trail approach to fault tolerance was formalized and it was illustrated by applying it to the fundamental problem of finding a minimum spanning tree. Cases in which the second phase can be run concorrectly with the first and act as a monitor are discussed. The certification trail approach was compared to other approaches to fault tolerance. Because of space limitations we have omitted examples of our technique applied to the Huffman tree, and convex hull problems. These can be found in the full version of this paper.
Object-oriented fault tree evaluation program for quantitative analyses
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Koen, B. V.
1988-01-01
Object-oriented programming can be combined with fault free techniques to give a significantly improved environment for evaluating the safety and reliability of large complex systems for space missions. Deep knowledge about system components and interactions, available from reliability studies and other sources, can be described using objects that make up a knowledge base. This knowledge base can be interrogated throughout the design process, during system testing, and during operation, and can be easily modified to reflect design changes in order to maintain a consistent information source. An object-oriented environment for reliability assessment has been developed on a Texas Instrument (TI) Explorer LISP workstation. The program, which directly evaluates system fault trees, utilizes the object-oriented extension to LISP called Flavors that is available on the Explorer. The object representation of a fault tree facilitates the storage and retrieval of information associated with each event in the tree, including tree structural information and intermediate results obtained during the tree reduction process. Reliability data associated with each basic event are stored in the fault tree objects. The object-oriented environment on the Explorer also includes a graphical tree editor which was modified to display and edit the fault trees.
System and method of detecting cavitation in pumps
Lu, Bin; Sharma, Santosh Kumar; Yan, Ting; Dimino, Steven A.
2017-10-03
A system and method for detecting cavitation in pumps for fixed and variable supply frequency applications is disclosed. The system includes a controller having a processor programmed to repeatedly receive real-time operating current data from a motor driving a pump, generate a current frequency spectrum from the current data, and analyze current data within a pair of signature frequency bands of the current frequency spectrum. The processor is further programmed to repeatedly determine fault signatures as a function of the current data within the pair of signature frequency bands, repeatedly determine fault indices based on the fault signatures and a dynamic reference signature, compare the fault indices to a reference index, and identify a cavitation condition in a pump based on a comparison between the reference index and a current fault index.
Reliability computation using fault tree analysis
NASA Technical Reports Server (NTRS)
Chelson, P. O.
1971-01-01
A method is presented for calculating event probabilities from an arbitrary fault tree. The method includes an analytical derivation of the system equation and is not a simulation program. The method can handle systems that incorporate standby redundancy and it uses conditional probabilities for computing fault trees where the same basic failure appears in more than one fault path.
Splay fault slip in a subduction margin, a new model of evolution
NASA Astrophysics Data System (ADS)
Conin, Marianne; Henry, Pierre; Godard, Vincent; Bourlange, Sylvain
2012-08-01
In subduction zones, major thrusts called splay faults are thought to slip coseismically during large earthquakes affecting the main plate interface. We propose an analytical condition for the activation of a splay fault based on force balance calculations and suggest thrusting along the splay fault is generally conditioned by the growth of the accretionary wedge, or by the erosion of the hanging wall. In theory, normal slip on the splay fault may occur when the décollement has a very low friction coefficient seaward. Such a low friction also implies an unstable extensional state within the outer wedge. Finite element elasto-plastic calculations with a geometry based on the Nankai Kumano section were performed and confirm that this analytical condition is a valid approximation. Furthermore, localized extension at a shallow level in the splay hanging wall is observed in models for a wide range of friction coefficients (from ∼0 to the value of internal friction coefficient of the rock, here equals to 0.4). The timing of slip established for the splay fault branch drilled on Nankai Kumano transect suggests a phase of concurrent splay and accretionary wedge growth ≈2 Ma to ≈1.5 Ma, followed by a locking of the splay ≈1.3 Ma. Active extension is observed in the hanging wall. This evolution can be explained by the activation of a deeper and weaker décollement, followed by an interruption of accretion. Activation of a splay as a normal fault, as hypothesized in the case of the Tohoku 2011 earthquake, can be achieved only if the friction coefficient on the décollement drops to near zero. We conclude that the tectonic stress state largely determines long-term variations of tightly related splay fault and outer décollement activity and thus influences where and how coseismic rupture ends, but that occurrence of normal slip on a splay fault requires coseismic friction reduction.
NASA Astrophysics Data System (ADS)
Bird, P.
2010-12-01
The hope expressed in the title question above can be contradicted in 5 ways, listed below. To summarize, an earthquake rupture can be larger than anticipated either because the fault system has not been fully mapped, or because the rupture is not limited to the pre-existing fault network. 1. Geologic mapping of faults is always incomplete due to four limitations: (a) Map-scale limitation: Faults below a certain (scale-dependent) apparent offset are omitted; (b) Field-time limitation: The most obvious fault(s) get(s) the most attention; (c) Outcrop limitation: You can't map what you can't see; and (d) Lithologic-contrast limitation: Intra-formation faults can be tough to map, so they are often assumed to be minor and omitted. If mapping is incomplete, fault traces may be longer and/or better-connected than we realize. 2. Fault trace “lengths” are unreliable guides to maximum magnitude. Fault networks have multiply-branching, quasi-fractal shapes, so fault “length” may be meaningless. Naming conventions for main strands are unclear, and rarely reviewed. Gaps due to Quaternary alluvial cover may not reflect deeper seismogenic structure. Mapped kinks and other “segment boundary asperities” may be only shallow structures. Also, some recent earthquakes have jumped and linked “separate” faults (Landers, California 1992; Denali, Alaska, 2002) [Wesnousky, 2006; Black, 2008]. 3. Distributed faulting (“eventually occurring everywhere”) is predicted by several simple theories: (a) Viscoelastic stress redistribution in plate/microplate interiors concentrates deviatoric stress upward until they fail by faulting; (b) Unstable triple-junctions (e.g., between 3 strike-slip faults) in 2-D plate theory require new faults to form; and (c) Faults which appear to end (on a geologic map) imply distributed permanent deformation. This means that all fault networks evolve and that even a perfect fault map would be incomplete for future ruptures. 4. A recent attempt [Bird, 2009, JGR] to model neotectonics of the active fault network in the western United States found that only 2/3 of Pacific-North America relative motion in California occurs by slip on faults included in seismic hazard models by the 2007 Working Group on California Earthquake Probabilities [2008; USGS OFR 2007-1437]. (Whether the missing distributed permanent deformation is seismogenic has not yet been determined.) 5. Even outside of broad orogens, dangerous intraplate faulting is evident in catalogs: (a) About 3% of shallow earthquakes in the Global CMT catalog are Intraplate [Bird et al., 2010, SRL]; (b) Intraplate earthquakes have higher stress-drops by about a factor-of-two [Kanamori & Anderson, 1975, BSSA; Allmann & Shearer, 2009, JGR]; (c) The corner magnitude of intraplate earthquakes is >7.6, and unconstrained from above, on the moment magnitude scale [Bird & Kagan, 2004, BSSA]. For some intraplate earthquakes, the causitive fault is mapped only (if at all) by its aftershocks.
NASA Technical Reports Server (NTRS)
Brunelle, J. E.; Eckhardt, D. E., Jr.
1985-01-01
Results are presented of an experiment conducted in the NASA Avionics Integrated Research Laboratory (AIRLAB) to investigate the implementation of fault-tolerant software techniques on fault-tolerant computer architectures, in particular the Software Implemented Fault Tolerance (SIFT) computer. The N-version programming and recovery block techniques were implemented on a portion of the SIFT operating system. The results indicate that, to effectively implement fault-tolerant software design techniques, system requirements will be impacted and suggest that retrofitting fault-tolerant software on existing designs will be inefficient and may require system modification.
FTC - THE FAULT-TREE COMPILER (SUN VERSION)
NASA Technical Reports Server (NTRS)
Butler, R. W.
1994-01-01
FTC, the Fault-Tree Compiler program, is a tool used to calculate the top-event probability for a fault-tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. The high-level input language is easy to understand and use. In addition, the program supports a hierarchical fault tree definition feature which simplifies the tree-description process and reduces execution time. A rigorous error bound is derived for the solution technique. This bound enables the program to supply an answer precisely (within the limits of double precision floating point arithmetic) at a user-specified number of digits accuracy. The program also facilitates sensitivity analysis with respect to any specified parameter of the fault tree such as a component failure rate or a specific event probability by allowing the user to vary one failure rate or the failure probability over a range of values and plot the results. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920); and the FTC fault tree tool (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree. PAWS/STEM and SURE are programs which interpret the same SURE language, but utilize different solution methods. ASSIST is a preprocessor that generates SURE language from a more abstract definition. SURE, ASSIST, and PAWS/STEM are also offered as a bundle. Please see the abstract for COS-10039/COS-10041, SARA - SURE/ASSIST Reliability Analysis Workstation, for pricing details. FTC was originally developed for DEC VAX series computers running VMS and was later ported for use on Sun computers running SunOS. The program is written in PASCAL, ANSI compliant C-language, and FORTRAN 77. The TEMPLATE graphics library is required to obtain graphical output. The standard distribution medium for the VMS version of FTC (LAR-14586) is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The standard distribution medium for the Sun version of FTC (LAR-14922) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. FTC was developed in 1989 and last updated in 1992. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories. SunOS is a trademark of Sun Microsystems, Inc.
FTC - THE FAULT-TREE COMPILER (VAX VMS VERSION)
NASA Technical Reports Server (NTRS)
Butler, R. W.
1994-01-01
FTC, the Fault-Tree Compiler program, is a tool used to calculate the top-event probability for a fault-tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. The high-level input language is easy to understand and use. In addition, the program supports a hierarchical fault tree definition feature which simplifies the tree-description process and reduces execution time. A rigorous error bound is derived for the solution technique. This bound enables the program to supply an answer precisely (within the limits of double precision floating point arithmetic) at a user-specified number of digits accuracy. The program also facilitates sensitivity analysis with respect to any specified parameter of the fault tree such as a component failure rate or a specific event probability by allowing the user to vary one failure rate or the failure probability over a range of values and plot the results. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920); and the FTC fault tree tool (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree. PAWS/STEM and SURE are programs which interpret the same SURE language, but utilize different solution methods. ASSIST is a preprocessor that generates SURE language from a more abstract definition. SURE, ASSIST, and PAWS/STEM are also offered as a bundle. Please see the abstract for COS-10039/COS-10041, SARA - SURE/ASSIST Reliability Analysis Workstation, for pricing details. FTC was originally developed for DEC VAX series computers running VMS and was later ported for use on Sun computers running SunOS. The program is written in PASCAL, ANSI compliant C-language, and FORTRAN 77. The TEMPLATE graphics library is required to obtain graphical output. The standard distribution medium for the VMS version of FTC (LAR-14586) is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The standard distribution medium for the Sun version of FTC (LAR-14922) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. FTC was developed in 1989 and last updated in 1992. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories. SunOS is a trademark of Sun Microsystems, Inc.
NASA Astrophysics Data System (ADS)
Chen, Q.; Yu, C.
2017-12-01
On April 20, 2013, Ms7.0 strong earthquake (Lushan earthquake) occurred in Lanshan County Ya'an City, Sichuan Province. It is another earthquake that occurred in the Longmenshan fault zone after the Wenchuan earthquake. However, there is still no conclusive conclusion in relationship between the fine structure of the Lushan area and triggering seismic fault . In this study, the crustal structure, the shallow structure and the hidden faults and the focal mechanism of the Lushan earthquake were analyzed by using the deep seismic reflection profile and the broadband seismic array data. Combined with the surface geological information, the structure and fracture cause of the Lishan earthquake were discussed.We have synthetic analyzed the seismic precursors, fine locating, focal mechanism analysis and time-tomographic imaging of the broadband seismic data before and after the earthquake in Lushan earthquake, and obtained the seismic distribution, the focal mechanism and the crustal fine structure in the Lushan area. And we use these results to detailed interpreted the deep reflection seismic section of the Lushan earthquake zone.The results show that the crust of the Lushan area is characterized by a distinct structure of upper crust with thickness about 14.75km. The nature of the faults is inferred to be thrusting in the region due to the pushing of the crustal material of the Tibetan plateau into the southeast part of the rigid Sichuan basin. The shuangshi-Dachuan fault stretches from the surface to the deep crust at a low angle, and is dominated by thrusting in a form of imbricate structure with small-scale faults nearby. Whereas the Guangyuan-Dayi fault is a positive flower structure with a listric shape, consisting of six branches. Its movement is dominated by thrusting with gentle horizontal slip.
Loher, M; Pape, T; Marcon, Y; Römer, M; Wintersteller, P; Praeg, D; Torres, M; Sahling, H; Bohrmann, G
2018-04-19
Submarine mud volcanoes release sediments and gas-rich fluids at the seafloor via deeply-rooted plumbing systems that remain poorly understood. Here the functioning of Venere mud volcano, on the Calabrian accretionary prism in ~1,600 m water depth is investigated, based on multi-parameter hydroacoustic and visual seafloor data obtained using ship-borne methods, ROVs, and AUVs. Two seepage domains are recognized: mud breccia extrusion from a summit, and hydrocarbon venting from peripheral sites, hosting chemosynthetic ecosystems and authigenic carbonates indicative of long-term seepage. Pore fluids in freshly extruded mud breccia (up to 13 °C warmer than background sediments) contained methane concentrations exceeding saturation by 2.7 times and chloride concentrations up to five times lower than ambient seawater. Gas analyses indicate an underlying thermogenic hydrocarbon source with potential admixture of microbial methane during migration along ring faults to the peripheral sites. The gas and pore water analyses point to fluids sourced deep (>3 km) below Venere mud volcano. An upward-branching plumbing system is proposed to account for co-existing mud breccia extrusion and gas seepage via multiple surface vents that influence the distribution of seafloor ecosystems. This model of mud volcanism implies that methane-rich fluids may be released during prolonged phases of moderate activity.
NASA Technical Reports Server (NTRS)
Platt, M. E.; Lewis, E. E.; Boehm, F.
1991-01-01
A Monte Carlo Fortran computer program was developed that uses two variance reduction techniques for computing system reliability applicable to solving very large highly reliable fault-tolerant systems. The program is consistent with the hybrid automated reliability predictor (HARP) code which employs behavioral decomposition and complex fault-error handling models. This new capability is called MC-HARP which efficiently solves reliability models with non-constant failures rates (Weibull). Common mode failure modeling is also a specialty.
Detection of faults and software reliability analysis
NASA Technical Reports Server (NTRS)
Knight, J. C.
1986-01-01
Multiversion or N-version programming was proposed as a method of providing fault tolerance in software. The approach requires the separate, independent preparation of multiple versions of a piece of software for some application. Specific topics addressed are: failure probabilities in N-version systems, consistent comparison in N-version systems, descriptions of the faults found in the Knight and Leveson experiment, analytic models of comparison testing, characteristics of the input regions that trigger faults, fault tolerance through data diversity, and the relationship between failures caused by automatically seeded faults.
Coordinated Fault Tolerance for High-Performance Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongarra, Jack; Bosilca, George; et al.
2013-04-08
Our work to meet our goal of end-to-end fault tolerance has focused on two areas: (1) improving fault tolerance in various software currently available and widely used throughout the HEC domain and (2) using fault information exchange and coordination to achieve holistic, systemwide fault tolerance and understanding how to design and implement interfaces for integrating fault tolerance features for multiple layers of the software stack—from the application, math libraries, and programming language runtime to other common system software such as jobs schedulers, resource managers, and monitoring tools.
Implanted component faults and their effects on gas turbine engine performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLeod, J.D.; Taylor, V.; Laflamme, J.C.G.
Under the sponsorship of the Canadian Department of National Defence, the Engine Laboratory of the National Research Council of Canada (NRCC) has established a program for the evaluation of component deterioration on gas turbine engine performance. The effect is aimed at investigating the effects of typical in-service faults on the performance characteristics of each individual engine component. The objective of the program is the development of a generalized fault library, which will be used with fault identification techniques in the field, to reduce unscheduled maintenance. To evaluate the effects of implanted faults on the performance of a single spool engine,more » such as an Allison T56 turboprop engine, a series of faulted parts were installed. For this paper the following faults were analyzed: (a) first-stage turbine nozzle erosion damage; (b) first-stage turbine rotor blade untwist; (c) compressor seal wear; (d) first and second-stage compressor blade tip clearance increase. This paper describes the project objectives, the experimental installation, and the results of the fault implantation on engine performance. Discussed are performance variations on both engine and component characteristics. As the performance changes were significant, a rigorous measurement uncertainty analysis is included.« less
Validation environment for AIPS/ALS: Implementation and results
NASA Technical Reports Server (NTRS)
Segall, Zary; Siewiorek, Daniel; Caplan, Eddie; Chung, Alan; Czeck, Edward; Vrsalovic, Dalibor
1990-01-01
The work is presented which was performed in porting the Fault Injection-based Automated Testing (FIAT) and Programming and Instrumentation Environments (PIE) validation tools, to the Advanced Information Processing System (AIPS) in the context of the Ada Language System (ALS) application, as well as an initial fault free validation of the available AIPS system. The PIE components implemented on AIPS provide the monitoring mechanisms required for validation. These mechanisms represent a substantial portion of the FIAT system. Moreover, these are required for the implementation of the FIAT environment on AIPS. Using these components, an initial fault free validation of the AIPS system was performed. The implementation is described of the FIAT/PIE system, configured for fault free validation of the AIPS fault tolerant computer system. The PIE components were modified to support the Ada language. A special purpose AIPS/Ada runtime monitoring and data collection was implemented. A number of initial Ada programs running on the PIE/AIPS system were implemented. The instrumentation of the Ada programs was accomplished automatically inside the PIE programming environment. PIE's on-line graphical views show vividly and accurately the performance characteristics of Ada programs, AIPS kernel and the application's interaction with the AIPS kernel. The data collection mechanisms were written in a high level language, Ada, and provide a high degree of flexibility for implementation under various system conditions.
Semi-Markov adjunction to the Computer-Aided Markov Evaluator (CAME)
NASA Technical Reports Server (NTRS)
Rosch, Gene; Hutchins, Monica A.; Leong, Frank J.; Babcock, Philip S., IV
1988-01-01
The rule-based Computer-Aided Markov Evaluator (CAME) program was expanded in its ability to incorporate the effect of fault-handling processes into the construction of a reliability model. The fault-handling processes are modeled as semi-Markov events and CAME constructs and appropriate semi-Markov model. To solve the model, the program outputs it in a form which can be directly solved with the Semi-Markov Unreliability Range Evaluator (SURE) program. As a means of evaluating the alterations made to the CAME program, the program is used to model the reliability of portions of the Integrated Airframe/Propulsion Control System Architecture (IAPSA 2) reference configuration. The reliability predictions are compared with a previous analysis. The results bear out the feasibility of utilizing CAME to generate appropriate semi-Markov models to model fault-handling processes.
Fault tolerant data management system
NASA Technical Reports Server (NTRS)
Gustin, W. M.; Smither, M. A.
1972-01-01
Described in detail are: (1) results obtained in modifying the onboard data management system software to a multiprocessor fault tolerant system; (2) a functional description of the prototype buffer I/O units; (3) description of modification to the ACADC and stimuli generating unit of the DTS; and (4) summaries and conclusions on techniques implemented in the rack and prototype buffers. Also documented is the work done in investigating techniques of high speed (5 Mbps) digital data transmission in the data bus environment. The application considered is a multiport data bus operating with the following constraints: no preferred stations; random bus access by all stations; all stations equally likely to source or sink data; no limit to the number of stations along the bus; no branching of the bus; and no restriction on station placement along the bus.
NASA Astrophysics Data System (ADS)
Bulkan, Sibel; Storti, Fabrizio; Cavozzi, Cristian; Vannucchi, Paola
2017-04-01
Analogue modelling remains one of the best methods for investigating progressive deformation of pull apart systems in strike slip faults that are poorly known. Analogue model experiments for the North Anatolian Fault (NAF) system around the Sea of Marmara are extremely rare in the geological literature. Our purpose in this work is to monitor the relation between the horizontal propagation and branching of the strike slip fault, and the structural and topographic expression resulting from this process. These experiments may provide insights into the geometric evolution and kinematic of west part of the NAF system. For this purpose, we run several 3D sand box experiments, appropriately scaled. Plexiglass sheets were purposely cut to simulate the geometry of the NAF. Silicone was placed on the top of these to simulate the viscous lower crust, while the brittle upper crust was simulated with pure dry sand. Dextral relative fault motion was imposed as well using different velocities to reproduce different strain rates and pull apart formation at the releasing bend. Our experiments demonstrate the variation of the shear zone shapes and how the master-fault propagates during the deformation, helping to cover the gaps between geodetic and geologic slip information. Lower crustal flow may explain how the deformation is transferred to the upper crust, and stress partitioned among the strike slip faults and pull-apart basin systems. Stress field evolution seems to play an interesting role to help strain localization. We compare the results of these experiments with natural examples around the western part of NAF and with seismic observations.
NASA Astrophysics Data System (ADS)
Kamal; Khawlie, Mohamad; Haddad, Fuad; Barazangi, Muawia; Seber, Dogan; Chaimov, Thomas
1993-08-01
The northern extension of the Dead Sea transform fault in southern Lebanon bifurcates into several faults that cross Lebanon from south to north. The main strand, the Yammouneh fault, marks the boundary between the Levantine (eastern Mediterranean) and Arabian plates and separates the western mountain range (Mount Lebanon) from the eastern mountain range (Anti-Lebanon). Bouguer gravity contours in Lebanon approximately follow topographic contours; i.e., positive Bouguer anomalies are associated with the Mount Lebanon and Anti-Lebanon ranges. This suggests that the region is not in simple isostatic compensation. Gravity observations based on 2.5-dimensional modeling and other available geological and geophysical information have produced the following interpretations. (1) The crust of Lebanon thins from ˜35 km beneath the Anti-Lebanon range, near the Syrian border, to ˜27 km beneath the Lebanese coast. No crustal roots exist beneath the Lebanese ranges. (2) The depth to basement is ˜3.5-6 km below sea level under the ranges and is ˜8-10 km beneath the Bekaa depression. (3) The Yammouneh fault bifurcates northward into two branches; one passes beneath the Yammouneh Lake through the eastern part of Mount Lebanon and another bisects the northern part of the Bekaa Valley (i.e., Mid-Bekaa fault). The Lebanese mountain ranges and the Bekaa depression were formed as a result of transtension and later transpression associated with the relative motion of a few crustal blocks in response to the northward movement of the Arabian plate relative to the Levantine plate.
Usage of Fault Detection Isolation & Recovery (FDIR) in Constellation (CxP) Launch Operations
NASA Technical Reports Server (NTRS)
Ferrell, Rob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Spirkovska, Lilly; Hall, David; Brown, Barbara
2010-01-01
This paper will explore the usage of Fault Detection Isolation & Recovery (FDIR) in the Constellation Exploration Program (CxP), in particular Launch Operations at Kennedy Space Center (KSC). NASA's Exploration Technology Development Program (ETDP) is currently funding a project that is developing a prototype FDIR to demonstrate the feasibility of incorporating FDIR into the CxP Ground Operations Launch Control System (LCS). An architecture that supports multiple FDIR tools has been formulated that will support integration into the CxP Ground Operation's Launch Control System (LCS). In addition, tools have been selected that provide fault detection, fault isolation, and anomaly detection along with integration between Flight and Ground elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-09
This report summarizes the authors review and evaluation of the existing seismic hazards program at Los Alamos National Laboratory (LANL). The report recommends that the original program be augmented with a probabilistic analysis of seismic hazards involving assignment of weighted probabilities of occurrence to all potential sources. This approach yields a more realistic evaluation of the likelihood of large earthquake occurrence particularly in regions where seismic sources may have recurrent intervals of several thousand years or more. The report reviews the locations and geomorphic expressions of identified fault lines along with the known displacements of these faults and last knowmore » occurrence of seismic activity. Faults are mapped and categorized into by their potential for actual movement. Based on geologic site characterization, recommendations are made for increased seismic monitoring; age-dating studies of faults and geomorphic features; increased use of remote sensing and aerial photography for surface mapping of faults; the development of a landslide susceptibility map; and to develop seismic design standards for all existing and proposed facilities at LANL.« less
Evaluating and extending user-level fault tolerance in MPI applications
Laguna, Ignacio; Richards, David F.; Gamblin, Todd; ...
2016-01-11
The user-level failure mitigation (ULFM) interface has been proposed to provide fault-tolerant semantics in the Message Passing Interface (MPI). Previous work presented performance evaluations of ULFM; yet questions related to its programability and applicability, especially to non-trivial, bulk synchronous applications, remain unanswered. In this article, we present our experiences on using ULFM in a case study with a large, highly scalable, bulk synchronous molecular dynamics application to shed light on the advantages and difficulties of this interface to program fault-tolerant MPI applications. We found that, although ULFM is suitable for master–worker applications, it provides few benefits for more common bulkmore » synchronous MPI applications. Furthermore, to address these limitations, we introduce a new, simpler fault-tolerant interface for complex, bulk synchronous MPI programs with better applicability and support than ULFM for application-level recovery mechanisms, such as global rollback.« less
NASA Astrophysics Data System (ADS)
Ueta, K.; Tani, K.
2001-12-01
Sandbox experiments were performed to investigate ground surface deformation in unconsolidated sediments caused by dip-slip and strike-slip motion on bedrock faults. A 332.5 cm long, 200 cm high, and 40 cm wide sandbox was used in a dip-slip fault model test. In the strike-slip fault test, a 600 cm long, 250 cm wide, and 60 cm high sandbox and a 170 cm long, 25 cm wide, 15 cm high sandbox were used. Computerized X-ray tomography applied to the sandbox experiments made it possible to analyze the kinematic evolution, as well as the three-dimensional geometry, of the faults. The fault type, fault dip, fault displacement, thickness and density of sandpack and grain size of the sand were varied for different experiments. Field survey of active faults in Japan and California were also made to investigate the deformation of unconsolidated sediments overlying bedrock faults. A comparison of the experimental results with natural cases of active faults reveals the following: (1) In the case of dip-slip faulting, the shear bands are not shown as one linear plane but as en echelon pattern. Thicker and finer unconsolidated sediments produce more shear bands and clearer en echelon shear band patterns. (2) In the case of left-lateral strike-slip faulting, the deformation of the sand pack with increasing basement displacement is observed as follows. a) In three dimensions, the right-stepping shears that have a "cirque" / "shell" / "ship body" shape develop on both sides of the basement fault. The shears on one side of the basement fault join those on the other side, resulting in helicoidal shaped shear surfaces. Shears reach the surface of the sand near or above the basement fault and en echelon Riedel shears are observed at the surface of the sand. b) Right-stepping pressure ridges develop within the zone defined by the Riedel shears. c) Lower-angle shears generally branch off from the first Riedel shears. d) Right-stepping helicoidal shaped lower-angle shears offset Riedel shears and pressure ridges, and left-stepping and right-stepping pressure ridges are observed. d) With displacement concentrated on the central throughgoing fault zone, a "Zone of shear band" (ZSB) developed directly above the basement fault. The geometry of the ZSB shows a strong resemblance to linear ridge and trough geomorphology associated with active strike-slip faulting. (3) In the case of normal faulting, the location of the surface fault rupture is just above the bedrock faults, which have no relationship with the fault dip. On the other hand, the location of the surface rupture of the reverse fault has closely relationship with the fault dip. In the case of strike-slip faulting, the width of the deformation zone in dense sand is wider than that in loose sand. (4) The horizontal distance of surface rupture from the bedrock fault normalized by the height of sand mass (W/H) does not depend on the height of sand mass and grain size of sand. The values of W/H from the test agree well with those of earthquake faults. (5) The normalized base displacement required to propagate the shear rupture zone to the ground surface (D/H), in the case of normal faulting, is lower than those for reverse faulting and strike-slip faulting.
Algorithm-Based Fault Tolerance for Numerical Subroutines
NASA Technical Reports Server (NTRS)
Tumon, Michael; Granat, Robert; Lou, John
2007-01-01
A software library implements a new methodology of detecting faults in numerical subroutines, thus enabling application programs that contain the subroutines to recover transparently from single-event upsets. The software library in question is fault-detecting middleware that is wrapped around the numericalsubroutines. Conventional serial versions (based on LAPACK and FFTW) and a parallel version (based on ScaLAPACK) exist. The source code of the application program that contains the numerical subroutines is not modified, and the middleware is transparent to the user. The methodology used is a type of algorithm- based fault tolerance (ABFT). In ABFT, a checksum is computed before a computation and compared with the checksum of the computational result; an error is declared if the difference between the checksums exceeds some threshold. Novel normalization methods are used in the checksum comparison to ensure correct fault detections independent of algorithm inputs. In tests of this software reported in the peer-reviewed literature, this library was shown to enable detection of 99.9 percent of significant faults while generating no false alarms.
VAX-11 Programs for Computing Available Potential Energy from CTD Data.
1981-08-01
the plots can be plotted as many times as desired. The use of the translators is described at the end of section 3. The multiple branch structure of...are listed later in this section, and short * versions of them may be obtained on the terminal any time the program prompts the user for branch number...input, by typing 0/. Within each branch there may be options which are accessible by varying parameters input by the user at the time the branch
NASA Astrophysics Data System (ADS)
Janecke, S. U.; Markowski, D.
2015-12-01
The overdue earthquake on the Coachella section, San Andreas fault (SAF), the model ShakeOut earthquake, and the conflict between cross-fault models involving the Extra fault array and mapped shortening in the Durmid Hill area motivate new analyses at the southern SAF tip. Geologic mapping, LiDAR, seismic reflection, magnetic and gravity datasets, and aerial photography confirm the existence of the East Shoreline strand (ESS) of the SAF southwest of the main trace of the SAF. We mapped the 15 km long ESS, in a band northeast side of the Salton Sea. Other data suggest that the ESS continues N to the latitude of the Mecca Hills, and is >35 km long. The ESS cuts and folds upper Holocene beds and appears to creep, based on discovery of large NW-striking cracks in modern beach deposits. The two traces of the SAF are parallel and ~0.5 to ~2.5 km apart. Groups of east, SE, and ENE-striking strike-slip cross-faults connect the master dextral faults of the SAF. There are few sinistral-normal faults that could be part of the Extra fault array. The 1-km wide ESS contains short, discontinuous traces of NW-striking dextral-oblique faults. These en-echelon faults bound steeply dipping Pleistocene beds, cut out section, parallel tight NW-trending folds, and produced growth folds. Beds commonly dip toward the ESS on both sides, in accord with persistent NE-SW shortening across the ESS. The dispersed fault-fold structural style of the ESS is due to decollements in faulted mud-rich Pliocene to Holocene sediment and ramps and flats along the strike-slip faults. A sheared ladder-like geometric model of the two master dextral strands of the SAF and their intervening cross-faults, best explains the field relationships and geophysical datasets. Contraction across >40 km2 of the southernmost SAF zone in the Durmid Hills suggest that interaction of active structures in the SAF zone may inhibit the nucleation of large earthquakes in this region. The ESS may cross the northern Coachella Valley to join the blind Palm Spring dextral fault- a source of microearthquakes and differential subsidence. The ESS may also continue north parallel to the margin of the Salton Trough or have both a NW and NE branch. The risk of a future large earthquake directly beneath the greater Palm Springs metropolitan area may be larger if the first or last options are correct.
NASA Astrophysics Data System (ADS)
Muirhead, J.; Kattenhorn, S. A.; Dindi, E.; Gama, R.
2013-12-01
In the early stages of continental rifting, East African Rift (EAR) basins are conventionally depicted as asymmetric basins bounded on one side by a ~100 km-long border fault. As rifting progresses, strain concentrates into the rift center, producing intra-rift faults. The timing and nature of the transition from border fault to intra-rift-dominated strain accommodation is unclear. Our study focuses on this transitional phase of continental rifting by exploring the spatial and temporal evolution of faulting in the Natron (border fault initiation at ~3 Ma) and Magadi (~7 Ma) basins of northern Tanzania and southern Kenya, respectively. We compare the morphologies and activity histories of faults in each basin using field observations and remote sensing in order to address the relative contributions of border faults and intra-rift faults to crustal strain accommodation as rifting progresses. The ~500 m-high border fault along the western margin of the Natron basin is steep compared to many border faults in the eastern branch of the EAR, indicating limited scarp degradation by mass wasting. Locally, the escarpment shows open fissures and young scarps 10s of meters high and a few kilometers long, implying ongoing border fault activity in this young rift. However, intra-rift faults within ~1 Ma lavas are greatly eroded and fresh scarps are typically absent, implying long recurrence intervals between slip events. Rift-normal topographic profiles across the Natron basin show the lowest elevations in the lake-filled basin adjacent to the border fault, where a number of hydrothermal springs along the border fault system expel water into the lake. In contrast to Natron, a ~1600 m high, densely vegetated, border fault escarpment along the western edge of the Magadi basin is highly degraded; we were unable to identify evidence of recent rupturing. Rift-normal elevation profiles indicate the focus of strain has migrated away from the border fault into the rift center, where faults pervasively dissect 1.2-0.8 Ma trachyte lavas. Unlike Natron, intra-rift faults in the Magadi basin exhibit primarily steep, little-degraded fault scarps, implying greater activity than Natron intra-rift faults. Numerous fault-associated springs feed water into perennial Lake Magadi, which has no surface drainage input, yet survives despite a high evaporation rate that has created economically viable evaporite deposits. Calcite vein-filled joints are common along fault zones around Lake Magadi, as well as several cm veins around columnar joints that imply isotropic expansion of the fracture network under high pressures of CO2-rich fluids. Our work indicates that the locus of strain in this portion of the EAR transfers from the border fault to the center of the rift basin some time between 3 and 7 million years after rift initiation. This transition likely reflects the evolving respective roles of crustal flexure and magma budget in focusing strain, as well as the hydrothermal fluid budget along evolving fault zones.
NASA Space Flight Vehicle Fault Isolation Challenges
NASA Technical Reports Server (NTRS)
Bramon, Christopher; Inman, Sharon K.; Neeley, James R.; Jones, James V.; Tuttle, Loraine
2016-01-01
The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discrete programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as testability of the integrated flight vehicle especially problematic. The cost of fully automated diagnostics can be completely justified for a large fleet, but not so for a single flight vehicle. Fault detection is mandatory to assure the vehicle is capable of a safe launch, but fault isolation is another issue. SLS has considered various methods for fault isolation which can provide a reasonable balance between adequacy, timeliness and cost. This paper will address the analyses and decisions the NASA Logistics engineers are making to mitigate risk while providing a reasonable testability solution for fault isolation.
NASA Astrophysics Data System (ADS)
Liu, Cheng; Zhu, Guang; Zhang, Shuai; Gu, Chengchuan; Li, Yunjian; Su, Nan; Xiao, Shiye
2018-01-01
The NE-striking Dunhua-Mishan Fault Zone (DMFZ) is one of two branches of the continental-scale sinistral Tan-Lu Fault Zone in NE China. The field data presented here indicate that the ca. 1000 km long DMFZ records two phases of sinistral faulting. The structures produced by these two phases of faulting include NE-SW-striking ductile shear belts and brittle faults, respectively. Mylonite-hosted microstructures and quartz c-axis fabrics suggest deformation temperatures of 450 °C-500 °C for the ductile shear belts. Combining new zircon U-Pb dates for 14 igneous rock samples analyzed during this study with the geology of this region indicates these shear belts formed during the earliest Early Cretaceous. This phase of sinistral displacement represents the initial formation of the DMFZ in response to the northward propagation of the Tan-Lu Fault Zone into NE China. A phase of Early Cretaceous rifting was followed by a second phase of sinistral faulting at 102-96 Ma, as evidenced by our new U-Pb ages for associated igneous rocks. Combining our new data with the results of previous research indicates that the DFMZ records a four-stage Cretaceous evolutionary history, where initial sinistral faulting at the beginning of the Early Cretaceous gave way to rifting during the rest of the Early Cretaceous. This was followed by a second phase of sinistral faulting at the beginning of the Late Cretaceous and a second phase of local rifting during the rest of the Late Cretaceous. The Cretaceous evolution of the DMFZ records the synchronous tectonic evolution of the NE China continent bordering the Pacific Ocean. Two phases of regional N-S compression generated the two phases of sinistral faulting within the DMFZ, whereas two-stage regional extension generated the two phases of rifting. The two compressive events were the result of the rapid low-angle subduction of the Izanagi and Pacific plates, whereas the two-stage extension was caused by the roll-back of these respective plates. The final closure of the Mongol-Okhotsk Ocean at the beginning of the Early Cretaceous intensified the synchronous compression in NE China, causing the northward propagation of the Tan-Lu Fault Zone.
Software for determining the true displacement of faults
NASA Astrophysics Data System (ADS)
Nieto-Fuentes, R.; Nieto-Samaniego, Á. F.; Xu, S.-S.; Alaniz-Álvarez, S. A.
2014-03-01
One of the most important parameters of faults is the true (or net) displacement, which is measured by restoring two originally adjacent points, called “piercing points”, to their original positions. This measurement is not typically applicable because it is rare to observe piercing points in natural outcrops. Much more common is the measurement of the apparent displacement of a marker. Methods to calculate the true displacement of faults using descriptive geometry, trigonometry or vector algebra are common in the literature, and most of them solve a specific situation from a large amount of possible combinations of the fault parameters. True displacements are not routinely calculated because it is a tedious and tiring task, despite their importance and the relatively simple methodology. We believe that the solution is to develop software capable of performing this work. In a previous publication, our research group proposed a method to calculate the true displacement of faults by solving most combinations of fault parameters using simple trigonometric equations. The purpose of this contribution is to present a computer program for calculating the true displacement of faults. The input data are the dip of the fault; the pitch angles of the markers, slickenlines and observation lines; and the marker separation. To prevent the common difficulties involved in switching between operative systems, the software is developed using the Java programing language. The computer program could be used as a tool in education and will also be useful for the calculation of the true fault displacement in geological and engineering works. The application resolves the cases with known direction of net slip, which commonly is assumed parallel to the slickenlines. This assumption is not always valid and must be used with caution, because the slickenlines are formed during a step of the incremental displacement on the fault surface, whereas the net slip is related to the finite slip.
The 12th June 2017 Mw = 6.3 Lesvos earthquake from detailed seismological observations
NASA Astrophysics Data System (ADS)
Papadimitriou, P.; Kassaras, I.; Kaviris, G.; Tselentis, G.-A.; Voulgaris, N.; Lekkas, E.; Chouliaras, G.; Evangelidis, C.; Pavlou, K.; Kapetanidis, V.; Karakonstantis, A.; Kazantzidou-Firtinidou, D.; Fountoulakis, I.; Millas, C.; Spingos, I.; Aspiotis, T.; Moumoulidou, A.; Skourtsos, E.; Antoniou, V.; Andreadakis, E.; Mavroulis, S.; Kleanthi, M.
2018-04-01
A major earthquake (Mwö=ö6.3) occurred on the 12th of June 2017 (12:28 GMT) offshore, south of the SE coast of Lesvos Island, at a depth of 13ökm, in an area characterized by normal faulting with an important strike-slip component in certain cases. Over 900 events of the sequence between 12 and 30 June 2017 were manually analyzed and located, employing an optimized local velocity model. Double-difference relocation revealed seven spatially separated groups of events, forming two linear branches, roughly aligned N130°E, compatible with the strike of known mapped faults along the southern coast of Lesvos Island. Spatiotemporal analysis indicated gradual migration of seismicity towards NW and SE from the margins of the main rupture, while a strong secondary sequence at a separate fault patch SE of the mainshock, oriented NW-SE, was triggered by the largest aftershock (Mwö=ö5.2) that occurred on 17 June. The focal mechanisms of the mainshock (φö=ö122°, δö=ö40° and λö=ö-83°) and of the major aftershocks were determined using regional moment tensor inversion. In most cases normal faulting was revealed with the fault plane oriented in a NW-SE direction, dipping SW, with the exception of the largest aftershock that was characterized by strike-slip faulting. Stress inversion revealed a complex stress field south of Lesvos, related both to normal, in an approximate E-W direction, and strike-slip faulting. All aftershocks outside the main rupture, where gradual seismicity migration was observed, are located within the positive lobes of static stress transfer determined by applying the Coulomb criterion for the mainshock. Stress loading on optimal faults under a strike-slip regime explains the occurrence of the largest aftershock and the seismicity that was triggered at the eastern patch of the rupture zone.
Treiman, J.A.; Kendrick, K.J.; Bryant, W.A.; Rockwell, T.K.; McGill, S.F.
2002-01-01
The Mw 7.1 Hector Mine earthquake occurred within the Mojave Desert portion of the eastern California shear zone and was accompanied by 48 km of dextral surface rupture. Complex northward rupture began on two branches of the Lavic Lake fault in the northern Bullion Mountains and also propagated southward onto the Bullion fault. Lesser amounts of rupture occurred across two right steps to the south. Surface rupture was mapped using postearthquake, 1:10,000-scale aerial photography. Field mapping provided additional detail and more than 400 fault-rupture observations; of these, approximately 300 measurements were used to characterize the slip distribution. En echelon surface rupture predominated in areas of thick alluvium, whereas in the bedrock areas, rupture was more continuous and focused within a narrower zone. Measured dextral offsets were relatively symmetrical about the epicentral region, with a maximum displacement of 5.25 ?? 0.85 m. Vertical slip was a secondary component and was variable, with minor west-side-down displacements predominat.ing in the Bullion Mountains. Field and aerial photographic evidence indicates that most of the faults that ruptured in 1999 had had prior late-Quaternary displacement, although only limited sections of the rupture show evidence for prior Holocene displacement.
Study of a phase-to-ground fault on a 400 kV overhead transmission line
NASA Astrophysics Data System (ADS)
Iagăr, A.; Popa, G. N.; Diniş, C. M.
2018-01-01
Power utilities need to supply their consumers at high power quality level. Because the faults that occur on High-Voltage and Extra-High-Voltage transmission lines can cause serious damages in underlying transmission and distribution systems, it is important to examine each fault in detail. In this work we studied a phase-to-ground fault (on phase 1) of 400 kV overhead transmission line Mintia-Arad. Indactic® 650 fault analyzing system was used to record the history of the fault. Signals (analog and digital) recorded by Indactic® 650 were visualized and analyzed by Focus program. Summary of fault report allowed evaluation of behavior of control and protection equipment and determination of cause and location of the fault.
All-to-all sequenced fault detection system
Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward
2010-11-02
An apparatus, program product and method enable nodal fault detection by sequencing communications between all system nodes. A master node may coordinate communications between two slave nodes before sequencing to and initiating communications between a new pair of slave nodes. The communications may be analyzed to determine the nodal fault.
75 FR 27949 - Single Family Housing Guaranteed Loan Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-19
... Part 1980 RIN 0575-AC83 Single Family Housing Guaranteed Loan Program AGENCY: Rural Housing Service... Family Housing Guaranteed Loan Program (SFHGLP) regulation. This action is taken to achieve savings for... to the Branch Chief, Regulations and Paperwork Management Branch, U.S. Department of Agriculture...
