Leading Process Branch Instability in Lis1+/− Nonradially Migrating Interneurons
Gopal, Pallavi P.; Simonet, Jacqueline C.; Shapiro, William
2010-01-01
Mammalian forebrain development requires extensive migration, yet the mechanisms through which migrating neurons sense and respond to guidance cues are not well understood. Similar to the axon growth cone, the leading process and branches of neurons may guide migration, but the cytoskeletal events that regulate branching are unknown. We have previously shown that loss of microtubule-associated protein Lis1 reduces branching during migration compared with wild-type neurons. Using time-lapse imaging of Lis1+/− and Lis1+/+ cells migrating from medial ganglionic eminence explant cultures, we show that the branching defect is not due to a failure to initiate branches but a defect in the stabilization of new branches. The leading processes of Lis1+/− neurons have reduced expression of stabilized, acetylated microtubules compared with Lis1+/+ neurons. To determine whether Lis1 modulates branch stability through its role as the noncatalytic β regulatory subunit of platelet-activating factor (PAF) acetylhydrolase 1b, exogenous PAF was applied to wild-type cells. Excess PAF added to wild-type neurons phenocopies the branch instability observed in Lis1+/− neurons, and a PAF antagonist rescues leading process branching in Lis1+/− neurons. These data highlight a role for Lis1, acting through the PAF pathway, in leading process branching and microtubule stabilization. PMID:19861636
The control of branching morphogenesis
Iber, Dagmar; Menshykau, Denis
2013-01-01
Many organs of higher organisms are heavily branched structures and arise by an apparently similar process of branching morphogenesis. Yet the regulatory components and local interactions that have been identified differ greatly in these organs. It is an open question whether the regulatory processes work according to a common principle and how far physical and geometrical constraints determine the branching process. Here, we review the known regulatory factors and physical constraints in lung, kidney, pancreas, prostate, mammary gland and salivary gland branching morphogenesis, and describe the models that have been formulated to analyse their impacts. PMID:24004663
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2017-12-01
Search processes play key roles in various scientific fields. A widespread and effective search-process scheme, which we term Restart Search, is based on the following restart algorithm: i) set a timer and initiate a search task; ii) if the task was completed before the timer expired, then stop; iii) if the timer expired before the task was completed, then go back to the first step and restart the search process anew. In this paper a branching feature is added to the restart algorithm: at every transition from the algorithm's third step to its first step branching takes place, thus multiplying the search effort. This branching feature yields a search-process scheme which we term Branching Search. The running time of Branching Search is analyzed, closed-form results are established, and these results are compared to the coresponding running-time results of Restart Search.
12 CFR 28.21 - Service of process.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Service of process. 28.21 Section 28.21 Banks... Federal Branches and Agencies of Foreign Banks § 28.21 Service of process. A foreign bank operating at any Federal branch or agency is subject to service of process at the location of the Federal branch or agency. ...
Finite-size scaling of survival probability in branching processes
NASA Astrophysics Data System (ADS)
Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Álvaro
2015-04-01
Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We derive analytically the existence of finite-size scaling for the survival probability as a function of the control parameter and the maximum number of generations, obtaining the critical exponents as well as the exact scaling function, which is G (y ) =2 y ey /(ey-1 ) , with y the rescaled distance to the critical point. Our findings are valid for any branching process of the Galton-Watson type, independently of the distribution of the number of offspring, provided its variance is finite. This proves the universal behavior of the finite-size effects in branching processes, including the universality of the metric factors. The direct relation to mean-field percolation is also discussed.
On extreme events for non-spatial and spatial branching Brownian motions
NASA Astrophysics Data System (ADS)
Avan, Jean; Grosjean, Nicolas; Huillet, Thierry
2015-04-01
We study the impact of having a non-spatial branching mechanism with infinite variance on some parameters (height, width and first hitting time) of an underlying Bienaymé-Galton-Watson branching process. Aiming at providing a comparative study of the spread of an epidemics whose dynamics is given by the modulus of a branching Brownian motion (BBM) we then consider spatial branching processes in dimension d, not necessarily integer. The underlying branching mechanism is either a binary branching model or one presenting infinite variance. In particular we evaluate the chance p(x) of being hit if the epidemics started away at distance x. We compute the large x tail probabilities of this event, both when the branching mechanism is regular and when it exhibits very large fluctuations.
NASA Astrophysics Data System (ADS)
Zhu, Xiaolu; Yang, Hao
2017-12-01
The recently emerged four-dimensional (4D) biofabrication technique aims to create dynamic three-dimensional (3D) biological structures that can transform their shapes or functionalities with time when an external stimulus is imposed or when cell postprinting self-assembly occurs. The evolution of 3D pattern of branching geometry via self-assembly of cells is critical for 4D biofabrication of artificial organs or tissues with branched geometry. However, it is still unclear that how the formation and evolution of these branching pattern are biologically encoded. We study the 4D fabrication of lung branching structures utilizing a simulation model on the reaction-diffusion mechanism, which is established using partial differential equations of four variables, describing the reaction and diffusion process of morphogens with time during the development process of lung branching. The simulation results present the forming process of 3D branching pattern, and also interpret the behaviors of side branching and tip splitting as the stalk growing, through 3D visualization of numerical simulation.
Estimating the Propagation of Interdependent Cascading Outages with Multi-Type Branching Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Junjian; Ju, Wenyun; Sun, Kai
In this paper, the multi-type branching process is applied to describe the statistics and interdependencies of line outages, the load shed, and isolated buses. The offspring mean matrix of the multi-type branching process is estimated by the Expectation Maximization (EM) algorithm and can quantify the extent of outage propagation. The joint distribution of two types of outages is estimated by the multi-type branching process via the Lagrange-Good inversion. The proposed model is tested with data generated by the AC OPA cascading simulations on the IEEE 118-bus system. The largest eigenvalues of the offspring mean matrix indicate that the system ismore » closer to criticality when considering the interdependence of different types of outages. Compared with empirically estimating the joint distribution of the total outages, good estimate is obtained by using the multitype branching process with a much smaller number of cascades, thus greatly improving the efficiency. It is shown that the multitype branching process can effectively predict the distribution of the load shed and isolated buses and their conditional largest possible total outages even when there are no data of them.« less
Ehlinger, M; Rapp, E; Cognet, J-M; Clavert, P; Bonnomet, F; Kahn, J-L; Kempf, J-F
2005-05-01
We conducted an anatomic study of the transverse branch of the dorsal ulnar nerve to describe its morphology and position in relation to arthroscopic exploration portals. Forty-five non-side-matched anatomic specimens of unknown age and gender were preserved in formol. The dorsal branch of the ulnar nerve was identified and dissected proximally to distally in order to reveal the different terminal branches. The morphometric analysis included measurement of the length and diameter of the transverse branch and measurement of wrist width. We also measured the smallest distance between the transverse branch and the ulnar styloid process, and between the branch and usual arthroscopic portals (4-5, 6R, 6U) in the axis of the forearm. The transverse branch was inconstant. It was found in 12 of the 45 dissection specimens (27%). In two-thirds of the specimens, the branch ran over less than 50% of the wrist width, tangentially to the radiocarpal joint. Mean nerve diameter was 1 mm. It was found 5-6 mm from the ulnar styloid process and was distal to it in 83% of the specimens. The dissections demonstrated two anatomic variants. Type A corresponded to a branch running distally to the ulnar styloid process, parallel to the joint line (10/12 specimens). Type B exhibited a trajectory proximal to the ulnar styloid process, crossing the ulnar head (2/12 specimens). The relations with the arthroscopic portals (4-5, 6R, 6U) showed that the mean distance from the branch to the portal was 3.75 mm for the 4-5 portal (distally in 11/12 specimens), 3.68 mm for the 6R portal (distally in 10/12 specimens), and 4.83 mm for the 6U portal (distally in 7 specimens and proximally in 5). To our knowledge, there has been only one report specifically devoted to this transverse branch. Two other reports simply mention its existence. According to the literature, the transverse branch of the dorsal ulnar nerve occurs in 60-80% of the cases. We found two anatomic variations different than those described in the literature. Based on our findings and data reported previously, we propose a new classification, describing two main types. In Type 1, the transverse branch arises proximally to the ulnar styloid process;type 1A and type IB are described in relation to the direction of the branch. In Type II, the branch arises distally to the ulnar styloid process;type IIA and type IIB again being described in relation to the direction of the branch. On the tangential trajectory over the radiocarpal joint, the morphometric data show a zone of risk described by a rectangle measuring 10 mm wide (6 mm distal and 4 mm proximal to the ulnar styloid process) and covering 50% of the wrist width. The relations with arthroscopic portals describe a zone of risk corresponding to a 5-7 mm radius circle centered on the portals (4-5, 6R, 6U), which includes 83% of the transverse branches.
SDF1 Reduces Interneuron Leading Process Branching through Dual Regulation of Actin and Microtubules
Lysko, Daniel E.; Putt, Mary
2014-01-01
Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process. PMID:24695713
NASA Astrophysics Data System (ADS)
Yuanyuan, Zhang
The stochastic branching model of multi-particle productions in high energy collision has theoretical basis in perturbative QCD, and also successfully describes the experimental data for a wide energy range. However, over the years, little attention has been put on the branching model for supersymmetric (SUSY) particles. In this thesis, a stochastic branching model has been built to describe the pure supersymmetric particle jets evolution. This model is a modified two-phase stochastic branching process, or more precisely a two phase Simple Birth Process plus Poisson Process. The general case that the jets contain both ordinary particle jets and supersymmetric particle jets has also been investigated. We get the multiplicity distribution of the general case, which contains a Hypergeometric function in its expression. We apply this new multiplicity distribution to the current experimental data of pp collision at center of mass energy √s = 0.9, 2.36, 7 TeV. The fitting shows the supersymmetric particles haven't participate branching at current collision energy.
Kweon, Tae Dong; Kim, Ji Young; Lee, Hye Yeon; Kim, Myung Hwa; Lee, Youn-Woo
2014-01-01
Cervical medial branch blocks are used to treat patients with chronic neck pain. The aim of this study was to clarify the anatomical aspects of the cervical medial branches to improve the accuracy and safety of radiofrequency denervation. Twenty cervical specimens were harvested from 20 adult cadavers. The anatomical parameters of the C4-C7 cervical medial branches were measured. The 3-dimensional computed tomography reconstruction images of the bone were also analyzed. Based on cadaveric analysis, most of the cervical dorsal rami gave off 1 medial branch; however, the cervical dorsal rami gave off 2 medial branches in 27%, 15%, 2%, and 0% at the vertebral level C4, C5, C6, and C7, respectively. The diameters of the medial branches varied from 1.0 to 1.2 mm, and the average distance from the notch of inferior articular process to the medial branches was about 2 mm. Most of the bifurcation sites were located at the medial side of the posterior tubercle of the transverse process. On the analysis of 3-dimensional computed tomography reconstruction images, cervical medial branches (C4 to C6) passed through the upper 49% to 53% of a line between the tips of 2 consecutive superior articular processes (anterior line). Also, cervical medial branches passed through the upper 28% to 35% of a line between the midpoints of 2 consecutive facet joints (midline). The present anatomical study may help improve accuracy and safety during radiofrequency denervation of the cervical medial branches.
Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling
Zschätzsch, Marlen; Oliva, Carlos; Langen, Marion; De Geest, Natalie; Özel, Mehmet Neset; Williamson, W Ryan; Lemon, William C; Soldano, Alessia; Munck, Sebastian; Hiesinger, P Robin; Sanchez-Soriano, Natalia; Hassan, Bassem A
2014-01-01
Axonal branching allows a neuron to connect to several targets, increasing neuronal circuit complexity. While axonal branching is well described, the mechanisms that control it remain largely unknown. We find that in the Drosophila CNS branches develop through a process of excessive growth followed by pruning. In vivo high-resolution live imaging of developing brains as well as loss and gain of function experiments show that activation of Epidermal Growth Factor Receptor (EGFR) is necessary for branch dynamics and the final branching pattern. Live imaging also reveals that intrinsic asymmetry in EGFR localization regulates the balance between dynamic and static filopodia. Elimination of signaling asymmetry by either loss or gain of EGFR function results in reduced dynamics leading to excessive branch formation. In summary, we propose that the dynamic process of axon branch development is mediated by differential local distribution of signaling receptors. DOI: http://dx.doi.org/10.7554/eLife.01699.001 PMID:24755286
Dynamic wavefront creation for processing units using a hybrid compactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puthoor, Sooraj; Beckmann, Bradford M.; Yudanov, Dmitri
A method, a non-transitory computer readable medium, and a processor for repacking dynamic wavefronts during program code execution on a processing unit, each dynamic wavefront including multiple threads are presented. If a branch instruction is detected, a determination is made whether all wavefronts following a same control path in the program code have reached a compaction point, which is the branch instruction. If no branch instruction is detected in executing the program code, a determination is made whether all wavefronts following the same control path have reached a reconvergence point, which is a beginning of a program code segment tomore » be executed by both a taken branch and a not taken branch from a previous branch instruction. The dynamic wavefronts are repacked with all threads that follow the same control path, if all wavefronts following the same control path have reached the branch instruction or the reconvergence point.« less
The Specific Features of design and process engineering in branch of industrial enterprise
NASA Astrophysics Data System (ADS)
Sosedko, V. V.; Yanishevskaya, A. G.
2017-06-01
Production output of industrial enterprise is organized in debugged working mechanisms at each stage of product’s life cycle from initial design documentation to product and finishing it with utilization. The topic of article is mathematical model of the system design and process engineering in branch of the industrial enterprise, statistical processing of estimated implementation results of developed mathematical model in branch, and demonstration of advantages at application at this enterprise. During the creation of model a data flow about driving of information, orders, details and modules in branch of enterprise groups of divisions were classified. Proceeding from the analysis of divisions activity, a data flow, details and documents the state graph of design and process engineering was constructed, transitions were described and coefficients are appropriated. To each condition of system of the constructed state graph the corresponding limiting state probabilities were defined, and also Kolmogorov’s equations are worked out. When integration of sets of equations of Kolmogorov the state probability of system activity the specified divisions and production as function of time in each instant is defined. On the basis of developed mathematical model of uniform system of designing and process engineering and manufacture, and a state graph by authors statistical processing the application of mathematical model results was carried out, and also advantage at application at this enterprise is shown. Researches on studying of loading services probability of branch and third-party contractors (the orders received from branch within a month) were conducted. The developed mathematical model of system design and process engineering and manufacture can be applied to definition of activity state probability of divisions and manufacture as function of time in each instant that will allow to keep account of loading of performance of work in branches of the enterprise.
Molina, Manuel; Mota, Manuel; Ramos, Alfonso
2015-01-01
This work deals with mathematical modeling through branching processes. We consider sexually reproducing animal populations where, in each generation, the number of progenitor couples is determined in a non-predictable environment. By using a class of two-sex branching processes, we describe their demographic dynamics and provide several probabilistic and inferential contributions. They include results about the extinction of the population and the estimation of the offspring distribution and its main moments. We also present an application to salmonid populations.
Branching processes in disease epidemics
NASA Astrophysics Data System (ADS)
Singh, Sarabjeet
Branching processes have served as a model for chemical reactions, biological growth processes and contagion (of disease, information or fads). Through this connection, these seemingly different physical processes share some common universalities that can be elucidated by analyzing the underlying branching process. In this thesis, we focus on branching processes as a model for infectious diseases spreading between individuals belonging to different populations. The distinction between populations can arise from species separation (as in the case of diseases which jump across species) or spatial separation (as in the case of disease spreading between farms, cities, urban centers, etc). A prominent example of the former is zoonoses -- infectious diseases that spill from animals to humans -- whose specific examples include Nipah virus, monkeypox, HIV and avian influenza. A prominent example of the latter is infectious diseases of animals such as foot and mouth disease and bovine tuberculosis that spread between farms or cattle herds. Another example of the latter is infectious diseases of humans such as H1N1 that spread from one city to another through migration of infectious hosts. This thesis consists of three main chapters, an introduction and an appendix. The introduction gives a brief history of mathematics in modeling the spread of infectious diseases along with a detailed description of the most commonly used disease model -- the Susceptible-Infectious-Recovered (SIR) model. The introduction also describes how the stochastic formulation of the model reduces to a branching process in the limit of large population which is analyzed in detail. The second chapter describes a two species model of zoonoses with coupled SIR processes and proceeds into the calculation of statistics pertinent to cross species infection using multitype branching processes. The third chapter describes an SIR process driven by a Poisson process of infection spillovers. This is posed as a model of infectious diseases where a `reservoir' of infection exists that infects a susceptible host population at a constant rate. The final chapter of the thesis describes a general framework of modeling infectious diseases in a network of populations using multitype branching processes.
Gresik, Edward W; Koyama, Noriko; Hayashi, Toru; Kashimata, Masanori
2009-01-01
Branching morphogenesis (BrM) is a basic developmental process for the formation of the lung, kidney, and all exocrine glands, including the salivary glands. This process proceeds as follows. An epithelial downgrowth invaginates into underlying mesenchyme, and forms a cleft at its distal end, which is the site of dichotomous branching and elongation; this process of clefting and elongation is repeated many times at the distal ends of the invading epithelium until the desired final extent of branching is reached. The distal ends of the epithelium differentiate into the secretory endpieces, and the elongated segments become the ducts. This presentation is a brief historical review of studies on BrM during the development of the submandibular gland (SMG).
Spatial mapping and quantification of developmental branching morphogenesis.
Short, Kieran; Hodson, Mark; Smyth, Ian
2013-01-15
Branching morphogenesis is a fundamental developmental mechanism that shapes the formation of many organs. The complex three-dimensional shapes derived by this process reflect equally complex genetic interactions between branching epithelia and their surrounding mesenchyme. Despite the importance of this process to normal adult organ function, analysis of branching has been stymied by the absence of a bespoke method to quantify accurately the complex spatial datasets that describe it. As a consequence, although many developmentally important genes are proposed to influence branching morphogenesis, we have no way of objectively assessing their individual contributions to this process. We report the development of a method for accurately quantifying many aspects of branching morphogenesis and we demonstrate its application to the study of organ development. As proof of principle we have employed this approach to analyse the developing mouse lung and kidney, describing the spatial characteristics of the branching ureteric bud and pulmonary epithelia. To demonstrate further its capacity to profile unrecognised genetic contributions to organ development, we examine Tgfb2 mutant kidneys, identifying elements of both developmental delay and specific spatial dysmorphology caused by haplo-insufficiency for this gene. This technical advance provides a crucial resource that will enable rigorous characterisation of the genetic and environmental factors that regulate this essential and evolutionarily conserved developmental mechanism.
Heat Transfer Processes Linking Fire Behavior and Tree Mortality
NASA Astrophysics Data System (ADS)
Michaletz, S. T.; Johnson, E. A.
2004-12-01
Traditional methods for predicting post-fire tree mortality employ statistical models which neglect the processes linking fire behavior to physiological mortality mechanisms. Here we present a physical process approach which predicts tree mortality by linking fireline intensity with lateral (vascular cambium) and apical (vegetative bud) meristem necrosis. We use a linefire plume model with independently validated conduction and lumped capacitance heat transfer analyses to predict lethal meristem temperatures in tree stems, branches, and buds. These models show that meristem necrosis in large diameter (Bi ≥ 0.3) stems/branches is governed by meristem height, bark thickness, and bark water content, while meristem necrosis in small diameter (Bi < 0.3) branches/buds is governed by meristem height, branch/bud size, branch/bud water content, and foliage architecture. To investigate effects of interspecfic variation in these properties, we compare model results for Picea glauca (Moench) Voss and Pinus contorta Loudon var. latifolia Engelm. at fireline intensities from 50 to 3000 kWm-1. Parameters are obtained from allometric models which relate stem/branch diameter to bark thickness and height, as well as bark and bud water content data collected in the southern Canadian Rocky Mountains. Variation in foliage architecture is quantified using forced convection heat transfer coefficients measured in a laminar flow wind tunnel at Re from 100 to 2000, typical for branches/buds in a linefire plume. Results indicate that in unfoliated stems/branches, P. glauca meristems are more protected due to thicker bark, whereas in foliated branches/buds, P. contorta meristems are more protected due to larger bud size and foliage architecture.
Simple model of inhibition of chain-branching combustion processes
NASA Astrophysics Data System (ADS)
Babushok, Valeri I.; Gubernov, Vladimir V.; Minaev, Sergei S.; Miroshnichenko, Taisia P.
2017-11-01
A simple kinetic model has been suggested to describe the inhibition and extinction of flame propagation in reaction systems with chain-branching reactions typical for hydrocarbon systems. The model is based on the generalised model of the combustion process with chain-branching reaction combined with the one-stage reaction describing the thermal mode of flame propagation with the addition of inhibition reaction steps. Inhibitor addition suppresses the radical overshoot in flame and leads to the change of reaction mode from the chain-branching reaction to a thermal mode of flame propagation. With the increase of inhibitor the transition of chain-branching mode of reaction to the reaction with straight-chains (non-branching chain reaction) is observed. The inhibition part of the model includes a block of three reactions to describe the influence of the inhibitor. The heat losses are incorporated into the model via Newton cooling. The flame extinction is the result of the decreased heat release of inhibited reaction processes and the suppression of radical overshoot with the further decrease of the reaction rate due to the temperature decrease and mixture dilution. A comparison of the results of modelling laminar premixed methane/air flames inhibited by potassium bicarbonate (gas phase model, detailed kinetic model) with the results obtained using the suggested simple model is presented. The calculations with the detailed kinetic model demonstrate the following modes of combustion process: (1) flame propagation with chain-branching reaction (with radical overshoot, inhibitor addition decreases the radical overshoot down to the equilibrium level); (2) saturation of chemical influence of inhibitor, and (3) transition to thermal mode of flame propagation (non-branching chain mode of reaction). The suggested simple kinetic model qualitatively reproduces the modes of flame propagation with the addition of the inhibitor observed using detailed kinetic models.
NASA Astrophysics Data System (ADS)
The effective integration of processes, systems, and procedures used in the production of aerospace systems using computer technology is managed by the Integration Technology Division (MTI). Under its auspices are the Information Management Branch, which is actively involved with information management, information sciences and integration, and the Implementation Branch, whose technology areas include computer integrated manufacturing, engineering design, operations research, and material handling and assembly. The Integration Technology Division combines design, manufacturing, and supportability functions within the same organization. The Processing and Fabrication Division manages programs to improve structural and nonstructural materials processing and fabrication. Within this division, the Metals Branch directs the manufacturing methods program for metals and metal matrix composites processing and fabrication. The Nonmetals Branch directs the manufacturing methods programs, which include all manufacturing processes for producing and utilizing propellants, plastics, resins, fibers, composites, fluid elastomers, ceramics, glasses, and coatings. The objective of the Industrial Base Analysis Division is to act as focal point for the USAF industrial base program for productivity, responsiveness, and preparedness planning.
NASA Astrophysics Data System (ADS)
Trottier, Olivier; Ganguly, Sujoy; Bowne-Anderson, Hugo; Liang, Xin; Howard, Jonathon
For the last 120 years, the development of neuronal shapes has been of great interest to the scientific community. Over the last 30 years, significant work has been done on the molecular processes responsible for dendritic development. In our ongoing research, we use the class IV sensory neurons of the Drosophila melanogaster larva as a model system to understand the growth of dendritic arbors. Our main goal is to elucidate the mechanisms that the neuron uses to determine the shape of its dendritic tree. We have observed the development of the class IV neuron's dendritic tree in the larval stage and have concluded that morphogenesis is defined by 3 distinct processes: 1) branch growth, 2) branching and 3) branch retraction. As the first step towards understanding dendritic growth, we have implemented these three processes in a computational model. Our simulations are able to reproduce the branch length distribution, number of branches and fractal dimension of the class IV neurons for a small range of parameters.
Fanwoua, Julienne; Bairam, Emna; Delaire, Mickael; Buck-Sorlin, Gerhard
2014-01-01
Understanding the role of branch architecture in carbon production and allocation is essential to gain more insight into the complex process of assimilate partitioning in fruit trees. This mini review reports on the current knowledge of the role of branch architecture in carbohydrate production and partitioning in apple. The first-order carrier branch of apple illustrates the complexity of branch structure emerging from bud activity events and encountered in many fruit trees. Branch architecture influences carbon production by determining leaf exposure to light and by affecting leaf internal characteristics related to leaf photosynthetic capacity. The dynamics of assimilate partitioning between branch organs depends on the stage of development of sources and sinks. The sink strength of various branch organs and their relative positioning on the branch also affect partitioning. Vascular connections between branch organs determine major pathways for branch assimilate transport. We propose directions for employing a modeling approach to further elucidate the role of branch architecture on assimilate partitioning. PMID:25071813
Zhou, Bingliang; Zhou, Jianbin; Zhang, Qisheng
2017-10-01
This study aims at investigating the pyrolysis behavior of Camellia sinensis branches by the Discrete Distributed Activation Energy Model (DAEM) and thermogravimetric experiments. Then the Discrete DAEM method is used to describe pyrolysis process of Camellia sinensis branches dominated by 12 characterized reactions. The decomposition mechanism of Camellia sinensis branches and interaction with components are observed. And the reaction at 350.77°C is a significant boundary of the first and second reaction range. The pyrolysis process of Camellia sinensis branches at the heating rate of 10,000°C/min is predicted and provides valuable references for gasification or combustion. The relationship and function between four typical indexes and heating rates from 10 to 10,000°C/min are revealed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tsujimoto; Shigeyama; Yoshii
2000-03-01
We suggest that if the astrophysical site for r-process nucleosynthesis in the early Galaxy is confined to a narrow mass range of Type II supernova (SN II) progenitors, with a lower mass limit of Mms=20 M middle dot in circle, a unique feature in the observed distribution of [Ba/Mg] versus [Mg/H] for extremely metal-poor stars can be adequately reproduced. We associate this feature, a bifurcation of the observed elemental ratios into two branches in the Mg abundance interval -3.7=&sqbl0;Mg&solm0;H&sqbr0;=-2.3, with two distinct processes. The first branch, which we call the y-branch, is associated with the production of Ba and Mg from individual massive supernovae. The derived mass of Ba synthesized in SNe II is 8.5x10-6 M middle dot in circle for Mms=20 M middle dot in circle and 4.5x10-8 M middle dot in circle for Mms=25 M middle dot in circle. We conclude that SNe II with Mms approximately 20 M middle dot in circle are the dominant source of r-process nucleosynthesis in the early Galaxy. An SN-induced chemical evolution model with this Mms-dependent Ba yield creates the y-branch, reflecting the different nucleosynthesis yields of [Ba/Mg] for each SN II with Mms greater, similar20 M middle dot in circle. The second branch, which we call the i-branch, is associated with the elemental abundance ratios of stars which were formed in the dense shells of the interstellar medium swept up by SNe II with Mms<20 M middle dot in circle that do not synthesize r-process elements, and it applies to stars with observed Mg abundances in the range &sqbl0;Mg&solm0;H&sqbr0;<-2.7. The Ba abundances in these stars reflect those of the interstellar gas at the (later) time of their formation. The existence of a [Ba/Mg] i-branch strongly suggests that SNe II that are associated with stars of progenitor mass Mms=20 M middle dot in circle are infertile sources for the production of r-process elements. We predict the existence of this i-branch for other r-process elements, such as europium (Eu), to the extent that their production site is in common with Ba.
Xu, Jason; Minin, Vladimir N
2015-07-01
Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes.
Xu, Jason; Minin, Vladimir N.
2016-01-01
Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes. PMID:26949377
Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids
USDA-ARS?s Scientific Manuscript database
Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...
Engineering Three-dimensional Epithelial Tissues Embedded within Extracellular Matrix.
Piotrowski-Daspit, Alexandra S; Nelson, Celeste M
2016-07-10
The architecture of branched organs such as the lungs, kidneys, and mammary glands arises through the developmental process of branching morphogenesis, which is regulated by a variety of soluble and physical signals in the microenvironment. Described here is a method created to study the process of branching morphogenesis by forming engineered three-dimensional (3D) epithelial tissues of defined shape and size that are completely embedded within an extracellular matrix (ECM). This method enables the formation of arrays of identical tissues and enables the control of a variety of environmental factors, including tissue geometry, spacing, and ECM composition. This method can also be combined with widely used techniques such as traction force microscopy (TFM) to gain more information about the interactions between cells and their surrounding ECM. The protocol can be used to investigate a variety of cell and tissue processes beyond branching morphogenesis, including cancer invasion.
Miura, Jiro; Sakai, Manabu; Uchida, Hitoshi; Nakamura, Wataru; Nohara, Kanji; Maruyama, Yusuke; Hattori, Atsuhiko; Sakai, Takayoshi
2015-01-01
Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development. PMID:25876057
Effect of single-strand break on branch migration and folding dynamics of Holliday junctions.
Palets, Dmytro; Lushnikov, Alexander Y; Karymov, Mikhail A; Lyubchenko, Yuri L
2010-09-22
The Holliday junction (HJ), or four-way junction, is a central intermediate state of DNA for homologous genetic recombination and other genetic processes such as replication and repair. Branch migration is the process by which the exchange of homologous DNA regions occurs, and it can be spontaneous or driven by proteins. Unfolding of the HJ is required for branch migration. Our previous single-molecule fluorescence studies led to a model according to which branch migration is a stepwise process consisting of consecutive migration and folding steps. Folding of the HJ in one of the folded conformations terminates the branch migration phase. At the same time, in the unfolded state HJ rapidly migrates over entire homology region of the HJ in one hop. This process can be affected by irregularities in the DNA double helical structure, so mismatches almost terminate a spontaneous branch migration. Single-stranded breaks or nicks are the most ubiquitous defects in the DNA helix; however, to date, their effect on the HJ branch migration has not been studied. In addition, although nicked HJs are specific substrates for a number of enzymes involved in DNA recombination and repair, the role of this substrate specificity remains unclear. Our main goal in this work was to study the effect of nicks on the efficiency of HJ branch migration and the dynamics of the HJ. To accomplish this goal, we applied two single-molecule methods: atomic force microscopy and fluorescence resonance energy transfer. The atomic force microscopy data show that the nick does not prevent branch migration, but it does decrease the probability that the HJ will pass the DNA lesion. The single-molecule fluorescence resonance energy transfer approaches were instrumental in detailing the effects of nicks. These studies reveal a dramatic change of the HJ dynamics. The nick changes the structure and conformational dynamics of the junctions, leading to conformations with geometries that are different from those for the intact HJ. On the basis of these data, we propose a model of branch migration in which the propensity of the junction to unfold decreases the lifetimes of folded states, thereby increasing the frequency of junction fluctuations between the folded states. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
The effect of federal health policy on occupational medicine.
McCunney, R J; Cikins, W
1990-01-01
All three branches of the federal government affect occupational medicine. Notable examples include: 1) the Department of Transportation ruling (1988) requiring drug testing in diverse areas of the transportation industry (executive branch); 2) the Workplace Drug Act (1988) calling for organizations to have a policy towards drug and alcohol abuse (legislative branch); and 3) the Supreme Court ruling on the constitutionality of drug testing in the transportation industry (1989) and that infectious diseases are a handicap in accordance with the 1973 Federal Rehabilitation Act (1987). The executive branch plays a major role in occupational medicine primarily through the Occupational Safety and Health Administration (OSHA), which issues standards based on a rule making process; the executive branch can also affect occupational medicine indirectly, as evidenced by President Reagan's Executive Order 12291 calling for Office of Management and Budget oversight of regulatory initiatives. The legislative branch enacts laws, conducts hearings, and requests reports on the operations of federal agencies. The judicial branch addresses occupational health issues when people affected by an executive ruling want to challenge the ruling; or in the case of the Supreme Court, when deliberating an issue over which two circuit courts of appeal have come to divergent opinions. The Occupational Medicine profession can participate in the political process through awareness of proposed legislation and by responding accordingly with letters, resolutions, or testimony. Similar options exist within the executive branch by participating in the rule-making process. A representative of the Governmental Affairs Committee, through periodic visits with key Washington representatives, can keep members of the American College of Occupational Medicine informed about federal legislative and regulatory activities. In appropriate cases, the organization can then take a formal position on governmental activities that affect the speciality.
Schlottmann, Jamie L.; Tanner, Ralph S.; Samadpour, Mansour
2000-01-01
A reconnaissance investigation of hydrology and water quality was conducted to evaluate possible sources of bacteria and nutrient contamination in the Cave Springs Branch basin and the underlying karstic Ozark Plateau aquifer system. Objectives were to: (1) determine the directions of ground-water flow in the basin and determine whether Cave Springs Branch interacts with ground water, (2) compare water quality in Cave Springs Branch with water quality in nearby wells to determine whether the stream is contaminating nearby wells, and (3) determine sources of fecal coliform bacteria and nitrate contamination in Cave Springs Branch and ground water. Potential sources of bacteria and nitrate in the area include cultivated agriculture, cow and horse on pasture, poultry production, households, and wildlife. Presence of fecal coliform and fecal streptococcal bacteria directly indicate fecal contamination and the potential for the presence of other pathogenic organisms in a water supply. Nitrate in drinking water poses health risks and may indicate the presence of additional contaminants. Fecal coliform bacteria colony counts were least in wells, intermediate in the poultry-processing plant wastewater outfall and Honey Creek above the confluence with Cave Springs Branch, and greatest in Cave Springs Branch. Bacteria strains and resistance to antibiotics by some bacteria indicate that livestock may have been sources of some bacteria in the water samples. Multiple antibiotic resistances were not present in the isolates from the water samples, indicating that the bacteria may not be from human or poultry sources. Ribotyping indicates that Escherichia coli bacteria in water samples from the basin were from bird, cow, horse, dog, deer, and human sources. The presence of multiple ribotypes from each type of animal source except bird indicates that most of the bacteria are from multiple populations of source animals. Identifiable sources of bacteria in Cave Springs Branch at the state line were dominantly cow and horse with one ribotype from bird. Escherichia coli was detected in only one well sample. Bacterial ribotypes in water from that upgradient well indicated human and dog feces as sources for bacteria, and that on site wastewater treatment may not always be adequate in these highly permeable soils. Greater concentrations of nitrate in Cave Springs Branch and O'Brien Spring relative to the poultry-processing plant wastewater outfall may be due, in part, to conversion of ammonia from poultry processing plant wastewater. The poultry-processing plant wastewater outfall sample collected in March 2000 contained greater concentrations of ammonia and total organic nitrogen plus ammonia than the spring, stream, and well samples collected during August 1999. Cave Springs Branch and Honey Creek contributed approximately equal loads of nitrogen to Honey Creek below the confluence and the greatest loads of nitrogen were introduced to Cave Springs Branch by the poultry processing plant wastewater outfall and O'Brien Spring. Nitrate concentrations in upgradient well samples ranged from 0.38 to 4.60 milligrams per liter, indicating that there are sources of ground-water nitrogen other than Cave Springs Branch, such as animal waste, fertilizer, or human waste. Nitrogen compounds in water from wells downgradient of Cave Springs Branch may be from Cave Springs Branch, fertilizers, animal waste, or human waste.
Turing mechanism underlying a branching model for lung morphogenesis.
Xu, Hui; Sun, Mingzhu; Zhao, Xin
2017-01-01
The mammalian lung develops through branching morphogenesis. Two primary forms of branching, which occur in order, in the lung have been identified: tip bifurcation and side branching. However, the mechanisms of lung branching morphogenesis remain to be explored. In our previous study, a biological mechanism was presented for lung branching pattern formation through a branching model. Here, we provide a mathematical mechanism underlying the branching patterns. By decoupling the branching model, we demonstrated the existence of Turing instability. We performed Turing instability analysis to reveal the mathematical mechanism of the branching patterns. Our simulation results show that the Turing patterns underlying the branching patterns are spot patterns that exhibit high local morphogen concentration. The high local morphogen concentration induces the growth of branching. Furthermore, we found that the sparse spot patterns underlie the tip bifurcation patterns, while the dense spot patterns underlies the side branching patterns. The dispersion relation analysis shows that the Turing wavelength affects the branching structure. As the wavelength decreases, the spot patterns change from sparse to dense, the rate of tip bifurcation decreases and side branching eventually occurs instead. In the process of transformation, there may exists hybrid branching that mixes tip bifurcation and side branching. Since experimental studies have reported that branching mode switching from side branching to tip bifurcation in the lung is under genetic control, our simulation results suggest that genes control the switch of the branching mode by regulating the Turing wavelength. Our results provide a novel insight into and understanding of the formation of branching patterns in the lung and other biological systems.
Absolute measurement of hadronic branching fractions of the Ds+ meson.
Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Lopez, A; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L
2008-04-25
The branching fractions of D(s)(+/-) meson decays serve to normalize many measurements of processes involving charm quarks. Using 298 pb(-1) of e(+)e(-) collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for eight D(s)(+/-) decays with a double tag technique. In particular we determine the branching fraction B(D(s)(+)-->K(-)K(+}pi(+))=(5.50+/-0.23+/-0.16)%, where the uncertainties are statistical and systematic, respectively. We also provide partial branching fractions for kinematic subsets of the K(-)K(+)pi(+) decay mode.
Absolute Measurement of Hadronic Branching Fractions of the Ds+ Meson
NASA Astrophysics Data System (ADS)
Alexander, J. P.; Berkelman, K.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Eisenstein, B. I.; Karliner, I.; Mehrabyan, S.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Libby, J.; Powell, A.; Wilkinson, G.; Ecklund, K. M.; Love, W.; Savinov, V.; Lopez, A.; Mendez, H.; Ramirez, J.; Ge, J. Y.; Miller, D. H.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sultana, N.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, L. M.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Rademacker, J.; Asner, D. M.; Edwards, K. W.; Naik, P.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.
2008-04-01
The branching fractions of Ds± meson decays serve to normalize many measurements of processes involving charm quarks. Using 298pb-1 of e+e- collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for eight Ds± decays with a double tag technique. In particular we determine the branching fraction B(Ds+→K-K+π+)=(5.50±0.23±0.16)%, where the uncertainties are statistical and systematic, respectively. We also provide partial branching fractions for kinematic subsets of the K-K+π+ decay mode.
Lyzohub, V H; Zaval's'ka, T V; Savchenko, O V; Tyravs'ka, Iu V
2013-01-01
Branched-chain amino acids play the key role in many metabolism processes in organism generally and in cardiovascular protection. It was discovered its importance in mitochondrial biogenesis, antioxidant and antiaging processes, its antihypertension and antiarrhythmic effects, its role in obesity and diabetes mellitus.
Gervais, Louis; Casanova, Jordi
2011-04-01
Recent data have demonstrated a crucial role for the transcription factor SRF (serum response factor) downstream of VEGF and FGF signalling during branching morphogenesis. This is the case for sprouting angiogenesis in vertebrates, axonal branching in mammals and terminal branching of the Drosophila tracheal system. However, the specific functions of SRF in these processes remain unclear. Here, we establish the relative contributions of the Drosophila homologues of FGF [Branchless (BNL)] and SRF [Blistered (BS)] in terminal tracheal branching. Conversely to an extended view, we show that BNL triggers terminal branching initiation in a DSRF-independent mechanism and that DSRF transcription induced by BNL signalling is required to maintain terminal branch elongation. Moreover, we report that increased and continuous FGF signalling can trigger tracheal cells to develop full-length terminal branches in the absence of DSRF transcription. Our results indicate that DSRF acts as an amplifying step to sustain the progression of terminal branch elongation even in the wild-type conditions of FGF signalling.
NASA Astrophysics Data System (ADS)
Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.
2015-12-01
The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims Branch watershed at Savannah River Site.
NASA Technical Reports Server (NTRS)
Gordon, Gail
2012-01-01
The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.
Implementation of NASA Materials and Processes Requirements at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Powers, Charles E.
2009-01-01
This slide presentation reviews the history and current practices of the Materials Engineering Branch (MEB) at the Goddard Space Flight Center. Included in the presentation is a review of the general Materials and Processes (M&P) requirements in the NASA-STD-6016. The work that the Materials Engineering Branch does to support GSFC Projects is also reviewed. The Materials Engineering Branch capabilities are listed, the expertise that is available to GSFC projects is also listed. Included in the backup slides are forms that the MEB uses to identify the materials in the spacecraft under development.
Tokunaga self-similarity arises naturally from time invariance
NASA Astrophysics Data System (ADS)
Kovchegov, Yevgeniy; Zaliapin, Ilya
2018-04-01
The Tokunaga condition is an algebraic rule that provides a detailed description of the branching structure in a self-similar tree. Despite a solid empirical validation and practical convenience, the Tokunaga condition lacks a theoretical justification. Such a justification is suggested in this work. We define a geometric branching process G (s ) that generates self-similar rooted trees. The main result establishes the equivalence between the invariance of G (s ) with respect to a time shift and a one-parametric version of the Tokunaga condition. In the parameter region where the process satisfies the Tokunaga condition (and hence is time invariant), G (s ) enjoys many of the symmetries observed in a critical binary Galton-Watson branching process and reproduces the latter for a particular parameter value.
Observing Holliday junction branch migration one step at a time
NASA Astrophysics Data System (ADS)
Ha, Taekjip
2004-03-01
During genetic recombination, two homologous DNA molecules undergo strand exchange to form a four-way DNA (Holliday) junction and the recognition and processing of this species by branch migration and junction resolving enzymes determine the outcome. We have used single molecule fluorescence techniques to study two intrinsic structural dynamics of the Holliday junction, stacking conformer transitions and spontaneous branch migration. Our studies show that the dynamics of branch migration, resolved with one base pair resolution, is determined by the stability of conformers which in turn depends on the local DNA sequences. Therefore, the energy landscape of Holliday junction branch migation is not uniform, but is rugged.
Federal budget process: An overview
NASA Astrophysics Data System (ADS)
Frizzell, Virgil A., Jr.
Much geophysical research funding originates from the federal government, and many who obtain federal funding consider the executive branch to be its source. In fact, the federal budget results from a complex ballet between the executive and legislative branches. Because it is both little understood and essential to our work, this report will review the fundamentals of the three-year budgetary process.The Constitution assigns the power of the purse to the Congress. Before the 1920s, executive branch agencies and departments submitted their own separate budgets to Congress, and deliberate planning and priority setting was minimal. In 1921 Congress empowered the president to submit an executive branch budget reflecting his priorities for the next fiscal year. Following this protocol, former President Reagan submitted his budget for Fiscal Year 1990 in January, and President Bush outlined his FY'90 priorities in February.
Bally, Florence; Serra, Christophe A; Brochon, Cyril; Hadziioannou, Georges
2011-11-15
Polymerization reactions can benefit from continuous-flow microprocess in terms of kinetics control, reactants mixing or simply efficiency when high-throughput screening experiments are carried out. In this work, we perform for the first time the synthesis of branched macromolecular architecture through a controlled/'living' polymerization technique, in tubular microreactor. Just by tuning process parameters, such as flow rates of the reactants, we manage to generate a library of polymers with various macromolecular characteristics. Compared to conventional batch process, polymerization kinetics shows a faster initiation step and more interestingly an improved branching efficiency. Due to reduced diffusion pathway, a characteristic of microsystems, it is thus possible to reach branched polymers exhibiting a denser architecture, and potentially a higher functionality for later applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jang, Sa-Han
Galton-Watson branching processes of relevance to human population dynamics are the subject of this thesis. We begin with an historical survey of the invention of the invention of this model in the middle of the 19th century, for the purpose of modelling the extinction of unusual surnames in France and Britain. We then review the principal developments and refinements of this model, and their applications to a wide variety of problems in biology and physics. Next, we discuss in detail the case where the probability generating function for a Galton-Watson branching process is a geometric series, which can be summed in closed form to yield a fractional linear generating function that can be iterated indefinitely in closed form. We then describe the matrix method of Keyfitz and Tyree, and use it to determine how large a matrix must be chosen to model accurately a Galton-Watson branching process for a very large number of generations, of the order of hundreds or even thousands. Finally, we show that any attempt to explain the recent evidence for the existence thousands of generations ago of a 'mitochondrial Eve' and a 'Y-chromosomal Adam' in terms of a the standard Galton-Watson branching process, or indeed any statistical model that assumes equality of probabilities of passing one's genes to one's descendents in later generations, is unlikely to be successful. We explain that such models take no account of the advantages that the descendents of the most successful individuals in earlier generations enjoy over their contemporaries, which must play a key role in human evolution.
Robinson, Nicholas P
2013-01-01
Branched DNA molecules are generated by the essential processes of replication and recombination. Owing to their distinctive extended shapes, these intermediates migrate differently from linear double-stranded DNA under certain electrophoretic conditions. However, these branched species exist in the cell at much low abundance than the bulk linear DNA. Consequently, branched molecules cannot be visualized by conventional electrophoresis and ethidium bromide staining. Two-dimensional native-native agarose electrophoresis has therefore been developed as a method to facilitate the separation and visualization of branched replication and recombination intermediates. A wide variety of studies have employed this technique to examine branched molecules in eukaryotic, archaeal, and bacterial cells, providing valuable insights into how DNA is duplicated and repaired in all three domains of life.
Disassortativity of random critical branching trees
NASA Astrophysics Data System (ADS)
Kim, J. S.; Kahng, B.; Kim, D.
2009-06-01
Random critical branching trees (CBTs) are generated by the multiplicative branching process, where the branching number is determined stochastically, independent of the degree of their ancestor. Here we show analytically that despite this stochastic independence, there exists the degree-degree correlation (DDC) in the CBT and it is disassortative. Moreover, the skeletons of fractal networks, the maximum spanning trees formed by the edge betweenness centrality, behave similarly to the CBT in the DDC. This analytic solution and observation support the argument that the fractal scaling in complex networks originates from the disassortativity in the DDC.
NASA Astrophysics Data System (ADS)
Yoo, Seung Hwa; Joh, Han-Ik; Lee, Sungho
2017-04-01
Porous carbon nanofibers (PCNFs) with CNF branches (PCNF/bCNF) were synthesized by a simple heat treatment method. Conventional methods to synthesize this unique structure usually follow a typical route, which consists of CNF preparation, catalyst deposition, and secondary CNF growth. In contrast, our method utilized a one-step carbonization process of polymer nanofibers, which were electrospun from a one-pot solution consisted of polyacrylonitrile, polystyrene (PS), and iron acetylacetonate. Various structures of PCNF/CNF were synthesized by changing the solution composition and molecular weight of PS. It was verified that the content and molecular weight of PS were critical for the growth of catalyst particles and subsequent growth of CNF branches. The morphology, phase of catalyst, and carbon structure of PCNF/bCNF were analyzed at different temperature steps during carbonization. It was found that pores were generated by the evaporation of PS and the catalyst particles were formed on the surface of PCNF at 700 °C. The gases originated from the evaporation of PS acted as a carbon source for the growth of CNF branches that started at 900 °C. Finally, when the carbonization process was finished at 1200 °C, uniform and abundant CNF branches were formed on the surface of PCNF.