NASA Astrophysics Data System (ADS)
Stang, Dallon Michael
Petrographic, conglomerate and detrital-zircon analyses of formations in southern California can determine consanguineous petrofacies and lithofacies that help constrain paleotectonic and paleogeographic reconstructions of the southwestern United States. Arkosic sandstone of the lower Middle Miocene Cajon Valley formation is exposed on the southwest edge of the Mojave block and juxtaposed against Mesozoic and Paleozoic rocks by the San Andreas fault (SAf). Early work in Cajon Valley referred to the formation as Punchbowl, due to its similar appearance to the Punchbowl Formation at Devil's Punchbowl (northwest along the SAf). However, paleontological work placed Cajon Valley strata in the Hemingfordian-Barstovian (18-14 Ma), as opposed to the Clarendonian-Hemphillian (13-9 Ma) Punchbowl Formation. Since the Cajon Valley formation was deposited prior to being truncated by the San Andreas fault, the 2400m-thick, laterally extensive subaerial deposits likely were deposited across what is now the fault trace. Restoring 310 km of dextral slip on the SAf system should indicate the location of offset equivalent sandstone. Restoration of slip on the SAf system places Cajon Valley adjacent to the Caliente and La Panza Ranges, east of San Luis Obispo. Although analysis of detrital zircon from Cenozoic sandstone throughout southern California has been crucial in establishing paleodrainage areas, detrital zircon from the Cajon Valley and equivalent formations had not been analyzed prior to this study. Paleocurrents measured throughout the Cajon Valley formation indicate a source to the NE, in the Mojave Desert. Sandstone samples analyzed in thin section using the Gazzi-Dickinson method of point-counting are homogeneously arkosic, with slight compositional variability, making differentiation of the Cajon Valley formation and potential offset equivalents problematic. However, Branch Canyon Sandstone and Santa Margarita Formation samples are compositionally the best match for the Cajon Valley formation. Detrital-zircon ages were determined from the Cajon Valley formation and related strata. These data are slightly more variable than sandstone composition, with distinct age peaks at 85-90 Ma, 150 Ma and 250 Ma. These ages correlate with batholiths in the SW Mojave Desert. Of the nine samples from six formations collected as potential offset equivalents, Branch Canyon and Santa Margarita samples are most similar to Cajon Valley samples, in terms of both detrital-zircon ages and sandstone composition. Based on 310km of post-Miocene offset on the San Andreas fault system, the Cajon Valley formation restores adjacent to shallow-marine sandstone of the Santa Margarita Formation and Branch Canyon Sandstone Member of the Monterey Formation in the Caliente and La Panza ranges. Cajon Valley sandstone is interpreted to represent a Miocene fluvial system on a coastal plain, flowing toward a delta on a narrow continental shelf.
ERIC Educational Resources Information Center
Alter, Joel; Patterson, John
2006-01-01
Typically, program evaluation agencies in the legislative branch of state government examine programs that have already been implemented. These evaluations often consider whether a program achieved the legislature's original goals or complied with statutory requirements. Program evaluations frequently determine whether executive branch agencies…
Developmental Programming of Branching Morphogenesis in the Kidney
Schneider, Laura; Al-Awqati, Qais
2015-01-01
The kidney developmental program encodes the intricate branching and organization of approximately 1 million functional units (nephrons). Branching regulation is poorly understood, as is the source of a 10-fold variation in nephron number. Notably, low nephron count increases the risk for developing hypertension and renal failure. To better understand the source of this variation, we analyzed the complete gestational trajectory of mouse kidney development. We constructed a computerized architectural map of the branching process throughout fetal life and found that organogenesis is composed of two distinct developmental phases, each with stage-specific rate and morphologic parameters. The early phase is characterized by a rapid acceleration in branching rate and by branching divisions that repeat with relatively reproducible morphology. The latter phase, however, is notable for a significantly decreased yet constant branching rate and the presence of nonstereotyped branching events that generate progressive variability in tree morphology until birth. Our map identifies and quantitates the contribution of four developmental mechanisms that guide organogenesis: growth, patterning, branching rate, and nephron induction. When applied to organs that developed under conditions of malnutrition or in the setting of growth factor mutation, our normative map provided an essential link between kidney architecture and the fundamental morphogenetic mechanisms that guide development. This morphogenetic map is expected to find widespread applications and help identify modifiable targets to prevent developmental programming of common diseases. PMID:25644110
Developmental Programming of Branching Morphogenesis in the Kidney.
Sampogna, Rosemary V; Schneider, Laura; Al-Awqati, Qais
2015-10-01
The kidney developmental program encodes the intricate branching and organization of approximately 1 million functional units (nephrons). Branching regulation is poorly understood, as is the source of a 10-fold variation in nephron number. Notably, low nephron count increases the risk for developing hypertension and renal failure. To better understand the source of this variation, we analyzed the complete gestational trajectory of mouse kidney development. We constructed a computerized architectural map of the branching process throughout fetal life and found that organogenesis is composed of two distinct developmental phases, each with stage-specific rate and morphologic parameters. The early phase is characterized by a rapid acceleration in branching rate and by branching divisions that repeat with relatively reproducible morphology. The latter phase, however, is notable for a significantly decreased yet constant branching rate and the presence of nonstereotyped branching events that generate progressive variability in tree morphology until birth. Our map identifies and quantitates the contribution of four developmental mechanisms that guide organogenesis: growth, patterning, branching rate, and nephron induction. When applied to organs that developed under conditions of malnutrition or in the setting of growth factor mutation, our normative map provided an essential link between kidney architecture and the fundamental morphogenetic mechanisms that guide development. This morphogenetic map is expected to find widespread applications and help identify modifiable targets to prevent developmental programming of common diseases. Copyright © 2015 by the American Society of Nephrology.
New Concepts in Electromagnetic Materials and Antennas
2015-01-01
Bae-Ian Wu Antennas & Electromagnetics Technology Branch Multispectral Sensing & Detection Division JANUARY 2015 Final Report...Signature// //Signature// BRADLEY A. KRAMER, Program Manager TONY C. KIM, Branch Chief Antenna & Electromagnetic Technology ...Branch Antenna & Electromagnetic Technology Branch Multispectral Sensing & Detection Division Multispectral Sensing & Detection Division
User document for computer programs for ring-stiffened shells of revolution
NASA Technical Reports Server (NTRS)
Cohen, G. A.
1973-01-01
A user manual and related program documentation is presented for six compatible computer programs for structural analysis of axisymmetric shell structures. The programs apply to a common structural model but analyze different modes of structural response. In particular, they are: (1) Linear static response under asymmetric loads; (2) Buckling of linear states under asymmetric loads; (3) Nonlinear static response under axisymmetric loads; (4) Buckling nonlinear states under axisymmetric (5) Imperfection sensitivity of buckling modes under axisymmetric loads; and (6) Vibrations about nonlinear states under axisymmetric loads. These programs treat branched shells of revolution with an arbitrary arrangement of a large number of open branches but with at most one closed branch.
Evaluation of reliability modeling tools for advanced fault tolerant systems
NASA Technical Reports Server (NTRS)
Baker, Robert; Scheper, Charlotte
1986-01-01
The Computer Aided Reliability Estimation (CARE III) and Automated Reliability Interactice Estimation System (ARIES 82) reliability tools for application to advanced fault tolerance aerospace systems were evaluated. To determine reliability modeling requirements, the evaluation focused on the Draper Laboratories' Advanced Information Processing System (AIPS) architecture as an example architecture for fault tolerance aerospace systems. Advantages and limitations were identified for each reliability evaluation tool. The CARE III program was designed primarily for analyzing ultrareliable flight control systems. The ARIES 82 program's primary use was to support university research and teaching. Both CARE III and ARIES 82 were not suited for determining the reliability of complex nodal networks of the type used to interconnect processing sites in the AIPS architecture. It was concluded that ARIES was not suitable for modeling advanced fault tolerant systems. It was further concluded that subject to some limitations (the difficulty in modeling systems with unpowered spare modules, systems where equipment maintenance must be considered, systems where failure depends on the sequence in which faults occurred, and systems where multiple faults greater than a double near coincident faults must be considered), CARE III is best suited for evaluating the reliability of advanced tolerant systems for air transport.
ERIC Educational Resources Information Center
Ferguson, Richard L.
The focus of this study was upon the development and evaluation of a computer-assisted branched test to be used in making instructional decisions for individuals in the program of Individually Prescribed Instruction. A Branched Test is one in which the presentation of test items is contingent upon the previous responses of the examinee. The…
Navy Manpower Planning and Programming: Basis for Systems Examination
1974-10-01
IRE5EARCH AND DEVEl. INAVAL RESEARCH] CHIEF OF NAVAL OPERATIONS OFFICE CHIIf OF NAVAL OPERATIONS NAVAL MATERIAL COMMAND •LitMARTERS NAVAL MATERIAL...DIVISION COMPENSATION BRANCH MANPOWER PROGRAMMING ■RANCH JOURNAL/TRADE TALK BRANCH 06A ASSISTANT FOR COMPUTER SCIENCES SYSTEMS DEVELOPMENT BRANCH...Assistant Director, Life Sciences , Air Force Office of Scientific Research Technical Library, Air Force Human Resources Laboratory, Lackland Air Force Base
2010 Military Family Life Project (MFLP): Tabulations of Response
2011-02-28
the leadership of Timothy Elig, Director, Human Resources Strategic Assessment Program (HRSAP). Policy officials contributing to the development of...of Kristin Williams, Branch Chief, is responsible for the development of questionnaires used in the survey program. Laverne Wright, Chief of Survey...DMDC’s Personnel Survey Branch, under the guidance of Branch Chief, David McGrath, is responsible for developing the sampling and weighting methods
Teen Area, Solon Branch, Cuyahoga County Public Library, Solon, Ohio.
ERIC Educational Resources Information Center
Voice of Youth Advocates, 2003
2003-01-01
Describes the teen area of the Solon Branch library in Cuyahoga County (Ohio). Highlights include the collection; catalog computers; hours and teen traffic; planning the space, including extra display units of bulletin boards; teen programming, including monthly programs and a summer reading program; and the teen advisory group. (LRW)
A branching morphogenesis program governs embryonic growth of the thyroid gland
Liang, Shawn; Johansson, Ellen; Barila, Guillermo; Altschuler, Daniel L.; Fagman, Henrik
2018-01-01
ABSTRACT The developmental program that regulates thyroid progenitor cell proliferation is largely unknown. Here, we show that branching-like morphogenesis is a driving force to attain final size of the embryonic thyroid gland in mice. Sox9, a key factor in branching organ development, distinguishes Nkx2-1+ cells in the thyroid bud from the progenitors that originally form the thyroid placode in anterior endoderm. As lobes develop the thyroid primordial tissue branches several generations. Sox9 and Fgfr2b are co-expressed distally in the branching epithelium prior to folliculogenesis. The thyroid in Fgf10 null mutants has a normal shape but is severely hypoplastic. Absence of Fgf10 leads to defective branching and disorganized angiofollicular units although Sox9/Fgfr2b expression and the ability of cells to differentiate and form nascent follicles are not impaired. These findings demonstrate a novel mechanism of thyroid development reminiscent of the Fgf10-Sox9 program that characterizes organogenesis in classical branching organs, and provide clues to aid understanding of how the endocrine thyroid gland once evolved from an exocrine ancestor present in the invertebrate endostyle. PMID:29361553
A branching morphogenesis program governs embryonic growth of the thyroid gland.
Liang, Shawn; Johansson, Ellen; Barila, Guillermo; Altschuler, Daniel L; Fagman, Henrik; Nilsson, Mikael
2018-01-25
The developmental program that regulates thyroid progenitor cell proliferation is largely unknown. Here, we show that branching-like morphogenesis is a driving force to attain final size of the embryonic thyroid gland in mice. Sox9, a key factor in branching organ development, distinguishes Nkx2-1 + cells in the thyroid bud from the progenitors that originally form the thyroid placode in anterior endoderm. As lobes develop the thyroid primordial tissue branches several generations. Sox9 and Fgfr2b are co-expressed distally in the branching epithelium prior to folliculogenesis. The thyroid in Fgf10 null mutants has a normal shape but is severely hypoplastic. Absence of Fgf10 leads to defective branching and disorganized angiofollicular units although Sox9/Fgfr2b expression and the ability of cells to differentiate and form nascent follicles are not impaired. These findings demonstrate a novel mechanism of thyroid development reminiscent of the Fgf10-Sox9 program that characterizes organogenesis in classical branching organs, and provide clues to aid understanding of how the endocrine thyroid gland once evolved from an exocrine ancestor present in the invertebrate endostyle. © 2018. Published by The Company of Biologists Ltd.
Preliminary paleoseismic observations along the western Denali fault, Alaska
NASA Astrophysics Data System (ADS)
Koehler, R. D.; Schwartz, D. P.; Rood, D. H.; Reger, R.; Wolken, G. J.
2013-12-01
The Denali fault in south-central Alaska, from Mt. McKinley to the Denali-Totschunda fault branch point, accommodates ~9-12 mm/yr of the right-lateral component of oblique convergence between the Pacific/Yakutat and North American plates. The eastern 226 km of this fault reach was part of the source of the 2002 M7.9 Denali fault earthquake. West of the 2002 rupture there is evidence of two large earthquakes on the Denali fault during the past ~550-700 years but the paleoearthquake chronology prior to this time is largely unknown. To better constrain fault rupture parameters for the western Denali fault and contribute to improved seismic hazard assessment, we performed helicopter and ground reconnaissance along the southern flank of the Alaska Range between the Nenana Glacier and Pyramid Peak, a distance of ~35 km, and conducted a site-specific paleoseismic study. We present a Quaternary geologic strip map along the western Denali fault and our preliminary paleoseismic results, which include a differential-GPS survey of a displaced debris flow fan, cosmogenic 10Be surface exposure ages for boulders on this fan, and an interpretation of a trench across the main trace of the fault at the same site. Between the Nenana Glacier and Pyramid Peak, the Denali fault is characterized by prominent tectonic geomorphic features that include linear side-hill troughs, mole tracks, anastamosing composite scarps, and open left-stepping fissures. Measurements of offset rills and gullies indicate that slip during the most recent earthquake was between ~3 and 5 meters, similar to the average displacement in the 2002 earthquake. At our trench site, ~ 25 km east of the Parks Highway, a steep debris fan is displaced along a series of well-defined left-stepping linear fault traces. Multi-event displacements of debris-flow and snow-avalanche channels incised into the fan range from 8 to 43 m, the latter of which serves as a minimum cumulative fan offset estimate. The trench, excavated into the fan across the main fault scarp and adjacent graben, exposed sheared debris fan parent material at its north and south ends, separated by a central zone of stacked scarp-derived colluvium and weakly developed peaty soils. Stratigraphic relations and upward fault terminations clearly record the occurrence of the past three surface-faulting earthquakes and suggest four or more such events. Results of pending 14C analyses are expected to provide new information on earthquake timing and recurrence. A Holocene slip rate for this section of the fault will be developed using back-slip models and an estimate of the age of the fan constrained by our detailed surveys of channel offsets and pending cosmogenic 10Be exposure ages for surface boulders, respectively.
NASA Astrophysics Data System (ADS)
Bai, Mingkun; Chevalier, Marie-Luce; Pan, Jiawei; Replumaz, Anne; Leloup, Philippe Hervé; Métois, Marianne; Li, Haibing
2018-03-01
The left-lateral strike-slip Xianshuihe fault system located in the eastern Tibetan Plateau is considered as one of the most tectonically active intra-continental fault system in China, along which more than 20 M > 6.5 and more than 10 M > 7 earthquakes occurred since 1700. Therefore, studying its activity, especially its slip rate at different time scales, is essential to evaluate the regional earthquake hazard. Here, we focus on the central segment of the Xianshuihe fault system, where the Xianshuihe fault near Kangding city splays into three branches: the Selaha, Yalahe and Zheduotang faults. In this paper we use precise dating together with precise field measurements of offsets to re-estimate the slip rate of the fault that was suggested without precise age constraints. We studied three sites where the active Selaha fault cuts and left-laterally offsets moraine crests and levees. We measured horizontal offsets of 96 ± 20 m at Tagong levees (TG), 240 ± 15 m at Selaha moraine (SLH) and 80 ± 5 m at Yangjiagou moraine (YJG). Using 10Be cosmogenic dating, we determined abandonment ages at Tagong, Selaha and Yangjiagou of 12.5 (+ 2.5 / - 2.2) ka, 22 ± 2 ka, and 18 ± 2 ka, respectively. By matching the emplacement age of the moraines or levees with their offsets, we obtain late Quaternary horizontal average slip-rates of 7.6 (+ 2.3 / - 1.9) mm/yr at TG and 10.7 (+ 1.3 / - 1.1) mm/yr at SLH, i.e., 5.7-12 mm/yr or between 9.6 and 9.9 mm/yr assuming that the slip rate should be constant between the nearby TG and SLH sites. At YJG, we obtain a lower slip rate of 4.4 ± 0.5 mm/yr, most likely because the parallel Zheduotang fault shares the slip rate at this longitude, therefore suggesting a ∼5 mm/yr slip rate along the Zheduotang fault. The ∼10 mm/yr late Quaternary rate along the Xianshuihe fault is higher than that along the Ganzi fault to the NW (6-8 mm/yr). This appears to be linked to the existence of the Longriba fault system that separates the Longmenshan and Bayan Har blocks north of the Xianshuihe fault system. A higher slip rate along the short (∼60 km) and discontinuous Selaha fault compared to that along the long (∼300 km) and linear Ganzi fault suggests a high hazard for a M > 6 earthquake in the Kangding area in the near future, which could devastate that densely populated city.
Map and data for Quaternary faults and folds in New Mexico
Machette, M.N.; Personius, S.F.; Kelson, K.I.; Haller, K.M.; Dart, R.L.
1998-01-01
The "World Map of Major Active Faults" Task Group is compiling a series of digital maps for the United States and other countries in the Western Hemisphere that show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds; the companion database includes published information on these seismogenic features. The Western Hemisphere effort is sponsored by International Lithosphere Program (ILP) Task Group H-2, whereas the effort to compile a new map and database for the United States is funded by the Earthquake Reduction Program (ERP) through the U.S. Geological Survey. The maps and accompanying databases represent a key contribution to the new Global Seismic Hazards Assessment Program (ILP Task Group II-O) for the International Decade for Natural Disaster Reduction. This compilation, which describes evidence for surface faulting and folding in New Mexico, is the third of many similar State and regional compilations that are planned for the U.S. The compilation for West Texas is available as U.S. Geological Survey Open-File Report 96-002 (Collins and others, 1996 #993) and the compilation for Montana will be released as a Montana Bureau of Mines product (Haller and others, in press #1750).
Computing quantum hashing in the model of quantum branching programs
NASA Astrophysics Data System (ADS)
Ablayev, Farid; Ablayev, Marat; Vasiliev, Alexander
2018-02-01
We investigate the branching program complexity of quantum hashing. We consider a quantum hash function that maps elements of a finite field into quantum states. We require that this function is preimage-resistant and collision-resistant. We consider two complexity measures for Quantum Branching Programs (QBP): a number of qubits and a number of compu-tational steps. We show that the quantum hash function can be computed efficiently. Moreover, we prove that such QBP construction is optimal. That is, we prove lower bounds that match the constructed quantum hash function computation.
Laboratory scale micro-seismic monitoring of rock faulting and injection-induced fault reactivation
NASA Astrophysics Data System (ADS)
Sarout, J.; Dautriat, J.; Esteban, L.; Lumley, D. E.; King, A.
2017-12-01
The South West Hub CCS project in Western Australia aims to evaluate the feasibility and impact of geosequestration of CO2 in the Lesueur sandstone formation. Part of this evaluation focuses on the feasibility and design of a robust passive seismic monitoring array. Micro-seismicity monitoring can be used to image the injected CO2plume, or any geomechanical fracture/fault activity; and thus serve as an early warning system by measuring low-level (unfelt) seismicity that may precede potentially larger (felt) earthquakes. This paper describes laboratory deformation experiments replicating typical field scenarios of fluid injection in faulted reservoirs. Two pairs of cylindrical core specimens were recovered from the Harvey-1 well at depths of 1924 m and 2508 m. In each specimen a fault is first generated at the in situ stress, pore pressure and temperature by increasing the vertical stress beyond the peak in a triaxial stress vessel at CSIRO's Geomechanics & Geophysics Lab. The faulted specimen is then stabilized by decreasing the vertical stress. The freshly formed fault is subsequently reactivated by brine injection and increase of the pore pressure until slip occurs again. This second slip event is then controlled in displacement and allowed to develop for a few millimeters. The micro-seismic (MS) response of the rock during the initial fracturing and subsequent reactivation is monitored using an array of 16 ultrasonic sensors attached to the specimen's surface. The recorded MS events are relocated in space and time, and correlate well with the 3D X-ray CT images of the specimen obtained post-mortem. The time evolution of the structural changes induced within the triaxial stress vessel is therefore reliably inferred. The recorded MS activity shows that, as expected, the increase of the vertical stress beyond the peak led to an inclined shear fault. The injection of fluid and the resulting increase in pore pressure led first to a reactivation of the pre-existing fault. However, with increasing slip, a second conjugate fault progressively appeared, which ultimately accommodated all of the imposed vertical displacement. The inferred structural changes resemble fault branching and dynamic slip transfer processes seen in large-scale geology. This project was funded by the ANLEC R&D in partnership with the WA Government.
FaultLab: Results on the crustal structure of the North Anatolian Fault from a dense seismic network
NASA Astrophysics Data System (ADS)
Thompson, David; Rost, Sebastian; Houseman, Greg; Cornwell, David; Türkelli, Niyazi; Uǧur, Teoman, Kahraman, Metin; Altuncu Poyraz, Selda; Gülen, Levent; Utkucu, Murat; Frederiksen, Andrew
2013-04-01
The North Anatolian Fault Zone (NAFZ) is a major continental strike-slip fault system, similar in size and scale to the San Andreas system, that extends ~1200 km across Turkey from the Aegean coast on the west to the Lake Van region in the east. FaultLab is a multidisciplinary project that aims to better understand deformation throughout the entire crust in the NAFZ, in particular the expected transition from narrow zones of brittle deformation in the upper crust to broad shear zones in the lower crust/upper mantle and how these features contribute to the earthquake loading cycle. The project incorporates broadband seismology, satellite geodesy, structural geology and numerical modelling in order to give an unprecedented view of the dynamic state of the NAFZ in the vicinity of the devastating 1999 Izmit and Düzce earthquakes. This contribution will discuss the first results from the seismic component of the project, a 73 station network encompassing the northern and southern branches of the NAFZ in the Sakarya region. Deployed in May 2012, the Dense Array for North Anatolia (DANA) is arranged as a 6×11 grid with a nominal station spacing of 7 km, with a further 7 stations located outside of the grid. Receiver function analysis will provide estimates of bulk crustal properties, along with information regarding heterogeneity at depth (dipping interfaces/anisotropy). With the excellent resolution afforded by the DANA network, we will present results using the technique of teleseismic scattering tomography. The method uses a full waveform inversion of teleseismic signals coupled with array processing techniques to infer the properties and location of small-scale heterogeneities (with scales on the order of the seismic wavelength) within the crust. Images obtained using these methods will provide evidence for how the deformation is distributed within the fault zone at depth, providing constraints that can be used in conjunction with structural analyses of exhumed fault segments elsewhere, and models of geodetic strain-rate across the fault system. By linking together results from the complementary techniques being employed in the FaultLab project, we aim to produce a comprehensive picture of fault structure and dynamics throughout the crust and shallow upper mantle of this major active fault zone.
Development of N-version software samples for an experiment in software fault tolerance
NASA Technical Reports Server (NTRS)
Lauterbach, L.
1987-01-01
The report documents the task planning and software development phases of an effort to obtain twenty versions of code independently designed and developed from a common specification. These versions were created for use in future experiments in software fault tolerance, in continuation of the experimental series underway at the Systems Validation Methods Branch (SVMB) at NASA Langley Research Center. The 20 versions were developed under controlled conditions at four U.S. universities, by 20 teams of two researchers each. The versions process raw data from a modified Redundant Strapped Down Inertial Measurement Unit (RSDIMU). The specifications, and over 200 questions submitted by the developers concerning the specifications, are included as appendices to this report. Design documents, and design and code walkthrough reports for each version, were also obtained in this task for use in future studies.
Faulting, damage, and intensity in the Canyondam earthquake of May 23, 2013
Chapman, K.; Gold, M.B.; Boatwright, John; Sipe, J.; Quitoriano, V.; Dreger, D.; Hardebeck, Jeanne
2016-09-23
On Thursday evening, May 23, 2013 (0347 May 24 UTC), a moment magnitude (Mw) = 5.7 earthquake occurred northeast of Canyondam, California. A two-person team of U.S. Geological Survey scientists went to the area to search for surface rupture and to canvass damage in the communities around Lake Almanor. While the causative fault had not been identified at the time of the field survey, surface rupture was expected to have occurred just south of Lake Almanor, approximately 2–4 kilometers south of the epicenter. No surface rupture was discovered. Felt intensity among the communities around Lake Almanor appeared to vary significantly. Lake Almanor West (LAW), Lake Almanor Country Club (LACC), and Hamilton Branch (HB) experienced Modified Mercalli Intensity (MMI) ≥7, whereas other communities around the lake experienced MMI ≤6; the maximum observed intensity was MMI 8, in LAW. Damage in the high intensity areas consisted of broken and collapsed chimneys, ruptured pipes, and some damage to foundations and to structural elements within houses. Although this shaking damage is not usually expected for an Mw 5.7 earthquake, the intensities at Lake Almanor Country Club correlate with the peak ground acceleration (38 percent g) and peak ground velocity (30 centimeters per second) recorded by the California Strong Motion Instrumentation Program accelerometer located at the nearby Lake Almanor Fire Station. The intensity distribution for the three hardest hit areas (LAW, LACC, and HB) appears to increase as the azimuth from epicenter to the intensity sites approaches the fault strike. The small communities of Almanor and Prattville on the southwestern shore of Lake Almanor experienced somewhat lower intensities. The town of Canyondam experienced a lower intensity as well, despite its location up-dip of the earthquake rupture. This report contains information on the earthquake itself, the search for surface rupture, and the damage we observed and compiled from other sources.
Towards "realistic" fault zones in a 3D structure model of the Thuringian Basin, Germany
NASA Astrophysics Data System (ADS)
Kley, J.; Malz, A.; Donndorf, S.; Fischer, T.; Zehner, B.
2012-04-01
3D computer models of geological architecture are evolving into a standard tool for visualization and analysis. Such models typically comprise the bounding surfaces of stratigraphic layers and faults. Faults affect the continuity of aquifers and can themselves act as fluid conduits or barriers. This is one reason why a "realistic" representation of faults in 3D models is desirable. Still so, many existing models treat faults in a simplistic fashion, e.g. as vertical downward projections of fault traces observed at the surface. Besides being geologically and mechanically unreasonable, this also causes technical difficulties in the modelling workflow. Most natural faults are inclined and may change dips according to rock type or flatten into mechanically weak layers. Boreholes located close to a fault can therefore cross it at depth, resulting in stratigraphic control points allocated to the wrong block. Also, faults tend to split up into several branches, forming fault zones. Obtaining a more accurate representation of faults and fault zones is therefore challenging. We present work-in-progress from the Thuringian Basin in central Germany. The fault zone geometries are never fully constrained by data and must be extrapolated to depth. We use balancing of serial, parallel cross-sections to constrain subsurface extrapolations. The structure sections are checked for consistency by restoring them to an undeformed state. If this is possible without producing gaps or overlaps, the interpretation is considered valid (but not unique) for a single cross-section. Additional constraints are provided by comparison of adjacent cross-sections. Structures should change continuously from one section to another. Also, from the deformed and restored cross-sections we can measure the strain incurred during deformation. Strain should be compatible among the cross-sections: If at all, it should vary smoothly and systematically along a given fault zone. The stratigraphic contacts and faults in the resulting grid of parallel balanced sections are then interpolated into a gOcad model containing stratigraphic boundaries and faults as triangulated surfaces. The interpolation is also controlled by borehole data located off the sections and the surface traces of stratigraphic boundaries. We have written customized scripts to largely automatize this step, with particular attention to a seamless fit between stratigraphic surfaces and fault planes which share the same nodes and segments along their contacts. Additional attention was paid to the creation of a uniform triangulated grid with maximized angles. This ensures that uniform triangulated volumes can be created for further use in numerical flow modelling. An as yet unsolved problem is the implementation of the fault zones and their hydraulic properties in a large-scale model of the entire basin. Short-wavelength folds and subsidiary faults control which aquifers and seals are juxtaposed across the fault zones. It is impossible to include these structures in the regional model, but neglecting them would result in incorrect assessments of hydraulic links or barriers. We presently plan to test and calibrate the hydraulic properties of the fault zones in smaller, high-resolution models and then to implement geometrically simple "equivalent" fault zones with appropriate, variable transmissivities between specific aquifers.
Modelling earthquake ruptures with dynamic off-fault damage
NASA Astrophysics Data System (ADS)
Okubo, Kurama; Bhat, Harsha S.; Klinger, Yann; Rougier, Esteban
2017-04-01
Earthquake rupture modelling has been developed for producing scenario earthquakes. This includes understanding the source mechanisms and estimating far-field ground motion with given a priori constraints like fault geometry, constitutive law of the medium and friction law operating on the fault. It is necessary to consider all of the above complexities of a fault systems to conduct realistic earthquake rupture modelling. In addition to the complexity of the fault geometry in nature, coseismic off-fault damage, which is observed by a variety of geological and seismological methods, plays a considerable role on the resultant ground motion and its spectrum compared to a model with simple planer fault surrounded by purely elastic media. Ideally all of these complexities should be considered in earthquake modelling. State of the art techniques developed so far, however, cannot treat all of them simultaneously due to a variety of computational restrictions. Therefore, we adopt the combined finite-discrete element method (FDEM), which can effectively deal with pre-existing complex fault geometry such as fault branches and kinks and can describe coseismic off-fault damage generated during the dynamic rupture. The advantage of FDEM is that it can handle a wide range of length scales, from metric to kilometric scale, corresponding to the off-fault damage and complex fault geometry respectively. We used the FDEM-based software tool called HOSSedu (Hybrid Optimization Software Suite - Educational Version) for the earthquake rupture modelling, which was developed by Los Alamos National Laboratory. We firstly conducted the cross-validation of this new methodology against other conventional numerical schemes such as the finite difference method (FDM), the spectral element method (SEM) and the boundary integral equation method (BIEM), to evaluate the accuracy with various element sizes and artificial viscous damping values. We demonstrate the capability of the FDEM tool for modelling earthquake ruptures. We then modelled earthquake ruptures allowing for coseismic off-fault damage with appropriate fracture nucleation and growth criteria. We studied the effect of different conditions such as rupture speed (sub-Rayleigh or supershear), the orientation of the initial maximum principal stress with respect to the fault and the magnitude of the initial stress (to mimic depth). The comparison between the sub-Rayleigh and supershear case shows that the coseismic off-fault damage is enhanced in the supershear case when compared with the sub-Rayleigh case. The orientation of the maximum principal stress also has significant difference such that the dynamic off-fault cracking is more likely to occur on the extensional side of the fault for high principal stress orientation. It is found that the coseismic off-fault damage reduces the rupture speed due to the dissipation of the energy by dynamic off-fault cracking generated in the vicinity of the rupture front. In terms of the ground motion amplitude spectra it is shown that the high-frequency radiation is enhanced by the coseismic off-fault damage though it is quickly attenuated. This is caused by the intricate superposition of the radiation generated by the off-fault damage and the perturbation of the rupture speed on the main fault.
NASA Astrophysics Data System (ADS)
Sielfeld, G.; Lange, D.; Cembrano, J. M.
2017-12-01
Intra-arc crustal seismicity documents the schizosphere tectonic state along active magmatic arcs. At oblique-convergent margins, a significant portion of bulk transpressional deformation is accommodated in intra-arc regions, as a consequence of stress and strain partitioning. Simultaneously, crustal fluid migration mechanisms may be controlled by the geometry and kinematics of crustal high strain domains. In such domains shallow earthquakes have been associated with either margin-parallel strike-slip faults or to volcano-tectonic activity. However, very little is known on the nature and kinematics of Southern Andes intra-arc crustal seismicity and its relation with crustal faults. Here we present results of a passive seismicity study based on 16 months of data collected from 33 seismometers deployed along the intra-arc region of Southern Andes between 38˚S and 40˚S. This region is characterized by a long-lived interplay among margin-parallel strike-slip faults (Liquiñe-Ofqui Fault System, LOFS), second order Andean-transverse-faults (ATF), volcanism and hydrothermal activity. Seismic signals recorded by our network document small magnitude (0.2P and 2,796 S phase arrival times have been located with NonLinLoc. First arrival polarities and amplitude ratios of well-constrained events, were used for focal mechanism inversion. Local seismicity occurs at shallow levels down to depth of ca. 16 km, associated either with stratovolcanoes or to master, N10˚E, and subsidiary, NE to ENE, striking branches of the LOFS. Strike-slip focal mechanisms are consistent with the long-term kinematics documented by field structural-geology studies. Unexpected, well-defined NW-SE elongated clusters are also reported. In particular, a 72-hour-long, N60˚W-oriented seismicity swarm took place at Caburgua Lake area, describing a ca. 36x12x1km3 faulting crustal volume. Results imply a unique snapshot on shallow crustal tectonics, contributing to the understanding of faulting processes in volcanic arcs and ultimately, providing useful knowledge to improve the quality of hazard assessment communities emplaced in Southern Andes volcanic arc.
NASA Astrophysics Data System (ADS)
Victor, Pia; Ewiak, Oktawian; Thomas, Ziegenhagen; Monika, Sobiesiak; Bernd, Schurr; Gabriel, Gonzalez; Onno, Oncken
2016-04-01
The Atacama Fault System (AFS) is an active trench-parallel fault system, located in the forearc of N-Chile directly above the subduction zone interface. Due to its well-exposed position in the hyper arid forearc of N-Chile it is the perfect target to investigate the interaction between the deformation cycle in the overriding forearc and the subduction zone seismic cycle of the underlying megathrust. Although the AFS and large parts of the upper crust are devoid of any noteworthy seismicity, at least three M=7 earthquakes in the past 10 ky have been documented in the paleoseismological record, demonstrating the potential of large events in the future. We apply a two-fold approach to explore fault activation and reactivation patterns through time and to investigate the triggering potential of upper crustal faults. 1) A new methodology using high-resolution topographic data allows us to investigate the number of past earthquakes for any given segment of the fault system as well as the amount of vertical displacement of the last increment. This provides us with a detailed dataset of past earthquake rupture of upper plate faults which is potentially linked to large subduction zone earthquakes. 2) The IPOC Creepmeter array (http://www.ipoc-network.org/index.php/observatory/creepmeter.html) provides us with high-resolution time series of fault displacement accumulation for 11 stations along the 4 most active branches of the AFS. This array monitors the displacement across the fault with 2 samples/min with a resolution of 1μm. Collocated seismometers record the seismicity at two of the creepmeters, whereas the regional seismicity is provided by the IPOC Seismological Networks. Continuous time series of the creepmeter stations since 2009 show that the shallow segments of the fault do not creep permanently. Instead the accumulation of permanent deformation occurs by triggered slip caused by local or remote earthquakes. The 2014 Mw=8.2 Pisagua Earthquake, located close to the creepmeter array, triggered large displacement events on all stations. Another event recorded on all stations was the 2010 Mw=8.8 Maule earthquake located 1500km south of the array. Exploring observations from both datasets, we can clearly state that triggering of upper crustal faults is observed for small-scale displacements. These findings allow us to speculate that the observed larger events in the past are likely being triggered events that require a critically prestressed condition of the target fault that is unclamped by stress changes triggered by large or potentially even small subduction zone earthquakes.
Technical know-how relevant to planning of borehole investigation for fault characterization
NASA Astrophysics Data System (ADS)
Mizuno, T.; Takeuchi, R.; Tsuruta, T.; Matsuoka, T.; Kunimaru, T.; Saegusa, H.
2011-12-01
As part of the national R&D program for geological disposal of high-level radioactive waste (HLW), the broad scientific study of the deep geological environment, JAEA has established the Mizunami Underground Research Laboratory (MIU) in Central Japan as a generic underground research laboratory (URL) facility. The MIU Project focuses on the crystalline rocks. In the case of fractured rock, a fault is one of the major discontinuity structures which control the groundwater flow conditions. It is important to estimate geological, hydrogeological, hydrochemical and rock mechanical characteristics of faults, and then to evaluate its role in the engineering design of repository and the assessment of long-term safety of HLW disposal. Therefore, investigations for fault characterization have been performed to estimate its characteristics and to evaluate existing conceptual and/or numerical models of the geological environment in the MIU project. Investigations related to faults have been conducted based on the conventional concept that a fault consists of a "fault core (FC)" characterized by distribution of the faulted rocks and a "fractured zone (FZ)" along FC. With the progress of investigations, furthermore, it is clear that there is also a case in which an "altered zone (AZ)" characterized by alteration of host rocks to clay minerals can be developed around the FC. Intensity of alteration in AZ generally decreases with distance from the FC, and AZ transits to FZ. Therefore, the investigation program focusing on properties of AZ is required for revising the existing conceptual and/or numerical models of geological environment. In this study, procedures for planning of fault characterizations have been summarized based on the technical know-how learnt through the MIU Project for the development of Knowledge Management System performed by JAEA under a contract with the Ministry of Economy, Trade and Industry as part of its R&D supporting program for developing geological disposal technology in 2010. Taking into account the experience from the fault characterization in the MIU Project, an optimization procedure for investigation program is summarized as follows; 1) Definition of investigation aim, 2) Confirmation of current understanding of the geological environment, 3) Specification and prioritization of the data to be obtained 4) Selection of the methodology for obtaining the data, 5) Specification of sequence of the investigations, and 6) Establishment of drilling and casing program including optional cases and taking into account potential problems. Several geological conceptual models with uncertainty of geological structures were illustrated to define the investigation aim and to confirm the current uncertainties. These models were also available to establish optional cases by predicting the type and location of potential problems. The procedures and case study related to establishment of the investigation program are summarized in this study and can be available for site characterization works conducted by the implementing body (NUMO) in future candidate areas.
Havens: Explicit Reliable Memory Regions for HPC Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hukerikar, Saurabh; Engelmann, Christian
2016-01-01
Supporting error resilience in future exascale-class supercomputing systems is a critical challenge. Due to transistor scaling trends and increasing memory density, scientific simulations are expected to experience more interruptions caused by transient errors in the system memory. Existing hardware-based detection and recovery techniques will be inadequate to manage the presence of high memory fault rates. In this paper we propose a partial memory protection scheme based on region-based memory management. We define the concept of regions called havens that provide fault protection for program objects. We provide reliability for the regions through a software-based parity protection mechanism. Our approach enablesmore » critical program objects to be placed in these havens. The fault coverage provided by our approach is application agnostic, unlike algorithm-based fault tolerance techniques.« less
Postobductional extension along and within the Frontal Range of the Eastern Oman Mountains
NASA Astrophysics Data System (ADS)
Mattern, Frank; Scharf, Andreas
2018-04-01
The Oman Mountains formed by late Cretaceous obduction of the Tethys-derived Semail Ophiolite. This study concerns the postobductional extension on the northern flank of the mountain belt. Nine sites at the northern margins of the Jabal Akhdar/Nakhl and Saih Hatat domes of the Eastern Oman ("Hajar") Mountains were investigated. The northern margins are marked by a system of major interconnected extensional faults, the "Frontal Range Fault". While the vertical displacements along the Saih Hatat and westerly located Jabal Nakhl domes measure 2.25-6.25 km, 0.5-4.5 km and 4-7 km, respectively, it amounts to 1-5 km along the Jabal Akhdar Dome. Extension had started during the late Cretaceous, towards the end of ophiolite emplacement. Two stages of extension can be ascertained (late Cretaceous to early Eocene and probably Oligocene) at the eastern part of the Frontal Range Fault System (Wadi Kabir and Fanja Graben faults of similar strike). Along the intervening and differently striking fault segments at Sad and Sunub the same two stages of deformation are deduced. The first stage is characterized again by extension. The second stage is marked by dextral motion, including local transtension. Probable Oligocene extension affected the Batinah Coast Fault while it also affected the Wadi Kabir Fault and the Fanja Graben. It is unclear whether the western portion of the Frontal Range Fault also went through two stages of deformation. Bedding-parallel ductile and brittle deformation is a common phenomenon. Hot springs and listwaenite are associated with dextral releasing bends within the fault system, as well as a basalt intrusion of probable Oligocene age. A structural transect through the Frontal Range along the superbly exposed Wadi Bani Kharous (Jabal Akhdar Dome) revealed that extension affected the Frontal Range at least 2.5 km south of the Frontal Range Fault. Also here, bedding-parallel shearing is important, but not exclusive. A late Cretaceous thrust was extensionally reactivated by a branch fault of the Frontal Range Fault. Extension may be ductile (limestone mylonites), ductile and brittle (ooid deformation, boudinaged belemnite rostra, shear bands) or brittle. Extension is heterogeneously distributed within the Frontal Range. Extension is mainly related to orogenic/gravitational collapse of the Oman Mountains. Collapse may have been associated with isostatic rebound and rise of the two domes. In the western part of the study area, the Frontal Range Fault has a listric morphology. It is probably horizontal at a depth of 15 km below the Batinah coastal area. The fault seems to use the clay- and tuff-bearing Aruma Group as shear horizon. The depth of 15 km may coincide with the brittle-ductile transition of quartz- and feldspar-rich rocks. Close to this depth, the listric Batinah Coast Fault curves into the Frontal Range Fault. Extension along the Frontal Range and Batinah Coast faults probably reactivated preexisting late Cretaceous thrust faults during post-late Eocene time. The latter fault is likely mechanically related to the Wadi Kabir Fault via the Fanja Graben Fault and the Sunub fault segment. Listwaenite and serpentinite cluster preferably around the extensional faults. The Semail Gap probably functioned as a sinistral transform fault or fault zone during the Permian.
Advanced information processing system: Fault injection study and results
NASA Technical Reports Server (NTRS)
Burkhardt, Laura F.; Masotto, Thomas K.; Lala, Jaynarayan H.
1992-01-01
The objective of the AIPS program is to achieve a validated fault tolerant distributed computer system. The goals of the AIPS fault injection study were: (1) to present the fault injection study components addressing the AIPS validation objective; (2) to obtain feedback for fault removal from the design implementation; (3) to obtain statistical data regarding fault detection, isolation, and reconfiguration responses; and (4) to obtain data regarding the effects of faults on system performance. The parameters are described that must be varied to create a comprehensive set of fault injection tests, the subset of test cases selected, the test case measurements, and the test case execution. Both pin level hardware faults using a hardware fault injector and software injected memory mutations were used to test the system. An overview is provided of the hardware fault injector and the associated software used to carry out the experiments. Detailed specifications are given of fault and test results for the I/O Network and the AIPS Fault Tolerant Processor, respectively. The results are summarized and conclusions are given.
New Madrid Seismotectonic Study: activities during fiscal year 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buschbach, T.C.
1985-04-01
The New Madrid Seismotectonic Study is a coordinated program of geological, geophysical, and seismological investigations of the area within a 200-mile radius of New Madrid, Missouri. The study is designed to define the structural setting and tectonic history of the area in order to realistically evaluate earthquake risks in the siting of nuclear facilities. Our studies concentrated on defining boundaries of a proposed rift complex in the area, as well as establishing the relationships of the east-west trending fault systems with the northwest-trending faults of the Wabash Valley and New Madrid areas. There were 204 earthquakes located in 1983. Inmore » addition, the earthquake swarm in north-central Arkansas continued throughout the year, and 45,000 earthquakes have been recorded there since January, 1982. Current seismic activity in the Anna, Ohio, area appears to be related to the northwest-trending Fort Wayne rift and possibly with the rift's contact with a low-density pluton. Fault studies of the Rough Creek-Shawneetown Fault System showed mostly high-angle normal faults with a master fault that is a high-angle south-dipping reverse fault. Trenching of terrace deposits along the Kentucky River Fault System confirmed some anomalous conditions in terrace deposits previously indicated by electrical resistivity and augering programs. Thermal and chemical data from groundwater in the Mississippi Embayment appear to be useful in localizing deep faults that cut through the aquifers. Early indications from studies of jointing in Indiana are that the direction of major joint sets will be useful in determining regional stress directions. No Quaternary faulting was found in the Indiana or Illinois fault studies.« less
Holocene earthquakes of magnitude 7 during westward escape of the Olympic Mountains, Washington
Nelson, Alan R.; Personius, Stephen; Wells, Ray; Schermer, Elizabeth R.; Bradley, Lee-Ann; Buck, Jason; Reitman, Nadine G.