NASA Astrophysics Data System (ADS)
Pierre, Cynthia; Torkelson, John
2009-03-01
A major challenge for the most effective recycling of poly(ethylene terephthalate) concerns the fact that initial melt processing of PET into a product leads to substantial degradation of molecular weight. Thus, recycled PET has insufficient melt viscosity for reuse in high-value applications such as melt-blowing of PET bottles. Academic and industrial research has tried to remedy this situation by synthesis and use of ``chain extenders'' that can lead to branched PET (with higher melt viscosity than the linear recycled PET) via condensation reactions with functional groups on the PET. Here we show that simple processing of PET via solid-state shear pulverization (SSSP) leads to enhanced PET melt viscosity without need for chemical additives. We hypothesize that this branching results from low levels of chain scission accompanying SSSP, leading to formation of polymeric radicals that participate in chain transfer and combination reactions with other PET chains and thereby to in situ branch formation. The pulverized PET exhibits vastly enhanced crystallization kinetics, eliminating the need to employ cold crystallization to achieve maximum PET crystallinity. Results of SSSP processing of PET will be compared to results obtained with poly(butylene terephthalate).
Pascual-Font, Arán; Cubillos, Luis; Vázquez, Teresa; McHanwell, Steve; Sañudo, José R; Maranillo, Eva
2016-05-01
It has been generally accepted that the branches of the internal branch of the superior laryngeal nerve to the interarytenoid muscle are exclusively sensory. However, some experimental studies have suggested that these branches may contain motor axons, and therefore that the interarytenoid muscle is supplied by both the superior and recurrent laryngeal nerves. The aim of this work was to determine whether motor axons to the interarytenoid muscles are present in both laryngeal nerves. Basic research. Twelve human internal branches of the superior laryngeal nerve were dissected, and its branches to the interarytenoid muscle were removed and processed for choline-acetyltransferase immunohistochemistry, a method not used previously in studying the nerve fiber composition of the laryngeal nerves. The internal branch of the superior laryngeal nerve divided into two to five branches to the interarytenoid muscle. All branches contained motor axons, with the proportion of motor axons varying from 6% to 31%. The present study confirms that the internal branch of the superior laryngeal nerve provides a motor innervation to the interarytenoid muscles. N/A. Laryngoscope, 126:1117-1122, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Singh, Sarabjeet; Schneider, David J.; Myers, Christopher R.
2014-03-01
Branching processes have served as a model for chemical reactions, biological growth processes, and contagion (of disease, information, or fads). Through this connection, these seemingly different physical processes share some common universalities that can be elucidated by analyzing the underlying branching process. In this work we focus on coupled branching processes as a model of infectious diseases spreading from one population to another. An exceedingly important example of such coupled outbreaks are zoonotic infections that spill over from animal populations to humans. We derive several statistical quantities characterizing the first spillover event from animals to humans, including the probability of spillover, the first passage time distribution for human infection, and disease prevalence in the animal population at spillover. Large stochastic fluctuations in those quantities can make inference of the state of the system at the time of spillover difficult. Focusing on outbreaks in the human population, we then characterize the critical threshold for a large outbreak, the distribution of outbreak sizes, and associated scaling laws. These all show a strong dependence on the basic reproduction number in the animal population and indicate the existence of a novel multicritical point with altered scaling behavior. The coupling of animal and human infection dynamics has crucial implications, most importantly allowing for the possibility of large human outbreaks even when human-to-human transmission is subcritical.
Origin of Broad Visible Emission from Branched Polysilane and Polygermane Chains
NASA Astrophysics Data System (ADS)
Watanabe, Akira; Sato, Takaaki; Matsuda, Minoru
2001-11-01
The emission properties of branched polysilane and polygermane are studied using time-resolved emission spectroscopy. As branched polymers, the organosilicon cluster (OSI) and organogermanium cluster (OGE) are investigated, which are prepared from tetrachlorosilane and tetrachlorogermane, respectively, and have a hyperbranched structure. The broad visible emissions of OSI and OGE are explained by the energy diagram based on a configuration coordinate model, and the excited states are attributed to a localized state around the branching point. The molecular orbital (MO) calculation suggested the formation of a localized state by the distortion around the branching point in the excited state. The potential barrier for the nonradiative relaxation process was determined from the temperature dependence of the emission lifetime.
NASA Astrophysics Data System (ADS)
Zhu, Tao; Ren, Ji-Rong; Mo, Shu-Fan
2009-12-01
In this paper, by making use of Duan's topological current theory, the evolution of the vortex filaments in excitable media is discussed in detail. The vortex filaments are found generating or annihilating at the limit points and encountering, splitting, or merging at the bifurcation points of a complex function Z(vec x, t). It is also shown that the Hopf invariant of knotted scroll wave filaments is preserved in the branch processes (splitting, merging, or encountering) during the evolution of these knotted scroll wave filaments. Furthermore, it also revealed that the “exclusion principle" in some chemical media is just the special case of the Hopf invariant constraint, and during the branch processes the “exclusion principle" is also protected by topology.
Superlinear scaling of offspring at criticality in branching processes
NASA Astrophysics Data System (ADS)
Saichev, A.; Sornette, D.
2014-01-01
For any branching process, we demonstrate that the typical total number rmp(ντ) of events triggered over all generations within any sufficiently large time window τ exhibits, at criticality, a superlinear dependence rmp(ντ)˜(ντ)γ (with γ >1) on the total number ντ of the immigrants arriving at the Poisson rate ν. In branching processes in which immigrants (or sources) are characterized by fertilities distributed according to an asymptotic power-law tail with tail exponent 1<γ ⩽2, the exponent of the superlinear law for rmp(ντ) is identical to the exponent γ of the distribution of fertilities. For γ >2 and for standard branching processes without power-law distribution of fertilities, rmp(ντ)˜(ντ)2. This scaling law replaces and tames the divergence ντ /(1-n) of the mean total number R¯t(τ) of events, as the branching ratio (defined as the average number of triggered events of first generation per source) tends to 1. The derivation uses the formalism of generating probability functions. The corresponding prediction is confirmed by numerical calculations, and an heuristic derivation enlightens its underlying mechanism. We also show that R¯t(τ) is always linear in ντ even at criticality (n =1). Our results thus illustrate the fundamental difference between the mean total number, which is controlled by a few extremely rare realizations, and the typical behavior represented by rmp(ντ).
Schwartz, Rachel S; Mueller, Rachel L
2010-01-11
Estimates of divergence dates between species improve our understanding of processes ranging from nucleotide substitution to speciation. Such estimates are frequently based on molecular genetic differences between species; therefore, they rely on accurate estimates of the number of such differences (i.e. substitutions per site, measured as branch length on phylogenies). We used simulations to determine the effects of dataset size, branch length heterogeneity, branch depth, and analytical framework on branch length estimation across a range of branch lengths. We then reanalyzed an empirical dataset for plethodontid salamanders to determine how inaccurate branch length estimation can affect estimates of divergence dates. The accuracy of branch length estimation varied with branch length, dataset size (both number of taxa and sites), branch length heterogeneity, branch depth, dataset complexity, and analytical framework. For simple phylogenies analyzed in a Bayesian framework, branches were increasingly underestimated as branch length increased; in a maximum likelihood framework, longer branch lengths were somewhat overestimated. Longer datasets improved estimates in both frameworks; however, when the number of taxa was increased, estimation accuracy for deeper branches was less than for tip branches. Increasing the complexity of the dataset produced more misestimated branches in a Bayesian framework; however, in an ML framework, more branches were estimated more accurately. Using ML branch length estimates to re-estimate plethodontid salamander divergence dates generally resulted in an increase in the estimated age of older nodes and a decrease in the estimated age of younger nodes. Branch lengths are misestimated in both statistical frameworks for simulations of simple datasets. However, for complex datasets, length estimates are quite accurate in ML (even for short datasets), whereas few branches are estimated accurately in a Bayesian framework. Our reanalysis of empirical data demonstrates the magnitude of effects of Bayesian branch length misestimation on divergence date estimates. Because the length of branches for empirical datasets can be estimated most reliably in an ML framework when branches are <1 substitution/site and datasets are > or =1 kb, we suggest that divergence date estimates using datasets, branch lengths, and/or analytical techniques that fall outside of these parameters should be interpreted with caution.
Xue, Peipei; Zeng, Fanfan; Duan, Qiuhong; Xiao, Juanjuan; Liu, Lin; Yuan, Ping; Fan, Linni; Sun, Huimin; Malyarenko, Olesya S; Lu, Hui; Xiu, Ruijuan; Liu, Shaoqing; Shao, Chen; Zhang, Jianmin; Yan, Wei; Wang, Zhe; Zheng, Jianyong; Zhu, Feng
2017-06-01
Branched-chain amino acids catabolism plays an important role in human cancers. Colorectal cancer is the third most commonly diagnosed cancer in males and the second in females, and the new global incidence is over 1.2 million cases. The branched-chain α-keto acid dehydrogenase kinase (BCKDK) is a rate-limiting enzyme in branched-chain amino acids catabolism, which plays an important role in many serious human diseases. Here we investigated that abnormal branched-chain amino acids catabolism in colorectal cancer is a result of the disease process, with no role in disease initiation; BCKDK is widely expressed in colorectal cancer patients, and those patients that express higher levels of BCKDK have shorter survival times than those with lower levels; BCKDK promotes cell transformation or colorectal cancer ex vivo or in vivo. Mechanistically, BCKDK promotes colorectal cancer by enhancing the MAPK signaling pathway through direct MEK phosphorylation, rather than by branched-chain amino acids catabolism. And the process above could be inhibited by a BCKDK inhibitor, phenyl butyrate. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Pathway of actin filament branch formation by Arp2/3 complex revealed by single-molecule imaging
Smith, Benjamin A.; Daugherty-Clarke, Karen; Goode, Bruce L.; Gelles, Jeff
2013-01-01
Actin filament nucleation by actin-related protein (Arp) 2/3 complex is a critical process in cell motility and endocytosis, yet key aspects of its mechanism are unknown due to a lack of real-time observations of Arp2/3 complex through the nucleation process. Triggered by the verprolin homology, central, and acidic (VCA) region of proteins in the Wiskott-Aldrich syndrome protein (WASp) family, Arp2/3 complex produces new (daughter) filaments as branches from the sides of preexisting (mother) filaments. We visualized individual fluorescently labeled Arp2/3 complexes dynamically interacting with and producing branches on growing actin filaments in vitro. Branch formation was strikingly inefficient, even in the presence of VCA: only ∼1% of filament-bound Arp2/3 complexes yielded a daughter filament. VCA acted at multiple steps, increasing both the association rate of Arp2/3 complexes with mother filament and the fraction of filament-bound complexes that nucleated a daughter. The results lead to a quantitative kinetic mechanism for branched actin assembly, revealing the steps that can be stimulated by additional cellular factors. PMID:23292935
NASA Astrophysics Data System (ADS)
Taschuk, M. T.; Tucker, R. T.; LaForge, J. M.; Beaudry, A. L.; Kupsta, M. R.; Brett, M. J.
2013-12-01
The vapour-liquid-solid glancing angle deposition (VLS-GLAD) process is capable of producing complex nanotree structures with control over azimuthal branch orientation and height. We have developed a thin film growth simulation including ballistic deposition, simplified surface diffusion, and droplet-mediated cubic crystal growth for the VLS-GLAD process using the UnrealTM Development Kit. The use of a commercial game engine has provided an interactive environment while allowing a custom physics implementation. Our simulation's output is verified against experimental data, including a volumetric film reconstruction produced using focused ion beam and scanning-electron microscopy (SEM), crystallographic texture, and morphological characteristics such as branch orientation. We achieve excellent morphological and texture agreement with experimental data, as well as qualitative agreement with SEM imagery. The simplified physics in our model reproduces the experimental films, indicating that the dominant role flux geometry plays in the VLS-GLAD competitive growth process responsible for azimuthally oriented branches and biaxial crystal texture evolution. The simulation's successful reproduction of experimental data indicates that it should have predictive power in designing novel VLS-GLAD structures.
Arginine-glycine-aspartic acid functional branched semi-interpenetrating hydrogels.
Plenderleith, Richard A; Pateman, Christopher J; Rodenburg, Cornelia; Haycock, John W; Claeyssens, Frederik; Sammon, Chris; Rimmer, Stephen
2015-10-14
For the first time a series of functional hydrogels based on semi-interpenetrating networks with both branched and crosslinked polymer components have been prepared and we show the successful use of these materials as substrates for cell culture. The materials consist of highly branched poly(N-isopropyl acrylamide)s with peptide functionalised end groups in a continuous phase of crosslinked poly(vinyl pyrrolidone). Functionalisation of the end groups of the branched polymer component with the GRGDS peptide produces a hydrogel that supports cell adhesion and proliferation. The materials provide a new synthetic functional biomaterial that has many of the features of extracellular matrix, and as such can be used to support tissue regeneration and cell culture. This class of high water content hydrogel material has important advantages over other functional hydrogels in its synthesis and does not require post-processing modifications nor are functional-monomers, which change the polymerisation process, required. Thus, the systems are amenable to large scale and bespoke manufacturing using conventional moulding or additive manufacturing techniques. Processing using additive manufacturing is exemplified by producing tubes using microstereolithography.
JPRS Report. Soviet Union, EKO: Economics & Organization of Industrial Production No. 7, July 1987.
1987-12-03
to the question of the interest in plasma equip- ment in various branches of the national economy. Plasma processes occupy a leading position among...the principally new technologies that are based on process - ing concentrated flows of energy. Even today there are more than 50 of them. An entire...branch of chemistry has been formed—plasma chemistry, for which it is typical to have processes with an average mass temperature of the working gas
VESGEN Software for Mapping and Quantification of Vascular Regulators
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia A.; Vickerman, Mary B.; Keith, Patricia A.
2012-01-01
VESsel GENeration (VESGEN) Analysis is an automated software that maps and quantifies effects of vascular regulators on vascular morphology by analyzing important vessel parameters. Quantification parameters include vessel diameter, length, branch points, density, and fractal dimension. For vascular trees, measurements are reported as dependent functions of vessel branching generation. VESGEN maps and quantifies vascular morphological events according to fractal-based vascular branching generation. It also relies on careful imaging of branching and networked vascular form. It was developed as a plug-in for ImageJ (National Institutes of Health, USA). VESGEN uses image-processing concepts of 8-neighbor pixel connectivity, skeleton, and distance map to analyze 2D, black-and-white (binary) images of vascular trees, networks, and tree-network composites. VESGEN maps typically 5 to 12 (or more) generations of vascular branching, starting from a single parent vessel. These generations are tracked and measured for critical vascular parameters that include vessel diameter, length, density and number, and tortuosity per branching generation. The effects of vascular therapeutics and regulators on vascular morphology and branching tested in human clinical or laboratory animal experimental studies are quantified by comparing vascular parameters with control groups. VESGEN provides a user interface to both guide and allow control over the users vascular analysis process. An option is provided to select a morphological tissue type of vascular trees, network or tree-network composites, which determines the general collections of algorithms, intermediate images, and output images and measurements that will be produced.
CFD Modelling of Local Hemodynamics in Intracranial Aneurysms Harboring Arterial Branches.
Krylov, Vladimir; Grigoryeva, Elena; Dolotova, Daria; Blagosklonova, Evgenia; Gavrilov, Andrey
2017-01-01
The main cause of non-traumatic subarachnoid haemorrhage is an intracranial aneurysm's rupture. The choice of treatment approach is exceptionally difficult in cases of aneurysms with additional branches on the aneurysm's dome or neck. The impact of the arterial branches on local hemodynamics is still unclear and controversial question. At the same time, up-to-date methods of image processing and mathematical modeling provide a way to investigate the hemodynamic environment of aneurysms. The paper discusses hemodynamic aspects of aneurysms harboring arterial branch through the use of patient-specific 3D models and computational fluid dynamics (CFD) methods. The analysis showed that the presence of the arterial branches has a great influence on flow streamlines and wall shear stress, particularly for side wall aneurysm.
Lu, Nan; Xu, Zhaohe; Meng, Bingnan; Sun, Yuhan; Zhang, Jiangtao; Wang, Shaoming; Li, Yun
2014-04-21
The propagation of hard-branch cuttings of tetraploid Robinia pseudoacacia (black locust) is restricted by the low rooting rate; however, etiolated juvenile tetraploid black locust branches result in a significantly higher rooting rate of cuttings compared with non-etiolated juvenile tetraploid branches. To identify proteins that influence the juvenile tetraploid branch rooting process, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectra (MALDI-TOF/TOF-MS) were used to analyze proteomic differences in the phloem of tetraploid R. pseudoacacia etiolated and non-etiolated juvenile branches during different cutting periods. A total of 58 protein spots differed in expression level, and 16 protein spots were only expressed in etiolated branches or non-etiolated ones. A total of 40 highly expressed protein spots were identified by mass spectrometry, 14 of which were accurately retrieved. They include nucleoglucoprotein metabolic proteins, signaling proteins, lignin synthesis proteins and phyllochlorin. These results help to reveal the mechanism of juvenile tetraploid R. pseudoacacia etiolated branch rooting and provide a valuable reference for the improvement of tetraploid R. pseudoacacia cutting techniques.
The critical domain size of stochastic population models.
Reimer, Jody R; Bonsall, Michael B; Maini, Philip K
2017-02-01
Identifying the critical domain size necessary for a population to persist is an important question in ecology. Both demographic and environmental stochasticity impact a population's ability to persist. Here we explore ways of including this variability. We study populations with distinct dispersal and sedentary stages, which have traditionally been modelled using a deterministic integrodifference equation (IDE) framework. Individual-based models (IBMs) are the most intuitive stochastic analogues to IDEs but yield few analytic insights. We explore two alternate approaches; one is a scaling up to the population level using the Central Limit Theorem, and the other a variation on both Galton-Watson branching processes and branching processes in random environments. These branching process models closely approximate the IBM and yield insight into the factors determining the critical domain size for a given population subject to stochasticity.
Branching-ratio approximation for the self-exciting Hawkes process
NASA Astrophysics Data System (ADS)
Hardiman, Stephen J.; Bouchaud, Jean-Philippe
2014-12-01
We introduce a model-independent approximation for the branching ratio of Hawkes self-exciting point processes. Our estimator requires knowing only the mean and variance of the event count in a sufficiently large time window, statistics that are readily obtained from empirical data. The method we propose greatly simplifies the estimation of the Hawkes branching ratio, recently proposed as a proxy for market endogeneity and formerly estimated using numerical likelihood maximization. We employ our method to support recent theoretical and experimental results indicating that the best fitting Hawkes model to describe S&P futures price changes is in fact critical (now and in the recent past) in light of the long memory of financial market activity.
Interactive Design and Visualization of Branched Covering Spaces.
Roy, Lawrence; Kumar, Prashant; Golbabaei, Sanaz; Zhang, Yue; Zhang, Eugene
2018-01-01
Branched covering spaces are a mathematical concept which originates from complex analysis and topology and has applications in tensor field topology and geometry remeshing. Given a manifold surface and an -way rotational symmetry field, a branched covering space is a manifold surface that has an -to-1 map to the original surface except at the ramification points, which correspond to the singularities in the rotational symmetry field. Understanding the notion and mathematical properties of branched covering spaces is important to researchers in tensor field visualization and geometry processing, and their application areas. In this paper, we provide a framework to interactively design and visualize the branched covering space (BCS) of an input mesh surface and a rotational symmetry field defined on it. In our framework, the user can visualize not only the BCSs but also their construction process. In addition, our system allows the user to design the geometric realization of the BCS using mesh deformation techniques as well as connecting tubes. This enables the user to verify important facts about BCSs such as that they are manifold surfaces around singularities, as well as the Riemann-Hurwitz formula which relates the Euler characteristic of the BCS to that of the original mesh. Our system is evaluated by student researchers in scientific visualization and geometry processing as well as faculty members in mathematics at our university who teach topology. We include their evaluations and feedback in the paper.
The sensory but not muscular pelvic nerve branch is necessary for parturition in the rat.
Martínez-Gómez, M; Cruz, Y; Pacheco, P; Aguilar-Roblero, R; Hudson, R
1998-03-01
In the rat the pelvic nerve consists of a viscerocutaneous (sensory) branch which receives information from pelvic viscera and the midline perineal region, and a somatomotor (muscular) branch which innervates the ilio- and pubococcygeous muscles. To investigate the contribution of these branches to the parturition process, the length of gestation and course of delivery were closely monitored in 43 pregnant, Wistar-strain rats randomly assigned to five groups: untreated control animals, animals in which the somatomotor branch of the pelvic nerve was bilaterally sectioned on Day 14 of gestation, animals in which the viscerocutaneous branch of the pelvic nerve was bilaterally sectioned on Day 14 of gestation, animals treated similarly to the previous group but with young delivered by C-section at term, and sham-operated controls. Sectioning the viscerocutaneous branch seriously disrupted parturition and resulted in major dystocia and a high percentage of stillbirths in all females. In contrast, sectioning the somatomotor branch had no apparent effect on parturition and no significant differences were found between females of this group and sham or control dams on any of the measures recorded. It is concluded that the viscerocutaneous branch of the pelvic nerve is vital for the normal course of parturition in the rat but that the somatomotor branch plays little role, if any.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenger, Andreas
2009-01-01
The study of processes involving flavour-changing neutral currents provides a particularly promising probe for New Physics beyond the Standard Model of particle physics. These processes are forbidden at tree level and proceed through loop processes, which are strongly suppressed in the Standard Model. Cross-sections for these processes can be significantly enhanced by contributions from new particles as they are proposed in most extentions of the Standard Model. This thesis presents searches for two flavour-changing neutral current decays, B± ! K±μ+μ- and B0 d ! K¤μ+μ-. The analysis was performed on 4.1 fb-1 of data collected by the DØ detector inmore » Run II of the Fermilab Tevatron. Candidate events for the decay B± ! K±μ+μ- were selected using a multi-variate analysis technique and the number of signal events determined by a fit to the invariant mass spectrum. Normalising to the known branching fraction for B± ! J/ÃK±, a branching fraction of B(B± ! K± μ+μ-) = 6.45 ± 2.24 (stat) ± 1.19 (syst) × 10-7 (1) was measured. The branching fraction for the decay B0 d ! K¤μ+μ- was determined in a similar way. Normalizing to the known branching fraction for B0 d ! J/ÃK¤, a branching fraction of B(B0 d ! K¤ μ+μ-) = 11.15 ± 3.05 (stat) ± 1.94 (syst) × 10-7 (2) was measured. All measurements are in agreement with the Standard Model.« less
A dynamic processes study of PM retention by trees under different wind conditions.
Xie, Changkun; Kan, Liyan; Guo, Jiankang; Jin, Sijia; Li, Zhigang; Chen, Dan; Li, Xin; Che, Shengquan
2018-02-01
Particulate matter (PM) is one of the most serious environmental problems, exacerbating respiratory and vascular illnesses. Plants have the ability to reduce non-point source PM pollution through retention on leaves and branches. Studies of the dynamic processes of PM retention by plants and the mechanisms influencing this process will help to improve the efficiency of urban greening for PM reduction. We examined dynamic processes of PM retention and the major factors influencing PM retention by six trees with different branch structure characteristics in wind tunnel experiments at three different wind speeds. The results showed that the changes of PM numbers retained by plant leaves over time were complex dynamic processes for which maximum values could exceed minimum values by over 10 times. The average value of PM measured in multiple periods and situations can be considered a reliable indicator of the ability of the plant to retain PM. The dynamic processes were similar for PM 10 and PM 2.5 . They could be clustered into three groups simulated by continually-rising, inverse U-shaped, and U-shaped polynomial functions, respectively. The processes were the synthetic effect of characteristics such as species, wind speed, period of exposure and their interactions. Continually-rising functions always explained PM retention in species with extremely complex branch structure. Inverse U-shaped processes explained PM retention in species with relatively simple branch structure and gentle wind. The U-shaped processes mainly explained PM retention at high wind speeds and in species with a relatively simple crown. These results indicate that using plants with complex crowns in urban greening and decreasing wind speed in plant communities increases the chance of continually-rising or inverse U-shaped relationships, which have a positive effect in reducing PM pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cadaveric Study of the Articular Branches of the Shoulder Joint.
Eckmann, Maxim S; Bickelhaupt, Brittany; Fehl, Jacob; Benfield, Jonathan A; Curley, Jonathan; Rahimi, Ohmid; Nagpal, Ameet S
This cadaveric study investigated the anatomic relationships of the articular branches of the suprascapular (SN), axillary (AN), and lateral pectoral nerves (LPN), which are potential targets for shoulder analgesia. Sixteen embalmed cadavers and 1 unembalmed cadaver, including 33 shoulders total, were dissected. Following dissections, fluoroscopic images were taken to propose an anatomical landmark to be used in shoulder articular branch blockade. Thirty-three shoulders from 17 total cadavers were studied. In a series of 16 shoulders, 16 (100%) of 16 had an intact SN branch innervating the posterior head of the humerus and shoulder capsule. Suprascapular sensory branches coursed laterally from the spinoglenoid notch then toward the glenohumeral joint capsule posteriorly. Axillary nerve articular branches innervated the posterolateral head of the humerus and shoulder capsule in the same 16 (100%) of 16 shoulders. The AN gave branches ascending circumferentially from the quadrangular space to the posterolateral humerus, deep to the deltoid, and inserting at the inferior portion of the posterior joint capsule. In 4 previously dissected and 17 distinct shoulders, intact LPNs could be identified in 14 (67%) of 21 specimens. Of these, 12 (86%) of 14 had articular branches innervating the anterior shoulder joint, and 14 (100%) of 14 LPN articular branches were adjacent to acromial branches of the thoracoacromial blood vessels over the superior aspect of the coracoid process. Articular branches from the SN, AN, and LPN were identified. Articular branches of the SN and AN insert into the capsule overlying the glenohumeral joint posteriorly. Articular branches of the LPN exist and innervate a portion of the anterior shoulder joint.
Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction
NASA Astrophysics Data System (ADS)
Jang, Youn Jeong; Jang, Ji-Wook; Choi, Sun Hee; Kim, Jae Young; Kim, Ju Hun; Youn, Duck Hyun; Kim, Won Yong; Han, Suenghoon; Sung Lee, Jae
2015-04-01
Highly efficient tree branch-shaped CuO photocathodes are fabricated using the hybrid microwave annealing process with a silicon susceptor within 10 minutes. The unique hierarchical, one-dimensional structure provides more facile charge transport, larger surface areas, and increased crystallinity and crystal ordering with less defects compared to irregular-shaped CuO prepared by conventional thermal annealing. As a result, the photocathode fabricated with the tree branch-shaped CuO produces an unprecedently high photocurrent density of -4.4 mA cm-2 at 0 VRHE under AM 1.5 G simulated sunlight compared to -1.44 mA cm-2 observed for a photocathode fabricated by thermal annealing. It is also confirmed that stoichiometric hydrogen and oxygen are produced from photoelectrochemical water splitting on the tree branch-shaped CuO photocathode and a platinum anode.Highly efficient tree branch-shaped CuO photocathodes are fabricated using the hybrid microwave annealing process with a silicon susceptor within 10 minutes. The unique hierarchical, one-dimensional structure provides more facile charge transport, larger surface areas, and increased crystallinity and crystal ordering with less defects compared to irregular-shaped CuO prepared by conventional thermal annealing. As a result, the photocathode fabricated with the tree branch-shaped CuO produces an unprecedently high photocurrent density of -4.4 mA cm-2 at 0 VRHE under AM 1.5 G simulated sunlight compared to -1.44 mA cm-2 observed for a photocathode fabricated by thermal annealing. It is also confirmed that stoichiometric hydrogen and oxygen are produced from photoelectrochemical water splitting on the tree branch-shaped CuO photocathode and a platinum anode. Electronic supplementary information (ESI) available: The detailed schematic diagram for the HMA process, XRD results, the temperature profile during HMA, derivative XANES results, TEM images, J-V curves, lists of previously reported copper oxide photocathode, and parameters extracted from EIS. See DOI: 10.1039/c5nr00208g
Zhang, Fengjiao; Hu, Yunbin; Schuettfort, Torben; Di, Chong-an; Gao, Xike; McNeill, Christopher R; Thomsen, Lars; Mannsfeld, Stefan C B; Yuan, Wei; Sirringhaus, Henning; Zhu, Daoben
2013-02-13
Substituted side chains are fundamental units in solution processable organic semiconductors in order to achieve a balance of close intermolecular stacking, high crystallinity, and good compatibility with different wet techniques. Based on four air-stable solution-processed naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene)malononitrile groups (NDI-DTYM2) that bear branched alkyl chains with varied side-chain length and different branching position, we have carried out systematic studies on the relationship between film microstructure and charge transport in their organic thin-film transistors (OTFTs). In particular synchrotron measurements (grazing incidence X-ray diffraction and near-edge X-ray absorption fine structure) are combined with device optimization studies to probe the interplay between molecular structure, molecular packing, and OTFT mobility. It is found that the side-chain length has a moderate influence on thin-film microstructure but leads to only limited changes in OTFT performance. In contrast, the position of branching point results in subtle, yet critical changes in molecular packing and leads to dramatic differences in electron mobility ranging from ~0.001 to >3.0 cm(2) V(-1) s(-1). Incorporating a NDI-DTYM2 core with three-branched N-alkyl substituents of C(11,6) results in a dense in-plane molecular packing with an unit cell area of 127 Å(2), larger domain sizes of up to 1000 × 3000 nm(2), and an electron mobility of up to 3.50 cm(2) V(-1) s(-1), which is an unprecedented value for ambient stable n-channel solution-processed OTFTs reported to date. These results demonstrate that variation of the alkyl chain branching point is a powerful strategy for tuning of molecular packing to enable high charge transport mobilities.
Vere-Jones' self-similar branching model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saichev, A.; Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095; Sornette, D.
2005-11-01
Motivated by its potential application to earthquake statistics as well as for its intrinsic interest in the theory of branching processes, we study the exactly self-similar branching process introduced recently by Vere-Jones. This model extends the ETAS class of conditional self-excited branching point-processes of triggered seismicity by removing the problematic need for a minimum (as well as maximum) earthquake size. To make the theory convergent without the need for the usual ultraviolet and infrared cutoffs, the distribution of magnitudes m{sup '} of daughters of first-generation of a mother of magnitude m has two branches m{sup '}
[Problems of world outlook and methodology of science integration in biological studies].
Khododova, Iu D
1981-01-01
Problems of worldoutlook and methodology of the natural-science knowledge are considered basing on the analysis of tendencies in the development of the membrane theory of cell processes and the use of principles of biological membrane functioning when solving some scientific and applied problems pertaining to different branches of chemistry and biology. The notion scientific knowledge integration is defined as interpenetration of approaches, methods and ideas of different branches of knowledge and enrichment on this basis of their content resulting in knowledge augmentation in each field taken separately. These processes are accompanied by appearance of new branches of knowledge - sciences "on junction" and their subsequent differentiations. The analysis of some gnoseological situations shows that integration of sciences contributes to coordination and some agreement of thinking styles of different specialists, puts forward keen personality of a scientist demanding, in particular, his high professional mobility. Problems of scientific activity organization are considered, which involve social sciences into the integration processes. The role of philosophy in the integration processes is emphasized.
Cash efficiency for bank branches.
Cabello, Julia García
2013-01-01
Bank liquidity management has become a major issue during the financial crisis as liquidity shortages have intensified and have put pressure on banks to diversity and improve their liquidity sources. While a significant strand of the literature concentrates on wholesale liquidity generation and on the alternative to deposit funding, the management of an inventory of cash holdings within the banks' branches is also a relevant issue as any significant improvement in cash management at the bank distribution channels may have a positive effect in reducing liquidity tensions. In this paper, we propose a simple programme of cash efficiency for the banks' branches, very easy to implement, which conform to a set of instructions to be imposed from the bank to their branches. This model proves to significantly reduce cash holdings at branches thereby providing efficiency improvements in liquidity management. The methodology we propose is based on the definition of some stochastic processes combined with renewal processes, which capture the random elements of the cash flow, before applying suitable optimization programmes to all the costs involved in cash movements. The classical issue of the Transaction Demand for the Cash and some aspects of Inventory Theory are also present. Mathematics Subject Classification (2000) C02, C60, E50.
Zhao, Min; Tian, Dehu; Shao, Xinzhong; Li, Dacun; Li, Jianfeng; Liu, Jingda; Zhao, Liang; Li, Hailei; Wang, Xiaolei; Zhang, Wentong; Wu, Jinying; Yuan, Zuoxiong
2013-07-01
To study the anatomical basis of micro transverse flap pedicled with the superfical palmar branch of radial artery from the palmar wrist for using this free flap to repair soft tissue defect of the finger. Thirty-eight fresh upper limb specimens (22 males and 16 females; aged 26-72 years with an average of 36 years; at left and right sides in 19 limbs respectively) were dissected and observed under operating microscope. Two specimens were made into casting mould of artery with bones, and 2 specimens were injected with red emulsion in radial artery. Thirty-four specimens were injected with 1% gentian violet solution in the superfical palmar branch of the radial artery. A transverse oval flap in the palmar wrist was designed, the axis of the flap was the distal palmar crease. The origin, distribution, and anastomosis of the superfical palmar branch of the radial artery were observed. The superficial palmar branch of the radial artery was constantly existed, it usually arises from the main trunk of the radial artery, 1.09-3.60 cm to proximal styloid process of radius. There were about 2-5 branches between the origin and the tubercle of scaphoid bone. The origin diameter was 1.00-3.00 mm, and the distal diameter at the styloid process of radius was 1.00-2.90 mm. The venous return of flap passed through 2 routes, and the innervations of the flap mainly from the palmar cutaneous branch of the median nerve. The area of the flap was 4 cm x 2 cm-6 cm x 2 cm. The origin and courses of the superficial palmar branch of the radial artery is constant, and its diameter is similar to that of the digital artery. A transverse oval flap pedicled with the superfical palmar branch of radial artery in the palmar wrist can be designed to repair defects of the finger.
3D PIC-MCC simulations of positive streamers in air gaps
NASA Astrophysics Data System (ADS)
Jiang, M.; Li, Y.; Wang, H.; Liu, C.
2017-10-01
Simulation of positive streamer evolution is important for understanding the microscopic physical process in discharges. Simulations described in this paper are done using a 3D Particle-In-Cell, Monte-Carlo-Collision code with photoionization. Three phases of a positive streamer evolution, identified as initiation, propagation, and branching are studied during simulations. A homogeneous electric field is applied between parallel-flat electrodes forming a millimeter air gap to make simulations and analysis more simple and general. Free electrons created by the photoionization process determine initiation, propagation, and branching of the streamers. Electron avalanches form a positive streamer tip, when the space charge of ions at the positive tip dominates the local electric field. The propagation of the positive tip toward a cathode is the result of combinations of the positive tip and secondary avalanches ahead of it. A curved feather-like channel is formed without obvious branches when the electric field between electrodes is 50 kV/cm. However, a channel is formed with obvious branches when the electric field increases up to 60 kV/cm. In contrast to the branches around a sharp needle electrode, branches near the flat anode are formed at a certain distance away from it. Simulated parameters of the streamer such as diameter, maximum electric field, propagation velocity, and electron density at the streamer tip are in a good agreement with those published earlier.
Phenomenological picture of fluctuations in branching random walks
NASA Astrophysics Data System (ADS)
Mueller, A. H.; Munier, S.
2014-10-01
We propose a picture of the fluctuations in branching random walks, which leads to predictions for the distribution of a random variable that characterizes the position of the bulk of the particles. We also interpret the 1 /√{t } correction to the average position of the rightmost particle of a branching random walk for large times t ≫1 , computed by Ebert and Van Saarloos, as fluctuations on top of the mean-field approximation of this process with a Brunet-Derrida cutoff at the tip that simulates discreteness. Our analytical formulas successfully compare to numerical simulations of a particular model of a branching random walk.
Damage Tolerance Assessment Branch
NASA Technical Reports Server (NTRS)
Walker, James L.
2013-01-01
The Damage Tolerance Assessment Branch evaluates the ability of a structure to perform reliably throughout its service life in the presence of a defect, crack, or other form of damage. Such assessment is fundamental to the use of structural materials and requires an integral blend of materials engineering, fracture testing and analysis, and nondestructive evaluation. The vision of the Branch is to increase the safety of manned space flight by improving the fracture control and the associated nondestructive evaluation processes through development and application of standards, guidelines, advanced test and analytical methods. The Branch also strives to assist and solve non-aerospace related NDE and damage tolerance problems, providing consultation, prototyping and inspection services.
Luminal mitosis drives epithelial cell dispersal within the branching ureteric bud
Packard, Adam; Georgas, Kylie; Michos, Odyssé; Riccio, Paul; Cebrian, Cristina; Combes, Alexander N.; Ju, Adler; Ferrer-Vaquer, Anna; Hadjantonakis, Anna-Katerina; Zong, Hui; Little, Melissa H.; Costantini, Frank
2013-01-01
Summary The ureteric bud is an epithelial tube that undergoes branching morphogenesis to form the renal collecting system. Though development of a normal kidney depends on proper ureteric bud morphogenesis, the cellular events underlying this process remain obscure. Here, we used time-lapse microscopy together with several genetic labeling methods to observe ureteric bud cell behaviors in developing mouse kidneys. We observed an unexpected cell behavior in the branching tips of the ureteric bud, which we term “mitosis-associated cell dispersal”. Pre-mitotic ureteric tip cells delaminate from the epithelium and divide within the lumen; while one daughter cell retains a basal process, allowing it to reinsert into the epithelium at the site of origin, the other daughter cell reinserts at a position one to three cell diameters away. Given the high rate of cell division in ureteric tips, this cellular behavior causes extensive epithelial cell rearrangements that may contribute to renal branching morphogenesis. PMID:24183650
Partial branch and bound algorithm for improved data association in multiframe processing
NASA Astrophysics Data System (ADS)
Poore, Aubrey B.; Yan, Xin
1999-07-01
A central problem in multitarget, multisensor, and multiplatform tracking remains that of data association. Lagrangian relaxation methods have shown themselves to yield near optimal answers in real-time. The necessary improvement in the quality of these solutions warrants a continuing interest in these methods. These problems are NP-hard; the only known methods for solving them optimally are enumerative in nature with branch-and-bound being most efficient. Thus, the development of methods less than a full branch-and-bound are needed for improving the quality. Such methods as K-best, local search, and randomized search have been proposed to improve the quality of the relaxation solution. Here, a partial branch-and-bound technique along with adequate branching and ordering rules are developed. Lagrangian relaxation is used as a branching method and as a method to calculate the lower bound for subproblems. The result shows that the branch-and-bound framework greatly improves the resolution quality of the Lagrangian relaxation algorithm and yields better multiple solutions in less time than relaxation alone.
Jonathan, M C; van Brussel, M; Scheffers, M S; Kabel, M A
2015-11-05
In the conversion of starch to fermentable glucose for bioethanol production, hydrolysis of amylopectin by α-amylases and glucoamylases is the slowest step. In this process, α-1,6-branched gluco-oligosaccharides accumulate and are slowly degraded. Glucoamylases that are able to degrade such branched oligosaccharides faster are economically beneficial. This research aimed at the isolation and characterisation of branched gluco-oligosaccharides produced from amylopectin digestion by α-amylase, to be used as substrates for comparing their degradation by glucoamylases. Branched gluco-oligosaccharides with a DP between five and twelve were purified using size exclusion chromatography. These structures were characterised after labelling with 2-aminobenzamide using UHPLC-MS(n) analysis. Further, the purified oligosaccharides were used to evaluate the mode-of-action of a glucoamylase from Hypocrea jecorina. The enzyme cleaves the α-1,4-linkage adjacent to the α-1,6-linkage at a lower rate than that of α-1,4-linkages in linear oligosaccharides. Hence, the branched gluco-oligosaccharides are a suitable substrate to evaluate glucoamylase activity on branched structures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Composite Overview and Composite Aerocover Overview
NASA Technical Reports Server (NTRS)
Caraccio, Anne; Tate, LaNetra; Dokos, Adam; Taylor, Brian; Brown, Chad
2014-01-01
Materials Science Division within the Engineering Directorate tasked by the Ares Launch Vehicle Division (LX-V) and the Fluids Testing and Technology Development Branch (NE-F6) to design, fabricate and test an aerodynamic composite shield for potential Heavy Lift Launch Vehicle infusion and a composite strut that will serve as a pathfinder in evaluating calorimeter data for the CRYOSTAT (cryogenic on orbit storage and transfer) Project. ATP project is to carry the design and development of the aerodynamic composite cover or "bracket" from cradle to grave including materials research, purchasing, design, fabrication, testing, analysis and presentation of the final product. Effort consisted of support from the Materials Testing & Corrosion Control Branch (NE-L2) for mechanical testing, the Prototype Development Branch (NE-L3) for CAD drawing, design/analysis, and fabrication, Materials & Processes Engineering Branch (NE-L4) for project management and materials selection; the Applied Physics Branch (NE-LS) for NDE/NDI support; and the Chemical Analysis Branch (NE-L6) for developmental systems evaluation. Funded by the Ares Launch Vehicle Division and the Fluids Testing and Technology Development Branch will provide ODC
Aryee, Samuel; Walumbwa, Fred O; Seidu, Emmanuel Y M; Otaye, Lilian E
2012-03-01
We proposed and tested a multilevel model, underpinned by empowerment theory, that examines the processes linking high-performance work systems (HPWS) and performance outcomes at the individual and organizational levels of analyses. Data were obtained from 37 branches of 2 banking institutions in Ghana. Results of hierarchical regression analysis revealed that branch-level HPWS relates to empowerment climate. Additionally, results of hierarchical linear modeling that examined the hypothesized cross-level relationships revealed 3 salient findings. First, experienced HPWS and empowerment climate partially mediate the influence of branch-level HPWS on psychological empowerment. Second, psychological empowerment partially mediates the influence of empowerment climate and experienced HPWS on service performance. Third, service orientation moderates the psychological empowerment-service performance relationship such that the relationship is stronger for those high rather than low in service orientation. Last, ordinary least squares regression results revealed that branch-level HPWS influences branch-level market performance through cross-level and individual-level influences on service performance that emerges at the branch level as aggregated service performance.
Intralaryngeal neuroanatomy of the recurrent laryngeal nerve of the rabbit
Ryan, Stephen; McNicholas, Walter T; O'Regan, Ronan G; Nolan, Philip
2003-01-01
We undertook this study to determine the detailed neuroanatomy of the terminal branches of the recurrent laryngeal nerve (RLN) in the rabbit to facilitate future neurophysiological recordings from identified branches of this nerve. The whole larynx was isolated post mortem in 17 adult New Zealand White rabbits and prepared using a modified Sihler's technique, which stains axons and renders other tissues transparent so that nerve branches can be seen in whole mount preparations. Of the 34 hemi-laryngeal preparations processed, 28 stained well and these were dissected and used to characterize the neuroanatomy of the RLN. In most cases (23/28) the posterior cricoarytenoid muscle (PCA) was supplied by a single branch arising from the RLN, though in five PCA specimens there were two or three separate branches to the PCA. The interarytenoid muscle (IA) was supplied by two parallel filaments arising from the main trunk of the RLN rostral to the branch(es) to the PCA. The lateral cricoarytenoid muscle (LCA) commonly received innervation from two fine twigs branching from the RLN main trunk and travelling laterally towards the LCA. The remaining fibres of the RLN innervated the thyroarytenoid muscle (TA) and comprised two distinct branches, one supplying the pars vocalis and the other branching extensively to supply the remainder of the TA. No communicating anastomosis between the RLN and superior laryngeal nerve within the larynx was found. Our results suggest it is feasible to make electrophysiological recordings from identified terminal branches of the RLN supplying laryngeal adductor muscles separate from the branch or branches to the PCA. However, the very small size of the motor nerves to the IA and LCA suggests that it would be very difficult to record selectively from the nerve supply to individual laryngeal adductor muscles. PMID:12739619
DOT National Transportation Integrated Search
2010-07-01
The Federal Aviation Administrations (FAA) predecessor organization, the Department of : Commerce Aeronautics Branch took an early interest in China, as it did with other nations. As : early as November 1931, the Aeronautics Branch published pr...
Process for the conversion of lower alcohols to higher branched oxygenates
Barger, Paul T.
1996-01-01
A process is provided for the production of branched C.sub.4+ oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.
Process for the conversion of lower alcohols to higher branched oxygenates
Barger, P.T.
1996-09-24
A process is provided for the production of branched C{sub x} oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.
Cao, Yanqin; Yang, Yong; Shan, Yufeng; Huang, Zhengren
2016-03-09
Hierarchical branched nanoparticles are one promising nanostructure with three-dimensional open porous structure composed of integrated branches for superior catalysis. We have successfully synthesized Pt-Cu hierarchical branched nanoparticles (HBNDs) with small size of about 30 nm and composed of integrated ultrathin branches by using a modified polyol process with introduction of poly(vinylpyrrolidone) and HCl. This strategy is expected to be a general strategy to prepare various metallic nanostructures for catalysis. Because of the special open porous structure, the as-prepared Pt-Cu HBNDs exhibit greatly enhanced specific activity toward the methanol oxidation reaction as much as 2.5 and 1.7 times compared with that of the commercial Pt-Ru and Pt-Ru/C catalysts, respectively. Therefore, they are potentially applicable as electrocatalysts for direct methanol fuel cells.
7 CFR 52.1844 - Definition of terms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... branches of the bunch. (b) A piece of stem means a portion of the branch or main stem. (c) Seeds refers to whole, fully developed seeds which have not been removed during the processing of seeded raisins with seeds. (d) Damaged raisins means raisins affected by sunburn, scars, insect injury, mechanical injury...
7 CFR 52.1844 - Definition of terms.
Code of Federal Regulations, 2011 CFR
2011-01-01
... branches of the bunch. (b) A piece of stem means a portion of the branch or main stem. (c) Seeds refers to whole, fully developed seeds which have not been removed during the processing of seeded raisins with seeds. (d) Damaged raisins means raisins affected by sunburn, scars, insect injury, mechanical injury...
21 CFR 108.35 - Thermal processing of low-acid foods packaged in hermetically sealed containers.
Code of Federal Regulations, 2011 CFR
2011-04-01
...-618), Center for Food Safety and Applied Nutrition, Food and Drug Administration, 5100 Paint Branch... Applied Nutrition, Food and Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740... the LACF Registration Coordinator (HFS-618), Center for Food Safety and Applied Nutrition, Food and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundle, John B.; Klein, William
We have carried out research to determine the dynamics of failure in complex geomaterials, specifically focusing on the role of defects, damage and asperities in the catastrophic failure processes (now popularly termed “Black Swan events”). We have examined fracture branching and flow processes using models for invasion percolation, focusing particularly on the dynamics of bursts in the branching process. We have achieved a fundamental understanding of the dynamics of nucleation in complex geomaterials, specifically in the presence of inhomogeneous structures.
O'Brien, Barbara M J; Palumbos, Sierra D; Novakovic, Michaela; Shang, Xueying; Sundararajan, Lakshmi; Miller, David M
2017-12-15
The dendritic processes of nociceptive neurons transduce external signals into neurochemical cues that alert the organism to potentially damaging stimuli. The receptive field for each sensory neuron is defined by its dendritic arbor, but the mechanisms that shape dendritic architecture are incompletely understood. Using the model nociceptor, the PVD neuron in C. elegans, we determined that two types of PVD lateral branches project along the dorsal/ventral axis to generate the PVD dendritic arbor: (1) Pioneer dendrites that adhere to the epidermis, and (2) Commissural dendrites that fasciculate with circumferential motor neuron processes. Previous reports have shown that the LIM homeodomain transcription factor MEC-3 is required for all higher order PVD branching and that one of its targets, the claudin-like membrane protein HPO-30, preferentially promotes outgrowth of pioneer branches. Here, we show that another MEC-3 target, the conserved TFIIA-like zinc finger transcription factor EGL-46, adopts the alternative role of specifying commissural dendrites. The known EGL-46 binding partner, the TEAD transcription factor EGL-44, is also required for PVD commissural branch outgrowth. Double mutants of hpo-30 and egl-44 show strong enhancement of the lateral branching defect with decreased numbers of both pioneer and commissural dendrites. Thus, HPO-30/Claudin and EGL-46/EGL-44 function downstream of MEC-3 and in parallel acting pathways to direct outgrowth of two distinct classes of PVD dendritic branches. Copyright © 2017 Elsevier Inc. All rights reserved.
Maruta, Naomichi; Marumoto, Moegi
2017-01-01
Lung branching morphogenesis has been studied for decades, but the underlying developmental mechanisms are still not fully understood. Cellular movements dynamically change during the branching process, but it is difficult to observe long-term cellular dynamics by in vivo or tissue culture experiments. Therefore, developing an in vitro experimental model of bronchial tree would provide an essential tool for developmental biology, pathology, and systems biology. In this study, we succeeded in reconstructing a bronchial tree in vitro by using primary human bronchial epithelial cells. A high concentration gradient of bronchial epithelial cells was required for branching initiation, whereas homogeneously distributed endothelial cells induced the formation of successive branches. Subsequently, the branches grew in size to the order of millimeter. The developed model contains only two types of cells and it facilitates the analysis of lung branching morphogenesis. By taking advantage of our experimental model, we carried out long-term time-lapse observations, which revealed self-assembly, collective migration with leader cells, rotational motion, and spiral motion of epithelial cells in each developmental event. Mathematical simulation was also carried out to analyze the self-assembly process and it revealed simple rules that govern cellular dynamics. Our experimental model has provided many new insights into lung development and it has the potential to accelerate the study of developmental mechanisms, pattern formation, left–right asymmetry, and disease pathogenesis of the human lung. PMID:28471293
Zhao, Daqiu; Gong, Saijie; Hao, Zhaojun; Meng, Jiasong; Tao, Jun
2015-01-01
Herbaceous peony (Paeonia lactiflora Pall.) is an emerging high-grade cut flower worldwide, which is usually used in wedding bouquets and known as the “wedding flower”. However, abundant lateral branches appear frequently in some excellent cultivars, and a lack of a method to remove Paeonia lactiflora lateral branches other than inefficient artificial methods is an obstacle for improving the quality of its cut flowers. In this study, paclobutrazol (PBZ) application was found to inhibit the growth of lateral branches in Paeonia lactiflora for the first time, including 96.82% decreased lateral bud number per branch, 77.79% and 42.31% decreased length and diameter of lateral branches, respectively, declined cell wall materials and changed microstructures. Subsequently, isobaric tag for relative and absolute quantitation (iTRAQ) technology was used for quantitative proteomics analysis of lateral branches under PBZ application and control. The results indicated that 178 differentially expressed proteins (DEPs) successfully obtained, 98 DEPs were up-regulated and 80 DEPs were down-regulated. Thereafter, 34 candidate DEPs associated with the inhibited growth of lateral branches were screened according to their function and classification. These PBZ-stress responsive candidate DEPs were involved in eight biological processes, which played a very important role in the growth and development of lateral branches together with the response to PBZ stress. These results provide a better understanding of the molecular theoretical basis for removing Paeonia lactiflora lateral branches using PBZ application. PMID:26473855
Controls on stream network branching angles, tested using landscape evolution models
NASA Astrophysics Data System (ADS)
Theodoratos, Nikolaos; Seybold, Hansjörg; Kirchner, James W.
2016-04-01
Stream networks are striking landscape features. The topology of stream networks has been extensively studied, but their geometry has received limited attention. Analyses of nearly 1 million stream junctions across the contiguous United States [1] have revealed that stream branching angles vary systematically with climate and topographic gradients at continental scale. Stream networks in areas with wet climates and gentle slopes tend to have wider branching angles than in areas with dry climates or steep slopes, but the mechanistic linkages underlying these empirical correlations remain unclear. Under different climatic and topographic conditions different runoff generation mechanisms and, consequently, transport processes are dominant. Models [2] and experiments [3] have shown that the relative strength of channel incision versus diffusive hillslope transport controls the spacing between valleys, an important geometric property of stream networks. We used landscape evolution models (LEMs) to test whether similar factors control network branching angles as well. We simulated stream networks using a wide range of hillslope diffusion and channel incision parameters. The resulting branching angles vary systematically with the parameters, but by much less than the regional variability in real-world stream networks. Our results suggest that the competition between hillslope and channeling processes influences branching angles, but that other mechanisms may also be needed to account for the variability in branching angles observed in the field. References: [1] H. Seybold, D. H. Rothman, and J. W. Kirchner, 2015, Climate's watermark in the geometry of river networks, Submitted manuscript. [2] J. T. Perron, W. E. Dietrich, and J. W. Kirchner, 2008, Controls on the spacing of first-order valleys, Journal of Geophysical Research, 113, F04016. [3] K. E. Sweeney, J. J. Roering, and C. Ellis, 2015, Experimental evidence for hillslope control of landscape scale, Science, 349(6243), 51-53.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, John; Jankovsky, Zachary; Metzroth, Kyle G
2018-04-04
The purpose of the ADAPT code is to generate Dynamic Event Trees (DET) using a user specified set of simulators. ADAPT can utilize any simulation tool which meets a minimal set of requirements. ADAPT is based on the concept of DET which uses explicit modeling of the deterministic dynamic processes that take place during a nuclear reactor plant system (or other complex system) evolution along with stochastic modeling. When DET are used to model various aspects of Probabilistic Risk Assessment (PRA), all accident progression scenarios starting from an initiating event are considered simultaneously. The DET branching occurs at user specifiedmore » times and/or when an action is required by the system and/or the operator. These outcomes then decide how the dynamic system variables will evolve in time for each DET branch. Since two different outcomes at a DET branching may lead to completely different paths for system evolution, the next branching for these paths may occur not only at separate times, but can be based on different branching criteria. The computational infrastructure allows for flexibility in ADAPT to link with different system simulation codes, parallel processing of the scenarios under consideration, on-line scenario management (initiation as well as termination), analysis of results, and user friendly graphical capabilities. The ADAPT system is designed for a distributed computing environment; the scheduler can track multiple concurrent branches simultaneously. The scheduler is modularized so that the DET branching strategy can be modified (e.g. biasing towards the worst-case scenario/event). Independent database systems store data from the simulation tasks and the DET structure so that the event tree can be constructed and analyzed later. ADAPT is provided with a user-friendly client which can easily sort through and display the results of an experiment, precluding the need for the user to manually inspect individual simulator runs.« less
Posterior Branches of Lumbar Spinal Nerves - Part I: Anatomy and Functional Importance.
Kozera, Katarzyna; Ciszek, Bogdan
2016-01-01
The aim of this paper is to compare anatomic descriptions of posterior branches of the lumbar spinal nerves and, on this basis, present the location of these structures. The majority of anatomy textbooks do not describe these nerves in detail, which may be attributable to the fact that for many years they were regarded as structures of minor clinical importance. The state of knowledge on these nerves has changed within the last 30 years. Attention has been turned to their function and importance for both diagnostic practice and therapy of lower back pain. Summarising the available literature, we may conclude that the medial and lateral branches separate at the junction of the facet joint and the distal upper edge of the transverse process; that the size, course and area supplied differ between the lateral and the medial branch; and that facet joints receive multisegmental innervation. It has been demonstrated that medial branches are smaller than the respective lateral branches and they have a more constant course. Medial branches supply the area from the midline to the facet joint line, while lateral branches innervate tissues lateral to the facet joint. The literature indicates difficulties with determining specific anatomic landmarks relative to which the lateral branch and the distal medial branch can be precisely located. Irritation of sensory fibres within posterior branches of the lumbar spinal nerves may be caused by pathology of facet joints, deformity of the spine or abnormalities due to overloading or injury. The anatomic location and course of posterior branches of spinal nerves should be borne in mind to prevent damaging them during low-invasive analgesic procedures.
Energetic-particle drift motions in the outer dayside magnetosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buck, R.C.
1987-01-01
Models of the geomagnetic field predict that within a distance of approximately one earth radius inside the dayside magnetopause, magnetic fields produced by the Chapman-Ferraro magnetopause currents create high-latitude minimum-B pockets in the geomagnetic field. These pockets are theoretically capable of temporarily trapping azimuthally-drifting electrons and modifying electron directional distributions. The Lawrence Livermore National Laboratory's scanning electron spectrometer aboard the OGO-5 satellite provided detailed energetic (E > 70 keV) electron pitch-angle distributions throughout the magnetosphere. Distributions obtained in the outer dayside magnetosphere over a wide range of longitudes show unusual flux features. This study analyzes drift-shell branching caused by themore » minimum-B pockets, and interprets the observed flux features in terms of an adiabatic-shell branching and rejoining process. The author examines the shell-branching process for a static field in detail, using the Choe-Beard 1974 magnetospheric magnetic field mode. He finds that shell branching and rejoining conserves the particle mirror field B/sub M/, the fieldline integral invariant I, and the directional electron flux j. He also finds a good correlation between the itch angles that mark the transition from branched to unbranched shells in the model and the distinctive features of the OGO-5 distributions.« less
Developmental Programming of Branching Morphogenesis in the Kidney
Schneider, Laura; Al-Awqati, Qais
2015-01-01
The kidney developmental program encodes the intricate branching and organization of approximately 1 million functional units (nephrons). Branching regulation is poorly understood, as is the source of a 10-fold variation in nephron number. Notably, low nephron count increases the risk for developing hypertension and renal failure. To better understand the source of this variation, we analyzed the complete gestational trajectory of mouse kidney development. We constructed a computerized architectural map of the branching process throughout fetal life and found that organogenesis is composed of two distinct developmental phases, each with stage-specific rate and morphologic parameters. The early phase is characterized by a rapid acceleration in branching rate and by branching divisions that repeat with relatively reproducible morphology. The latter phase, however, is notable for a significantly decreased yet constant branching rate and the presence of nonstereotyped branching events that generate progressive variability in tree morphology until birth. Our map identifies and quantitates the contribution of four developmental mechanisms that guide organogenesis: growth, patterning, branching rate, and nephron induction. When applied to organs that developed under conditions of malnutrition or in the setting of growth factor mutation, our normative map provided an essential link between kidney architecture and the fundamental morphogenetic mechanisms that guide development. This morphogenetic map is expected to find widespread applications and help identify modifiable targets to prevent developmental programming of common diseases. PMID:25644110
Developmental Programming of Branching Morphogenesis in the Kidney.
Sampogna, Rosemary V; Schneider, Laura; Al-Awqati, Qais
2015-10-01
The kidney developmental program encodes the intricate branching and organization of approximately 1 million functional units (nephrons). Branching regulation is poorly understood, as is the source of a 10-fold variation in nephron number. Notably, low nephron count increases the risk for developing hypertension and renal failure. To better understand the source of this variation, we analyzed the complete gestational trajectory of mouse kidney development. We constructed a computerized architectural map of the branching process throughout fetal life and found that organogenesis is composed of two distinct developmental phases, each with stage-specific rate and morphologic parameters. The early phase is characterized by a rapid acceleration in branching rate and by branching divisions that repeat with relatively reproducible morphology. The latter phase, however, is notable for a significantly decreased yet constant branching rate and the presence of nonstereotyped branching events that generate progressive variability in tree morphology until birth. Our map identifies and quantitates the contribution of four developmental mechanisms that guide organogenesis: growth, patterning, branching rate, and nephron induction. When applied to organs that developed under conditions of malnutrition or in the setting of growth factor mutation, our normative map provided an essential link between kidney architecture and the fundamental morphogenetic mechanisms that guide development. This morphogenetic map is expected to find widespread applications and help identify modifiable targets to prevent developmental programming of common diseases. Copyright © 2015 by the American Society of Nephrology.
NASA Astrophysics Data System (ADS)
Elbanna, A. E.
2013-12-01
Numerous field and experimental observations suggest that faults surfaces are rough at multiple scales and tend to produce a wide range of branch sizes ranging from micro-branching to large scale secondary faults. The development and evolution of fault roughness and branching is believed to play an important role in rupture dynamics and energy partitioning. Previous work by several groups has succeeded in determining conditions under which a main rupture may branch into a secondary fault. Recently, there great progress has been made in investigating rupture propagation on rough faults with and without off-fault plasticity. Nonetheless, in most of these models the heterogeneity, whether the roughness profile or the secondary faults orientation, was built into the system from the beginning and consequently the final outcome depends strongly on the initial conditions. Here we introduce an adaptive mesh technique for modeling mode-II crack propagation on slip weakening frictional interfaces. We use a Finite Element Framework with random mesh topology that adapts to crack dynamics through element splitting and sequential insertion of frictional interfaces dictated by the failure criterion. This allows the crack path to explore non-planar paths and develop the roughness profile that is most compatible with the dynamical constraints. It also enables crack branching at different scales. We quantify energy dissipation due to the roughening process and small scale branching. We compare the results of our model to a reference case for propagation on a planar fault. We show that the small scale processes of roughening and branching influence many characteristics of the rupture propagation including the energy partitioning, rupture speed and peak slip rates. We also estimate the fracture energy required for propagating a crack on a planar fault that will be required to produce comparable results. We anticipate that this modeling approach provides an attractive methodology that complements the current efforts in modeling off-fault plasticity and damage.
Kumar, S; Gadagkar, S R
2000-12-01
The neighbor-joining (NJ) method is widely used in reconstructing large phylogenies because of its computational speed and the high accuracy in phylogenetic inference as revealed in computer simulation studies. However, most computer simulation studies have quantified the overall performance of the NJ method in terms of the percentage of branches inferred correctly or the percentage of replications in which the correct tree is recovered. We have examined other aspects of its performance, such as the relative efficiency in correctly reconstructing shallow (close to the external branches of the tree) and deep branches in large phylogenies; the contribution of zero-length branches to topological errors in the inferred trees; and the influence of increasing the tree size (number of sequences), evolutionary rate, and sequence length on the efficiency of the NJ method. Results show that the correct reconstruction of deep branches is no more difficult than that of shallower branches. The presence of zero-length branches in realized trees contributes significantly to the overall error observed in the NJ tree, especially in large phylogenies or slowly evolving genes. Furthermore, the tree size does not influence the efficiency of NJ in reconstructing shallow and deep branches in our simulation study, in which the evolutionary process is assumed to be homogeneous in all lineages.
Cross-Section Measurements of the Kr86(γ,n) Reaction to Probe the s-Process Branching at Kr85
NASA Astrophysics Data System (ADS)
Raut, R.; Tonchev, A. P.; Rusev, G.; Tornow, W.; Iliadis, C.; Lugaro, M.; Buntain, J.; Goriely, S.; Kelley, J. H.; Schwengner, R.; Banu, A.; Tsoneva, N.
2013-09-01
We have carried out photodisintegration cross-section measurements on Kr86 using monoenergetic photon beams ranging from the neutron separation energy, Sn=9.86MeV, to 13 MeV. We combine our experimental Kr86(γ,n)Kr85 cross section with results from our recent Kr86(γ,γ') measurement below the neutron separation energy to obtain the complete nuclear dipole response of Kr86. The new experimental information is used to predict the neutron capture cross section of Kr85, an important branching point nucleus on the abundance flow path during s-process nucleosynthesis. Our new and more precise Kr85(n,γ)Kr86 cross section allows us to produce more precise predictions of the Kr86 abundance from s-process models. In particular, we find that the models of the s process in asymptotic giant branch stars of mass <1.5M⊙, where the C13 neutron source burns convectively rather than radiatively, represent a possible solution for the highest Kr86∶Kr82 ratios observed in meteoritic stardust SiC grains.
Cross-section measurements of the 86Kr(γ,n) reaction to probe the s-process branching at 85Kr.
Raut, R; Tonchev, A P; Rusev, G; Tornow, W; Iliadis, C; Lugaro, M; Buntain, J; Goriely, S; Kelley, J H; Schwengner, R; Banu, A; Tsoneva, N
2013-09-13
We have carried out photodisintegration cross-section measurements on 86Kr using monoenergetic photon beams ranging from the neutron separation energy, S(n) = 9.86 MeV, to 13 MeV. We combine our experimental 86Kr(γ,n)85Kr cross section with results from our recent 86Kr(γ,γ') measurement below the neutron separation energy to obtain the complete nuclear dipole response of 86Kr. The new experimental information is used to predict the neutron capture cross section of 85Kr, an important branching point nucleus on the abundance flow path during s-process nucleosynthesis. Our new and more precise 85Kr(n,γ)86Kr cross section allows us to produce more precise predictions of the 86Kr abundance from s-process models. In particular, we find that the models of the s process in asymptotic giant branch stars of mass <1.5M⊙, where the 13C neutron source burns convectively rather than radiatively, represent a possible solution for the highest 86Kr:82Kr ratios observed in meteoritic stardust SiC grains.
Self-catalytic branch growth of SnO 2 nanowire junctions
NASA Astrophysics Data System (ADS)
Chen, Y. X.; Campbell, L. J.; Zhou, W. L.
2004-10-01
Multiple branched SnO2 nanowire junctions have been synthesized by thermal evaporation of SnO powder. Their nanostructures were studied by transmission electron microscopy and field emission scanning electron microcopy. It was observed that Sn nanoparticles generated from decomposition of the SnO powder acted as self-catalysts to control the SnO2 nanojunction growth. Orthorhombic SnO2 was found as a dominate phase in nanojunction growth instead of rutile structure. The branches and stems of nanojunctions were found to be an epitaxial growth by electron diffraction analysis and high-resolution electron microscopy observation. The growth directions of the branched SnO2 nanojunctions were along the orthorhombic [1 1 0] and [ 1 1 bar 0 ] . A self-catalytic vapor-liquid-solid growth mechanism is proposed to describe the growth process of the branched SnO2 nanowire junctions.
Horban', A Ie
2013-09-01
The question of implementation of the state policy in the field of technology transfer in the medical branch to implement the law of Ukraine of 02.10.2012 No 5407-VI "On Amendments to the law of Ukraine" "On state regulation of activity in the field of technology transfers", namely to ensure the formation of branch database on technology and intellectual property rights owned by scientific institutions, organizations, higher medical education institutions and enterprises of healthcare sphere of Ukraine and established by budget are considered. Analysis of international and domestic experience in the processing of information about intellectual property rights and systems implementation support transfer of new technologies are made. The main conceptual principles of creation of this branch database of technology transfer and branch technology transfer network are defined.
Black hole thermodynamics and heat engines in conformal gravity
NASA Astrophysics Data System (ADS)
Xu, Hao; Sun, Yuan; Zhao, Liu
The extended phase-space thermodynamics and heat engines for static spherically symmetric black hole solutions of four-dimensional conformal gravity are studied in detail. It is argued that the equation of states (EOS) for such black holes is always branched, any continuous thermodynamical process cannot drive the system from one branch of the EOS into another branch. Meanwhile, the thermodynamical volume is bounded from above, making the black holes always super-entropic in one branch and may also be super-entropic in another branch in certain range of the temperature. The Carnot and Stirling heat engines associated to such black holes are shown to be distinct from each other. For rectangular heat engines, the efficiency always approaches zero when the rectangle becomes extremely narrow, and given the highest and lowest working temperatures fixed, there is always a maximum for the efficiency of such engines.
Anatomical medial surfaces with efficient resolution of branches singularities.
Gil, Debora; Vera, Sergio; Borràs, Agnés; Andaluz, Albert; González Ballester, Miguel A
2017-01-01
Medial surfaces are powerful tools for shape description, but their use has been limited due to the sensibility of existing methods to branching artifacts. Medial branching artifacts are associated to perturbations of the object boundary rather than to geometric features. Such instability is a main obstacle for a confident application in shape recognition and description. Medial branches correspond to singularities of the medial surface and, thus, they are problematic for existing morphological and energy-based algorithms. In this paper, we use algebraic geometry concepts in an energy-based approach to compute a medial surface presenting a stable branching topology. We also present an efficient GPU-CPU implementation using standard image processing tools. We show the method computational efficiency and quality on a custom made synthetic database. Finally, we present some results on a medical imaging application for localization of abdominal pathologies. Copyright © 2016 Elsevier B.V. All rights reserved.
Modern prospects of development of branch of solar power
NASA Astrophysics Data System (ADS)
Luchkina, Veronika
2017-10-01
Advantages of solar energy for modern companies are evident already. Article describes mechanism of the solar electricity generation. Process of production of solar modules with appliance of the modern technologies of sun energy production. The branch of solar energy “green energy” become advanced in Russia and has a stable demand. Classification of investments on the different stages of construction projects of solar power plants and calculation of their economic efficiency. Studying of introduction of these technologies allows to estimate the modern prospects of development of branch of solar power.
NASA Astrophysics Data System (ADS)
Yang, Bo; Scheidtmann, Jens; Mayer, Joachim; Wuttig, Matthias; Michely, Thomas
2002-01-01
Deposition of Ag on a silicon oil surface leads to the formation of nm-sized Ag crystals floating on the oil surface. These nanocrystals mutually attract each other, forming strongly branched nanocrystal aggregates and continuous aggregate networks. Transformation processes of such nanocrystal aggregate networks are imaged in situ by optical microscopy. The observations are explained on the basis of a simple model involving diffusion of nanocrystals along aggregate edges and the rupture of branches resulting from branch width fluctuations due to edge diffusion.
Seepage Bifurcation as a Critical Process
NASA Astrophysics Data System (ADS)
Yi, R.; Rothman, D.
2015-12-01
Channel networks form beautiful and surprisingly intricate geometries, yet diligently evade comprehensive mathematical understanding. Work in recent years has shed light on this problem. Networks driven by seepage flow, in particular, have been shown to grow in a field that can be described by the Laplace equation, providing us with an understanding of valley growth and shape. However, the process by which such networks branch to form these ramified shapes is yet a mystery. We focus our attention on a highly ramified seepage valley network in Bristol, Florida. We study the behavior of flux to valley heads as a function of valley length, and use this result to motivate our discussion of branch formation. We then hypothesize that a critical groundwater flux demarcates a transition point where topographic diffusion is overcome by branching processes, and we present network-wide flux calculations, cosmogenic data, and simulation to support our claim. Our results ultimately suggest a mechanism for seepage bifurcation, and inform our understanding of pattern formation in river networks.
SDF1 regulates leading process branching and speed of migrating interneurons
Lysko, Daniel E.; Putt, Mary; Golden, Jeffrey A.
2011-01-01
Cell migration is required for normal embryonic development, yet how cells navigate complex paths while integrating multiple guidance cues remains poorly understood. During brain development, interneurons migrate from the ventral ganglionic eminence to the cerebral cortex within several migratory streams. They must exit these streams to invade the cortical plate. While SDF1-signaling is necessary for normal interneuron stream migration, how they switch from tangential stream migration to invade the cortical plate is unknown. Here we demonstrate that SDF1-signaling reduces interneuron branching frequency by reducing cAMP levels via a Gi-signaling pathway using an in vitro mouse explant system, resulting in the maintenance of stream migration. Blocking SDF1-signaling, or increasing branching frequency, results in stream exit and cortical plate invasion in mouse brain slices. These data support a novel model to understand how migrating interneurons switch from tangential migration to invade the cortical plate in which reducing SDF1-signaling increases leading process branching and slows the migration rate, permitting migrating interneurons to sense cortically directed guidance cues. PMID:21289183
Branching ratio to the 803 keV level in 210Poα decay
NASA Astrophysics Data System (ADS)
Shor, A.; Weissman, L.; Aviv, O.; Eisen, Y.; Brandis, M.; Paul, M.; Plompen, A.; Tessler, M.; Vaintraub, S.
2018-03-01
Precise knowledge of the branching ratio in the α decay of 210Po is important for accurate measurement of the 209Bi(n ,γ )Big210 cross section, the reaction involved in the termination of the astrophysical s process. The branching ratio was determined from independent measurements of α and γ spectra of bismuth samples simultaneously irradiated by neutrons near the core of the Soreq research reactor (IRR1). The branching ratio was found to be (1.15 ±0.09 ) ×10-5 , consistent with the results of several measurements performed six decades ago. As a by-product value the 209Bi(n ,γ )Big210 thermal cross section was measured to be 21.6 ±1.1 mb.
NASA Astrophysics Data System (ADS)
Beeson, H. W.; McCoy, S. W.; Willett, S.
2016-12-01
Erosional river networks dissect much of Earth's surface into drainage basins. Global scaling laws such as Hack's Law suggest that river basins trend toward a particular scale-invariant shape. While erosional instabilities arising from competition between advective and diffusive processes can explain why headwaters branch, the erosional mechanics linking larger scale network branching with evolution towards a characteristic river basin shape remain poorly constrained. We map river steepness and a proxy for the steady-state elevation of river networks, χ, in simulated and real landscapes with a large range in spatial scale (102 -106 m) but with similar inclined, planar surfaces at the time of incipient network formation. We document that the evolution from narrow rill-like networks to dendritic, leaf-shaped river basins follows from drainage area differences between catchments. These serve as instabilities that grow, leading to divide migration, stream capture, lateral branching and network reorganization. As Horton hypothesized, incipient networks formed down gradient on an inclined, planar surface have an unequal distribution of drainage area and nonuniformity in response times such that larger basins erode more rapidly and branch laterally via capture of adjacent streams with lower erosion rates. Positive feedback owing to increase in drainage area furthers the process of branching at the expense of neighboring rivers. We show that drainage area exchange and the degree of network reorganization has a significant effect on river steepness in the Dragon's Back Pressure Ridge, CA, the Sierra Nevada, CA, and the Rocky Mountain High Plains, USA. Similarly, metrics of basin shape reveal that basins are evolving from narrow basins towards more common leaf shapes. Our results suggest that divide migration and stream capture driven by erosional disequilibrium could be fundamental processes by which river basins reach their characteristic geometry and dendritic form.
Water-Based Coating Simplifies Circuit Board Manufacturing
NASA Technical Reports Server (NTRS)
2008-01-01
The Structures and Materials Division at Glenn Research Center is devoted to developing advanced, high-temperature materials and processes for future aerospace propulsion and power generation systems. The Polymers Branch falls under this division, and it is involved in the development of high-performance materials, including polymers for high-temperature polymer matrix composites; nanocomposites for both high- and low-temperature applications; durable aerogels; purification and functionalization of carbon nanotubes and their use in composites; computational modeling of materials and biological systems and processes; and developing polymer-derived molecular sensors. Essentially, this branch creates high-performance materials to reduce the weight and boost performance of components for space missions and aircraft engine components. Under the leadership of chemical engineer, Dr. Michael Meador, the Polymers Branch boasts world-class laboratories, composite manufacturing facilities, testing stations, and some of the best scientists in the field.
Implementation of context independent code on a new array processor: The Super-65
NASA Technical Reports Server (NTRS)
Colbert, R. O.; Bowhill, S. A.
1981-01-01
The feasibility of rewriting standard uniprocessor programs into code which contains no context-dependent branches is explored. Context independent code (CIC) would contain no branches that might require different processing elements to branch different ways. In order to investigate the possibilities and restrictions of CIC, several programs were recoded into CIC and a four-element array processor was built. This processor (the Super-65) consisted of three 6502 microprocessors and the Apple II microcomputer. The results obtained were somewhat dependent upon the specific architecture of the Super-65 but within bounds, the throughput of the array processor was found to increase linearly with the number of processing elements (PEs). The slope of throughput versus PEs is highly dependent on the program and varied from 0.33 to 1.00 for the sample programs.
Microtubule nucleation and organization in dendrites
Delandre, Caroline; Amikura, Reiko; Moore, Adrian W.
2016-01-01
ABSTRACT Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122
Msx-2 expression and glucocorticoid-induced overexpression in embryonic mouse submandibular glands.
Jaskoll, T; Luo, W; Snead, M L
1998-01-01
It is well known that the process of branching morphogenesis requires epithelial-mesenchymal interactions. One outstanding model for the study of tissue interactions during branching morphogenesis is the embryonic mouse submandibular gland (SMG). Although it has been clearly demonstrated that the branching pattern is dependent on interactions between the epithelium and the surrounding mesenchyme, little is known about the molecular mechanism underlying the branching process. One group of transcription factors that likely participates in the control of epithelial-mesenchymal inductive interactions are the Msx-class of homeodomain-containing proteins. In this paper, we focus on Msx-2 because its developmental expression is correlated with inductive interactions, suggesting that Msx-2 may play a functional role during cell-cell interactions. We demonstrate the expression of Msx-2 mRNA and protein to be primarily in the branching epithelia with progressive embryonic (E13 to E15) SMG development and, to a lesser extent, in the mesenchyme. We also show that Msx-2 is expressed by embryonic SMG primordia cultured under defined conditions. In addition, to begin to delineate a functional role for Msx-2, we employed an experimental strategy by using exogenous glucocorticoid (CORT) treatment of embryonic SMGs in vitro and in vivo to significantly enhance branching morphogenesis and evaluate the effect of CORT treatment on embryonic SMG Msx-2 expression. A marked increase in Msx-2 transcripts and protein is detected with in vitro and in vivo CORT treatment. Our studies indicate that one mechanism of CORT regulation of salivary gland morphogenesis is likely through the modulation of Msx-2 gene expression.
ERIC Educational Resources Information Center
Farrugia, Christine A.; Lane, Jason E.
2013-01-01
When colleges and universities set up outposts such as international branch campuses (IBCs) in foreign countries, the literature suggests that the success of that outpost can be tied to its ability to build its own legitimacy. This article investigates the process of legitimacy building by IBCs through identifying who IBCs view as their salient…
ERIC Educational Resources Information Center
Albayrak, Ahmet Yilmaz; Bayrakdaroglu, Yesim
2018-01-01
The purpose of this research is to assess the sports and socialization of the students studying in different sports branches in Gumushane University. "Socialization-Sports and Socialization Scale" developed by Sahan was used in this research. A total of 742 students composed of 316 females and 426 males studying in Gumushane University…
Iwanaga, Joe; Fisahn, Christian; Alonso, Fernando; DiLorenzo, Daniel; Grunert, Peter; Kline, Matthew T; Watanabe, Koichi; Oskouian, Rod J; Spinner, Robert J; Tubbs, R Shane
2017-04-01
Distal branches of the C1 nerve that travel with the hypoglossal nerve have been well investigated but relationships of C1 and the hypoglossal nerve near the skull base have not been described in detail. Therefore, the aim of this study was to investigate these small branches of the hypoglossal and first cervical nerves by anatomic dissection. Twelve sides from 6 cadaveric specimens were used in this study. To elucidate the relationship among the hypoglossal, vagus, and first and cervical nerve, the mandible was removed and these nerves were dissected under the surgical microscope. A small branch was found to always arise from the dorsal aspect of the hypoglossal nerve at the level of the transverse process of the atlas and joined small branches from the first and second cervical nerves. The hypoglossal and C1 nerves formed a nerve plexus, which gave rise to branches to the rectus capitis anterior and rectus capitis lateralis muscles and the atlanto-occipital joint. Improved knowledge of such articular branches might aid in the diagnosis and treatment of patients with pain derived from the atlanto-occipital joint. We believe this to be the first description of a branch of the hypoglossal nerve being involved in the innervation of this joint. Copyright © 2017 Elsevier Inc. All rights reserved.
Ecological effects of contaminants in McCoy Branch, 1991--1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryon, M.G.
1996-09-01
The 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act (RCRA) required assessment of all current and former solid waste management units. Following guidelines under RCRA and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation (RI) was required of the Y-12 Plant for their filled coal ash pond (FCAP) and associated areas on McCoy Branch. The RI process was initiated and assessments were presented. Because the disposal of coal ash in the ash pond, McCoy Branch, and Rogers Quarry was not consistent with the Tennessee Water Quality Act, several remediation steps weremore » implemented between 1986 and 1994 for McCoy Branch to address disposal problems. The required ecological risk assessments of McCoy Branch watershed included provisions for biological monitoring of the watershed. The objectives of the biological monitoring were to (1) document changes in biological quality of McCoy Branch after completion of a pipeline bypassing upper McCoy Branch and further, after termination of all discharges to Rogers Quarry, (2) provide guidance on the need for additional remediation, and (3) evaluate the effectiveness of implemented remedial actions. The data from the biological monitoring program may also determine whether the goals of protection of human health and the environment of McCoy Branch are being accomplished.« less
Pagès, Loïc
2014-01-01
Background and Aims Root branching, and in particular acropetal branching, is a common and important developmental process for increasing the number of growing tips and defining the distribution of their meristem size. This study presents a new method for characterizing the results of this process in natura from scanned images of young, branched parts of excavated roots. The method involves the direct measurement or calculation of seven different traits. Methods Young plants of 45 species of dicots were sampled from fields and gardens with uniform soils. Roots were separated, scanned and then measured using ImageJ software to determine seven traits related to root diameter and interbranch distance. Results The traits exhibited large interspecific variations, and covariations reflecting trade-offs. For example, at the interspecies level, the spacing of lateral roots (interbranch distance along the parent root) was strongly correlated to the diameter of the finest roots found in the species, and showed a continuum between two opposite strategies: making dense and fine lateral roots, or thick and well-spaced laterals. Conclusions A simple method is presented for classification of branching patterns in roots that allows relatively quick sampling and measurements to be undertaken. The feasibilty of the method is demonstrated for dicotyledonous species and it has the potential to be developed more broadly for other species and a wider range of enivironmental conditions. PMID:25062886
Portable data collection terminal in the automated power consumption measurement system
NASA Astrophysics Data System (ADS)
Vologdin, S. V.; Shushkov, I. D.; Bysygin, E. K.
2018-01-01
Aim of efficiency increasing, automation process of electric energy data collection and processing is very important at present time. High cost of classic electric energy billing systems prevent from its mass application. Udmurtenergo Branch of IDGC of Center and Volga Region developed electronic automated system called “Mobile Energy Billing” based on data collection terminals. System joins electronic components based on service-oriented architecture, WCF services. At present time all parts of Udmurtenergo Branch electric network are connected to “Mobile Energy Billing” project. System capabilities are expanded due to flexible architecture.
Murk, Kai; Blanco Suarez, Elena M; Cockbill, Louisa M R; Banks, Paul; Hanley, Jonathan G
2013-09-01
Astrocytes exhibit a complex, branched morphology, allowing them to functionally interact with numerous blood vessels, neighboring glial processes and neuronal elements, including synapses. They also respond to central nervous system (CNS) injury by a process known as astrogliosis, which involves morphological changes, including cell body hypertrophy and thickening of major processes. Following severe injury, astrocytes exhibit drastically reduced morphological complexity and collectively form a glial scar. The mechanistic details behind these morphological changes are unknown. Here, we investigate the regulation of the actin-nucleating Arp2/3 complex in controlling dynamic changes in astrocyte morphology. In contrast to other cell types, Arp2/3 inhibition drives the rapid expansion of astrocyte cell bodies and major processes. This intervention results in a reduced morphological complexity of astrocytes in both dissociated culture and in brain slices. We show that this expansion requires functional myosin II downstream of ROCK and RhoA. Knockdown of the Arp2/3 subunit Arp3 or the Arp2/3 activator N-WASP by siRNA also results in cell body expansion and reduced morphological complexity, whereas depleting WAVE2 specifically reduces the branching complexity of astrocyte processes. By contrast, knockdown of the Arp2/3 inhibitor PICK1 increases astrocyte branching complexity. Furthermore, astrocyte expansion induced by ischemic conditions is delayed by PICK1 knockdown or N-WASP overexpression. Our findings identify a new morphological outcome for Arp2/3 activation in restricting rather than promoting outwards movement of the plasma membrane in astrocytes. The Arp2/3 regulators PICK1, and N-WASP and WAVE2 function antagonistically to control the complexity of astrocyte branched morphology, and this mechanism underlies the morphological changes seen in astrocytes during their response to pathological insult.
A lognormal distribution of the lengths of terminal twigs on self-similar branches of elm trees.
Koyama, Kohei; Yamamoto, Ken; Ushio, Masayuki
2017-01-11
Lognormal distributions and self-similarity are characteristics associated with a wide range of biological systems. The sequential breakage model has established a link between lognormal distributions and self-similarity and has been used to explain species abundance distributions. To date, however, there has been no similar evidence in studies of multicellular organismal forms. We tested the hypotheses that the distribution of the lengths of terminal stems of Japanese elm trees (Ulmus davidiana), the end products of a self-similar branching process, approaches a lognormal distribution. We measured the length of the stem segments of three elm branches and obtained the following results: (i) each occurrence of branching caused variations or errors in the lengths of the child stems relative to their parent stems; (ii) the branches showed statistical self-similarity; the observed error distributions were similar at all scales within each branch and (iii) the multiplicative effect of these errors generated variations of the lengths of terminal twigs that were well approximated by a lognormal distribution, although some statistically significant deviations from strict lognormality were observed for one branch. Our results provide the first empirical evidence that statistical self-similarity of an organismal form generates a lognormal distribution of organ sizes. © 2017 The Author(s).
Paskevich, Valerie F.
1992-01-01
The Branch of Atlantic Marine Geology has been involved in the collection, processing and digital mosaicking of high, medium and low-resolution side-scan sonar data during the past 6 years. In the past, processing and digital mosaicking has been accomplished with a dedicated, shore-based computer system. With the need to process sidescan data in the field with increased power and reduced cost of major workstations, a need to have an image processing package on a UNIX based computer system which could be utilized in the field as well as be more generally available to Branch personnel was identified. This report describes the initial development of that package referred to as the Woods Hole Image Processing System (WHIPS). The software was developed using the Unidata NetCDF software interface to allow data to be more readily portable between different computer operating systems.
A tool for simulating parallel branch-and-bound methods
NASA Astrophysics Data System (ADS)
Golubeva, Yana; Orlov, Yury; Posypkin, Mikhail
2016-01-01
The Branch-and-Bound method is known as one of the most powerful but very resource consuming global optimization methods. Parallel and distributed computing can efficiently cope with this issue. The major difficulty in parallel B&B method is the need for dynamic load redistribution. Therefore design and study of load balancing algorithms is a separate and very important research topic. This paper presents a tool for simulating parallel Branchand-Bound method. The simulator allows one to run load balancing algorithms with various numbers of processors, sizes of the search tree, the characteristics of the supercomputer's interconnect thereby fostering deep study of load distribution strategies. The process of resolution of the optimization problem by B&B method is replaced by a stochastic branching process. Data exchanges are modeled using the concept of logical time. The user friendly graphical interface to the simulator provides efficient visualization and convenient performance analysis.
The Quantification of Consistent Subjective Logic Tree Branch Weights for PSHA
NASA Astrophysics Data System (ADS)
Runge, A. K.; Scherbaum, F.
2012-04-01
The development of quantitative models for the rate of exceedance of seismically generated ground motion parameters is the target of probabilistic seismic hazard analysis (PSHA). In regions of low to moderate seismicity, the selection and evaluation of source- and/or ground-motion models is often a major challenge to hazard analysts and affected by large epistemic uncertainties. In PSHA this type of uncertainties is commonly treated within a logic tree framework in which the branch weights express the degree-of-belief values of an expert in the corresponding set of models. For the calculation of the distribution of hazard curves, these branch weights are subsequently used as subjective probabilities. However the quality of the results depends strongly on the "quality" of the expert knowledge. A major challenge for experts in this context is to provide weight estimates which are logically consistent (in the sense of Kolmogorov's axioms) and to be aware of and to deal with the multitude of heuristics and biases which affect human judgment under uncertainty. For example, people tend to give smaller weights to each branch of a logic tree the more branches it has, starting with equal weights for all branches and then adjusting this uniform distribution based on his/her beliefs about how the branches differ. This effect is known as pruning bias.¹ A similar unwanted effect, which may even wrongly suggest robustness of the corresponding hazard estimates, will appear in cases where all models are first judged according to some numerical quality measure approach and the resulting weights are subsequently normalized to sum up to one.2 To address these problems, we have developed interactive graphical tools for the determination of logic tree branch weights in form of logically consistent subjective probabilities, based on the concepts suggested in Curtis and Wood (2004).3 Instead of determining the set of weights for all the models in a single step, the computer driven elicitation process is performed as a sequence of evaluations of relative weights for small subsets of models which are presented to the analyst. From these, the distribution of logic tree weights for the whole model set is determined as solution of an optimization problem. The model subset presented to the analyst in each step is designed to maximize the expected information. The result of this process is a set of logically consistent weights together with a measure of confidence determined from the amount of conflicting information which is provided by the expert during the relative weighting process.
Erickson, Richard A.; Eager, Eric A.; Stanton, Jessica C.; Beston, Julie A.; Diffendorfer, James E.; Thogmartin, Wayne E.
2015-01-01
Quantifying the impact of anthropogenic development on local populations is important for conservation biology and wildlife management. However, these local populations are often subject to demographic stochasticity because of their small population size. Traditional modeling efforts such as population projection matrices do not consider this source of variation whereas individual-based models, which include demographic stochasticity, are computationally intense and lack analytical tractability. One compromise between approaches is branching process models because they accommodate demographic stochasticity and are easily calculated. These models are known within some sub-fields of probability and mathematical ecology but are not often applied in conservation biology and applied ecology. We applied branching process models to quantitatively compare and prioritize species locally vulnerable to the development of wind energy facilities. Specifically, we examined species vulnerability using branching process models for four representative species: A cave bat (a long-lived, low fecundity species), a tree bat (short-lived, moderate fecundity species), a grassland songbird (a short-lived, high fecundity species), and an eagle (a long-lived, slow maturation species). Wind turbine-induced mortality has been observed for all of these species types, raising conservation concerns. We simulated different mortality rates from wind farms while calculating local extinction probabilities. The longer-lived species types (e.g., cave bats and eagles) had much more pronounced transitions from low extinction risk to high extinction risk than short-lived species types (e.g., tree bats and grassland songbirds). High-offspring-producing species types had a much greater variability in baseline risk of extinction than the lower-offspring-producing species types. Long-lived species types may appear stable until a critical level of incidental mortality occurs. After this threshold, the risk of extirpation for a local population may rapidly increase with only minimal increases in wind mortality. Conservation biologists and wildlife managers may need to consider this mortality pattern when issuing take permits and developing monitoring protocols for wind facilities. We also describe how our branching process models may be generalized across a wider range of species for a larger assessment project and then describe how our methods may be applied to other stressors in addition to wind.
Cravity modulation of the moss Tortula modica branching
NASA Astrophysics Data System (ADS)
Khorkavtsiv, Yaroslava; Kit, Nadja
Among various abiotic factors the sensor system of plants constantly perceives light and gravitation impulses and reacts on their action by photo- and gravitropisms. Tropisms play fundamental part in ontogenesis and determination of plant forms. Essentially important question is how light initiating phototropic bending modulates gravitropism. In contrast to flower plants, red light is phototropically active for mosses, and phytochromic system controls initiation of apical growth, branching and photomorphogenesis of mosses. The aim of this investigation was to analyse cell branching of protonemata Tortula modica Zander depending on the direction of light and gravitation vector. The influence of light and gravitation on the form of protonemal turf T. modica, branching and the angle of lateral branches relative to axis of mother cell growth has been investigated. As moss protonemata is not branched in the darkness, light is necessary for branching activation. Minimally low intensity of the red light (0.2 mmol (.) m (-2) ({) .}sec (-1) ) induced branching without visual display of phototropic growth. It has been established that unidirectional action of light and gravitation intensifies branching, and, on the contrary, perpendicularly oriented vectors of factors weaken branches formation. Besides, parallel oriented vectors initiated branching from both cell sides, but oppositely directed vectors initiated branching only from one side. Clinostate rotation the change of the vector gravity and causes uniform cell branching, hence, light and gravitation mutually influence the branching system form of the protonemata cell. It has been shown that the angle of lateral branches in darkness does not depend on the direction of light and gravitation action. After lighting the local growth of the cell wall took place mainly under the angle 90 (o) to the axes of mother cell growth. Then the angle gradually decreased and in 3-4 cell divisions the lateral branch grew under the angle 45-50 (o) to orthotropic stolon axes, and later it decreased negatively gravitropically. The bending of lateral branches of gravitropic protonemata is carried out in two stages: the light induction makes cells metabolically active, but not sensitive to gravitation, while the wall of daughter cell grows perpendicularly to the axes of mother cell and only after that the branches growth direction acquires dependent on gravitation fixed space orientation. Protonemata on light was branched under the angle 45-50 (o) to the axes of the main stolon, that caused similar phenotype of protonemata turf in many moss species. The growth of lateral branches and the set-point angle from the point of view of growth as physical process, is, perhaps, balanced by the action of gravitation and light, and is controlled endogenously by autotropic growth.
USDA-ARS?s Scientific Manuscript database
A new group of phenolic branched-chain fatty acids (n-PBC-FA), hybrid molecules of natural monophenols (i.e., thymol, carvacrol and creosote) and mixed fatty acid (i.e., derived from soybean and safflower oils), were efficiently produced through a process known as arylation. The reaction involves a...
Calderón-Cortés, Nancy; Uribe-Mú, Claudia A; Martínez-Méndez, A Karen; Escalera-Vázquez, Luis H; Cristobal-Pérez, E Jacob; García-Oliva, Felipe; Quesada, Mauricio
2016-01-01
Ecosystem engineering by insect herbivores occurs as the result of structural modification of plants manipulated by insects. However, only few studies have evaluated the effect of these modifications on the plant responses induced by stem-borers that act as ecosystem engineers. In this study, we evaluated the responses induced by the herbivory of the twig-girdler beetle Oncideres albomarginata chamela (Cerambycidae: Lamiinae) on its host plant Spondias purpurea (Anacardiaceae), and its relationship with the ecosystem engineering process carried out by this stem-borer. Our results demonstrated that O. albomarginata chamela branch removal induced the development of lateral branches increasing the resources needed for the development of future insect generations, of its own offspring and of many other insect species. Detached branches represent habitats with high content of nitrogen and phosphorous, which eventually can be incorporated into the ecosystem, increasing nutrient cycling efficiency. Consequently, branch removal and the subsequent plant tissue regeneration induced by O. albomarginata chamela represent key mechanisms underlying the ecosystem engineering process carried out by this stem-borer, which enhances arthropod diversity in the ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dual-step synthesis of 3-dimensional niobium oxide - Zinc oxide
NASA Astrophysics Data System (ADS)
Rani, Rozina Abdul; Zoolfakar, Ahmad Sabirin; Rusop, M.
2018-05-01
A facile fabrication process for constructing 3-dimensional (3D) structure of Niobium oxide - Zinc oxide (Nb2O5-ZnO) consisting of branched ZnO microrods on top of nanoporous Nb2O5 films was developed based on dual-step synthesis approach. The preliminary procedure was anodization of sputtered niobium metal on Fluorine doped Tin Oxide (FTO) to produce nanoporous Nb2O5, and continued with the growth of branched microrods of ZnO by hydrothermal process. This approach offers insight knowledge on the development of novel 3D metal oxide films via dual-step synthesis process, which might potentially use for multi-functional applications ranging from sensing to photoconversion.