2017-01-01
The Lake Creek–Boundary Creek fault, previously mapped in Miocene bedrock as an oblique thrust on the north flank of the Olympic Mountains, poses a significant earthquake hazard. Mapping using 2015 light detection and ranging (lidar) confirms 2004 lidar mapping of postglacial (<13 ka"><13 ka) and Holocene fault scarps along the 22‐km‐long eastern section of the fault and documents Holocene scarps that extend ≥14 km">≥14 km along a splay fault, the Sadie Creek fault, west of Lake Crescent. Scarp morphology suggests repeated earthquake ruptures along the eastern section of the Lake Creek–Boundary Creek fault and the Sadie Creek fault since ∼13 ka">∼13 ka. Right‐lateral (∼11–28 m">∼11–28 m) and vertical (1–2 m) cumulative fault offsets suggest slip rates of ∼1–2 mm/yr">∼1–2 mm/yr Stratigraphic and age‐model data from five trenches perpendicular to scarps at four sites on the eastern section of the fault show evidence of 3–5 surface‐rupturing earthquakes. Near‐vertical fault dips and upward‐branching fault patterns in trenches, abrupt changes in the thickness of stratigraphic units across faults, and variations in vertical displacement of successive stratigraphic units along fault traces also suggest a large lateral component of slip. Age models suggest two earthquakes date from 1.3±0.8">1.3±0.8 and 2.9±0.6 ka">2.9±0.6 ka; evidence and ages for 2–3 earlier earthquakes are less certain. Assuming 3–5 postglacial earthquakes, lateral and vertical cumulative fault offsets yield average slip per earthquake of ∼4.6 m">∼4.6 m, a lateral‐to‐vertical slip ratio of ∼10:1">∼10:1, and a recurrence interval of 3.5±1.0 ka">3.5±1.0 ka. Empirical relations yield moment magnitude estimates of M 7.2–7.5 (slip per earthquake) and 7.1–7.3 (56 km maximum rupture length). An apparent left‐lateral Miocene to right‐lateral Holocene slip reversal on the faults is probably related to overprinting of east‐directed, accretion‐dominated deformation in the eastern core of the Olympic Mountains by north‐directed, margin‐parallel shortening and westward escape of the mountains.
NASA Astrophysics Data System (ADS)
Martha, Tapas R.; Jain, Nirmala; Vamshi, Gasiganti T.; Vinod Kumar, K.
2017-11-01
This study shows results of morphological and spectroscopic analyses of Ius Chasma and its southern branched valleys using Orbiter datasets such as Mars Reconnaissance Orbiter (MRO)-Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), High Resolution Imaging Science Experiment (MRO-HiRISE) and digital terrain model (HRSC-DTM). Result of the spectral analysis reveals presence of hydrated minerals such as opal, nontronite and vermiculite in the floor and wall rock areas Ius Chasma indicating alteration of parent rock in an water rich environment of early Mars. Topographic gradient and morphological evidences such as V-shaped valleys with theatre shaped stubby channels, dendritic drainage and river piracy indicate that these valleys were initially developed by surface runoff due to episodic floods and further expanded due to groundwater sapping controlled by faults and fractures. Minerals formed by aqueous alteration during valley formation and their intricate association with different morphological domains suggest that surface runoff played a key role in the development of branched valleys south of Ius Chasma on Mars.
Fault detection and accommodation testing on an F100 engine in an F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, L. P.; Baer-Riedhart, J. L.; Maxwell, M. D.
1985-01-01
The fault detection and accommodation (FDA) methodology for digital engine-control systems may range from simple comparisons of redundant parameters to the more complex and sophisticated observer models of the entire engine system. Evaluations of the various FDA schemes are done using analytical methods, simulation, and limited-altitude-facility testing. Flight testing of the FDA logic has been minimal because of the difficulty of inducing realistic faults in flight. A flight program was conducted to evaluate the fault detection and accommodation capability of a digital electronic engine control in an F-15 aircraft. The objective of the flight program was to induce selected faults and evaluate the resulting actions of the digital engine controller. Comparisons were made between the flight results and predictions. Several anomalies were found in flight and during the ground test. Simulation results showed that the inducement of dual pressure failures was not feasible since the FDA logic was not designed to accommodate these types of failures.
NASA Astrophysics Data System (ADS)
Falcucci, E.; Gori, S.; Moro, M.; Fubelli, G.; Saroli, M.; Chiarabba, C.; Galadini, F.
2015-05-01
We investigate the Middle Aterno Valley fault system (MAVF), a poorly investigated seismic gap in the central Apennines, adjacent to the 2009 L'Aquila earthquake epicentral area. Geological and paleoseismological analyses revealed that the MAVF evolved through hanging wall splay nucleation, its main segment moving at 0.23-0.34 mm/year since the Middle Pleistocene; the penultimate activation event occurred between 5388-5310 B.C. and 1934-1744 B.C., the last event after 2036-1768 B.C. and just before 1st-2nd century AD. These data define hard linkage (sensu Walsh and Watterson, 1991; Peacock et al., 2000; Walsh et al., 2003, and references therein) with the contiguous Subequana Valley fault segment, able to rupture in large magnitude earthquakes (up to 6.8), that did not rupture since about two millennia. By the joint analysis of geological observations and seismological data acquired during to the 2009 seismic sequence, we derive a picture of the complex structural framework of the area comprised between the MAVF, the Paganica fault (the 2009 earthquake causative fault) and the Gran Sasso Range. This sector is affected by a dense array of few-km long, closely and regularly spaced Quaternary normal fault strands, that are considered as branches of the MAVF northern segment. Our analysis reveals that these structures are downdip confined by a decollement represented by to the presently inactive thrust sheet above the Gran Sasso front limiting their seismogenic potential. Our study highlights the advantage of combining Quaternary geological field analysis with high resolution seismological data to fully unravel the structural setting of regions where subsequent tectonic phases took place and where structural interference plays a key role in influencing the seismotectonic context; this has also inevitably implications for accurately assessing seismic hazard of such structurally complex regions.
Growth and gravitational collapse of a mountain front of the Eastern Cordillera of Colombia
NASA Astrophysics Data System (ADS)
Kammer, Andreas; Montana, Jorge; Piraquive, Alejandro
2016-04-01
The Eastern Cordillera of Colombia is bracketed between the moderately east-dipping flank of the Central Cordillera on its western and the gently bent Guayana shield on its eastern side. It evolved as a response to a considerable displacement transfer from the Nazca to the Southamerican plate since the Oligocene break-up of the Farallon plate. One of its distinctive traits refers to its significant shortening by penetrative strain at lower and folding at higher structural levels, approximating a wholesale pure-shear in analogy to a vice model or a crustal welt sandwiched between rigid buttresses. This contrasting behavior may be explained by the spatial coincidence between Neogene mountain belt and a forebulge that shaped the foreland trough during a Cretaceous subduction cycle and was very effective in localizing a weakening of the backarc region comprised between two basin margin faults. In this paper we examine a two-phase evolution of the Eastern mountain front. Up to the late Miocene deformation was restrained by the inherited eastern basin margin fault and as the cordilleran crust extruded, a deformation front with an amplitude similar the present structural relief of up to 10.000 m may have built up. In the Pliocene convergence changed from a roughly strike-perpendicular to an oblique E-W direction and caused N-S trending faults to branch off from the deformation front. This shortening was partly driven by a gravitational collapse of the Miocene deformation front, that became fragmented by normal faults and extruded E on newly formed Pliocene thrust faults. Normal faults display displacements of up to 3000 m and channelized hydrothermal fluids, leading to the formation of widely distributed fault breccias and giving rise to a prolific Emerald mineralization. In terms of wedge dynamics, the Pliocene breaching of the early formed deformation front helped to establish a critical taper.
NASA Astrophysics Data System (ADS)
Li, Qi; Tan, Kai; Wang, Dong Zhen; Zhao, Bin; Zhang, Rui; Li, Yu; Qi, Yu Jie
2018-02-01
The spatio-temporal slip distribution of the earthquake that occurred on 8 August 2017 in Jiuzhaigou, China, was estimated from the teleseismic body wave and near-field Global Navigation Satellite System (GNSS) data (coseismic displacements and high-rate GPS data) based on a finite fault model. Compared with the inversion results from the teleseismic body waves, the near-field GNSS data can better restrain the rupture area, the maximum slip, the source time function, and the surface rupture. The results show that the maximum slip of the earthquake approaches 1.4 m, the scalar seismic moment is 8.0 × 1018 N·m (M w ≈ 6.5), and the centroid depth is 15 km. The slip is mainly driven by the left-lateral strike-slip and it is initially inferred that the seismogenic fault occurs in the south branch of the Tazang fault or an undetectable fault, a NW-trending left-lateral strike-slip fault, and belongs to one of the tail structures at the easternmost end of the eastern Kunlun fault zone. The earthquake rupture is mainly concentrated at depths of 5-15 km, which results in the complete rupture of the seismic gap left by the previous four earthquakes with magnitudes > 6.0 in 1973 and 1976. Therefore, the possibility of a strong aftershock on the Huya fault is low. The source duration is 30 s and there are two major ruptures. The main rupture occurs in the first 10 s, 4 s after the earthquake; the second rupture peak arrives in 17 s. In addition, the Coulomb stress study shows that the epicenter of the earthquake is located in the area where the static Coulomb stress change increased because of the 12 May 2017 M w7.9 Wenchuan, China, earthquake. Therefore, the Wenchuan earthquake promoted the occurrence of the 8 August 2017 Jiuzhaigou earthquake.
Major and micro seismo-volcanic crises in the Asal Rift, Djibouti
NASA Astrophysics Data System (ADS)
Peltzer, G.; Doubre, C.; Tomic, J.
2009-05-01
The Asal-Ghoubbet Rift is located on the eastern branch of the Afar triple junction between the Arabia, Somalia, and Nubia tectonic plates. The last major seismo-volcanic crisis on this segment occurred in November 1978, involving two earthquakes of mb=5+, a basaltic fissure eruption, the development of many open fissures across the rift and up to 80 cm of vertical slip on the bordering faults. Geodetic leveling revealed ~2 m of horizontal opening of the rift accompanied by ~70 cm of subsidence of the inner-floor, consistent with models of the elastic deformation produced by the injection of magma in a system of two dykes. InSAR data acquired at 24-day intervals during the last 12 years by the Canadian Radarsat satellite over the Asal Rift show that the two main faults activated in 1978 continue to slip with periods of steady creep at rates of 0.3-1.3 mm/yr, interrupted by sudden slip events of a few millimeters, in 2000 and 2003. Slip events are coincident with bursts of micro earthquakes distributed around and over the Fieale volcanic center in the eastern part of the Asal Rift. In both cases (the 1978 crisis and micro-slip events), the observed geodetic moment released by fault slip exceeds by a few orders of magnitude the total seismic moment released by earthquakes over the same period. Aseismic fault slip is likely to be the faults response to a changing stress field associated with a volcanic process and not due to dry friction on faults. Sustained injection of magma (1978 crisis) and/or crustal fluids (micro-slip events) in dykes and fissures is a plausible mechanism to control fluid pressure in the basal parts of faults and trigger aseismic slip. In this respect, the micro-events observed by InSAR during a 12-year period of low activity in the rift and the 1978 seismo-volcanic episode are of same nature.
NASA Astrophysics Data System (ADS)
Li, Qi; Tan, Kai; Wang, Dong Zhen; Zhao, Bin; Zhang, Rui; Li, Yu; Qi, Yu Jie
2018-05-01
The spatio-temporal slip distribution of the earthquake that occurred on 8 August 2017 in Jiuzhaigou, China, was estimated from the teleseismic body wave and near-field Global Navigation Satellite System (GNSS) data (coseismic displacements and high-rate GPS data) based on a finite fault model. Compared with the inversion results from the teleseismic body waves, the near-field GNSS data can better restrain the rupture area, the maximum slip, the source time function, and the surface rupture. The results show that the maximum slip of the earthquake approaches 1.4 m, the scalar seismic moment is 8.0 × 1018 N·m ( M w ≈ 6.5), and the centroid depth is 15 km. The slip is mainly driven by the left-lateral strike-slip and it is initially inferred that the seismogenic fault occurs in the south branch of the Tazang fault or an undetectable fault, a NW-trending left-lateral strike-slip fault, and belongs to one of the tail structures at the easternmost end of the eastern Kunlun fault zone. The earthquake rupture is mainly concentrated at depths of 5-15 km, which results in the complete rupture of the seismic gap left by the previous four earthquakes with magnitudes > 6.0 in 1973 and 1976. Therefore, the possibility of a strong aftershock on the Huya fault is low. The source duration is 30 s and there are two major ruptures. The main rupture occurs in the first 10 s, 4 s after the earthquake; the second rupture peak arrives in 17 s. In addition, the Coulomb stress study shows that the epicenter of the earthquake is located in the area where the static Coulomb stress change increased because of the 12 May 2017 M w7.9 Wenchuan, China, earthquake. Therefore, the Wenchuan earthquake promoted the occurrence of the 8 August 2017 Jiuzhaigou earthquake.
Fault tolerant architectures for integrated aircraft electronics systems, task 2
NASA Technical Reports Server (NTRS)
Levitt, K. N.; Melliar-Smith, P. M.; Schwartz, R. L.
1984-01-01
The architectural basis for an advanced fault tolerant on-board computer to succeed the current generation of fault tolerant computers is examined. The network error tolerant system architecture is studied with particular attention to intercluster configurations and communication protocols, and to refined reliability estimates. The diagnosis of faults, so that appropriate choices for reconfiguration can be made is discussed. The analysis relates particularly to the recognition of transient faults in a system with tasks at many levels of priority. The demand driven data-flow architecture, which appears to have possible application in fault tolerant systems is described and work investigating the feasibility of automatic generation of aircraft flight control programs from abstract specifications is reported.
Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada
Asch, Theodore H.; Sweetkind, Donald S.; Burton, Bethany L.; Wallin, Erin L.
2009-01-01
Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the integrated interpretations developed from the suite of geophysical methodologies utilized in this investigation. Data collection for this activity started in the spring of 2005 and continued into 2006. A suite of electrical geophysical surveys were run in combination with ground magnetic surveys; these surveys resulted in high-resolution subsurface data that portray subsurface fault geometry at the two sites and have identified structures not readily apparent from surface geologic mapping, potential field geophysical data, or surface effects fracture maps.
A longitudinal study of emotional intelligence in graduate nurse anesthesia students
Collins, Shawn; Andrejco, Kristin
2015-01-01
Objective: Emotional intelligence (EI) is an important component not only for success in the nurse anesthesia (NA) profession, but as a NA student as well. Using the ability-based EI model, the purpose of this was to examine the difference in EI between the first semester and last semester of NA training programs. Methods: First semester NA students completed the online Mayer-Salovey-Caruso Emotional Intelligence Test V2.0 EI instrument, and then the same students repeated the instrument in their last (7th) semester. Results: There was a statistically significant correlation between overall EI and long-term overall EI (P = 0.000), reasoning area and long-term reasoning area (P = 0.035), experiencing area (P = 0.000) and long-term experiencing area, perceiving branch and long-term perceiving branch (P = 0.000), using and long-term using branch (P = 0.000), and the managing branch and long-term managing branch (P = 0.026). The correlation between the understanding branch and the long-term understanding branch was not statistically significant (P < 0.157). The paired sample t-test demonstrated no statistically significant change (n = 34) in overall EI, the two areas scores, or the four-branch scores between the first semester and the last semester of a NA training program. Conclusions: This longitudinal study shows the lack of EI change in NA students over time. Thus, no change in EI occurs as a result of transitioning through a NA program based on the accrediting body's standardized curriculum, but the results helped the researcher provide useful data to inform future research on the use of EI measures as predictors of NA program success. PMID:27981095
NASA Technical Reports Server (NTRS)
Wood, M. E.
1980-01-01
Four wire Wye connected ac power systems exhibit peculiar steady state fault characteristics when the fourth wire of three phase induction motors is connected. The loss of one phase of power source due to a series or shunt fault results in currents higher than anticipated on the remaining two phases. A theoretical approach to compute the fault currents and voltages is developed. A FORTRAN program is included in the appendix.
Intermittent Granular Dynamics at a Seismogenic Plate Boundary.
Meroz, Yasmine; Meade, Brendan J
2017-09-29
Earthquakes at seismogenic plate boundaries are a response to the differential motions of tectonic blocks embedded within a geometrically complex network of branching and coalescing faults. Elastic strain is accumulated at a slow strain rate on the order of 10^{-15} s^{-1}, and released intermittently at intervals >100 yr, in the form of rapid (seconds to minutes) coseismic ruptures. The development of macroscopic models of quasistatic planar tectonic dynamics at these plate boundaries has remained challenging due to uncertainty with regard to the spatial and kinematic complexity of fault system behaviors. The characteristic length scale of kinematically distinct tectonic structures is particularly poorly constrained. Here, we analyze fluctuations in Global Positioning System observations of interseismic motion from the southern California plate boundary, identifying heavy-tailed scaling behavior. Namely, we show that, consistent with findings for slowly sheared granular media, the distribution of velocity fluctuations deviates from a Gaussian, exhibiting broad tails, and the correlation function decays as a stretched exponential. This suggests that the plate boundary can be understood as a densely packed granular medium, predicting a characteristic tectonic length scale of 91±20 km, here representing the characteristic size of tectonic blocks in the southern California fault network, and relating the characteristic duration and recurrence interval of earthquakes, with the observed sheared strain rate, and the nanosecond value for the crack tip evolution time scale. Within a granular description, fault and blocks systems may rapidly rearrange the distribution of forces within them, driving a mixture of transient and intermittent fault slip behaviors over tectonic time scales.
Intermittent Granular Dynamics at a Seismogenic Plate Boundary
NASA Astrophysics Data System (ADS)
Meroz, Yasmine; Meade, Brendan J.
2017-09-01
Earthquakes at seismogenic plate boundaries are a response to the differential motions of tectonic blocks embedded within a geometrically complex network of branching and coalescing faults. Elastic strain is accumulated at a slow strain rate on the order of 10-15 s-1 , and released intermittently at intervals >100 yr , in the form of rapid (seconds to minutes) coseismic ruptures. The development of macroscopic models of quasistatic planar tectonic dynamics at these plate boundaries has remained challenging due to uncertainty with regard to the spatial and kinematic complexity of fault system behaviors. The characteristic length scale of kinematically distinct tectonic structures is particularly poorly constrained. Here, we analyze fluctuations in Global Positioning System observations of interseismic motion from the southern California plate boundary, identifying heavy-tailed scaling behavior. Namely, we show that, consistent with findings for slowly sheared granular media, the distribution of velocity fluctuations deviates from a Gaussian, exhibiting broad tails, and the correlation function decays as a stretched exponential. This suggests that the plate boundary can be understood as a densely packed granular medium, predicting a characteristic tectonic length scale of 91 ±20 km , here representing the characteristic size of tectonic blocks in the southern California fault network, and relating the characteristic duration and recurrence interval of earthquakes, with the observed sheared strain rate, and the nanosecond value for the crack tip evolution time scale. Within a granular description, fault and blocks systems may rapidly rearrange the distribution of forces within them, driving a mixture of transient and intermittent fault slip behaviors over tectonic time scales.
NASA Astrophysics Data System (ADS)
Stefanou, I.; Rattez, H.; Sulem, J.
2017-12-01
Rapid shear tests of granulated fault gouges show pronounced rate-dependency. For this reason rate-dependent constitutive laws are frequently used for describing fault friction.Here we propose a micromechanical, physics-based continuum approach by considering the characteristic size of the microstructure and the thermal- and pore-pressure-diffusion mechanisms that take place in the fault gouge during rapid shearing. It is shown that even for rate-independent materials, the apparent, macroscopic behavior of the system is rate-dependent. This is due to the competition of the characteristic lengths and time scales introduced indirectly by the microstructure and the thermal and hydraulic diffusivities.Both weakening and shear band thickness are rate dependent, despite the fact that the constitutive description of the material was considered rate-independent. Moreover the size of the microstructure, which here is identified with the grain size of the fault gouge (D50), plays an important role in the slope of the softening branch of the shear stress-strain response curve and consequently in the transition from aseismic to seismic slip.References Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research, 84(B5), 2161. http://doi.org/10.1029/JB084iB05p02161 Scholz, C. H. (2002). The mechanics of earthquakes and faulting (Second). Cambridge. Sulem, J., & Stefanou, I. (2016). Thermal and chemical effects in shear and compaction bands. Geomechanics for Energy and the Environment, 6, 4-21. http://doi.org/10.1016/j.gete.2015.12.004
Liu-Zeng, J.; Zhang, Z.; Wen, L.; Tapponnier, P.; Sun, Jielun; Xing, X.; Hu, G.; Xu, Q.; Zeng, L.; Ding, L.; Ji, C.; Hudnut, K.W.; van der Woerd, J.
2009-01-01
The Ms 8.0, Wenchuan earthquake, which devastated the mountainous western rim of the Sichuan basin in central China, produced a surface rupture over 200??km-long with oblique thrust/dextral slip and maximum scarp heights of ~ 10??m. It thus ranks as one of the world's largest continental mega-thrust events in the last 150??yrs. Field investigation shows clear surface breaks along two of the main branches of the NE-trending Longmen Shan thrust fault system. The principal rupture, on the NW-dipping Beichuan fault, displays nearly equal amounts of thrust and right-lateral slip. Basin-ward of this rupture, another continuous surface break is observed for over 70??km on the parallel, more shallowly NW-dipping Pengguan fault. Slip on this latter fault was pure thrusting, with a maximum scarp height of ~ 3.5??m. This is one of the very few reported instances of crustal-scale co-seismic slip partitioning on parallel thrusts. This out-of-sequence event, with distributed surface breaks on crustal mega-thrusts, highlights regional, ~ EW-directed, present day crustal shortening oblique to the Longmen Shan margin of Tibet. The long rupture and large offsets with strong horizontal shortening that characterize the Wenchuan earthquake herald a re-evaluation of tectonic models anticipating little or no active shortening of the upper crust along this edge of the plateau, and require a re-assessment of seismic hazard along potentially under-rated active faults across the densely populated western Sichuan basin and mountains. ?? 2009 Elsevier B.V.
Care 3 phase 2 report, maintenance manual
NASA Technical Reports Server (NTRS)
Bryant, L. A.; Stiffler, J. J.
1982-01-01
CARE 3 (Computer-Aided Reliability Estimation, version three) is a computer program designed to help estimate the reliability of complex, redundant systems. Although the program can model a wide variety of redundant structures, it was developed specifically for fault-tolerant avionics systems--systems distinguished by the need for extremely reliable performance since a system failure could well result in the loss of human life. It substantially generalizes the class of redundant configurations that could be accommodated, and includes a coverage model to determine the various coverage probabilities as a function of the applicable fault recovery mechanisms (detection delay, diagnostic scheduling interval, isolation and recovery delay, etc.). CARE 3 further generalizes the class of system structures that can be modeled and greatly expands the coverage model to take into account such effects as intermittent and transient faults, latent faults, error propagation, etc.
Knowledge-based systems for power management
NASA Technical Reports Server (NTRS)
Lollar, L. F.
1992-01-01
NASA-Marshall's Electrical Power Branch has undertaken the development of expert systems in support of further advancements in electrical power system automation. Attention is given to the features (1) of the Fault Recovery and Management Expert System, (2) a resource scheduler or Master of Automated Expert Scheduling Through Resource Orchestration, and (3) an adaptive load-priority manager, or Load Priority List Management System. The characteristics of an advisory battery manager for the Hubble Space Telescope, designated the 'nickel-hydrogen expert system', are also noted.
Fault diagnostic instrumentation design for environmental control and life support systems
NASA Technical Reports Server (NTRS)
Yang, P. Y.; You, K. C.; Wynveen, R. A.; Powell, J. D., Jr.
1979-01-01
As a development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. As part of continous development efforts, a program to evaluate, design, and demonstrate advanced instrumentation fault diagnostics was successfully completed. Fault tolerance designs for reliability and other instrumenation capabilities to increase maintainability were evaluated and studied.
NASA Technical Reports Server (NTRS)
Landano, M. R.; Easter, R. W.
1984-01-01
Aspects of Space Station automated systems testing and verification are discussed, taking into account several program requirements. It is found that these requirements lead to a number of issues of uncertainties which require study and resolution during the Space Station definition phase. Most, if not all, of the considered uncertainties have implications for the overall testing and verification strategy adopted by the Space Station Program. A description is given of the Galileo Orbiter fault protection design/verification approach. Attention is given to a mission description, an Orbiter description, the design approach and process, the fault protection design verification approach/process, and problems of 'stress' testing.
The Realization of Drilling Fault Diagnosis Based on Hybrid Programming with Matlab and VB
NASA Astrophysics Data System (ADS)
Wang, Jiangping; Hu, Yingcai
This paper presents a method using hybrid programming with Matlab and VB based on ActiveX to design the system of drilling accident prediction and diagnosis. So that the powerful calculating function and graphical display function of Matlab and visual development interface of VB are combined fully. The main interface of the diagnosis system is compiled in VB,and the analysis and fault diagnosis are implemented by neural network tool boxes in Matlab.The system has favorable interactive interface,and the fault example validation shows that the diagnosis result is feasible and can meet the demands of drilling accident prediction and diagnosis.
3D Fault Network of the Murchison Domain, Yilgarn Craton
NASA Astrophysics Data System (ADS)
Murdie, Ruth; Gessner, Klaus
2014-05-01
The architecture of Archean granite-greenstone terranes is often controlled by networks of 10 km to 100 km-scale shear zones that record displacement under amphibolite facies to greenschist facies metamorphic conditions. The geometry of such crustal scale 'fault networks' has been shown to be highly relevant to understand the tectonic and metamorphic history of granite-greenstone terranes, as well as the availability of structural controlled fluid pathways related to magmatic and hydrothermal mineralization. The Neoarchean Yilgarn Craton and the Proterozoic orogens around its margins constitute one of Earth's greatest mineral treasure troves, including iron, gold, copper and nickel mineral deposits. Whereas the Yilgarn Craton is one of the best studied Archean cratons, its enormous size and limited outcrop are detrimental to the better understanding of what controls the distribution of these vast resources and what geodynamic processes were involved the tectonic assembly of this part of the Australian continent. Here we present a network of the major faults of the NW Yilgarn Craton between the Yalgar Fault, Murchison's NW contact with the Narryer Terrane to the Ida Fault, its boundary with the Eastern Goldfields Superterrane. The model has been constructed from various geophysical and geological data, including potential field grids, Geological Survey of Western Australia map sheets, seismic reflection surveys and magnetotelluric traverses. The northern extremity of the modelled area is bounded by the Proterozoic cover and the southern limit has been arbitrarily chosen to include various greenstone belts. In the west, the major faults in the upper crust, such as the Carbar and Chundaloo Shear Zones, dip steeply towards the west and then flatten off at depth. They form complex branching fault systems that bound the greenstone belts in a series of stacked faults. East of the Ida, the far east of the model, the faults have been integrated with Geoscience Australia's pmd*CRC Eastern Goldfields model. In the central portion, the major faults such as the Youanmi and Wattle Creek, dip to the east and can be followed into the fabric of the Yarraquin Seismic Province. The Wattle Creek Shear Zone in particular can be traced on all three of the Youanmi seismic lines. The greenstones are cradled between these major faults and antithetic westward dipping subsidiary faults such as the Edale Shear Zone. While the Ida Fault cannot be located with great confidence, the slight drop in Moho depth toward the east and the overall change of seismic texture delineate the Youanmi-Eastern Goldfields boundary. The Lawler's Anticline, presumably located in the hanging wall of the Ida Fault, again changes the style of faulting with the Lawler's tonalite forming the core of a 10 km-scale antiform. The fault network presented here is a milestone to a craton-wide integrated structural model and will hopefully contribute to provide a better spatial context for geological, geochemical and geophysical data in our quest to understand the tectonics and mineral potential of the Yilgarn craton.
Fammenian Tournaisian dextral ductile shear in the French Variscan belt
NASA Astrophysics Data System (ADS)
Cartannaz, Charles; Rolin, Patrick; Le Métour, Joël; Fabbri, Olivier
2006-02-01
The South Armorican Shear Zone consists of a set of faults that runs across the southern Armorican Massif and extends eastwards to the Massif Central. One of its branches, the Cholet Shear Zone of South Brittany, can be correlated with the North-Millevaches-La Courtine Shear Zone in the Massif Central. It was active immediately after the regional Frasnian anatexis (372-368 Ma) as a right-lateral strike-slip fault. The horizontal offset, which can be estimated between 110 and 170 km, was achieved before the emplacement of non-deformed Late Tournaisian calc-alkaline and peraluminous granites (355-350 Ma). This newly established age of activity (Fammenian-Tournaisian) of the Cholet-La Courtine Shear Zone (CCSZ) has to be taken into account in geodynamical reconstructions of the Variscan belt of western Europe. To cite this article: C. Cartannaz et al., C. R. Geoscience 338 (2006).
NASA Astrophysics Data System (ADS)
Li, Xingfeng; Gan, Chaoqin; Liu, Zongkang; Yan, Yuqi; Qiao, HuBao
2018-01-01
In this paper, a novel architecture of hybrid PON for smart grid is proposed by introducing a wavelength-routing module (WRM). By using conventional optical passive components, a WRM with M ports is designed. The symmetry and passivity of the WRM makes it be easily integrated and very cheap in practice. Via the WRM, two types of network based on different ONU-interconnected manner can realize online access. Depending on optical switches and interconnecting fibers, full-fiber-fault protection and dynamic bandwidth allocation are realized in these networks. With the help of amplitude modulation, DPSK modulation and RSOA technology, wavelength triple-reuse is achieved. By means of injecting signals into left and right branches in access ring simultaneously, the transmission delay is decreased. Finally, the performance analysis and simulation of the network verifies the feasibility of the proposed architecture.
77 FR 53206 - National Institute of Allergy and Infectious Diseases; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-31
...). Contact Person: Maryam Feili-Hariri, Ph.D., Scientific Review Officer, Immunology Review Branch... Feili-Hariri, Ph.D., Scientific Review Officer, Immunology Review Branch, Scientific Review Program....gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.855, Allergy, Immunology, and...
78 FR 55750 - National Cancer Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-11
..., Cancer Centers Support; 93.398, Cancer Research Manpower; 93.399, Cancer Control, National Institutes of.... Contact Person: Caterina Bianco, MD, Ph.D., Scientific Review Officer, Research Programs Review Branch...: David G. Ransom, Ph.D., Scientific Review Officer, Research Programs Review Branch, Division of...
78 FR 28234 - National Cancer Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-14
...: Caterina Bianco, MD, Ph.D., Scientific Review Officer, Research Programs Review Branch, Division of... Officer, Research Programs Review Branch, Division of Extramural Activities, National Cancer Institute....396, Cancer Biology Research; 93.397, Cancer Centers Support; 93.398, Cancer Research Manpower; 93.399...
Long-Term Pavement Performance Automated Faulting Measurement
DOT National Transportation Integrated Search
2015-02-01
This study focused on identifying transverse joint locations on jointed plain concrete pavements using an automated joint detection algorithm and computing faulting at these locations using Long-Term Pavement Performance (LTPP) Program profile data c...
Streaks of Aftershocks Following the 2004 Sumatra-Andaman Earthquake
NASA Astrophysics Data System (ADS)
Waldhauser, F.; Schaff, D. P.; Engdahl, E. R.; Diehl, T.
2009-12-01
Five years after the devastating 26 December, 2004 M 9.3 Sumatra-Andaman earthquake, regional and global seismic networks have recorded tens of thousands of aftershocks. We use bulletin data from the International Seismological Centre (ISC) and the National Earthquake Information Center (NEIC), and waveforms from IRIS, to relocate more than 20,000 hypocenters between 1964 and 2008 using teleseimic cross-correlation and double-difference methods. Relative location uncertainties of a few km or less allow for detailed analysis of the seismogenic faults activated as a result of the massive stress changes associated with the mega-thrust event. We focus our interest on an area of intense aftershock activity off-shore Banda Aceh in northern Sumatra, where the relocated epicenters reveal a pattern of northeast oriented streaks. The two most prominent streaks are ~70 km long with widths of only a few km. Some sections of the streaks are formed by what appear to be small, NNE striking sub-streaks. Hypocenter depths indicate that the events locate both on the plate interface and in the overriding Sunda plate, within a ~20 km wide band overlying the plate interface. Events on the plate interface indicate that the slab dip changes from ~20° to ~30° at around 50 km depth. Locations of the larger events in the overriding plate indicate an extension of the steeper dipping mega thrust fault to the surface, imaging what appears to be a major splay fault that reaches the surface somewhere near the western edge of the Aceh basin. Additional secondary splay faults, which branch off the plate interface at shallower depths, may explain the diffuse distribution of smaller events in the overriding plate, although their relative locations are less well constrained. Focal mechanisms support the relocation results. They show a narrowing range of fault dips with increasing distance from the trench. Specifically, they show reverse faulting on ~30° dipping faults above the shallow (20°) dipping plate interface. The observation of active splay faults associated with the mega thrust event is consistent with co- and post-seismic motion data, and may have significant implications on the generation and size of the tsunami that caused 300,000 deaths.
NASA Astrophysics Data System (ADS)
Fuis, G. S.; Catchings, R.; Scheirer, D. S.; Goldman, M.; Zhang, E.; Bauer, K.
2016-12-01
The San Andreas fault (SAF) in the northern Salton Trough, or Coachella Valley, in southern California, appears non-vertical and non-planar. In cross section, it consists of a steeply dipping segment (75 deg dip NE) from the surface to 6- to 9-km depth, and a moderately dipping segment below 6- to 9-km depth (50-55 deg dip NE). It also appears to branch upward into a flower-like structure beginning below about 10-km depth. Images of the SAF zone in the Coachella Valley have been obtained from analysis of steep reflections, earthquakes, modeling of potential-field data, and P-wave tomography. Review of seismological and geodetic research on the 1989 M 6.9 Loma Prieta earthquake, in central California (e.g., U.S. Geological Survey Professional Paper 1550), shows several features of SAF zone structure similar to those seen in the northern Salton Trough. Aftershocks in the Loma Prieta epicentral area form two chief clusters, a tabular zone extending from 18- to 9-km depth and a complex cluster above 5-km depth. The deeper cluster has been interpreted to surround the chief rupture plane, which dips 65-70 deg SW. When double-difference earthquake locations are plotted, the shallower cluster contains tabular subclusters that appear to connect the main rupture with the surface traces of the Sargent and Berrocal faults. In addition, a diffuse cluster may surround a steep to vertical fault connecting the main rupture to the surface trace of the SAF. These interpreted fault connections from the main rupture to surface fault traces appear to define a flower-like structure, not unlike that seen above the moderately dipping segment of the SAF in the Coachella Valley. But importantly, the SAF, interpreted here to include the main rupture plane, appears segmented, as in the Coachella Valley, with a moderately dipping segment below 9-km depth and a steep to vertical segment above that depth. We hope to clarify fault-zone structure in the Loma Prieta area by reanalyzing active-source data collected after the earthquake for steep reflections.
NASA Astrophysics Data System (ADS)
Ando, R.; Aoki, Y.; Uchide, T.; Imanishi, K.; Matsumoto, S.; Nishimura, T.
2016-12-01
A couple of interesting earthquake rupture phenomena were observed associated with the sequence of the 2016 Kumamoto, Japan, earthquake sequence. The sequence includes the April 15, 2016, Mw 7.0, mainshock, which was preceded by multiple M6-class foreshock. The mainshock mainly broke the Futagawa fault segment striking NE-SW direction extending over 50km, and it further triggered a M6-class earthquake beyond the distance more than 50km to the northeast (Uchide et al., 2016, submitted), where an active volcano is situated. Compiling the data of seismic analysis and InSAR, we presumed this dynamic triggering event occurred on an active fault known as Yufuin fault (Ando et al., 2016, JPGU general assembly). It is also reported that the coseismic slip was significantly large at a shallow portion of Futagawa Fault near Aso volcano. Since the seismogenic depth becomes significantly shallower in these two areas, we presume the geothermal anomaly play a role as well as the elasto-dynamic processes associated with the coseismic rupture. In this study, we conducted a set of fully dynamic simulations of the earthquake rupture process by assuming the inferred 3D fault geometry and the regional stress field obtained referring the stress tensor inversion. As a result, we showed that the dynamic rupture process was mainly controlled by the irregularity of the fault geometry subjected to the gently varying regional stress field. The foreshocks ruptures have been arrested at the juncture of the branch faults. We also show that the dynamic triggering of M-6 class earthquakes occurred along the Yufuin fault segment (located 50 km NE) because of the strong stress transient up to a few hundreds of kPa due to the rupture directivity effect of the M-7 event. It is also shown that the geothermal condition may lead to the susceptible condition of the dynamic triggering by considering the plastic shear zone on the down dip extension of the Yufuin segment, situated in the vicinity of an active volcano.
NASA Astrophysics Data System (ADS)
The effective integration of processes, systems, and procedures used in the production of aerospace systems using computer technology is managed by the Integration Technology Division (MTI). Under its auspices are the Information Management Branch, which is actively involved with information management, information sciences and integration, and the Implementation Branch, whose technology areas include computer integrated manufacturing, engineering design, operations research, and material handling and assembly. The Integration Technology Division combines design, manufacturing, and supportability functions within the same organization. The Processing and Fabrication Division manages programs to improve structural and nonstructural materials processing and fabrication. Within this division, the Metals Branch directs the manufacturing methods program for metals and metal matrix composites processing and fabrication. The Nonmetals Branch directs the manufacturing methods programs, which include all manufacturing processes for producing and utilizing propellants, plastics, resins, fibers, composites, fluid elastomers, ceramics, glasses, and coatings. The objective of the Industrial Base Analysis Division is to act as focal point for the USAF industrial base program for productivity, responsiveness, and preparedness planning.
Psychosocial Support & Research Program Research is another critical component of the psychosocial program. Our research studies are designed to learn how to best help patients and their families prepare for, adjust to, and cope with the effects of cancer and other related medical conditions while enrolled on research protocols in several NCI Branches and NIH Institutes.
Kalahari Tectonic Landforms and Processes Beyond the Okavango Graben
NASA Astrophysics Data System (ADS)
Eckardt, F. D.; Flügel, T.; Cotterill, W.; Rowe, C. D.; McFarlane, M.
2014-12-01
The southern African Kalahari basin is generally regarded as a stable shield area which is subject to neotectonic modification along western branches of the East African Rift System (EARS) with much focus having been given to the Okavango Graben and its associated geomorphology. In this study, we look for surface expressions that are indicative of recent to on-going tectonic modification beyond the Okavango region. A number of landforms can be highlighted. These include drainage lines in north eastern Namibia which are aligned along a "horsetail" fracture system, interpreted as the response to an apparent incipient rifting extending west of the Okavango Graben and Gumare fault line. The second region of interest, in north eastern Botswana, is known to house a second lesser graben, centred along the Ntwetwe panhandle but with a wider surface manifestation than previously noted. We can demonstrate that the area north of the Makgadikgadi has been modified by "piano key" type fault blocks. And thirdly, structural modifications to linear dune ridges of the southern central Kalahari manifest faulting, shearing and rotation. These observations raise questions about the extent of tectonic processes operating across the southern African interior and attribute additional processes to Kalahari landforms.
NASA Technical Reports Server (NTRS)
Rogers, William H.
1993-01-01
In rare instances, flight crews of commercial aircraft must manage complex systems faults in addition to all their normal flight tasks. Pilot errors in fault management have been attributed, at least in part, to an incomplete or inaccurate awareness of the fault situation. The current study is part of a program aimed at assuring that the types of information potentially available from an intelligent fault management aiding concept developed at NASA Langley called 'Faultfinde' (see Abbott, Schutte, Palmer, and Ricks, 1987) are an asset rather than a liability: additional information should improve pilot performance and aircraft safety, but it should not confuse, distract, overload, mislead, or generally exacerbate already difficult circumstances.
NASA Technical Reports Server (NTRS)
Lee, Charles; Alena, Richard L.; Robinson, Peter
2004-01-01
We started from ISS fault trees example to migrate to decision trees, presented a method to convert fault trees to decision trees. The method shows that the visualizations of root cause of fault are easier and the tree manipulating becomes more programmatic via available decision tree programs. The visualization of decision trees for the diagnostic shows a format of straight forward and easy understands. For ISS real time fault diagnostic, the status of the systems could be shown by mining the signals through the trees and see where it stops at. The other advantage to use decision trees is that the trees can learn the fault patterns and predict the future fault from the historic data. The learning is not only on the static data sets but also can be online, through accumulating the real time data sets, the decision trees can gain and store faults patterns in the trees and recognize them when they come.
NASA Technical Reports Server (NTRS)
Shaver, Charles; Williamson, Michael
1986-01-01
The NASA Ames Research Center sponsors a research program for the investigation of Intelligent Flight Control Actuation systems. The use of artificial intelligence techniques in conjunction with algorithmic techniques for autonomous, decentralized fault management of flight-control actuation systems is explored under this program. The design, development, and operation of the interface for laboratory investigation of this program is documented. The interface, architecturally based on the Intel 8751 microcontroller, is an interrupt-driven system designed to receive a digital message from an ultrareliable fault-tolerant control system (UFTCS). The interface links the UFTCS to an electronic servo-control unit, which controls a set of hydraulic actuators. It was necessary to build a UFTCS emulator (also based on the Intel 8751) to provide signal sources for testing the equipment.
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.
2009-01-01
As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.
NASA Astrophysics Data System (ADS)
Sahin, Sefa; Yildirim, Cengiz; Akif Sarikaya, Mehmet; Tuysuz, Okan; Genc, S. Can; Ersen Aksoy, Murat; Ertekin Doksanalti, Mustafa
2016-04-01
Cosmogenic surface exposure dating is based on the production of rare nuclides in exposed rocks, which interact with cosmic rays. Through modelling of measured 36Cl concentrations, we might obtain information of the history of the earthquake activity. Yet, there are several factors which may impact production of rare nuclides such as geometry of the fault, topography, geographic location of the study area, temporal variations of the Earth's magnetic field, self-cover and denudation rate on the scarp. Recently developed models provides a method to infer timing of earthquakes and slip rates on limited scales by taking into account these parameters. Our study area, the Knidos Fault Zone, is located on the Datça Peninsula in Southwestern Anatolia and contains several normal fault scarps formed within the limestone, which are appropriate to generate cosmogenic chlorine-36 (36Cl) dating models. Since it has a well-preserved scarp, we have focused on the Mezarlık Segment of the fault zone, which has an average length of 300 m and height 12-15 m. 128 continuous samples from top to bottom of the fault scarp were collected to carry out analysis of cosmic 36Cl isotopes concentrations. The main purpose of this study is to analyze factors affecting the production rates and amount of cosmogenic 36Cl nuclides concentration. Concentration of Cl36 isotopes are measured by AMS laboratories. Through the local production rates and concentration of the cosmic isotopes, we can calculate exposure ages of the samples. Recent research elucidated each step of the application of this method by the Matlab programming language (e.g. Schlagenhauf et al., 2010). It is vitally helpful to generate models of Quaternary activity of the normal faults. We, however, wanted to build a user-friendly program through an open source programing language "R" (GNU Project) that might be able to help those without knowledge of complex math programming, making calculations as easy and understandable as possible. Through our codes, physical parameters, statistical analysis and graphics production of the fault models can be generated for each platform. This project is supported by the Scientific and Technological Research Council of Turkey (TUBITAK, Grant number: 113Y436) This study was conducted with the Decision of the Council of Ministers with No. 2013/5387 on the date 30.09.2013 and was done with the permission of Knidos Presidency of excavation in accordance with the scope of Knidos Excavation and Research carried out on behalf of Selcuk University and Ministry of Culture and Tourism. Keywords: Knidos, geomorphology, modelling, cosmogenic surface exposure dating, chlorine36
Model-Based Fault Tolerant Control
NASA Technical Reports Server (NTRS)
Kumar, Aditya; Viassolo, Daniel
2008-01-01
The Model Based Fault Tolerant Control (MBFTC) task was conducted under the NASA Aviation Safety and Security Program. The goal of MBFTC is to develop and demonstrate real-time strategies to diagnose and accommodate anomalous aircraft engine events such as sensor faults, actuator faults, or turbine gas-path component damage that can lead to in-flight shutdowns, aborted take offs, asymmetric thrust/loss of thrust control, or engine surge/stall events. A suite of model-based fault detection algorithms were developed and evaluated. Based on the performance and maturity of the developed algorithms two approaches were selected for further analysis: (i) multiple-hypothesis testing, and (ii) neural networks; both used residuals from an Extended Kalman Filter to detect the occurrence of the selected faults. A simple fusion algorithm was implemented to combine the results from each algorithm to obtain an overall estimate of the identified fault type and magnitude. The identification of the fault type and magnitude enabled the use of an online fault accommodation strategy to correct for the adverse impact of these faults on engine operability thereby enabling continued engine operation in the presence of these faults. The performance of the fault detection and accommodation algorithm was extensively tested in a simulation environment.