NASA Astrophysics Data System (ADS)
Zhai, Wei-Dong; Yan, Xiu-Li; Qi, Di
2017-10-01
We investigated the surface water carbonate system, nutrients, and relevant hydrochemical parameters in the inner Changjiang (Yangtze River) Estuary in early spring 2009 and 2010. The two surveys were carried out shortly after spring-tide days, and covered both the channel-like South Branch and the freshwater-blocked North Branch. In the North Branch, with a water residence time of approximately one month, we detected remarkable partial pressures of CO2 (pCO2) of 930-1518 μatm with a salinity range of 4.5-17.4, which were substantially higher than the South Branch pCO2 values of 700-1100 μatm at salinities of less than 0.88. The North Branch pCO2 distribution pattern is unique compared with many other estuaries where aquatic pCO2 normally declines with salinity increase. Furthermore, the biogeochemical additions of ammonium (7.4-65.7 μmol kg-1) and alkalinity (196-695 μmol kg-1) were identified in salinities between 4 and 16 in the North Branch. Based on field data analyses and simplified stoichiometric equations, we suggest that the relatively high North Branch pCO2 values and estuarine additions of dissolved inorganic nitrogen/carbon in the mid-salinity area were strongly associated with each other. These signals were primarily controlled by biogeochemical processes in the North Branch, combining biogenic organic matter decomposition (i.e. respiration), ammonia oxidation, CaCO3 dissolution, and CO2 degassing. In the upper reach of the South Branch, notable salinity values of 0.20-0.88 were detected, indicating saltwater spillover from the North Branch. These spillover waters had minor contributions (1.5-6.9%) to the springtime nutrient, dissolved inorganic carbon, and alkalinity export fluxes from Changjiang to the adjacent East China Sea. This is the first attempt to understand the biogeochemical controls of the unique pCO2 distributions in the North Branch, and to evaluate the effects of saltwater spillover from the North Branch on dry-season export fluxes of biogenic elements to the adjacent East China Sea.
Sonoanatomy of sensory branches of the ulnar nerve below the elbow in healthy subjects.
Kim, Ki Hoon; Lee, Seok Jun; Park, Byung Kyu; Kim, Dong Hwee
2018-04-01
We identify sensory branches of the ulnar nerve-palmar ulnar cutaneous nerve (PUCN), dorsal ulnar cutaneous nerve (DUCN), and superficial sensory branch-using ultrasonography. In 60 forearms of 30 healthy adult volunteers, the origin and size of the PUCN, DUCN, and superficial sensory branch were measured by ultrasonography. The relative pathway of the DUCN to the ulnar styloid process was also investigated. The PUCN was observed in 47 forearms (78%), and the DUCN was observed in all forearms. Average distances from the pisiform to the origin of the PUCN and DUCN were 11.9 ± 1.4 and 7.0 ± 1.0 cm, respectively. Superficial and deep divisions split 0.9 ± 0.3 cm distal to the pisiform. Cross-sectional areas of the PUCN, DUCN, and superficial sensory branch were 0.3 ± 0.1, 1.5 ± 0.5, and 3.9 ± 1.0 mm 2 , respectively. Sensory branches of the ulnar nerve can be visualized by ultrasonography, helping to differentiate ulnar nerve injury originating at either wrist or elbow. Muscle Nerve 57: 569-573, 2018. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinney, Adriana L.; Varga, Tamas
Branching structures such as lungs, blood vessels and plant roots play a critical role in life. Growth, structure, and function of these branching structures have an immense effect on our lives. Therefore, quantitative size information on such structures in their native environment is invaluable for studying their growth and the effect of the environment on them. X-ray computed tomography (XCT) has been an effective tool for in situ imaging and analysis of branching structures. We developed a costless tool that approximates the surface and volume of branching structures. Our methodology of noninvasive imaging, segmentation and extraction of quantitative information ismore » demonstrated through the analysis of a plant root in its soil medium from 3D tomography data. XCT data collected on a grass specimen was used to visualize its root structure. A suite of open-source software was employed to segment the root from the soil and determine its isosurface, which was used to calculate its volume and surface. This methodology of processing 3D data is applicable to other branching structures even when the structure of interest is of similar x-ray attenuation to its environment and difficulties arise with sample segmentation.« less
Zhang, Yan; Yokoyama, Shigetoshi; Herriges, John C; Zhang, Zhen; Young, Randee E; Verheyden, Jamie M; Sun, Xin
2016-07-05
The mammalian lung is an elaborate branching organ, and it forms following a highly stereotypical morphogenesis program. It is well established that precise control at the transcript level is a key genetic underpinning of lung branching. In comparison, little is known about how regulation at the protein level may play a role. Ring finger and WD domain 2 (RFWD2, also termed COP1) is an E3 ubiquitin ligase that modifies specific target proteins, priming their degradation via the ubiquitin proteasome system. RFWD2 is known to function in the adult in pathogenic processes such as tumorigenesis. Here, we show that prenatal inactivation of Rfwd2 gene in the lung epithelium led to a striking halt in branching morphogenesis shortly after secondary branch formation. This defect is accompanied by distalization of the lung epithelium while growth and cellular differentiation still occurred. In the mutant lung, two E26 transformation-specific (ETS) transcription factors essential for normal lung branching, ETS translocation variant 4 (ETV4) and ETV5, were up-regulated at the protein level, but not at the transcript level. Introduction of Etv loss-of-function alleles into the Rfwd2 mutant background attenuated the branching phenotype, suggesting that RFWD2 functions, at least in part, through degrading ETV proteins. Because a number of E3 ligases are known to target factors important for lung development, our findings provide a preview of protein-level regulatory network essential for lung branching morphogenesis.
2010-04-01
NRL Stennis Space Center (NRL-SSC) for further processing using the NRL SSC Automated Processing System (APS). APS was developed for processing...have not previously developed automated processing for 73 hyperspectral ocean color data. The hyperspectral processing branch includes several
NASA Technical Reports Server (NTRS)
Dinsel, Alison; Jermstad, Wayne; Robertson, Brandan
2006-01-01
The Mechanical Design and Analysis Branch at the Johnson Space Center (JSC) is responsible for the technical oversight of over 30 mechanical systems flying on the Space Shuttle Orbiter and the International Space Station (ISS). The branch also has the responsibility for reviewing all mechanical systems on all Space Shuttle and International Space Station payloads, as part of the payload safety review process, through the Mechanical Systems Working Group (MSWG). These responsibilities give the branch unique insight into a large number of mechanical systems, and problems encountered during their design, testing, and operation. This paper contains narrative descriptions of lessons learned from some of the major problems worked on by the branch during the last two years. The problems are grouped into common categories and lessons learned are stated.
Study of the branching ratio of {psi}(3770){yields}DD in e{sup +}e{sup -{yields}}DD scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Haibo; Qin Xiaoshuai; Yang Maozhi
2010-01-01
Based on the data of BES and Belle, the production of DD in the e{sup +}e{sup -{yields}}DD scattering process is studied in this paper. We analyze the continuum and resonant contributions in the energy region from 3.7 to 4.4 GeV. In the {chi}{sup 2} fit to data, we obtain the resonance parameters of {psi}(3770), the branching ratio of {psi}(3770){yields}DD decay by confronting the data to the theoretical formula where both the contributions of the resonances, continuum and interference effects are included. We obtain the branching ratio of {psi}(3770){yields}DD decay is 97.2%{+-}8.9%, as well as the branching ratio of {psi}(4040), {psi}(4160){yields}DDmore » decays.« less
Chen, Xingxing; Zhang, Zijian; Ding, Zicheng; Liu, Jun; Wang, Lixiang
2016-08-22
Conjugated polymers are essential for solution-processable organic opto-electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π-π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near-infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Expression and Functional Role of Sprouty-2 in Breast Morphogenesis
Hilmarsdottir, Bylgja; Gustafsdottir, Sigrun M.; Franzdottir, Sigridur Rut; Arason, Ari Jon; Steingrimsson, Eirikur; Magnusson, Magnus K.; Gudjonsson, Thorarinn
2013-01-01
Branching morphogenesis is a mechanism used by many species for organogenesis and tissue maintenance. Receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR) and the sprouty protein family are believed to be critical regulators of branching morphogenesis. The aim of this study was to analyze the expression of Sprouty-2 (SPRY2) in the mammary gland and study its role in branching morphogenesis. Human breast epithelial cells, breast tissue and mouse mammary glands were used for expression studies using immunoblotting, real rime PCR and immunohistochemistry. Knockdown of SPRY2 in the breast epithelial stem cell line D492 was done by lentiviral transduction of shRNA constructs targeting SPRY2. Three dimensional culture of D492 with or without endothelial cells was done in reconstituted basement membrane matrix. We show that in the human breast, SPRY2 is predominantly expressed in the luminal epithelial cells of both ducts and lobuli. In the mouse mammary gland, SPRY2 expression is low or absent in the virgin state, while in the pregnant mammary gland SPRY2 is expressed at branching epithelial buds with increased expression during lactation. This expression pattern is closely associated with the activation of the EGFR pathway. Using D492 which generates branching structures in three-dimensional (3D) culture, we show that SPRY2 expression is low during initiation of branching with subsequent increase throughout the branching process. Immunostaining locates expression of phosphorylated SPRY2 and EGFR at the tip of lobular-like, branching ends. SPRY2 knockdown (KD) resulted in increased migration, increased pERK and larger and more complex branching structures indicating a loss of negative feedback control during branching morphogenesis. In D492 co-cultures with endothelial cells, D492 SPRY2 KD generates spindle-like colonies that bear hallmarks of epithelial to mesenchymal transition. These data indicate that SPRY2 is an important regulator of branching morphogenesis and epithelial to mesenchymal transition in the mammary gland. PMID:23573284
Expression and functional role of sprouty-2 in breast morphogenesis.
Sigurdsson, Valgardur; Ingthorsson, Saevar; Hilmarsdottir, Bylgja; Gustafsdottir, Sigrun M; Franzdottir, Sigridur Rut; Arason, Ari Jon; Steingrimsson, Eirikur; Magnusson, Magnus K; Gudjonsson, Thorarinn
2013-01-01
Branching morphogenesis is a mechanism used by many species for organogenesis and tissue maintenance. Receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR) and the sprouty protein family are believed to be critical regulators of branching morphogenesis. The aim of this study was to analyze the expression of Sprouty-2 (SPRY2) in the mammary gland and study its role in branching morphogenesis. Human breast epithelial cells, breast tissue and mouse mammary glands were used for expression studies using immunoblotting, real rime PCR and immunohistochemistry. Knockdown of SPRY2 in the breast epithelial stem cell line D492 was done by lentiviral transduction of shRNA constructs targeting SPRY2. Three dimensional culture of D492 with or without endothelial cells was done in reconstituted basement membrane matrix. We show that in the human breast, SPRY2 is predominantly expressed in the luminal epithelial cells of both ducts and lobuli. In the mouse mammary gland, SPRY2 expression is low or absent in the virgin state, while in the pregnant mammary gland SPRY2 is expressed at branching epithelial buds with increased expression during lactation. This expression pattern is closely associated with the activation of the EGFR pathway. Using D492 which generates branching structures in three-dimensional (3D) culture, we show that SPRY2 expression is low during initiation of branching with subsequent increase throughout the branching process. Immunostaining locates expression of phosphorylated SPRY2 and EGFR at the tip of lobular-like, branching ends. SPRY2 knockdown (KD) resulted in increased migration, increased pERK and larger and more complex branching structures indicating a loss of negative feedback control during branching morphogenesis. In D492 co-cultures with endothelial cells, D492 SPRY2 KD generates spindle-like colonies that bear hallmarks of epithelial to mesenchymal transition. These data indicate that SPRY2 is an important regulator of branching morphogenesis and epithelial to mesenchymal transition in the mammary gland.
Technological parameters of welding of branch saddles to polyethylene pipes at low temperatures
NASA Astrophysics Data System (ADS)
Starostin, N. P.; Vasilieva, M. A.
2017-12-01
The present paper outlines a procedure for determination of dynamics of the temperature field during the welding of the branch saddle to the polyethylene gas pipeline at ambient temperatures below the normative. The analysis is accomplished by the finite element method with the heat of the phase transition taken into account. Methods of the visualization of data sets reveal the possibility of controlling the thermal process by preheating and thermal insulation during welding of the branch saddle to the pipe at low temperatures and the possibility of obtaining the dynamics of the temperature field at which a high-quality welded joint is formed.
2008 Post-Election Voting Survey of Overseas Citizens: Statistical Methodology Report
2009-08-01
Gorsak. Westat performed data collection and editing. DMDC’s Survey Technology Branch, under the guidance of Frederick Licari, Branch Chief, is...POST-ELECTION VOTING SURVEY OF OVERSEAS CITIZENS: STATISTICAL METHODOLOGY REPORT Executive Summary The Uniformed and Overseas Citizens Absentee ...ease the process of voting absentee , (3) to evaluate other progress made to facilitate voting participation, and (4) to identify any remaining
Food Design Thinking: A Branch of Design Thinking Specific to Food Design
ERIC Educational Resources Information Center
Zampollo, Francesca; Peacock, Matthew
2016-01-01
Is there a need for a set of methods within Design Thinking tailored specifically for the Food Design process? Is there a need for a branch of Design Thinking dedicated to Food Design alone? Chefs are not generally trained in Design or Design Thinking, and we are only just beginning to understand how they ideate and what recourses are available to…
Yang, Zhilai; Chen, Na; Ge, Rongjing; Qian, Hao; Wang, Jin-Hui
2017-09-22
A neuron sprouts an axon, and its branches to innervate many target neurons that are divergent in their functions. In order to efficiently regulate the diversified cells, the axon branches should differentiate functionally to be compatible with their target neurons, i.e., a function compatibility between presynaptic and postsynaptic partners. We have examined this hypothesis by using electrophysiological method in the cerebellum, in which the main axon of Purkinje cell projected to deep nucleus cells and the recurrent axons innervated the adjacent Purkinje cells. The fidelity of spike propagation is superior in the recurrent branches than the main axon. The capabilities of encoding spikes and processing GABAergic inputs are advanced in Purkinje cells versus deep nucleus cells. The functional differences among Purkinje's axonal branches and their postsynaptic neurons are preset by the variable dynamics of their voltage-gated sodium channels. In addition, activity strengths between presynaptic and postsynaptic partners are proportionally correlated, i.e., active axonal branches innervate active target neurons, or vice versa. The physiological impact of the functional compatibility is to make the neurons in their circuits to be activated appropriately. In conclusion, each cerebellar Purkinje cell sprouts the differentiated axon branches to be compatible with the diversified target cells in their functions, in order to construct the homeostatic and efficient units for their coordinated activity in neural circuits.
Qian, Hao; Wang, Jin-Hui
2017-01-01
A neuron sprouts an axon, and its branches to innervate many target neurons that are divergent in their functions. In order to efficiently regulate the diversified cells, the axon branches should differentiate functionally to be compatible with their target neurons, i.e., a function compatibility between presynaptic and postsynaptic partners. We have examined this hypothesis by using electrophysiological method in the cerebellum, in which the main axon of Purkinje cell projected to deep nucleus cells and the recurrent axons innervated the adjacent Purkinje cells. The fidelity of spike propagation is superior in the recurrent branches than the main axon. The capabilities of encoding spikes and processing GABAergic inputs are advanced in Purkinje cells versus deep nucleus cells. The functional differences among Purkinje's axonal branches and their postsynaptic neurons are preset by the variable dynamics of their voltage-gated sodium channels. In addition, activity strengths between presynaptic and postsynaptic partners are proportionally correlated, i.e., active axonal branches innervate active target neurons, or vice versa. The physiological impact of the functional compatibility is to make the neurons in their circuits to be activated appropriately. In conclusion, each cerebellar Purkinje cell sprouts the differentiated axon branches to be compatible with the diversified target cells in their functions, in order to construct the homeostatic and efficient units for their coordinated activity in neural circuits. PMID:29069799
Weighted Distances in Scale-Free Configuration Models
NASA Astrophysics Data System (ADS)
Adriaans, Erwin; Komjáthy, Júlia
2018-01-01
In this paper we study first-passage percolation in the configuration model with empirical degree distribution that follows a power-law with exponent τ \\in (2,3) . We assign independent and identically distributed (i.i.d.) weights to the edges of the graph. We investigate the weighted distance (the length of the shortest weighted path) between two uniformly chosen vertices, called typical distances. When the underlying age-dependent branching process approximating the local neighborhoods of vertices is found to produce infinitely many individuals in finite time—called explosive branching process—Baroni, Hofstad and the second author showed in Baroni et al. (J Appl Probab 54(1):146-164, 2017) that typical distances converge in distribution to a bounded random variable. The order of magnitude of typical distances remained open for the τ \\in (2,3) case when the underlying branching process is not explosive. We close this gap by determining the first order of magnitude of typical distances in this regime for arbitrary, not necessary continuous edge-weight distributions that produce a non-explosive age-dependent branching process with infinite mean power-law offspring distributions. This sequence tends to infinity with the amount of vertices, and, by choosing an appropriate weight distribution, can be tuned to be any growing function that is O(log log n) , where n is the number of vertices in the graph. We show that the result remains valid for the the erased configuration model as well, where we delete loops and any second and further edges between two vertices.
Do Vascular Networks Branch Optimally or Randomly across Spatial Scales?
Newberry, Mitchell G.; Savage, Van M.
2016-01-01
Modern models that derive allometric relationships between metabolic rate and body mass are based on the architectural design of the cardiovascular system and presume sibling vessels are symmetric in terms of radius, length, flow rate, and pressure. Here, we study the cardiovascular structure of the human head and torso and of a mouse lung based on three-dimensional images processed via our software Angicart. In contrast to modern allometric theories, we find systematic patterns of asymmetry in vascular branching, potentially explaining previously documented mismatches between predictions (power-law or concave curvature) and observed empirical data (convex curvature) for the allometric scaling of metabolic rate. To examine why these systematic asymmetries in vascular branching might arise, we construct a mathematical framework to derive predictions based on local, junction-level optimality principles that have been proposed to be favored in the course of natural selection and development. The two most commonly used principles are material-cost optimizations (construction materials or blood volume) and optimization of efficient flow via minimization of power loss. We show that material-cost optimization solutions match with distributions for asymmetric branching across the whole network but do not match well for individual junctions. Consequently, we also explore random branching that is constrained at scales that range from local (junction-level) to global (whole network). We find that material-cost optimizations are the strongest predictor of vascular branching in the human head and torso, whereas locally or intermediately constrained random branching is comparable to material-cost optimizations for the mouse lung. These differences could be attributable to developmentally-programmed local branching for larger vessels and constrained random branching for smaller vessels. PMID:27902691
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph Berkmans, A.; Jagannatham, M.; Priyanka, S.
Highlights: • Polymer wastes are converted into ultrafine and nano carbon tubes and spheres. • Simple process with a minimal processing time. • It is a catalyst free and solvent free approach. • This process forms branched ultrafine carbon tubules with nano channels. - Abstract: Upcycling polymer wastes into useful, and valuable carbon based materials, is a challenging process. We report a novel catalyst-free and solvent-free technique for the formation of nano channeled ultrafine carbon tubes (NCUFCTs) and multiwalled carbon nanotubes (MWCNTs) from polyethylene terephthalate (PET) wastes, using rotating cathode arc discharge technique. The soot obtain from the anode containsmore » ultrafine and nano-sized solid carbon spheres (SCS) with a mean diameter of 221 nm and 100 nm, respectively, formed at the lower temperature region of the anode where the temperature is approximately 1700 °C. The carbon spheres are converted into long “Y” type branched and non-branched NCUFCTs and MWCNTs at higher temperature regions where the temperature is approximately 2600 °C, with mean diameters of 364 nm and 95 nm, respectively. Soot deposited on the cathode is composed of MWCNTs with a mean diameter of 20 nm and other nanoparticles. The tubular structures present in the anode are longer, bent and often coiled with lesser graphitization compared to the nanotubes in the soot on the cathode.« less
Nature of alpha and beta particles in glycogen using molecular size distributions.
Sullivan, Mitchell A; Vilaplana, Francisco; Cave, Richard A; Stapleton, David; Gray-Weale, Angus A; Gilbert, Robert G
2010-04-12
Glycogen is a randomly hyperbranched glucose polymer. Complex branched polymers have two structural levels: individual branches and the way these branches are linked. Liver glycogen has a third level: supramolecular clusters of beta particles which form larger clusters of alpha particles. Size distributions of native glycogen were characterized using size exclusion chromatography (SEC) to find the number and weight distributions and the size dependences of the number- and weight-average masses. These were fitted to two distinct randomly joined reference structures, constructed by random attachment of individual branches and as random aggregates of beta particles. The z-average size of the alpha particles in dimethylsulfoxide does not change significantly with high concentrations of LiBr, a solvent system that would disrupt hydrogen bonding. These data reveal that the beta particles are covalently bonded to form alpha particles through a hitherto unsuspected enzyme process, operative in the liver on particles above a certain size range.
NASA Astrophysics Data System (ADS)
Boda, Muzaffar Ahmad; Ashraf Shah, Mohammad
2018-06-01
In this study, branched TiO2 nanotube array were fabricated through electrochemical anodization process at constant voltage using third generation electrolyte. On account of morphological advantage, these nanotubes shows significant enhancement in photo-electrochemical property than compact or conventional titania nanotube array. However, their photo-electrochemical efficiency intensifies on coating with ZnO micro-crystals. ZnO coated branched TiO2 nanotube array shows a photocurrent density of 27.8 mA cm‑2 which is 1.55 times the photocurrent density (17.2 mA cm‑2) shown by bare branched titania nanotubes. The significant enhancement in photocurrent density shown by the resulting ZnO/TiO2 hybrid structure is attributed to suppression in electron–hole recombination phenomenon by offering smooth pathway to photo generated excitons on account of staggered band edge positions in individual semiconductors.
NASA Technical Reports Server (NTRS)
Eltahir, Elfatih A. B.; Bras, Rafael L.
1996-01-01
The water cycle regulates and reflects natural variability in climate at the regional and global scales. Large-scale human activities that involve changes in land cover, such as tropical deforestation, are likely to modify climate through changes in the water cycle. In order to understand, and hopefully be able to predict, the extent of these potential global and regional changes, we need first to understand how the water cycle works. In the past, most of the research in hydrology focused on the land branch of the water cycle, with little attention given to the atmospheric branch. The study of precipitation recycling which is defined as the contribution of local evaporation to local precipitation, aims at understanding hydrologic processes in the atmospheric branch of the water cycle. Simply stated, any study on precipitation recycling is about how the atmospheric branch of the water cycle works, namely, what happens to water vapor molecules after they evaporate from the surface, and where will they precipitate?
A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures
Wang, Yuan; Liu, Lixin; Meng, Chuanmin; Zhou, Yun; Gao, Zhao; Li, Xuhai; Cao, Xiuxia; Xu, Liang; Zhu, Wenjun
2016-01-01
Much greater surface-to-volume ratio of hierarchical nanostructures renders them attract considerable interest as prototypical gas sensors. In this work, a novel resistive gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures is fabricated by a facile one-step synthetic process and the ethanol sensing performance of this device is characterized systematically, which shows faster response/recovery behavior, better selectivity, and higher sensitivity of about 9 times as compared to the pure TiO2 nanofibers. The enhanced sensitivity of the TiO2/Ag0.35V2O5 branched nanoheterostructures should be attributed to the extraordinary branched hierarchical structures and TiO2/Ag0.35V2O5 heterojunctions, which can eventually result in an obvious change of resistance upon ethanol exposure. This study not only indicates the gas sensing mechanism for performance enhancement of branched nanoheterostructures, but also proposes a rational approach to design nanostructure based chemical sensors with desirable performance. PMID:27615429
NASA Astrophysics Data System (ADS)
Brandão, J.; Mello, A.; Garcia, F.; Sampaio, L. C.
2017-03-01
The motion and trajectory of vortex domain walls (VDWs) driven by magnetic field were investigated in Fe80Ni20 nanowires with an asymmetric Y-shape branch. By using the focused magneto-optical Kerr effect, we have probed the injection, pinning, and propagation of VDWs in the branch and in the wire beyond the branch entrance. Hysteresis cycles measured at these points show 3 and 4 jumps in the magnetization reversal, respectively. Micromagnetic simulations were carried out to obtain the number of jumps in the hysteresis cycles, and the magnetization process involved in each jump. Based on simulations and from the size of the jumps in the measured hysteresis cycles, one obtains the histogram of the domain wall type probability. While in the branch domain walls of different types are equiprobable, in the nanowire vortex domain walls with counter clockwise and clockwise chiralities and transverse-down domain walls are measured with probabilities of 65%, 25%, and 10%, respectively. These results provide an additional route to select the trajectory and chirality of VDWs in magnetic nanostructures.
Releasing the brakes while hanging on: Cortactin effects on actin-driven motility.
Gov, Nir S; Bernheim-Groswasser, Anne
2012-01-01
Actin polymerization plays a major role in many cellular processes, including cell motility, vesicle trafficking, and pathogen propulsion. The transformation of the (protrusive) polymerization forces into directed motion requires that the growing filaments are positioned next to the surface. This is achieved by localization of surface actin nucleators (WASP), which then activate Arp2/3 complex to form new actin branches. Yet, the same surface-bound WASP molecule which initiates the nucleation of new actin branches, also inherently prevents the translation of the polymerization forces into motion, essentially because the WASP molecule has to be in contact with the network during the formation of the new branch. In our recent paper we show that cortactin relaxes this internal inhibition by enhancing the release of WASP-VCA molecule from the new branching site after nucleation is initiated. We show that this enhanced release has two major effects; it increases the turnover rate of branching per WASP molecule, and it decreases the friction-like force caused by the binding of the moving surface with respect to the growing actin network.
NASA Astrophysics Data System (ADS)
Wu, Wu-Qiang; Rao, Hua-Shang; Feng, Hao-Lin; Guo, Xin-Dong; Su, Cheng-Yong; Kuang, Dai-Bin
2014-08-01
The present work establishes a facile process for one-step hydrothermal growth of vertically aligned anatase cactus-like branched TiO2 (CBT) arrays on a transparent conducting oxide (TCO) substrate. Various CBT morphologies are obtained by adjusting the potassium titanium oxide oxalate (PTO) reactant concentration (from 0.05 M to 0.15 M) and this yields a morphologically-controllable branched TiO2 arrays geometry. The CBT arrays consist of a vertically oriented nanowire (NW) or nanosheet (NS) stem and a host of short nanorod (NR) branches. The hierarchical CBT arrays demonstrate their excellent candidatures as photoanodes, which are capable of exhibiting high light-harvesting efficiency in dye-sensitized solar cells (DSSCs). Consequently, DSSCs based on 7 μm long optimized CBT arrays (0.05 M PTO), which are assembled with high density and high aspect-ratio NR branches, exhibit an impressive power conversion efficiency of 6.43% under AM 1.5G one sun illumination. The high performance can be attributed to the prominent light-harvesting efficiency, resulting from larger surface area and superior light-scattering capability.
A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures
NASA Astrophysics Data System (ADS)
Wang, Yuan; Liu, Lixin; Meng, Chuanmin; Zhou, Yun; Gao, Zhao; Li, Xuhai; Cao, Xiuxia; Xu, Liang; Zhu, Wenjun
2016-09-01
Much greater surface-to-volume ratio of hierarchical nanostructures renders them attract considerable interest as prototypical gas sensors. In this work, a novel resistive gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures is fabricated by a facile one-step synthetic process and the ethanol sensing performance of this device is characterized systematically, which shows faster response/recovery behavior, better selectivity, and higher sensitivity of about 9 times as compared to the pure TiO2 nanofibers. The enhanced sensitivity of the TiO2/Ag0.35V2O5 branched nanoheterostructures should be attributed to the extraordinary branched hierarchical structures and TiO2/Ag0.35V2O5 heterojunctions, which can eventually result in an obvious change of resistance upon ethanol exposure. This study not only indicates the gas sensing mechanism for performance enhancement of branched nanoheterostructures, but also proposes a rational approach to design nanostructure based chemical sensors with desirable performance.
Johnson, Richard J; Smith, Ben E; Sutton, Paul A; McGenity, Terry J; Rowland, Steven J; Whitby, Corinne
2011-01-01
Naphthenic acids (NAs) occur naturally in oil sands and enter the environment through natural and anthropogenic processes. NAs comprise toxic carboxylic acids that are difficult to degrade. Information on NA biodegradation mechanisms is limited, and there are no studies on alkyl branched aromatic alkanoic acid biodegradation, despite their contribution to NA toxicity and recalcitrance. Increased alkyl side chain branching has been proposed to explain NA recalcitrance. Using soil enrichments, we examined the biodegradation of four aromatic alkanoic acid isomers that differed in alkyl side chain branching: (4′-n-butylphenyl)-4-butanoic acid (n-BPBA, least branched); (4′-iso-butylphenyl)-4-butanoic acid (iso-BPBA); (4′-sec-butylphenyl)-4-butanoic acid (sec-BPBA) and (4′-tert-butylphenyl)-4-butanoic acid (tert-BPBA, most branched). n-BPBA was completely metabolized within 49 days. Mass spectral analysis confirmed that the more branched isomers iso-, sec- and tert-BPBA were transformed to their butylphenylethanoic acid (BPEA) counterparts at 14 days. The BPEA metabolites were generally less toxic than BPBAs as determined by Microtox assay. n-BPEA was further transformed to a diacid, showing that carboxylation of the alkyl side chain occurred. In each case, biodegradation of the carboxyl side chain proceeded through beta-oxidation, which depended on the degree of alkyl side chain branching, and a BPBA degradation pathway is proposed. Comparison of 16S rRNA gene sequences at days 0 and 49 showed an increase and high abundance at day 49 of Pseudomonas (sec-BPBA), Burkholderia (n-, iso-, tert-BPBA) and Sphingomonas (n-, sec-BPBA). PMID:20962873
Morphological evidence for local microcircuits in rat vestibular maculae
NASA Technical Reports Server (NTRS)
Ross, M. D.
1997-01-01
Previous studies suggested that intramacular, unmyelinated segments of vestibular afferent nerve fibers and their large afferent endings (calyces) on type I hair cells branch. Many of the branches (processes) contain vesicles and are presynaptic to type II hair cells, other processes, intramacular nerve fibers, and calyces. This study used serial section transmission electron microscopy and three-dimensional reconstruction methods to document the origins and distributions of presynaptic processes of afferents in the medial part of the adult rat utricular macula. The ultrastructural research focused on presynaptic processes whose origin and termination could be observed in a single micrograph. Results showed that calyces had 1) vesiculated, spine-like processes that invaginated type I cells and 2) other, elongate processes that ended on type II cells pre- as well as postsynaptically. Intramacular, unmyelinated segments of afferent nerve fibers gave origin to branches that were presynaptic to type II cells, calyces, calyceal processes, and other nerve fibers in the macula. Synapses with type II cells occurred opposite subsynaptic cisternae (C synapses); all other synapses were asymmetric. Vesicles were pleomorphic but were differentially distributed according to process origin. Small, clear-centered vesicles, approximately 40-60 nm in diameter, predominated in processes originating from afferent nerve fibers and basal parts of calyces. Larger vesicles approximately 70-120 nm in diameter having approximately 40-80 nm electron-opaque cores were dominant in processes originating from the necks of calyces. Results are interpreted to indicate the existence of a complex system of intrinsic feedforward (postsynaptic)-feedback (presynaptic) connections in a network of direct and local microcircuits. The morphological findings support the concept that maculae dynamically preprocess linear acceleratory information before its transmission to the central nervous system.
NASA Astrophysics Data System (ADS)
Ma, Lei; Wang, Yizhong; Xu, Qingyang; Huang, Huafang; Zhang, Rui; Chen, Ning
2009-11-01
The main production method of branched chain amino acid (BCAA) is microbial fermentation. In this paper, to monitor and to control the fermentation process of BCAA, especially its logarithmic phase, parameters such as the color of fermentation broth, culture temperature, pH, revolution, dissolved oxygen, airflow rate, pressure, optical density, and residual glucose, are measured and/or controlled and/or adjusted. The color of fermentation broth is measured using the HIS color model and a BP neural network. The network's input is the histograms of hue H and saturation S, and output is the color description. Fermentation process parameters are adjusted using fuzzy reasoning, which is performed by inference rules. According to the practical situation of BCAA fermentation process, all parameters are divided into four grades, and different fuzzy rules are established.
The Army Priority List of At-Risk Species: 2009-2010 Status Update
2010-09-01
moved three species closer to formal TES status. Results of this work should help target proactive actions, such as participation in conservation ... Conservation Branch, Installation Services, OACSIM. The work was completed by the Ecological Process Branch (CN-N) of the Installations Division (CN...for the conservation of threatened and endangered plants and animals and the habitats in which they are found (USEPA 2009). The ESA regulates Feder
2000-05-29
Research scientist Oscar Monje records data associated with ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Research scientist Oscar Monje records data associated with ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
Li, Chunrui; Ding, Daqian; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin
2016-07-07
Synthesis of branched long-chain alkanes from renewable biomass has attracted intensive interest in recent years, but the feedstock for this synthesis is restricted to platform chemicals. Here, we develop an effective and energy-efficient process to convert raw lignocellulosic biomass (e.g., corncob) into branched diesel-range alkanes through three tandem steps for the first time. Furfural and isopropyl levulinate (LA ester) were prepared from hemicellulose and cellulose fractions of corncob in toluene/water biphasic system with added isopropanol, which was followed by double aldol condensation of furfural with LA ester into C15 oxygenates and the final hydrodeoxygenation of C15 oxygenates into branched long-chain alkanes. The core point of this tandem process is the addition of isopropanol in the first step, which enables the spontaneous transfer of levulinic acid (LA) into the toluene phase in the form of LA ester through esterification, resulting in LA ester co-existing with furfural in the same phase, which is the basis for double aldol condensation in the toluene phase. Moreover, the acidic aqueous phase and toluene can be reused and the residues, including lignin and humins in aqueous phase, can be separated and carbonized to porous carbon materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In Situ Quantification of Experimental Ice Accretion on Tree Crowns Using Terrestrial Laser Scanning
Nock, Charles A.; Greene, David; Delagrange, Sylvain; Follett, Matt; Fournier, Richard; Messier, Christian
2013-01-01
In the eastern hardwood forests of North America ice storms are an important disturbance event. Ice storms strongly influence community dynamics as well as urban infrastructure via catastrophic branch failure; further, the severity and frequency of ice storms are likely to increase with climate change. However, despite a long-standing interest into the effects of freezing rain on forests, the process of ice accretion and thus ice loading on branches remains poorly understood. This is because a number of challenges have prevented in situ measurements of ice on branches, including: 1) accessing and measuring branches in tall canopies, 2) limitations to travel during and immediately after events, and 3) the unpredictability of ice storms. Here, utilizing a novel combination of outdoor experimental icing, manual measurements and terrestrial laser scanning (TLS), we perform the first in situ measurements of ice accretion on branches at differing heights in a tree crown and with increasing duration of exposure. We found that TLS can reproduce both branch and iced branch diameters with high fidelity, but some TLS instruments do not detect ice. Contrary to the expectations of ice accretion models, radial accretion varied sharply within tree crowns. Initially, radial ice accretion was similar throughout the crown, but after 6.5 hours of irrigation (second scanning) radial ice accretion was much greater on upper branches than on lower (∼factor of 3). The slope of the change in radial ice accretion along branches increased with duration of exposure and was significantly greater at the second scanning compared to the first. We conclude that outdoor icing experiments coupled with the use of TLS provide a robust basis for evaluation of models of ice accretion and breakage in tree crowns, facilitating estimation of the limiting breaking stress of branches by accurate measurements of ice loads. PMID:23741409
Aberration-free superresolution imaging via binary speckle pattern encoding and processing
NASA Astrophysics Data System (ADS)
Ben-Eliezer, Eyal; Marom, Emanuel
2007-04-01
We present an approach that provides superresolution beyond the classical limit as well as image restoration in the presence of aberrations; in particular, the ability to obtain superresolution while extending the depth of field (DOF) simultaneously is tested experimentally. It is based on an approach, recently proposed, shown to increase the resolution significantly for in-focus images by speckle encoding and decoding. In our approach, an object multiplied by a fine binary speckle pattern may be located anywhere along an extended DOF region. Since the exact magnification is not known in the presence of defocus aberration, the acquired low-resolution image is electronically processed via a parallel-branch decoding scheme, where in each branch the image is multiplied by the same high-resolution synchronized time-varying binary speckle but with different magnification. Finally, a hard-decision algorithm chooses the branch that provides the highest-resolution output image, thus achieving insensitivity to aberrations as well as DOF variations. Simulation as well as experimental results are presented, exhibiting significant resolution improvement factors.
Branching pattern in natural drainage network
NASA Astrophysics Data System (ADS)
Hooshyar, M.; Singh, A.; Wang, D.
2017-12-01
The formation and growth of river channels and their network evolution are governed by the erosional and depositional processes operating on the landscape due to movement of water. The branching structure of drainage network is an important feature related to the network topology and contain valuable information about the forming mechanisms of the landscape. We studied the branching patterns in natural drainage networks, extracted from 1 m Digital Elevation Models (DEMs) of 120 catchments with minimal human impacts across the United States. We showed that the junction angles have two distinct modes an the observed modes are physically explained as the optimal angles that result in minimum energy dissipation and are linked to the exponent characterizing slope-area curve. Our findings suggest that the flow regimes, debris-flow dominated or fluvial, have distinct characteristic angles which are functions of the scaling exponent of the slope-area curve. These findings enable us to understand the geomorphological signature of hydrological processes on drainage networks and develop more refined landscape evolution models.
Branching dynamics of viral information spreading.
Iribarren, José Luis; Moro, Esteban
2011-10-01
Despite its importance for rumors or innovations propagation, peer-to-peer collaboration, social networking, or marketing, the dynamics of information spreading is not well understood. Since the diffusion depends on the heterogeneous patterns of human behavior and is driven by the participants' decisions, its propagation dynamics shows surprising properties not explained by traditional epidemic or contagion models. Here we present a detailed analysis of our study of real viral marketing campaigns where tracking the propagation of a controlled message allowed us to analyze the structure and dynamics of a diffusion graph involving over 31,000 individuals. We found that information spreading displays a non-Markovian branching dynamics that can be modeled by a two-step Bellman-Harris branching process that generalizes the static models known in the literature and incorporates the high variability of human behavior. It explains accurately all the features of information propagation under the "tipping point" and can be used for prediction and management of viral information spreading processes.
Branching dynamics of viral information spreading
NASA Astrophysics Data System (ADS)
Iribarren, José Luis; Moro, Esteban
2011-10-01
Despite its importance for rumors or innovations propagation, peer-to-peer collaboration, social networking, or marketing, the dynamics of information spreading is not well understood. Since the diffusion depends on the heterogeneous patterns of human behavior and is driven by the participants’ decisions, its propagation dynamics shows surprising properties not explained by traditional epidemic or contagion models. Here we present a detailed analysis of our study of real viral marketing campaigns where tracking the propagation of a controlled message allowed us to analyze the structure and dynamics of a diffusion graph involving over 31 000 individuals. We found that information spreading displays a non-Markovian branching dynamics that can be modeled by a two-step Bellman-Harris branching process that generalizes the static models known in the literature and incorporates the high variability of human behavior. It explains accurately all the features of information propagation under the “tipping point” and can be used for prediction and management of viral information spreading processes.
Two new tardigrade species from Sicily.
Pilato, Giovanni; Sabella, Giorgio; Lisi, Oscar
2014-01-14
Two new species of tardigrades are described from Sicilian moss samples: Macrobiotus insuetus sp. nov. and Diphascon (Diphascon) procerum sp. nov. Macrobiotus insuetus sp. nov. is a species of the harmsworthi-group characterized by both posterior and anterior claws of the hind legs, which are different in shape from those of the first three leg pairs. The IV claws have extended basal tract where the branches are joined and the secondary branch breaks at near right angle to the primary branch and is clearly shorter than the main branch and the secondary branch of claws I-III. The eggs are not areolated and have conical processes with a reticular ornamentation. Diphascon (D.) procerum sp. nov. has a delicate cuticular ornamentation of very small tubercles, almost dots; two macroplacoids and septulum are present; thin accessory points are present on the main branches of the slender claws; lunules are absent but the base of the external claws of the hind legs are enlarged and slightly indented; a cuticular bar is present near the internal claw of the first three leg pairs and two cuticular bars are present on the hind legs between the base of the claws and near the base of the anterior claw.
Government 101: how an idea becomes law.
Griffith, James T
2006-01-01
The passing of a law is frequently accompanied by media attention and citizen apathy. In today's healthcare delivery situation, we should understand how a bill becomes law and what happens to the idea that engenders that process. Laws arise from the recommendations of ordinary citizens, but the recommendations follow a complicated process developed by the writers of our constitution to prevent abuses. Laws begin as ideas, they become bills considered by the legislature, they are expanded and enforced by the executive branch, and they are further interpreted by the judiciary branch. The laws governing healthcare issues are particularly complex, as most arise from the state legislatures.
Fluid mechanics aspects of magnetic drug targeting.
Odenbach, Stefan
2015-10-01
Experiments and numerical simulations using a flow phantom for magnetic drug targeting have been undertaken. The flow phantom is a half y-branched tube configuration where the main tube represents an artery from which a tumour-supplying artery, which is simulated by the side branch of the flow phantom, branches off. In the experiments a quantification of the amount of magnetic particles targeted towards the branch by a magnetic field applied via a permanent magnet is achieved by impedance measurement using sensor coils. Measuring the targeting efficiency, i.e. the relative amount of particles targeted to the side branch, for different field configurations one obtains targeting maps which combine the targeting efficiency with the magnetic force densities in characteristic points in the flow phantom. It could be shown that targeting efficiency depends strongly on the magnetic field configuration. A corresponding numerical model has been set up, which allows the simulation of targeting efficiency for variable field configuration. With this simulation good agreement of targeting efficiency with experimental data has been found. Thus, the basis has been laid for future calculations of optimal field configurations in clinical applications of magnetic drug targeting. Moreover, the numerical model allows the variation of additional parameters of the drug targeting process and thus an estimation of the influence, e.g. of the fluid properties on the targeting efficiency. Corresponding calculations have shown that the non-Newtonian behaviour of the fluid will significantly influence the targeting process, an aspect which has to be taken into account, especially recalling the fact that the viscosity of magnetic suspensions depends strongly on the magnetic field strength and the mechanical load.
Murk, Kai; Blanco Suarez, Elena M.; Cockbill, Louisa M. R.; Banks, Paul; Hanley, Jonathan G.
2013-01-01
Summary Astrocytes exhibit a complex, branched morphology, allowing them to functionally interact with numerous blood vessels, neighboring glial processes and neuronal elements, including synapses. They also respond to central nervous system (CNS) injury by a process known as astrogliosis, which involves morphological changes, including cell body hypertrophy and thickening of major processes. Following severe injury, astrocytes exhibit drastically reduced morphological complexity and collectively form a glial scar. The mechanistic details behind these morphological changes are unknown. Here, we investigate the regulation of the actin-nucleating Arp2/3 complex in controlling dynamic changes in astrocyte morphology. In contrast to other cell types, Arp2/3 inhibition drives the rapid expansion of astrocyte cell bodies and major processes. This intervention results in a reduced morphological complexity of astrocytes in both dissociated culture and in brain slices. We show that this expansion requires functional myosin II downstream of ROCK and RhoA. Knockdown of the Arp2/3 subunit Arp3 or the Arp2/3 activator N-WASP by siRNA also results in cell body expansion and reduced morphological complexity, whereas depleting WAVE2 specifically reduces the branching complexity of astrocyte processes. By contrast, knockdown of the Arp2/3 inhibitor PICK1 increases astrocyte branching complexity. Furthermore, astrocyte expansion induced by ischemic conditions is delayed by PICK1 knockdown or N-WASP overexpression. Our findings identify a new morphological outcome for Arp2/3 activation in restricting rather than promoting outwards movement of the plasma membrane in astrocytes. The Arp2/3 regulators PICK1, and N-WASP and WAVE2 function antagonistically to control the complexity of astrocyte branched morphology, and this mechanism underlies the morphological changes seen in astrocytes during their response to pathological insult. PMID:23843614
Oren-Suissa, Meital; Gattegno, Tamar; Kravtsov, Veronika; Podbilewicz, Benjamin
2017-01-01
Injury triggers regeneration of axons and dendrites. Research has identified factors required for axonal regeneration outside the CNS, but little is known about regeneration triggered by dendrotomy. Here, we study neuronal plasticity triggered by dendrotomy and determine the fate of complex PVD arbors following laser surgery of dendrites. We find that severed primary dendrites grow toward each other and reconnect via branch fusion. Simultaneously, terminal branches lose self-avoidance and grow toward each other, meeting and fusing at the tips via an AFF-1-mediated process. Ectopic branch growth is identified as a step in the regeneration process required for bypassing the lesion site. Failure of reconnection to the severed dendrites results in degeneration of the distal end of the neuron. We discover pruning of excess branches via EFF-1 that acts to recover the original wild-type arborization pattern in a late stage of the process. In contrast, AFF-1 activity during dendritic auto-fusion is derived from the lateral seam cells and not autonomously from the PVD neuron. We propose a model in which AFF-1-vesicles derived from the epidermal seam cells fuse neuronal dendrites. Thus, EFF-1 and AFF-1 fusion proteins emerge as new players in neuronal arborization and maintenance of arbor connectivity following injury in Caenorhabditis elegans. Our results demonstrate that there is a genetically determined multi-step pathway to repair broken dendrites in which EFF-1 and AFF-1 act on different steps of the pathway. EFF-1 is essential for dendritic pruning after injury and extrinsic AFF-1 mediates dendrite fusion to bypass injuries. PMID:28283540
2000-05-22
Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Research scientist Gary Stutte displays a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Research scientist Gary Stutte displays a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-22
Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-22
Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-22
Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
Universal scaling in the branching of the tree of life.
Herrada, E Alejandro; Tessone, Claudio J; Klemm, Konstantin; Eguíluz, Víctor M; Hernández-García, Emilio; Duarte, Carlos M
2008-07-23
Understanding the patterns and processes of diversification of life in the planet is a key challenge of science. The Tree of Life represents such diversification processes through the evolutionary relationships among the different taxa, and can be extended down to intra-specific relationships. Here we examine the topological properties of a large set of interspecific and intraspecific phylogenies and show that the branching patterns follow allometric rules conserved across the different levels in the Tree of Life, all significantly departing from those expected from the standard null models. The finding of non-random universal patterns of phylogenetic differentiation suggests that similar evolutionary forces drive diversification across the broad range of scales, from macro-evolutionary to micro-evolutionary processes, shaping the diversity of life on the planet.
Light Signaling in Bud Outgrowth and Branching in Plants
Leduc, Nathalie; Roman, Hanaé; Barbier, François; Péron, Thomas; Huché-Thélier, Lydie; Lothier, Jérémy; Demotes-Mainard, Sabine; Sakr, Soulaiman
2014-01-01
Branching determines the final shape of plants, which influences adaptation, survival and the visual quality of many species. It is an intricate process that includes bud outgrowth and shoot extension, and these in turn respond to environmental cues and light conditions. Light is a powerful environmental factor that impacts multiple processes throughout plant life. The molecular basis of the perception and transduction of the light signal within buds is poorly understood and undoubtedly requires to be further unravelled. This review is based on current knowledge on bud outgrowth-related mechanisms and light-mediated regulation of many physiological processes. It provides an extensive, though not exhaustive, overview of the findings related to this field. In parallel, it points to issues to be addressed in the near future. PMID:27135502
Lirman
2000-08-23
Acropora palmata, a branching coral abundant on shallow reef environments throughout the Caribbean, is susceptible to physical disturbance caused by storms. Accordingly, the survivorship and propagation of this species are tied to its capability to recover after fragmentation. Fragments of A. palmata comprised 40% of ramets within populations that had experienced recent storms. While the survivorship of A. palmata fragments was not directly related to the size of fragments, removal of fragments from areas where they settled was influenced by size. Survivorship of fragments was also affected by type of substratum; the greatest mortality (58% loss within the first month) was observed on sand, whereas fragments placed on top of live colonies of A. palmata fused to the underlying tissue and did not experience any losses. Fragments created by Hurricane Andrew on a Florida reef in August 1992 began developing new growth (proto-branches) 7 months after the storm. The number of proto-branches on fragments was dependent on size, but growth was not affected by the size of fragments. Growth-rates of proto-branches increased exponentially with time (1.7 cm year(-1) for 1993-1994, 2.7 cm year(-1) for 1994-1995, 4.2 cm year(-1) for 1995-1996, and 6.5 cm year(-1) for 1996-1997), taking over 4 years for proto-branches to achieve rates comparable to those of adult colonies on the same reef (6.9 cm year(-1)). In addition to the initial mortality and reduced growth-rates, fragmentation resulted in a loss of reproductive potential. Neither colonies that experienced severe fragmentation nor fragments contained gametes until 4 years after the initial damage. Although A. palmata may survive periodic fragmentation, the long-term effects of this process will depend ultimately on the balance between the benefits and costs of this process.
Geodynamics branch data base for main magnetic field analysis
NASA Technical Reports Server (NTRS)
Langel, Robert A.; Baldwin, R. T.
1991-01-01
The data sets used in geomagnetic field modeling at GSFC are described. Data are measured and obtained from a variety of information and sources. For clarity, data sets from different sources are categorized and processed separately. The data base is composed of magnetic observatory data, surface data, high quality aeromagnetic, high quality total intensity marine data, satellite data, and repeat data. These individual data categories are described in detail in a series of notebooks in the Geodynamics Branch, GSFC. This catalog reviews the original data sets, the processing history, and the final data sets available for each individual category of the data base and is to be used as a reference manual for the notebooks. Each data type used in geomagnetic field modeling has varying levels of complexity requiring specialized processing routines for satellite and observatory data and two general routines for processing aeromagnetic, marine, land survey, and repeat data.
2012-02-09
The calibrated data are then sent to NRL Stennis Space Center (NRL-SSC) for further processing using the NRL SSC Automated Processing System (APS...hyperspectral sensor in space we have not previously developed automated processing for hyperspectral ocean color data. The hyperspectral processing branch
75 FR 13238 - Processed Raspberry Promotion, Research, and Information Order; Delay of Referendum
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-19
... Promotion, Research, and Information Order; Delay of Referendum AGENCY: Agricultural Marketing Service... importers of processed raspberries approve the issuance of the proposed Processed Raspberry Promotion..., Research and Promotion Branch, By, AMS, USDA, Stop 0244, Room 0634-S, 1400 Independence Avenue, SW...
"GSFC FSB Application of Perspective-Based Inspections"
NASA Technical Reports Server (NTRS)
Shell, Elaine; Shull, Forrest
2004-01-01
The scope of work described in our proposal consisted of developing inspection standards targeted to Branch-specific types of defects (gained from analysis of Branch project defect histories), and including Branch-relevant perspectives and questions to guide defect detection. The tailored inspection guidelines were to be applied on real Branch projects with support as needed from the technology infusion team. This still accurately describes the scope of work performed. It was originally proposed that the Perspective-Based inspection standard would be applied on three projects within the Branch: GPM, JWST, and SDO. Rather than apply the proposed standard to all three, we inserted a new step, in which the standard was instead applied on a single pilot project, cFE (described above). This decision was a good match for the Branch goals since, due to the "design for reuse" nature of cFE, inspections played an even more crucial than usual role in that development process. Also, since cFE is being designed to provide general-purpose functionality, key representatives fiom our target projects were involved in inspections of cFE to provide perspectives from different missions. In this way, they could get some exposure to and the chance to provide feedback on the proposed standards before applying them on their own projects. The Branch-baselined standards will still be applied on GPM, JWST, and SDO, although outside the time frame of this funding. Finally, we originally proposed using the analysis of Branch defect sources to indicate in which phases Perspective-Based inspections could provide the best potential for future improvement, although experience on previous Branch projects suggested that our efforts would likely be focused on requirements and code inspections. In the actual work, we focused exclusively on requirements inspections, as this was the highest-priority work currently being done on our cFE pilot project.
Software Engineering Research/Developer Collaborations (C104)
NASA Technical Reports Server (NTRS)
Shell, Elaine; Shull, Forrest
2005-01-01
The goal of this collaboration was to produce Flight Software Branch (FSB) process standards for software inspections which could be used across three new missions within the FSB. The standard was developed by Dr. Forrest Shull (Fraunhofer Center for Experimental Software Engineering, Maryland) using the Perspective-Based Inspection approach, (PBI research has been funded by SARP) , then tested on a pilot Branch project. Because the short time scale of the collaboration ruled out a quantitative evaluation, it would be decided whether the standard was suitable for roll-out to other Branch projects based on a qualitative measure: whether the standard received high ratings from Branch personnel as to usability and overall satisfaction. The project used for piloting the Perspective-Based Inspection approach was a multi-mission framework designed for reuse. This was a good choice because key representatives from the three new missions would be involved in the inspections. The perspective-based approach was applied to produce inspection procedures tailored for the specific quality needs of the branch. The technical information to do so was largely drawn through a series of interviews with Branch personnel. The framework team used the procedures to review requirements. The inspections were useful for indicating that a restructuring of the requirements document was needed, which led to changes in the development project plan. The standard was sent out to other Branch personnel for review. Branch personnel were very positive. However, important changes were identified because the perspective of Attitude Control System (ACS) developers had not been adequately represented, a result of the specific personnel interviewed. The net result is that with some further work to incorporate the ACS perspective, and in synchrony with the roll out of independent Branch standards, the PBI approach will be implemented in the FSB. Also, the project intends to continue its collaboration with the technology provider (Dr. Forrest Shull) past the end of the grant, to allow a more rigorous quantitative evaluation.
NASA Astrophysics Data System (ADS)
Ganguly, Sujoy; Liang, Xin; Grace, Michael; Lee, Daniel; Howard, Jonathon
The morphology of neurons is diverse and reflects the diversity of neuronal functions, yet the principles that govern neuronal morphogenesis are unclear. In an effort to better understand neuronal morphogenesis we will be focusing on the development of the dendrites of class IV sensory neuron in Drosophila melanogaster. In particular we attempt to determine how the the total length, and the number of branches of dendrites are mathematically related to the dynamics of neurite growth and branching. By imaging class IV neurons during early embryogenesis we are able to measure the change in neurite length l (t) as a function of time v (t) = dl / dt . We found that the distribution of v (t) is well characterized by a hyperbolic secant distribution, and that the addition of new branches per unit time is well described by a Poisson process. Combining these measurements with the assumption that branching occurs with equal probability anywhere along the dendrite we were able to construct a mathematical model that provides reasonable agreement with the observed number of branches, and total length of the dendrites of the class IV sensory neuron.
Allegra Mascaro, Anna Letizia; Cesare, Paolo; Sacconi, Leonardo; Grasselli, Giorgio; Mandolesi, Georgia; Maco, Bohumil; Knott, Graham W; Huang, Lieven; De Paola, Vincenzo; Strata, Piergiorgio; Pavone, Francesco S
2013-06-25
Plasticity in the central nervous system in response to injury is a complex process involving axonal remodeling regulated by specific molecular pathways. Here, we dissected the role of growth-associated protein 43 (GAP-43; also known as neuromodulin and B-50) in axonal structural plasticity by using, as a model, climbing fibers. Single axonal branches were dissected by laser axotomy, avoiding collateral damage to the adjacent dendrite and the formation of a persistent glial scar. Despite the very small denervated area, the injured axons consistently reshape the connectivity with surrounding neurons. At the same time, adult climbing fibers react by sprouting new branches through the intact surroundings. Newly formed branches presented varicosities, suggesting that new axons were more than just exploratory sprouts. Correlative light and electron microscopy reveals that the sprouted branch contains large numbers of vesicles, with varicosities in the close vicinity of Purkinje dendrites. By using an RNA interference approach, we found that downregulating GAP-43 causes a significant increase in the turnover of presynaptic boutons. In addition, silencing hampers the generation of reactive sprouts. Our findings show the requirement of GAP-43 in sustaining synaptic stability and promoting the initiation of axonal regrowth.
Research experiments at Hangar L
NASA Technical Reports Server (NTRS)
2000-01-01
Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.
Automated anatomical labeling method for abdominal arteries extracted from 3D abdominal CT images
NASA Astrophysics Data System (ADS)
Oda, Masahiro; Hoang, Bui Huy; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku
2012-02-01
This paper presents an automated anatomical labeling method of abdominal arteries. In abdominal surgery, understanding of blood vessel structure concerning with a target organ is very important. Branching pattern of blood vessels differs among individuals. It is required to develop a system that can assist understanding of a blood vessel structure and anatomical names of blood vessels of a patient. Previous anatomical labbeling methods for abdominal arteries deal with either of the upper or lower abdominal arteries. In this paper, we present an automated anatomical labeling method of both of the upper and lower abdominal arteries extracted from CT images. We obtain a tree structure of artery regions and calculate feature values for each branch. These feature values include the diameter, curvature, direction, and running vectors of a branch. Target arteries of this method are grouped based on branching conditions. The following processes are separately applied for each group. We compute candidate artery names by using classifiers that are trained to output artery names. A correction process of the candidate anatomical names based on the rule of majority is applied to determine final names. We applied the proposed method to 23 cases of 3D abdominal CT images. Experimental results showed that the proposed method is able to perform nomenclature of entire major abdominal arteries. The recall and the precision rates of labeling are 79.01% and 80.41%, respectively.
NASA Technical Reports Server (NTRS)
Boyer, Charles M.; Jackson, Trevor P.; Beyon, Jeffrey Y.; Petway, Larry B.
2013-01-01
Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Mechanical placement collaboration reduced potential electromagnetic interference (EMI). Through application of newly selected electrical components and thermal analysis data, a total electronic chassis redesign was accomplished. Use of an innovative forced convection tunnel heat sink was employed to meet and exceed project requirements for cooling, mass reduction, and volume reduction. Functionality was a key concern to make efficient use of airflow, and accessibility was also imperative to allow for servicing of chassis internals. The collaborative process provided for accelerated design maturation with substantiated function.
Hasegawa, Tomoka; Yamamoto, Tomomaya; Hongo, Hiromi; Qiu, Zixuan; Abe, Miki; Kanesaki, Takuma; Tanaka, Kawori; Endo, Takashi; de Freitas, Paulo Henrique Luiz; Li, Minqi; Amizuka, Norio
2018-04-01
The aim of this study is to demonstrate the application of focused ion beam-scanning electron microscopy, FIB-SEM for revealing the three-dimensional features of osteocytic cytoplasmic processes in metaphyseal (immature) and diaphyseal (mature) trabeculae. Tibiae of eight-week-old male mice were fixed with aldehyde solution, and treated with block staining prior to FIB-SEM observation. While two-dimensional backscattered SEM images showed osteocytes' cytoplasmic processes in a fragmented fashion, three-dimensional reconstructions of FIB-SEM images demonstrated that osteocytes in primary metaphyseal trabeculae extended their cytoplasmic processes randomly, thus maintaining contact with neighboring osteocytes and osteoblasts. In contrast, diaphyseal osteocytes extended thin cytoplasmic processes from their cell bodies, which ran perpendicular to the bone surface. In addition, these osteocytes featured thick processes that branched into thinner, transverse cytoplasmic processes; at some point, however, these transverse processes bend at a right angle to run perpendicular to the bone surface. Osteoblasts also possessed thicker cytoplasmic processes that branched off as thinner processes, which then connected with cytoplasmic processes of neighboring osteocytes. Thus, FIB-SEM is a useful technology for visualizing the three-dimensional structures of osteocytes and their cytoplasmic processes.
Anatomical relation between S1 sacroiliac screws' entrance points and superior gluteal artery.
Zhao, Yong; You, Libo; Lian, Wei; Zou, Dexin; Dong, Shengjie; Sun, Tao; Zhang, Shudong; Wang, Dan; Li, Jingning; Li, Wenliang; Zhao, Yuchi
2018-01-18
To conduct radiologic anatomical study on the relation between S1 sacroiliac screws' entry points and the route of the pelvic outer superior gluteal artery branches with the aim to provide the anatomical basis and technical reference for the avoidance of damage to the superior gluteal artery during the horizontal sacroiliac screw placement. Superior gluteal artery CTA (CT angiography) vascular imaging of 74 healthy adults (37 women and 37 men) was done with 128-slice spiral CT (computed tomography). The CT attendant-measuring software was used to portray the "safe bony entrance area" (hereinafter referred to as "Safe Area") of the S1 segment in the standard lateral pelvic view of three-dimensional reconstruction. The anatomical relation between S1 sacroiliac screws' Safe Area and the pelvic outer superior gluteal artery branches was observed and recorded. The number of cases in which artery branches intersected the Safe Area was counted. The cases in which superior gluteal artery branches disjointed from the Safe Area were identified, and the shortest distance between the Safe Area and the superior gluteal artery branch closest to the Safe Area was measured. Three cases out of the 74 sample cases were excluded from this study as they were found to have no bony space for horizontal screw placement in S1 segment. Among the remaining 71 sample cases, there are 32 cases (45.1%) where the deep superior branch of superior gluteal artery passes through the Safe Area of S1 entrance point. There was no distinguishing feature and rule on how the deep superior branches and the Safe Area overlapped. In the 39 cases in which superior gluteal artery branches disjointed from the Safe Area, the deep superior branches of superior gluteal artery were the branches closest to the Safe Area and the part of the branch closest to the Safe Area was located in front of the widest part of the Safe Area. The shortest distance between the deep superior branch and the Safe Area is 0.86 ± 0.84 cm. There is a high risk of accidental injury of the deep superior branches of superior gluteal artery in the process of S1 sacroiliac screw placement. Even if the entry points are located in the safe bony entrance area, the absolute secure placement cannot be assured. We suggest that great attention should be paid to make thorough preoperative plans.
Applying the Theory of Constraints to a Base Civil Engineering Operations Branch
1991-09-01
Figure Page 1. Typical Work Order Processing . .......... 7 2. Typical Job Order Processing . .......... 8 3. Typical Simplified In-Service Work Plan for...Customers’ Customer Request Service Planning Unit Production] Control Center Material Control Scheduling CE Shops Figure 1.. Typical Work Order Processing 7
Toulmin, Anita; Baltierra-Jasso, Laura E; Morten, Michael J; Sabir, Tara; McGlynn, Peter; Schröder, Gunnar F; Smith, Brian O; Magennis, Steven W
2017-09-19
DNA three-way junctions (3WJs) are branched structures that serve as important biological intermediates and as components in DNA nanostructures. We recently derived the global structure of a fully complementary 3WJ and found that it contained unpaired bases at the branchpoint, which is consistent with previous observations of branch flexibility and branchpoint reactivity. By combining high-resolution single-molecule Förster resonance energy transfer, molecular modeling, time-resolved ensemble fluorescence spectroscopy, and the first 19 F nuclear magnetic resonance observations of fully complementary 3WJs, we now show that the 3WJ structure can adopt multiple distinct conformations depending upon the sequence at the branchpoint. A 3WJ with a GC-rich branchpoint adopts an open conformation with unpaired bases at the branch and at least one additional conformation with an increased number of base interactions at the branchpoint. This structural diversity has implications for branch interactions and processing in vivo and for technological applications.
Langevin dynamics for ramified structures
NASA Astrophysics Data System (ADS)
Méndez, Vicenç; Iomin, Alexander; Horsthemke, Werner; Campos, Daniel
2017-06-01
We propose a generalized Langevin formalism to describe transport in combs and similar ramified structures. Our approach consists of a Langevin equation without drift for the motion along the backbone. The motion along the secondary branches may be described either by a Langevin equation or by other types of random processes. The mean square displacement (MSD) along the backbone characterizes the transport through the ramified structure. We derive a general analytical expression for this observable in terms of the probability distribution function of the motion along the secondary branches. We apply our result to various types of motion along the secondary branches of finite or infinite length, such as subdiffusion, superdiffusion, and Langevin dynamics with colored Gaussian noise and with non-Gaussian white noise. Monte Carlo simulations show excellent agreement with the analytical results. The MSD for the case of Gaussian noise is shown to be independent of the noise color. We conclude by generalizing our analytical expression for the MSD to the case where each secondary branch is n dimensional.
Multi-branched Cu2O nanowires for photocatalytic degradation of methyl orange
NASA Astrophysics Data System (ADS)
Yu, Chunxin; Shu, Yun; Zhou, Xiaowei; Ren, Yang; Liu, Zhu
2018-03-01
Multi-branched cuprous oxide nanowires (Cu2O NWs) were prepared by one-step hydrothermal method of a facile process. The architecture of these Cu2O NWs was examined by scanning electron microscopy, and the resulting crystal nanowire consists of the trunk growing along [100] plane and the branch growing along [110] plane. Photocatalytic degradation of methyl orange (MO) in the experiment indicates that pure Cu2O NWs prepared at 150 °C have a higher photocatalytic activity (90% MO were degraded within 20 min without the presence of H2O2) compared with the samples obtained at other temperatures. In the photoelectrochemical test, pure Cu2O NWs had outstanding photoelectric response, which corresponds to the catalytic performance. The superior photocatalytic performance can be attributed to the absence of grain boundaries between the small branches and the nanowire trunk, which is conducive to the transport of photo-generated carriers, and the reduction of Cu impurities to reduce the number of recombination centers.
Bieling, Peter; Li, Tai-De; Weichsel, Julian; McGorty, Ryan; Jreij, Pamela; Huang, Bo; Fletcher, Daniel A.; Mullins, R. Dyche
2016-01-01
Branched actin networks–created by the Arp2/3 complex, capping protein, and a nucleation promoting factor– generate and transmit forces required for many cellular processes, but their response to force is poorly understood. To address this, we assembled branched actin networks in vitro from purified components and used simultaneous fluorescence and atomic force microscopy to quantify their molecular composition and material properties under various forces. Remarkably, mechanical loading of these self-assembling materials increases their density, power, and efficiency. Microscopically, increased density reflects increased filament number and altered geometry, but no change in average length. Macroscopically, increased density enhances network stiffness and resistance to mechanical failure beyond those of isotropic actin networks. These effects endow branched actin networks with memory of their mechanical history that shapes their material properties and motor activity. This work reveals intrinsic force feedback mechanisms by which mechanical resistance makes self-assembling actin networks stiffer, stronger, and more powerful. PMID:26771487
Mammalian evolution may not be strictly bifurcating.
Hallström, Björn M; Janke, Axel
2010-12-01
The massive amount of genomic sequence data that is now available for analyzing evolutionary relationships among 31 placental mammals reduces the stochastic error in phylogenetic analyses to virtually zero. One would expect that this would make it possible to finally resolve controversial branches in the placental mammalian tree. We analyzed a 2,863,797 nucleotide-long alignment (3,364 genes) from 31 placental mammals for reconstructing their evolution. Most placental mammalian relationships were resolved, and a consensus of their evolution is emerging. However, certain branches remain difficult or virtually impossible to resolve. These branches are characterized by short divergence times in the order of 1-4 million years. Computer simulations based on parameters from the real data show that as little as about 12,500 amino acid sites could be sufficient to confidently resolve short branches as old as about 90 million years ago (Ma). Thus, the amount of sequence data should no longer be a limiting factor in resolving the relationships among placental mammals. The timing of the early radiation of placental mammals coincides with a period of climate warming some 100-80 Ma and with continental fragmentation. These global processes may have triggered the rapid diversification of placental mammals. However, the rapid radiations of certain mammalian groups complicate phylogenetic analyses, possibly due to incomplete lineage sorting and introgression. These speciation-related processes led to a mosaic genome and conflicting phylogenetic signals. Split network methods are ideal for visualizing these problematic branches and can therefore depict data conflict and possibly the true evolutionary history better than strictly bifurcating trees. Given the timing of tectonics, of placental mammalian divergences, and the fossil record, a Laurasian rather than Gondwanan origin of placental mammals seems the most parsimonious explanation.
Mammalian Evolution May not Be Strictly Bifurcating
Hallström, Björn M.; Janke, Axel
2010-01-01
The massive amount of genomic sequence data that is now available for analyzing evolutionary relationships among 31 placental mammals reduces the stochastic error in phylogenetic analyses to virtually zero. One would expect that this would make it possible to finally resolve controversial branches in the placental mammalian tree. We analyzed a 2,863,797 nucleotide-long alignment (3,364 genes) from 31 placental mammals for reconstructing their evolution. Most placental mammalian relationships were resolved, and a consensus of their evolution is emerging. However, certain branches remain difficult or virtually impossible to resolve. These branches are characterized by short divergence times in the order of 1–4 million years. Computer simulations based on parameters from the real data show that as little as about 12,500 amino acid sites could be sufficient to confidently resolve short branches as old as about 90 million years ago (Ma). Thus, the amount of sequence data should no longer be a limiting factor in resolving the relationships among placental mammals. The timing of the early radiation of placental mammals coincides with a period of climate warming some 100–80 Ma and with continental fragmentation. These global processes may have triggered the rapid diversification of placental mammals. However, the rapid radiations of certain mammalian groups complicate phylogenetic analyses, possibly due to incomplete lineage sorting and introgression. These speciation-related processes led to a mosaic genome and conflicting phylogenetic signals. Split network methods are ideal for visualizing these problematic branches and can therefore depict data conflict and possibly the true evolutionary history better than strictly bifurcating trees. Given the timing of tectonics, of placental mammalian divergences, and the fossil record, a Laurasian rather than Gondwanan origin of placental mammals seems the most parsimonious explanation. PMID:20591845
Molecular Analysis of Sensory Axon Branching Unraveled a cGMP-Dependent Signaling Cascade.
Dumoulin, Alexandre; Ter-Avetisyan, Gohar; Schmidt, Hannes; Rathjen, Fritz G
2018-04-24
Axonal branching is a key process in the establishment of circuit connectivity within the nervous system. Molecular-genetic studies have shown that a specific form of axonal branching—the bifurcation of sensory neurons at the transition zone between the peripheral and the central nervous system—is regulated by a cyclic guanosine monophosphate (cGMP)-dependent signaling cascade which is composed of C-type natriuretic peptide (CNP), the receptor guanylyl cyclase Npr2, and cGMP-dependent protein kinase Iα (cGKIα). In the absence of any one of these components, neurons in dorsal root ganglia (DRG) and cranial sensory ganglia no longer bifurcate, and instead turn in either an ascending or a descending direction. In contrast, collateral axonal branch formation which represents a second type of axonal branch formation is not affected by inactivation of CNP, Npr2, or cGKI. Whereas axon bifurcation was lost in mouse mutants deficient for components of CNP-induced cGMP formation; the absence of the cGMP-degrading enzyme phosphodiesterase 2A had no effect on axon bifurcation. Adult mice that lack sensory axon bifurcation due to the conditional inactivation of Npr2-mediated cGMP signaling in DRG neurons demonstrated an altered shape of sensory axon terminal fields in the spinal cord, indicating that elaborate compensatory mechanisms reorganize neuronal circuits in the absence of bifurcation. On a functional level, these mice showed impaired heat sensation and nociception induced by chemical irritants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are normal. These data point to a critical role of axon bifurcation for the processing of acute pain perception.
Hierarchical Si/ZnO trunk-branch nanostructure for photocurrent enhancement
2014-01-01
Hierarchical Si/ZnO trunk-branch nanostructures (NSs) have been synthesized by hot wire assisted chemical vapor deposition method for trunk Si nanowires (NWs) on indium tin oxide (ITO) substrate and followed by the vapor transport condensation (VTC) method for zinc oxide (ZnO) nanorods (NRs) which was laterally grown from each Si nanowires (NWs). A spin coating method has been used for zinc oxide (ZnO) seeding. This method is better compared with other group where they used sputtering method for the same process. The sputtering method only results in the growth of ZnO NRs on top of the Si trunk. Our method shows improvement by having the growth evenly distributed on the lateral sides and caps of the Si trunks, resulting in pine-leave-like NSs. Field emission scanning electron microscope image shows the hierarchical nanostructures resembling the shape of the leaves of pine trees. Single crystalline structure for the ZnO branch grown laterally from the crystalline Si trunk has been identified by using a lattice-resolved transmission electron microscope. A preliminary photoelectrochemical (PEC) cell testing has been setup to characterize the photocurrent of sole array of ZnO NR growth by both hydrothermal-grown (HTG) method and VTC method on ITO substrates. VTC-grown ZnO NRs showed greater photocurrent effect due to its better structural properties. The measured photocurrent was also compared with the array of hierarchical Si/ZnO trunk-branch NSs. The cell with the array of Si/ZnO trunk-branch NSs revealed four-fold magnitude enhancement in photocurrent density compared with the sole array of ZnO NRs obtain from VTC processes. PMID:25246872
Vertical profile of branch CO2 efflux in a Norway spruce tree: a case study
NASA Astrophysics Data System (ADS)
Acosta, M.; Pavelka, M.
2012-04-01
Despite woody-tissue CO2 effluxes having been recognized as an important component of forest carbon budget due to the fraction of assimilates used and the dramatic increase in woody with stand development, there is limited research to determine the CO2 efflux vertical variability of woody-tissue components. For a better understanding and quantification of branch woody-tissue CO2 efflux in forest ecosystems, it is necessary to identify the environmental factors influencing it and the role of the branch distribution within the canopy. The proper assessment of this forest component will improve the knowledge of the ratio between ecosystem respiration and gross primary production at forest ecosystem. In order to achieve this goal, branch CO2 efflux of Norway spruce tree was measured in ten branches at five different whorls during the growing season 2004 (from June till October) in campaigns of 3-4 times per month at the Beskydy Mts., the Czech Republic, using a portable infrared gas analyzer operating as a closed system. Branch woody tissue temperature was measured continuously in ten minutes intervals for each sample position during the whole experiment period. On the basis of relation between CO2 efflux rate and woody tissue temperature a value of Q10 and normalized CO2 efflux rate (E10 - CO2 efflux rate at 10° C) were calculated for each sampled position. Estimated Q10 values ranged from 2.12 to 2.89 and E10 ranged from 0.41 to 1.19 ?molCO2m-2 s-1. Differences in branch CO2 efflux were found between orientations; East side branches presented higher efflux rate than west side branches. The highest branch CO2 efflux rate values were measured in August and the lowest in October, which were connected with woody tissue temperature and ontogenetic processes during these periods. Branch CO2 efflux was significantly and positively correlated with branch position within canopy and woody tissue temperature. Branches from the upper whorls showed higher respiration activity and seasonal dynamics than branches from the lower whorls. The results presented in this study serve primarily to demonstrate the importance of branch location within canopy from the point of view of the CO2 efflux. CO2 efflux from branch woody-tissue exhibited vertical differentiation among whorls that must be taken into account when collecting, analysis and interpreting data. The determination of CO2 efflux from individual components at ecosystem level is still needed to gain a better understanding of the carbon budget issues. Such data are important for evaluating effect of global climate or other possible influences on carbon cycling and sequestration in forest ecosystems. Acknowledgment: This work was support by the projects CZ.1.05/1.1.00/02.0073 from the Ministry of Education, Youth and Sports and LM2010007 from the Ministry of the Environmental of Czech Republic
Chen, Rui; Hyrien, Ollivier
2011-01-01
This article deals with quasi- and pseudo-likelihood estimation in a class of continuous-time multi-type Markov branching processes observed at discrete points in time. “Conventional” and conditional estimation are discussed for both approaches. We compare their properties and identify situations where they lead to asymptotically equivalent estimators. Both approaches possess robustness properties, and coincide with maximum likelihood estimation in some cases. Quasi-likelihood functions involving only linear combinations of the data may be unable to estimate all model parameters. Remedial measures exist, including the resort either to non-linear functions of the data or to conditioning the moments on appropriate sigma-algebras. The method of pseudo-likelihood may also resolve this issue. We investigate the properties of these approaches in three examples: the pure birth process, the linear birth-and-death process, and a two-type process that generalizes the previous two examples. Simulations studies are conducted to evaluate performance in finite samples. PMID:21552356
Dramatic Increase in the Signal and Sensitivity of Detection via Self-Assembly of Branched DNA
Kim, Kyung-Tae; Chae, Chi-Bom
2011-01-01
In molecular testing using PCR, the target DNA is amplified via PCR and the sequence of interest is investigated via hybridization with short oligonucleotide capture probes that are either in a solution or immobilized on solid supports such as beads or glass slides. In this report, we report the discovery of assembly of DNA complex(es) between a capture probe and multiple strands of the PCR product. The DNA complex most likely has branched structure. The assembly of branched DNA was facilitated by the product of asymmetric PCR. The amount of branched DNA assembled was increased five fold when the asymmetric PCR product was denatured and hybridized with a capture probe all in the same PCR reaction mixture. The major branched DNA species appeared to contain three reverse strands (the strand complementary to the capture probe) and two forward strands. The DNA was sensitive to S1 nuclease suggesting that it had single-stranded gaps. Branched DNA also appeared to be assembled with the capture probes immobilized on the surface of solid support when the product of asymmetric PCR was hybridized. Assembly of the branched DNA was also increased when hybridization was performed in complete PCR reaction mixture suggesting the requirement of DNA synthesis. Integration of asymmetric PCR, heat denaturation and hybridization in the same PCR reaction mixture with the capture probes immobilized on the surface of solid support achieved dramatic increase in the signal and sensitivity of detection of DNA. Such a system should be advantageously applied for development of automated process for detection of DNA. PMID:21870112
Leaf-to-branch scaling of C-gain in field-grown almond trees under different soil moisture regimes.
Egea, Gregorio; González-Real, María M; Martin-Gorriz, Bernardo; Baille, Alain
2014-06-01
Branch/tree-level measurements of carbon (C)-acquisition provide an integration of the physical and biological processes driving the C gain of all individual leaves. Most research dealing with the interacting effects of high-irradiance environments and soil-induced water stress on the C-gain of fruit tree species has focused on leaf-level measurements. The C-gain of both sun-exposed leaves and branches of adult almond trees growing in a semi-arid climate was investigated to determine the respective costs of structural and biochemical/physiological protective mechanisms involved in the behaviour at branch scale. Measurements were performed on well-watered (fully irrigated, FI) and drought-stressed (deficit irrigated, DI) trees. Leaf-to-branch scaling for net CO2 assimilation was quantified by a global scaling factor (fg), defined as the product of two specific scaling factors: (i) a structural scaling factor (fs), determined under well-watered conditions, mainly involving leaf mutual shading; and (ii) a water stress scaling factor (fws,b) involving the limitations in C-acquisition due to soil water deficit. The contribution of structural mechanisms to limiting branch net C-gain was high (mean fs ∼0.33) and close to the projected-to-total leaf area ratio of almond branches (ε = 0.31), while the contribution of water stress mechanisms was moderate (mean fws,b ∼0.85), thus supplying an fg ranging between 0.25 and 0.33 with slightly higher values for FI trees with respect to DI trees. These results suggest that the almond tree (a drought-tolerant species) has acquired mechanisms of defensive strategy (survival) mainly based on a specific branch architectural design. This strategy allows the potential for C-gain to be preserved at branch scale under a large range of soil water deficits. In other words, almond tree branches exhibit an architecture that is suboptimal for C-acquisition under well-watered conditions, but remarkably efficient to counteract the impact of DI and drought events. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Ripetskyj, R. T.; Kit, N. A.
Isolated leafy shoots of the moss Pottia intermedia positioned horizontally on the agar surface in vertically oriented petri dishes regenerate unbranching negatively gravitropic protonemata on upper side of the regenerant. Gravity determines the site of regeneration not the process itself. White light of low intensity unsufficient to induce positive phototropism of dark-grown protonemata can, however, provoke their branching and gametophore bud formation (Ripetskyj et al., 1998; 1999). The presented experiments have been carried out with red light in Biological Research in Canisters/Light Emitting Diode (BRIC/LED) hardware developed at Kennedy Space Center, USA. Seven-day-old dark-grown negatively gravitropic secondary P. intermedia protonemata were positioned differently with respect to gravity vector and to the source of red light of low, 1 or 2 μ mol\\cdot m-2\\cdot s-1, intensities. The light induced intensive branching of the protonemata and gametophore bud formation initiation site of both processes as well as the direction of growth of branches and buds being depent on the position of protonemata with respect to gravity and light vectors. Vertically positioned, i.e. ungravistimulated, dark grown protonemata illuminated from one side with red light of 2 μ mol\\cdot m-2\\cdot s-1 intensity produced 96,9 ± 2,2% of side branches and buds growing directly towards the light source from the lit protonema side. Horizontally disposed protonemata irradiated from below with red light of the same intensity regenerate 31,7 ± 3,9% of branches and buds on the upper, i.e. shaded protonemata side, the upward growth of which should undoubtedly be determined by gravity. In vertically disposed protonemata illuminated with red light of 1 μ mol\\cdot m-2\\cdot s-1 intensity from aside 31,9 ± 5,5% of side branches and buds arised on shaded protonema side and grew away from the light. Illumination of the protonemata in horizontal position from below increased the number of upgrowing branches and buds on upper shaded protonemata side to 76,9 ± 2,4%. The results convincingly speak for stimulating effect of the interaction of gravity and red light of low intensity. Characteristically, the number of side branches and buds on upper side of horizontally disposed protonemata illuminated from below (76,9 ± 2,4%) or parallely to protonemata length from their tips (86,0 ± 5,3%) were slightly, however, statistically significantly, greater than in the case of illumination from above (62,9 ± 3,1%). The effect may be probably be explained by some intensification of gravity action with red light of low intensity from shading of upper cell side or from lighting parallelly with respect to the cell surface. This research was supported by NASA grant NN-09(R).
Enzyme clustering accelerates processing of intermediates through metabolic channeling
Castellana, Michele; Wilson, Maxwell Z.; Xu, Yifan; Joshi, Preeti; Cristea, Ileana M.; Rabinowitz, Joshua D.; Gitai, Zemer; Wingreen, Ned S.
2015-01-01
We present a quantitative model to demonstrate that coclustering multiple enzymes into compact agglomerates accelerates the processing of intermediates, yielding the same efficiency benefits as direct channeling, a well-known mechanism in which enzymes are funneled between enzyme active sites through a physical tunnel. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with previously reported spacings between coclusters in mammalian cells. For direct validation, we study a metabolic branch point in Escherichia coli and experimentally confirm the model prediction that enzyme agglomerates can accelerate the processing of a shared intermediate by one branch, and thus regulate steady-state flux division. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation. PMID:25262299
Development of a tritium recovery system from CANDU tritium removal facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draghia, M.; Pasca, G.; Porcariu, F.
2015-03-15
The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consistsmore » of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)« less
A Martingale Characterization of Mixed Poisson Processes.
1985-10-01
03LA A 11. TITLE (Inciuae Security Clanafication, ",A martingale characterization of mixed Poisson processes " ________________ 12. PERSONAL AUTHOR... POISSON PROCESSES Jostification .......... . ... . . Di.;t ib,,jtion by Availability Codes Dietmar Pfeifer* Technical University Aachen Dist Special and...Mixed Poisson processes play an important role in many branches of applied probability, for instance in insurance mathematics and physics (see Albrecht
Atypical chemokine receptor ACKR2 controls branching morphogenesis in the developing mammary gland
Hewit, Kay D.; Pallas, Kenneth J.; Cairney, Claire J.; Lee, Kit M.; Hansell, Christopher A.; Stein, Torsten
2017-01-01
Macrophages are important regulators of branching morphogenesis during development and postnatally in the mammary gland. Regulation of macrophage dynamics during these processes can therefore have a profound impact on development. We demonstrate here that the developing mammary gland expresses high levels of inflammatory CC-chemokines, which are essential in vivo regulators of macrophage migration. We further demonstrate that the atypical chemokine receptor ACKR2, which scavenges inflammatory CC-chemokines, is differentially expressed during mammary gland development. We have previously shown that ACKR2 regulates macrophage dynamics during lymphatic vessel development. Here, we extend these observations to reveal a novel role for ACKR2 in regulating the postnatal development of the mammary gland. Specifically, we show that Ackr2−/− mice display precocious mammary gland development. This is associated with increased macrophage recruitment to the developing gland and increased density of the ductal epithelial network. These data demonstrate that ACKR2 is an important regulator of branching morphogenesis in diverse biological contexts and provide the first evidence of a role for chemokines and their receptors in postnatal development processes. PMID:27888192
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Cong; Luo, Xiaolan; Li, Tao
2014-01-01
Environmentally friendly biopolyols have been produced with crude glycerol as the sole feedstock using a one-pot thermochemical conversion process without the addition of extra catalysts and reagents. Structural features of these biopolyols were characterized by rheology analysis. Rigid polyurethane (PU) foams were obtained from these crude glycerol-based biopolyols and the foaming mechanism was explored. Investigations revealed that partial carbonyl groups hydrogen-bonded with NeH were replaced by aromatic rings after the introduction of branched fatty acid ester chains in the “urea rich” phase, and that distinct microphases had formed in the foams. Studies showed that branched fatty acid ester chains inmore » the biopolyols played an important role in reducing the degree of microphase separation and stabilizing bubbles during foaming processes. PU foams with thermal conductivity comparable to commercial products made from petroleum-based polyols were obtained. These studies show the potential for development of PU foams based on crude glycerol, a renewable resource.« less
Characteristics of long-gap AC streamer discharges under low pressure conditions
NASA Astrophysics Data System (ADS)
Yang, Yaqi; Li, Weiguo; Xia, Yu; Yuan, Chuangye
2017-10-01
The generation and propagation of a streamer is a significant physical process of air gap discharge. Research on the mechanism of streamers under low-pressure conditions is helpful for understanding the process of long-gap discharge in a high-altitude area. This paper describes laboratory investigations of streamer discharge under alternating current (AC) voltage in a low pressure test platform for a 60 cm rod-plane gap at 30 kPa, and analyzes the characteristics of streamer generation and propagation. The results show that the partial streamer and breakdown streamer all occur in the positive half-cycle of AC voltage near the peak voltage at 30 kPa. The partial streamer could cause the distortion of current and voltage waveform, and it appears as the branching characteristic at the initial stage. With the extension of the streamer, the branching and tortuosity phenomena become gradually obvious, but the branching is suppressed when the streamer crosses the gap. The low-pressure condition has little influence on the tortuosity length and the tortuosity number of the streamer, but affect the diameter of streamer obviously.
Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development.
He, Hua; Huang, Meina; Sun, Shenfei; Wu, Yihui; Lin, Xinhua
2017-08-01
The tree-like structure of the mammalian lung is generated from branching morphogenesis, a reiterative process that is precisely regulated by numerous factors. How the cell surface and extra cellular matrix (ECM) molecules regulate this process is still poorly understood. Herein, we show that epithelial deletion of Heparan Sulfate (HS) synthetase Ext1 resulted in expanded branching tips and reduced branching number, associated with several mesenchymal developmental defects. We further demonstrate an expanded Fgf10 expression and increased FGF signaling activity in Ext1 mutant lungs, suggesting a cell non-autonomous mechanism. Consistent with this, we observed reduced levels of SHH signaling which is responsible for suppressing Fgf10 expression. Moreover, reactivating SHH signaling in mutant lungs rescued the tip dilation phenotype and attenuated FGF signaling. Importantly, the reduced SHH signaling activity did not appear to be caused by decreased Shh expression or protein stability; instead, biologically active form of SHH proteins were reduced in both the Ext1 mutant epithelium and surrounding wild type mesenchymal cells. Together, our study highlights the epithelial HS as a key player for dictating SHH signaling critical for lung morphogenesis.
USSR Report, International Affairs
1987-04-28
such processes as thermal processing, welding, assembly, painting, application of paint and lacquer coatings and other operations in various branches...the rubric "International Panorama ": "The Responsibility of the Shipper According to the Laws of Bulgaria, East Germany and Czechoslovakia"] [Text
Oren-Suissa, Meital; Gattegno, Tamar; Kravtsov, Veronika; Podbilewicz, Benjamin
2017-05-01
Injury triggers regeneration of axons and dendrites. Research has identified factors required for axonal regeneration outside the CNS, but little is known about regeneration triggered by dendrotomy. Here, we study neuronal plasticity triggered by dendrotomy and determine the fate of complex PVD arbors following laser surgery of dendrites. We find that severed primary dendrites grow toward each other and reconnect via branch fusion. Simultaneously, terminal branches lose self-avoidance and grow toward each other, meeting and fusing at the tips via an AFF-1-mediated process. Ectopic branch growth is identified as a step in the regeneration process required for bypassing the lesion site. Failure of reconnection to the severed dendrites results in degeneration of the distal end of the neuron. We discover pruning of excess branches via EFF-1 that acts to recover the original wild-type arborization pattern in a late stage of the process. In contrast, AFF-1 activity during dendritic auto-fusion is derived from the lateral seam cells and not autonomously from the PVD neuron. We propose a model in which AFF-1-vesicles derived from the epidermal seam cells fuse neuronal dendrites. Thus, EFF-1 and AFF-1 fusion proteins emerge as new players in neuronal arborization and maintenance of arbor connectivity following injury in Caenorhabditis elegans Our results demonstrate that there is a genetically determined multi-step pathway to repair broken dendrites in which EFF-1 and AFF-1 act on different steps of the pathway. EFF-1 is essential for dendritic pruning after injury and extrinsic AFF-1 mediates dendrite fusion to bypass injuries. Copyright © 2017 by the Genetics Society of America.
Framework Requirements for MDO Application Development
NASA Technical Reports Server (NTRS)
Salas, A. O.; Townsend, J. C.
1999-01-01
Frameworks or problem solving environments that support application development form an active area of research. The Multidisciplinary Optimization Branch at NASA Langley Research Center is investigating frameworks for supporting multidisciplinary analysis and optimization research. The Branch has generated a list of framework requirements, based on the experience gained from the Framework for Interdisciplinary Design Optimization project and the information acquired during a framework evaluation process. In this study, four existing frameworks are examined against these requirements. The results of this examination suggest several topics for further framework research.
2000-05-01
Researchers work with wheat samples that are part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. From left are research scientist Oscar Monje and research technicians Lisa Ruffa and Ignacio Eraso. The payload process testing they are performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-01
Researchers work with wheat samples that are part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. From left are research scientist Oscar Monje and research technicians Lisa Ruffa and Ignacio Eraso. The payload process testing they are performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-14
...) to improve the process for discontinuing Post Offices and other Postal Service-operated retail... appears below. The Postal Service is currently in the process of consultation under 39 U.S.C. 1004(b)-(d... or branches, the Postal Service is making that same process applicable to the discontinuance of all...
Face Processing in Children with ASD: Literature Review
ERIC Educational Resources Information Center
Campatelli, G.; Federico, R. R.; Apicella, F.; Sicca, F.; Muratori, F.
2013-01-01
Face processing has been studied and discussed in depth during previous decades in several branches of science, and evidence from research supports the view that this process is a highly specialized brain function. Several authors argue that difficulties in the use and comprehension of the information conveyed by human faces could represent a core…
Interception processes during snowstorms
David H. Miller
1964-01-01
Four processes are identified as determining the initial interception of falling snow by forest during storms: delivery of snow particles from the airstream to the forest; true throughfall of particles to the forest floor; impaction and adhesion of particles to foliage and branches; and cohesion of particles into masses of snow. Delivery and impaction processes seem...
12 CFR 347.118 - Expedited processing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... subsidiaries of the eligible bank's holding company. (b) Expedited processing of applications for investment in... Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY... eligible bank may establish a foreign branch conducting activities authorized by § 347.115 in an additional...
12 CFR 347.118 - Expedited processing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... subsidiaries of the eligible bank's holding company. (b) Expedited processing of applications for investment in... Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY... eligible bank may establish a foreign branch conducting activities authorized by § 347.115 in an additional...
Software Engineering for Human Spaceflight
NASA Technical Reports Server (NTRS)
Fredrickson, Steven E.
2014-01-01
The Spacecraft Software Engineering Branch of NASA Johnson Space Center (JSC) provides world-class products, leadership, and technical expertise in software engineering, processes, technology, and systems management for human spaceflight. The branch contributes to major NASA programs (e.g. ISS, MPCV/Orion) with in-house software development and prime contractor oversight, and maintains the JSC Engineering Directorate CMMI rating for flight software development. Software engineering teams work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements. They seek to infuse automation and autonomy into missions, and apply new technologies to flight processor and computational architectures. This presentation will provide an overview of key software-related projects, software methodologies and tools, and technology pursuits of interest to the JSC Spacecraft Software Engineering Branch.
Branching fraction measurement of J /ψ →KSKL and search for J /ψ →KSKS
NASA Astrophysics Data System (ADS)
Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Alekseev, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bai, Y.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chen, Z. X.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dorjkhaidav, O.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garillon, B.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, S.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, S. H.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jin, Y.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Khoukaz, A.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuhlmann, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, K. J.; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J. B.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu.; Muramatsu, H.; Mustafa, A.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Pitka, A.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qi, T. Y.; Qian, S.; Qiao, C. F.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rolo, M.; Rong, G.; Rosner, Ch.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B. T.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, B. Q.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Zongyuan; Weber, T.; Wei, D. H.; Wei, J. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Y. J.; Xiao, Z. J.; Xie, X. H.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. H.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Besiii Collaboration
2017-12-01
Using a sample of 1.31 ×109 J /ψ events collected with the BESIII detector at the BEPCII collider, we study the decays of J /ψ →KSKL and KSKS . The branching fraction of J /ψ →KSKL is determined to be B (J /ψ →KSKL)=(1.93 ±0.01 (stat )±0.05 (syst ))×10-4 , which significantly improves on previous measurements. No clear signal is observed for the J /ψ →KSKS process, and the upper limit at the 95% confidence level for its branching fraction is determined to be B (J /ψ →KSKS)<1.4 ×10-8 , which improves on the previous searches by 2 orders in magnitude and reaches the order of the Einstein-Podolsky-Rosen expectation.
{{\\rm{\\Lambda }}}_{c}^{+} physics at BESIII
NASA Astrophysics Data System (ADS)
Wang, Weiping; BESIII collaboration
2018-05-01
Based on the data sets collected by the BESIII detector near the {{{Λ }}}c+{\\bar{{{Λ }}}}c- production threshold, i.e. at \\sqrt{s}=4574.5,4580.0,4590.0, and 4599.5 MeV, we report the preliminary study of the production behaviour of {e}+{e}-\\to {{{Λ }}}c+{\\bar{{{Λ }}}}c- process, including the Born cross section and electromagnetic form factor ratios. Using the large statistic data at \\sqrt{s}=4599.5 {{MeV}}, we measured the absolute branching fractions of Cabibbo-favored hadronic decays of {{{Λ }}}c+ baryon with a double-tag technique. The branching fractions for 12 hadronic decay modes are significantly improved. We also report the model-independent measurement of the branching fraction of {{{Λ }}}c+\\to {{Λ }}{e}+{v}e and {{{Λ }}}c+\\to {{Λ }}{μ }+{v}μ semi-leptonic decays.