7 CFR 62.000 - Meaning of terms.
Code of Federal Regulations, 2011 CFR
2011-01-01
... official assessments. Branch. The Audit, Review, and Compliance Branch of the Livestock and Seed Program... in QSVP services who has applied for service under this part. Assessment. A systematic review of the adequacy of program or system documentation, or the review of the completeness of implementation of a...
75 FR 4094 - National Institute of Allergy And Infectious Diseases; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-26
...). Contact Person: Edward W. Schroder, PhD, Chief, Microbiology Review Branch, Scientific Review Program...). Contact Person: Edward W. Schroder, PhD, Chief, Microbiology Review Branch, Scientific Review Program....855, Allergy, Immunology, and Transplantation Research; 93.856, Microbiology and Infectious Diseases...
7 CFR 999.600 - Regulation governing the importation of pistachios.
Code of Federal Regulations, 2013 CFR
2013-01-01
... States Department of Agriculture, including any officer, employee, service, program, or branch of the... connection with any provisions of this section. (17) USDA laboratory means laboratories of the Science and... Inspection Program offices, or for further assistance, importers may contact: Fresh Products Branch, Fruit...
7 CFR 999.600 - Regulation governing the importation of pistachios.
Code of Federal Regulations, 2014 CFR
2014-01-01
... States Department of Agriculture, including any officer, employee, service, program, or branch of the... connection with any provisions of this section. (17) USDA laboratory means laboratories of the Science and... Inspection Program offices, or for further assistance, importers may contact: Fresh Products Branch, Fruit...
75 FR 78646 - Approval and Promulgation of Air Quality Implementation Plans; Minnesota
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-16
... Promulgation of Air Quality Implementation Plans; Minnesota AGENCY: Environmental Protection Agency (EPA...: Douglas Aburano, Chief, Control Strategies Section, Air Programs Branch (AR-18J), U.S. Environmental..., Chief, Control Strategies Section, Air Programs Branch (AR-18J), U.S. Environmental Protection Agency...
Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous Vehicles
2007-11-01
Tolerant Overactuated Autonomous Vehicles Casavola, A.; Garone, E. (2007) Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous ...Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Tolerant Overactuated Autonomous Vehicles 3.2 - 2 RTO-MP-AVT-145 UNCLASSIFIED/UNLIMITED Control allocation problem (CAP) - Given a virtual input v(t
Reliability model derivation of a fault-tolerant, dual, spare-switching, digital computer system
NASA Technical Reports Server (NTRS)
1974-01-01
A computer based reliability projection aid, tailored specifically for application in the design of fault-tolerant computer systems, is described. Its more pronounced characteristics include the facility for modeling systems with two distinct operational modes, measuring the effect of both permanent and transient faults, and calculating conditional system coverage factors. The underlying conceptual principles, mathematical models, and computer program implementation are presented.
NASA Astrophysics Data System (ADS)
Chevalier, M. L.; Bai, M.; Pan, J.; Replumaz, A.; Leloup, P. H.; Li, H.
2017-12-01
The left-slip Xianshuihe fault system in E Tibet is considered as one of the most tectonically active fault system in China. Studying its activity, especially its slip rate at different time scales, is essential to evaluate regional earthquake hazards. Here, we focus on the central segment, where the Xianshuihe fault splays into three branches: the Selaha, Yalahe and Zheduotang faults. We use 10Be cosmogenic dating at 3 sites where the active Selaha fault cuts and left-laterally offsets moraine crests and levees. By matching their emplacement ages with their offsets, we obtain a conservative late Quaternary horizontal slip-rate of 5.7-12 mm/yr at TG levees and SLH moraine, or 9.6-9.9 mm/yr assuming that the slip rate should be constant between the two nearby sites. At YJG moraine, we obtain a lower slip rate of 4.4±0.5 mm/yr, most likely because the parallel Zheduotang fault shares the slip rate at this longitude, therefore suggesting a 5 mm/yr slip rate along the Zheduotang fault. A higher slip rate along the short ( 60 km) and discontinuous Selaha fault compared to that along the long ( 300 km) and linear Ganzi fault (7 mm/yr) suggests a high earthquake hazard in the densely populated city of Kangding. Using the moraine ages that we determined here in addition to our previous studies in the same region allows us to study the timing and extent of past glaciations in the Himalayan-Tibetan orogen. This is essential to reconstruct regional paleoclimate and to understand variations in the atmospheric circulation due to the high-altitude low latitude Tibetan Plateau, in order to possibly predict future climate changes. We dated 6 glacial deposits from SE Tibet using 10Be cosmogenic dating on 68 boulders and only found advances during the Last Glacial Maximum (limited) and Marine Isotope Stage-6 (extensive), with no signal in between. That the two coldest periods are LGM and MIS-6 is in agreement with the Northern hemisphere cooling cycles, suggesting that in SE Tibet, glaciers are more sensitive to a decrease of temperature rather than an increase of precipitation and that they respond to the Northern hemisphere cooling cycles rather than to the South Asian summer monsoon. This explains the absence of MIS-3 advances, in contradiction with what is observed in W Tibet where they are the most extensive.
Computer-Aided Reliability Estimation
NASA Technical Reports Server (NTRS)
Bavuso, S. J.; Stiffler, J. J.; Bryant, L. A.; Petersen, P. L.
1986-01-01
CARE III (Computer-Aided Reliability Estimation, Third Generation) helps estimate reliability of complex, redundant, fault-tolerant systems. Program specifically designed for evaluation of fault-tolerant avionics systems. However, CARE III general enough for use in evaluation of other systems as well.
PAWS/STEM - PADE APPROXIMATION WITH SCALING AND SCALED TAYLOR EXPONENTIAL MATRIX (VAX VMS VERSION)
NASA Technical Reports Server (NTRS)
Butler, R. W.
1994-01-01
Traditional fault-tree techniques for analyzing the reliability of large, complex systems fail to model the dynamic reconfiguration capabilities of modern computer systems. Markov models, on the other hand, can describe fault-recovery (via system reconfiguration) as well as fault-occurrence. The Pade Approximation with Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) programs provide a flexible, user-friendly, language-based interface for the creation and evaluation of Markov models describing the behavior of fault-tolerant reconfigurable computer systems. PAWS and STEM produce exact solutions for the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. The calculation of the probability of entering a death state of a Markov model (representing system failure) requires the solution of a set of coupled differential equations. Because of the large disparity between the rates of fault arrivals and system recoveries, Markov models of fault-tolerant architectures inevitably lead to numerically stiff differential equations. Both PAWS and STEM have the capability to solve numerically stiff models. These complementary programs use separate methods to determine the matrix exponential in the solution of the model's system of differential equations. In general, PAWS is better suited to evaluate small and dense models. STEM operates at lower precision, but works faster than PAWS for larger models. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920); and the FTC fault tree tool (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree. PAWS/STEM and SURE are programs which interpret the same SURE language, but utilize different solution methods. ASSIST is a preprocessor that generates SURE language from a more abstract definition. SURE, ASSIST, and PAWS/STEM are also offered as a bundle. Please see the abstract for COS-10039/COS-10041, SARA - SURE/ASSIST Reliability Analysis Workstation, for pricing details. PAWS/STEM was originally developed for DEC VAX series computers running VMS and was later ported for use on Sun computers running SunOS. The package is written in PASCAL, ANSI compliant C-language, and FORTRAN 77. The standard distribution medium for the VMS version of PAWS/STEM (LAR-14165) is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The standard distribution medium for the Sun version of PAWS/STEM (LAR-14920) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. PAWS/STEM was developed in 1989 and last updated in 1991. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation. SunOS, Sun3, and Sun4 are trademarks of Sun Microsystems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories.
PAWS/STEM - PADE APPROXIMATION WITH SCALING AND SCALED TAYLOR EXPONENTIAL MATRIX (SUN VERSION)
NASA Technical Reports Server (NTRS)
Butler, R. W.
1994-01-01
Traditional fault-tree techniques for analyzing the reliability of large, complex systems fail to model the dynamic reconfiguration capabilities of modern computer systems. Markov models, on the other hand, can describe fault-recovery (via system reconfiguration) as well as fault-occurrence. The Pade Approximation with Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) programs provide a flexible, user-friendly, language-based interface for the creation and evaluation of Markov models describing the behavior of fault-tolerant reconfigurable computer systems. PAWS and STEM produce exact solutions for the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. The calculation of the probability of entering a death state of a Markov model (representing system failure) requires the solution of a set of coupled differential equations. Because of the large disparity between the rates of fault arrivals and system recoveries, Markov models of fault-tolerant architectures inevitably lead to numerically stiff differential equations. Both PAWS and STEM have the capability to solve numerically stiff models. These complementary programs use separate methods to determine the matrix exponential in the solution of the model's system of differential equations. In general, PAWS is better suited to evaluate small and dense models. STEM operates at lower precision, but works faster than PAWS for larger models. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920); and the FTC fault tree tool (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree. PAWS/STEM and SURE are programs which interpret the same SURE language, but utilize different solution methods. ASSIST is a preprocessor that generates SURE language from a more abstract definition. SURE, ASSIST, and PAWS/STEM are also offered as a bundle. Please see the abstract for COS-10039/COS-10041, SARA - SURE/ASSIST Reliability Analysis Workstation, for pricing details. PAWS/STEM was originally developed for DEC VAX series computers running VMS and was later ported for use on Sun computers running SunOS. The package is written in PASCAL, ANSI compliant C-language, and FORTRAN 77. The standard distribution medium for the VMS version of PAWS/STEM (LAR-14165) is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The standard distribution medium for the Sun version of PAWS/STEM (LAR-14920) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. PAWS/STEM was developed in 1989 and last updated in 1991. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation. SunOS, Sun3, and Sun4 are trademarks of Sun Microsystems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories.
NASA Technical Reports Server (NTRS)
Harper, Richard E.; Babikyan, Carol A.; Butler, Bryan P.; Clasen, Robert J.; Harris, Chris H.; Lala, Jaynarayan H.; Masotto, Thomas K.; Nagle, Gail A.; Prizant, Mark J.; Treadwell, Steven
1994-01-01
The Army Avionics Research and Development Activity (AVRADA) is pursuing programs that would enable effective and efficient management of large amounts of situational data that occurs during tactical rotorcraft missions. The Computer Aided Low Altitude Night Helicopter Flight Program has identified automated Terrain Following/Terrain Avoidance, Nap of the Earth (TF/TA, NOE) operation as key enabling technology for advanced tactical rotorcraft to enhance mission survivability and mission effectiveness. The processing of critical information at low altitudes with short reaction times is life-critical and mission-critical necessitating an ultra-reliable/high throughput computing platform for dependable service for flight control, fusion of sensor data, route planning, near-field/far-field navigation, and obstacle avoidance operations. To address these needs the Army Fault Tolerant Architecture (AFTA) is being designed and developed. This computer system is based upon the Fault Tolerant Parallel Processor (FTPP) developed by Charles Stark Draper Labs (CSDL). AFTA is hard real-time, Byzantine, fault-tolerant parallel processor which is programmed in the ADA language. This document describes the results of the Detailed Design (Phase 2 and 3 of a 3-year project) of the AFTA development. This document contains detailed descriptions of the program objectives, the TF/TA NOE application requirements, architecture, hardware design, operating systems design, systems performance measurements and analytical models.
CUTSETS - MINIMAL CUT SET CALCULATION FOR DIGRAPH AND FAULT TREE RELIABILITY MODELS
NASA Technical Reports Server (NTRS)
Iverson, D. L.
1994-01-01
Fault tree and digraph models are frequently used for system failure analysis. Both type of models represent a failure space view of the system using AND and OR nodes in a directed graph structure. Fault trees must have a tree structure and do not allow cycles or loops in the graph. Digraphs allow any pattern of interconnection between loops in the graphs. A common operation performed on digraph and fault tree models is the calculation of minimal cut sets. A cut set is a set of basic failures that could cause a given target failure event to occur. A minimal cut set for a target event node in a fault tree or digraph is any cut set for the node with the property that if any one of the failures in the set is removed, the occurrence of the other failures in the set will not cause the target failure event. CUTSETS will identify all the minimal cut sets for a given node. The CUTSETS package contains programs that solve for minimal cut sets of fault trees and digraphs using object-oriented programming techniques. These cut set codes can be used to solve graph models for reliability analysis and identify potential single point failures in a modeled system. The fault tree minimal cut set code reads in a fault tree model input file with each node listed in a text format. In the input file the user specifies a top node of the fault tree and a maximum cut set size to be calculated. CUTSETS will find minimal sets of basic events which would cause the failure at the output of a given fault tree gate. The program can find all the minimal cut sets of a node, or minimal cut sets up to a specified size. The algorithm performs a recursive top down parse of the fault tree, starting at the specified top node, and combines the cut sets of each child node into sets of basic event failures that would cause the failure event at the output of that gate. Minimal cut set solutions can be found for all nodes in the fault tree or just for the top node. The digraph cut set code uses the same techniques as the fault tree cut set code, except it includes all upstream digraph nodes in the cut sets for a given node and checks for cycles in the digraph during the solution process. CUTSETS solves for specified nodes and will not automatically solve for all upstream digraph nodes. The cut sets will be output as a text file. CUTSETS includes a utility program that will convert the popular COD format digraph model description files into text input files suitable for use with the CUTSETS programs. FEAT (MSC-21873) and FIRM (MSC-21860) available from COSMIC are examples of programs that produce COD format digraph model description files that may be converted for use with the CUTSETS programs. CUTSETS is written in C-language to be machine independent. It has been successfully implemented on a Sun running SunOS, a DECstation running ULTRIX, a Macintosh running System 7, and a DEC VAX running VMS. The RAM requirement varies with the size of the models. CUTSETS is available in UNIX tar format on a .25 inch streaming magnetic tape cartridge (standard distribution) or on a 3.5 inch diskette. It is also available on a 3.5 inch Macintosh format diskette or on a 9-track 1600 BPI magnetic tape in DEC VAX FILES-11 format. Sample input and sample output are provided on the distribution medium. An electronic copy of the documentation in Macintosh Microsoft Word format is included on the distribution medium. Sun and SunOS are trademarks of Sun Microsystems, Inc. DEC, DeCstation, ULTRIX, VAX, and VMS are trademarks of Digital Equipment Corporation. UNIX is a registered trademark of AT&T Bell Laboratories. Macintosh is a registered trademark of Apple Computer, Inc.
1993-12-01
on Panasonic TLD . Panasonic Industrial Company; Secaucus, New Jersey. 5. Thurlow, Ronald M. "Neutron Dosimetry Using a Panasonic Thermoluminescent...Radiation Dosimetry Branch Brooks Air Force Base San Antonio, Texas 78235 Final Report for: AFOSR Summer Research Program Armstrong Laboratory Sponsored...Associate Radiation Dosimetry Branch Armstrong Laboratory Abstract In an attempt to improve personnel monitoring for neutron emissions, Panasonic has
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-20
... retailers to be fundamental to the effectiveness of this critical nutrition assistance program. FNS is... delivered to: Shanta Swezy, Chief, Retailer Management and Issuance Branch, Retailer Policy and Management..., Retailer Management and Issuance Branch, Food and Nutrition Service, (703) 305- 2238. SUPPLEMENTARY...
78 FR 50065 - National Cancer Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-16
... Methodological Research for Cancer Epidemiology Cohorts. Date: October 25, 2013. Time: 10:30 a.m. to 2:30 p.m... Lopaczynski, MD, Ph.D., Scientific Review Officer, Research Programs Review Branch, Division of Extramural.... Contact Person: Shakeel Ahmad, Ph.D., Scientific Review Officer, Research Programs Review Branch, Division...
75 FR 17120 - Notice of Request for an Extension of a Currently Approved Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
... approved information collection in support of the Regulations for Voluntary Grading of Poultry Products and....regulations.gov or to David Bowden, Jr., Chief, Standards, Promotion, & Technology Branch; Poultry Programs... Branch; Poultry Programs, AMS, U.S. Department of Agriculture; 1400 Independence Avenue, SW., Stop 0259...
78 FR 26379 - National Cancer Institute; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-06
... Methodological Research for Cancer Epidemiology Cohorts. Date: June 25, 2013. Time: 11:00 a.m. to 4:00 p.m... Officer, Research Programs Review Branch, Division of Extramural Activities, National Cancer Institute... Person: David G. Ransom, Ph.D., Scientific Review Officer, Research Programs Review Branch, Division of...
75 FR 48895 - Approval and Promulgation of Air Quality Implementation Plans; MN
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-12
... Promulgation of Air Quality Implementation Plans; MN AGENCY: Environmental Protection Agency (EPA). ACTION..., Chief, Air Programs Branch (AR-18J), U.S. Environmental Protection Agency, 77 West Jackson Boulevard, Chicago, Illinois 60604. 5. Hand Delivery: Jay Bortzer, Chief, Air Programs Branch (AR-18J), U.S...
77 FR 41914 - Approval and Promulgation of Air Quality Implementation Plans; Indiana
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-17
... Promulgation of Air Quality Implementation Plans; Indiana AGENCY: Environmental Protection Agency (EPA). ACTION..., Control Strategies Section, Air Programs Branch (AR-18J), U.S. Environmental Protection Agency, 77 West... Section, Air Programs Branch (AR-18J), U.S. Environmental Protection Agency, 77 West Jackson Boulevard...
78 FR 40086 - Approval and Promulgation of Air Quality Implementation Plans; Illinois
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... Promulgation of Air Quality Implementation Plans; Illinois AGENCY: Environmental Protection Agency (EPA...) 692-2450. 4. Mail: Pamela Blakley, Chief, Control Strategies Section, Air Programs Branch (AR-18J), U... Delivery: Pamela Blakley, Chief, Control Strategies Section, Air Programs Branch (AR-18J), U.S...
75 FR 45568 - Approval and Promulgation of Air Quality Implementation Plans; Minnesota
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
... Promulgation of Air Quality Implementation Plans; Minnesota AGENCY: Environmental Protection Agency (EPA.... Fax: (312) 629-2054. 4. Mail: Jay Bortzer, Chief, Air Programs Branch (AR-18J), U.S. Environmental..., Air Programs Branch (AR-18J), U.S. Environmental Protection Agency, 77 West Jackson Boulevard, Chicago...
Software Implemented Fault-Tolerant (SIFT) user's guide
NASA Technical Reports Server (NTRS)
Green, D. F., Jr.; Palumbo, D. L.; Baltrus, D. W.
1984-01-01
Program development for a Software Implemented Fault Tolerant (SIFT) computer system is accomplished in the NASA LaRC AIRLAB facility using a DEC VAX-11 to interface with eight Bendix BDX 930 flight control processors. The interface software which provides this SIFT program development capability was developed by AIRLAB personnel. This technical memorandum describes the application and design of this software in detail, and is intended to assist both the user in performance of SIFT research and the systems programmer responsible for maintaining and/or upgrading the SIFT programming environment.
The use of automatic programming techniques for fault tolerant computing systems
NASA Technical Reports Server (NTRS)
Wild, C.
1985-01-01
It is conjectured that the production of software for ultra-reliable computing systems such as required by Space Station, aircraft, nuclear power plants and the like will require a high degree of automation as well as fault tolerance. In this paper, the relationship between automatic programming techniques and fault tolerant computing systems is explored. Initial efforts in the automatic synthesis of code from assertions to be used for error detection as well as the automatic generation of assertions and test cases from abstract data type specifications is outlined. Speculation on the ability to generate truly diverse designs capable of recovery from errors by exploring alternate paths in the program synthesis tree is discussed. Some initial thoughts on the use of knowledge based systems for the global detection of abnormal behavior using expectations and the goal-directed reconfiguration of resources to meet critical mission objectives are given. One of the sources of information for these systems would be the knowledge captured during the automatic programming process.
Ruiz, Javier A.; Hayes, Gavin P.; Carrizo, Daniel; Kanamori, Hiroo; Socquet, Anne; Comte, Diana
2014-01-01
On 2010 March 11, a sequence of large, shallow continental crust earthquakes shook central Chile. Two normal faulting events with magnitudes around Mw 7.0 and Mw 6.9 occurred just 15 min apart, located near the town of Pichilemu. These kinds of large intraplate, inland crustal earthquakes are rare above the Chilean subduction zone, and it is important to better understand their relationship with the 2010 February 27, Mw 8.8, Maule earthquake, which ruptured the adjacent megathrust plate boundary. We present a broad seismological analysis of these earthquakes by using both teleseismic and regional data. We compute seismic moment tensors for both events via a W-phase inversion, and test sensitivities to various inversion parameters in order to assess the stability of the solutions. The first event, at 14 hr 39 min GMT, is well constrained, displaying a fault plane with strike of N145°E, and a preferred dip angle of 55°SW, consistent with the trend of aftershock locations and other published results. Teleseismic finite-fault inversions for this event show a large slip zone along the southern part of the fault, correlating well with the reported spatial density of aftershocks. The second earthquake (14 hr 55 min GMT) appears to have ruptured a fault branching southward from the previous ruptured fault, within the hanging wall of the first event. Modelling seismograms at regional to teleseismic distances (Δ > 10°) is quite challenging because the observed seismic wave fields of both events overlap, increasing apparent complexity for the second earthquake. We perform both point- and extended-source inversions at regional and teleseismic distances, assessing model sensitivities resulting from variations in fault orientation, dimension, and hypocentre location. Results show that the focal mechanism for the second event features a steeper dip angle and a strike rotated slightly clockwise with respect to the previous event. This kind of geological fault configuration, with secondary rupture in the hanging wall of a large normal fault, is commonly observed in extensional geological regimes. We propose that both earthquakes form part of a typical normal fault diverging splay, where the secondary fault connects to the main fault at depth. To ascertain more information on the spatial and temporal details of slip for both events, we gathered near-fault seismological and geodetic data. Through forward modelling of near-fault synthetic seismograms we build a kinematic k−2 earthquake source model with spatially distributed slip on the fault that, to first-order, explains both coseismic static displacement GPS vectors and short-period seismometer observations at the closest sites. As expected, the results for the first event agree with the focal mechanism derived from teleseismic modelling, with a magnitude Mw 6.97. Similarly, near-fault modelling for the second event suggests rupture along a normal fault, Mw 6.90, characterized by a steeper dip angle (dip = 74°) and a strike clockwise rotated (strike = 155°) with respect to the previous event.
Constraining Basin Depth and Fault Displacement in the Malombe Basin Using Potential Field Methods
NASA Astrophysics Data System (ADS)
Beresh, S. C. M.; Elifritz, E. A.; Méndez, K.; Johnson, S.; Mynatt, W. G.; Mayle, M.; Atekwana, E. A.; Laó-Dávila, D. A.; Chindandali, P. R. N.; Chisenga, C.; Gondwe, S.; Mkumbwa, M.; Kalaguluka, D.; Kalindekafe, L.; Salima, J.
2017-12-01
The Malombe Basin is part of the Malawi Rift which forms the southern part of the Western Branch of the East African Rift System. At its southern end, the Malawi Rift bifurcates into the Bilila-Mtakataka and Chirobwe-Ntcheu fault systems and the Lake Malombe Rift Basin around the Shire Horst, a competent block under the Nankumba Peninsula. The Malombe Basin is approximately 70km from north to south and 35km at its widest point from east to west, bounded by reversing-polarity border faults. We aim to constrain the depth of the basin to better understand displacement of each border fault. Our work utilizes two east-west gravity profiles across the basin coupled with Source Parameter Imaging (SPI) derived from a high-resolution aeromagnetic survey. The first gravity profile was done across the northern portion of the basin and the second across the southern portion. Gravity and magnetic data will be used to constrain basement depths and the thickness of the sedimentary cover. Additionally, Shuttle Radar Topography Mission (SRTM) data is used to understand the topographic expression of the fault scarps. Estimates for minimum displacement of the border faults on either side of the basin were made by adding the elevation of the scarps to the deepest SPI basement estimates at the basin borders. Our preliminary results using SPI and SRTM data show a minimum displacement of approximately 1.3km for the western border fault; the minimum displacement for the eastern border fault is 740m. However, SPI merely shows the depth to the first significantly magnetic layer in the subsurface, which may or may not be the actual basement layer. Gravimetric readings are based on subsurface density and thus circumvent issues arising from magnetic layers located above the basement; therefore expected results for our work will be to constrain more accurate basin depth by integrating the gravity profiles. Through more accurate basement depth estimates we also gain more accurate displacement estimates for the Basin's faults. Not only do the improved depth estimates serve as a proxy to the viability of hydrocarbon exploration efforts in the region, but the improved displacement estimates also provide a better understanding of extension accommodation within the Malawi Rift.
NASA Astrophysics Data System (ADS)
Brandsdottir, B.; Karson, J. A.; Magnúsdóttir, S.; Detrick, B.; Driscoll, N. W.
2017-12-01
The multi-branched plate boundary across Iceland is made up of divergent and oblique rifts, and transform zones, characterized by entwined extensional and transform tectonics. The Tjörnes Fracture Zone (TFZ) is a complex transform linking the northern rift zone (NVZ) on land with the offshore Kolbeinsey Ridge. The TFZ lacks a clear topographic expression typical of oceanic fracture zones. The transform zone is roughly 150 km long (E-W) by 50-75 km wide (N-S) with three N-S trending pull-apart basins bounded by a complex array of normal and oblique-slip faults. The offshore extension of the NVZ, the Grímsey Oblique Rift, is composed of several active volcanic systems with N-S trending fissure swarms, including the Skjálfandadjúp Basin (SB). The magma-starved southern extension of the KR, the 80 km NS and 15-20 EW Eyjafjarðaráll Rift (ER), is made up of dominantly normal faults merging southwards with a system of right-lateral strike-slip faults with vertical displacement up to 15 m in the Húsavík Flatey Fault Zone (HFFZ). The northern ER is a 500-700 m deep asymmetric rift, framed by normal faults with 20-25 m vertical displacement, To the south, transform movement associated with the HFFZ has created a NW- striking pull-apart basin with frequent earthquake swarms. Details of the tectonic framework of the ER are documented in a compilation of data from aerial photos, satellite images, field mapping, multibeam bathymetry, high-resolution seismic reflection surveys (Chirp) and seismicity. The TFZ rift basins contain post-glacial sediments of variable thickness. Strata in the western ER and SB basins dip steeply E along the normal faults, towards the deepest part of the rift. The eastern side of the ER and SB basins differ considerably from the western side, with near-vertical faults. Correlation of Chirp reflection data and tephrachronology from a sediment core reveal major rifting episodes between 10-12.1 kyrs BP activating both the Eyjafjarðaráll and Skjálfandadjúp rift basins, followed by smaller-scale fault movements throughout Holocene. These vertical fault movements reflect elevated tectonic activity during early postglacial time coinciding with isostatic rebound and enhanced volcanism within Iceland.
NASA Astrophysics Data System (ADS)
Smith, W. H.; Grall, C.; Sorlien, C. C.; Steckler, M. S.; Okay, S.; Cormier, M. H.; Seeber, L.; Cifci, G.; Dondurur, D.
2016-12-01
The submerged section of the North Anatolian Fault in the Sea of Marmara, which corresponds to the dextral plate boundary between Eurasia and Anatolia, poses strong hazard for earthquakes and subsequent submarine landslides and tsunamis in the vicinity of the highly populated region of Istanbul. Most of the right-lateral slip is accommodated by the Northern Branch of the North Anatolian Fault (NAF-N), which crosses the central part of the Sea of Marmara and is capable of an earthquake with a magnitude greater than 7. However, both the geology and the geodesy suggest that the NAF-N accommodates only 3/4 of the total slip between the plates. The deformation mechanisms for the rest of the strain (slip distributed on secondary faults, strain partitioning, and diffuse deformation) remains unexplained. Other fault systems, primarily south of the NAF-N, are shown to be important regarding the tectonic evolution of the Sea of Marmara. However, the activity of these peripheral fault systems as well as their relationships with the NAF-N need to be further constrained. For this purpose, a dense dataset of 2D geophysical images (high-resolution seismic reflection data, sparker reflection, CHIRP sub-bottom profiling), as well as multibeam bathymetry, have been acquired in 2008, 2010, 2013 and 2014 during TAMAM and SOMAR cruises, primarily in the southern shelf of the Sea of Marmara. The 15-20 km-wide southern shelf ledge is relatively flat and mostly shallower than 90 m. In this shallow marine region, we have been able to image the detailed stratigraphic record associated with the 125 ka and younger glacio-eustatic cycles and, notably, to identify paleo-shorelines at water depths shallower than 100 m. Several erosional unconformities, laterally correlative to low-stand deltas have been regionally linked to the stratigraphic boundaries previously defined for the last 130-540 ka. While the present-day shelf is relatively flat, a shallow ridge separates the inner and outer parts of the shelf. This ridge exhibits erosional unconformities, and a set of transtensive faults are mapped along its length. We show that parts of these faults were active during the last 540 ka. By estimating fault slip and folding rates along these structures, we estimate the deformation that they accommodated over this time-frame.
Cell boundary fault detection system
Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN
2011-04-19
An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.
Design and Implementation of a Distributed Version of the NASA Engine Performance Program
NASA Technical Reports Server (NTRS)
Cours, Jeffrey T.
1994-01-01
Distributed NEPP is a new version of the NASA Engine Performance Program that runs in parallel on a collection of Unix workstations connected through a network. The program is fault-tolerant, efficient, and shows significant speed-up in a multi-user, heterogeneous environment. This report describes the issues involved in designing distributed NEPP, the algorithms the program uses, and the performance distributed NEPP achieves. It develops an analytical model to predict and measure the performance of the simple distribution, multiple distribution, and fault-tolerant distribution algorithms that distributed NEPP incorporates. Finally, the appendices explain how to use distributed NEPP and document the organization of the program's source code.
Study of fault-tolerant software technology
NASA Technical Reports Server (NTRS)
Slivinski, T.; Broglio, C.; Wild, C.; Goldberg, J.; Levitt, K.; Hitt, E.; Webb, J.
1984-01-01
Presented is an overview of the current state of the art of fault-tolerant software and an analysis of quantitative techniques and models developed to assess its impact. It examines research efforts as well as experience gained from commercial application of these techniques. The paper also addresses the computer architecture and design implications on hardware, operating systems and programming languages (including Ada) of using fault-tolerant software in real-time aerospace applications. It concludes that fault-tolerant software has progressed beyond the pure research state. The paper also finds that, although not perfectly matched, newer architectural and language capabilities provide many of the notations and functions needed to effectively and efficiently implement software fault-tolerance.
NASA Technical Reports Server (NTRS)
Smith, T. B., III; Lala, J. H.
1984-01-01
The FTMP architecture is a high reliability computer concept modeled after a homogeneous multiprocessor architecture. Elements of the FTMP are operated in tight synchronism with one another and hardware fault-detection and fault-masking is provided which is transparent to the software. Operating system design and user software design is thus greatly simplified. Performance of the FTMP is also comparable to that of a simplex equivalent due to the efficiency of fault handling hardware. The FTMP project constructed an engineering module of the FTMP, programmed the machine and extensively tested the architecture through fault injection and other stress testing. This testing confirmed the soundness of the FTMP concepts.
Meriaux, A. -S.; Van der Woerd, J.; Tapponnier, P.; ...
2012-09-25
Morphochronologic slip-rates on the Altyn Tagh Fault (ATF) along the southern front of the Pingding Shan at ~90.5°E are determined by cosmogenic radionuclide (CRN) dating of seven offset terraces at two sites. The terraces are defined based upon morphology, elevation and dating, together with fieldwork and high-resolution satellite analysis. The majority of the CRN model ages fall within narrow ranges (<2 ka) on the four main terraces (T1, T2, T3 and T3′), and allow a detailed terrace chronology. Bounds on the terrace ages and offsets of 5 independent terraces yield consistent slip-rate estimates. The long-term slip-rate of 13.9 ± 1.1more » mm/yr is defined at the 95% confidence level, as the joint rate probability distribution of the rate derived from each independent terrace. It falls within the bounds of all the rates defined on the central Altyn Tagh Fault between the Cherchen He (86.4°E) and Akato Tagh (~88°E) sites. This rate is ~10 mm/yr less than the upper rate determined near Tura at ~87°E, in keeping with the inference of an eastward decreasing rate due to progressive loss of slip to thrusts branching off the fault southwards but it is greater than the 9 ± 4 mm/yr rate determined at ~90°E by GPS surveys and other geodetic short-term rates defined elsewhere along the ATF. Furthermore, whether such disparate rates will ultimately be reconciled by a better understanding of fault mechanics, resolved transient deformations during the seismic cycle or by more accurate measurements made with either approach remains an important issue.« less
Simulation of an Air Cushion Vehicle
1977-03-01
Massachusetts 02139 ! DDC Niov 219T March 1977 Final Report for Period January 1975 - December 1976 DOD DISTRIBUTION STATEMENT Approved for public...or in ,art is permitted for any purpose of the United States Government. II II JI UNCLASSI FIED SECURITY CLASSIFICATiON OF TIlS PAGE flWhen Dato...overflow Floating point fault Decimal arithmetic fault Watch Dog timer runout 186 NAVTRAEQUIPCEN 75-C-0057- 1 PROGRAM ENi\\TRY Initial Program - LOAD Inhibit
McCulloh, Thane H.; Beyer, Larry A.; Morin, Ronald W.
2001-01-01
Dikes and irregular intrusive bodies of distinctive Oligocene biotite dacite and serially related hornblende latite and felsite occur widely in the central and eastern San Gabriel Mountains, southern California, and are related to the Telegraph Peak granodiorite pluton. Identical dacite is locally present beneath Middle Miocene Topanga Group Glendora Volcanics at the northeastern edge of the Los Angeles Basin, where it is termed Mountain Meadows Dacite. This study mapped the western and southwestern limits of the dacite distribution to understand the provenance of derived redeposited clasts, to perceive Neogene offsets on several large strike-slip faults, to test published palinspastic reconstructions, and to better understand the tectonic boundaries that separate contrasting pre-Tertiary rock terranes where the Peninsular Ranges meet the central and western Transverse Ranges and the Los Angeles Basin. Transported and redeposited clasts of dacite-latite occur in deformed lower Miocene and lower middle Miocene sandy conglomerates (nonmarine, nearshore, and infrequent upper bathyal) close to the northern and northeastern margins of the Los Angeles Basin for a distance of nearly 60 km. Tie-lines between distinctive source suites and clast occurrences indicate that large tracts of the ancestral San Gabriel Mountains were elevated along range-bounding faults as early as 16–15 Ma. The tie-lines prohibit very large strike-slip offsets on those faults. Transport of eroded dacite began south of the range as early as 18 Ma. Published and unpublished data about rocks adjacent to the active Santa Monica-Hollywood-Raymond oblique reverse left-lateral fault indicate that cumulative left slip totals 13–14 km and total offset postdates 7 Ma. This cumulative slip, with assembly of stratigraphic and paleogeographic data, invalidates prior estimates of 60 to 90 km of left slip on these faults beginning about 17–16 Ma. A new and different palinspastic reconstruction of a region southwest of the San Andreas Fault Zone is proposed. Our reconstruction incorporates 20° of clockwise rotation of tracts north of the Raymond Fault from the easternmost Santa Monica Mountains to the Vasquez Creek Fault (San Gabriel south branch). We interpret the Vasquez Creek Fault as a reverse and right-lateral tear fault. Right slip on the tear becomes reverse dip slip on the northeast-striking Clamshell-Sawpit fault complex, interpreted as an offset part of the Mount Lukens Fault. This explains the absence of evidence for lateral offset of the Glendora Volcanics and associated younger marine strata where those are broken farther east by the eastern Sierra Madre reverse fault system. About 34 km of right slip is suggested for all breaks of the San Gabriel fault system. New paleogeographic maps of the Paleogene basin margin and of a Middle Miocene marine embayment and strandline derive in part from our palinspastic reconstruction. These appealingly simple maps fit well with data from the central Los Angeles Basin to the south and southwest.
NASA Astrophysics Data System (ADS)
Becel, A.; Shillington, D. J.; Nedimovic, M. R.; Keranen, K. M.; Li, J.; Webb, S. C.; Kuehn, H.
2013-12-01
Structure in the overriding plate is one of the parameters that may increase the tsunamigenic potential of a subduction zone but also influence the seismogenic behavior and segmentation of great earthquake rupture. The Alaska-Aleutian margin is characterized by along-strike changes in plate interface coupling over relatively small distances. Here, we present trench normal multichannel seismic (MCS) profiles acquired across the Shumagin gap that has not broken in many decades and appears to be weakly coupled. The high fold, deep penetration (636 channel, 8-km long streamer, 6600 cu.in airgun source) MCS data were acquired as part of the ALEUT project. This dataset gives us critical new constraints on the interplate boundary that can be traced over ~100 km distance beneath the forearc with high variation in its reflection response with depth. These profiles also reveal the detailed upper plate fault structure and forearc morphology. Clear reflections in the overriding plate appear to delineate one or more large faults that cross the shelf and the upper slope. These faults are observed 75 km back from the trench and seem to branch at depth and connect to the plate interface within this gap at ~11 s twtt. We compare the reflective structure of these faults to that of the plate boundary and examine where it intersects the megathrust with respect of the expected downdip limit of coupling. We also compare this major structure with the seismicity recorded in this sector. The imaged fault system is associated with a large deep basin (~6s twt) that is an inherited structure formed during the pre-Aleutian period. Basins faults appear to have accommodated primarily normal motion, although folding of sediments near the fault and complicated fault geometries in the shallow section may indicate that this fault has accommodated other types of motion during its history that may reflect the stress-state at the megathrust over time. The deformation within the youngest sediment also suggests also that this fault system might be still active. The coincident wide-angle seismic data coincident with one MCS profile allow the addition of more information about the deep P-wave velocity structure whereas the streamer tomography (Michaelson-Rotermund et al., this session) around the fault system add more detailed view into the complex structure in the shallow portions (upper 2km) of these structures showing a low velocity zone along one large fault suggesting that this fault is still active. These large-scale structures imaged in the overriding plate within the Shumagin gap are probably sufficiently profound to play a major role in the behavior of the megathrust in this area, segmentation of great earthquake rupture area, tsunami generation and may influence the frictional properties of the seismogenic zone at depth.
Job Satisfaction of Dietitians in the Army Medical Specialists Corps
1981-01-01
in the clinical branches while only 3.&% were assigned as staff administrative dietitians in the production and service branches. Distribution of the...Leavenworth, Kansas and the U.S. Amy-Baylor University Program in Health Care Administration , Fort Sam Houston, Texas. Test of analysis of variance of mean...Chief, Food Service Division; Chief, Production and Service Branch; Chief, Clinical Dietetic Branch; Staff Administrative Dietitian; Staff Clinical
The earthquake potential of the New Madrid seismic zone
Tuttle, Martitia P.; Schweig, Eugene S.; Sims, John D.; Lafferty, Robert H.; Wolf, Lorraine W.; Haynes, Marion L.
2002-01-01
The fault system responsible for New Madrid seismicity has generated temporally clustered very large earthquakes in A.D. 900 ± 100 years and A.D. 1450 ± 150 years as well as in 1811–1812. Given the uncertainties in dating liquefaction features, the time between the past three New Madrid events may be as short as 200 years and as long as 800 years, with an average of 500 years. This advance in understanding the Late Holocene history of the New Madrid seismic zone and thus, the contemporary tectonic behavior of the associated fault system was made through studies of hundreds of earthquake-induced liquefaction features at more than 250 sites across the New Madrid region. We have found evidence that prehistoric sand blows, like those that formed during the 1811–1812 earthquakes, are probably compound structures resulting from multiple earthquakes closely clustered in time or earthquake sequences. From the spatial distribution and size of sand blows and their sedimentary units, we infer the source zones and estimate the magnitudes of earthquakes within each sequence and thereby characterize the detailed behavior of the fault system. It appears that fault rupture was complex and that the central branch of the seismic zone produced very large earthquakes during the A.D. 900 and A.D. 1450 events as well as in 1811–1812. On the basis of a minimum recurrence rate of 200 years, we are now entering the period during which the next 1811–1812-type event could occur.
NASA Astrophysics Data System (ADS)
Malik, Javed N.; Naik, Sambit P.; Sahoo, Santiswarup; Okumura, Koji; Mohanty, Asmita
2017-09-01
The importance of understanding earthquake sources in India and Nepal was underscored by the disastrous 2015 earthquakes of 25 April Gorkha (Mw 7.8) and 12 May Kodari (Mw 7.3, aftershock) in Nepal. The Kumaon-Garhwal segment experienced strong earthquakes in CE 1505 and CE 1803, probably along the Himalayan Frontal Thrust (HFT). Of these, the CE 1505 was the greatest earthquake reported from the region in historical chronicles. However, no surface ruptures related to either of 1505 or 1803 have been identified from the Kumaon-Garhwal segment, and an ambiguity remained about their ruptures dispite recent reports of CE 1505 surface rupture in Western Nepal. We used high-resolution satellite (CARTOSAT-1) data for mapping active fault traces and carried out paleoseismic studies to identify paleo-earthquakes along the HFT. A trench excavated across the Kaladungi Fault (KF), a branching fault of HFT, revealed evidence of at least three earthquakes. Event I (the oldest) occurred between BCE 467 and CE 570; Event II occurred between CE 1294-1587. We infer that the Event II was the most likely historically-reported, great Himalayan earthquake of CE 1505. Event III occurred between CE 1750-1932, and may represent the large magnitude CE 1803 (7.5 > Mw < 8.0) earthquake. Our findings not only help in understanding the frontal fault dynamics, but also may aid seismic hazard evaluation in India and Nepal.
NASA Astrophysics Data System (ADS)
Shao, Renping; Li, Jing; Hu, Wentao; Dong, Feifei
2013-02-01
Higher order cumulants (HOC) is a new kind of modern signal analysis of theory and technology. Spectrum entropy clustering (SEC) is a data mining method of statistics, extracting useful characteristics from a mass of nonlinear and non-stationary data. Following a discussion on the characteristics of HOC theory and SEC method in this paper, the study of signal processing techniques and the unique merits of nonlinear coupling characteristic analysis in processing random and non-stationary signals are introduced. Also, a new clustering analysis and diagnosis method is proposed for detecting multi-damage on gear by introducing the combination of HOC and SEC into the damage-detection and diagnosis of the gear system. The noise is restrained by HOC and by extracting coupling features and separating the characteristic signal at different speeds and frequency bands. Under such circumstances, the weak signal characteristics in the system are emphasized and the characteristic of multi-fault is extracted. Adopting a data-mining method of SEC conducts an analysis and diagnosis at various running states, such as the speed of 300 r/min, 900 r/min, 1200 r/min, and 1500 r/min of the following six signals: no-fault, short crack-fault in tooth root, long crack-fault in tooth root, short crack-fault in pitch circle, long crack-fault in pitch circle, and wear-fault on tooth. Research shows that this combined method of detection and diagnosis can also identify the degree of damage of some faults. On this basis, the virtual instrument of the gear system which detects damage and diagnoses faults is developed by combining with advantages of MATLAB and VC++, employing component object module technology, adopting mixed programming methods, and calling the program transformed from an *.m file under VC++. This software system possesses functions of collecting and introducing vibration signals of gear, analyzing and processing signals, extracting features, visualizing graphics, detecting and diagnosing faults, detecting and monitoring, etc. Finally, the results of testing and verifying show that the developed system can effectively be used to detect and diagnose faults in an actual operating gear transmission system.