Fort Collins Science Center Ecosystem Dynamics Branch
Wilson, Jim; Melcher, C.; Bowen, Z.
2009-01-01
Complex natural resource issues require understanding a web of interactions among ecosystem components that are (1) interdisciplinary, encompassing physical, chemical, and biological processes; (2) spatially complex, involving movements of animals, water, and airborne materials across a range of landscapes and jurisdictions; and (3) temporally complex, occurring over days, weeks, or years, sometimes involving response lags to alteration or exhibiting large natural variation. Scientists in the Ecosystem Dynamics Branch of the U.S. Geological Survey, Fort Collins Science Center, investigate a diversity of these complex natural resource questions at the landscape and systems levels. This Fact Sheet describes the work of the Ecosystems Dynamics Branch, which is focused on energy and land use, climate change and long-term integrated assessments, herbivore-ecosystem interactions, fire and post-fire restoration, and environmental flows and river restoration.
Optimal Limited Contingency Planning
NASA Technical Reports Server (NTRS)
Meuleau, Nicolas; Smith, David E.
2003-01-01
For a given problem, the optimal Markov policy over a finite horizon is a conditional plan containing a potentially large number of branches. However, there are applications where it is desirable to strictly limit the number of decision points and branches in a plan. This raises the question of how one goes about finding optimal plans containing only a limited number of branches. In this paper, we present an any-time algorithm for optimal k-contingency planning. It is the first optimal algorithm for limited contingency planning that is not an explicit enumeration of possible contingent plans. By modelling the problem as a partially observable Markov decision process, it implements the Bellman optimality principle and prunes the solution space. We present experimental results of applying this algorithm to some simple test cases.
The aging process of optical couplers by gamma irradiation
NASA Astrophysics Data System (ADS)
Bednarek, Lukas; Marcinka, Ondrej; Perecar, Frantisek; Papes, Martin; Hajek, Lukas; Nedoma, Jan; Vasinek, Vladimir
2015-08-01
Scientists have recently discovered that the ageing process of optical elements is faster than it was originally anticipated. It is mostly due to the multiple increases of the optical power in optical components, the introduction of wavelength division multiplexers and, overall, the increased flow of traffic in optical communications. This article examines the ageing process of optical couplers and it focuses on their performance parameters. It describes the measurement procedure followed by the evaluation of the measurement results. To accelerate the ageing process, gamma irradiation from 60Co was used. The results of the measurements of the optical coupler with one input and eight outputs (1:8) were summarized. The results gained by measuring of the optical coupler with one input and four outputs (1:4) as well as of the optical couplers with one input and two outputs (1:2) with different split ratios were also processed. The optical powers were measured on the input and the outputs of each branch of each optical coupler at the wavelengths of 1310 nm and 1550 nm. The parameters of the optical couplers were subsequently calculated according to the appropriate formulas. These parameters were the insertion loss of the individual branches, split ratio, total losses, homogeneity of the losses and directionalities alias cross-talk between the individual output branches. The gathered data were summarized before and after the first irradiation when the configuration of the couplers was 1:8 and 1:4. The data were summarized after the third irradiation when the configuration of the couplers was 1:2.
Geisler, Christoph; Jarvis, Donald L
2012-03-02
Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2) is a key branch point intermediate in the insect N-glycosylation pathway because it can be either trimmed by a processing β-N-acetylglucosaminidase (FDL) to produce paucimannosidic N-glycans or elongated by N-acetylglucosaminyltransferase II (GNT-II) to produce complex N-glycans. N-acetylglucosaminyltransferase I (GNT-I) contributes to branch point intermediate production and can potentially reverse the FDL trimming reaction. However, there has been no concerted effort to evaluate the relationships among these three enzymes in any single insect system. Hence, we extended our previous studies on Spodoptera frugiperda (Sf) FDL to include GNT-I and -II. Sf-GNT-I and -II cDNAs were isolated, the predicted protein sequences were analyzed, and both gene products were expressed and their acceptor substrate specificities and intracellular localizations were determined. Sf-GNT-I transferred N-acetylglucosamine to Man(5)GlcNAc(2), Man(3)GlcNAc(2), and GlcNAc(β1-2)Man(α1-6)[Man(α1-3)]ManGlcNAc(2), demonstrating its role in branch point intermediate production and its ability to reverse FDL trimming. Sf-GNT-II only transferred N-acetylglucosamine to Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2), demonstrating that it initiates complex N-glycan production, but cannot use Man(3)GlcNAc(2) to produce hybrid or complex structures. Fluorescently tagged Sf-GNT-I and -II co-localized with an endogenous Sf Golgi marker and Sf-FDL co-localized with Sf-GNT-I and -II, indicating that all three enzymes are Golgi resident proteins. Unexpectedly, fluorescently tagged Drosophila melanogaster FDL also co-localized with Sf-GNT-I and an endogenous Drosophila Golgi marker, indicating that it is a Golgi resident enzyme in insect cells. Thus, the substrate specificities and physical juxtapositioning of GNT-I, GNT-II, and FDL support the idea that these enzymes function at the N-glycan processing branch point and are major factors determining the net outcome of the insect cell N-glycosylation pathway.
Munguia, Lluis-Miquel; Oxberry, Geoffrey; Rajan, Deepak
2016-05-01
Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. In order to overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels of the optimization process. We also show promising results on the SIPLIB benchmark by combining methods known for accelerating Branch and Bound (B&B) methods with new ideas that leverage the structure of SMIPs. Finally, we expect the performance of PIPS-SBB to improve furthermore » as more functionality is added in the future.« less
Effects of microgravity on vestibular development and function in rats: genetics and environment
NASA Technical Reports Server (NTRS)
Ronca, A. E.; Fritzsch, B.; Alberts, J. R.; Bruce, L. L.
2000-01-01
Our anatomical and behavioral studies of embryonic rats that developed in microgravity suggest that the vestibular sensory system, like the visual system, has genetically mediated processes of development that establish crude connections between the periphery and the brain. Environmental stimuli also regulate connection formation including terminal branch formation and fine-tuning of synaptic contacts. Axons of vestibular sensory neurons from gravistatic as well as linear acceleration receptors reach their targets in both microgravity and normal gravity, suggesting that this is a genetically regulated component of development. However, microgravity exposure delays the development of terminal branches and synapses in gravistatic but not linear acceleration-sensitive neurons and also produces behavioral changes. These latter changes reflect environmentally controlled processes of development.
Formation of crystal-like structures and branched networks from nonionic spherical micelles
NASA Astrophysics Data System (ADS)
Cardiel, Joshua J.; Furusho, Hirotoshi; Skoglund, Ulf; Shen, Amy Q.
2015-12-01
Crystal-like structures at nano and micron scales have promise for purification and confined reactions, and as starting points for fabricating highly ordered crystals for protein engineering and drug discovery applications. However, developing controlled crystallization techniques from batch processes remain challenging. We show that neutrally charged nanoscale spherical micelles from biocompatible nonionic surfactant solutions can evolve into nano- and micro-sized branched networks and crystal-like structures. This occurs under simple combinations of temperature and flow conditions. Our findings not only suggest new opportunities for developing controlled universal crystallization and encapsulation procedures that are sensitive to ionic environments and high temperatures, but also open up new pathways for accelerating drug discovery processes, which are of tremendous interest to pharmaceutical and biotechnological industries.
Lauri, P. É.; Kelner, J. J.; Trottier, C.; Costes, E.
2010-01-01
Background and Aims Secondary growth is a main physiological sink. However, the hierarchy between the processes which compete with secondary growth is still a matter of debate, especially on fruit trees where fruit weight dramatically increases with time. It was hypothesized that tree architecture, here mediated by branch age, is likely to have a major effect on the dynamics of secondary growth within a growing season. Methods Three variables were monitored on 6-year-old ‘Golden Delicious’ apple trees from flowering time to harvest: primary shoot growth, fruit volume, and cross-section area of branch portions of consecutive ages. Analyses were done through an ANOVA-type analysis in a linear mixed model framework. Key Results Secondary growth exhibited three consecutive phases characterized by unequal relative area increment over the season. The age of the branch had the strongest effect, with the highest and lowest relative area increment for the current-year shoots and the trunk, respectively. The growth phase had a lower effect, with a shift of secondary growth through the season from leafy shoots towards older branch portions. Eventually, fruit load had an effect on secondary growth mainly after primary growth had ceased. Conclusions The results support the idea that relationships between production of photosynthates and allocation depend on both primary growth and branch architectural position. Fruit load mainly interacted with secondary growth later in the season, especially on old branch portions. PMID:20228088
Bajotto, Gustavo; Murakami, Taro; Nagasaki, Masaru; Sato, Yuzo; Shimomura, Yoshiharu
2009-10-01
The mitochondrial branched-chain alpha-keto acid dehydrogenase complex (BCKDC) is responsible for the committed step in branched-chain amino acid catabolism. In the present study, we examined BCKDC regulation in Otsuka Long-Evans Tokushima Fatty (OLETF) rats both before (8 weeks of age) and after (25 weeks of age) the onset of type 2 diabetes mellitus. Long-Evans Tokushima Otsuka (LETO) rats were used as controls. Plasma branched-chain amino acid and branched-chain alpha-keto acid concentrations were significantly increased in young and middle-aged OLETF rats. Although the hepatic complex was nearly 100% active in all animals, total BCKDC activity and protein abundance of E1alpha, E1beta, and E2 subunits were markedly lower in OLETF than in LETO rats at 8 and 25 weeks of age. In addition, hepatic BCKDC activity and protein amounts were significantly decreased in LETO rats aged 25 weeks than in LETO rats aged 8 weeks. In skeletal muscle, E1beta and E2 proteins were significantly reduced, whereas E1alpha tended to increase in OLETF rats. Taken together, these results suggest that (1) whole-body branched-chain alpha-keto acid oxidation capacity is extremely reduced in OLETF rats independently of diabetes development, (2) the aging process decreases BCKDC activity and protein abundance in the liver of normal rats, and (3) differential posttranscriptional regulation for the subunits of BCKDC may exist in skeletal muscle.
Chen, Caiyan; Zou, Junhuang; Zhang, Shuying; Zaitlin, David; Zhu, Lihuang
2009-08-01
Because plants are sessile organisms, the ability to adapt to a wide range of environmental conditions is critical for their survival. As a consequence, plants use hormones to regulate growth, mitigate biotic and abiotic stresses, and to communicate with other organisms. Many plant hormones function pleiotropically in vivo, and often work in tandem with other hormones that are chemically distinct. A newly-defined class of plant hormones, the strigolactones, cooperate with auxins and cytokinins to control shoot branching and the outgrowth of lateral buds. Strigolactones were originally identified as compounds that stimulated the germination of parasitic plant seeds, and were also demonstrated to induce hyphal branching in arbuscular mycorrhizal (AM) fungi. AM fungi form symbioses with higher plant roots and mainly facilitate the absorption of phosphate from the soil. Conforming to the classical definition of a plant hormone, strigolactones are produced in the roots and translocated to the shoots where they inhibit shoot outgrowth and branching. The biosynthesis of this class of compounds is regulated by soil nutrient availability, i.e. the plant will increase its production of strigolactones when the soil phosphate concentration is limited, and decrease production when phosphates are in ample supply. Strigolactones that affect plant shoot branching, AM fungal hyphal branching, and seed germination in parasitic plants facilitate chemical synthesis of similar compounds to control these and other biological processes by exogenous application.
Lauri, P E; Kelner, J J; Trottier, C; Costes, E
2010-04-01
Secondary growth is a main physiological sink. However, the hierarchy between the processes which compete with secondary growth is still a matter of debate, especially on fruit trees where fruit weight dramatically increases with time. It was hypothesized that tree architecture, here mediated by branch age, is likely to have a major effect on the dynamics of secondary growth within a growing season. Three variables were monitored on 6-year-old 'Golden Delicious' apple trees from flowering time to harvest: primary shoot growth, fruit volume, and cross-section area of branch portions of consecutive ages. Analyses were done through an ANOVA-type analysis in a linear mixed model framework. Secondary growth exhibited three consecutive phases characterized by unequal relative area increment over the season. The age of the branch had the strongest effect, with the highest and lowest relative area increment for the current-year shoots and the trunk, respectively. The growth phase had a lower effect, with a shift of secondary growth through the season from leafy shoots towards older branch portions. Eventually, fruit load had an effect on secondary growth mainly after primary growth had ceased. The results support the idea that relationships between production of photosynthates and allocation depend on both primary growth and branch architectural position. Fruit load mainly interacted with secondary growth later in the season, especially on old branch portions.
Habasaki, Junko; Ueda, Akira
2011-02-28
Molecular dynamics simulations have been performed to study the glass transition for the soft core system with a pair potential φ(n)(r) = ε(σ∕r)(n) of n = 12. Using the compressibility factor, PV/Nk(B)T=P̃(ρ*), its phase diagram can be represented as a function of a reduced density, ρ∗ = ρ(ε∕k(B)T)(3∕n), where ρ = Nσ(3)∕V. In the present work, NVE relaxations to the glassy or crystalline states starting from the unstable states in the phase diagram have been revisited in details and compared with other processes. Relaxation processes can be characterized by the time dependence of the dynamical compressibility factor (PV/Nk(B)T)(t) (≡g(ρ(t)*)) on the phase diagram. In some cases, g(ρ(t)*) reached a crystal branch in the phase diagram; however, metastable states are found in many cases. With connecting points for the metastable states in the phase diagram, we can define a glass branch where the dynamics of particles are almost frozen. The structures observed there have common properties characterized as glasses. Although overlaps of glass forming process and nanocrystallization process are observed in some cases, these behaviors are distinguishable to each other by the characteristics of structures. There are several routes to the glass branch and we suggest that all of them are the glass transition.
Arterial Anatomy of the Posterior Tibial Nerve in the Tarsal Tunnel.
Manske, Mary Claire; McKeon, Kathleen E; McCormick, Jeremy J; Johnson, Jeffrey E; Klein, Sandra E
2016-03-16
Both vascular and compression etiologies have been proposed as the source of neurologic symptoms in tarsal tunnel syndrome. Advancing the understanding of the arterial anatomy supplying the posterior tibial nerve (PTN) and its branches may provide insight into the cause of tarsal tunnel symptoms. The purpose of this study was to describe the arterial anatomy of the PTN and its branches. Sixty adult cadaveric lower extremities (thirty previously frozen and thirty fresh specimens) were amputated distal to the knee. The vascular supply to the PTN and its branches was identified, measured, and described macroscopically (the thirty previously frozen specimens, prepared using a formerly described debridement technique) and microscopically (the thirty fresh specimens, processed using the Spälteholz technique). On both macroscopic and microscopic evaluation, the PTN and the medial and lateral plantar nerves were observed to have multiple entering vessels within the tarsal tunnel. On microscopic evaluation, a vessel was observed to enter the nerve at the bifurcation of the PTN into the medial and lateral plantar nerves in twenty-two (73%) of the thirty specimens. There was a significant difference (p < 0.05) in vascular density between the PTN and each of its branches. The abundant blood supply to the PTN and its branches identified in this study is consistent with observations of other peripheral nerves. This rich vascular network may render the PTN and its branches susceptible to nerve compression related to vascular congestion. The combination of vascular and structural compression may also elicit neurologic symptoms. Advancing the understanding of the arterial anatomy supplying the PTN and its branches may provide insight into the cause and treatment of tarsal tunnel syndrome. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.
Xu, Jason; Guttorp, Peter; Kato-Maeda, Midori; Minin, Vladimir N
2015-12-01
Continuous-time birth-death-shift (BDS) processes are frequently used in stochastic modeling, with many applications in ecology and epidemiology. In particular, such processes can model evolutionary dynamics of transposable elements-important genetic markers in molecular epidemiology. Estimation of the effects of individual covariates on the birth, death, and shift rates of the process can be accomplished by analyzing patient data, but inferring these rates in a discretely and unevenly observed setting presents computational challenges. We propose a multi-type branching process approximation to BDS processes and develop a corresponding expectation maximization algorithm, where we use spectral techniques to reduce calculation of expected sufficient statistics to low-dimensional integration. These techniques yield an efficient and robust optimization routine for inferring the rates of the BDS process, and apply broadly to multi-type branching processes whose rates can depend on many covariates. After rigorously testing our methodology in simulation studies, we apply our method to study intrapatient time evolution of IS6110 transposable element, a genetic marker frequently used during estimation of epidemiological clusters of Mycobacterium tuberculosis infections. © 2015, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Endrawati, Titin; Siregar, M. Tirtana
2018-03-01
PT Mentari Trans Nusantara is a company engaged in the distribution of goods from the manufacture of the product to the distributor branch of the customer so that the product distribution must be controlled directly from the PT Mentari Trans Nusantara Center for faster delivery process. Problems often occur on the expedition company which in charge in sending the goods although it has quite extensive networking. The company is less control over logistics management. Meanwhile, logistics distribution management control policy will affect the company's performance in distributing products to customer distributor branches and managing product inventory in distribution center. PT Mentari Trans Nusantara is an expedition company which engaged in good delivery, including in Jakarta. Logistics management performance is very important due to its related to the supply of goods from the central activities to the branches based oncustomer demand. Supply chain management performance is obviously depends on the location of both the distribution center and branches, the smoothness of transportation in the distribution and the availability of the product in the distribution center to meet the demand in order to avoid losing sales. This study concluded that the company could be more efficient and effective in minimizing the risks of loses by improve its logistic management.
A stepped leader model for lightning including charge distribution in branched channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Wei; Zhang, Li; Li, Qingmin, E-mail: lqmeee@ncepu.edu.cn
2014-09-14
The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statisticsmore » of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.« less
Corral, Álvaro; Garcia-Millan, Rosalba; Font-Clos, Francesc
2016-01-01
The theory of finite-size scaling explains how the singular behavior of thermodynamic quantities in the critical point of a phase transition emerges when the size of the system becomes infinite. Usually, this theory is presented in a phenomenological way. Here, we exactly demonstrate the existence of a finite-size scaling law for the Galton-Watson branching processes when the number of offsprings of each individual follows either a geometric distribution or a generalized geometric distribution. We also derive the corrections to scaling and the limits of validity of the finite-size scaling law away the critical point. A mapping between branching processes and random walks allows us to establish that these results also hold for the latter case, for which the order parameter turns out to be the probability of hitting a distant boundary. PMID:27584596
NASA Technical Reports Server (NTRS)
Dezern, James F. (Technical Monitor); Chang, Alice C.
1999-01-01
As part of a program to develop structural adhesives for high performance aerospace applications, research continued on the development of modified phenylethynyl containing imides, LaRC(trademark)MPEIs. In previous reports, the polymer properties were controlled by varying the molecular weight, the amount of branching, and the phenylethynyl content and by blending with low molecular weight materials. This research involves changing the flexibility in the copolyimide backbone of the branched, phenylethynyl terminated adhesives. These adhesives exhibit excellent processability at pressures as low as 15 psi and temperatures as low as 288 C. The Ti/Ti lap shear specimens are processable in an autoclave or a temperature programmable oven under a vacuum bag at 288-300 C without external pressure. The cured polymers exhibit high mechanical properties and excellent solvent resistance. The chemistry and properties of these adhesives are presented.
Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem
2017-02-01
Pulmonary hypoplasia (PH), characterized by smaller lung size and reduced airway branching, remains a major therapeutic challenge in newborns with congenital diaphragmatic hernia (CDH). T-box transcription factors (Tbx) have been identified as key components of the gene network that regulates fetal lung development. Tbx2, Tbx4 and Tbx5 are expressed throughout the mesenchyme of the developing lung, regulating the process of lung branching morphogenesis. Furthermore, lungs of Tbx2-, Tbx4- and Tbx5-deficient mice are hypoplastic and exhibit decreased lung branching, similar to PH in human CDH. We hypothesized that the expression of Tbx2, Tbx4 and Tbx5 is decreased in the branching airway mesenchyme of hypoplastic rat lungs with nitrofen-induced CDH. Time-mated rats received either nitrofen or vehicle on gestational day 9 (D9). Fetuses were killed on D15, D18 and D21, and dissected lungs were divided into control and nitrofen-exposed specimens. Pulmonary gene expression of Tbx2, Tbx4 and Tbx5 was investigated by quantitative real-time polymerase chain reaction. Immunofluorescence double staining for Tbx2, Tbx4 and Tbx5 was combined with the mesenchymal marker Fgf10 to assess protein expression and localization in branching airway tissue. Relative mRNA levels of Tbx2, Tbx4 and Tbx5 were significantly reduced in lungs of nitrofen-exposed fetuses on D15, D18 and D21 compared to controls. Confocal laser scanning microscopy showed markedly diminished immunofluorescence of Tbx2, Tbx4 and Tbx5 in mesenchymal cells surrounding branching airways of nitrofen-exposed fetuses on D15, D18 and D21 compared to controls. Decreased expression of Tbx2, Tbx4 and Tbx5 in the pulmonary mesenchyme during fetal lung development may lead to a decrease or arrest of airway branching, thus contributing to PH in the nitrofen-induced CDH model.
Ou, Jian de; Wu, Zhi Zhuang; Luo, Ning
2016-10-01
In order to clarify the effects of forest gap size on the growth and stem form quality of Taxus wallichina var. mairei and effectiveness of the precious timbers cultivation, 25 sample plots in Cunninghamia lanceolata forest gaps were established in Mingxi County, Fujian Province, China to determine the indices of the growth, stem form and branching indices of T. wallichina var. mairei seedlings. The relationships between the gap size and growth, stem form and branching were investigated. The 25 sample plots were located at five microhabitats which were classified based on gap size as follows: Class1, 2, 3, 4 and 5, which had a gap size of 25-50 m 2 , 50-75 m 2 , 75-100 m 2 , 100-125 m 2 and 125-150 m 2 , respectively. The evaluation index system of precious timbers was built by using hierarchical analysis. The 5 classes of forest gaps were evaluated comprehensively by using the multiobjective decision making method. The results showed that gap size significantly affected 11 indices, i.e., height, DBH, crown width, forking rate, stem straightness, stem fullness, taperingness, diameter height ratio, height under living branch, interval between branches, and max-branch base diameter. Class1and 2 both significantly promoted the growth of height, DBH and crown width, and both significantly inhibited forking rate and taperingness, and improved stem straightness. Class2 significantly improved stem fullness and diameter height ratio. Class1and 2 significantly improved height under living branch and reduced max-branch base diameter. Class 1 significantly increased interval between branches. Class1and2 significantly improved the comprehensive evaluation score of precious timbers. This study suggested that controlled cutting intensity could be used to create forest gaps of 25-75 m 2 , which improved the precious timber cultivating process of T. wallichina var. mairei in C. lanceolata forests.
Tomlinson, P. B.; Huggett, Brett A.
2011-01-01
Background and Aims Conifers are characterized by the paucity of axillary buds which in dicotyledonous trees usually occur at every node. To compensate, conifers also produce ‘axillary meristems’, which may be stimulated to late development. In juvenile material of Wollemia nobilis (Araucariaceae: Massart's model) first-order (plagiotropic) branches lack both axillary buds and, seemingly, axillary meristems. This contrasts with orthotropic (trunk) axes, which produce branches, either within the terminal bud or as reiterated orthotropic axes originating from axillary meristems. However, plagiotropic axes do produce branches if they are decapitated. This study investigated how this can occur if axillary meristems are not the source. Methods The terminal buds of a series of plagiotropic branches on juvenile trees were decapitated in order to generate axillary shoots. Shoots were culled at about weekly intervals to obtain stages in lateral shoot development. Serial sections were cut with a sliding microtome from the distal end of each sample and scanned sequentially for evidence of axillary meristems and early bud development. Key Results Anatomical search produced no clear evidence of pre-existing axillary meristems but did reveal stages of bud initiation. Buds were initiated in a group of small starch-rich cortical cells. Further development involved de-differentiation of these small cells and the development of contrasting outer and inner regions. The outer part becomes meristematic and organizes the apex of the new branch. The inner part develops a callus-like tissue of vacuolated cells within which vascular cambia are developed. This kind of insertion of a branch on the parent axis seems not to have been described before. Conclusions Axillary meristems in Wollemia characterize the leaf axils of trunk axes so that the origin of reiterated shoots is clear. Plagiotropic axes seemingly lack axillary meristems but still produce axillary branches by distinctive developmental processes. These observations demonstrate limited understanding of branch initiation in trees generally. PMID:21335327
Lee, Sang-Hee; Lee, Minho; Kim, Hee-Jin
2014-10-01
We aimed to elucidate the tortuous course of the perioral artery with the aid of image processing, and to suggest accurate reference points for minimally invasive surgery. We used 59 hemifaces from 19 Korean and 20 Thai cadavers. A perioral line was defined to connect the point at which the facial artery emerged on the mandibular margin, and the ramification point of the lateral nasal artery and the inferior alar branch. The course of the perioral artery was reproduced as a graph based on the perioral line and analysed by adding the image of the artery using MATLAB. The course of the artery could be classified into 2 according to the course of the alar branch - oblique and vertical. Two distinct inflection points appeared in the course of the artery along the perioral line at the ramification points of the alar branch and the inferior labial artery, respectively, and the course of the artery across the face can be predicted based on the following references: the perioral line, the ramification point of the alar branch (5∼10 mm medial to the perioral line at the level of the lower third of the upper lip) and the inferior labial artery (5∼10 mm medial to the perioral line at the level of the middle of the lower lip). Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Allman, Elizabeth S; Degnan, James H; Rhodes, John A
2011-06-01
Gene trees are evolutionary trees representing the ancestry of genes sampled from multiple populations. Species trees represent populations of individuals-each with many genes-splitting into new populations or species. The coalescent process, which models ancestry of gene copies within populations, is often used to model the probability distribution of gene trees given a fixed species tree. This multispecies coalescent model provides a framework for phylogeneticists to infer species trees from gene trees using maximum likelihood or Bayesian approaches. Because the coalescent models a branching process over time, all trees are typically assumed to be rooted in this setting. Often, however, gene trees inferred by traditional phylogenetic methods are unrooted. We investigate probabilities of unrooted gene trees under the multispecies coalescent model. We show that when there are four species with one gene sampled per species, the distribution of unrooted gene tree topologies identifies the unrooted species tree topology and some, but not all, information in the species tree edges (branch lengths). The location of the root on the species tree is not identifiable in this situation. However, for 5 or more species with one gene sampled per species, we show that the distribution of unrooted gene tree topologies identifies the rooted species tree topology and all its internal branch lengths. The length of any pendant branch leading to a leaf of the species tree is also identifiable for any species from which more than one gene is sampled.
NASA Astrophysics Data System (ADS)
Ma, Lei; Wang, Yizhong; Chen, Ning; Liu, Tiegen; Xu, Qingyang; Kong, Fanzhi
2008-12-01
In this paper, a new method for monitoring and controlling fermentation process of branched chain amino acid (BCAA) was proposed based on color identification. The color image of fermentation broth of BCAA was firstly taken by a CCD camera. Then, it was changed from RGB color model to HIS color model. Its histograms of hue H and saturation S were calculated, which were used as the input of a designed BP network. The output of the BP network was the description of the color of fermentation broth of BCAA. After training, the color of fermentation broth was identified by the BP network according to the histograms of H and S of a fermentation broth image. Along with other parameters, the fermentation process of BCAA was monitored and controlled to start the stationary phase of fermentation soon. Experiments were conducted with satisfied results to show the feasibility and usefulness of color identification of fermentation broth in fermentation process control of BCAA.
NASA Astrophysics Data System (ADS)
Canale, Philip Louis
Studies were undertaken to gain an understanding as to the mechanistic, rheological, thermal, and mechanical property effects that can be expected by reactively extruding biodegradable polyesters with dicumyl peroxide (DCP). The two main polymers used were poly(epsilon-caprolactone), (PCL), and proprietary copolyester, Eastar 14766. The reactive extrusions were carried out at 160°C at various DCP levels. The percent branching and type of branching, (tetraor tri-functional), were determined by SEC and by the comparison of branched distributions to statistical models. It was found that PCL quantitatively formed tetra-functional branches while the Eastar 14766 formed a combination of tri- and tetra-functional branch points. The Eastar 14766 was also shown to be more reactive than the PCL, with half as much DCP being required to achieve equivalent amounts of branching. Thermal properties were studied by differential scanning calorimetry. In a multi-phase, upper critical solution temperature (UCST) system, such as Eastar 14766, the branches resulted in a compatiblization effect. This was shown as an increase in the glass transition temperature rising with the DCP level used in the reactive extrusion. The crystallization temperature decreased, and the heat of melting increased as the amount of branching/DCP level increased. The latter was attributed to the lower stereo regularity and/or the lower crystallization rate. The crystallization temperature increase is attributed to increased kinetics required, due to slower phase separation or increased viscosity. Branching/DCP level was shown to have a smaller effect on PCL, with the largest effect being an 11% relative decrease in heat of melting at the highest DCP level. Rheology studies showed that both Eastar 14766 and PCL displayed typical branching behavior with increases in melt elasticity and zero shear viscosity. An estimate of the plateau modulus revealed the entanglement molecular weight for Eastar 14766 to be approximately three times lower than that of PCL. This explained why Eastar 14766 had a larger enhancement in zero shear viscosity and elasticity than PCL. It was also noted, qualitatively, that branching in both materials produced a broadened elastic modulus curve. This was attributed to the difference in the molecular weight/relaxation time relationship between linear and branched materials. Tensile modulus and elongation studies showed PCL to be insensitive to branching. However, studies with Eastar 14766 showed tensile strength and elongation at break to be increased 30 and 10% respectively with branching. Tensile modulus on the other hand, remained relatively unchanged. These effects were attributed to phase changes due to increased compatibilization of the copolymer. A brief study of a 50/50 blend of Eastar 14766 and Poly(lactic acid) with and without DCP showed that the blend with DCP had a similar tensile strength. However, the ultimate elongation increased by 150% and the modulus decreased of 26%. This shows the possible utility of reactive blending with peroxides in order to achieve a higher degree of compatibilization in a blend.
The Mediterranean Overflow in the Gulf of Cadiz: A rugged journey
Sánchez-Leal, Ricardo F.; Bellanco, María Jesús; Fernández-Salas, Luis Miguel; García-Lafuente, Jesús; Gasser-Rubinat, Marc; González-Pola, César; Hernández-Molina, Francisco J.; Pelegrí, Josep L.; Peliz, Alvaro; Relvas, Paulo; Roque, David; Ruiz-Villarreal, Manuel; Sammartino, Simone; Sánchez-Garrido, José Carlos
2017-01-01
The pathways and transformations of dense water overflows, which depend on small-scale interactions between flow dynamics and erosional-depositional processes, are a central piece in the ocean’s large-scale circulation. A novel, high-resolution current and hydrographic data set highlights the intricate pathway travelled by the saline Mediterranean Overflow as it enters the Atlantic. Interaction with the topography constraints its spreading. Over the initial 200 km west of the Gibraltar gateway, distinct channels separate the initial gravity current into several plunging branches depth-sorted by density. Shallow branches follow the upper slope and eventually detach as buoyant plumes. Deeper branches occupy mid slope channels and coalesce upon reaching a diapiric ridge. A still deeper branch, guided by a lower channel wall marked by transverse furrows, experiences small-scale overflows which travel downslope to settle at mid-depths. The Mediterranean salt flux into the Atlantic has implications for the buoyancy balance in the North Atlantic. Observations on how this flux enters at different depth levels are key to accurately measuring and understanding the role of Mediterranean Outflow in future climate scenarios. PMID:29152570
Yang, Guorui; Wang, Ling; Peng, Shengjie; Wang, Jianan; Ji, Dongxiao; Yan, Wei; Ramakrishna, Seeram
2017-12-01
1D branched TiO 2 nanomaterials play a significant role in efficient photocatalysis and high-performance lithium ion batteries. In contrast to the typical methods which generally have to employ epitaxial growth, the direct in situ growth of hierarchically branched TiO 2 nanofibers by a combination of the electrospinning technique and the alkali-hydrothermal process is presented in this work. Such the branched nanofibers exhibit improvement in terms of photocatalytic hydrogen evolution (0.41 mmol g -1 h -1 ), in comparison to the conventional TiO 2 nanofibers (0.11 mmol g -1 h -1 ) and P25 (0.082 mmol g -1 h -1 ). Furthermore, these nanofibers also deliver higher lithium specific capacity at different current densities, and the specific capacity at the rate of 2 C is as high as 201. 0 mAh g -1 , roughly two times higher than that of the pristine TiO 2 nanofibers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Critical spreading dynamics of parity conserving annihilating random walks with power-law branching
NASA Astrophysics Data System (ADS)
Laise, T.; dos Anjos, F. C.; Argolo, C.; Lyra, M. L.
2018-09-01
We investigate the critical spreading of the parity conserving annihilating random walks model with Lévy-like branching. The random walks are considered to perform normal diffusion with probability p on the sites of a one-dimensional lattice, annihilating in pairs by contact. With probability 1 - p, each particle can also produce two offspring which are placed at a distance r from the original site following a power-law Lévy-like distribution P(r) ∝ 1 /rα. We perform numerical simulations starting from a single particle. A finite-time scaling analysis is employed to locate the critical diffusion probability pc below which a finite density of particles is developed in the long-time limit. Further, we estimate the spreading dynamical exponents related to the increase of the average number of particles at the critical point and its respective fluctuations. The critical exponents deviate from those of the counterpart model with short-range branching for small values of α. The numerical data suggest that continuously varying spreading exponents sets up while the branching process still results in a diffusive-like spreading.
A high-response ethanol gas sensor based on one-dimensional TiO2/V2O5 branched nanoheterostructures
NASA Astrophysics Data System (ADS)
Wang, Yuan; Zhou, Yun; Meng, Chuanmin; Gao, Zhao; Cao, Xiuxia; Li, Xuhai; Xu, Liang; Zhu, Wenjun; Peng, Xusheng; Zhang, Botao; Lin, Yifeng; Liu, Lixin
2016-10-01
Hierarchical nanostructures with much increased surface-to-volume ratio have been of significant interest for prototypical gas sensors. Herein we report a novel resistive gas sensor based on TiO2/V2O5 branched nanoheterostructures fabricated by a facile one-step synthetic process, in which well-matched energy levels induced by the formation of effective heterojunctions between TiO2 and V2O5, a large Brunauer-Emmett-Teller surface area and complete electron depletion for the V2O5 nanobranches induced by the branched-nanofiber structures are all beneficial to the change of resistance upon ethanol exposure. As a result, the ethanol sensing performance of this device shows a lower operating temperature, faster response/recovery behavior, better selectivity and about seven times higher sensitivity compared with pure TiO2 nanofibers. This study not only confirms the gas sensing mechanism for performing enhancement of branched nanoheterostructures, but also proposes a rational approach to the design of nanostructure-based chemical sensors with desirable performance.
NASA Technical Reports Server (NTRS)
Barnes, Bruce W.; Sessions, Alaric M.; Beyon, Jeffrey; Petway, Larry B.
2014-01-01
Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations.
ETO - ENGINEERING TRADE-OFFS (SYSTEMS ANALYSIS BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)
The ETO - Engineering Trade-Offs program is to develop a new, integrated decision-making approach to compare/contrast two or more states of being: a benchmark and an alternative, a change in a production process, alternative processes or products. ETO highlights the difference in...
Shrestha, Ashok K; Blazek, Jaroslav; Flanagan, Bernadine M; Dhital, Sushil; Larroque, Oscar; Morell, Matthew K; Gilbert, Elliot P; Gidley, Michael J
2015-03-15
Extrusion processing of cereal starch granules with high (>50%) amylose content is a promising approach to create nutritionally desirable resistant starch, i.e. starch that escapes digestion in the small intestine. Whilst high amylose content seems to be required, the structural features responsible for the slow digestion of extrudates are not fully understood. We report the effects of partial enzyme digestion of extruded maize starches on amylopectin branch length profiles, double and single helix contents, crystallinity and lamellar periodicity. Comparing results for three extruded maize starches (27, 57, and 84% apparent amylose) that differ in amylase-sensitivity allows conclusions to be drawn concerning the rate-determining features operating under the digestion conditions used. Enzyme resistance is shown to originate from a combination of molecular and mesoscopic factors, including both recrystallization and an increase in very short branches during the digestion process. This is in contrast to the behaviour of the same starches in the granular form (Shrestha et al., 2012) where molecular and mesoscopic factors are secondary to microscopic structures in determining enzyme susceptibility. Based on the structure of residual material after long-time digestion (>8h), a model for resistant starch from processed high amylose maize starches is proposed based on a fringed micelle structure with lateral aggregation and enzyme susceptibility both limited by attached clusters of branch points. Copyright © 2014 Elsevier Ltd. All rights reserved.
Astrophysical relevance of the low-energy dipole strength of 206Pb
NASA Astrophysics Data System (ADS)
Tonchev, A. P.; Tsoneva, N.; Goriely, S.; Bhatia, C.; Arnold, C. W.; Hammond, S. L.; Kelley, J. H.; Kwan, E.; Lenske, H.; Piekarewicz, J.; Raut, R.; Rusev, G.; Shizuma, T.; Tornow, W.
2018-05-01
The dipole strength of 206Pb was studied below the neutron separation energy using photon scattering experiments at the HIGS facility. Utilizing the technique of nuclear resonance fluorescence with 100% linearly-polarized photon beams, the spins, parities, branching ratios and decay widths of excited states in 206Pb from 4.9 - 8.1 MeV have been measured. The new experimental information is used to reliably predict the neutron capture cross section of 205Pb, an important branch point nucleus along the s-process path of nucleosynthesis.
Double charmonia production in exclusive Z-boson decays
NASA Astrophysics Data System (ADS)
Likhoded, A. K.; Luchinsky, A. V.
2018-05-01
This paper is devoted to systematic analysis of double charmonium production in exclusive Z-boson decays in the framework of non-relativistic quantum chromodynamics (NRQCD) and leading twist light-cone (LC) models. Theoretical predictions for branching fractions of all considered decays are presented. According to the obtained results in the case of the allowed helicity suppression rule processes, the effect of internal quark motion increases the branching fractions by a factor 1.5, while for forbidden reactions the LC predictions are strictly zero, while NRQCD ones are significantly smaller than for allowed.
Research experiments at Hangar L
NASA Technical Reports Server (NTRS)
2000-01-01
Researchers work with wheat samples that are part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. From left are research scientist Oscar Monje and research technicians Lisa Ruffa and Ignacio Eraso. The payload process testing they are performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.
Congestion relaxation due to density-dependent junction rules in TASEP network
NASA Astrophysics Data System (ADS)
Tannai, Takahiro; Nishinari, Katsuhiro
2017-09-01
We now consider a small network module of Totally Asymmetric Simple Exclusion Process with branching and aggregation points, and rules of junctions dependent on the densities of segments of the network module. We also focus on the interaction among junctions which are branching and aggregation. The interaction among junctions with density-dependent rules possesses more complexity than those with density-independent rules studied in the previous papers. In conclusion, we confirm the result that density-dependent rules enable vehicles to move more effectively than the density-independent rules.
Netrins and UNC5 receptors in angiogenesis.
Freitas, Catarina; Larrivée, Bruno; Eichmann, Anne
2008-01-01
Both neuronal and vascular development require guidance to establish a precise branching pattern of these systems in the vertebrate body. Several molecules implicated in axon navigation have also been shown to regulate vessel sprouting. Among these guidance cues, Netrins constitute a family of diffusible molecules with a bifuncional role in axon pathfinding. Recent findings implicate Netrins in other developmental processes, including vascular development. We here review recent studies and discuss the possible dual function of Netrins and its receptors during branching of blood vessels in developmental and pathological angiogenesis.
Effect of sequence-dependent rigidity on plectoneme localization in dsDNA
NASA Astrophysics Data System (ADS)
Medalion, Shlomi; Rabin, Yitzhak
2016-04-01
We use Monte-Carlo simulations to study the effect of variable rigidity on plectoneme formation and localization in supercoiled double-stranded DNA. We show that the presence of soft sequences increases the number of plectoneme branches and that the edges of the branches tend to be localized at these sequences. We propose an experimental approach to test our results in vitro, and discuss the possible role played by plectoneme localization in the search process of transcription factors for their targets (promoter regions) on the bacterial genome.
NASA Technical Reports Server (NTRS)
Fisher, A.; Staugaitis, C. L.
1974-01-01
The capabilities of the Materials Engineering Branch (MEB) of the Goddard Space Flight Center, Greenbelt, Maryland, are surveyed. The specific functions of spacecraft materials review, materials processing and information dissemination, and laboratory support, are outlined in the Activity Report. Further detail is provided by case histories of laboratory satellite support and equipment. Project support statistics are shown, and complete listings of MEB publications, patents, and tech briefs are included. MEB staff, and their respective discipline areas and spacecraft liaison associations, are listed.
Witten, Michael R; Jacobsen, Eric N
2015-06-05
A new primary amine catalyst for the asymmetric α-hydroxylation and α-fluorination of α-branched aldehydes is described. The products of the title transformations are generated in excellent yields with high enantioselectivities. Both processes can be performed within short reaction times and on gram scale. The similarity in results obtained in both reactions, combined with computational evidence, implies a common basis for stereoinduction and the possibility of a general catalytic mechanism for α-functionalizations. Promising initial results in α-amination and α-chlorination reactions support this hypothesis.
Hao, Ruixia; Li, Jianbing; Zhou, Yuwen; Cheng, Shuiyuan; Zhang, Yi
2009-05-01
The relationship between nonylphenol (NP) isomer structure and its biodegradability within the wastewater treatment process of sequencing batch reactor (SBR) was investigated. The GC-MS method was used for detecting the NP isomers existing in the SBR influent, activated sludge and effluent. Fifteen NP isomers were detected in the influent, with significant biodegradability variations being observed among these isomers. It was found that the NP isomers associated with retention time of 10.553, 10.646, 10.774, and 10.906 min in the GC-MS analysis showed higher biodegradability, while the isomers with retention time of 10.475, 10.800, and 10.857 min illustrated lower biodegradability. Through analyzing the mass spectrograms, the chemical structures of four selected NP isomers in the wastewater were further deduced. The higher correlation coefficients of 0.9421 and 0.9085 were observed between the NP isomer biodegradation rates and the molecular connectivity indexes with the order of two and four, respectively. Such correlation analysis indicated that a more complex side branch structure (such as a larger side carbon-chain branch or more branches in the nonyl) of NP isomer would lead to lower biodegradability, and a longer nonyl chain of the isomer would result in a higher biodegradability.
Kinetics analysis and quantitative calculations for the successive radioactive decay process
NASA Astrophysics Data System (ADS)
Zhou, Zhiping; Yan, Deyue; Zhao, Yuliang; Chai, Zhifang
2015-01-01
The general radioactive decay kinetics equations with branching were developed and the analytical solutions were derived by Laplace transform method. The time dependence of all the nuclide concentrations can be easily obtained by applying the equations to any known radioactive decay series. Taking the example of thorium radioactive decay series, the concentration evolution over time of various nuclide members in the family has been given by the quantitative numerical calculations with a computer. The method can be applied to the quantitative prediction and analysis for the daughter nuclides in the successive decay with branching of the complicated radioactive processes, such as the natural radioactive decay series, nuclear reactor, nuclear waste disposal, nuclear spallation, synthesis and identification of superheavy nuclides, radioactive ion beam physics and chemistry, etc.
NASA Astrophysics Data System (ADS)
Akhrian Syahidi, Aulia; Asyikin, Arifin Noor; Asy’ari
2018-04-01
Based on my experience of teaching the material of branch control structure, it is found that the condition of the students is less active causing the low activity of the students on the attitude assessment during the learning process on the material of the branch control structure i.e. 2 students 6.45% percentage of good activity and 29 students percentage 93.55% enough and less activity. Then from the low activity resulted in low student learning outcomes based on a daily re-examination of branch control material, only 8 students 26% percentage reached KKM and 23 students 74% percent did not reach KKM. The purpose of this research is to increase the activity and learning outcomes of students of class X TKJ B SMK Muhammadiyah 1 Banjarmasin after applying STAD type cooperative learning model on the material of branch control structure. The research method used is Classroom Action Research. The study was conducted two cycles with six meetings. The subjects of this study were students of class X TKJ B with a total of 31 students consisting of 23 men and 8 women. The object of this study is the activity and student learning outcomes. Data collection techniques used are test and observation techniques. Data analysis technique used is a percentage and mean. The results of this study indicate that: an increase in activity and learning outcomes of students on the basic programming learning material branch control structure after applying STAD type cooperative learning model.
DOWNWARD CATASTROPHE OF SOLAR MAGNETIC FLUX ROPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Quanhao; Wang, Yuming; Hu, Youqiu
2016-07-10
2.5-dimensional time-dependent ideal magnetohydrodynamic (MHD) models in Cartesian coordinates were used in previous studies to seek MHD equilibria involving a magnetic flux rope embedded in a bipolar, partially open background field. As demonstrated by these studies, the equilibrium solutions of the system are separated into two branches: the flux rope sticks to the photosphere for solutions at the lower branch but is suspended in the corona for those at the upper branch. Moreover, a solution originally at the lower branch jumps to the upper, as the related control parameter increases and reaches a critical value, and the associated jump ismore » here referred to as an upward catastrophe. The present paper advances these studies in three aspects. First, the magnetic field is changed to be force-free; the system still experiences an upward catastrophe with an increase in each control parameter. Second, under the force-free approximation, there also exists a downward catastrophe, characterized by the jump of a solution from the upper branch to the lower. Both catastrophes are irreversible processes connecting the two branches of equilibrium solutions so as to form a cycle. Finally, the magnetic energy in the numerical domain is calculated. It is found that there exists a magnetic energy release for both catastrophes. The Ampère's force, which vanishes everywhere for force-free fields, appears only during the catastrophes and does positive work, which serves as a major mechanism for the energy release. The implications of the downward catastrophe and its relevance to solar activities are briefly discussed.« less
Leschinger, Tim; Hackl, Michael; Zeifang, Felix; Scaal, Martin; Müller, Lars Peter; Wegmann, Kilian
2017-01-01
The purpose of the study was to evaluate the position of the subscapular nerves relative to surgical landmarks during exposure and to analyze the pattern of innervation of the subscapularis to avoid injury during anterior shoulder surgery. 20 embalmed human cadaveric shoulder specimens were used in the study. The muscular insertions of the subscapular nerves were marked and their closest branches to the musculotendinous junction and the coracoid process were measured in horizontal and vertical distances. In addition, the innervation pattern of each specimen was documented. 14/20 specimens showed an innervation of the subscapularis with an upper, middle and lower subscapular nerve branch. Even though the nerve branches were in average more than 2 cm medial to the musculotendinous junction, minimal distances of 1.1-1.3 cm were found. The mean vertical distance as measured from the medial base of the coracoid to the nerve innervation point into the muscle was 0.7 cm for the upper nerve branch, 2.2 cm for the middle nerve branch and 4.4 cm for the lower nerve branch. The subscapularis has a variable nerve supply, which increases the risk of muscle denervation during open shoulder surgery. Dissection or release should be avoided at the anterior aspect of the subscapularis muscle more than 1 cm medial to the musculotendinous junction. In approaches with a horizontal incision of the subscapularis, splitting should be performed at a vertical distance of 3.2-3.6 cm to the coracoid base to avoid iatrogenic subscapular nerve injuries.
Pan, Ling-Yun; Pan, Gen-Cai; Zhang, Yong-Lai; Gao, Bing-Rong; Dai, Zhen-Wen
2013-02-01
As the priority of interconnects and active components in nanoscale optical and electronic devices, three-dimensional hyper-branched nanostructures came into focus of research. Recently, a novel crystallization route, named as "nonclassical crystallization," has been reported for three-dimensional nanostructuring. In this process, Quantum dots are used as building blocks for the construction of the whole hyper-branched structures instead of ions or single-molecules in conventional crystallization. The specialty of these nanostructures is the inheritability of pristine quantum dots' physical integrity because of their polycrystalline structures, such as quantum confinement effect and thus the luminescence. Moreover, since a longer diffusion length could exist in polycrystalline nanostructures due to the dramatically decreased distance between pristine quantum dots, the exciton-exciton interaction would be different with well dispersed quantum dots and single crystal nanostructures. This may be a benefit for electron transport in solar cell application. Therefore, it is very necessary to investigate the exciton-exciton interaction in such kind of polycrystalline nanostructures and their optical properites for solar cell application. In this research, we report a novel CdTe hyper-branched nanostructures based on self-assembly of CdTe quantum dots. Each branch shows polycrystalline with pristine quantum dots as the building units. Both steady state and time-resolved spectroscopy were performed to investigate the properties of carrier transport. Steady state optical properties of pristine quantum dots are well inherited by formed structures. While a suppressed multi-exciton recombination rate was observed. This result supports the percolation of carriers through the branches' network.
Regulation of lung branching morphogenesis by bombesin-like peptides and neutral endopeptidase.
Aguayo, S M; Schuyler, W E; Murtagh, J J; Roman, J
1994-06-01
The expression of bombesin-like peptides (BLPs) by pulmonary neuroendocrine cells is transiently upregulated during lung development. A functional role for BLPs is supported by their ability to stimulate lung growth and maturation both in vitro and in vivo during the late stages of lung development. In addition, the cell membrane-associated enzyme CD10/neutral endopeptidase 24.11 (CD10/NEP), which inactivates BLPs and other regulatory peptides, is also expressed by developing lungs and modulates the stimulatory effects of BLPs on lung growth and maturation. We hypothesized that, in addition to expressing BLPs and CD10/NEP, embryonic lungs must express BLP receptors, and that BLPs may also regulate processes that occur during early lung development such as branching morphogenesis. Using reverse transcriptase-polymerase chain reaction and oligonucleotide primers designed for amplifying a BLP receptor originally isolated from Swiss 3T3 mouse fibroblasts, we found that embryonic mouse lungs express a similar BLP receptor mRNA during the pseudoglandular stage of lung development when branching morphogenesis take place. Subsequently, we evaluated the effects of ligands for this BLP receptor using embryonic mouse lungs in an in vitro model of lung branching morphogenesis. We found that, in comparison with control lungs, treatment with bombesin (1 to 100 nM) resulted in a modest increase in clefts or branching points. In contrast, embryonic mouse lungs treated with the BLP analog [Leu13-psi(CH2NH)Leu14]bombesin (1 microM), which also binds to this BLP receptor but has predominantly antagonistic effects, demonstrated fewer branching points.(ABSTRACT TRUNCATED AT 250 WORDS)
The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis
Yates, Laura L.; Schnatwinkel, Carsten; Murdoch, Jennifer N.; Bogani, Debora; Formstone, Caroline J.; Townsend, Stuart; Greenfield, Andy; Niswander, Lee A.; Dean, Charlotte H.
2010-01-01
The lungs are generated by branching morphogenesis as a result of reciprocal signalling interactions between the epithelium and mesenchyme during development. Mutations that disrupt formation of either the correct number or shape of epithelial branches affect lung function. This, in turn, can lead to congenital abnormalities such as cystadenomatoid malformations, pulmonary hypertension or lung hypoplasia. Defects in lung architecture are also associated with adult lung disease, particularly in cases of idiopathic lung fibrosis. Identifying the signalling pathways which drive epithelial tube formation will likely shed light on both congenital and adult lung disease. Here we show that mutations in the planar cell polarity (PCP) genes Celsr1 and Vangl2 lead to disrupted lung development and defects in lung architecture. Lungs from Celsr1Crsh and Vangl2Lp mouse mutants are small and misshapen with fewer branches, and by late gestation exhibit thickened interstitial mesenchyme and defective saccular formation. We observe a recapitulation of these branching defects following inhibition of Rho kinase, an important downstream effector of the PCP signalling pathway. Moreover, epithelial integrity is disrupted, cytoskeletal remodelling perturbed and mutant endoderm does not branch normally in response to the chemoattractant FGF10. We further show that Celsr1 and Vangl2 proteins are present in restricted spatial domains within lung epithelium. Our data show that the PCP genes Celsr1 and Vangl2 are required for foetal lung development thereby revealing a novel signalling pathway critical for this process that will enhance our understanding of congenital and adult lung diseases and may in future lead to novel therapeutic strategies. PMID:20223754
Testing for Independence between Evolutionary Processes.
Behdenna, Abdelkader; Pothier, Joël; Abby, Sophie S; Lambert, Amaury; Achaz, Guillaume
2016-09-01
Evolutionary events co-occurring along phylogenetic trees usually point to complex adaptive phenomena, sometimes implicating epistasis. While a number of methods have been developed to account for co-occurrence of events on the same internal or external branch of an evolutionary tree, there is a need to account for the larger diversity of possible relative positions of events in a tree. Here we propose a method to quantify to what extent two or more evolutionary events are associated on a phylogenetic tree. The method is applicable to any discrete character, like substitutions within a coding sequence or gains/losses of a biological function. Our method uses a general approach to statistically test for significant associations between events along the tree, which encompasses both events inseparable on the same branch, and events genealogically ordered on different branches. It assumes that the phylogeny and themapping of branches is known without errors. We address this problem from the statistical viewpoint by a linear algebra representation of the localization of the evolutionary events on the tree.We compute the full probability distribution of the number of paired events occurring in the same branch or in different branches of the tree, under a null model of independence where each type of event occurs at a constant rate uniformly inthephylogenetic tree. The strengths andweaknesses of themethodare assessed via simulations;we then apply the method to explore the loss of cell motility in intracellular pathogens. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Enantioseparation and optical rotation of flavor-relevant 4-alkyl-branched fatty acids.
Eibler, Dorothee; Vetter, Walter
2017-07-07
Short chain 4-alkyl-branched fatty acids are character impact compounds of the flavor of sheep and goat milk and meat. Due to their methyl or ethyl branches these volatile fatty acids are chiral, and both enantiomers are characterized by different aroma intensities. Recently, it was found that 4-methyloctanoic acid (4-Me-8:0), 4-ethyloctanoic acid (4-Et-8:0), and 4-methylnonanoic acid (4-Me-9:0) are enantiopure in goat and sheep samples, if present. Here we generated enantiopure or enantioenriched standards from racemates by means of (R)-selective esterification with lipase B and verified that 4-Me-8:0, 4-Et-8:0 and 4-Me-9:0 were (R)-enantiopure in these tissues. Determination of the optical rotation and [α] D value was carried out to show that (R)-4-Et-8:0 is dextrorotary and to verify the literature values of (R)-4-methyl-branched fatty acids. The elution order of free acids and the methyl and ethyl esters of 4-Me-8:0, 4-Et-8:0, 4-Me-9:0 and 4-methylhexanoic acid (4-Me-6:0) enantiomers was investigated on different chiral columns as well as the (-)-menthyl ester by indirect enantiomer separation on an ionic liquid phase. Different chiral recognition processes were suggested for free acid and esters of 4-Me-8:0 and 4-Me-9:0 on the one hand (decisive: 4-alkyl branch) compared to 4-Me-6:0 on the other hand (decisive: branch on antepenultimate carbon). Copyright © 2017 Elsevier B.V. All rights reserved.
Ghareeb, Hassan; Löfke, Christian; Teichmann, Thomas; Schirawski, Jan
2015-01-01
The biotrophic fungus Sporisorium reilianum causes head smut of maize (Zea mays) after systemic plant colonization. Symptoms include the formation of multiple female inflorescences at subapical nodes of the stalk because of loss of apical dominance. By deletion analysis of cluster 19-1, the largest genomic divergence cluster in S. reilianum, we identified a secreted fungal effector responsible for S. reilianum-induced loss of apical dominance, which we named SUPPRESSOR OF APICAL DOMINANCE1 (SAD1). SAD1 transcript levels were highly up-regulated during biotrophic fungal growth in all infected plant tissues. SAD1-green fluorescent protein fusion proteins expressed by recombinant S. reilianum localized to the extracellular hyphal space. Transgenic Arabidopsis (Arabidopsis thaliana)-expressing green fluorescent protein-SAD1 displayed an increased number of secondary rosette-leaf branches. This suggests that SAD1 manipulates inflorescence branching architecture in maize and Arabidopsis through a conserved pathway. Using a yeast (Saccharomyces cerevisiae) two-hybrid library of S. reilianum-infected maize tissues, we identified potential plant interaction partners that had a predicted function in ubiquitination, signaling, and nuclear processes. Presence of SAD1 led to an increase of the transcript levels of the auxin transporter PIN-FORMED1 in the root and a reduction of the branching regulator TEOSINTE BRANCHED1 in the stalk. This indicates a role of SAD1 in regulation of apical dominance by modulation of branching through increasing transcript levels of the auxin transporter PIN1 and derepression of bud outgrowth. PMID:26511912
Deciphering the Costs of Reproduction in Mango – Vegetative Growth Matters
Capelli, Mathilde; Lauri, Pierre-Éric; Normand, Frédéric
2016-01-01
Irregular fruit production across successive years is a major issue that limits the profitability of most temperate and tropical fruit crops. It is particularly affected by the reciprocal relationships between vegetative and reproductive growth. The concept of the costs of reproduction is defined in terms of losses in the potential future reproductive success caused by current investment in reproduction. This concept, developed in ecology and evolutionary biology, could provide a methodological framework to analyze irregular bearing in fruit crops, especially in relation to the spatial scale at which studies are done. The objective of this study was to investigate the direct effects of reproduction during a growing cycle on reproduction during the following growing cycle and the indirect effects through vegetative growth between these two reproductive events, for four mango cultivars and during two growing cycles. Two spatial scales were considered: the growth unit (GU) and the scaffold branch. Costs of reproduction were detected between two successive reproductive events and between reproduction and vegetative growth. These costs were scale-dependent, generally detected at the GU scale and infrequently at the scaffold branch scale, suggesting partial branch autonomy with respect to processes underlying the effects of reproduction on vegetative growth. In contrast, the relationships between vegetative growth and reproduction were positive at the GU scale and at the scaffold branch scale in most cases, suggesting branch autonomy for the processes, mainly local, underlying flowering and fruiting. The negative effect of reproduction on vegetative growth prevailed over the positive effect of vegetative growth on the subsequent reproduction. The costs of reproduction were also cultivar-dependent. Those revealed at the GU scale were related to the bearing behavior of each cultivar. Our results put forward the crucial role of vegetative growth occurring between two reproductive events. They are discussed in the context of irregular bearing considering both the spatial scale and the various bearing habits of the mango cultivars, in order to formulate new hypotheses about this issue. PMID:27818665
The Dynamics of Power laws: Fitness and Aging in Preferential Attachment Trees
NASA Astrophysics Data System (ADS)
Garavaglia, Alessandro; van der Hofstad, Remco; Woeginger, Gerhard
2017-09-01
Continuous-time branching processes describe the evolution of a population whose individuals generate a random number of children according to a birth process. Such branching processes can be used to understand preferential attachment models in which the birth rates are linear functions. We are motivated by citation networks, where power-law citation counts are observed as well as aging in the citation patterns. To model this, we introduce fitness and age-dependence in these birth processes. The multiplicative fitness moderates the rate at which children are born, while the aging is integrable, so that individuals receives a finite number of children in their lifetime. We show the existence of a limiting degree distribution for such processes. In the preferential attachment case, where fitness and aging are absent, this limiting degree distribution is known to have power-law tails. We show that the limiting degree distribution has exponential tails for bounded fitnesses in the presence of integrable aging, while the power-law tail is restored when integrable aging is combined with fitness with unbounded support with at most exponential tails. In the absence of integrable aging, such processes are explosive.
Flores-Palacios, A
2016-05-01
The effects that epiphytes have on their hosts have been poorly explored in an experimentally. Correlational evidence suggests that epiphytes may be either mutualists or structural parasites, as has been proposed for Tillandsia recurvata on Parkinsonia praecox. To test the effect of T. recurvata upon P. praecox, the epiphyte load on branches of P. praecox was measured and two 1-year experiments were performed to detect the effect of transplantation/removal of epiphytes and shade (0%, 35%. 50% and 80%) on shoot dynamics. If T. recurvata represents a selective pressure for P. praecox, then the frequency of branches carrying large epiphyte loads will be high, and host shoot survival will decrease in the presence of T. recurvata and with increased shade. A weak inverse relationship between epiphyte load and percentage of dead shoots in the host was detected. Shoot survival was independent of epiphyte presence. Shade decreased shoot survival by 35-72%. Results suggest that at the study site, T. recurvata is a commensalist of P. praecox. An alternative hypothesis to explain the correlation between high epiphyte load and branch/tree decay is that older branches carry more epiphytes, receive more shade from neighbouring branches and could be undergoing a natural decline process. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
Disruptive selection as a driver of evolutionary branching and caste evolution in social insects.
Planqué, R; Powell, S; Franks, N R; van den Berg, J B
2016-11-01
Theory suggests that evolutionary branching via disruptive selection may be a relatively common and powerful force driving phenotypic divergence. Here, we extend this theory to social insects, which have novel social axes of phenotypic diversification. Our model, built around turtle ant (Cephalotes) biology, is used to explore whether disruptive selection can drive the evolutionary branching of divergent colony phenotypes that include a novel soldier caste. Soldier evolution is a recurrent theme in social insect diversification that is exemplified in the turtle ants. We show that phenotypic mutants can gain competitive advantages that induce disruptive selection and subsequent branching. A soldier caste does not generally appear before branching, but can evolve from subsequent competition. The soldier caste then evolves in association with specialized resource preferences that maximize defensive performance. Overall, our model indicates that resource specialization may occur in the absence of morphological specialization, but that when morphological specialization evolves, it is always in association with resource specialization. This evolutionary coupling of ecological and morphological specialization is consistent with recent empirical evidence, but contrary to predictions of classical caste theory. Our model provides a new theoretical understanding of the ecology of caste evolution that explicitly considers the process of adaptive phenotypic divergence and diversification. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
The genetics of colony form and function in Caribbean Acropora corals.
Hemond, Elizabeth M; Kaluziak, Stefan T; Vollmer, Steven V
2014-12-17
Colonial reef-building corals have evolved a broad spectrum of colony morphologies based on coordinated asexual reproduction of polyps on a secreted calcium carbonate skeleton. Though cnidarians have been shown to possess and use similar developmental genes to bilaterians during larval development and polyp formation, little is known about genetic regulation of colony morphology in hard corals. We used RNA-seq to evaluate transcriptomic differences between functionally distinct regions of the coral (apical branch tips and branch bases) in two species of Caribbean Acropora, the staghorn coral, A. cervicornis, and the elkhorn coral, A. palmata. Transcriptome-wide gene profiles differed significantly between different parts of the coral colony as well as between species. Genes showing differential expression between branch tips and bases were involved in developmental signaling pathways, such as Wnt, Notch, and BMP, as well as pH regulation, ion transport, extracellular matrix production and other processes. Differences both within colonies and between species identify a relatively small number of genes that may contribute to the distinct "staghorn" versus "elkhorn" morphologies of these two sister species. The large number of differentially expressed genes supports a strong division of labor between coral branch tips and branch bases. Genes involved in growth of mature Acropora colonies include the classical signaling pathways associated with development of cnidarian larvae and polyps as well as morphological determination in higher metazoans.
Zhang, Zhenyi; Jiang, Xiaoyi; Liu, Benkang; Guo, Lijiao; Lu, Na; Wang, Li; Huang, Jindou; Liu, Kuichao; Dong, Bin
2018-03-01
The ultrafast transfer of plasmon-induced hot electrons is considered an effective kinetics process to enhance the photoconversion efficiencies of semiconductors through strong localized surface plasmon resonance (LSPR) of plasmonic nanostructures. Although this classical sensitization approach is widely used in noble-metal-semiconductor systems, it remains unclear in nonmetallic plasmonic heterostructures. Here, by combining ultrafast transient absorption spectroscopy with theoretical simulations, IR-driven transfer of plasmon-induced hot electron in a nonmetallic branched heterostructure is demonstrated, which is fabricated through solvothermal growth of plasmonic W 18 O 49 nanowires (as branches) onto TiO 2 electrospun nanofibers (as backbones). The ultrafast transfer of hot electron from the W 18 O 49 branches to the TiO 2 backbones occurs within a timeframe on the order of 200 fs with very large rate constants ranging from 3.8 × 10 12 to 5.5 × 10 12 s -1 . Upon LSPR excitation by low-energy IR photons, the W 18 O 49 /TiO 2 branched heterostructure exhibits obviously enhanced catalytic H 2 generation from ammonia borane compared with that of W 18 O 49 nanowires. Further investigations by finely controlling experimental conditions unambiguously confirm that this plasmon-enhanced catalytic activity arises from the transfer of hot electron rather than from the photothermal effect. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bud development and shoot morphology in relation to crown location
Kukk, Maarja; Sõber, Anu
2015-01-01
Plant architecture is shaped by endogenous growth processes interacting with the local environment. The current study investigated crown development in young black alder trees, assessing the effects of local light conditions and branch height on individual bud mass and contents. In addition, we examined the characteristics of parent shoots [the cross-sectional area (CSA) of stem and total leaf area, shoot length, the number of nodes, the number and total mass of buds per shoot] and leaf–stem as well as bud–stem allometry, as several recent studies link bud development to hydraulic architecture. We sampled shoots from top branches and two lower-crown locations: one subjected to deep shade and the other resembling the upper branches in light availability. Sampling was carried out three times between mid-July and late October, spanning from the early stages of bud growth to dormancy. Individual bud mass and shoot characteristics varied in response to light conditions, whereas leaf–stem allometry depended on branch height, most likely compensating for the increasing length of hydraulic pathways. Despite the differences in individual bud mass, the number of preformed leaves varied little across the crown, indicating that the plasticity in shoot characteristics was mainly achieved by neoformation. The relationship between total bud mass and stem CSA scaled similarly across crown locations. However, scaling slopes gradually decreased throughout the sampling period, driven by bud rather than by stem growth. This suggests that the allometry of total bud mass and CSA of stem is regulated locally, instead of resulting from crown-level processes. PMID:26187607
Branched Crystalline Patterns of Poly(ε-caprolactone) and Poly(4-hydroxystyrene) Blends Thin Films.
Hou, Chunyue; Yang, Tianbo; Sun, Xiaoli; Ren, Zhongjie; Li, Huihui; Yan, Shouke
2016-01-14
The chain organization of poly(ε-caprolactone) (PCL) in its blend with poly(4-hydroxystyrene) (PVPh) in thin films (130 ± 10 nm) has been revealed by grazing incident infrared (GIIR) spectroscopy. It can be found that PCL chains orient preferentially in the surface-normal direction and crystallization occurs simultaneously. The morphology of the PCL/PVPh blends films can be identified by optical microscopy (OM). When crystallized at 35 °C, the blends film shows a seaweed-like structure and becomes more open with increasing PVPh content. In contrast, when crystallized at higher temperatures, i.e., 40 and 45 °C, dendrites with apparent crystallographically favored branches can be observed. This characteristic morphology indicates that the diffusion-limited aggregation (DLA) process controls the crystal growth in the blends films. The detailed lamellar structure can be revealed by the height images of atomic force microscopy (AFM), i.e., the crystalline branches are composed of overlayered flat-on lamellae. The branch width has been found to be dependent on the supercooling and PVPh content. This result differs greatly from pure PCL, in which case the crystal patterns controlled by DLA process developed in ultrathin film or monolayers of several nanometers. In the PCL/PVPh blends case, the strong intermolecular interactions and the dilution effect of PVPh should contribute to these results. That is to say, the mobility of PCL chains can be retarded and diffusion of them to the crystal growth front slows down greatly, even though the film thickness is far more than the lamellar thickness of PCL.
Application Profile Matching Method for Employees Online Recruitment
NASA Astrophysics Data System (ADS)
Sunarti; Rangga, Rahmadian Y.; Marlim, Yulvia Nora
2017-12-01
Employees is one of the determinant factors of company’s success. Thus, reliable human resources are needed to support the survival of the company. This research takes case study at PT. Asuransi Bina Dana Arta, Tbk Pekanbaru Branch. Employee recruitment system at PT. Asuransi Bina Dana Arta, Tbk Pekanbaru Branch still uses manual system as seen in application letter files file so it needs long time to determine accepted and rejected the application. For that it needs to built a system or application that allows companies in determining employees who accepted or rejected easily. Pofile Matching Method is a process of competency assessment that is done by comparing the value of written, psychological and interview test between one applicationt with other. PT. Asuransi Bina Dana Arta, Tbk Pekanbaru branch set the percentage to calculate NCF (Core Factor Value) by 60% and NSF (Secondary Factor Value) by 40%, and set the percentage to calculate the total value of written test by 40%, the total value of psycho test by 30%, and the total value of interview 30%. The final result of this study is to determine the rank or ranking of each applicant based on the greater value which, the greater that score of final result of an application get, the greater the chance of the applicant occupy a position or vacancy. Online Recruitment application uses profile matching method can help employee selection process and employee acceptance decisions quickly. This system can be viewed by directors or owners anywhere because it is online and used for other company branch
75 FR 37879 - Petitions for Exemption; Summary of Petitions Received
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-30
... more information on the rulemaking process, see the SUPPLEMENTARY INFORMATION section of this document... Federal holidays. FOR FURTHER INFORMATION CONTACT: Jan Thor, (425-227-2127), Standardization Branch, ANM...
75 FR 15771 - Petitions for Exemption; Summary of Petitions Received
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-30
... more information on the rulemaking process, see the SUPPLEMENTARY INFORMATION section of this document... Federal holidays. FOR FURTHER INFORMATION CONTACT: Jan Thor, (425-227-2127), Standardization Branch, ANM...
75 FR 26843 - Petition for Exemption; Summary of Petition Received
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
... more information on the rulemaking process, see the SUPPLEMENTARY INFORMATION section of this document... Federal holidays. FOR FURTHER INFORMATION CONTACT: Jan Thor, (425-227-2127), Standardization Branch, ANM...
Urbanek, Bozena
2009-01-01
A process of appearing medical branches lasted for many centuries. Its origins can be found already in long-ago civilizations. However, the comprehensive development of knowledge on the turn of the 18th century, its transmission by the press, professional contacts, including the foreign ones, brought about the consciousness of needs and activities in medical circles. A significant role in the process of appearing particular domains was played by technological progress. The inventions improved on cognitive processes within natural sciences and quickened exploring the new truths that were also employed in medical care. All these achievements of the 19th century, in Author's opinion, resulted in the significant development of particular domains called branches that nowadays are commonly accepted. Among medical and important for the development of separate branches one often mentions the achievements of pathological anatomy, and even bacteriology, which influenced the beginnings of medical analytic and development of diagnostics. Moreover, the progress of therapy in the years 1840-1870 brought about modern methods of getting pharmaceutical remedies and ways of using medicaments. The knowledge together with experiences let prepare description of particular diseases. There was also created a scientific workshop and methodological tactic, which was distinct for separate cases of illnesses. A great role was played by statistics and different ways of registering particulars, also by means of photography. Bibliography and scientific literature were to transmit and compare the knowledge. All these circumstances show the intricacy of the discussed issue. Additionally, the described conditions reveal the importance of other reasons that played a significant role in setting up separate specialization-non-medical reasons of social, economic or political nature. The last ones have not been analyzed inherently by us. What interesting, in some countries and especially in Anglo-Saxon lands, the non-medical reasons have been a significant subject of historical interests and studies already since the half of the 1940s. Also the Author's article is treating on them.
Design and Synthesis of Multigraft Copolymer Thermoplastic Elastomers: Superelastomers
Wang, Huiqun; Lu, Wei; Wang, Weiyu; ...
2017-09-28
Thermoplastic elastomers (TPEs) have been widely studied because of their recyclability, good processibility, low production cost, and unique performance. The building of graft-type architectures can greatly improve mechanical properties of TPEs. This review focuses on the advances in different approaches to synthesize multigraft copolymer TPEs. Anionic polymerization techniques allow for the synthesis of well-defined macromolecular structures and compositions, with great control over the molecular weight, polydispersity, branch spacing, number of branch points, and branch point functionality. Progress in emulsion polymerization offers potential approaches to commercialize these types of materials with low production cost via simple operations. Moreover, the use ofmore » multigraft architecturesprovides a solution to the limited elongational properties of all-acrylic TPEs, which can greatly expand their potential application range. The combination of different polymerization techniques, the introduction of new chemical compositions, and the incorporation of sustainable sources are expected to be further investigated in this area in coming years.« less
Shaping highly regular glass architectures: A lesson from nature
Schoeppler, Vanessa; Reich, Elke; Vacelet, Jean; Rosenthal, Martin; Pacureanu, Alexandra; Rack, Alexander; Zaslansky, Paul; Zolotoyabko, Emil; Zlotnikov, Igor
2017-01-01
Demospongiae is a class of marine sponges that mineralize skeletal elements, the glass spicules, made of amorphous silica. The spicules exhibit a diversity of highly regular three-dimensional branched morphologies that are a paradigm example of symmetry in biological systems. Current glass shaping technology requires treatment at high temperatures. In this context, the mechanism by which glass architectures are formed by living organisms remains a mystery. We uncover the principles of spicule morphogenesis. During spicule formation, the process of silica deposition is templated by an organic filament. It is composed of enzymatically active proteins arranged in a mesoscopic hexagonal crystal-like structure. In analogy to synthetic inorganic nanocrystals that show high spatial regularity, we demonstrate that the branching of the filament follows specific crystallographic directions of the protein lattice. In correlation with the symmetry of the lattice, filament branching determines the highly regular morphology of the spicules on the macroscale. PMID:29057327
Thruster-Specific Force Estimation and Trending of Cassini Hydrazine Thrusters at Saturn
NASA Technical Reports Server (NTRS)
Stupik, Joan; Burk, Thomas A.
2016-01-01
The Cassini spacecraft has been in orbit around Saturn since 2004 and has since been approved for both a first and second extended mission. As hardware reaches and exceeds its documented life expectancy, it becomes vital to closely monitor hardware performance. The performance of the 1-N hydrazine attitude control thrusters is especially important to study, because the spacecraft is currently operating on the back-up thruster branch. Early identification of hardware degradation allows more time to develop mitigation strategies. There is no direct measure of an individual thruster's thrust magnitude, but these values can be estimated by post-processing spacecraft telemetry. This paper develops an algorithm to calculate the individual thrust magnitudes using Euler's equation. The algorithm correctly shows the known degradation in the first thruster branch, validating the approach. Results for the current thruster branch show nominal performance as of August, 2015.
Branching fraction measurement of J / ψ → K S K L and search for J / ψ → K S K S
Ablikim, M.; Achasov, M. N.; Ahmed, S.; ...
2017-12-04
Using a sample of 1.31×10 9J/ψ events collected with the BESIII detector at the BEPCII collider, we study the decays of J/ψ→ K SK L and K SK S. The branching fraction of J/ψ→ K SK L is determined to be B(J/ψ→ K SK L) = (1:93 0:01 (stat:) 0:05 (syst:))×10 -4, which signi cantly improves on previous measurements. No clear signal is observed for the J/ψ→ K SK S process, and the upper limit at the 95% con dence level for its branching fraction is determined to be B(J= ! K SK S) < 1:4×10 -8, which improves onmore » the previous searches by 2 orders in magnitude and reaches the order of the Einstein-Podolsky-Rosen expectation.« less
Hunting Down Massless Dark Photons in Kaon Physics
NASA Astrophysics Data System (ADS)
Fabbrichesi, M.; Gabrielli, E.; Mele, B.
2017-07-01
If dark photons are massless, they couple to standard-model particles only via higher dimensional operators, while direct (renormalizable) interactions induced by kinetic mixing, which motivates most of the current experimental searches, are absent. We consider the effect of possible flavor-changing magnetic-dipole couplings of massless dark photons in kaon physics. In particular, we study the branching ratio for the process K+→π+π0γ ¯ with a simplified-model approach, assuming the chiral quark model to evaluate the hadronic matrix element. Possible effects in the K0-K¯ 0 mixing are taken into account. We find that branching ratios up to O (10-7) are allowed—depending on the dark-sector masses and couplings. Such large branching ratios for K+→π+π0γ ¯ could be of interest for experiments dedicated to rare K+ decays like NA62 at CERN, where γ ¯ can be detected as a massless invisible system.
Branching fraction measurement of J / ψ → K S K L and search for J / ψ → K S K S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ablikim, M.; Achasov, M. N.; Ahmed, S.
Using a sample of 1.31×10 9J/ψ events collected with the BESIII detector at the BEPCII collider, we study the decays of J/ψ→ K SK L and K SK S. The branching fraction of J/ψ→ K SK L is determined to be B(J/ψ→ K SK L) = (1:93 0:01 (stat:) 0:05 (syst:))×10 -4, which signi cantly improves on previous measurements. No clear signal is observed for the J/ψ→ K SK S process, and the upper limit at the 95% con dence level for its branching fraction is determined to be B(J= ! K SK S) < 1:4×10 -8, which improves onmore » the previous searches by 2 orders in magnitude and reaches the order of the Einstein-Podolsky-Rosen expectation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huiqun; Lu, Wei; Wang, Weiyu
Thermoplastic elastomers (TPEs) have been widely studied because of their recyclability, good processibility, low production cost, and unique performance. The building of graft-type architectures can greatly improve mechanical properties of TPEs. This review focuses on the advances in different approaches to synthesize multigraft copolymer TPEs. Anionic polymerization techniques allow for the synthesis of well-defined macromolecular structures and compositions, with great control over the molecular weight, polydispersity, branch spacing, number of branch points, and branch point functionality. Progress in emulsion polymerization offers potential approaches to commercialize these types of materials with low production cost via simple operations. Moreover, the use ofmore » multigraft architecturesprovides a solution to the limited elongational properties of all-acrylic TPEs, which can greatly expand their potential application range. The combination of different polymerization techniques, the introduction of new chemical compositions, and the incorporation of sustainable sources are expected to be further investigated in this area in coming years.« less
BRANCHING PATTERNS OF INDIVIDUAL SYMPATHETIC NEURONS IN CULTURE
Bray, D.
1973-01-01
The growth of single sympathetic neurons in tissue culture was examined with particular regard to the way in which the patterns of axonal or dendritic processes (here called nerve fibers), were formed. The tips of the fibers were seen to advance in straight lines and to grow at rates that did not vary appreciably with time, with their position in the cell outgrowth, or with the fiber diameter. Most of the branch points were formed by the bifurcation of a fiber tip (growth cone), apparently at random, and thereafter remained at about the same distance from the cell body. It seemed that the final shape of a neuron was the result of the reiterated and largely autonomous activities of the growth cones. The other parts of the cell played a supportive role but, apart from this, had no obvious influence on the final pattern of branches formed. PMID:4687915
Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2
Petry, Sabine; Groen, Aaron C.; Ishihara, Keisuke; Mitchison, Timothy J.; Vale, Ronald D.
2013-01-01
Summary The microtubules that comprise mitotic spindles in animal cells are nucleated at centrosomes and by spindle assembly factors that are activated in the vicinity of chromatin. Indirect evidence also has suggested that microtubules might be nucleated from pre-existing microtubules throughout the spindle, but this process has not been observed directly. Here, we demonstrate microtubule nucleation from the sides of existing microtubules in meiotic Xenopus egg extracts. Daughter microtubules grow at a low branch angle and with the same polarity as mother filaments. Branching microtubule nucleation requires gamma-tubulin and augmin and is stimulated by GTP-bound Ran and its effector TPX2, factors previously implicated in chromatin-stimulated nucleation. Because of the rapid amplification of microtubule numbers and the preservation of microtubule polarity, microtubule-dependent microtubule nucleation is well suited for spindle assembly and maintenance. PMID:23415226
76 FR 33400 - Petition for Exemption; Summary of Petition Received
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
...., Monday through Friday, except Federal holidays. For more information on the rulemaking process, see the...: Jan Thor, (425-227-2127), Standardization Branch, ANM-113, Federal Aviation Administration, 1601 Lind...
The Bologna Process and Internationalization for Higher Education in the U.S.
ERIC Educational Resources Information Center
Begalla, Rose
2013-01-01
When U.S. colleges and universities internationalize, there are policy implications branching out of the change process and affecting nearly all higher education areas within the university or college. Government, state, and local entities all have a vested interest in internationalizing in the 21st century because of the growing…
Interacting Parallel Constructions of Knowledge in a CAS Context
ERIC Educational Resources Information Center
Kidron, Ivy; Dreyfus, Tommy
2010-01-01
We consider the influence of a CAS context on a learner's process of constructing a justification for the bifurcations in a logistic dynamical process. We describe how instrumentation led to cognitive constructions and how the roles of the learner and the CAS intertwine, especially close to the branching and combining of constructing actions. The…
ERIC Educational Resources Information Center
Buck Institute for Education, 2004
2004-01-01
This unit is designed to teach students about how a bill becomes law and how interest groups participate in and impact this process. LegiQuest teaches students about the roles of Congress, the President, and the courts in the legislative process. It can be used at the beginning of the course to introduce the functions and branches of government.…
ERIC Educational Resources Information Center
Yeany, Russell H.; And Others
1986-01-01
Searched for a learning hierarchy among skills comprising formal operations and integrated science processes. Ordering, theoretic, and probabilistic latent structure methods were used to analyze data collected from 700 science students. Both linear and branching relationships were identified within and across the two sets of skills. (Author/JN)
Orbiter Entry Aerothermodynamics Practical Engineering and Applied Research
NASA Technical Reports Server (NTRS)
Campbell, Charles H.
2009-01-01
The contents include: 1) Organization of the Orbiter Entry Aeroheating Working Group; 2) Overview of the Principal RTF Aeroheating Tools Utilized for Tile Damage Assessment; 3) Description of the Integrated Tile Damage Assessment Team Analyses Process; 4) Space Shuttle Flight Support Process; and 5) JSC Applied Aerosciences and CFD Branch Applied Research Interests.
Winning performance improvement strategies--linking documentation and accounts receivable.
Braden, J H; Swadley, D
1996-01-01
When the HIM department at The University of Texas Medical Branch set out to improve documentation and accounts receivable management, it established a plan that encompassed a broad spectrum of data management process changes. The department examined and acknowledged the deficiencies in data management processes and used performance improvement tools to achieve successful results.
21 CFR 177.2400 - Perfluorocarbon cured elastomers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (channel process of furnace combustion process) (CAS Reg. No. 1333-86-4) Not to exceed 15 parts per 100... Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or available for inspection at the National..., call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr...
21 CFR 177.2400 - Perfluorocarbon cured elastomers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (channel process of furnace combustion process) (CAS Reg. No. 1333-86-4) Not to exceed 15 parts per 100... Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or available for inspection at the National..., call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr...
Ecosystem processes related to wood decay
Bruce G. Marcot
2017-01-01
Wood decay elements include snags, down wood, root wads, tree stumps, litter, duff, broomed or diseased branches, and partially dead trees, all of which contribute to ecological processes and biodiversity of the forest ecosystem. Down wood can serve as reservoirs for moisture and mycorrhizal fungi beneficial to the health and growth of commercial tree species. Decaying...
Cool Bottom Processing on the AGB and Presolar Grain Compositions
NASA Technical Reports Server (NTRS)
Nollett, Kenneth M.; Busso, M.; Wasserburg, G. J.
2002-01-01
We describe results from a model of cool bottom processing (CBP) in AGB (asymptotic giant branch) stars. We predict O, Al, C and N isotopic compositions of circumstellar grains. Measured compositions of mainstream SiC grains and many oxide grains are consistent with CBP. Additional information is contained in the original extended abstract.
An integrative neural model of social perception, action observation, and theory of mind.
Yang, Daniel Y-J; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A
2015-04-01
In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.
Living in the branches: population dynamics and ecological processes in dendritic networks
Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.
2007-01-01
Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.
An integrative neural model of social perception, action observation, and theory of mind
Yang, Daniel Y.-J.; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A.
2016-01-01
In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. PMID:25660957
Jacob, C; Viet, A F
2003-03-01
This paper covers the elaboration of a general class of multitype branching processes for modeling in a branching population, the evolution of a disease with horizontal and vertical transmissions. When the size of the population may tend to infinity, normalization must be carried out. As the initial size tends to infinity, the normalized model converges a.s. to a dynamical system the solution of which is the probability law of the state of health for an individual ancestors line. The focal point of this study concerns the transient and asymptotical behaviors of a SIS model with two age classes in a branching population. We will compare the asymptotical probability of extinction on the scale of a finite population and on the scale of an individual in an infinite population: when the rates of transmission are small compared to the rate of renewing the population of susceptibles, the two models lead to a.s. extinction, giving consistent results, which no longer applies to the opposite situation of important transmissions. In that case the size of the population plays a crucial role in the spreading of the disease.
Greenwood, Julian R.; Bencivenga, Stefano; Cockram, James; Cavanagh, Colin; Swain, Steve M.
2018-01-01
The flowers of major cereals are arranged on reproductive branches known as spikelets, which group together to form an inflorescence. Diversity for inflorescence architecture has been exploited during domestication to increase crop yields, and genetic variation for this trait has potential to further boost grain production. Multiple genes that regulate inflorescence architecture have been identified by studying alleles that modify gene activity or dosage; however, little is known in wheat. Here, we show TEOSINTE BRANCHED1 (TB1) regulates inflorescence architecture in bread wheat (Triticum aestivum) by investigating lines that display a form of inflorescence branching known as “paired spikelets.” We show that TB1 interacts with FLOWERING LOCUS T1 and that increased dosage of TB1 alters inflorescence architecture and growth rate in a process that includes reduced expression of meristem identity genes, with allelic diversity for TB1 found to associate genetically with paired spikelet development in modern cultivars. We propose TB1 coordinates formation of axillary spikelets during the vegetative to floral transition and that alleles known to modify dosage or function of TB1 could help increase wheat yields. PMID:29444813
Posé, Sara; Marcus, Susan E; Paul Knox, J
2018-04-24
Antibody-based approaches have been used to study cell wall architecture and modifications during the ripening process of two important fleshy fruit crops: tomato and strawberry. Cell wall polymers in both unripe and ripe fruits have been sequentially solubilized and fractions analysed with sets of monoclonal antibodies focusing on the pectic polysaccharides. We demonstrate the specific detection of the LM26 branched galactan epitope, associated with rhamnogalacturonan-I, in cell walls of ripe strawberry fruit. Analytical approaches confirm that the LM26 epitope is linked to sets of rhamnogalacturonan-I and homogalacturonan molecules. The cellulase-degradation of cellulose-rich residues that releases cell wall polymers intimately linked with cellulose microfibrils has been used to explore aspects of branched galactan occurrence and galactan metabolism. In situ analyses of ripe strawberry fruits indicate that the LM26 epitope is present in all primary cell walls and also particularly abundant in vascular tissues. The significance of the occurrence of branched galactan structures in the side chains of rhamnogalacturonan-I pectins in the context of ripening strawberry fruit is discussed. This article is protected by copyright. All rights reserved.
Dixon, Laura E; Greenwood, Julian R; Bencivenga, Stefano; Zhang, Peng; Cockram, James; Mellers, Gregory; Ramm, Kerrie; Cavanagh, Colin; Swain, Steve M; Boden, Scott A
2018-03-01
The flowers of major cereals are arranged on reproductive branches known as spikelets, which group together to form an inflorescence. Diversity for inflorescence architecture has been exploited during domestication to increase crop yields, and genetic variation for this trait has potential to further boost grain production. Multiple genes that regulate inflorescence architecture have been identified by studying alleles that modify gene activity or dosage; however, little is known in wheat. Here, we show TEOSINTE BRANCHED1 ( TB1 ) regulates inflorescence architecture in bread wheat ( Triticum aestivum ) by investigating lines that display a form of inflorescence branching known as "paired spikelets." We show that TB1 interacts with FLOWERING LOCUS T1 and that increased dosage of TB1 alters inflorescence architecture and growth rate in a process that includes reduced expression of meristem identity genes, with allelic diversity for TB1 found to associate genetically with paired spikelet development in modern cultivars. We propose TB1 coordinates formation of axillary spikelets during the vegetative to floral transition and that alleles known to modify dosage or function of TB1 could help increase wheat yields. © 2018 American Society of Plant Biologists. All rights reserved.
Saichev, A; Sornette, D
2005-05-01
Using the epidemic-type aftershock sequence (ETAS) branching model of triggered seismicity, we apply the formalism of generating probability functions to calculate exactly the average difference between the magnitude of a mainshock and the magnitude of its largest aftershock over all generations. This average magnitude difference is found empirically to be independent of the mainshock magnitude and equal to 1.2, a universal behavior known as Båth's law. Our theory shows that Båth's law holds only sufficiently close to the critical regime of the ETAS branching process. Allowing for error bars +/- 0.1 for Båth's constant value around 1.2, our exact analytical treatment of Båth's law provides new constraints on the productivity exponent alpha and the branching ratio n: 0.9 approximately < alpha < or =1. We propose a method for measuring alpha based on the predicted renormalization of the Gutenberg-Richter distribution of the magnitudes of the largest aftershock. We also introduce the "second Båth law for foreshocks:" the probability that a main earthquake turns out to be the foreshock does not depend on its magnitude rho.
Pareto genealogies arising from a Poisson branching evolution model with selection.
Huillet, Thierry E
2014-02-01
We study a class of coalescents derived from a sampling procedure out of N i.i.d. Pareto(α) random variables, normalized by their sum, including β-size-biasing on total length effects (β < α). Depending on the range of α we derive the large N limit coalescents structure, leading either to a discrete-time Poisson-Dirichlet (α, -β) Ξ-coalescent (α ε[0, 1)), or to a family of continuous-time Beta (2 - α, α - β)Λ-coalescents (α ε[1, 2)), or to the Kingman coalescent (α ≥ 2). We indicate that this class of coalescent processes (and their scaling limits) may be viewed as the genealogical processes of some forward in time evolving branching population models including selection effects. In such constant-size population models, the reproduction step, which is based on a fitness-dependent Poisson Point Process with scaling power-law(α) intensity, is coupled to a selection step consisting of sorting out the N fittest individuals issued from the reproduction step.
Cell-cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis.
Magie, Craig R; Martindale, Mark Q
2008-06-01
Cell adhesion is a major aspect of cell biology and one of the fundamental processes involved in the development of a multicellular animal. Adhesive mechanisms, both cell-cell and between cell and extracellular matrix, are intimately involved in assembling cells into the three-dimensional structures of tissues and organs. The modulation of adhesive complexes could therefore be seen as a central component in the molecular control of morphogenesis, translating information encoded within the genome into organismal form. The availability of whole genomes from early-branching metazoa such as cnidarians is providing important insights into the evolution of adhesive processes by allowing for the easy identification of the genes involved in adhesion in these organisms. Discovery of the molecular nature of cell adhesion in the early-branching groups, coupled with comparisons across the metazoa, is revealing the ways evolution has tinkered with this vital cellular process in the generation of the myriad forms seen across the animal kingdom.
OVERVIEW: CCL PATHOGENS RESEARCH AT NRMRL
The Microbial Contaminants Control Branch (MCCB), Water Supply and Water Resources Division, National Risk Management Research Laboratory, conducts research on microbiological problems associated with source water quality, treatment processes, distribution and storage of drin...
Post polymerization cure shape memory polymers
Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.
2017-01-10
This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.
Post polymerization cure shape memory polymers
Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P
2014-11-11
This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.
NASA Astrophysics Data System (ADS)
Costin, Ovidiu; Giacomin, Giambattista
2013-02-01
Oscillatory critical amplitudes have been repeatedly observed in hierarchical models and, in the cases that have been taken into consideration, these oscillations are so small to be hardly detectable. Hierarchical models are tightly related to iteration of maps and, in fact, very similar phenomena have been repeatedly reported in many fields of mathematics, like combinatorial evaluations and discrete branching processes. It is precisely in the context of branching processes with bounded off-spring that T. Harris, in 1948, first set forth the possibility that the logarithm of the moment generating function of the rescaled population size, in the super-critical regime, does not grow near infinity as a power, but it has an oscillatory prefactor (the Harris function). These oscillations have been observed numerically only much later and, while the origin is clearly tied to the discrete character of the iteration, the amplitude size is not so well understood. The purpose of this note is to reconsider the issue for hierarchical models and in what is arguably the most elementary setting—the pinning model—that actually just boils down to iteration of polynomial maps (and, notably, quadratic maps). In this note we show that the oscillatory critical amplitude for pinning models and the Harris function coincide. Moreover we make explicit the link between these oscillatory functions and the geometry of the Julia set of the map, making thus rigorous and quantitative some ideas set forth in Derrida et al. (Commun. Math. Phys. 94:115-132, 1984).
Monte Carlo algorithms for Brownian phylogenetic models.
Horvilleur, Benjamin; Lartillot, Nicolas
2014-11-01
Brownian models have been introduced in phylogenetics for describing variation in substitution rates through time, with applications to molecular dating or to the comparative analysis of variation in substitution patterns among lineages. Thus far, however, the Monte Carlo implementations of these models have relied on crude approximations, in which the Brownian process is sampled only at the internal nodes of the phylogeny or at the midpoints along each branch, and the unknown trajectory between these sampled points is summarized by simple branchwise average substitution rates. A more accurate Monte Carlo approach is introduced, explicitly sampling a fine-grained discretization of the trajectory of the (potentially multivariate) Brownian process along the phylogeny. Generic Monte Carlo resampling algorithms are proposed for updating the Brownian paths along and across branches. Specific computational strategies are developed for efficient integration of the finite-time substitution probabilities across branches induced by the Brownian trajectory. The mixing properties and the computational complexity of the resulting Markov chain Monte Carlo sampler scale reasonably with the discretization level, allowing practical applications with up to a few hundred discretization points along the entire depth of the tree. The method can be generalized to other Markovian stochastic processes, making it possible to implement a wide range of time-dependent substitution models with well-controlled computational precision. The program is freely available at www.phylobayes.org. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
High-contrast grating hollow-core waveguide splitter applied to optical phased array
NASA Astrophysics Data System (ADS)
Zhao, Che; Xue, Ping; Zhang, Hanxing; Chen, Te; Peng, Chao; Hu, Weiwei
2014-11-01
A novel hollow-core (HW) Y-branch waveguide splitter based on high-contrast grating (HCG) is presented. We calculated and designed the HCG-HW splitter using Rigorous Coupled Wave Analysis (RCWA). Finite-different timedomain (FDTD) simulation shows that the splitter has a broad bandwidth and the branching loss is as low as 0.23 dB. Fabrication is accomplished with standard Silicon-On-Insulator (SOI) process. The experimental measurement results indicate its good performance on beam splitting near the central wavelength λ = 1550 nm with a total insertion loss of 7.0 dB.
Legacy of Operational Space Medicine During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Stepaniakm, P.; Gilmore, S.; Johnston, S.; Chandler, M.; Beven, G.