Shao, Renping; Li, Jing; Hu, Wentao; Dong, Feifei
2013-02-01
Higher order cumulants (HOC) is a new kind of modern signal analysis of theory and technology. Spectrum entropy clustering (SEC) is a data mining method of statistics, extracting useful characteristics from a mass of nonlinear and non-stationary data. Following a discussion on the characteristics of HOC theory and SEC method in this paper, the study of signal processing techniques and the unique merits of nonlinear coupling characteristic analysis in processing random and non-stationary signals are introduced. Also, a new clustering analysis and diagnosis method is proposed for detecting multi-damage on gear by introducing the combination of HOC and SEC into the damage-detection and diagnosis of the gear system. The noise is restrained by HOC and by extracting coupling features and separating the characteristic signal at different speeds and frequency bands. Under such circumstances, the weak signal characteristics in the system are emphasized and the characteristic of multi-fault is extracted. Adopting a data-mining method of SEC conducts an analysis and diagnosis at various running states, such as the speed of 300 r/min, 900 r/min, 1200 r/min, and 1500 r/min of the following six signals: no-fault, short crack-fault in tooth root, long crack-fault in tooth root, short crack-fault in pitch circle, long crack-fault in pitch circle, and wear-fault on tooth. Research shows that this combined method of detection and diagnosis can also identify the degree of damage of some faults. On this basis, the virtual instrument of the gear system which detects damage and diagnoses faults is developed by combining with advantages of MATLAB and VC++, employing component object module technology, adopting mixed programming methods, and calling the program transformed from an *.m file under VC++. This software system possesses functions of collecting and introducing vibration signals of gear, analyzing and processing signals, extracting features, visualizing graphics, detecting and diagnosing faults, detecting and monitoring, etc. Finally, the results of testing and verifying show that the developed system can effectively be used to detect and diagnose faults in an actual operating gear transmission system.
1978-10-01
GRA&I UnTucea B WILLIAMS POND DAM ~~1Z~ CT 00551 _ Distribution/ Availabilit Y Codes Avail and/or Dis~tj pecialS RIVER BASIN ~lIILEBANON, COXNNECTICUT...Inspection Report. Alternatives to these recommendations r 1 would include reducing the Williams Pond water levels during expected periods of intense storm...Materials Branch Engi’neering Division FRED J. VNS. Jr., Member Chief, De ’ggn Branch Engineering Division SAUL COOPER, -r Chief, Water Control Branch
An Experimental Comparison of an Intrinsically Programed Text and a Narrative Text.
ERIC Educational Resources Information Center
Senter, R. J.; And Others
The study compared three methods of instruction in binary and octal arithmetic, i.e., (1) Norman Crowder's branched programed text, "The Arithmetic of Computers," (2) another version of this text modified so that subjects could not see the instructional material while answering "branching" questions, and (3) a narrative text…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-09
... CFR Part 52 Environmental protection, Air pollution control, Intergovernmental relations, Nitrogen... Office, Air Programs Branch, 290 Broadway, 25th Floor, New York, New York 10007-1866. This Docket... telephone number is 212-637-4249. FOR FURTHER INFORMATION CONTACT: Paul Truchan, Air Programs Branch...
NASA Astrophysics Data System (ADS)
Le Béon, Maryline; Tseng, Ya-Chu; Klinger, Yann; Elias, Ata; Kunz, Alexander; Sursock, Alexandre; Daëron, Mathieu; Tapponnier, Paul; Jomaa, Rachid
2018-07-01
Continuous sedimentation and detailed stratigraphy are key parameters for a complete paleo-earthquake record. Here, we present a new paleoseismological study across the main strike-slip fault branch of the Dead Sea fault in Lebanon. We aim to expand the current knowledge on local paleoseismicity and seismic behavior of strike-slip plate boundary faults and to explore the limitations of paleoseismology and dating methods. The trench, dug in the Jbab el-Homr basin, reveals a succession of remarkable, very thin (0.1 to 5 cm) palustrine and lacustrine layers, ruptured by at least 17 earthquakes. Absolute ages of 4 samples are obtained from three luminescence-dating techniques targeting fine-grain minerals. Blue-green stimulated luminescence (BGSL) on quartz and post-infrared infrared-stimulated luminescence at 225 °C on polymineral aliquots led to consistent ages, while ages from infrared-stimulated luminescence at 50 °C on polymineral aliquots appeared underestimated. The quartz BGSL ages are 26.9 ± 2.3 ka at 0.50 m depth and 30.8 ± 2.9 ka at 3.65 m depth. During this time period of 3.9 ka ([0; 9.1 ka]), 14 surface-rupturing events occurred with a mean return time of 280 years ([0; 650 years]) and probable clustering. This return time is much shorter than the 1127 ± 135 years return time previously determined at the Yammouneh site, located 30 km south. Although fault segmentation and temporal variations in the earthquake cycle remain possible causes for such different records, we argue that the high-resolution stratigraphy in Jbab is the main factor, enabling us to record small deformations related to smaller-magnitude events that may have been missed in the rougher strata of Yammouneh. Indeed, focusing only on larger events of Jbab, we obtain a mean return time of 720 years ([0; 1670 years]) that is compatible with the Yammouneh record.
NASA Astrophysics Data System (ADS)
Lunina, Oksana
2016-04-01
The forms and location patterns of soil liquefaction induced by earthquakes in southern Siberia, Mongolia, and northern Kazakhstan in 1950 through 2014 have been investigated, using field methods and a database of coseismic effects created as a GIS MapInfo application, with a handy input box for large data arrays. Statistical analysis of the data has revealed regional relationships between the magnitude (Ms) of an earthquake and the maximum distance of its environmental effect to the epicenter and to the causative fault (Lunina et al., 2014). Estimated limit distances to the fault for the Ms = 8.1 largest event are 130 km that is 3.5 times as short as those to the epicenter, which is 450 km. Along with this the wider of the fault the less liquefaction cases happen. 93% of them are within 40 km from the causative fault. Analysis of liquefaction locations relative to nearest faults in southern East Siberia shows the distances to be within 8 km but 69% of all cases are within 1 km. As a result, predictive models have been created for locations of seismic liquefaction, assuming a fault pattern for some parts of the Baikal rift zone. Base on our field and world data, equations have been suggested to relate the maximum sizes of liquefaction-induced clastic dikes (maximum width, visible maximum height and intensity index of clastic dikes) with Ms and local shaking intensity corresponding to the MSK-64 macroseismic intensity scale (Lunina and Gladkov, 2015). The obtained results make basis for modeling the distribution of the geohazard for the purposes of prediction and for estimating the earthquake parameters from liquefaction-induced clastic dikes. The author would like to express their gratitude to the Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences for providing laboratory to carry out this research and Russian Scientific Foundation for their financial support (Grant 14-17-00007).
NASA Astrophysics Data System (ADS)
Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Cambaz, D.; Mutlu, A. K.; Kahraman, M.; Houseman, G. A.; Rost, S.; Thompson, D. A.; Cornwell, D. G.; Utkucu, M.; Gülen, L.
2013-12-01
The North Anatolian Fault (NAF) is one of the major strike slip fault systems on Earth comparable to San Andreas Fault in some ways. Devastating earthquakes have occurred along this system causing major damage and casualties. In order to comprehensively investigate the shallow and deep crustal structure beneath the western segment of NAF, a temporary dense seismic network for North Anatolia (DANA) consisting of 73 broadband sensors was deployed in early May 2012 surrounding a rectangular grid of by 70 km and a nominal station spacing of 7 km with the aim of further enhancing the detection capability of this dense seismic array. This joint project involves researchers from University of Leeds, UK, Bogazici University Kandilli Observatory and Earthquake Research Institute (KOERI), and University of Sakarya and primarily focuses on upper crustal studies such as earthquake locations (especially micro-seismic activity), receiver functions, moment tensor inversions, shear wave splitting, and ambient noise correlations. To begin with, we obtained the hypocenter locations of local earthquakes that occured within the DANA network. The dense 2-D grid geometry considerably enhanced the earthquake detection capability which allowed us to precisely locate events with local magnitudes (Ml) less than 1.0. Accurate earthquake locations will eventually lead to high resolution images of the upper crustal structure beneath the northern and southern branches of NAF in Sakarya region. In order to put additional constraints on the active tectonics of the western part of NAF, we also determined fault plane solutions using Regional Moment Tensor Inversion (RMT) and P wave first motion methods. For the analysis of high quality fault plane solutions, data from KOERI and the DANA project were merged. Furthermore, with the aim of providing insights on crustal anisotropy, shear wave splitting parameters such as lag time and fast polarization direction were obtained for local events recorded within the seismic network with magnitudes larger than 2.5.
NASA Technical Reports Server (NTRS)
Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.
NASA Astrophysics Data System (ADS)
Lin, Y. K.; Ke, M. C.; Ke, S. S.
2016-12-01
An active fault is commonly considered to be active if they have moved one or more times in the last 10,000 years and likely to have another earthquake sometime in the future. The relationship between the fault reactivation and the surface deformation after the Chi-Chi earthquake (M=7.2) in 1999 has been concerned up to now. According to the investigations of well-known disastrous earthquakes in recent years, indicated that surface deformation is controlled by the 3D fault geometric shape. Because the surface deformation may cause dangerous damage to critical infrastructures, buildings, roads, power, water and gas lines etc. Therefore it's very important to make pre-disaster risk assessment via the 3D active fault model to decrease serious economic losses, people injuries and deaths caused by large earthquake. The approaches to build up the 3D active fault model can be categorized as (1) field investigation (2) digitized profile data and (3) build the 3D modeling. In this research, we tracked the location of the fault scarp in the field first, then combined the seismic profiles (had been balanced) and historical earthquake data to build the underground fault plane model by using SKUA-GOCAD program. Finally compared the results come from trishear model (written by Richard W. Allmendinger, 2012) and PFC-3D program (Itasca) and got the calculated range of the deformation area. By analysis of the surface deformation area made from Hsin-Chu Fault, we concluded the result the damage zone is approaching 68 286m, the magnitude is 6.43, the offset is 0.6m. base on that to estimate the population casualties, building damage by the M=6.43 earthquake in Hsin-Chu area, Taiwan. In the future, in order to be applied accurately on earthquake disaster prevention, we need to consider further the groundwater effect and the soil structure interaction inducing by faulting.
On boundary-element models of elastic fault interaction
NASA Astrophysics Data System (ADS)
Becker, T. W.; Schott, B.
2002-12-01
We present the freely available, modular, and UNIX command-line based boundary-element program interact. It is yet another implementation of Crouch and Starfield's (1983) 2-D and Okada's (1992) half-space solutions for constant slip on planar fault segments in an elastic medium. Using unconstrained or non-negative, standard-package matrix routines, the code can solve for slip distributions on faults given stress boundary conditions, or vice versa, both in a local or global reference frame. Based on examples of complex fault geometries from structural geology, we discuss the effects of different stress boundary conditions on the predicted slip distributions of interacting fault systems. Such one-step calculations can be useful to estimate the moment-release efficiency of alternative fault geometries, and so to evaluate the likelihood which system may be realized in nature. A further application of the program is the simulation of cyclic fault rupture based on simple static-kinetic friction laws. We comment on two issues: First, that of the appropriate rupture algorithm. Cellular models of seismicity often employ an exhaustive rupture scheme: fault cells fail if some critical stress is reached, then cells slip once-only by a given amount, and subsequently the redistributed stress is used to check for triggered activations on other cells. We show that this procedure can lead to artificial complexity in seismicity if time-to-failure is not calculated carefully because of numerical noise. Second, we address the question if foreshocks can be viewed as direct expressions of a simple statistical distribution of frictional strength on individual faults. Repetitive failure models based on a random distribution of frictional coefficients initially show irregular seismicity. By repeatedly selecting weaker patches, the fault then evolves into a quasi-periodic cycle. Each time, the pre-mainshock events build up the cumulative moment release in a non-linear fashion. These temporal seismicity patterns roughly resemble the accelerated moment-release features which are sometimes observed in nature.
The PAWS and STEM reliability analysis programs
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Stevenson, Philip H.
1988-01-01
The PAWS and STEM programs are new design/validation tools. These programs provide a flexible, user-friendly, language-based interface for the input of Markov models describing the behavior of fault-tolerant computer systems. These programs produce exact solutions of the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. PAWS uses a Pade approximation as a solution technique; STEM uses a Taylor series as a solution technique. Both programs have the capability to solve numerically stiff models. PAWS and STEM possess complementary properties with regard to their input space; and, an additional strength of these programs is that they accept input compatible with the SURE program. If used in conjunction with SURE, PAWS and STEM provide a powerful suite of programs to analyze the reliability of fault-tolerant computer systems.
Algorithm-Based Fault Tolerance Integrated with Replication
NASA Technical Reports Server (NTRS)
Some, Raphael; Rennels, David
2008-01-01
In a proposed approach to programming and utilization of commercial off-the-shelf computing equipment, a combination of algorithm-based fault tolerance (ABFT) and replication would be utilized to obtain high degrees of fault tolerance without incurring excessive costs. The basic idea of the proposed approach is to integrate ABFT with replication such that the algorithmic portions of computations would be protected by ABFT, and the logical portions by replication. ABFT is an extremely efficient, inexpensive, high-coverage technique for detecting and mitigating faults in computer systems used for algorithmic computations, but does not protect against errors in logical operations surrounding algorithms.
Mechanical Models of Fault-Related Folding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, A. M.
2003-01-09
The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).
NASA Technical Reports Server (NTRS)
Clune, E.; Segall, Z.; Siewiorek, D.
1984-01-01
A program of experiments has been conducted at NASA-Langley to test the fault-free performance of a Fault-Tolerant Multiprocessor (FTMP) avionics system for next-generation aircraft. Baseline measurements of an operating FTMP system were obtained with respect to the following parameters: instruction execution time, frame size, and the variation of clock ticks. The mechanisms of frame stretching were also investigated. The experimental results are summarized in a table. Areas of interest for future tests are identified, with emphasis given to the implementation of a synthetic workload generation mechanism on FTMP.
Analytical Approaches to Guide SLS Fault Management (FM) Development
NASA Technical Reports Server (NTRS)
Patterson, Jonathan D.
2012-01-01
Extensive analysis is needed to determine the right set of FM capabilities to provide the most coverage without significantly increasing the cost, reliability (FP/FN), and complexity of the overall vehicle systems. Strong collaboration with the stakeholders is required to support the determination of the best triggers and response options. The SLS Fault Management process has been documented in the Space Launch System Program (SLSP) Fault Management Plan (SLS-PLAN-085).
Lane, Michael
2013-06-28
Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.
Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN
2008-10-14
An apparatus, program product and method checks for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.
Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN
2012-02-07
An apparatus, program product and method check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.
Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward
2010-02-23
An apparatus and program product check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.
NASA Technical Reports Server (NTRS)
Ferell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Goerz, Jesse; Brown, Barbara
2010-01-01
This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC).
Implementation of context independent code on a new array processor: The Super-65
NASA Technical Reports Server (NTRS)
Colbert, R. O.; Bowhill, S. A.
1981-01-01
The feasibility of rewriting standard uniprocessor programs into code which contains no context-dependent branches is explored. Context independent code (CIC) would contain no branches that might require different processing elements to branch different ways. In order to investigate the possibilities and restrictions of CIC, several programs were recoded into CIC and a four-element array processor was built. This processor (the Super-65) consisted of three 6502 microprocessors and the Apple II microcomputer. The results obtained were somewhat dependent upon the specific architecture of the Super-65 but within bounds, the throughput of the array processor was found to increase linearly with the number of processing elements (PEs). The slope of throughput versus PEs is highly dependent on the program and varied from 0.33 to 1.00 for the sample programs.
Hukerikar, Saurabh; Teranishi, Keita; Diniz, Pedro C.; ...
2017-02-11
In the presence of accelerated fault rates, which are projected to be the norm on future exascale systems, it will become increasingly difficult for high-performance computing (HPC) applications to accomplish useful computation. Due to the fault-oblivious nature of current HPC programming paradigms and execution environments, HPC applications are insufficiently equipped to deal with errors. We believe that HPC applications should be enabled with capabilities to actively search for and correct errors in their computations. The redundant multithreading (RMT) approach offers lightweight replicated execution streams of program instructions within the context of a single application process. Furthermore, the use of completemore » redundancy incurs significant overhead to the application performance.« less
Software fault-tolerance by design diversity DEDIX: A tool for experiments
NASA Technical Reports Server (NTRS)
Avizienis, A.; Gunningberg, P.; Kelly, J. P. J.; Lyu, R. T.; Strigini, L.; Traverse, P. J.; Tso, K. S.; Voges, U.
1986-01-01
The use of multiple versions of a computer program, independently designed from a common specification, to reduce the effects of an error is discussed. If these versions are designed by independent programming teams, it is expected that a fault in one version will not have the same behavior as any fault in the other versions. Since the errors in the output of the versions are different and uncorrelated, it is possible to run the versions concurrently, cross-check their results at prespecified points, and mask errors. A DEsign DIversity eXperiments (DEDIX) testbed was implemented to study the influence of common mode errors which can result in a failure of the entire system. The layered design of DEDIX and its decision algorithm are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hukerikar, Saurabh; Teranishi, Keita; Diniz, Pedro C.
In the presence of accelerated fault rates, which are projected to be the norm on future exascale systems, it will become increasingly difficult for high-performance computing (HPC) applications to accomplish useful computation. Due to the fault-oblivious nature of current HPC programming paradigms and execution environments, HPC applications are insufficiently equipped to deal with errors. We believe that HPC applications should be enabled with capabilities to actively search for and correct errors in their computations. The redundant multithreading (RMT) approach offers lightweight replicated execution streams of program instructions within the context of a single application process. Furthermore, the use of completemore » redundancy incurs significant overhead to the application performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mays, S.E.; Poloski, J.P.; Sullivan, W.H.
1982-07-01
This report describes a risk study of the Browns Ferry, Unit 1, nuclear plant. The study is one of four such studies sponsored by the NRC Office of Research, Division of Risk Assessment, as part of its Interim Reliability Evaluation Program (IREP), Phase II. This report is contained in four volumes: a main report and three appendixes. Appendix B provides a description of Browns Ferry, Unit 1, plant systems and the failure evaluation of those systems as they apply to accidents at Browns Ferry. Information is presented concerning front-line system fault analysis; support system fault analysis; human error models andmore » probabilities; and generic control circuit analyses.« less
Formal specification and mechanical verification of SIFT - A fault-tolerant flight control system
NASA Technical Reports Server (NTRS)
Melliar-Smith, P. M.; Schwartz, R. L.
1982-01-01
The paper describes the methodology being employed to demonstrate rigorously that the SIFT (software-implemented fault-tolerant) computer meets its requirements. The methodology uses a hierarchy of design specifications, expressed in the mathematical domain of multisorted first-order predicate calculus. The most abstract of these, from which almost all details of mechanization have been removed, represents the requirements on the system for reliability and intended functionality. Successive specifications in the hierarchy add design and implementation detail until the PASCAL programs implementing the SIFT executive are reached. A formal proof that a SIFT system in a 'safe' state operates correctly despite the presence of arbitrary faults has been completed all the way from the most abstract specifications to the PASCAL program.
NASA Astrophysics Data System (ADS)
Atgın, Orhan; Çifçi, Günay; Soelien, Christopher; Seeber, Leonardo; Steckler, Michael; Shillington, Donna; Kurt, Hülya; Dondurur, Derman; Okay, Seda; Gürçay, Savaş; Sarıtaş, Hakan; Mert Küçük, H.; Barın, Burcu
2013-04-01
Marmara Sea is a limelight area for investigations due to its tectonic structure and remarkable seismic activity of North Anatolian Fault Zone (NAFZ). As NAFZ separates into 3 branches in the Marmara Sea, it has a complicated tectonic structure which gives rise to debates among researchers. Çınarcık Basin, which is close to Istanbul and very important for its tectonic activity is studied in this thesis. Two different multichannel seismic reflection data were used in this thesis. First data were acquired in 2008 in the frame of TAMAM (Turkish American Multichannel Project) and second data were in 2010 in the frame of TAMAM-2 (PirMarmara) onboard R/V K.Piri Reis. Also high resolution multibeam data were used which is provided by French Marine Institute IFREMER. In the scope of TAMAM project total 3000 km high resolution multi channel data were collected. 3000 km of multichannel seismic reflection profiles were collected in 2008 and 2010 using 72, 111, and 240 channels of streamer with a 6.25 m group interval. The generator-injector airgun was fired every 12.5 or 18.75 m and the resulting MCS data has 10-230 Hz frequency band. In this study, a detailed fault map of the basin is created and the fault on the southern slope of the basin which is interpreted by many researchers in many publications was investigated. And there is no evidence that such a fault exists on the southern part of the basin. With the multichannel seismic reflection data seismic stratigrafic interpretations of the basin deposits were done. The yearly cumulative north-south extension of the basin was calculated by making some calculations on the most active part of the faulting in the basin. In addition, the tilt angles of parallel tilted sediments were calculated and correlated with global sea level changes to calculate ages of the deposits in the basin. Keywords: NAFZ, multi channel seismic reflection, Çınarcık Basin
NASA Astrophysics Data System (ADS)
Nur Fathiyah Jamaludin, Siti; Pubellier, Manuel; Prasad Ghosh, Deva; Menier, David; Pierson, Bernard
2014-05-01
Tectonics in addition to other environmental factors impacts the growth of carbonate platforms and plays an important role in shaping the internal architecture of the platforms. Detailed of faults and fractures development and healing in carbonate environment have not been explored sufficiently. Using 3D seismic and well data, we attempt to reconstruct the structural evolution of a Miocene carbonate platform in Central Luconia Province, offshore Malaysia. Luconia Province is located in the NW coast of Borneo and has become one of the largest carbonate factories in SE Asia. Seismic interpretations including seismic attribute analysis are applied to the carbonate platform to discern its sedimentology and structural details. Detailed seismic interpretations highlight the relationships of carbonate deposition with syn-depositional faulting. Branching conjugate faults are common in this carbonate platform and have become a template for reef growth, attesting lateral facies changes within the carbonate environments. Structural restoration was then appropriately performed on the interpreted seismic sections based on sequential restoration techniques, and provided images different from those of horizon flattening methods. This permits us to compensate faults' displacement, remove recent sediment layers and finally restore the older rock units prior to the fault motions. It allows prediction of platform evolution as a response to faulting before and after carbonate deposition and also enhances the pitfalls of interpretation. Once updated, the reconstructions allow unravelling of the un-seen geological features underneath the carbonate platform, such as paleo-structures and paleo-topography which in turn reflects the paleo-environment before deformations took place. Interestingly, sections balancing and restoration revealed the late-phase (Late Oligocene-Early Miocene) rifting of South China Sea, otherwise difficult to visualize on seismic sections. Later it is shown that this carbonate platform was possibly originated from two or more connected reef build-ups. The platform evolution in terms of tectonic influences on carbonate growth and development may serve as a case example for re-evaluation of pre-Late Miocene structures as a new potential target for hydrocarbon exploration in Central Luconia Province. Eventually, techniques used in this study might be of interest to oil and gas explorers in carbonate system.
Geotechnical Reconnaissance of the 3 November 2002, Mw 7.9, Denali- Earthquake, Alaska
NASA Astrophysics Data System (ADS)
Kayen, R.; Sitar, N.; Carver, G.; Collins, B.; Moss, R.
2002-12-01
Following the Mw 7.9 earthquake on the Denali and Totschunda faults on 3 November 2002, we conducted a reconnaissance of the region to investigate geotechnical and surface rupture features of the event. The focus of our investigation was to characterize the spatial extent and amplitude of ground failures and fault displacements, and assess damage to structures. As a first step, our team flew along the Denali fault from the Black Rapids Glacier, west of the Richardson Highway, to the Glenn Highway (Tok Cut-off). We also conducted a brief air reconnaissance of the southern part of the Totschunda fault northwest of the Nabesna River, and brief ground surveys where the fault intersected the highways and the TAPS pipeline. The most noteworthy aerial observations were that geotechnical and structural damages appeared to be focused towards the eastern end of the Denali- fault rupture area. For example, liquefaction features in the bars of the Tanana River, north of the fault-break, are sparsely located from Fairbanks to Delta, but are pervasive throughout the eastern area of the break to Northway Junction, the eastern limit of our survey. Likewise, for the four glacier-proximal rivers draining toward the north, little or no liquefaction was observed on the western Delta and Johnson Rivers whereas, the eastern Johnson and Tok Rivers and, especially, the Nabesna River had observable-to-abundant fissures and sand vents. Another curious aspect of the apparent differences in strong motion along and across the fault was the abundance of landslide and rock avalanche features on the south side of the fault and a dearth of these features on the northern side. Ice on frozen lakes and ponds were shattered within about 30-40 km of the fault along the western part of the surface rupture and to the east became more widespread. In the Northway region ice on most lakes was broken at distances of more than 100 km. The surface rupture was very linear, continuous, and confined to a relatively narrow zone composed over much of its length by closely spaced en-echelin breaks. Few significant branches or splays were observed. The apparent slip on the Denali Fault was also observed to increase to the east from Black Rapids Glacier toward the Mentasta Village area. , On the Totschunda fault, the rupture decreased in slip before dying out approximately 5 kilometers northwest of the Nabesna River. Where the fault crossed the trans-Alaska pipeline, dislocation occurred along a series of en echelon fissures. One of these en echelon breaks intersected the end of one of the Teflon surfaced skids (sleepers) that supports the pipe in the fault zone, displacing it about a meter but not damaging the pipe. Strong shaking and movement of the pipe resulted in damage to 8 horizontal support members, and 9 anchored supports near the fault crossing. These affects were not critical to the integrity of the pipeline, which performed well during the event. This reconnaissance was supported by the National Science Foundation (NSF) and the US Geological Survey (USGS).
A coverage and slicing dependencies analysis for seeking software security defects.
He, Hui; Zhang, Dongyan; Liu, Min; Zhang, Weizhe; Gao, Dongmin
2014-01-01
Software security defects have a serious impact on the software quality and reliability. It is a major hidden danger for the operation of a system that a software system has some security flaws. When the scale of the software increases, its vulnerability has becoming much more difficult to find out. Once these vulnerabilities are exploited, it may lead to great loss. In this situation, the concept of Software Assurance is carried out by some experts. And the automated fault localization technique is a part of the research of Software Assurance. Currently, automated fault localization method includes coverage based fault localization (CBFL) and program slicing. Both of the methods have their own location advantages and defects. In this paper, we have put forward a new method, named Reverse Data Dependence Analysis Model, which integrates the two methods by analyzing the program structure. On this basis, we finally proposed a new automated fault localization method. This method not only is automation lossless but also changes the basic location unit into single sentence, which makes the location effect more accurate. Through several experiments, we proved that our method is more effective. Furthermore, we analyzed the effectiveness among these existing methods and different faults.
Progress in Computational Simulation of Earthquakes
NASA Technical Reports Server (NTRS)
Donnellan, Andrea; Parker, Jay; Lyzenga, Gregory; Judd, Michele; Li, P. Peggy; Norton, Charles; Tisdale, Edwin; Granat, Robert
2006-01-01
GeoFEST(P) is a computer program written for use in the QuakeSim project, which is devoted to development and improvement of means of computational simulation of earthquakes. GeoFEST(P) models interacting earthquake fault systems from the fault-nucleation to the tectonic scale. The development of GeoFEST( P) has involved coupling of two programs: GeoFEST and the Pyramid Adaptive Mesh Refinement Library. GeoFEST is a message-passing-interface-parallel code that utilizes a finite-element technique to simulate evolution of stress, fault slip, and plastic/elastic deformation in realistic materials like those of faulted regions of the crust of the Earth. The products of such simulations are synthetic observable time-dependent surface deformations on time scales from days to decades. Pyramid Adaptive Mesh Refinement Library is a software library that facilitates the generation of computational meshes for solving physical problems. In an application of GeoFEST(P), a computational grid can be dynamically adapted as stress grows on a fault. Simulations on workstations using a few tens of thousands of stress and displacement finite elements can now be expanded to multiple millions of elements with greater than 98-percent scaled efficiency on over many hundreds of parallel processors (see figure).
NASA Astrophysics Data System (ADS)
Hintersberger, Esther; Decker, Kurt; Lomax, Johanna; Lüthgens, Christopher
2018-02-01
Intraplate regions characterized by low rates of seismicity are challenging for seismic hazard assessment, mainly for two reasons. Firstly, evaluation of historic earthquake catalogues may not reveal all active faults that contribute to regional seismic hazard. Secondly, slip rate determination is limited by sparse geomorphic preservation of slowly moving faults. In the Vienna Basin (Austria), moderate historical seismicity (Imax, obs / Mmax, obs = 8/5.2) concentrates along the left-lateral strike-slip Vienna Basin Transfer Fault (VBTF). In contrast, several normal faults branching out from the VBTF show neither historical nor instrumental earthquake records, although geomorphological data indicate Quaternary displacement along those faults. Here, located about 15 km outside of Vienna, the Austrian capital, we present a palaeoseismological dataset of three trenches that cross one of these splay faults, the Markgrafneusiedl Fault (MF), in order to evaluate its seismic potential. Comparing the observations of the different trenches, we found evidence for five to six surface-breaking earthquakes during the last 120 kyr, with the youngest event occurring at around 14 ka. The derived surface displacements lead to magnitude estimates ranging between 6.2 ± 0.5 and 6.8 ± 0.4. Data can be interpreted by two possible slip models, with slip model 1 showing more regular recurrence intervals of about 20-25 kyr between the earthquakes with M ≥ 6.5 and slip model 2 indicating that such earthquakes cluster in two time intervals in the last 120 kyr. Direct correlation between trenches favours slip model 2 as the more plausible option. Trench observations also show that structural and sedimentological records of strong earthquakes with small surface offset have only low preservation potential. Therefore, the earthquake frequency for magnitudes between 6 and 6.5 cannot be constrained by the trenching records. Vertical slip rates of 0.02-0.05 mm a-1 derived from the trenches compare well to geomorphically derived slip rates of 0.02-0.09 mm a-1. Magnitude estimates from fault dimensions suggest that the largest earthquakes observed in the trenches activated the entire fault surface of the MF including the basal detachment that links the normal fault with the VBTF. The most important implications of these palaeoseismological results for seismic hazard assessment are as follows. (1) The MF is an active seismic source, capable of rupturing the surface despite the lack of historical earthquakes. (2) The MF is kinematically and geologically equivalent to a number of other splay faults of the VBTF. It is reasonable to assume that these faults are potential sources of large earthquakes as well. The frequency of strong earthquakes near Vienna is therefore expected to be significantly higher than the earthquake frequency reconstructed for the MF alone. (3) Although rare events, the potential for earthquake magnitudes equal or greater than M = 7.0 in the Vienna Basin should be considered in seismic hazard studies.
NASA Astrophysics Data System (ADS)
Lay, Vera; Bodenburg, Sascha; Buske, Stefan; Townend, John; Kellett, Richard; Savage, Martha; Schmitt, Douglas; Constantinou, Alexis; Eccles, Jennifer; Lawton, Donald; Hall, Kevin; Bertram, Malcolm; Gorman, Andrew
2017-04-01
The plate-bounding Alpine Fault in New Zealand is an 850 km long transpressive continental fault zone that is late in its earthquake cycle. The Deep Fault Drilling Project (DFDP) aims to deliver insight into the geological structure of this fault zone and its evolution by drilling and sampling the Alpine Fault at depth. Previously analysed 2D reflection seismic data image the main Alpine Fault reflector at a depth of 1.5-2.2 km with a dip of approximately 48° to the southeast below the DFDP-2 borehole. Additionally, there are indications of a more complex 3D fault structure with several fault branches which have not yet been clearly imaged in detail. For that reason we acquired a 3D-VSP seismic data set at the DFDP-2 drill site in January 2016. A zero-offset VSP and a walk-away VSP survey were conducted using a Vibroseis source. Within the borehole, a permanently installed "Distributed Acoustic Fibre Optic Cable" (down to 893 m) and a 3C Sercel slimwave tool (down to 400 m) were used to record the seismic wavefield. In addition, an array of 160 three-component receivers with a spacing of 10 m perpendicular and 20 m parallel to the main strike of the Alpine Fault was set up and moved successively along the valley to record reflections from the main Alpine Fault zone over a broad depth range and to derive a detailed 3D tomographic velocity model in the hanging wall. We will show a detailed 3D velocity model derived from first-arrival traveltime tomography. Subsets of the whole data set were analysed separately to estimate the corresponding ray coverage and the reliability of the observed features in the obtained velocity model. By testing various inversion parameters and starting models, we derived a detailed near-surface velocity model that reveals the significance of the old glacial valley structures. Hence, this new 3D model improves the velocity model derived previously from a 2D seismic profile line in that area. Furthermore, processing of the dense 3C data shows clear reflections on both inline and crossline profiles. Correlating single reflection events enables us to identify the origin of reflections recorded in the data and reveal their 3D character. This array data gives strong evidence for reflections coming from the side, possibly from the steeply dipping valley flanks. Finally, the data will be processed using advanced seismic imaging methods to derive a detailed structural image of the valley and the fault zone at depth. Thus, the results will provide a detailed basis for a seismic site characterization at the DFDP-2 drill site, that will be of crucial importance for further structural and geological investigations of the architecture of the Alpine Fault in this area.
ERIC Educational Resources Information Center
Sivaci, Sadik Yuksel
2017-01-01
In this study, the relationship between attitudes of pedagogical formation program pre-service teachers towards teaching profession and their self-efficacies has been examined. In this case, the effect of graduation branches of the pre-service teachers on teacher self-efficacies and the effect of teacher self-efficacies on attitudes towards…
Cost and benefits design optimization model for fault tolerant flight control systems
NASA Technical Reports Server (NTRS)
Rose, J.
1982-01-01
Requirements and specifications for a method of optimizing the design of fault-tolerant flight control systems are provided. Algorithms that could be used for developing new and modifying existing computer programs are also provided, with recommendations for follow-on work.
V&V of Fault Management: Challenges and Successes
NASA Technical Reports Server (NTRS)
Fesq, Lorraine M.; Costello, Ken; Ohi, Don; Lu, Tiffany; Newhouse, Marilyn
2013-01-01
This paper describes the results of a special breakout session of the NASA Independent Verification and Validation (IV&V) Workshop held in the fall of 2012 entitled "V&V of Fault Management: Challenges and Successes." The NASA IV&V Program is in a unique position to interact with projects across all of the NASA development domains. Using this unique opportunity, the IV&V program convened a breakout session to enable IV&V teams to share their challenges and successes with respect to the V&V of Fault Management (FM) architectures and software. The presentations and discussions provided practical examples of pitfalls encountered while performing V&V of FM including the lack of consistent designs for implementing faults monitors and the fact that FM information is not centralized but scattered among many diverse project artifacts. The discussions also solidified the need for an early commitment to developing FM in parallel with the spacecraft systems as well as clearly defining FM terminology within a project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram
The systems resilience research community has developed methods to manually insert additional source-program level assertions to trap errors, and also devised tools to conduct fault injection studies for scalar program codes. In this work, we contribute the first vector oriented LLVM-level fault injector VULFI to help study the effects of faults in vector architectures that are of growing importance, especially for vectorizing loops. Using VULFI, we conduct a resiliency study of nine real-world vector benchmarks using Intel’s AVX and SSE extensions as the target vector instruction sets, and offer the first reported understanding of how faults affect vector instruction sets.more » We take this work further toward automating the insertion of resilience assertions during compilation. This is based on our observation that during intermediate (e.g., LLVM-level) code generation to handle full and partial vectorization, modern compilers exploit (and explicate in their code-documentation) critical invariants. These invariants are turned into error-checking code. We confirm the efficacy of these automatically inserted low-overhead error detectors for vectorized for-loops.« less
The Office of the Materials Division
NASA Technical Reports Server (NTRS)
Ramsey, amanda J.
2004-01-01
I was assigned to the Materials Division, which consists of the following branches; the Advanced Metallics Branch/5120-RMM, Ceramics Branch/5130-RMC, Polymers Branch/5150-RMP, and the Durability and Protective Coatings Branch/5160-RMD. Mrs. Pamela Spinosi is my assigned mentor. She was assisted by Ms.Raysa Rodriguez/5100-RM and Mrs.Denise Prestien/5100-RM, who are both employed by InDyne, Inc. My primary assignment this past summer was working directly with Ms. Rodriguez, assisting her with setting up the Integrated Financial Management Program (IFMP) 5130-RMC/Branch procedures and logs. These duties consisted of creating various spreadsheets for each individual branch member, which were updated daily. It was not hard to familiarize myself with these duties since this is my second summer working with Ms Rodriguez at NASA Glenn Research Center. RMC ordering laboratory, supplies and equipment for the Basic Materials Laboratory (Building 106) using the IF'MP/Purchase Card (P-card), a NASA-wide software program. I entered into the IFMP/Travel and Requisitions System, new Travel Authorizations for the 5130-RMC Civil Servant Branch Members. I also entered and completed Travel Vouchers for the 5130-RMC Ceramics Branch. I assisted in the Division Office creating new Emergency Contact list for the Materials Division. I worked with Dr. Hugh Gray, the Division Chief, and Dr. Ajay Misra, the 5130-RMC Branch Chief, on priority action items, with a close deadline, for a large NASA Proposal. Another project was working closely with Ms. Rodriguez in organizing and preparing for Dr. Ajay K. Misra's SESCDP (two year detail). This consisted of organizing files, file folders, personal information, and recording all data material onto CD's and printing all presentations for display in binders. I attended numerous Branch meetings, and observed many changes in the Branch Management organization.
NASA Astrophysics Data System (ADS)
Rundle, J.; Rundle, P.; Donnellan, A.; Li, P.
2003-12-01
We consider the problem of the complex dynamics of earthquake fault systems, and whether numerical simulations can be used to define an ensemble forecasting technology similar to that used in weather and climate research. To effectively carry out such a program, we need 1) a topological realistic model to simulate the fault system; 2) data sets to constrain the model parameters through a systematic program of data assimilation; 3) a computational technology making use of modern paradigms of high performance and parallel computing systems; and 4) software to visualize and analyze the results. In particular, we focus attention of a new version of our code Virtual California (version 2001) in which we model all of the major strike slip faults extending throughout California, from the Mexico-California border to the Mendocino Triple Junction. We use the historic data set of earthquakes larger than magnitude M > 6 to define the frictional properties of all 654 fault segments (degrees of freedom) in the model. Previous versions of Virtual California had used only 215 fault segments to model the strike slip faults in southern California. To compute the dynamics and the associated surface deformation, we use message passing as implemented in the MPICH standard distribution on a small Beowulf cluster consisting of 10 cpus. We are also planning to run the code on significantly larger machines so that we can begin to examine much finer spatial scales of resolution, and to assess scaling properties of the code. We present results of simulations both as static images and as mpeg movies, so that the dynamical aspects of the computation can be assessed by the viewer. We also compute a variety of statistics from the simulations, including magnitude-frequency relations, and compare these with data from real fault systems.
Detailed Northern Anatolian Fault Zone crustal structure from receiver functions
NASA Astrophysics Data System (ADS)
Cornwell, D. G.; Kahraman, M.; Thompson, D. A.; Houseman, G. A.; Rost, S.; Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Gülen, L.; Utkucu, M.
2013-12-01
We present high resolution images derived from receiver functions of the continental crust in Northern Turkey that is dissected by two fault strands of the Northern Anatolian Fault Zone (NAFZ). The NAFZ is a major continental strike-slip fault system that is comparable in length and slip rate to the San Andreas Fault Zone. Recent large earthquakes occurred towards the western end of the NAFZ in 1999 at Izmit (M7.5) and Düzce (M7.2). As part of the multi-disciplinary Faultlab project, we aim to develop a model of NAFZ crustal structure and locate deformation by constraining variations in seismic properties and anisotropy in the upper and lower crust. The crustal model will be an input to test deformation scenarios in order to match geodetic observations from different phases of the earthquake loading cycle. We calculated receiver functions from teleseismic earthquakes recorded by a rectangular seismometer array spanning the NAFZ with 66 stations at a nominal inter-station spacing of 7 km and 7 additional stations further afield. This Dense Array for North Anatolia (DANA) was deployed from May 2012 until September 2013 and we selected large events (Mw>5.5) from the high quality seismological dataset to analyze further. Receiver functions were calculated for different frequency bands then collected into regional stacks before being inverted for crustal S-wave velocity structure beneath the entire DANA array footprint. In addition, we applied common conversion point (CCP) migration using a regional velocity model to construct a migrated 3D volume of P-to-S converted and multiple energy in order to identify the major crustal features and layer boundaries. We also performed the CCP migration with transverse receiver functions in order to identify regions of anisotropy within the crustal layers. Our preliminary results show a heterogeneous crust above a flat Moho that is typically at a depth of 33 km. We do not observe a prominent step in the Moho beneath the surface locations at either of the NAFZ fault branches. We observe first-order differences in crustal structure between the crustal blocks that are separated by the faults. Each crustal block also contains regions of strong anisotropy at various depths that will be analyzed further with the full seismological dataset and compared to petrofabric analyses of exhumed fault segments. We will compare our results with other seismological imaging techniques to attempt to resolve the distribution of fault zone deformation with respect to depth. This information will be useful to other complementary Faultlab techniques that will add a detailed insight into the fault structure and dynamics of the NAFZ and contribute more broadly into ongoing research into major strike-slip fault zones.
NASA Technical Reports Server (NTRS)
Brenner, Richard; Lala, Jaynarayan H.; Nagle, Gail A.; Schor, Andrei; Turkovich, John
1994-01-01
This program demonstrated the integration of a number of technologies that can increase the availability and reliability of launch vehicles while lowering costs. Availability is increased with an advanced guidance algorithm that adapts trajectories in real-time. Reliability is increased with fault-tolerant computers and communication protocols. Costs are reduced by automatically generating code and documentation. This program was realized through the cooperative efforts of academia, industry, and government. The NASA-LaRC coordinated the effort, while Draper performed the integration. Georgia Institute of Technology supplied a weak Hamiltonian finite element method for optimal control problems. Martin Marietta used MATLAB to apply this method to a launch vehicle (FENOC). Draper supplied the fault-tolerant computing and software automation technology. The fault-tolerant technology includes sequential and parallel fault-tolerant processors (FTP & FTPP) and authentication protocols (AP) for communication. Fault-tolerant technology was incrementally incorporated. Development culminated with a heterogeneous network of workstations and fault-tolerant computers using AP. Draper's software automation system, ASTER, was used to specify a static guidance system based on FENOC, navigation, flight control (GN&C), models, and the interface to a user interface for mission control. ASTER generated Ada code for GN&C and C code for models. An algebraic transform engine (ATE) was developed to automatically translate MATLAB scripts into ASTER.
Annual Research Highlights, 1979-80. Alberta Education, September 1980.
ERIC Educational Resources Information Center
Alberta Dept. of Education, Edmonton. Planning and Research Branch.
The Planning and Research Branch is a service branch of Alberta Education which provides information to planning and policy makers within Alberta Education to assist in making realistic decisions about educational directions and programs. This guide presents information about the operation of the Branch and reports in capsule form on a selection…
Technical activities of the configuration aeroelasticity branch
NASA Technical Reports Server (NTRS)
Cole, Stanley R. (Editor)
1991-01-01
A number of recent technical activities of the Configuration Aeroelasticity Branch of the NASA Langley Research Center are discussed in detail. The information on the research branch is compiled in twelve separate papers. The first of these topics is a summary of the purpose of the branch, including a full description of the branch and its associated projects and program efforts. The next ten papers cover specific projects and are as follows: Experimental transonic flutter characteristics of supersonic cruise configurations; Aeroelastic effects of spoiler surfaces mounted on a low aspect ratio rectangular wing; Planform curvature effects on flutter of 56 degree swept wing determined in Transonic Dynamics Tunnel (TDT); An introduction to rotorcraft testing in TDT; Rotorcraft vibration reduction research at the TDT; A preliminary study to determine the effects of tip geometry on the flutter of aft swept wings; Aeroelastic models program; NACA 0012 pressure model and test plan; Investigation of the use of extension twist coupling in composite rotor blades; and Improved finite element methods for rotorcraft structures. The final paper describes the primary facility operation by the branch, the Langley TDT.
NASA Technical Reports Server (NTRS)
Harper, R. E.; Alger, L. S.; Babikyan, C. A.; Butler, B. P.; Friend, S. A.; Ganska, R. J.; Lala, J. H.; Masotto, T. K.; Meyer, A. J.; Morton, D. P.
1992-01-01
Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation.
High Resolution Magnetic surveys across the Emeelt and Hustaï faults near Ulaanbaatar, Mongolia
NASA Astrophysics Data System (ADS)
Fleury, S.; Munschy, M.; Schlupp, A.; Ferry, M.; Munkhuu, U.
2012-04-01
During the 20th century, Mongolia was one of the most seismic active intra-continental areas in the world. Some recent observations raise strong concern on still unidentified structures around Ulaanbaatar (1.5 M inhabitants). Near the city, instrumental seismicity shows continuous activity with five M 4+ events since 1974 and a M 5.4. Since 2005, the number of earthquake in the shallow crust (above 10-20 km) has significantly increased on the Emeelt fault area, west of Ulaanbaatar. A multi-disciplinary study - including GPR profiling, magnetic mapping, DGPS microtopography, morphotectonic observations and paleoseismic trenching - was carried out in the fault areas to assess their seismogenic potential. We present preliminary results of high resolution magnetic surveys using three axis fluxgate magnetic sensors. In Emeelt and Hustaï area, about 4 km2 were prospected with survey line spacing of 5 m to investigate the subsurface characteristic of the active faults. The main faults are clearly detected as well as secondary branches that affect buried paleo-channels. The combined approach of morphotectonic observations and magnetic measurements was used to select the location of paleoseismic trenches. The fluxgate equipment, being an easy, non-invasive and high-resolution way of mapping was used inside trenches to map exposures. Micro magnetic surveys were conducted on the walls of the trenches along 30 m, with a vertical extent of 2 m and a spacing of 0.1 m between each line. These measurements are used to define different units of sediments with a very high level of detail particularly where the stratigraphic interfaces are poorly visible. Magnetic mapping reveals a fault zone in recent units that consists of intense deformational patterns. Simultaneous use of horizontal and vertical maps may yield a 3D interpretation of the distribution of sedimentary layers. Faulted units related to recent depositional process attest for the ongoing activity of the Emeelt and Hustaï faults. This novel approach brings supplementary physical measurements to classic trench observations as well as access to physical properties not observable with the naked eye. It proves to be a useful complement to photologs and field observations. Finally, our multidisciplinary approach helps assess seismic hazard for the nearby capital of Mongolia, Ulaanbaatar.
Barnett, Jason; Watson, Jean -Paul; Woodruff, David L.
2016-11-27
Progressive hedging, though an effective heuristic for solving stochastic mixed integer programs (SMIPs), is not guaranteed to converge in this case. Here, we describe BBPH, a branch and bound algorithm that uses PH at each node in the search tree such that, given sufficient time, it will always converge to a globally optimal solution. Additionally, to providing a theoretically convergent “wrapper” for PH applied to SMIPs, computational results demonstrate that for some difficult problem instances branch and bound can find improved solutions after exploring only a few nodes.
Geodynamics Branch research report, 1982
NASA Technical Reports Server (NTRS)
Kahn, W. D. (Editor); Cohen, S. C. (Editor)
1983-01-01
The research program of the Geodynamics Branch is summarized. The research activities cover a broad spectrum of geoscience disciplines including space geodesy, geopotential field modeling, tectonophysics, and dynamic oceanography. The NASA programs which are supported by the work described include the Geodynamics and Ocean Programs, the Crustal Dynamics Project, the proposed Ocean Topography Experiment (TOPEX) and Geopotential Research Mission. The individual papers are grouped into chapters on Crustal Movements, Global Earth Dynamics, Gravity Field Model Development, Sea Surface Topography, and Advanced Studies.
NASA Technical Reports Server (NTRS)
Abdel-Gawad, M. (Principal Investigator); Silverstein, J.; Tubbesing, L.
1973-01-01
The author has identified the following significant results. ERTS-1 imagery covering the eastern California-Nevada seismic belt were utilized to study the fault pattern in relation to the distribution of earthquake epicenters and Quaternary volcanic rocks. Many suspected faults not previously mapped were identified. These include several suspected shear zones in Nevada, faults showing evidence of recent breakage, and major lineaments. Highly seismic areas are generally characterized by Holocene faulting and Quaternary volcanic activity. However, several major fault segments showing evidence of recent breakage are associated with little or no seismicity. The tectonic pattern strongly suggests that the eastern California-Nevada seismic belt coincides with a major crustal rift associated with zones of lateral shear. New data on potentially active fault zones have direct practical applications in national and local earthquake hazard reduction programs. Positive contacts have been made with Kern and Ventura Counties to make results of this investigation available for application to their earthquake hazards definition projects.
Multi-directional fault detection system
Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward
2010-11-23
An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.
Multi-directional fault detection system
Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN
2009-03-17
An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.
Multi-directional fault detection system
Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward
2010-06-29
An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.
Planetary Gearbox Fault Detection Using Vibration Separation Techniques
NASA Technical Reports Server (NTRS)
Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason
2011-01-01
Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.
Map and database of Quaternary faults and folds in Colombia and its offshore regions
Paris, Gabriel; Machette, Michael N.; Dart, Richard L.; Haller, Kathleen M.
2000-01-01
As part of the International Lithosphere Program’s “World Map of Major Active Faults,” the U.S. Geological Survey (USGS) is assisting in the compilation of a series of digital maps of Quaternary faults and folds in Western Hemisphere countries. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. They are accompanied by databases that describe these features and document current information on their activity in the Quaternary. Top date, the project has published fault and fold maps for Costa Rica (Montero and others, 1998), Panama (Cowan and others, 1998), Venezuela (Audemard and others, 2000), Bolovia/Chile (Lavenu, and others, 2000), and Argentina (Costa and others, 2000). The project is a key part of the Global Seismic Hazards Assessment Program (ILP Project II-0) for the International Decade for Natural Hazard Disaster Reduction.
Crustal deformation in southern California using SAR interferometry
Peltzer, G.; Rosen, P.; Rogez, F.; Hudnut, K.
1997-01-01
By combining pairs of ERS-1/2 SAR images of Southern California spanning long time intervals (1-4 years), we were able to measure the rate of slow deformation processes along faults activated during the Landers 1992 earthquake. Interferograms revealed several centimeters of post-seismic rebound in step-overs of the 1992 break, with a characteristic decay rate of -280 days. We interpreted this process as due to pore fluid flow as pore pressure gradients caused by coseismic stress changes dissipate. The data also revealed evidence of after-slip on different sections of the fault. The southern branches of the 1992 break experienced surface creep producing sharp phase cuts hi the interferometric maps. The same approach was used in the Los Angeles basin, which is currently undergoing NS shortening at a rate of ???8 mm/yr. The tectonic signal in imerferograms of the Los Angeles basin is intermingled with signals due to other sources such as ground subsidence caused by oil and water withdrawal.
NASA Astrophysics Data System (ADS)
Vallage, A.; Klinger, Y.; Lacassin, R.; Delorme, A.; Pierrot-Deseilligny, M.
2016-10-01
The 2013 Mw7.7 Balochistan earthquake, Pakistan, ruptured the Hoshab fault. Left-lateral motion dominated the deformation pattern, although significant vertical motion is found along the southern part of the rupture. Correlation of high-resolution (2.5 m) optical satellite images provided horizontal displacement along the entire rupture. In parallel, we mapped the ground rupture geometry at 1:500 scale. We show that the azimuth of the ground rupture distributes mainly between two directions, N216° and N259°. The direction N216° matches the direction of preexisting geologic structures resulting from penetrative deformation caused by the nearby Makran subduction. Hence, during a significant part of its rupture, the 2013 Balochistan rupture kept switching between a long-term fault front and secondary branches, in which existence and direction are related to the compressional context. It shows unambiguous direct interactions between different preexisting geologic structures, regional stress, and dynamic-rupture stress, which controlled earthquake propagation path.
What Are Common Symptoms of Pheochromocytoma?
... of Legislation and Public Policy (OLPP) Office of Science Policy, Reporting, and Program Analysis (OSPRA) Division of Extramural Research (DER) Extramural Scientific Branches Grants Management Branch (GMB) Office of Committee Management ( ...
Materials Division research and technology accomplishments for FY 87 and plans for FY 88
NASA Technical Reports Server (NTRS)
Brinkley, Kay L.
1988-01-01
The research program of the Materials Division is presented as FY 87 accomplishments and FY 88 plans. The accomplishments for each Branch are highlighted and plans are outlined. Publications of the Division are included by Branch. This material will be useful in program coordination with other government organizations, universities, and industries in areas of mutual interest.
Materials Division research and technology accomplishments for FY 89 and plans for FY 90
NASA Technical Reports Server (NTRS)
Brinkley, Kay L.
1990-01-01
The research program of the Materials Division is presented as FY-89 accomplishments and FY-90 plans. The accomplishments for each Branch are highlighted and plans are outlined. Publications of the Division are included by Branch. This material will be useful in program coordination with other government organizations, universities, and industries in areas of mutual interest.
Materials Division research and technical accomplishments for FY 1988 and plans for FY 1989
NASA Technical Reports Server (NTRS)
Brinkley, Kay L.
1989-01-01
The research program of the Materials Division is presented as FY-88 accomplishments and FY-89 plans. The accomplishments for each Branch are highlighted and plans are outlined. Publications of the Division are included by Branch. This material is useful in program coordination with other government organizations, universities, and industry in areas of mutual interest.
Fault Management Technology Maturation for NASA's Constellation Program
NASA Technical Reports Server (NTRS)
Waterman, Robert D.
2010-01-01
This slide presentation reviews the maturation of fault management technology in preparation for the Constellation Program. There is a review of the Space Shuttle Main Engine (SSME) and a discussion of a couple of incidents with the shuttle main engine and tanking that indicated the necessity for predictive maintenance. Included is a review of the planned Ares I-X Ground Diagnostic Prototype (GDP) and further information about detection and isolation of faults using Testability Engineering and Maintenance System (TEAMS). Another system that being readied for use that detects anomalies, the Inductive Monitoring System (IMS). The IMS automatically learns how the system behaves and alerts operations it the current behavior is anomalous. The comparison of STS-83 and STS-107 (i.e., the Columbia accident) is shown as an example of the anomaly detection capabilities.
NASA Astrophysics Data System (ADS)
Sorlien, C. C.; Seeber, L.; Diebold, J.; Shillington, D.; Steckler, M. S.; Gurcay, S.; Kucuk, H. M.; Akhun, S. D.; Timur, D.; Dondurur, D.; Kurt, H.; Perincek, E.; Ozer, P.; Imren, C.; Coskun, S.; Buyukasik, E.; Cevatoglu, M.; Cifci, G.; Demirbag, E.
2008-12-01
We collected high-resolution multichannel seismic reflection (MCS) and chirp seismic data across the North Anatolian Fault (NAF) system in the Marmara Sea aboard the R/V K. Piri Reis during July 2008. Three 1200+ m-deep bathymetric basins are arrayed along the North strand of the NAF. This strand passes closest to Istanbul and is considered to carry most of the current and late Holocene plate motion, but other strands to the south are active and may have been more important in the past. The transverse Central Marmara Ridge, formed by a contractional anticline, separates two of the basins. Filled sedimentary basins underlie the southern shelf, and, adjacent to that shelf, the partly-filled North Imrali basin underlies a 400 m-deep platform. Our chirp data image several strands of the southern fault system, 50 km south of the northern NAF on the inner (southern) shelf, that offset strata which postdate the ~12 ka marine transgression. Another W-striking fault that deforms post-12 ka strata cuts the mid-southern shelf. A WNW-striking segment of the Imrali fault system is associated with normal-separation, 300 m-high sea floor scarps that separate the shelf from the North Imrali basin. This basin is cut by numerous NW-striking normal-separation faults, some deforming the sea floor. At least 4 complexes of shelf edge deltas, whose tops were formed near sea level or lake level, are stacked between 500 and 900 m depth in this downthrown block of the Imrali fault. The originally sub- horizontal tops of each delta are now locally progressively tilted and folded near an ENE-striking branch of the Imrali fault (known as the Yalova fault). Lacking stratigraphic control, we infer that the deltas represent glacial intervals spaced at 100 ka during the late Pleistocene. Assuming a locally constant subsidence rate, with lowstands near -90 m, and the observed 130 m vertical spacing between the deltas, subsidence rates would be ~1.3 mm/yr, and the youngest well-preserved delta would be ~320 ka (MIS10). Alternatively, it corresponds to the pronounced 420 ka glacial (MIS12). Younger deltas did not form in this area, at least not with prograding geometries, because the water depth became too great. Possibly, outer shelf anticlinal growth may have diverted the river westward, where younger deltas are preserved on the shelf. The slope between the 400 m platform and the lower flank of the NE-trending Central Marmara Ridge is dominated by north-trending and northeast-trending 1 km-wavelength folds. These folds grew through the late Quaternary interval of deposition of the imaged deltas, and they deform the seafloor. They could be secondary shortening structures, forced folds above blind normal faults, or both. Farther east along the same slope, low-angle normal faults also grew through much of late Quaternary time. These faults root above unfaulted strata, and represent a slow collapse of the escarpment into the deep basin. NE-trending thrust- folds, NW-striking normal faults, WNW-striking transtensional faults, and ENE-striking transpressional faults are all consistent with the E-W right-lateral continental transform fault system.
Boundary integral solutions for faults in flowing rock
NASA Astrophysics Data System (ADS)
Wei, Wei
We develop new boundary-integral solutions for faulting in viscous rock and implement solutions numerically with a boundary-element computer program, called Faux_Pas. In the solutions, large permanent rock deformations near faults are treated with velocity discontinuities within linear, incompressible, creeping, viscous flows. The faults may have zero strength or a finite strength that can be a constant or varying with deformation. Large deformations are achieved by integrating step by step with the fourth-order Runge-Kutta method. With this method, the boundaries and passive markers are updated dynamically. Faux_Pas has been applied to straight and curved elementary faults, and to listric and dish compound faults, composed of two or more elementary faults, such as listric faults and dish faults, all subjected to simple shear, shortening and lengthening. It reproduces the essential geometric elements seen in seismic profiles of fault-related folds associated with listric thrust faults in the Bighorn Basin of Wyoming, with dish faults in the Appalachians in Pennsylvania, Parry Islands of Canada and San Fernando Valley, California, and with listric normal faults in the Gulf of Mexico. Faux_Pas also predicts that some of these fault-related structures will include fascinating minor folds, especially in the footwall of the fault, that have been recognized earlier but have not been known to be related to the faulting. Some of these minor folds are potential structural traps. Faux_Pas is superior in several respects to current geometric techniques of balancing profiles, such as the "fault-bend fold" construction. With Faux_Pas, both the hanging wall and footwall are deformable, the faults are mechanical features, the cross sections are automatically balanced and, most important, the solutions are based on the first principles of mechanics. With the geometric techniques, folds are drawn only in the hanging wall, the faults are simply lines, the cross sections are arbitrarily balanced and, most important, the drawings are based on unsubstantiated rules of thumb. Faux_Pas provides the first rational tool for the study of fault-related folds.
Factors That Affect Software Testability
NASA Technical Reports Server (NTRS)
Voas, Jeffrey M.
1991-01-01
Software faults that infrequently affect software's output are dangerous. When a software fault causes frequent software failures, testing is likely to reveal the fault before the software is releases; when the fault remains undetected during testing, it can cause disaster after the software is installed. A technique for predicting whether a particular piece of software is likely to reveal faults within itself during testing is found in [Voas91b]. A piece of software that is likely to reveal faults within itself during testing is said to have high testability. A piece of software that is not likely to reveal faults within itself during testing is said to have low testability. It is preferable to design software with higher testabilities from the outset, i.e., create software with as high of a degree of testability as possible to avoid the problems of having undetected faults that are associated with low testability. Information loss is a phenomenon that occurs during program execution that increases the likelihood that a fault will remain undetected. In this paper, I identify two brad classes of information loss, define them, and suggest ways of predicting the potential for information loss to occur. We do this in order to decrease the likelihood that faults will remain undetected during testing.
New Madrid seismotectonic study. Activities during fiscal year 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buschbach, T.C.
1984-04-01
The New Madrid Seismotectonic Study is a coordinated program of geological, geophysical, and seismological investigations of the area within a 200-mile radius of New Madrid, Missouri. The study is designed to define the structural setting and tectonic history of the area in order to realistically evaluate earthquake risks in the siting of nuclear facilities. Fiscal year 1982 included geological and geophysical studies aimed at better definition of the east-west trending fault systems - the Rough Creek and Cottage Grove systems - and the northwest-trending Ste. Genevieve faulting. A prime objective was to determine the nature and history of faulting andmore » to establish the relationship with that faulting and the northeast-trending faults of the Wabash Valley and New Madrid areas. 27 references, 61 figures.« less
Object-Oriented Algorithm For Evaluation Of Fault Trees
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Koen, B. V.
1992-01-01
Algorithm for direct evaluation of fault trees incorporates techniques of object-oriented programming. Reduces number of calls needed to solve trees with repeated events. Provides significantly improved software environment for such computations as quantitative analyses of safety and reliability of complicated systems of equipment (e.g., spacecraft or factories).
What Are the Symptoms of Pituitary Tumors?
... of Legislation and Public Policy (OLPP) Office of Science Policy, Reporting, and Program Analysis (OSPRA) Division of Extramural Research (DER) Extramural Scientific Branches Grants Management Branch (GMB) Office of Committee Management ( ...
How Do People Cope with Muscular Dystrophy?
... of Legislation and Public Policy (OLPP) Office of Science Policy, Reporting, and Program Analysis (OSPRA) Division of Extramural Research (DER) Extramural Scientific Branches Grants Management Branch (GMB) Office of Committee Management ( ...
What Are Common Treatments for Turner Syndrome?
... of Legislation and Public Policy (OLPP) Office of Science Policy, Reporting, and Program Analysis (OSPRA) Division of Extramural Research (DER) Extramural Scientific Branches Grants Management Branch (GMB) Office of Committee Management ( ...
1988-08-20
34 William A. Link, Patuxent Wildlife Research Center "Increasing reliability of multiversion fault-tolerant software design by modulation," Junryo 3... Multiversion lault-Tolerant Software Design by Modularization Junryo Miyashita Department of Computer Science California state University at san Bernardino Fault...They shall beE refered to as " multiversion fault-tolerant software design". Onel problem of developing multi-versions of a program is the high cost
Structural system reliability calculation using a probabilistic fault tree analysis method
NASA Technical Reports Server (NTRS)
Torng, T. Y.; Wu, Y.-T.; Millwater, H. R.
1992-01-01
The development of a new probabilistic fault tree analysis (PFTA) method for calculating structural system reliability is summarized. The proposed PFTA procedure includes: developing a fault tree to represent the complex structural system, constructing an approximation function for each bottom event, determining a dominant sampling sequence for all bottom events, and calculating the system reliability using an adaptive importance sampling method. PFTA is suitable for complicated structural problems that require computer-intensive computer calculations. A computer program has been developed to implement the PFTA.
Li, Jia; Wang, Deming; Huang, Zonghou
2017-01-01
Coal dust explosions (CDE) are one of the main threats to the occupational safety of coal miners. Aiming to identify and assess the risk of CDE, this paper proposes a novel method of fuzzy fault tree analysis combined with the Visual Basic (VB) program. In this methodology, various potential causes of the CDE are identified and a CDE fault tree is constructed. To overcome drawbacks from the lack of exact probability data for the basic events, fuzzy set theory is employed and the probability data of each basic event is treated as intuitionistic trapezoidal fuzzy numbers. In addition, a new approach for calculating the weighting of each expert is also introduced in this paper to reduce the error during the expert elicitation process. Specifically, an in-depth quantitative analysis of the fuzzy fault tree, such as the importance measure of the basic events and the cut sets, and the CDE occurrence probability is given to assess the explosion risk and acquire more details of the CDE. The VB program is applied to simplify the analysis process. A case study and analysis is provided to illustrate the effectiveness of this proposed method, and some suggestions are given to take preventive measures in advance and avoid CDE accidents. PMID:28793348
Wang, Hetang; Li, Jia; Wang, Deming; Huang, Zonghou
2017-01-01
Coal dust explosions (CDE) are one of the main threats to the occupational safety of coal miners. Aiming to identify and assess the risk of CDE, this paper proposes a novel method of fuzzy fault tree analysis combined with the Visual Basic (VB) program. In this methodology, various potential causes of the CDE are identified and a CDE fault tree is constructed. To overcome drawbacks from the lack of exact probability data for the basic events, fuzzy set theory is employed and the probability data of each basic event is treated as intuitionistic trapezoidal fuzzy numbers. In addition, a new approach for calculating the weighting of each expert is also introduced in this paper to reduce the error during the expert elicitation process. Specifically, an in-depth quantitative analysis of the fuzzy fault tree, such as the importance measure of the basic events and the cut sets, and the CDE occurrence probability is given to assess the explosion risk and acquire more details of the CDE. The VB program is applied to simplify the analysis process. A case study and analysis is provided to illustrate the effectiveness of this proposed method, and some suggestions are given to take preventive measures in advance and avoid CDE accidents.
Acoustic Source Bearing Estimation (ASBE) computer program development
NASA Technical Reports Server (NTRS)
Wiese, Michael R.
1987-01-01
A new bearing estimation algorithm (Acoustic Source Analysis Technique - ASAT) and an acoustic analysis computer program (Acoustic Source Bearing Estimation - ASBE) are described, which were developed by Computer Sciences Corporation for NASA Langley Research Center. The ASBE program is used by the Acoustics Division/Applied Acoustics Branch and the Instrument Research Division/Electro-Mechanical Instrumentation Branch to analyze acoustic data and estimate the azimuths from which the source signals radiated. Included are the input and output from a benchmark test case.
Anatomy of the dead sea transform from lithospheric to microscopic scale
Weber, M.; Abu-Ayyash, K.; Abueladas, A.; Agnon, A.; Alasonati-Tasarova, Z.; Al-Zubi, H.; Babeyko, A.; Bartov, Y.; Bauer, K.; Becken, M.; Bedrosian, P.A.; Ben-Avraham, Z.; Bock, G.; Bohnhoff, M.; Bribach, J.; Dulski, P.; Ebbing, J.; El-Kelani, R.; Forster, A.; Forster, H.-J.; Frieslander, U.; Garfunkel, Z.; Goetze, H.J.; Haak, V.; Haberland, C.; Hassouneh, M.; Helwig, S.; Hofstetter, A.; Hoffmann-Rotrie, A.; Jackel, K.H.; Janssen, C.; Jaser, D.; Kesten, D.; Khatib, M.; Kind, R.; Koch, O.; Koulakov, I.; Laske, Gabi; Maercklin, N.; Masarweh, R.; Masri, A.; Matar, A.; Mechie, J.; Meqbel, N.; Plessen, B.; Moller, P.; Mohsen, A.; Oberhansli, R.; Oreshin, S.; Petrunin, A.; Qabbani, I.; Rabba, I.; Ritter, O.; Romer, R.L.; Rumpker, G.; Rybakov, M.; Ryberg, T.; Saul, J.; Scherbaum, F.; Schmidt, S.; Schulze, A.; Sobolev, S.V.; Stiller, M.; Stromeyer, D.; Tarawneh, K.; Trela, C.; Weckmann, U.; Wetzel, U.; Wylegalla, K.
2009-01-01
Fault zones are the locations where motion of tectonic plates, often associated with earthquakes, is accommodated. Despite a rapid increase in the understanding of faults in the last decades, our knowledge of their geometry, petrophysical properties, and controlling processes remains incomplete. The central questions addressed here in our study of the Dead Sea Transform (DST) in the Middle East are as follows: (1) What are the structure and kinematics of a large fault zone? (2) What controls its structure and kinematics? (3) How does the DST compare to other plate boundary fault zones? The DST has accommodated a total of 105 km of leftlateral transform motion between the African and Arabian plates since early Miocene (???20 Ma). The DST segment between the Dead Sea and the Red Sea, called the Arava/ Araba Fault (AF), is studied here using a multidisciplinary and multiscale approach from the ??m to the plate tectonic scale. We observe that under the DST a narrow, subvertical zone cuts through crust and lithosphere. First, from west to east the crustal thickness increases smoothly from 26 to 39 km, and a subhorizontal lower crustal reflector is detected east of the AF. Second, several faults exist in the upper crust in a 40 km wide zone centered on the AF, but none have kilometer-size zones of decreased seismic velocities or zones of high electrical conductivities in the upper crust expected for large damage zones. Third, the AF is the main branch of the DST system, even though it has accommodated only a part (up to 60 km) of the overall 105 km of sinistral plate motion. Fourth, the AF acts as a barrier to fluids to a depth of 4 km, and the lithology changes abruptly across it. Fifth, in the top few hundred meters of the AF a locally transpressional regime is observed in a 100-300 m wide zone of deformed and displaced material, bordered by subparallel faults forming a positive flower structure. Other segments of the AF have a transtensional character with small pull-aparts along them. The damage zones of the individual faults are only 5-20 m wide at this depth range. Sixth, two areas on the AF show mesoscale to microscale faulting and veining in limestone sequences with faulting depths between 2 and 5 km. Seventh, fluids in the AF are carried downward into the fault zone. Only a minor fraction of fluids is derived from ascending hydrothermal fluids. However, we found that on the kilometer scale the AF does not act as an important fluid conduit. Most of these findings are corroborated using thermomechanical modeling where shear deformation in the upper crust is localized in one or two major faults; at larger depth, shear deformation occurs in a 20-40 km wide zone with a mechanically weak decoupling zone extending subvertically through the entire lithosphere. Copyright 2009 by the American Geophysical Union.
The aircraft energy efficiency active controls technology program
NASA Technical Reports Server (NTRS)
Hood, R. V., Jr.
1977-01-01
Broad outlines of the NASA Aircraft Energy Efficiency Program for expediting the application of active controls technology to civil transport aircraft are presented. Advances in propulsion and airframe technology to cut down on fuel consumption and fuel costs, a program for an energy-efficient transport, and integrated analysis and design technology in aerodynamics, structures, and active controls are envisaged. Fault-tolerant computer systems and fault-tolerant flight control system architectures are under study. Contracts with leading manufacturers for research and development work on wing-tip extensions and winglets for the B-747, a wing load alleviation system, elastic mode suppression, maneuver-load control, and gust alleviation are mentioned.
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.; Sowers, T. Shane; Maul, William A.
2005-01-01
The constraints of future Exploration Missions will require unique Integrated System Health Management (ISHM) capabilities throughout the mission. An ambitious launch schedule, human-rating requirements, long quiescent periods, limited human access for repair or replacement, and long communication delays all require an ISHM system that can span distinct yet interdependent vehicle subsystems, anticipate failure states, provide autonomous remediation, and support the Exploration Mission from beginning to end. NASA Glenn Research Center has developed and applied health management system technologies to aerospace propulsion systems for almost two decades. Lessons learned from past activities help define the approach to proper ISHM development: sensor selection- identifies sensor sets required for accurate health assessment; data qualification and validation-ensures the integrity of measurement data from sensor to data system; fault detection and isolation-uses measurements in a component/subsystem context to detect faults and identify their point of origin; information fusion and diagnostic decision criteria-aligns data from similar and disparate sources in time and use that data to perform higher-level system diagnosis; and verification and validation-uses data, real or simulated, to provide variable exposure to the diagnostic system for faults that may only manifest themselves in actual implementation, as well as faults that are detectable via hardware testing. This presentation describes a framework for developing health management systems and highlights the health management research activities performed by the Controls and Dynamics Branch at the NASA Glenn Research Center. It illustrates how those activities contribute to the development of solutions for Integrated System Health Management.
NASA Astrophysics Data System (ADS)
Wang, Y.; Shi, F.; Yu, T.; Zhu, L.; Zhang, J.; Gasc, J.; Incel, S.; Schubnel, A.; Li, Z.; Liu, W.; Jin, Z.
2017-12-01
Southern Tibet is the most active orogenic region on Earth where the Indian plate thrusts under the Eurasian continent, pushing the Moho to unusual depths of 80 km. Seismicity is wide spread, reaching 100 km depth. Mechanisms of these deep earthquakes remain enigmatic. Here we examine the hypothesis of metamorphism induced mechanical instability in granulite-facies rocks, which are the dominant constituent in subducted Indian lower crust. We conducted deformation experiments on natural and nominally dry granulite in a DDIA apparatus within the stability fields of both granulite and eclogite. The system is interfaced with an acoustic emission (AE) monitoring system, allowing in-situ detection of mechanical instability along with the progress of eclogitization. We found that granulite deformed within its own stability field behaved in a ductile fashion without any AE activity. In contrast, numerous AE events were observed during deformation of metastable granulite in the eclogite field. The observed AE activities were episodic. Correlating closely to the AE burst episodes, measured differential stresses rose and fell during deformation, suggesting unstable fault slip. Microstructural observation shows that strain is highly localized around grain boundaries, which are decorated by eclogitization products. Time-resolved event location analysis showed large episodes corresponded to the growth of branches of macroscopic faults in recovered samples. It appears that ruptures originate from weakened grain boundaries, propagate through grains, and self-organize into macroscopic fault zones. No melting is required in the fault zones to facilitate brittle failure. This process may be responsible for the deep crustal seismicity in Southern Tibet and other continental-continental subduction regions.
NASA Astrophysics Data System (ADS)
Laó-Dávila, Daniel A.; Al-Salmi, Haifa S.; Abdelsalam, Mohamed G.; Atekwana, Estella A.
2015-12-01
We used detailed analysis of Shuttle Radar Topography Mission-digital elevation model and observations from aeromagnetic data to examine the influence of inherited lithospheric heterogeneity and kinematics in the segmentation of largely amagmatic continental rifts. We focused on the Cenozoic Malawi Rift, which represents the southern extension of the Western Branch of the East African Rift System. This north trending rift traverses Precambrian and Paleozoic-Mesozoic structures of different orientations. We found that the rift can be hierarchically divided into first-order and second-order segments. In the first-order segmentation, we divided the rift into Northern, Central, and Southern sections. In its Northern Section, the rift follows Paleoproterozoic and Neoproterozoic terrains with structural grain that favored the localization of extension within well-developed border faults. The Central Section occurs within Mesoproterozoic-Neoproterozoic terrain with regional structures oblique to the rift extent. We propose that the lack of inherited lithospheric heterogeneity favoring extension localization resulted in the development of the rift in this section as a shallow graben with undeveloped border faults. In the Southern Section, Mesoproterozoic-Neoproterozoic rocks were reactivated and developed the border faults. In the second-order segmentation, only observed in the Northern Section, we divided the section into five segments that approximate four half-grabens/asymmetrical grabens with alternating polarities. The change of polarity coincides with flip-over full-grabens occurring within overlap zones associated with ~150 km long alternating border faults segments. The inherited lithospheric heterogeneity played the major role in facilitating the segmentation of the Malawi Rift during its opening resulting from extension.
Neotectonics of coastal Jeffara (southern Tunisia): State of the art
NASA Astrophysics Data System (ADS)
Ghedhoui, Rim; Deffontaines, Benoît; Rabia, Mohamed Chedly
2016-04-01
Helped by the studies and results of previous researchers, we herein study the neotectonic of the coastal Jeffara with the input of numerous 2D reflection seismic profiles onshore, combined with Digital Elevation Model analyses (issued from SRTM) and field works. Acquired and available data were then integrated within a GIS Geodatabase, where Jerba, Zarzis and Jorf appear to be part of a N-S pull-apart basin within a NW-SE transtensive right-lateral major fault zone. Our structural geologic and geomorphologic analyses confirm and prove the presence of NNW-SSE right-lateral en-echelon tension gashes, NW-SE aligned salt diapirs, numerous active folds offsets, en-echelon folds, and so-on… They are associated with this major right-lateral NW-SE transtensive major coastal Jeffara fault zone that affect the Holocene and the Villafranchian deposits. We therefore confirm herein a new structural geodynamic Jeffara model, due to the post Lower Cretaceous northward migration of northern African to the Eurasian plates, this NW-SE transtensive fault zone is interpreted as a part of the southern branch of the eastward Sahel block extrusion toward the free Mediterranean Sea boundary. Therefore this geodynamic movement may explain the presence, offshore, of small elongated NW-SE, N-S and NE-SW transtensive basins and grabens with petroleum interest. To conclude, at the regional scale, the structural geomorphologic approach combined with both field work and 2D reflection seismic profile analyses appear to be an excellent tool to prove and confirm the NW-SE right-lateral transtensive extrusion fault zone of the coastal Jeffara.
NASA Astrophysics Data System (ADS)
Yazıcı, Müge; Zabci, Cengiz; Sançar, Taylan; Sunal, Gürsel; Natalin, Boris A.
2016-04-01
The Anatolian 'plate' is being extruded westward relative to the Eurasia along two major tectonic structures, the North Anatolian and the East Anatolian shear zones, respectively making its northern and eastern boundaries. Although the main deformation is localized along these two structures, there is remarkable intra-plate deformation within Anatolia, especially which are characterized by NE-striking sinistral and NW-striking dextral strike-slip faults (Şengör et al. 1985). The Malatya-Ovacık Fault Zone (MOFZ) and its northeastern member, the Ovacık Fault (OF), is a one of the NE-striking sinistral strike slip faults in the central 'ova' neotectonic province of Anatolia, located close to its eastern boundary. Although this fault zone is claimed to be an inactive structure in some studies, the recent GPS measurements (Aktuǧ et al., 2013) and microseismic activity (AFAD, 2013) strongly suggest the opposite. In order to understand rates and patterns of vertical ground motions along the OF, we studied the certain morphometric analyses such as hypsometric curves and integrals, longitudinal channel profiles, and asymmetry of drainage basins. The Karasu (Euphrates) and Munzur rivers form the main drainage systems of the study area. We extracted all drainage network from SRTM-based Digital Elevation Model with 30 m ground pixel resolution and totally identified 40 sub-drainage basins, which are inhomogeneously distributed to the north and to the south of the OF. Most of these basins show strong asymmetry, which are mainly tilted to SW. The asymmetry relatively decreases from NE to SW in general. The only exception is at the margins of the Ovacık Basin (OB), where almost the highest asymmetry values were calculated. On the other hand, the characteristics of hypsometric curves and the calculated hypsometric integrals do not show the similar systematic spatial pattern. The hypsometric curves with convex-shaped geometry, naturally indicating relatively young morphology, are mostly seen at the NE part of the study region. We observe several knick points along the longitudinal channel profiles that mostly fits to the surface trace of the OF. The existence of multiple knick points along the same channel profiles on the southwestern sections of the fault are interpreted to be the result of multiple parallel/sub-parallel branches of the OF in this region. The integrated preliminary results of all applied methods indicate the evidence of a stronger deformation at the northeastern part of the OF, in addition to the OB section. The deformation significantly diffuses to the southwest of the OB, where the main fault bifurcates into several branches. In order to explain the distribution of the deformation style along the OF, we suggest three hypotheses: (a) the OF is confined within a very narrow zone in its most northeastern parts, and the total strain is distributed at its southwestern section (especially to the southwest of the OB), (b) The high asymmetric values, calculated at the northeastern OF, are mainly affected by another major tectonic structure, the North Anatolian Shear Zone, at this region or (c) the combined effect of these two settings. Our further studies, which will include the analyzing the lithological properties of drainage basins, detailed fault mapping, and understanding the cumulative horizontal slip by constructing and comparing the pseudo-palaeotopography at both sides of the fault, are going to provide more detailed information on the activity and the style of deformation along the OF. This study is supported by TÜBİTAK project no. 114Y227. References -AFAD, 2013, Son 48 saatte 48 deprem (48 earthquakes at the last 48 hours) http://www.afad.gov.tr/TR/HaberDetay.aspx?IcerikID=1511&ID=12, Volume 2013. -Aktuǧ, B., Dikmen, Ü., Doǧru, A., and Özener, H., 2013, Seismicity and strain accumulation around Karliova Triple Junction (Turkey): Journal of Geodynamics, v. 67, no. 0, p. 21-29. -Şengör, A. M. C., Görür, N., Şaroǧlu, F., 1985, Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study in Biddle, K. T. & Christie-Blick, N., Strike-Slip Deformation, Basin Formation, and Sedimentation, Oklahoma: Society of Economic Paleontologists and Mineralogists Special Publication No. 37. p. 227-264.
GPS measurements along the North Anatolian fault zone ont he Mid-Anatolia segment
NASA Astrophysics Data System (ADS)
Yavasoglu, H.; Team
2003-04-01
The North Anatolian Fault (NAF) is the most important tectonic feature in Turkey producing lots of earthquakes that cause deaths, wounds and loss of property in large scale. So, there are a lot of seismic, geodetic, geologic and geophysical researches through NAF. A new project, "Determination of Kinematics along the North Anatolian Fault Branch between Ladik and Ilgaz with GPS Measurements", founded by The Scientific and Technical Research Council of Turkey (TUBITAK) and Istanbul Technical University (ITU) Research Fund is also started. The aim of the project is to determine the magnitude and direction of the block movements in the region by using GPS. Having the knowledge about the neotectonics of the region with the contributions of geology and seismology after the GPS campaigns will provide further information on the assessment of the earthquake potential. In this work, the planning stage of the network is examined. Also pre-results from the first and second surveying campaigns are presented. 1. INTRODUCTION The tectonic framework of the Eastern Mediterranean is dominated by the collision of the Arabian and African plates with the Eurasia. This collision created wide variety of tectonic processes such as folds and thrust belts, major continental strike-slip faults, opening of pull-apart basins etc. All these tectonic caused long-term destructive earthquakes in Anatolia Last earthquakes occurred at the end of the 20th Century, in 17th of August and 12 of November 1999, Golcuk and Duzce earthquakes, also focused the attention of international science community over the tectonics and kinematics of the NAF. A westward migrating earthquakes series starting from 1939 Erzincan earthquake, produced more than 1000 kilometers of ruptures between Erzincan and Sea of Marmara 2. GEOLOGICAL FEATURES OF NAF The North Anatolian Fault (NAF) is one of the longest active strike slip systems. Slip rate of the NAF was estimated from the GPS data as 24±1mm/yr. One of the important features of the NAF is seen in the central part. Here NAF consists of southward spliting concave branches. These splines have generally right-lateral slip compared these splays with the Riedel fractures. One of the biggest splays is known as Sungurlu fault. The other important splays are Merzifon and Lacin faults. Recent palaeomagnetic data indicated that the main Anatolian Block to the south of the Sungurlu fault rotated anticlockwise and the other blocks rotated clockwise and anticlockwise according to the orientation and the geometry of the faults bounding the blocks. In contrast to the other parts of the NAF, central part has not been studied in detail yet. The data, which will be produced in this project, are expected to add an important contribution to the present knowledge on the NAF. 3. THE GPS MEASUREMENTS 3.1 The Design of The Mid-NAF GPS Network The estimated lateral movement on the LVKI segment of NAF is approximately 2-3cm per year. In order to determine approximately 2-3 centimeters of movements, point marks in the network should be built with forced centering instruments (pillars or steel rods etc.). At first a study in advance is carried out in the study area to find out convenient old pillars. At the end of the study, useful already established 25 pillar points are determined on the region. However, it is decided that the network can consist of 16 station points, because of the reasons such as financial limitations and the number of GPS receivers. The network consists of 16 point. The points are given name with the four letter abbreviations of the nearest settlement. The GPS sites mainly were chosen as representative of the fault-bounded continental blocks. Although there are lots of faults in the area, active and recently earthquake produced faults and continental blocks that are bounded by these faults were taken into consideration. 3.2 GPS Measurements The number and features of receivers are Measurements were performed in six days at two stages. For the first campaign, SNGR (Sungurlu) and IHGZ (Ilhangazi) and for the second campaign IHGZ (Ihsangazi) and ALAC (Alaca) stations were selected as continuous stations to control the network against any error and connect the measurements that are observed at the different times. The duration of measurement in each day was about 8 hours with an interval of 15 seconds. All stations were observed at least three days. 4. CONCLUSION The GPS measurements for the first and second campaigns are processed by using GAMIT/GLOBK software package. The results given for GPS measurements still need to be examined against the gross errors might be caused by antenna types for those are not or new in IGS standard tables with the antenna height measurements. As the first two campaigns results; • Sungurlu fault has a height velocity as NAF, • There is anomaly at the station of the Ihsangazi, • Velocity of NAF has been calculated about 2 cm.
Ongoing Fixed Wing Research within the NASA Langley Aeroelasticity Branch
NASA Technical Reports Server (NTRS)
Bartels, Robert; Chwalowski, Pawel; Funk, Christie; Heeg, Jennifer; Hur, Jiyoung; Sanetrik, Mark; Scott, Robert; Silva, Walter; Stanford, Bret; Wiseman, Carol
2015-01-01
The NASA Langley Aeroelasticity Branch is involved in a number of research programs related to fixed wing aeroelasticity and aeroservoelasticity. These ongoing efforts are summarized here, and include aeroelastic tailoring of subsonic transport wing structures, experimental and numerical assessment of truss-braced wing flutter and limit cycle oscillations, and numerical modeling of high speed civil transport configurations. Efforts devoted to verification, validation, and uncertainty quantification of aeroelastic physics in a workshop setting are also discussed. The feasibility of certain future civil transport configurations will depend on the ability to understand and control complex aeroelastic phenomena, a goal that the Aeroelasticity Branch is well-positioned to contribute through these programs.
Optimization of Second Fault Detection Thresholds to Maximize Mission POS
NASA Technical Reports Server (NTRS)
Anzalone, Evan
2018-01-01
In order to support manned spaceflight safety requirements, the Space Launch System (SLS) has defined program-level requirements for key systems to ensure successful operation under single fault conditions. To accommodate this with regards to Navigation, the SLS utilizes an internally redundant Inertial Navigation System (INS) with built-in capability to detect, isolate, and recover from first failure conditions and still maintain adherence to performance requirements. The unit utilizes multiple hardware- and software-level techniques to enable detection, isolation, and recovery from these events in terms of its built-in Fault Detection, Isolation, and Recovery (FDIR) algorithms. Successful operation is defined in terms of sufficient navigation accuracy at insertion while operating under worst case single sensor outages (gyroscope and accelerometer faults at launch). In addition to first fault detection and recovery, the SLS program has also levied requirements relating to the capability of the INS to detect a second fault, tracking any unacceptable uncertainty in knowledge of the vehicle's state. This detection functionality is required in order to feed abort analysis and ensure crew safety. Increases in navigation state error and sensor faults can drive the vehicle outside of its operational as-designed environments and outside of its performance envelope causing loss of mission, or worse, loss of crew. The criteria for operation under second faults allows for a larger set of achievable missions in terms of potential fault conditions, due to the INS operating at the edge of its capability. As this performance is defined and controlled at the vehicle level, it allows for the use of system level margins to increase probability of mission success on the operational edges of the design space. Due to the implications of the vehicle response to abort conditions (such as a potentially failed INS), it is important to consider a wide range of failure scenarios in terms of both magnitude and time. As such, the Navigation team is taking advantage of the INS's capability to schedule and change fault detection thresholds in flight. These values are optimized along a nominal trajectory in order to maximize probability of mission success, and reducing the probability of false positives (defined as when the INS would report a second fault condition resulting in loss of mission, but the vehicle would still meet insertion requirements within system-level margins). This paper will describe an optimization approach using Genetic Algorithms to tune the threshold parameters to maximize vehicle resilience to second fault events as a function of potential fault magnitude and time of fault over an ascent mission profile. The analysis approach, and performance assessment of the results will be presented to demonstrate the applicability of this process to second fault detection to maximize mission probability of success.
NASA Astrophysics Data System (ADS)
Rusu-Anghel, S.; Ene, A.
2017-05-01
The quality of electric energy capture and also the equipment operational safety depend essentially of the technical state of the contact line (CL). The present method for determining the technical state of CL based on advance programming is no longer efficient, due to the faults which can occur into the not programmed areas. Therefore, they cannot be remediated. It is expected another management method for the repairing and maintenance of CL based on its real state which must be very well known. In this paper a new method for determining the faults in CL is described. It is based on the analysis of the variation of pantograph-CL contact force in dynamical regime. Using mathematical modelling and also experimental tests, it was established that each type of fault is able to generate ‘signatures’ into the contact force diagram. The identification of these signatures can be accomplished by an informatics system which will provide the fault location, its type and also in the future, the probable evolution of the CL technical state. The measuring of the contact force is realized in optical manner using a railway inspection trolley which has appropriate equipment. The analysis of the desired parameters can be accomplished in real time by a data acquisition system, based on dedicated software.
NASA Technical Reports Server (NTRS)
Gordon, Gail
2012-01-01
The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.
NASA Astrophysics Data System (ADS)
Peters, Meike; Hellmann, André; Meyer, Franz Michael
2013-04-01
The Siegerland district is located in the fold-and thrust-belt of the Rhenish Massif and hosts diverse syn-to late orogenic mineralization styles. Peak-metamorphism and deformation occurred at 312-316±10 Ma (Ahrendt et al., 1978) at temperature-pressure conditions of 280-320°C and 0.7-1.4 kbar (Hein, 1993). In addition to syn-orogenic siderite-quartz mineralization at least four different syn-to late orogenic mineralization stages are identified comprising Co-Ni-Cu-Au, Pb-Zn-Cu, Sb-Au, and hematite-digenite-bornite ores (Hellmann et al., 2012). The earliest type of syn-orogenic ore mineralization is formed by siderite-quartz veins, trending N-S, E-W and NE-SW. The vein systems are closely related to fold and reverse fault geometries (Hellmann et al., 2012). The most important structural feature is the first-order Siegen main reverse fault showing an offset into three major faults (Peters et al., 2012). The structural control on ore formation is demonstrated by the Co-Ni-Cu-Au mineralization generally hosted by NE-ENE trending reverse faults and associated imbrication zones that have reactivated the older siderite-quartz veins. In this study, we developed a 3-D model of the Alte Buntekuh ore bodies in the Siegerland district, using Datamine Studio3 to investigate the structural setting of Co-Ni-Cu-Au mineralization. The salient structural and spatial data for the 3-D model were taken from old mine level plans as well as from geological and topographical maps. The ore bodies are located immediately in the hanging wall of the southern branch of the Siegen main reverse fault (Peters et al., 2012). From the model it becomes obvious, that the earlier siderite-quartz veins, dipping steeply to the NW, are cross-cut and segmented by oppositely dipping oblique reverse faults. Individual ore body segments are rotated and displaced, showing a plunge direction to the SW. The 3-D model further reveals the presence of hook-like, folded vein arrays, highly enriched in cobalt mineralization. These vein-hooks are characterized by a dip direction to the W, which is opposite to the plunge of F1-folds. The vein-hooks are interpreted to have formed during oblique normal faulting. The compilation of historical mining and mineralogical information in combination with 3-D ore body modeling provides new insights into the structural evolution of mineralization and can be used to evaluate further mineral potential of the area, especially in currently non-explored depth levels. The 3-D ore body model is also vital for resource calculation and the design of a brown-fields drilling program. References Ahrendt, H., Hunziker, J.C. and Weber, K. (1978). Z. dt. geol. Ges. 129, 229-247 Hein, U.F. (1993). Min. Mag. 57, 451-476 Hellmann, A., Wagner, T. and Meyer, F.M. (2012). Conference proceedings GB 2012. http://www.geologicabelgica.be/PDF/GB/S13/S13_8_Hellmann.pdf Peters, M., Hellmann A. and Meyer, F.M. (2012). Conference proceedings GeoHannover 2012. Series of paper of the German Society of Geosciences, Vol. 80, 387.
NASA Astrophysics Data System (ADS)
Saldaña, S. C.; Snelson, C. M.; Taylor, W. J.; Beachly, M.; Cox, C. M.; Davis, R.; Stropky, M.; Phillips, R.; Robins, C.; Cothrun, C.
2007-12-01
The Pahrump Fault system is located in the central Basin and Range region and consists of three main fault zones: the Nopah range front fault zone, the State Line fault zone and the Spring Mountains range fault zone. The State Line fault zone is made up north-west trending dextral strike-slip faults that run parallel to the Nevada- California border. Previous geologic and geophysical studies conducted in and around Stewart Valley, located ~90 km from Las Vegas, Nevada, have constrained the location of the State Line fault zone to within a few kilometers. The goals of this project were to use seismic methods to definitively locate the northwestern most trace of the State Line fault and produce pseudo 3-D seismic cross-sections that can then be used to characterize the subsurface geometry and determine the slip of the State Line fault. During July 2007, four seismic lines were acquired in Stewart Valley: two normal and two parallel to the mapped traces of the State Line fault. Presented here are preliminary results from the two seismic lines acquired normal to the fault. These lines were acquired utilizing a 144-channel geode system with each of the 4.5 Hz vertical geophones set out at 5 m intervals to produce a 595 m long profile to the north and a 715 m long profile to the south. The vibroseis was programmed to produce an 8 s linear sweep from 20-160 Hz. These data returned excellent signal to noise and reveal subsurface lithology that will subsequently be used to resolve the subsurface geometry of the State Line fault. This knowledge will then enhance our understanding of the evolution of the State Line fault. Knowing how the State Line fault has evolved gives insight into the stick-slip fault evolution for the region and may improve understanding of how stress has been partitioned from larger strike-slip systems such as the San Andreas fault.
NASA Astrophysics Data System (ADS)
Burgette, R. J.; Weldon, R. J.; Abdrakhmatov, K. Y.; Ormukov, C.
2004-12-01
The Pred-Terskey fault zone defines the southern margin of the Issyk-Kul basin, extending eastward over 250 km from at least the Chu River to the Kazakhstan border, and appears to be one of the most active zones in the Kyrgyz Tien Shan. Despite a diversity of structural styles and changes of vergence at the surface, the lateral continuity and overall geometry of the zone is consistent with a single north vergent thrust at depth, which uplifts the Terskey Range and generally tilts the south margin of the basin to the north. This northward tilting of the margin is probably due to a flattening of the fault as it approaches the surface. In spite of historical quiescence, it is likely capable of producing great earthquakes. We have conducted detailed field mapping coupled with terrace profiling and dating at seven representative, well-exposed areas of the fault zone. Based on these field observations and satellite image and air photo interpretation along the entire zone, we identify three major divisions in structural style expressed at the surface. The western segment is typified by the Tura-Su, Ak-Terek and Ton areas. A series of left-stepping, south-vergent, basement-involved reverse faults and folds are uplifting the southern margin of the Issyk-Kul basin in this area. The resulting uphill-facing scarps have trapped and diverted many of the rivers flowing north from the Terskey Range. Tertiary strata and Quaternary geomorphic surfaces show consistent, progressive northward tilting across the entire zone. The west-central segment is represented by the Kajy-Say area. South-vergent reverse faults and a north-vergent backthrust have uplifted an arcuate granite block. Offshore of this area, the lake floor descends to a sharp break in slope with a low relief area at a depth of about 650 m. Late Quaternary geomorphic features do not show evidence of tilting. In contrast to the areas east and west, the major north-dipping thrust is likely planar over this segment and daylights at the lake floor break in slope. The east-central segment is exemplified by the Barskaun and Jety Oguz areas. A high angle reverse fault juxtaposes Paleozoic rock against Tertiary sediments. To the north, a thrust fault with a sinuous trace places north-dipping Tertiary rock over the nearly horizontal basin floor. Quaternary terraces in the hanging wall of this fault record progressive northward tilting. North of the thrust fault a series of anticlines are growing out of the basin sediments. The eastern segment, which includes the Jergalan River valley, lacks a low angle thrust fault at the basin margin. Along this segment, the basement reverse fault uplifts Paleozoic rock against Quaternary basin sediment. To the north of this range-bounding structure, late Quaternary terraces are offset by south-vergent scarps. We are calculating geologic slip rates for each of the seven sites along the Pred-Terskey zone by dating terraces and constructing structural models consistent with both the rock and terrace records. Based on preliminary radiocarbon dates, a prominent Jety Oguz River terrace is 50 +/- 10 ka. The terrace is tilted 0.5° relative to the modern river, and with the low angle fault branching off of the basement reverse fault at dips ranging between 45° and 90° , the slip rate of this fault is 6 +/- 4 mm/yr. This is consistent with the GPS shortening rate across the Pred-Terskey zone at this longitude.
The Dauki Thrust Fault and the Shillong Anticline: An incipient plate boundary in NE India?
NASA Astrophysics Data System (ADS)
Ferguson, E. K.; Seeber, L.; Steckler, M. S.; Akhter, S. H.; Mondal, D.; Lenhart, A.
2012-12-01
The Shillong Massif is a regional contractional structure developing across the Assam sliver of the Indian plate near the Eastern Syntaxis between the Himalaya and Burma arcs. Faulting associated with the Shillong Massif is a major source of earthquake hazard. The massif is a composite basement-cored asymmetric anticline and is 100km wide, >350km long and 1.8km high. The high relief southern limb preserves a Cretaceous-Paleocene passive margin sequence despite extreme rainfall while the gentler northern limb is devoid of sedimentary cover. This asymmetry suggests southward growth of the structure. The Dauki fault along the south limb builds this relief. From the south-verging structure, we infer a regional deeply-rooted north-dipping blind thrust fault. It strikes E-W and obliquely intersects the NE-SW margin of India, thus displaying three segments: Western, within continental India; Central, along the former passive margin; and Eastern, overridden by the west-verging Burma accretion system. We present findings from recent geologic fieldwork on the western and central segments. The broadly warped erosional surface of the massif defines a single anticline in the central segment, east of the intersection with the hinge zone of the continental margin buried by the Ganges-Brahmaputra Delta. The south limb of the anticline forms a steep topographic front, but is even steeper structurally as defined by the Cretaceous-Eocene cover. Below it, Sylhet Trap Basalts intrude and cover Precambrian basement. Dikes, presumably parallel to the rifted margin, are also parallel to the front, suggesting thrust reactivation of rift-related faults. Less competent Neogene clastics are preserved only near the base of the mountain front. Drag folds in these rocks suggest north-vergence and a roof thrust above a blind thrust wedge floored by the Dauki thrust fault. West of the hinge zone, the contractional structure penetrates the Indian continent and bifurcates. After branching into the Dapsi Fault, the Dauki Fault continues westward as the erosion-deposition boundary combined with a belt of N-S shortening. The Dapsi thrust fault strikes WNW across the Shillong massif and dips NNE. It is mostly blind below a topographically expressed fold involving basement and passive-margin cover. Recent fieldwork has shown that the fault is better exposed in the west, where eventually Archean basement juxtaposes folded and steeply dipping fluvial sediment. Both Dauki and Dapsi faults probably continue beyond the Brahmaputra River, where extreme fluvial processes mask them. The area between the two faults is a gentle southward monocline with little or no shortening. Thus uplift of this area stems from slip on the Dauki thrust fault, not from pervasive shortening. The Burma foldbelt overrides the Shillong Plateau and is warped but continuous across the eastern segment of the Dauki fault. The Haflong-Naga thrust front north of the Dauki merges with the fold-thrust belt in the Sylhet basin to the south, despite >150km of differential advance due to much greater advance of the accretionary prism in the basin. Where the Dauki and Haflong-Naga thrusts cross, the thrust fronts are nearly parallel and opposite vergence. We trace a Dauki-related topographic front eastward across the Burma Range. This and other evidence suggest that the Dauki Fault continues below the foldbelt.
NASA Astrophysics Data System (ADS)
Mahya, M. J.; Sanny, T. A.
2017-04-01
Lembang and Cimandiri fault are active faults in West Java that thread people near the faults with earthquake and surface deformation risk. To determine the deformation, GPS measurements around Lembang and Cimandiri fault was conducted then the data was processed to get the horizontal velocity at each GPS stations by Graduate Research of Earthquake and Active Tectonics (GREAT) Department of Geodesy and Geomatics Engineering Study Program, ITB. The purpose of this study is to model the displacement distribution as deformation parameter in the area along Lembang and Cimandiri fault using 2-dimensional boundary element method (BEM) using the horizontal velocity that has been corrected by the effect of Sunda plate horizontal movement as the input. The assumptions that used at the modeling stage are the deformation occurs in homogeneous and isotropic medium, and the stresses that acted on faults are in elastostatic condition. The results of modeling show that Lembang fault had left-lateral slip component and divided into two segments. A lineament oriented in southwest-northeast direction is observed near Tangkuban Perahu Mountain separating the eastern and the western segments of Lembang fault. The displacement pattern of Cimandiri fault shows that Cimandiri fault is divided into the eastern segment with right-lateral slip component and the western segment with left-lateral slip component separated by a northwest-southeast oriented lineament at the western part of Gede Pangrango Mountain. The displacement value between Lembang and Cimandiri fault is nearly zero indicating that Lembang and Cimandiri fault are not connected each other and this area is relatively safe for infrastructure development.
12 CFR 347.115 - Permissible activities for a foreign branch of an insured state nonmember bank.
Code of Federal Regulations, 2010 CFR
2010-01-01
... insurance agent or broker. (e) Employee benefits program. Pay to an employee of a branch, as part of an... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Permissible activities for a foreign branch of an insured state nonmember bank. 347.115 Section 347.115 Banks and Banking FEDERAL DEPOSIT INSURANCE...
1980-03-01
Engineering Branch Engineering Division CARNEY M. TERZIAN, KENBER Design Branch Engineering Division RICHARD DIBKO CHIRA Water Control Branch...State of New Hampshire. Authorization and notice to proceed were issued to S E A Consultants Inc. under a letter of November 5, 1979 from William
Environmental Compliance Assessment and Management Program
1994-04-01
following classes: 1. cyclic, branched, or linear, completely fluorinated alkanes 2. cyclic, branched, or linear, completely fluorinated ethers with no...unsaturations 3. cyclic, branched, or linear, completely fluorinated tertiary amines with no unsaturations 4. sulfur containing perfluorocarbons with no...unsaturations and with sulfur bonds only to carbon and fluorine . 2.58. VOC Water Separator - a tank, box, or other container which is primarily
Implementation of a research prototype onboard fault monitoring and diagnosis system
NASA Technical Reports Server (NTRS)
Palmer, Michael T.; Abbott, Kathy H.; Schutte, Paul C.; Ricks, Wendell R.
1987-01-01
Due to the dynamic and complex nature of in-flight fault monitoring and diagnosis, a research effort was undertaken at NASA Langley Research Center to investigate the application of artificial intelligence techniques for improved situational awareness. Under this research effort, concepts were developed and a software architecture was designed to address the complexities of onboard monitoring and diagnosis. This paper describes the implementation of these concepts in a computer program called FaultFinder. The implementation of the monitoring, diagnosis, and interface functions as separate modules is discussed, as well as the blackboard designed for the communication of these modules. Some related issues concerning the future installation of FaultFinder in an aircraft are also discussed.
NASA Astrophysics Data System (ADS)
Yamaguchi, M.; Hashimoto, Y.; Yamaguchi, A.; Kimura, G.
2011-12-01
Seismic surveys along accretionary prisms have revealed that the out-of sequence thrusts (OSTs) are commonly developed within accretionary wedges branching from seismogenic subduction plate boundaries. The OSTs are also recognized in on-land accretionary complexes as large thrust faults cutting paleo-thermal structures. The OSTs are thought to play a role in tsunami genesis at a coseismic event. Stress history on OSTs is significant to understand the OSTs' role in seismic cycles. We estimated, thus palaeostresses from micro-faults along an OST in an on-land accretionary complexes. We focused on the Nobeoka fault which is an OST in an on-land accretionary complex, the Shimato Belt, Kyusyu, SW Japan. A gap in paleothermal temperature (up to 70 degree C) is observed at the fault. The Nobeoka thrust strikes almost EW at coastline. The Cretaceous Makimine formation and Paleogene Kitagawa formation are located at the hanging wall of the fault, comprising mainly of pelitic schist. The footwall of the fault is the Paleogene Hyuga formation composed mainly of shale. A lot of micro-faults are well developed just below the thrust for a few hundred meters to the south. Those micro faults are considered to be related to the Nobeoka thurst because slip direction and sense of the micro-faults are consistent with that of the Nobeoka thrust. The micro-faults are commonly accompanied by mineral veins of quartz and ankerite. Yamaguchi et al. (2010) suggested that the differences of mineral veins are possibly related to the seismic cycle. In this study, we conducted stress inversion analysis for the micro-faults to examine the change in stress between them, which might be related to the seismic cycle. We divided the micro-fault into two as a micro-fault with quartz veins and that with ankerite veins. Slip direction from slicken fibers and slip sense by slicken steps were obtained. HIM (hough inversion method) by Yamaji et al. (2006) was used to estimate the stress. Two stress states and three stress states are identified in the results for ankerite veins and quartz veins, respectively. For ankerite veins, SE oriented and relatively higher dipping sigma3 with axial extension and SE oriented and relatively lower dipping sigma1 with axial compression are recognized. For quartz veins, SE oriented and relatively higher dipping sigma3 with axial extension, NE oriented and almost horizontal sigma1 with triaxial stress ratio, and NW oriented and lower dipping sigma1 with axial compression are observed. While NW-SE axial stress states are observed both from ankelite and quatz veins, NE oriented triaxial stress is identified only from quartz veins. The change in stress states from NW-SE axial stress to NE triaxial stress might be explained by the dynamic Coulomb wedge model suggested by Wang and Hu (2006). The model predicts that the stress within accretionary wedge can be change with seismic cycle, horizontal sigma1 with axial compression at the co-seismic slip and relatively higher dipping sigma1 with triaxial stress in inter-seimsic period.
NASA Astrophysics Data System (ADS)
Kuriyama, M.; Kumamoto, T.; Fujita, M.
2005-12-01
The 1995 Hyogo-ken Nambu Earthquake (1995) near Kobe, Japan, spurred research on strong motion prediction. To mitigate damage caused by large earthquakes, a highly precise method of predicting future strong motion waveforms is required. In this study, we applied empirical Green's function method to forward modeling in order to simulate strong ground motion in the Noubi Fault zone and examine issues related to strong motion prediction for large faults. Source models for the scenario earthquakes were constructed using the recipe of strong motion prediction (Irikura and Miyake, 2001; Irikura et al., 2003). To calculate the asperity area ratio of a large fault zone, the results of a scaling model, a scaling model with 22% asperity by area, and a cascade model were compared, and several rupture points and segmentation parameters were examined for certain cases. A small earthquake (Mw: 4.6) that occurred in northern Fukui Prefecture in 2004 were examined as empirical Green's function, and the source spectrum of this small event was found to agree with the omega-square scaling law. The Nukumi, Neodani, and Umehara segments of the 1891 Noubi Earthquake were targeted in the present study. The positions of the asperity area and rupture starting points were based on the horizontal displacement distributions reported by Matsuda (1974) and the fault branching pattern and rupture direction model proposed by Nakata and Goto (1998). Asymmetry in the damage maps for the Noubi Earthquake was then examined. We compared the maximum horizontal velocities for each case that had a different rupture starting point. In the case, rupture started at the center of the Nukumi Fault, while in another case, rupture started on the southeastern edge of the Umehara Fault; the scaling model showed an approximately 2.1-fold difference between these cases at observation point FKI005 of K-Net. This difference is considered to relate to the directivity effect associated with the direction of rupture propagation. Moreover, it was clarified that the horizontal velocities by assuming the cascade model was underestimated more than one standard deviation of empirical relation by Si and Midorikawa (1999). The scaling and cascade models showed an approximately 6.4-fold difference for the case, in which the rupture started along the southeastern edge of the Umehara Fault at observation point GIF020. This difference is significantly large in comparison with the effect of different rupture starting points, and shows that it is important to base scenario earthquake assumptions on active fault datasets before establishing the source characterization model. The distribution map of seismic intensity for the 1891 Noubi Earthquake also suggests that the synthetic waveforms in the southeastern Noubi Fault zone may be underestimated. Our results indicate that outer fault parameters (e.g., earthquake moment) related to the construction of scenario earthquakes influence strong motion prediction, rather than inner fault parameters such as the rupture starting point. Based on these methods, we will predict strong motion for approximately 140 to 150 km of the Itoigawa-Shizuoka Tectonic Line.
Advanced instrumentation concepts for environmental control subsystems
NASA Technical Reports Server (NTRS)
Yang, P. Y.; Schubert, F. H.; Gyorki, J. R.; Wynveen, R. A.
1978-01-01
Design, evaluation and demonstration of advanced instrumentation concepts for improving performance of manned spacecraft environmental control and life support systems were successfully completed. Concepts to aid maintenance following fault detection and isolation were defined. A computer-guided fault correction instruction program was developed and demonstrated in a packaged unit which also contains the operator/system interface.
NASA Technical Reports Server (NTRS)
Shontz, W. D.; Records, R. M.; Antonelli, D. R.
1992-01-01
The focus of this project is on alerting pilots to impending events in such a way as to provide the additional time required for the crew to make critical decisions concerning non-normal operations. The project addresses pilots' need for support in diagnosis and trend monitoring of faults as they affect decisions that must be made within the context of the current flight. Monitoring and diagnostic modules developed under the NASA Faultfinder program were restructured and enhanced using input data from an engine model and real engine fault data. Fault scenarios were prepared to support knowledge base development activities on the MONITAUR and DRAPhyS modules of Faultfinder. An analysis of the information requirements for fault management was included in each scenario. A conceptual framework was developed for systematic evaluation of the impact of context variables on pilot action alternatives as a function of event/fault combinations.
NASA Astrophysics Data System (ADS)
Sahin, S.; Yıldırım, C.; Sarıkaya, M. A.; Tuysuz, O.; Genç, S. C.; Aksoy, M. E.; Doksanaltı, M. E.; Benedetti, L.
2016-12-01
Cosmogenic surface exposure dating is based on the production of rare nuclides in exposed rocks, which interact with cosmic rays. Through modelling of measured 36Cl concentrations, we might obtain information of the history of the earthquake activity. Yet, there are several factors which may impact production of rare nuclides such as geometry of fault, topography, geographic location of study area, temporal variations of the Earth's magnetic field, self-cover and denudation rate on the scarp. Our study area, the Knidos Fault Zone, is located on the Datça Peninsula in the Southwestern Anatolia and contains several normal fault scarps formed within the limestone, which are appropriate to apply cosmogenic chlorine-36 dating. Since it has a well-preserved scarp, we have focused on the Mezarlık Segment of the fault zone, which has an average length of 300 m and height 12-15 m. 128 continuous samples from top to bottom of the fault scarp were collected to carry out analysis of cosmic 36Cl isotopes concentrations. Recent research elucidated each step of the application of this method by the Matlab (e.g. Schlagenhauf et al., 2010). It is vitally helpful to generate models activity of normal faults. We, however, wanted to build a user-friendly program through an open source programing language R that might be able to help those without knowledge of complex math, programming, making calculations as easy as possible. We have set out to obtain accurate conclusions to compare and contrast our results with synthetic profiles and previous studies of limestone fault scarps. The preliminary results indicate at least three major or more earthquakes/earthquakes cluster events occurred on the Mezarlık fault within the past 20 kyr; over 10 meters of displacement took place between early Holocene and late Pleistocene. Estimated ages of those three large slip events are 18.7, 15.1 and 10.8 ka respectively. This study was conducted with the Decision of the Council of Ministers with No. 2013/5387 on the date 30.09.2013 and was done with the permission of Knidos Presidency of excavation in accordance with the scope of Knidos Excavation and Research carried out on behalf of Selçuk University and Ministry of Culture and Tourism. This study was supported by the TÜBİTAK. (Project No: 113Y436)
Crone, Anthony J.; Haller, Kathleen M.; Maharrey, Joseph Z.
2009-01-01
The U.S. Geological Survey's (USGS) Earthquake Hazards Program (EHP) has the responsibility to provide nationwide information and knowledge about earthquakes and earthquake hazards as a step to mitigating earthquake-related losses. As part of this mission, USGS geologists and geophysicists continue to study faults and structures that have the potential to generate large and damaging earthquakes. In addition, the EHP, through its External Grants Program (hereinafter called Program), supports similar studies by scientists employed by state agencies, academic institutions, and independent employers. For the purposes of earthquake hazard investigations, the Nation is geographically subdivided into tectonic regions. One such region is the Intermountain West (IMW), which here is broadly defined as starting at the eastern margin of the Rocky Mountains in New Mexico, Colorado, Wyoming, and Montana and extending westward to the east side of the Sierra Nevada mountains in eastern California and into the Basin and Range-High Plateaus of eastern Oregon and Washington. The IMW contains thousands of faults that have moved in Cenozoic time, hundreds of which have evidence of Quaternary movement, and thus are considered to be potential seismic sources. Ideally, each Quaternary fault should be studied in detail to evaluate its rate of activity in order to model the hazard it poses. The study of a single fault requires a major commitment of time and resources, and given the large number of IMW faults that ideally should be studied, it is impractical to expect that all IMW Quaternary faults can be fully evaluated in detail. A more realistic approach is to prioritize a list of IMW structures that potentially pose a significant hazard and to focus future studies on those structures. Accordingly, in June 2008, a two-day workshop was convened at the USGS offices in Golden, Colorado, to seek information from representatives of selected State Geological Surveys in the IMW and with knowledgeable regional experts to identify the important structures for future studies. Such a priority list allows Program managers to guide the limited resources toward studies of features that are deemed to potentially pose the most serious hazards in the IMW. It also provides the scientific community with a list of structures to investigate because they are deemed to pose a substantial hazard to population centers or critical structures. The IMW encompasses all or large parts of 12 states, including Arizona, New Mexico, extreme west Texas, Colorado, Utah, Nevada, eastern California, eastern Oregon, eastern Washington, Idaho, western Wyoming, and western Montana. In Utah, and more recently in Nevada, geoscientists have taken steps to evaluate geologic data related to well-studied faults and to develop a statewide priority list of hazardous structures. In contrast to Utah and Nevada, the other IMW states contain substantially fewer Quaternary faults, so there have not been any previous efforts to develop similar priority lists. This workshop was organized to address this matter and create a more balanced perspective of priorities throughout the entire IMW region. Because working groups and workshops had already been convened to specifically deal with Quaternary fault priorities in Utah and Nevada, this workshop specifically emphasized structures outside of these two states.
SEISRISK II; a computer program for seismic hazard estimation
Bender, Bernice; Perkins, D.M.
1982-01-01
The computer program SEISRISK II calculates probabilistic ground motion values for use in seismic hazard mapping. SEISRISK II employs a model that allows earthquakes to occur as points within source zones and as finite-length ruptures along faults. It assumes that earthquake occurrences have a Poisson distribution, that occurrence rates remain constant during the time period considered, that ground motion resulting from an earthquake is a known function of magnitude and distance, that seismically homogeneous source zones are defined, that fault locations are known, that fault rupture lengths depend on magnitude, and that earthquake rates as a function of magnitude are specified for each source. SEISRISK II calculates for each site on a grid of sites the level of ground motion that has a specified probability of being exceeded during a given time period. The program was designed to process a large (essentially unlimited) number of sites and sources efficiently and has been used to produce regional and national maps of seismic hazard.}t is a substantial revision of an earlier program SEISRISK I, which has never been documented. SEISRISK II runs considerably [aster and gives more accurate results than the earlier program and in addition includes rupture length and acceleration variability which were not contained in the original version. We describe the model and how it is implemented in the computer program and provide a flowchart and listing of the code.
NASA Technical Reports Server (NTRS)
Stiffler, J. J.; Bryant, L. A.; Guccione, L.
1979-01-01
A computer program was developed as a general purpose reliability tool for fault tolerant avionics systems. The computer program requirements, together with several appendices containing computer printouts are presented.
Active, capable, and potentially active faults - a paleoseismic perspective
Machette, M.N.
2000-01-01
Maps of faults (geologically defined source zones) may portray seismic hazards in a wide range of completeness depending on which types of faults are shown. Three fault terms - active, capable, and potential - are used in a variety of ways for different reasons or applications. Nevertheless, to be useful for seismic-hazards analysis, fault maps should encompass a time interval that includes several earthquake cycles. For example, if the common recurrence in an area is 20,000-50,000 years, then maps should include faults that are 50,000-100,000 years old (two to five typical earthquake cycles), thus allowing for temporal variability in slip rate and recurrence intervals. Conversely, in more active areas such as plate boundaries, maps showing faults that are <10,000 years old should include those with at least 2 to as many as 20 paleoearthquakes. For the International Lithosphere Programs' Task Group II-2 Project on Major Active Faults of the World our maps and database will show five age categories and four slip rate categories that allow one to select differing time spans and activity rates for seismic-hazard analysis depending on tectonic regime. The maps are accompanied by a database that describes evidence for Quaternary faulting, geomorphic expression, and paleoseismic parameters (slip rate, recurrence interval and time of most recent surface faulting). These maps and databases provide an inventory of faults that would be defined as active, capable, and potentially active for seismic-hazard assessments.
Validation of Helicopter Gear Condition Indicators Using Seeded Fault Tests
NASA Technical Reports Server (NTRS)
Dempsey, Paula; Brandon, E. Bruce
2013-01-01
A "seeded fault test" in support of a rotorcraft condition based maintenance program (CBM), is an experiment in which a component is tested with a known fault while health monitoring data is collected. These tests are performed at operating conditions comparable to operating conditions the component would be exposed to while installed on the aircraft. Performance of seeded fault tests is one method used to provide evidence that a Health Usage Monitoring System (HUMS) can replace current maintenance practices required for aircraft airworthiness. Actual in-service experience of the HUMS detecting a component fault is another validation method. This paper will discuss a hybrid validation approach that combines in service-data with seeded fault tests. For this approach, existing in-service HUMS flight data from a naturally occurring component fault will be used to define a component seeded fault test. An example, using spiral bevel gears as the targeted component, will be presented. Since the U.S. Army has begun to develop standards for using seeded fault tests for HUMS validation, the hybrid approach will be mapped to the steps defined within their Aeronautical Design Standard Handbook for CBM. This paper will step through their defined processes, and identify additional steps that may be required when using component test rig fault tests to demonstrate helicopter CI performance. The discussion within this paper will provide the reader with a better appreciation for the challenges faced when defining a seeded fault test for HUMS validation.
ERIC Educational Resources Information Center
KERR, ELIZABETH E.
THE PROBLEMS OF EFFECTIVELY CONCENTRATING COURSES, EFFICIENTLY USING TIME AND MONEY, PROVIDING ADEQUATE TRAINING, AND HELPING ALLEVIATE THE NURSE SHORTAGE COULD BE SOLVED BY ESTABLISHING DEFINITIVE ASSOCIATE DEGREE PROGRAMS IN NURSING. THESE WOULD QUALIFY FOR ASSISTANCE FROM THE VOCATIONAL-TECHNICAL BRANCH AND WOULD BE APPROPRIATELY ADMINISTERED…
The Kinetics of Evolution of Water Vapor Clusters in Air
1975-12-01
Academy Annapnlis, Mazylsnd 21402 D IUP 17% Work Supported by: Power Branch and Atmospheric Sciences Program, Office of Naval Research and Naval Air...to experiments in supersonic nozzles. The patient support of the Power Branch and the Atmospheric Sciences Program, Office of Naval Research over...the start by relying on the dioital compxiter from the start of development. Time- shared computer facilities were provided by the Naval Weapons Lab
Automated Diversity in Computer Systems
2005-09-01
traces that started with trace heads , namely backwards- taken branches. These branches are indicative of loops within the program, and Dynamo assumes that...would be the ones the program would normally take. Therefore when a trace head became hot (was visited enough times), only a single code trace would...all encountered trace heads . When an interesting instruction is being emulated, the tracing code checks to see if it has been encountered before
Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi
2013-01-01
Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study. PMID:24351636
Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi
2013-12-13
Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study.
Investigating an API for resilient exascale computing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stearley, Jon R.; Tomkins, James; VanDyke, John P.
2013-05-01
Increased HPC capability comes with increased complexity, part counts, and fault occurrences. In- creasing the resilience of systems and applications to faults is a critical requirement facing the viability of exascale systems, as the overhead of traditional checkpoint/restart is projected to outweigh its bene ts due to fault rates outpacing I/O bandwidths. As faults occur and propagate throughout hardware and software layers, pervasive noti cation and handling mechanisms are necessary. This report describes an initial investigation of fault types and programming interfaces to mitigate them. Proof-of-concept APIs are presented for the frequent and important cases of memory errors and nodemore » failures, and a strategy proposed for lesystem failures. These involve changes to the operating system, runtime, I/O library, and application layers. While a single API for fault handling among hardware and OS and application system-wide remains elusive, the e ort increased our understanding of both the mountainous challenges and the promising trailheads. 3« less
NASA Astrophysics Data System (ADS)
Luther, A. L.; Axen, G. J.; Selverstone, J.; Khalsa, N.
2009-12-01
Classical fault mechanic theory does not adequately explain slip on “weak” faults oriented at high angles to the regional maximum stress direction, such as the San Andreas Fault and low-angle normal faults. One hypothesis is that stress rotation due to fault-weakening mechanisms allows slip, which may be testable using detailed paleostress analyses of minor faults and tensile fractures. Preliminary data from the footwalls of the Whipple detachment (WD) and the West Salton detachment (WSD) suggest lateral and/or vertical stress rotations. Three inversion programs that use different fault-slip datasets are compared. 1) FaultKin (Marrett and Allmendinger ‘90; Cladouhos and Allmendinger ‘93) determines the principal strain directions using only faults with striae and known slip senses; principal stress orientations are determined assuming coaxiality. To date, FaultKin results appear to be the most reproducible, but it is difficult to find enough faults with striae and slip sense in the small outcrop areas of our study. 2) Slick.bas (Ramsey and Lisle ‘00) uses a grid search to find the best-fit stress tensor from fault and striae orientations, but does not accept slip sense. This program can yield erroneous stress fields that predict slip senses opposite those known for some faults (particularly faults at a high angle to sigma 1). 3) T-TECTO 2.0 (Zalohar and Vrabec ‘07) applies a Gaussian approach, using orientations of faults and striae, the slip senses of any faults for which it is known, plus tensile fractures. We expect that this flexibility of input data types will be best, but testing is preliminary. Paleostress analyses assume that minor faults slipped in response to constant, homogeneous stress fields. We use shear and tensile fractures and cross-cutting relationships from the upper ~25 m of both footwalls to test for spatial and temporal changes to the paleostress field. Paleostress analysis of fractures ~0.3 - 2 m below the WSD on the N limb of an antiform suggests that sigma 3 plunges moderately (~45 degrees) W, sigma 1 plunges gently S, and sigma 2 is steep, consistent with wrench-related folding about E-W trends during WSD slip. However, tensile fractures in the immediately overlying ultracataclasite yield sigma 3 with a shallow W plunge (~4 degrees). In a synformal trough, Reidel shears in the upper 1-2 m of the WSD footwall suggest a moderately (~50 degrees) E plunging sigma 1. Deeper (2-10 m) in the footwall, shear fractures have different but consistent orientations, suggesting a change in the stress field. Preliminary results from several sets of shear fractures in the WD footwall suggest that sigma 1 is steep (~75-90 degrees) in the chlorite breccia zone (implying low shear traction) but is shallower (~45 degrees) in the deeper damage zone. Prior work (Axen & Selverstone ‘94) found that sigma 1 becomes steep again at greater depths. Continued testing of paleostress analysis methods and several other datasets are in progress to confirm our results.
NASA Astrophysics Data System (ADS)
Meyer, Sven Erik; Passchier, Cees; Abu-Alam, Tamer; Stüwe, Kurt
2014-05-01
Metamorphic core complexes usually develop as extensional features during continental crustal thinning, such as the Basin and Range and the Aegean Terrane. The Najd fault system in Saudi Arabia is a 2000 km-long and 400 km-wide complex network of crustal-scale strike-slip shear zones in a Neoproterozoic collision zone. Locally, the anastomosing shear zones lead to exhumation of lower crustal segments and represent a new kinematic model for the development of core complexes. We report on two such structures: the Qazaz complex in Saudi Arabia and the Hafafit complex in Egypt. The 15 km-wide Qazaz complex is a triangular dome of gently dipping mylonitic foliations within the 140 km-long sinistral strike-slip Qazaz mylonite zone. The gneissic dome consists of high-grade rocks, surrounded by low-grade metasediments and metavolcanics. The main SE-trending strike-slip Qazaz shear zone splits southwards into two branches around the gneiss dome: the western branch is continuous with the shallow dipping mylonites of the dome core, without overprinting, and changes by more than 90 degrees from a NS-trending strike-slip zone to an EW-trending 40 degree south-dipping detachment that bounds the gneiss dome to the south. The eastern SE-trending sinistral strike-slip shear zone branch is slightly younger and transects the central dome fabrics. The gneiss dome appears to have formed along a jog in the strike-slip shear zone during 40 km of horizontal strike-slip motion, which caused local exhumation of lower crustal rocks by 25 km along the detachment. The eastern shear zone branch formed later during exhumation, transacted the gneiss dome and offset the two parts by another 70 km. The Hafafit core complex in Egypt is of similar shape and size to the Qazaz structure, but forms the northern termination of a sinistral strike-slip zone that is at least 100 km in length. This zone may continue into Saudi Arabia as the Ajjaj shear zone for another 100 km. The NW trending strike slip mylonite zone grades into a gently N-dipping detachment to the west which accommodated strike slip by exhumation of high-grade lower crustal rocks. The Qazaz and the Hafafit Domes are similar, mirror-image structures with small differences in the accommodating shear zones. It is likely that these types of strike-slip related oblique core complexes are common in the Arabian Nubian shield, and possibly elsewhere.
FINDS: A fault inferring nonlinear detection system programmers manual, version 3.0
NASA Technical Reports Server (NTRS)
Lancraft, R. E.
1985-01-01
Detailed software documentation of the digital computer program FINDS (Fault Inferring Nonlinear Detection System) Version 3.0 is provided. FINDS is a highly modular and extensible computer program designed to monitor and detect sensor failures, while at the same time providing reliable state estimates. In this version of the program the FINDS methodology is used to detect, isolate, and compensate for failures in simulated avionics sensors used by the Advanced Transport Operating Systems (ATOPS) Transport System Research Vehicle (TSRV) in a Microwave Landing System (MLS) environment. It is intended that this report serve as a programmers guide to aid in the maintenance, modification, and revision of the FINDS software.
Fault detection and initial state verification by linear programming for a class of Petri nets
NASA Technical Reports Server (NTRS)
Rachell, Traxon; Meyer, David G.
1992-01-01
The authors present an algorithmic approach to determining when the marking of a LSMG (live safe marked graph) or a LSFC (live safe free choice) net is in the set of live safe markings M. Hence, once the marking of a net is determined to be in M, then if at some time thereafter the marking of this net is determined not to be in M, this indicates a fault. It is shown how linear programming can be used to determine if m is an element of M. The worst-case computational complexity of each algorithm is bounded by the number of linear programs necessary to compute.
Identification of the Polaris Fault using lidar and shallow geophysical methods
Hunter, Lewis E.; Powers, Michael H.; Burton, Bethany L.
2017-01-01
As part of the U.S. Army Corps of Engineers' (USACE) Dam Safety Assurance Program, Martis Creek Dam near Truckee, CA, is under evaluation for earthquake and seepage hazards. The investigations to date have included LiDAR (Light Detection and Ranging) and a wide range of geophysical surveys. The LiDAR data led to the discovery of an important and previously unknown fault tracing very near and possibly under Martis Creek Dam. The geophysical surveys of the dam foundation area confirm evidence of the fault in the area.
Field, Edward; Biasi, Glenn P.; Bird, Peter; Dawson, Timothy E.; Felzer, Karen R.; Jackson, David A.; Johnson, Kaj M.; Jordan, Thomas H.; Madden, Christopher; Michael, Andrew J.; Milner, Kevin; Page, Morgan T.; Parsons, Thomas E.; Powers, Peter; Shaw, Bruce E.; Thatcher, Wayne R.; Weldon, Ray J.; Zeng, Yuehua
2015-01-01
The 2014 Working Group on California Earthquake Probabilities (WGCEP 2014) presents time-dependent earthquake probabilities for the third Uniform California Earthquake Rupture Forecast (UCERF3). Building on the UCERF3 time-independent model, published previously, renewal models are utilized to represent elastic-rebound-implied probabilities. A new methodology has been developed that solves applicability issues in the previous approach for un-segmented models. The new methodology also supports magnitude-dependent aperiodicity and accounts for the historic open interval on faults that lack a date-of-last-event constraint. Epistemic uncertainties are represented with a logic tree, producing 5,760 different forecasts. Results for a variety of evaluation metrics are presented, including logic-tree sensitivity analyses and comparisons to the previous model (UCERF2). For 30-year M≥6.7 probabilities, the most significant changes from UCERF2 are a threefold increase on the Calaveras fault and a threefold decrease on the San Jacinto fault. Such changes are due mostly to differences in the time-independent models (e.g., fault slip rates), with relaxation of segmentation and inclusion of multi-fault ruptures being particularly influential. In fact, some UCERF2 faults were simply too long to produce M 6.7 sized events given the segmentation assumptions in that study. Probability model differences are also influential, with the implied gains (relative to a Poisson model) being generally higher in UCERF3. Accounting for the historic open interval is one reason. Another is an effective 27% increase in the total elastic-rebound-model weight. The exact factors influencing differences between UCERF2 and UCERF3, as well as the relative importance of logic-tree branches, vary throughout the region, and depend on the evaluation metric of interest. For example, M≥6.7 probabilities may not be a good proxy for other hazard or loss measures. This sensitivity, coupled with the approximate nature of the model and known limitations, means the applicability of UCERF3 should be evaluated on a case-by-case basis.
Jany, I.; Scanlon, Kathryn M.; Mauffret, A.
1990-01-01
The Anegada Passage (sensu lato) includes several basins and ridges from Southeast of Puerto Rico to the corner of the Virgin Islands Platform. Seabeam (Seacarib I) and Gloria long-range sidescan sonar surveys were carried out in this area. These new data allow us to propose an interpretation of the Anegada Passage. Most of the features described are related to wrench faulting: (a) St Croix and Virgin Islands Basins are pull-apart basins created in a right-lateral strike-slip environment based on their rhomboidal shape and seismic data (e.g. the flower structure). These two pull-aparts are divided into two sub-basins by a curvilinear normal fault in the Virgin Islands Basin and a right-lateral strike-slip fault in the St Croix Basin. (b) Tortola Ridge and a 'dog's leg' shaped structure are inferred to be restraining bends between two right-lateral strike-slip faults. (c) We identified two ENE-WSW volcanic lineaments in the eastern area and one volcano lying between Virgin Islands and St Croix Basins. (d) As shown by the seismic activity main wrench motion occurs along the north slope of Virgin Islands Basin and through Anegada Passage. A branching of this main fault transmits the transtensional motion to St Croix Basin. A two-stage story is proposed for the creation of the basins. A first extensional event during Eocene(?)-Oligocene-lower Miocene time created Virgin Islands, St Croix Basins and the tilted blocks of St Croix Ridge. A second transtensional event from Pliocene to Recent gave the present day pattern to this area. However, the displacement along the strike-slip faults is no more than 15 km long. The proposed geodynamic model is based on the separation of the northeastern Caribbean boundary into two blocks. In the West, the indenter of Beata Ridge gives a northeastern motion to Hispaniola Block. In the East, as a result of Hispaniola Block's motion, the Puerto Rico-Virgin Islands Block could escape in an east-northeast direction.
Direct Imaging of Natural Fractures and Stress Compartments Stimulated by Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Lacazette, A.; Vermilye, J. M.
2014-12-01
This contribution will present results from passive seismic studies of hydraulic fracture treatments in North American and Asian basins. One of the key data types is a comparatively new surface-based seismic imaging product - "Tomographic Fracture Images®" (TFI®). The procedure is an extension of Seismic Emission Tomography (SET), which is well-established and widely used. Conventional microseismic results - microearthquake hypocenter locations, magnitudes, and focal mechanism solutions - are also obtained from the data via a branch of the processing workflow. TFI is accomplished by summing the individual time steps in a multidimensional SET hypervolume over extended periods of time, such as an entire frac stage. The dimensions of a SET hypervolume are the X, Y, and Z coordinates of the voxels, the time step (typically on the order of 100 milliseconds), and the seismic activity value. The resulting summed volume is skeletonized to produce images of the main fracture surfaces, which are known to occupy the maximum activity surfaces of the high activity clouds from theory, field studies, and experiments. The orientation vs. area of the resulting TFIs can be analyzed in detail and compared with independent data sets such as volumetric structural attributes from reflection seismic data and borehole fracture data. We find that the primary effect of hydraulic fracturing is to stimulate preexisting natural fracture networks and faults. The combination of TFIs with hypocenter distributions and microearthquake focal mechanisms provides detailed information on subsurface stress compartmentalization. Faults are directly imaged which allows discrimination of fault planes from auxiliary planes of focal mechanism solutions. Examples that will be shown include simultaneous movement on a thrust fault and tear fault and examples of radically different stress compartments (e.g. extensional vs. wrench faulting) stimulated during a single hydraulic fracture treatment. The figure shows a TFI of a single frac stage in the Eagle Ford FmFm that is unusually symmetrical and smooth near the perforations. Color shows intensity of cumulative seismic activity (red = high, violet = low). Note that the energy decreases and the complexity increases as the frac quenches in the natural fracture system.
NASA Astrophysics Data System (ADS)
Bohnhoff, Marco; Dresen, Georg; Ceken, Ulubey; Tuba Kadarioglu, Filiz; Feyiz Kartal, Recai; Kilic, Tugbay; Nurlu, Murat; Yanik, Kenan; Acarel, Digdem; Bulut, Fatih; Ito, Hisao; Johnson, Wade; Malin, Peter Eric; Mencin, Dave
2017-04-01
The Marmara section of the North Anatolian Fault Zone (NAFZ) runs under water and is located less than 20 km from the 15-million-person population center of Istanbul at its eastern portion. Based on historical seismicity data, recurrence times forecast an impending magnitude M>7 earthquake for this region. The permanent GONAF Geophysical Observatory at the North Anatolian Fault has been installed around this section to help capture the seismic and strain activity preceding, during, and after such an anticipated event. The GONAF observatory is currently comprised of seven 300 m deep vertical seismic profiling stations and four collocated 100 m deep borehole strainmeters. Five of the stations are located on the land surrounding the Princes Islands segment below the eastern Sea of Marmara and two are on the near-fault Princes Islands south of Istanbul. The 300 m boreholes have 1, 2, and 15 Hz 3-C seismometers near their bottoms. Above this are vertical, 1 Hz, seismometers at 210, 140, and 70 m depths. The strainmeter boreholes are located within a few meters of the seismometer boreholes and contain horizontal strain tensor sensors and 2 Hz 3-C seismometers at their bottoms. This selection of instruments and depths was done so as to ensure high-precision and broad-frequency earthquake monitoring and vertical profiling, all under low-noise conditions. GONAF is the first ICDP-driven project with a primarily focus on long-term monitoring of fault-zone dynamics. It has already contributed to earthquake hazard studies in the Istanbul area in several ways. Combining GONAF recordings with existing regional seismic stations now allows monitoring of the NAFZ offshore Istanbul down to magnitudes M<0. GONAF also improves the resolution of earthquake hypocenters and source parameters, better defining local fault branches, their seismicity, and earthquake potential. Using its vertical distribution of sensors, it has directly measured depth-dependent seismic site-effects for ground shaking studies. GONAF is starting to address fundamental questions related to earthquake nucleation, rupture dynamics, temporal changes of material properties and strain.
METAL FORMING (INDUSTRIAL MULTIMEDIA BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)
The Industrial Multimedia Branch's research program in metal products manufacturing was developed to identify environmental problems and deliver solutions for environmental improvements based on sustainable technology to the industry. There are over 35,000 manufacturing establish...
Geohydrology of Pipe Spring National Monument area, northern Arizona
Truini, Margot
1999-01-01
Pipe Spring National Monument is on the Arizona Strip, an area between the Utah border to the north and the north rim of the Grand Canyon to the south. Four springs at the base of Winsor Point on Winsor Mountain (known collectively as Pipe Spring) are a part of the historical significance of the monument. The relation between declining discharges from springs in the monument and ground-water development north of the monument was studied to provide information that could be used for management of the monument resources. Ground-water elevations from wells indicate that ground-water movement is from north to south along the west side of a branch of Sevier Fault. Faulting in the areas has downthrown permeable water-bearing sediments relative to impermeable sediments and is evinced by cliffs along the western and northern edges and flat-lying areas to the east. The Navajo Sandstone and Kayenta Formation are the primary water-bearing units on the west side of the fault. The semipermeable sediments of the Chinle and Moenkopi Formations on the east side of the fault inhibit ground-water movement from the west to the east side of the fault. Ground water south of Moccasin Canyon is higher in total dissolved solids than ground water north of Moccasin Canyon. Wells north of Moccasin Canyon are open primarily in the Navajo Sandstone, and wells south of Moccasin Canyon are open primarily in the upper sandstone facies of the Kayenta Formation. A water-budget estimate for the study area indicates a storage deficit of 780 acre-feet per year. This deficit suggests that some recharge may be occurring outside the study area. Oxygen and hydrogen stable- isotopic data suggest no isotopic variation in recharging waters in the study area and surrounding region. Radiocarbon and tritium activities indicate apparent ground-water ages at wells and springs are between 45 and 9,000 years.
Strike-slip Tectonics in the Schouten Basin: Western Branch of the Bismarck Sea Seismic Lineation
NASA Astrophysics Data System (ADS)
Llanes Estrada, P.; Hoffmann, G.; Silver, E.; Day, S.; Olaiz Campos, A.
2007-12-01
The Schouten Basin is located offshore the north-western coast of Papua New Guinea, approximately between longitudes 144° and 145°. The major tectonic feature in the area is the Bismarck Sea Seismic Lineation (BSSL), a sinistral strike-slip fault that bounds the north side of the basin and separates the North and South Bismarck Sea Plates. We collected bathymetry and backscatter data in the Schouten Basin and elsewhere in the Bismarck volcanic arc in 2004 aboard the research vessel Kilo Moana. In the area of the Schouten Islands, the BSSL changes its orientation from WNW east of Wei Island (144°21.5) to ENE west of Wei. The predominant structural geometry is a pattern of in-line structures, where several faults are parallel to the strike- slip zone. This geometry could be a result of strain partitioning to accommodate oblique shortening. The fault zone crosses less than 2 km off Wei's south coast and has probably affected the island itself. Our data reveals a major contrast offshore north and south of Wei, with a well developed insular slope and apron on the north side, eroded by a radial system of submarine canyons, and an extremely steep and uncommon insular slope on the south side, that also lacks the presence of an insular apron. We suggest that this south part of the island has been cut off and displaced left-laterally by the BSSL a distance of 45 km. In addition to the main structural direction, approximately E-W, the other predominant direction is given by a set of NE-SW faults. The latter are controlling the orientation of a set of submarine canyons off-shore from the Sepik and the Ramu rivers. These faults may also control local volcanism through the alignment of seamounts.
Integrated ensemble noise-reconstructed empirical mode decomposition for mechanical fault detection
NASA Astrophysics Data System (ADS)
Yuan, Jing; Ji, Feng; Gao, Yuan; Zhu, Jun; Wei, Chenjun; Zhou, Yu
2018-05-01
A new branch of fault detection is utilizing the noise such as enhancing, adding or estimating the noise so as to improve the signal-to-noise ratio (SNR) and extract the fault signatures. Hereinto, ensemble noise-reconstructed empirical mode decomposition (ENEMD) is a novel noise utilization method to ameliorate the mode mixing and denoised the intrinsic mode functions (IMFs). Despite the possibility of superior performance in detecting weak and multiple faults, the method still suffers from the major problems of the user-defined parameter and the powerless capability for a high SNR case. Hence, integrated ensemble noise-reconstructed empirical mode decomposition is proposed to overcome the drawbacks, improved by two noise estimation techniques for different SNRs as well as the noise estimation strategy. Independent from the artificial setup, the noise estimation by the minimax thresholding is improved for a low SNR case, which especially shows an outstanding interpretation for signature enhancement. For approximating the weak noise precisely, the noise estimation by the local reconfiguration using singular value decomposition (SVD) is proposed for a high SNR case, which is particularly powerful for reducing the mode mixing. Thereinto, the sliding window for projecting the phase space is optimally designed by the correlation minimization. Meanwhile, the reasonable singular order for the local reconfiguration to estimate the noise is determined by the inflection point of the increment trend of normalized singular entropy. Furthermore, the noise estimation strategy, i.e. the selection approaches of the two estimation techniques along with the critical case, is developed and discussed for different SNRs by means of the possible noise-only IMF family. The method is validated by the repeatable simulations to demonstrate the synthetical performance and especially confirm the capability of noise estimation. Finally, the method is applied to detect the local wear fault from a dual-axis stabilized platform and the gear crack from an operating electric locomotive to verify its effectiveness and feasibility.
NASA Astrophysics Data System (ADS)
Palin, R. M.; Searle, M. P.; Morley, C. K.; Charusiri, P.; Horstwood, M. S. A.; Roberts, N. M. W.
2013-10-01
The Mae Ping fault (MPF), western Thailand, exhibits dominantly left-lateral strike-slip motion and stretches for >600 km, reportedly branching off the right-lateral Sagaing fault in Myanmar and extending southeast towards Cambodia. Previous studies have suggested that the fault assisted the large-scale extrusion of Sundaland that occurred during the Late Eocene-Early Oligocene, with a geological offset of ˜120-150 km estimated from displaced high-grade gneisses and granites of the Chiang Mai-Lincang belt. Exposures of high-grade orthogneiss in the Lansang National Park, part of this belt, locally contain strong mylonitic textures and are bounded by strike-slip ductile shear zones and brittle faults. Geochronological analysis of monazite from a sample of sheared biotite-K-feldspar orthogneiss suggests two episodes of crystallization, with core regions documenting Th-Pb ages between c. 123 and c. 114 Ma and rim regions documenting a significantly younger age range between c. 45-37 Ma. These data are interpreted to represent possible magmatic protolith emplacement for the Lansang orthogneiss during the Early Cretaceous, with a later episode of metamorphism occurring during the Eocene. Textural relationships provided by in situ analysis suggest that ductile shearing along the MPF occurred during the latter stages of, or after, this metamorphic event. In addition, monazite analyzed from an undeformed garnet-two-mica granite dyke intruding metamorphic units at Bhumipol Lake outside of the Mae Ping shear zone produced a Th-Pb age of 66.2 ± 1.6 Ma. This age is interpreted to date the timing of dyke emplacement, implying that the MPF cuts through earlier formed magmatic and high-grade metamorphic rocks. These new data, when combined with regional mapping and earlier geochronological work, show that neither metamorphism, nor regional cooling, was directly related to strike-slip motion.
NASA Astrophysics Data System (ADS)
Grall, C.; Henry, P.; Thomas, Y.; Marsset, B.; Westbrook, G.; Saritas, H.; Géli, L.; Ruffine, L.; Dupré, S.; Scalabrin, C.; Augustin, J. M.; Cifçi, G.; Zitter, T.
2012-04-01
Along the northern branch of the North Anatolian Fault Zone (NAFZ) within the Sea of Marmara, numerous gas seeps occur. A large part of the gas origin is biogenic but on the Western High, gas bubbles and gas hydrate with a thermogenic signature have been sampled. The expulsion of deep fluids opened new perspective about the permeability, the mechanical properties and the monitoring of the NAFZ. Consequently, the Western High was selected for the deployment of a 3D seismic acquisition layout during the MARMESONET cruise (2009). Thirty-three km2 of high resolution seismic data (with a frequency content of 50-180 Hz) have been collected within the shear band of the fault. The SIMRAD EM-302 was also operated to detect acoustic anomalies related to the presence of gas bubbles in the water column. Within the upper sedimentary cover (seismic penetration ranges from 100 to 500 m bsf), high seismic amplitude variations of the reflectors allow to identify gas traps and gas pathways. Local high amplitude of negative polarity, such as flat spots and bright spots, are observed. Amplitude anomalies are located above and within anticlines and along normal faults. They often correlate with seafloor manifestations of fluid outflow and gas plumes in the water column. This suggests that gas migrates from depth towards the seafloor along normal faults and permeable strata, and part of it is trapped in anticlines. North of the NAF, seabed mounds, corresponding to active hydrocarbon gas seeps, are aligned along a NE-SW direction. They are linked in depth to buried mud volcanoes with an episodic activity. The last mud eruption activity apparently just before or during the Red-H1 horizon deposition which is a prominent reflector of high amplitude and negative polarity occurring all over the Sea of Marmara. It has been interpreted as a stratigraphic horizon, corresponding to slow sedimentation and high sea-level interglacial period.
NASA Astrophysics Data System (ADS)
Karakostas, Vassilis; Papadimitriou, Eleftheria; Gospodinov, Dragomir
2014-04-01
The 2013 January 8 Mw 5.8 North Aegean earthquake sequence took place on one of the ENE-WSW trending parallel dextral strike slip fault branches in this area, in the continuation of 1968 large (M = 7.5) rupture. The source mechanism of the main event indicates predominantly strike slip faulting in agreement with what is expected from regional seismotectonics. It was the largest event to have occurred in the area since the establishment of the Hellenic Unified Seismological Network (HUSN), with an adequate number of stations in close distances and full azimuthal coverage, thus providing the chance of an exhaustive analysis of its aftershock sequence. The main shock was followed by a handful of aftershocks with M ≥ 4.0 and tens with M ≥ 3.0. Relocation was performed by using the recordings from HUSN and a proper crustal model for the area, along with time corrections in each station relative to the model used. Investigation of the spatial and temporal behaviour of seismicity revealed possible triggering of adjacent fault segments. Theoretical static stress changes from the main shock give a preliminary explanation for the aftershock distribution aside from the main rupture. The off-fault seismicity is perfectly explained if μ > 0.5 and B = 0.0, evidencing high fault friction. In an attempt to forecast occurrence probabilities of the strong events (Mw ≥ 5.0), estimations were performed following the Restricted Epidemic Type Aftershock Sequence (RETAS) model. The identified best-fitting MOF model was used to execute 1-d forecasts for such aftershocks and follow the probability evolution in time during the sequence. Forecasting was also implemented on the base of a temporal model of aftershock occurrence, different from the modified Omori formula (the ETAS model), which resulted in probability gain (though small) in strong aftershock forecasting for the beginning of the sequence.
NASA Astrophysics Data System (ADS)
Hiemer, S.; Woessner, J.; Basili, R.; Danciu, L.; Giardini, D.; Wiemer, S.
2014-08-01
We present a time-independent gridded earthquake rate forecast for the European region including Turkey. The spatial component of our model is based on kernel density estimation techniques, which we applied to both past earthquake locations and fault moment release on mapped crustal faults and subduction zone interfaces with assigned slip rates. Our forecast relies on the assumption that the locations of past seismicity is a good guide to future seismicity, and that future large-magnitude events occur more likely in the vicinity of known faults. We show that the optimal weighted sum of the corresponding two spatial densities depends on the magnitude range considered. The kernel bandwidths and density weighting function are optimized using retrospective likelihood-based forecast experiments. We computed earthquake activity rates (a- and b-value) of the truncated Gutenberg-Richter distribution separately for crustal and subduction seismicity based on a maximum likelihood approach that considers the spatial and temporal completeness history of the catalogue. The final annual rate of our forecast is purely driven by the maximum likelihood fit of activity rates to the catalogue data, whereas its spatial component incorporates contributions from both earthquake and fault moment-rate densities. Our model constitutes one branch of the earthquake source model logic tree of the 2013 European seismic hazard model released by the EU-FP7 project `Seismic HAzard haRmonization in Europe' (SHARE) and contributes to the assessment of epistemic uncertainties in earthquake activity rates. We performed retrospective and pseudo-prospective likelihood consistency tests to underline the reliability of our model and SHARE's area source model (ASM) using the testing algorithms applied in the collaboratory for the study of earthquake predictability (CSEP). We comparatively tested our model's forecasting skill against the ASM and find a statistically significant better performance for testing periods of 10-20 yr. The testing results suggest that our model is a viable candidate model to serve for long-term forecasting on timescales of years to decades for the European region.
1980-01-01
Engineering Branch Engineering Division CARNEY M. TERZIAN, MEMBER Design Branch Engineering Division S, RICHARD DIE O CHIRA Water Control Branch...Associates, P.C. under a letter of 19 October 1979 from William E. Hodgson, Jr., Colonel, Corps of Engineers. Contract No. DACW33-80-C-0001 has been assigned
NASA Astrophysics Data System (ADS)
Rosas, F. M.; Tomas, R.; Duarte, J. C.; Schellart, W. P.; Terrinha, P.
2014-12-01
The intersection between the Gloria Fault (GF) and the Tore-Madeira rise (TMR) in NE Atlantic marks a transition from a discrete to a diffuse nature along a critical segment of the Eurasia/Africa plate boundary. To the West of such intersection, approximately since the Azores triple junction, this plate boundary is mostly characterized by a set of closely aligned and continuous strike-slip faults that make up the narrow active dextral transcurrent system of the GF (with high magnitude M>7 historical earthquakes). While intersecting the TMR the closely E-W trending trace of the GF system is slightly deflected (changing to WNW-ESE), and splays into several fault branches that often coincide with aligned (TMR related?) active volcanic plugs. The segment of the plate boundary between the TMR and the Gorringe Bank (further to the East) corresponds to a more complex (less discrete) tectonic configuration, within which the tectonic connection between the Gloria Fault and another major dextral transcurrent system (the so called SWIM system) occurs. This SWIM fault system has been described to extend even further to the East (almost until the Straits of Gibraltar) across the Gulf of Cadiz domain. In this domain the relative movement between the Eurasian and the African plates is thought to be accommodated through a diffuse manner, involving large scale strain partition between a dextral transcurrent fault-system (the SWIM system), and a set of active west-directed én-échelon major thrusts extending to the North along the SW Iberian margin. We present new analog modeling results, in which we employed different experimental settings to address (namely) the following main questions (as a first step to gain new insight on the tectonic evolution of the TRM-GF critical intersection area): Could the observed morphotectonic configuration of such intersection be simply caused by a bathymetric anomaly determined by a postulated thickened oceanic crust, or is it more compatible with a crustal rheological (viscous) anomaly, possibly related with the active volcanism in the intersection zone? What could cause the observed deflection and splaying of the GF in the intersection with the TMR? Is the GF cutting across the TMR, or is it ending against a morpho-rheological anomaly through waning lateral propagation?
NASA Astrophysics Data System (ADS)
Lourenço, N.; Miranda, J. M.; Luis, J.; Silva, I.; Goslin, J.; Ligi, M.
2003-04-01
The Terceira rift is a oblique ultra-slow spreading system where a transtensive regime results from differential movement between Eurasian and African plates. So far no classical ridge segmentation pattern has here been observed. The predominant morphological features are fault controlled rhombic shaped basins and volcanism related morphologies like circular seamounts and volcanic ridges. We present SIMRAD EM300 (bathymetry + backscatter) images acquired over one of these ridges located SE of Terceira Island, during the SIRENA cruise (PI J. Goslin), which complements previous TOBI mosaics performed over the same area during the AZZORRE99 cruise (PI M. Ligi). The ridge presents a NW-SE orientation, it is seismically active (a seismic crisis was documented in 1997) and corresponds to the southern branch of a V shape bathymetric feature enclosing the Terceira Island and which tip is located west of the Island near the 1998 Serreta ridge eruption site. NE of the ridge, the core of the V, corresponds to the North Hirondelle basin. All this area corresponds mainly to Brunhes magnetic epoch. The new bathymetry maps reveal a partition between tectonic processes, centred in the ridge, and volcanism present at the bottom of the North Hirondelle basin. The ridge high backscatter surface is cut by a set of sub-parallel anastomosed normal faults striking between N130º and N150º. Some faults present horse-tail terminations. Fault splays sometimes link to neighbour faults defining extensional duplexes and fault wedge basins and highs of rhombic shape. The faulting geometry suggests that a left-lateral strike slip component should be present. The top of the ridge consists on an arched demi-.horst, and it is probably a volcanic structure remnant (caldera system?), existing prior to onset of the tectonic stage in the ridge. Both ridge flanks display gullies and mass wasting fans at the base of the slope. The ridge vicinities are almost exclusively composed of a grayish homogeneous acoustic facies interpreted as pelagic and volcanic sediment. The numerous untectonized volcanic cones present to NE, in the northern flank of the North Hirondelle basin, align-up with the three volcanic systems of the Terceira Island (progressively less eroded towards west) and the Serreta ridge, thus suggesting propagation of a melt/thermal anomaly westwards through time. This volcanic area contrasts strongly with the highly fractured pattern observed in the ridge.
Stress Study on Southern Segment of Longmenshan Fault Constrained by Focal Mechanism Data
NASA Astrophysics Data System (ADS)
Yang, Y.; Liang, C.; Su, J.; Zhou, L.
2016-12-01
The Longmenshan fault (LMSF) lies at the eastern margin of Tibetan plateau and constitutes the boundary of the active Bayankala block and rigid Sichuan basin. This fault was misinterpreted as an inactive fault before the great Wenchuan earthquake. Five years after the devastating event, the Lushan MS 7.0 stroke the southern segment of the LMSF but fractured in a very limited scale and formed a seismic gap between the two earthquakes. In this study, we determined focal mechanisms of earthquakes with magnitude M≥3 from Jan 2008 to July 2014 in the southern segment of LMSF, and then applied the damped linear inversion to derive the regional stress field based on the focal mechanisms. Focal mechanisms of 755 earthquakes in total were determined. We further used a damped linear inversion technique to produce a 2D stress map in upper crust in the study region. A dominant thrust regime is determined south of the seismic gap, with a horizontal maximum compression oriented in NWW-SEE. But in the area to the north of the seismic gap is characterized as a much more complex stress environment. To the west of the Dujiangyan city, there appear to be a seismic gap in the Pengguan complex. The maximum compressions show the anti-clockwise and clockwise patterns to the south and north of this small gap. Thus the small gap seems to be an asperity that causes the maximum compression to rotate around it. While combined the maximum compression pattern with the focal solutions of strong earthquakes (Mw≥5) in this region, two of those strong earthquakes located near the back-range-fault have strikes parallel to the Miyaluo fault. Considering a large amount of earthquakes in Lixian branch, the Miyaluo fault may be extended to LMSF following the great Wenchuan earthquake. Investigations on the stress field of different depths indicate complex spatial variations. The Pengguan complex is almost aseismic in shallow depth in its central part. In deeper depth, the maximum compressions show the NNW-SSE and NE-SW directions to the north and south of the seismic gap respectively, this are surprisingly different from that of the shallower depth. Thus the maximum compressions vary with depth may imply the movement in depth is decoupled from the movement in shallow depth. This work was partially supported by National Natural Science Foundation of China (41340009).
NASA Astrophysics Data System (ADS)
Papaleo, E.; Cornwell, D. G.; Rawlinson, N.
2016-12-01
We present high-resolution tomography images of a major active continental strike slip fault zone, the North Anatolian Fault (NAF) in northern Turkey. Historical seismic records show that the NAF, with a length of 1500 km and a current slip rate of 25 mm/yr, is capable of producing large magnitude earthquakes that have activated different segments of the fault in a westward progression towards the study region, where the devastating Izmit and Düzce events occurred in 1999. The NAF poses a major seismic hazard to the city of Istanbul, situated close to one of the two strands into which the fault splays east of the Sea of Marmara. In order to improve our understanding of the lower crust and upper mantle properties that influence fault dynamics throughout the seismic cycle, we constrain NAF structure across the Moho in unprecedented detail by applying teleseismic tomography to data recorded by an array of 70 temporary seismic stations deployed with 7 km spacing (Dense Array for North Anatolia, DANA). High quality recordings of teleseismic earthquakes combined with the dense nature of the array allow high-resolution (i.e. horizontal and vertical resolution of 8 and 15 km, respectively) 3D seismic imaging of the velocity structure beneath the NAF. The northern branch of the NAF coincides with an abrupt change between opposite polarity velocity anomalies and can be traced to at least Moho depths ( 36 km) with a width of ≤8 km. A similar pattern of antithetic anomalies occurs over a horizontal distance of 30-50 km below the Moho and may indicate a widening shear zone as it passes from the crust into the upper mantle. We find evidence for significant along-strike variation in NAF structure over distances of ≤20 km and interpret an east-to-west narrowing of upper mantle slow velocity anomalies (from 50 to 30 km) to represent laterally variable strain focussing within the lithosphere. Our observations are consistent with the notion that the NAF marks the boundary between compositionally distinct lithospheres with different tectonic histories and reactivates the pre-existing Intra-Pontide suture zone. We discuss our results in terms of the influence of lithosphere heterogeneity on the development and evolution of global continental strike-slip fault zones and assess the applicability of current shear zone deformation models.
Hanson, John A.; Small, Ted A.
1995-01-01
All of the hydrogeologic subdivisions within the Edwards aquifer outcrop in Hays County have some porosity and permeability. The most porous and permeable appear to be hydrogeologic subdivision VI, the Kirschberg evaporite member of the Kainer Formation; hydrogeologic subdivision III, the leached and collapsed members, undivided; and hydrogeologic subdivision II, the cyclic and marine members, undivided, of the Person Formation. The two types of porosity in the Edwards aquifer outcrop are fabric selective, which is related to depositional or diagenetic elements and typically exists in specific stratigraphic horizons; and not fabric selective, which can exist in any lithostratigraphic horizon. Permeability, the capacity of porous rock to transmit water, depends on the physical properties of the rock such as size, shape, and distribution of pores, and fissuring and dissolution. Two faults, San Marcos Springs and Mustang Branch, completely, or almost completely, offset the Edwards aquifer by juxtaposing Edwards aquifer limestone against nearly impermeable upper confining units along parts of their traces across Hays County. These faults are thought to be barriers, or partial barriers, to groundwater flow where the beds are juxtaposed. In Hays County, the Edwards aquifer probably is most vulnerable to surface contamination in the rapidly urbanizing areas on the Edwards aquifer outcrop. Contamination can result from spills or leakage of hazardous materials; or runoff on the intensely faulted and fractured, karstic limestone outcrops characteristic of the recharge zone.
New cooperative seismograph networks established in southern California
Hill, D.P.
1974-01-01
Southern California has more active faults located close to large, urban population centers than any other region in the United States. Reduction of risk to life and property posed by potential earthquakes along these active faults is a primary motivation for a cooperative earthquake research program between the U.S Geological Survey and major universities in Southern California.
An earthquake rate forecast for Europe based on smoothed seismicity and smoothed fault contribution
NASA Astrophysics Data System (ADS)
Hiemer, Stefan; Woessner, Jochen; Basili, Roberto; Wiemer, Stefan
2013-04-01
The main objective of project SHARE (Seismic Hazard Harmonization in Europe) is to develop a community-based seismic hazard model for the Euro-Mediterranean region. The logic tree of earthquake rupture forecasts comprises several methodologies including smoothed seismicity approaches. Smoothed seismicity thus represents an alternative concept to express the degree of spatial stationarity of seismicity and provides results that are more objective, reproducible, and testable. Nonetheless, the smoothed-seismicity approach suffers from the common drawback of being generally based on earthquake catalogs alone, i.e. the wealth of knowledge from geology is completely ignored. We present a model that applies the kernel-smoothing method to both past earthquake locations and slip rates on mapped crustal faults and subductions. The result is mainly driven by the data, being independent of subjective delineation of seismic source zones. The core parts of our model are two distinct location probability densities: The first is computed by smoothing past seismicity (using variable kernel smoothing to account for varying data density). The second is obtained by smoothing fault moment rate contributions. The fault moment rates are calculated by summing the moment rate of each fault patch on a fully parameterized and discretized fault as available from the SHARE fault database. We assume that the regional frequency-magnitude distribution of the entire study area is well known and estimate the a- and b-value of a truncated Gutenberg-Richter magnitude distribution based on a maximum likelihood approach that considers the spatial and temporal completeness history of the seismic catalog. The two location probability densities are linearly weighted as a function of magnitude assuming that (1) the occurrence of past seismicity is a good proxy to forecast occurrence of future seismicity and (2) future large-magnitude events occur more likely in the vicinity of known faults. Consequently, the underlying location density of our model depends on the magnitude. We scale the density with the estimated a-value in order to construct a forecast that specifies the earthquake rate in each longitude-latitude-magnitude bin. The model is intended to be one branch of SHARE's logic tree of rupture forecasts and provides rates of events in the magnitude range of 5 <= m <= 8.5 for the entire region of interest and is suitable for comparison with other long-term models in the framework of the Collaboratory for the Study of Earthquake Predictability (CSEP).
Computing Fault Displacements from Surface Deformations
NASA Technical Reports Server (NTRS)
Lyzenga, Gregory; Parker, Jay; Donnellan, Andrea; Panero, Wendy
2006-01-01
Simplex is a computer program that calculates locations and displacements of subterranean faults from data on Earth-surface deformations. The calculation involves inversion of a forward model (given a point source representing a fault, a forward model calculates the surface deformations) for displacements, and strains caused by a fault located in isotropic, elastic half-space. The inversion involves the use of nonlinear, multiparameter estimation techniques. The input surface-deformation data can be in multiple formats, with absolute or differential positioning. The input data can be derived from multiple sources, including interferometric synthetic-aperture radar, the Global Positioning System, and strain meters. Parameters can be constrained or free. Estimates can be calculated for single or multiple faults. Estimates of parameters are accompanied by reports of their covariances and uncertainties. Simplex has been tested extensively against forward models and against other means of inverting geodetic data and seismic observations. This work
Development and analysis of the Software Implemented Fault-Tolerance (SIFT) computer
NASA Technical Reports Server (NTRS)
Goldberg, J.; Kautz, W. H.; Melliar-Smith, P. M.; Green, M. W.; Levitt, K. N.; Schwartz, R. L.; Weinstock, C. B.
1984-01-01
SIFT (Software Implemented Fault Tolerance) is an experimental, fault-tolerant computer system designed to meet the extreme reliability requirements for safety-critical functions in advanced aircraft. Errors are masked by performing a majority voting operation over the results of identical computations, and faulty processors are removed from service by reassigning computations to the nonfaulty processors. This scheme has been implemented in a special architecture using a set of standard Bendix BDX930 processors, augmented by a special asynchronous-broadcast communication interface that provides direct, processor to processor communication among all processors. Fault isolation is accomplished in hardware; all other fault-tolerance functions, together with scheduling and synchronization are implemented exclusively by executive system software. The system reliability is predicted by a Markov model. Mathematical consistency of the system software with respect to the reliability model has been partially verified, using recently developed tools for machine-aided proof of program correctness.
Runtime Verification in Context : Can Optimizing Error Detection Improve Fault Diagnosis
NASA Technical Reports Server (NTRS)
Dwyer, Matthew B.; Purandare, Rahul; Person, Suzette
2010-01-01
Runtime verification has primarily been developed and evaluated as a means of enriching the software testing process. While many researchers have pointed to its potential applicability in online approaches to software fault tolerance, there has been a dearth of work exploring the details of how that might be accomplished. In this paper, we describe how a component-oriented approach to software health management exposes the connections between program execution, error detection, fault diagnosis, and recovery. We identify both research challenges and opportunities in exploiting those connections. Specifically, we describe how recent approaches to reducing the overhead of runtime monitoring aimed at error detection might be adapted to reduce the overhead and improve the effectiveness of fault diagnosis.
Field Investigations and a Tsunami Modeling for the 1766 Marmara Sea Earthquake, Turkey
NASA Astrophysics Data System (ADS)
Aykurt Vardar, H.; Altinok, Y.; Alpar, B.; Unlu, S.; Yalciner, A. C.
2016-12-01
Turkey is located on one of the world's most hazardous earthquake zones. The northern branch of the North Anatolian fault beneath the Sea of Marmara, where the population is most concentrated, is the most active fault branch at least since late Pliocene. The Sea of Marmara region has been affected by many large tsunamigenic earthquakes; the most destructive ones are 549, 553, 557, 740, 989, 1332, 1343, 1509, 1766, 1894, 1912 and 1999 events. In order to understand and determine the tsunami potential and their possible effects along the coasts of this inland sea, detailed documentary, geophysical and numerical modelling studies are needed on the past earthquakes and their associated tsunamis whose effects are presently unknown.On the northern coast of the Sea of Marmara region, the Kucukcekmece Lagoon has a high potential to trap and preserve tsunami deposits. Within the scope of this study, lithological content, composition and sources of organic matters in the lagoon's bottom sediments were studied along a 4.63 m-long piston core recovered from the SE margin of the lagoon. The sedimentary composition and possible sources of the organic matters along the core were analysed and their results were correlated with the historical events on the basis of dating results. Finally, a tsunami scenario was tested for May 22nd 1766 Marmara Sea Earthquake by using a widely used tsunami simulation model called NAMIDANCE. The results show that the candidate tsunami deposits at the depths of 180-200 cm below the lagoons bottom were related with the 1766 (May) earthquake. This work was supported by the Scientific Research Projects Coordination Unit of Istanbul University (Project 6384) and by the EU project TRANSFER for coring.
NASA Astrophysics Data System (ADS)
Yang, Wen-Xian
2006-05-01
Available machine fault diagnostic methods show unsatisfactory performances on both on-line and intelligent analyses because their operations involve intensive calculations and are labour intensive. Aiming at improving this situation, this paper describes the development of an intelligent approach by using the Genetic Programming (abbreviated as GP) method. Attributed to the simple calculation of the mathematical model being constructed, different kinds of machine faults may be diagnosed correctly and quickly. Moreover, human input is significantly reduced in the process of fault diagnosis. The effectiveness of the proposed strategy is validated by an illustrative example, in which three kinds of valve states inherent in a six-cylinders/four-stroke cycle diesel engine, i.e. normal condition, valve-tappet clearance and gas leakage faults, are identified. In the example, 22 mathematical functions have been specially designed and 8 easily obtained signal features are used to construct the diagnostic model. Different from existing GPs, the diagnostic tree used in the algorithm is constructed in an intelligent way by applying a power-weight coefficient to each feature. The power-weight coefficients vary adaptively between 0 and 1 during the evolutionary process. Moreover, different evolutionary strategies are employed, respectively for selecting the diagnostic features and functions, so that the mathematical functions are sufficiently utilized and in the meantime, the repeated use of signal features may be fully avoided. The experimental results are illustrated diagrammatically in the following sections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aurelio, Mario; Taguibao, Kristine Joy; Vargas, Edmundo
In the selection of sites for disposal facilities involving low- and intermediate-level radioactive waste (LILW), International Atomic Energy Agency (IAEA) recommendations require that 'the region in which the site is located shall be such that significant tectonic and surface processes are not expected to occur with an intensity that would compromise the required isolation capability of the repository'. Evaluating the appropriateness of a site therefore requires a deep understanding of the geological and tectonic setting of the area. The Philippines sits in a tectonically active region frequented by earthquakes and volcanic activity. Its highly variable morphology coupled with its locationmore » along the typhoon corridor in the west Pacific region subjects the country to surface processes often manifested in the form of landslides. The Philippine LILW near surface repository project site is located on the north eastern sector of the Island of Luzon in northern Philippines. This island is surrounded by active subduction trenches; to the east by the East Luzon Trough and to the west by the Manila Trench. The island is also traversed by several branches of the Philippine Fault System. The Philippine LILW repository project is located more than 100 km away from any of these major active fault systems. In the near field, the project site is located less than 10 km from a minor fault (Dummon River Fault) and more than 40 km away from a volcanic edifice (Mt. Caguas). This paper presents an analysis of the potential hazards that these active tectonic features may pose to the project site. The assessment of such geologic hazards is imperative in the characterization of the site and a crucial input in the design and safety assessment of the repository. (authors)« less
NASA Astrophysics Data System (ADS)
Pastoriza, L. R.; Holdsworth, R.; McCaffrey, K. J. W.; Dempsey, E. D.; Walker, R. J.; Gluyas, J.; Reyes, J. K.
2016-12-01
Fluid flow pathway characterization is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.
NASA Astrophysics Data System (ADS)
Pastoriza, Loraine; Holdsworth, Robert; McCaffrey, Kenneth; Dempsey, Eddie; Walker, Richard; Gluyas, Jon; Reyes, Jonathan
2017-04-01
Fluid flow pathway characterisation is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.
Earthquake source nucleation process in the zone of a permanently creeping deep fault
NASA Astrophysics Data System (ADS)
Lykov, V. I.; Mostryukov, A. O.
2008-10-01
The worldwide practice of earthquake prediction, whose beginning relates to the 1970s, shows that spatial manifestations of various precursors under real seismotectonic conditions are very irregular. As noted in [Kurbanov et al., 1980], zones of bending, intersection, and branching of deep faults, where conditions are favorable for increasing tangential tectonic stresses, serve as “natural amplifiers” of precursory effects. The earthquake of September 28, 2004, occurred on the Parkfield segment of the San Andreas deep fault in the area of a local bending of its plane. The fault segment about 60 km long and its vicinities are the oldest prognostic area in California. Results of observations before and after the earthquake were promptly analyzed and published in a special issue of Seismological Research Letters (2005, Vol. 76, no. 1). We have an original method enabling the monitoring of the integral rigidity of seismically active rock massifs. The integral rigidity is determined from the relative numbers of brittle and viscous failure acts during the formation of source ruptures of background earthquakes in a given massif. Fracture mechanisms are diagnosed from the steepness of the first arrival of the direct P wave. Principles underlying our method are described in [Lykov and Mostryukov, 1996, 2001, 2003]. Results of monitoring have been directly displayed at the site of the Laboratory (
2016-10-01
BRIEFING CHARTS) D. Zeppettella Structures Technology Branch Aerospace Vehicles Division Steve Bucca and Thomas Gage BerrieHill Research...R. WIPPERMAN, Chief Program Manager Structures Technology Branch Structures Technology Branch Aerospace Vehicles Division Aerospace Vehicles...Corporation) 5d. PROJECT NUMBER 4920 5e. TASK NUMBER 5f. WORK UNIT NUMBER Q06A 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.
1997-08-01
Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Latemore » Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.« less
NASA Astrophysics Data System (ADS)
Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim
2008-07-01
The Eastern Branch of the East African Rift System is well known in Ethiopia (Main Ethiopian Rift) and Kenya (Kenya or Gregory Rift) and is usually considered to fade away southwards in the North Tanzanian Divergence, where it splits into the Eyasi, Manyara and Pangani segments. Further towards the south, rift structures are more weakly expressed and this area has not attracted much attention since the mapping and exploratory works of the 1950s. In November 4, 2002, an earthquake of magnitude Mb = 5.5 struck Dodoma, the capital city of Tanzania. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to the region of Dodoma, forming the proposed "Manyara-Dodoma Rift segment". North of Arusha-Ngorongoro line, the rift is confined to a narrow belt (Natron graben in Tanzania) and south of it, it broadens into a wide deformation zone which includes both the Eyasi and Manyara grabens. The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma Rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the morphological freshness of the fault scarps, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent faults often reactivate older fault systems that were formed under E-W to NW-SE horizontal compression, compatible with late Pan-African tectonics. The present-day stress inverted from earthquake focal mechanisms shows that the Manyara-Dodoma Rift segment is presently subjected to an extensional stress field with a N080°E direction of horizontal principal extension. Under this stress field, the rift develops by: (1) reactivation of the pre-existing tectonic planes of weakness, and (2) progressive development of a new fault system in a more N-S trend by the linkage of existing rift faults. This process started about 1.2 Ma ago and is still ongoing.
A distributed programming environment for Ada
NASA Technical Reports Server (NTRS)
Brennan, Peter; Mcdonnell, Tom; Mcfarland, Gregory; Timmins, Lawrence J.; Litke, John D.
1986-01-01
Despite considerable commercial exploitation of fault tolerance systems, significant and difficult research problems remain in such areas as fault detection and correction. A research project is described which constructs a distributed computing test bed for loosely coupled computers. The project is constructing a tool kit to support research into distributed control algorithms, including a distributed Ada compiler, distributed debugger, test harnesses, and environment monitors. The Ada compiler is being written in Ada and will implement distributed computing at the subsystem level. The design goal is to provide a variety of control mechanics for distributed programming while retaining total transparency at the code level.
Ryan, Holly F.; Conrad, James E.; Paull, C.K.; McGann, Mary
2012-01-01
The San Diego trough fault zone (SDTFZ) is part of a 90-km-wide zone of faults within the inner California Borderland that accommodates motion between the Pacific and North American plates. Along with most faults offshore southern California, the slip rate and paleoseismic history of the SDTFZ are unknown. We present new seismic reflection data that show that the fault zone steps across a 5-km-wide stepover to continue for an additional 60 km north of its previously mapped extent. The 1986 Oceanside earthquake swarm is located within the 20-km-long restraining stepover. Farther north, at the latitude of Santa Catalina Island, the SDTFZ bends 20° to the west and may be linked via a complex zone of folds with the San Pedro basin fault zone (SPBFZ). In a cooperative program between the U.S. Geological Survey (USGS) and the Monterey Bay Aquarium Research Institute (MBARI), we measure and date the coseismic offset of a submarine channel that intersects the fault zone near the SDTFZ–SPBFZ junction. We estimate a horizontal slip rate of about 1:5 0:3 mm=yr over the past 12,270 yr.
Model Transformation for a System of Systems Dependability Safety Case
NASA Technical Reports Server (NTRS)
Murphy, Judy; Driskell, Stephen B.
2010-01-01
Software plays an increasingly larger role in all aspects of NASA's science missions. This has been extended to the identification, management and control of faults which affect safety-critical functions and by default, the overall success of the mission. Traditionally, the analysis of fault identification, management and control are hardware based. Due to the increasing complexity of system, there has been a corresponding increase in the complexity in fault management software. The NASA Independent Validation & Verification (IV&V) program is creating processes and procedures to identify, and incorporate safety-critical software requirements along with corresponding software faults so that potential hazards may be mitigated. This Specific to Generic ... A Case for Reuse paper describes the phases of a dependability and safety study which identifies a new, process to create a foundation for reusable assets. These assets support the identification and management of specific software faults and, their transformation from specific to generic software faults. This approach also has applications to other systems outside of the NASA environment. This paper addresses how a mission specific dependability and safety case is being transformed to a generic dependability and safety case which can be reused for any type of space mission with an emphasis on software fault conditions.
Enhancements to the Branched Lagrangian Transport Modeling System
Jobson, Harvey E.
1997-01-01
The Branched Lagrangian Transport Model (BLTM) has received wide use within the U.S. Geological Survey over the past 10 years. This report documents the enhancements and modifications that have been made to this modeling system since it was first introduced. The programs in the modeling system are arranged into five levels?programs to generate time-series of meteorological data (EQULTMP, SOLAR), programs to process time-series data (INTRP, MRG), programs to build input files for transport model (BBLTM, BQUAL2E), the model with defined reaction kinetics (BLTM, QUAL2E), and post processor plotting programs (CTPLT, CXPLT). An example application is presented to illustrate how the modeling system can be used to simulate 10 water-quality constituents in the Chattahoochee River below Atlanta, Georgia.
NASA Technical Reports Server (NTRS)
Tomayko, James E.
1986-01-01
Twenty-five years of spacecraft onboard computer development have resulted in a better understanding of the requirements for effective, efficient, and fault tolerant flight computer systems. Lessons from eight flight programs (Gemini, Apollo, Skylab, Shuttle, Mariner, Voyager, and Galileo) and three reserach programs (digital fly-by-wire, STAR, and the Unified Data System) are useful in projecting the computer hardware configuration of the Space Station and the ways in which the Ada programming language will enhance the development of the necessary software. The evolution of hardware technology, fault protection methods, and software architectures used in space flight in order to provide insight into the pending development of such items for the Space Station are reviewed.