2011-01-01
The Johnson Space Center s Medical Science Division branches were involved in preparing astronauts for space flight during the 30 year period of the Space Shuttle Program. These branches included the Flight Medicine Clinic, Medical Operations and the Behavioral Health Program. The components of each facet of these support services were: the Flight Medicine Clinic s medical selection process and medical care; the Medical Operations equipment, training, procedures and emergency medical services; and the Behavioral Health and Performance operations. Each presenter will discuss the evolution of its operations, implementations, lessons learned and recommendations for future vehicles and short duration space missions.
Witten, Michael R.; Jacobsen, Eric N.
2016-01-01
A new primary amine catalyst for the asymmetric α-hydroxylation and α-fluorination of α-branched aldehydes is described. The products of the title transformations are generated in excellent yields and with high enantioselectivities. Both processes can be performed within short reaction times and on gram scale. The similarity in the results obtained in both reactions, combined with computational evidence, implies a common basis for stereoinduction and the possibility of a general catalytic mechanism for α-functionalizations. Promising initial results in α-amination and α-chlorination reactions support this hypothesis. PMID:25952578
Lightning Protection Guidelines for Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Goodloe, C. C.
1999-01-01
This technical memorandum provides lightning protection engineering guidelines and technical procedures used by the George C. Marshall Space Flight Center (MSFC) Electromagnetics and Aerospace Environments Branch for aerospace vehicles. The overviews illustrate the technical support available to project managers, chief engineers, and design engineers to ensure that aerospace vehicles managed by MSFC are adequately protected from direct and indirect effects of lightning. Generic descriptions of the lightning environment and vehicle protection technical processes are presented. More specific aerospace vehicle requirements for lightning protection design, performance, and interface characteristics are available upon request to the MSFC Electromagnetics and Aerospace Environments Branch, mail code EL23.
Yamada, Aya; Futagi, Masaharu; Fukumoto, Emiko; Saito, Kan; Yoshizaki, Keigo; Ishikawa, Masaki; Arakaki, Makiko; Hino, Ryoko; Sugawara, Yu; Ishikawa, Momoko; Naruse, Masahiro; Miyazaki, Kanako; Nakamura, Takashi; Fukumoto, Satoshi
2016-01-01
Cell-cell interaction via the gap junction regulates cell growth and differentiation, leading to formation of organs of appropriate size and quality. To determine the role of connexin43 in salivary gland development, we analyzed its expression in developing submandibular glands (SMGs). Connexin43 (Cx43) was found to be expressed in salivary gland epithelium. In ex vivo organ cultures of SMGs, addition of the gap junctional inhibitors 18α-glycyrrhetinic acid (18α-GA) and oleamide inhibited SMG branching morphogenesis, suggesting that gap junctional communication contributes to salivary gland development. In Cx43−/− salivary glands, submandibular and sublingual gland size was reduced as compared with those from heterozygotes. The expression of Pdgfa, Pdgfb, Fgf7, and Fgf10, which induced branching of SMGs in Cx43−/− samples, were not changed as compared with those from heterozygotes. Furthermore, the blocking peptide for the hemichannel and gap junction channel showed inhibition of terminal bud branching. FGF10 induced branching morphogenesis, while it did not rescue the Cx43−/− phenotype, thus Cx43 may regulate FGF10 signaling during salivary gland development. FGF10 is expressed in salivary gland mesenchyme and regulates epithelial proliferation, and was shown to induce ERK1/2 phosphorylation in salivary epithelial cells, while ERK1/2 phosphorylation in HSY cells was dramatically inhibited by 18α-GA, a Cx43 peptide or siRNA. On the other hand, PDGF-AA and PDGF-BB separately induced ERK1/2 phosphorylation in primary cultured salivary mesenchymal cells regardless of the presence of 18α-GA. Together, our results suggest that Cx43 regulates FGF10-induced ERK1/2 phosphorylation in salivary epithelium but not in mesenchyme during the process of SMG branching morphogenesis. PMID:26565022
A Kolmogorov-Smirnov test for the molecular clock based on Bayesian ensembles of phylogenies
Antoneli, Fernando; Passos, Fernando M.; Lopes, Luciano R.
2018-01-01
Divergence date estimates are central to understand evolutionary processes and depend, in the case of molecular phylogenies, on tests of molecular clocks. Here we propose two non-parametric tests of strict and relaxed molecular clocks built upon a framework that uses the empirical cumulative distribution (ECD) of branch lengths obtained from an ensemble of Bayesian trees and well known non-parametric (one-sample and two-sample) Kolmogorov-Smirnov (KS) goodness-of-fit test. In the strict clock case, the method consists in using the one-sample Kolmogorov-Smirnov (KS) test to directly test if the phylogeny is clock-like, in other words, if it follows a Poisson law. The ECD is computed from the discretized branch lengths and the parameter λ of the expected Poisson distribution is calculated as the average branch length over the ensemble of trees. To compensate for the auto-correlation in the ensemble of trees and pseudo-replication we take advantage of thinning and effective sample size, two features provided by Bayesian inference MCMC samplers. Finally, it is observed that tree topologies with very long or very short branches lead to Poisson mixtures and in this case we propose the use of the two-sample KS test with samples from two continuous branch length distributions, one obtained from an ensemble of clock-constrained trees and the other from an ensemble of unconstrained trees. Moreover, in this second form the test can also be applied to test for relaxed clock models. The use of a statistically equivalent ensemble of phylogenies to obtain the branch lengths ECD, instead of one consensus tree, yields considerable reduction of the effects of small sample size and provides a gain of power. PMID:29300759
Three-Level De-Multiplexed Dual-Branch Complex Delta-Sigma Transmitter.
Arfi, Anis Ben; Elsayed, Fahmi; Aflaki, Pouya M; Morris, Brad; Ghannouchi, Fadhel M
2018-02-20
In this paper, a dual-branch topology driven by a Delta-Sigma Modulator (DSM) with a complex quantizer, also known as the Complex Delta Sigma Modulator (CxDSM), with a 3-level quantized output signal is proposed. By de-multiplexing the 3-level Delta-Sigma-quantized signal into two bi-level streams, an efficiency enhancement over the operational frequency range is achieved. The de-multiplexed signals drive a dual-branch amplification block composed of two switch-mode back-to-back power amplifiers working at peak power. A signal processing technique known as quantization noise reduction with In-band Filtering (QNRIF) is applied to each of the de-multiplexed streams to boost the overall performances; particularly the Adjacent Channel Leakage Ratio (ACLR). After amplification, the two branches are combined using a non-isolated combiner, preserving the efficiency of the transmitter. A comprehensive study on the operation of this topology and signal characteristics used to drive the dual-branch Switch-Mode Power Amplifiers (SMPAs) was established. Moreover, this work proposes a highly efficient design of the amplification block based on a back-to-back power topology performing a dynamic load modulation exploiting the non-overlapping properties of the de-multiplexed Complex DSM signal. For experimental validation, the proposed de-multiplexed 3-level Delta-Sigma topology was implemented on the BEEcube™ platform followed by the back-to-back Class-E switch-mode power amplification block. The full transceiver is assessed using a 4th-Generation mobile communications standard LTE (Long Term Evolution) standard 1.4 MHz signal with a peak to average power ratio (PAPR) of 8 dB. The dual-branch topology exhibited a good linearity and a coding efficiency of the transmitter chain higher than 72% across the band of frequency from 1.8 GHz to 2.7 GHz.
Aono, Masashi; Kim, Song-Ju; Hara, Masahiko; Munakata, Toshinori
2014-03-01
The true slime mold Physarum polycephalum, a single-celled amoeboid organism, is capable of efficiently allocating a constant amount of intracellular resource to its pseudopod-like branches that best fit the environment where dynamic light stimuli are applied. Inspired by the resource allocation process, the authors formulated a concurrent search algorithm, called the Tug-of-War (TOW) model, for maximizing the profit in the multi-armed Bandit Problem (BP). A player (gambler) of the BP should decide as quickly and accurately as possible which slot machine to invest in out of the N machines and faces an "exploration-exploitation dilemma." The dilemma is a trade-off between the speed and accuracy of the decision making that are conflicted objectives. The TOW model maintains a constant intracellular resource volume while collecting environmental information by concurrently expanding and shrinking its branches. The conservation law entails a nonlocal correlation among the branches, i.e., volume increment in one branch is immediately compensated by volume decrement(s) in the other branch(es). Owing to this nonlocal correlation, the TOW model can efficiently manage the dilemma. In this study, we extend the TOW model to apply it to a stretched variant of BP, the Extended Bandit Problem (EBP), which is a problem of selecting the best M-tuple of the N machines. We demonstrate that the extended TOW model exhibits better performances for 2-tuple-3-machine and 2-tuple-4-machine instances of EBP compared with the extended versions of well-known algorithms for BP, the ϵ-Greedy and SoftMax algorithms, particularly in terms of its short-term decision-making capability that is essential for the survival of the amoeba in a hostile environment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Zhao, W M; Qin, Y L; Niu, Z P; Chang, C F; Yang, J; Li, M H; Zhou, Y; Xu, C S
2016-03-24
The NF-kB (nuclear factor kB) pathway is involved in the proliferation of many cell types. To explore the mechanism of the NF-kB signaling pathway underlying the oval cell proliferation during rat liver regeneration, the Rat Genome 230 2.0 Array was used to detect expression changes of NF-kB signaling pathway-related genes in oval cells. The results revealed that the expression levels of many genes in the NF-kB pathway were significantly changed. This included 48 known genes and 16 homologous genes, as well as 370 genes and 85 homologous genes related to cell proliferation. To further understand the biological significance of these changes, an expression profile function was used to analyze the potential biological processes. The results showed that the NF-kB pathway promoted oval cell proliferation mainly through three signaling branches; the tumor necrosis factor alpha branch (TNF-a pathway), the growth factor branch, and the chemokine branch. An integrated statistics method was used to define the key genes in the NF-kB pathway. Seven genes were identified to play vital roles in the NF-kB pathway. To confirm these results, the protein content, including two key genes (TNF and FGF11) and two non-key genes (CCL2 and TNFRSF12A), were analyzed using two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrometry. The results were generally consistent with those of the array data. To conclude, three branches and seven key genes were involved in the NF-kB signaling pathway that regulates oval cell proliferation during rat liver regeneration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiukkonen, Anu; Sahlberg, Carin; Partanen, Anna-Maija
2006-05-01
Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to mouse embryonic teeth, sharing features of early development with salivary glands in common, involves enhanced apoptosis and depends on the expression of epidermal growth factor (EGF) receptor. EGF receptor signaling, on the other hand, is essential for salivary gland branching morphogenesis. To see if TCDD impairs salivary gland morphogenesis and if the impairment is associated with EGF receptor signaling, we cultured mouse (NMRI) E13 submandibular glands with TCDD or TCDD in combination with EGF or fibronectin (FN), both previously found to enhance branching morphogenesis. Explants were examined stereomicroscopically and processed to paraffin sections. TCDD exposuremore » impaired epithelial branching and cleft formation, resulting in enlarged buds. The glands were smaller than normal. EGF and FN alone concentration-dependently stimulated or inhibited branching morphogenesis but when co-administered with TCDD, failed to compensate for its effect. TCDD induced cytochrome P4501A1 expression in the glandular epithelium, indicating activation of the aryl hydrocarbon receptor. TCDD somewhat increased epithelial apoptosis as observed by terminal deoxynucleotidyl transferase (TdT)-mediated nick end-labeling method but the increase could not be correlated with morphological changes. The frequency of proliferating cells was not altered. Corresponding to the reduced cleft sites in TCDD-exposed explants, FN immunoreactivity in the epithelium was reduced. The results show that TCDD, comparably with EGF and FN at morphogenesis-inhibiting concentrations, impaired salivary gland branching morphogenesis in vitro. Together with the failure of EGF and FN at morphogenesis-stimulating concentrations to compensate for the effect of TCDD this implies that TCDD toxicity to developing salivary gland involves reduced EGF receptor signaling.« less
De Silva, Amila O; Mabury, Scott A
2004-12-15
The source of involatile, anthropogenic perfluorocarboxylate anions (PFCAs) in biota from remote regions is of heightened interest due to the persistence, toxicity, and bioaccumulation of these materials. Large-scale production of fluorinated compounds is carried out primarily by one of two methods: electrochemical fluorination (ECF) and telomerization. Products of the two processes may be distinguished based on constitutional isomer pattern as ECF products are characteristically comprised of a variety of constitutional isomers. The objective of this research was to develop a method for identifying the constitutional isomer profile of PFCAs in environmental samples and to apply the method to polar bear livers from two different locations. Resolution of constitutional isomers of derivatized PFCAs (8-13 carbons) was accomplished via GC-MS. Seven isomers of an authentic ECF perfluorooctanoate (PFOA) standard were separated. The linear isomer comprised 78% of this standard. Isomer profiles of PFCAs in liver samples of 15 polar bears (Ursus maritimus) from the Canadian Arctic and eastern Greenland were determined by GC-MS. The PFOA isomer pattern in Greenland polar bear samples showed a variety of branched isomers while only the linear PFOA isomer was determined in Canadian samples. Samples of both locations had primarily (>99%) linear isomers of perfluorononanoate and perfluorotridecanoate. Branched isomers of perfluorodecanoate, perfluoroundecanoate, and perfluorododecanoate were determined in the polar bear samples. Unlike the PFOA isomer signature, only a single branched isomer peak on the chromatograms was observed for these longer chain PFCAs. The presence of branched isomers suggests some contribution from ECF sources. However, in comparison to the amount of branched isomers in the ECF PFOA standard, such minor percentages of branched PFCAs may suggest additional input from an exclusively linear isomer source.
Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks
Kim, Kwangsoo; Jin, Seong-il
2015-01-01
A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method. PMID:26007734
Modeling SOA production from the oxidation of intermediate volatility alkanes
NASA Astrophysics Data System (ADS)
Aumont, B.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.
2012-12-01
Secondary Organic Aerosols (SOA) production and ageing is a multigenerational oxidation process involving the formation of successive organic compounds with higher oxidation degree and lower vapour pressure. This process was investigated using the explicit oxidation model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere). Results for the C8-C24 n-alkane series show the expected trends, i.e. (i) SOA yield grows with the carbon backbone of the parent hydrocarbon, (ii) SOA yields decreases with the decreasing pre-existing organic aerosol concentration, (iii) the number of generations required to describe SOA production increases when the pre-existing organic aerosol concentration decreases. Most SOA contributors were found to be not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA). Branched alkanes are more prone to fragment in the early stage of the oxidation than their corresponding linear analogues. Fragmentation is expected to alter both the yield and the mean oxidation state of the SOA. Here, GECKO-A is applied to generate highly detailed oxidation schemes for various series of branched and cyclised alkanes. Branching and cyclisation effects on SOA yields and oxidation states will be examined.
The impact of lignin source on its self-assembly in solution
Ratnaweera, Dilru R.; Saha, Dipendu; Pingali, Sai Venkatesh; ...
2015-07-30
Recently, there has been a growing interest in developing value added uses for lignin, including the utilization of lignins as a precursor for carbon materials. Proper understanding of the association behavior of lignins during solution processing provides important structural information that is needed to rationally optimize the use of lignins in industry in a range of value added applications. In this paper, we follow the assembly of lignin molecules from a variety of sources in dimethyl sulfoxide, a good solvent for lignins, using small angle neutron scattering. In order to mimic industrial processing conditions, concentrations of lignins were kept abovemore » the overlap concentration. At small length scales, short lignin segments with ~4–10 monolignol units associate to form rigid rod-like/cylindrical building blocks, where the number of repeat units in a cylindrical segment decreases with increasing lignin concentration. These cylindrical building blocks associate to form aggregates with low cross-linking densities and a random coil or network like structures from highly branched lignin structures. The degree of branching of the base lignin molecule, which varies with source, plays a crucial role in determining their association behavior. Finally, the overall sizes of the aggregates decrease with increasing concentration at low cross-linking densities, whereas the opposite trend is observed for highly branched lignins.« less
Actin filament curvature biases branching direction
NASA Astrophysics Data System (ADS)
Wang, Evan; Risca, Viviana; Chaudhuri, Ovijit; Chia, Jia-Jun; Geissler, Phillip; Fletcher, Daniel
2012-02-01
Actin filaments are key components of the cellular machinery, vital for a wide range of processes ranging from cell motility to endocytosis. Actin filaments can branch, and essential in this process is a protein complex known as the Arp2/3 complex, which nucleate new ``daughter'' filaments from pre-existing ``mother'' filaments by attaching itself to the mother filament. Though much progress has been made in understanding the Arp2/3-actin junction, some very interesting questions remain. In particular, F-actin is a dynamic polymer that undergoes a wide range of fluctuations. Prior studies of the Arp2/3-actin junction provides a very static notion of Arp2/3 binding. The question we ask is how differently does the Arp2/3 complex interact with a straight filament compared to a bent filament? In this study, we used Monte Carlo simulations of a surface-tethered worm-like chain to explore possible mechanisms underlying the experimental observation that there exists preferential branch formation by the Arp2/3 complex on the convex face of a curved filament. We show that a fluctuation gating model in which Arp2/3 binding to the actin filament is dependent upon a rare high-local-curvature shape fluctuation of the filament is consistent with the experimental data.
Branch-based centralized data collection for smart grids using wireless sensor networks.
Kim, Kwangsoo; Jin, Seong-il
2015-05-21
A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.
Hard X-ray Emission along the Z Track in GX 17 + 2
NASA Astrophysics Data System (ADS)
Ding, G. Q.; Huang, C. P.
2015-09-01
Using the data from the Proportional Counter Array (PCA) and the High-Energy X-ray Timing Experiment (HEXTE) on board Rossi X-Ray Timing Explorer for Z source GX 17 + 2, we investigate the evolution of its PCA spectra and HEXTE spectra along a `Z' track on its hardness-intensity diagram. A hard X-ray tail is detected in the HEXTE spectra. The detected hard X-ray tails are discontinuously scattered throughout the Z track. The found hard X-ray tail hardens from the horizontal branch, through the normal branch, to the flaring branch in principle and it contributes ˜(20-50)% of the total flux in 20-200 keV. Our joint fitting results of the PCA + HEXTE spectra in 3-200 keV show that the portion of Comptonization in the Bulk-Motion Comptonization (BMC) model accounts for the hard X-ray tail, which indicates that the BMC process could be responsible for the detected hard tail. The temperature of the seed photons for BMC is ˜2.7 keV, implying that these seed photons might be emitted from the surface of the neutron star (NS) or the boundary layer between the NS and the disk and, therefore, this process could take place around the NS or in the boundary layer.
Lorah, Michelle M.; Voytek, Mary A.; Spencer, Tracey A.
2003-01-01
A preliminary assessment of the microbial communities and biodegradation processes for chlorinated volatile organic compounds was con-ducted by the U.S. Geological Survey in wetlands at the Cluster 13, Lauderick Creek area at Aberdeen Proving Ground, Maryland. The U.S. Geological Survey collected wetland sediment samples from 11 sites in the Lauderick Creek area for microbial analyses, and used existing data to evaluate biodegradation processes and rates. The bacterial and methanogen communities in the Lauderick Creek wetland sediments were similar to those observed in a previous U.S. Geological Survey study at the West Branch Canal Creek wet-land area, Aberdeen Proving Ground. Evaluation of the degradation rate of 1,1,2,2-tetrachloroethane and the daughter compounds produced also showed similar results for the two wetlands. How-ever, a vertical profile of contaminant concentra-tions in the wetlands was available at only one site in the Lauderick Creek area, and flow velocities in the wetland sediment are unknown. To better evaluate natural attenuation processes and rates in the wetland sediments at Lauderick Creek, chemi-cal and hydrologic measurements are needed along ground-water flowpaths in the wetland at additional sites and during different seasons. Nat-ural attenuation in the wetlands, enhanced biore-mediation, and constructed wetlands could be feasible remediation methods for the chlorinated volatile organic compounds discharging in the Lauderick Creek area. The similarities in the microbial communities and biodegradation pro-cesses at the Lauderick Creek and West Branch Canal Creek areas indicate that enhanced bioreme-diation techniques currently being developed for the West Branch Canal Creek wetland area would be transferable to this area.
Statistical distributions of earthquake numbers: consequence of branching process
NASA Astrophysics Data System (ADS)
Kagan, Yan Y.
2010-03-01
We discuss various statistical distributions of earthquake numbers. Previously, we derived several discrete distributions to describe earthquake numbers for the branching model of earthquake occurrence: these distributions are the Poisson, geometric, logarithmic and the negative binomial (NBD). The theoretical model is the `birth and immigration' population process. The first three distributions above can be considered special cases of the NBD. In particular, a point branching process along the magnitude (or log seismic moment) axis with independent events (immigrants) explains the magnitude/moment-frequency relation and the NBD of earthquake counts in large time/space windows, as well as the dependence of the NBD parameters on the magnitude threshold (magnitude of an earthquake catalogue completeness). We discuss applying these distributions, especially the NBD, to approximate event numbers in earthquake catalogues. There are many different representations of the NBD. Most can be traced either to the Pascal distribution or to the mixture of the Poisson distribution with the gamma law. We discuss advantages and drawbacks of both representations for statistical analysis of earthquake catalogues. We also consider applying the NBD to earthquake forecasts and describe the limits of the application for the given equations. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrence, the NBD has two parameters. The second parameter can be used to characterize clustering or overdispersion of a process. We determine the parameter values and their uncertainties for several local and global catalogues, and their subdivisions in various time intervals, magnitude thresholds, spatial windows, and tectonic categories. The theoretical model of how the clustering parameter depends on the corner (maximum) magnitude can be used to predict future earthquake number distribution in regions where very large earthquakes have not yet occurred.
NASA Astrophysics Data System (ADS)
Alboabidallah, Ahmed; Martin, John; Lavender, Samantha; Abbott, Victor
2017-09-01
Terrestrial Laser Scanning (TLS) processing for biomass mapping involves large data volumes, and often includes relatively slow 3D object fitting steps that increase the processing time. This study aimed to test new features that can speed up the overall processing time. A new type of 3D voxel is used, where the horizontal layers are parallel to the Digital Terrain Model. This voxel type allows procedures to extract tree diameters using just one layer, but still gives direct tree-height estimations. Layer intersection is used to emphasize the trunks as upright standing objects, which are detected in the spatially segmented intersection of the breast-height voxels and then extended upwards and downwards. The diameters were calculated by fitting elliptical cylinders to the laser points in the detected trunk segments. Non-trunk segments, used in sub-tree- structures, were found using the parent-child relationships between successive layers. The branches were reconstructed by skeletonizing each sub-tree branch, and the biomass was distributed statistically amongst the weighted skeletons. The procedure was applied to nine plots within the UK. The average correlation coefficients between reconstructed and directly measured tree diameters, heights and branches were R2 = 0.92, 0.97 and 0.59 compared to 0.91, 0.95, and 0.63 when cylindrical fitting was used. The average time to apply the method reduced from 5hrs:18mins per plot, for the conventional methods, to 2hrs:24mins when the same hardware and software libraries were used with the 3D voxels. These results indicate that this 3D voxel method can produce, much more quickly, results of a similar accuracy that would improve efficiency if applied to projects with large volume TLS datasets.
75 FR 47458 - TRICARE; Diabetic Education
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-06
... counseling for socioeconomic purposes, stress management, lifestyle modification. Services provided by a...: Joy Saly, Medical Benefits and Reimbursement Branch, TRICARE Management Activity, telephone (303) 676... education. Diabetes self-management training (DSMT) is an interactive, collaborative process involving...
Doing It Right: 366 answers to computing questions you didn't know you had
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herring, Stuart Davis
Slides include information on history: version control, version control: branches, version control: Git, releases, requirements, readability, readability control flow, global variables, architecture, architecture redundancy, processes, input/output, unix, etcetera.
75 FR 46943 - Agency Information Collection Activities: Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-04
...-capturing process. SAMHSA will place Web site registration information into a Knowledge Management database... September 3, 2010 to: SAMHSA Desk Officer, Human Resources and Housing Branch, Office of Management and...
Media Notes: Bringing Government to Life.
ERIC Educational Resources Information Center
Sive, Mary Robinson
1981-01-01
This column examines some recent media materials for middle and high schools on federal, state, and local government; the legislative process; the presidency; the judicial branch; elections; and citizen participation. Complete ordering information is included. (Author/SJL)
Universal poroelastic mechanism for hydraulic signals in biomimetic and natural branches
Louf, J.-F.; Guéna, G.; Badel, E.; Forterre, Y.
2017-01-01
Plants constantly undergo external mechanical loads such as wind or touch and respond to these stimuli by acclimating their growth processes. A fascinating feature of this mechanical-induced growth response is that it can occur rapidly and at long distance from the initial site of stimulation, suggesting the existence of a fast signal that propagates across the whole plant. The nature and origin of the signal is still not understood, but it has been recently suggested that it could be purely mechanical and originate from the coupling between the local deformation of the tissues (bending) and the water pressure in the plant vascular system. Here, we address the physical origin of this hydromechanical coupling using a biomimetic strategy. We designed soft artificial branches perforated with longitudinal liquid-filled channels that mimic the basic features of natural stems and branches. In response to bending, a strong overpressure is generated in the channels that varies quadratically with the bending curvature. A model based on a mechanism analogous to the ovalization of hollow tubes enables us to predict quantitatively this nonlinear poroelastic response and identify the key physical parameters that control the generation of the pressure pulse. Further experiments conducted on natural tree branches reveal the same phenomenology. Once rescaled by the model prediction, both the biomimetic and natural branches fall on the same master curve, enlightening the universality of our poroelastic mechanism for the generation of hydraulic signals in plants. PMID:28973910
Li, Yang; Pan, Chuer; Li, Yunfeng; Kumacheva, Eugenia; Ramachandran, Arun
2017-09-08
Embolic ischemia and pulmonary embolism are health emergencies that arise when a particle such as a blood clot occludes a smaller blood vessel in the brain or the lungs, and restricts flow of blood downstream of the vessel. In this work, the reflow technique (Wang et al. Biomed. Microdevices 2007, 9, 657) was adapted to produce a microchannel network that mimics the occlusion process. The technique was first revisited and a simple geometrical model was developed to quantitatively explain the shapes of the resulting microchannels for different reflow parameters. A critical modification was introduced to the reflow protocol to fabricate nearly circular microchannels of different diameters from the same master, which is not possible with the traditional reflow technique. To simulate the phenomenon of occlusion by clots, a microchannel network with three generations of branches with different diameters and branching angles was fabricated, into which fibrin clots were introduced. At low constant pressure drop (ΔP), a clot blocked a branch entrance only partially, while at higher ΔP, the branch was completely blocked. Instances of simultaneous blocking of multiple channels by clots, and the consequent changes in the flow rates in the unblocked branches of the network, were also monitored. This work provides the framework for a systematic study of the distribution of clots in a network, and the rate of dissolution of embolic clots upon the introduction of a thrombolytic drug into the network.
The intriguing nature of dorsal root ganglion neurons: linking structure with polarity and function.
Nascimento, Ana Isabel; Mar, Fernando Milhazes; Sousa, Mónica Mendes
2018-05-02
Dorsal root ganglion (DRG) neurons are the first neurons of the sensory pathway. They are activated by a variety of sensory stimuli that are then transmitted to the central nervous system. An important feature of DRG neurons is their unique morphology where a single process -the stem axon- bifurcates into a peripheral and a central axonal branch, with different functions and cellular properties. Distinctive structural aspects of the two DRG neuron branches may have important implications for their function in health and disease. However, the link between DRG axonal branch structure, polarity and function has been largely neglected in the field, and relevant information is rather scattered across the literature. In particular, ultrastructural differences between the two axonal branches are likely to account for the higher transport and regenerative ability of the peripheral DRG neuron axon when compared to the central one. Nevertheless, the cell intrinsic factors contributing to this central-peripheral asymmetry are still unknown. Here we critically review the factors that may underlie the functional asymmetry between the peripheral and central DRG axonal branches. Also, we discuss the hypothesis that DRG neurons may assemble a structure resembling the axon initial segment that may be responsible, at least in part, for their polarity and electrophysiological features. Ultimately, we suggest that the clarification of the axonal ultrastructure of DRG neurons using state-of-the-art techniques will be crucial to understand the physiology of this peculiar cell type. Copyright © 2018. Published by Elsevier Ltd.
Branches of the Facial Artery.
Hwang, Kun; Lee, Geun In; Park, Hye Jin
2015-06-01
The aim of this study is to review the name of the branches, to review the classification of the branching pattern, and to clarify a presence percentage of each branch of the facial artery, systematically. In a PubMed search, the search terms "facial," AND "artery," AND "classification OR variant OR pattern" were used. The IBM SPSS Statistics 20 system was used for statistical analysis. Among the 500 titles, 18 articles were selected and reviewed systematically. Most of the articles focused on "classification" according to the "terminal branch." Several authors classified the facial artery according to their terminal branches. Most of them, however, did not describe the definition of "terminal branch." There were confusions within the classifications. When the inferior labial artery was absent, 3 different types were used. The "alar branch" or "nasal branch" was used instead of the "lateral nasal branch." The angular branch was used to refer to several different branches. The presence as a percentage of each branch according to the branches in Gray's Anatomy (premasseteric, inferior labial, superior labial, lateral nasal, and angular) varied. No branch was used with 100% consistency. The superior labial branch was most frequently cited (95.7%, 382 arteries in 399 hemifaces). The angular branch (53.9%, 219 arteries in 406 hemifaces) and the premasseteric branch were least frequently cited (53.8%, 43 arteries in 80 hemifaces). There were significant differences among each of the 5 branches (P < 0.05) except between the angular branch and the premasseteric branch and between the superior labial branch and the inferior labial branch. The authors believe identifying the presence percentage of each branch will be helpful for surgical procedures.
Branch classification: A new mechanism for improving branch predictor performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, P.Y.; Hao, E.; Patt, Y.
There is wide agreement that one of the most significant impediments to the performance of current and future pipelined superscalar processors is the presence of conditional branches in the instruction stream. Speculative execution is one solution to the branch problem, but speculative work is discarded if a branch is mispredicted. For it to be effective, speculative work is discarded if a branch is mispredicted. For it to be effective, speculative execution requires a very accurate branch predictor; 95% accuracy is not good enough. This paper proposes branch classification, a methodology for building more accurate branch predictors. Branch classification allows anmore » individual branch instruction to be associated with the branch predictor best suited to predict its direction. Using this approach, a hybrid branch predictor can be constructed such that each component branch predictor predicts those branches for which it is best suited. To demonstrate the usefulness of branch classification, an example classification scheme is given and a new hybrid predictor is built based on this scheme which achieves a higher prediction accuracy than any branch predictor previously reported in the literature.« less
Sawamoto, Masanori; Kang, Myeong Jin; Miyazaki, Eigo; Sugino, Hiroyoshi; Osaka, Itaru; Takimiya, Kazuo
2016-02-17
We demonstrate a new approach to solution-processable dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) derivatives that can afford good thin-film transistors having mobilities higher than 0.1 cm(2) V(-1) s(-1). The key molecular design strategy is the introduction of one branched alkyl group at the edge of the DNTT core, which improves solubility while retaining semiconducting characteristics in the thin-film state. Dialkylation, i.e., the introduction of two branched alkyl groups on the DNTT core, had a detrimental effect on the semiconducting properties. Although the physicochemical properties of the mono- and dialkylated derivatives at the molecular level were almost the same, the thin-film absorption spectra and the ionization potentials (IPs) were markedly different, indicating that the intermolecular interaction in the thin-film state was affected by the number of alkyl groups. Indeed, the packing structures of the monoalkylated DNTTs in the thin-film state, which were estimated from the XRD patterns, were similar to that of parent DNTT, indicating the existence of the lamella structure with the herringbone packing motif. In sharp contrast, the XRD patterns of the dialkylated DNTT thin films showed poor crystallinity, and the packing structures were significantly different from that of parent DNTT. All the results of structural characterization in the thin-film state and evaluation of device characteristics of the DNTT derivatives with branched alkyl groups indicate that the introduction of a branched alkyl group in the molecular long-axis direction is an effective way to solubilize the rigid, largely π-extended organic semiconducting core without interfering with the semiconducting characteristics in the thin-film state.
Active learning of neuron morphology for accurate automated tracing of neurites
Gala, Rohan; Chapeton, Julio; Jitesh, Jayant; Bhavsar, Chintan; Stepanyants, Armen
2014-01-01
Automating the process of neurite tracing from light microscopy stacks of images is essential for large-scale or high-throughput quantitative studies of neural circuits. While the general layout of labeled neurites can be captured by many automated tracing algorithms, it is often not possible to differentiate reliably between the processes belonging to different cells. The reason is that some neurites in the stack may appear broken due to imperfect labeling, while others may appear fused due to the limited resolution of optical microscopy. Trained neuroanatomists routinely resolve such topological ambiguities during manual tracing tasks by combining information about distances between branches, branch orientations, intensities, calibers, tortuosities, colors, as well as the presence of spines or boutons. Likewise, to evaluate different topological scenarios automatically, we developed a machine learning approach that combines many of the above mentioned features. A specifically designed confidence measure was used to actively train the algorithm during user-assisted tracing procedure. Active learning significantly reduces the training time and makes it possible to obtain less than 1% generalization error rates by providing few training examples. To evaluate the overall performance of the algorithm a number of image stacks were reconstructed automatically, as well as manually by several trained users, making it possible to compare the automated traces to the baseline inter-user variability. Several geometrical and topological features of the traces were selected for the comparisons. These features include the total trace length, the total numbers of branch and terminal points, the affinity of corresponding traces, and the distances between corresponding branch and terminal points. Our results show that when the density of labeled neurites is sufficiently low, automated traces are not significantly different from manual reconstructions obtained by trained users. PMID:24904306
Lagrangian Photochemical Box-Model Calculations of Asian Pacific Rim Outflow During TRACE-P
NASA Astrophysics Data System (ADS)
Hamlin, A.; Crawford, J.; Olson, J.; Avery, M.; Sachse, G.; Barrick, J.; Blake, D.; Tan, D.; Sandholm, S.; Kondo, Y.; Singh, H.; Eisele, F.; Zondlo, M.; Flocke, F.; Talbot, R.
2006-12-01
NASA's TRACE-P (TRAnsport and Chemical Evolution over the Pacific) mission was conducted over the northwestern Pacific February-April, 2001. During two transit flights across the Pacific, extensive pollution was observed from an Asian outflow event that split into two branches over the central Pacific, one subsiding and moving southward over the central Pacific and the other continuing eastward in the upper troposphere. The subsiding branch was observed as a widespread stagnant pollution layer between 2 and 4 km over the central Pacific during transit flights from Kona, HI to Guam. In this region, high levels of O3 (70 ppbv), CO (217 ppbv), and NOx (114 pptv) were well in excess of typical values observed during TRACE-P along the Asian coast. Evidence suggests that the subsiding branch experienced extensive photochemical processing compared to the branch that remained at altitude. To examine the processes controlling the chemical evolution of ozone and its precursors in this outflow event, data collected during the TRACE-P mission have been combined with lagrangian photochemical box model calculations. One of the largest sources of uncertainty in these calculations was associated with predicted water vapor levels along the transport trajectories calculated using the HYSPLIT model. Water vapor levels predicted by HYSPLIT trajectory calculations in the subsiding layer ranged from 3390 to 4880 ppm, while the median level observed in the pollution layer was only 637 ppm. Simulations of ozone production and associated radical chemistry differed dramatically when using water vapor levels based on trajectory calculations versus observed water vapor levels. Levels of PAN and HO2NO2, NOx reservoir species, are also influenced by uncertainties in temperature along the trajectories. These results highlight the importance of accurately representing the humidification and warming of subsiding air masses in 3-D chemical- transport models.
Fitzgerald, Jacqueline; Leemans, Alexander; Kehoe, Elizabeth; O'Hanlon, Erik; Gallagher, Louise; McGrath, Jane
2018-03-01
Core features of autism spectrum disorder (ASD) may be underpinned by disrupted functional and structural neural connectivity. Abnormal fronto-parietal functional connectivity has been widely reported in the literature; this may be underpinned by disrupted microstructural organisation of white matter. The superior longitudinal fasciculus (SLF) is a major fronto-parietal white matter tract, the structure of which has been little studied in ASD. The fronto-parietal projections of this tract (SLF I, II and III) are thought to play an important role in a number of cognitive functions including attention and visuospatial processing. To date, the isolation of the fronto-parietal branches of the SLF has been hampered by limitations of traditional tractography approaches. Constrained spherical deconvolution (CSD)-based tractography is an advanced approach that allows valid isolation of the fronto-parietal branches of the SLF. Diffusion MRI data were acquired from 45 participants with ASD and 45 age- and IQ-matched controls. The SLF I, II and III branches were isolated using CSD-based tractography in ExploreDTI. Significantly greater fractional anisotropy (FA) was observed in the right SLF II relative to controls. The ASD group also showed greater linear diffusion coefficient in the left SLF I and the right SLF II. In the SLF II, the ASD group had significantly greater right lateralisation of FA in comparison with the control group. The clinical and functional implications of increased FA in white matter are poorly understood; however, it is possible that this increased white matter organisation in the SLF in ASD may contribute to relative processing advantages in the condition. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Pérez-Zamorano, Bernardo; Vallebueno-Estrada, Miguel; Martínez González, Javier; García Cook, Angel; Montiel, Rafael; Vielle-Calzada, Jean-Philippe
2017-01-01
The story of how preColumbian civilizations developed goes hand-in-hand with the process of plant domestication by Mesoamerican inhabitants. Here, we present the almost complete sequence of a mitochondrial genome and a partial chloroplast genome from an archaeological maize sample collected at the Valley of Tehuacán, México. Accelerator mass spectrometry dated the maize sample to be 5,040–5,300 years before present (95% probability). Phylogenetic analysis of the mitochondrial genome shows that the archaeological sample branches basal to the other Zea mays genomes, as expected. However, this analysis also indicates that fertile genotype NB is closely related to the archaeological maize sample and evolved before cytoplasmic male sterility genotypes (CMS-S, CMS-T, and CMS-C), thus contradicting previous phylogenetic analysis of mitochondrial genomes from maize. We show that maximum-likelihood infers a tree where CMS genotypes branch at the base of the tree when including sites that have a relative fast rate of evolution thus suggesting long-branch attraction. We also show that Bayesian analysis infer a topology where NB and the archaeological maize sample are at the base of the tree even when including faster sites. We therefore suggest that previous trees suffered from long-branch attraction. We also show that the phylogenetic analysis of the ancient chloroplast is congruent with genotype NB to be more closely related to the archaeological maize sample. As shown here, the inclusion of ancient genomes on phylogenetic trees greatly improves our understanding of the domestication process of maize, one of the most important crops worldwide. PMID:28338960
Functioning at the Edge of Knowledge: A Study of Learning Processes in New Product Development
ERIC Educational Resources Information Center
Doos, Marianne; Wilhelmson, Lena; Backlund, Thomas; Dixon, Nancy
2005-01-01
Purpose: In the telecommunication industry, companies gain a competitive edge through the competence of their employees, making issues of learning critical. The study aims to identify specific learning processes necessary when working at the edge both of one's own knowledge and of that of the branch. Design/methodology/approach: This research…
Taking It to the Stacks: An Inventory Project at the University of Mississippi Libraries
ERIC Educational Resources Information Center
Greenwood, Judy T.
2013-01-01
This article examines multiple inventory methods and findings from the inventory processes at the University of Mississippi Libraries. In an attempt to reduce user frustration from not being able to locate materials, the University of Mississippi Libraries conducted an inventory process beginning with a pilot inventory of a branch library and a…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... FURTHER INFORMATION CONTACT: For Legal Aspects: Alan C. Cohen, Penalties Branch, Regulations and Rulings... claimant to resolve defects. It is recognized that in some cases the sampling will be so flawed it cannot... companies' internal processes and systems during the application process. ISA members are companies with...
Linear circuit analysis program for IBM 1620 Monitor 2, 1311/1443 data processing system /CIRCS/
NASA Technical Reports Server (NTRS)
Hatfield, J.
1967-01-01
CIRCS is modification of IBSNAP Circuit Analysis Program, for use on smaller systems. This data processing system retains the basic dc, transient analysis, and FORTRAN 2 formats. It can be used on the IBM 1620/1311 Monitor I Mod 5 system, and solves a linear network containing 15 nodes and 45 branches.
Sugiura, D; Tateno, M
2013-08-01
We investigated the nitrogen and carbohydrate allocation patterns of trees under heterogeneous light environments using saplings of the devil maple tree (Acer diabolicum) with Y-shaped branches. Different branch groups were created: all branches of a sapling exposed to full light (L-branches), all branches exposed to full shade (S-branches), and half of the branches of a sapling exposed to light (HL-branches) and the other half exposed to shade (HS-branches). Throughout the growth period, nitrogen was preferentially allocated to HL-branches, whereas nitrogen allocation to HS-branches was suppressed compared to L- and S-branches. HL-branches with the highest leaf nitrogen content (N(area)) also had the highest rates of growth, and HS-branches with the lowest N(area) had the lowest observed growth rates. In addition, net nitrogen assimilation, estimated using a photosynthesis model, was strongly correlated with branch growth and whole-plant growth. In contrast, patterns of photosynthate allocation to branches and roots were not affected by the light conditions of the other branch. These observations suggest that tree canopies develop as a result of resource allocation patterns, where the growth of sun-lit branches is favoured over shaded branches, which leads to enhanced whole-plant growth in heterogeneous light environments. Our results indicate that whole-plant growth is enhanced by the resource allocation patterns created for saplings in heterogeneous light environments.
FAA Aviation Forecast Conference Proceedings (16th)
1991-02-01
FORECASTS The FAA forecasting process is a continuous one which involves FAA Forecast Branch’s interaction with various FAA Offices and Services... process uses various economic and aviation data bases, the outputs of several econometric models and equations, and other analytical techniques. The FAA...workload measures, summarized numerically in the table on page 8, are the resultant forecasts of this process and are used annually by the agency for
Reynisson, Pall Jens; Scali, Marta; Smistad, Erik; Hofstad, Erlend Fagertun; Leira, Håkon Olav; Lindseth, Frank; Nagelhus Hernes, Toril Anita; Amundsen, Tore; Sorger, Hanne; Langø, Thomas
2015-01-01
Introduction Our motivation is increased bronchoscopic diagnostic yield and optimized preparation, for navigated bronchoscopy. In navigated bronchoscopy, virtual 3D airway visualization is often used to guide a bronchoscopic tool to peripheral lesions, synchronized with the real time video bronchoscopy. Visualization during navigated bronchoscopy, the segmentation time and methods, differs. Time consumption and logistics are two essential aspects that need to be optimized when integrating such technologies in the interventional room. We compared three different approaches to obtain airway centerlines and surface. Method CT lung dataset of 17 patients were processed in Mimics (Materialize, Leuven, Belgium), which provides a Basic module and a Pulmonology module (beta version) (MPM), OsiriX (Pixmeo, Geneva, Switzerland) and our Tube Segmentation Framework (TSF) method. Both MPM and TSF were evaluated with reference segmentation. Automatic and manual settings allowed us to segment the airways and obtain 3D models as well as the centrelines in all datasets. We compared the different procedures by user interactions such as number of clicks needed to process the data and quantitative measures concerning the quality of the segmentation and centrelines such as total length of the branches, number of branches, number of generations, and volume of the 3D model. Results The TSF method was the most automatic, while the Mimics Pulmonology Module (MPM) and the Mimics Basic Module (MBM) resulted in the highest number of branches. MPM is the software which demands the least number of clicks to process the data. We found that the freely available OsiriX was less accurate compared to the other methods regarding segmentation results. However, the TSF method provided results fastest regarding number of clicks. The MPM was able to find the highest number of branches and generations. On the other hand, the TSF is fully automatic and it provides the user with both segmentation of the airways and the centerlines. Reference segmentation comparison averages and standard deviations for MPM and TSF correspond to literature. Conclusion The TSF is able to segment the airways and extract the centerlines in one single step. The number of branches found is lower for the TSF method than in Mimics. OsiriX demands the highest number of clicks to process the data, the segmentation is often sparse and extracting the centerline requires the use of another software system. Two of the software systems performed satisfactory with respect to be used in preprocessing CT images for navigated bronchoscopy, i.e. the TSF method and the MPM. According to reference segmentation both TSF and MPM are comparable with other segmentation methods. The level of automaticity and the resulting high number of branches plus the fact that both centerline and the surface of the airways were extracted, are requirements we considered particularly important. The in house method has the advantage of being an integrated part of a navigation platform for bronchoscopy, whilst the other methods can be considered preprocessing tools to a navigation system. PMID:26657513
49 CFR 92.19 - Obtaining the services of a hearing official.
Code of Federal Regulations, 2010 CFR
2010-10-01
... operating element is the creditor agency, the chief of the appropriate accounting or finance office shall.... (This appendix lists the agents designated to accept legal process for the executive branch, the U.S...
The QCD corrections of the process h → ηbZ
NASA Astrophysics Data System (ADS)
Zhu, Rong-Fei; Feng, Tai-Fu; Zhang, Hai-Bin
2018-05-01
We investigate the 125 GeV Higgs boson decay to a pseudoscalar quarkonium ηb and Z boson. We calculate the quantum chromodynamics (QCD) one-loop corrections to the branching ratio of the process, Br(h → ηbZ), both in the Standard Model (SM) and in the two Higgs double models (THDM). Adding the QCD one-loop corrections, the branching ratio of h → ηbZ in the SM is Br(h → ηbZ) = (4.739‑0.244+0.276) × 10‑5. The relative correction of that QCD one-loop level relative to the tree level of Br(h → ηbZ) is around 76% in the SM. Similarly, the relative correction in the THDM also can be around 75%. The key parameter, tan β, can affect the relative correction in the THDM.
Severe Storms Branch research report (April 1984 April 1985)
NASA Technical Reports Server (NTRS)
Dubach, L. (Editor)
1985-01-01
The Mesoscale Atmospheric Processes Research Program is a program of integrated studies which are to achieve an improved understanding of the basic behavior of the atmosphere through the use of remotely sensed data and space technology. The program consist of four elements: (1) special observations and analysis of mesoscale systems; (20 the development of quanitative algorithms to use remotely sensed observations; (3) the development of new observing systems; and (4) numerical modeling. The Severe Storms Branch objectives are the improvement of the understanding, diagnosis, and prediction of a wide range of atmospheric storms, which includes severe thunderstorms, tornadoes, flash floods, tropical cyclones, and winter snowstorms. The research often shed light upon various aspects of local weather, such as fog, sea breezes, air pollution, showers, and other products of nonsevere cumulus cloud clusters. The part of the program devoted to boundary layer processes, gust front interactions, and soil moisture detection from satellites gives insights into storm growth and behavior.
In search of intelligence: evolving a developmental neuron capable of learning
NASA Astrophysics Data System (ADS)
Khan, Gul Muhammad; Miller, Julian Francis
2014-10-01
A neuro-inspired multi-chromosomal genotype for a single developmental neuron capable of learning and developing memory is proposed. This genotype is evolved so that the phenotype which changes and develops during an agent's lifetime (while problem-solving) gives the agent the capacity for learning by experience. Seven important processes of signal processing and neural structure development are identified from biology and encoded using Cartesian Genetic Programming. These chromosomes represent the electrical and developmental aspects of dendrites, axonal branches, synapses and the neuron soma. The neural morphology that occurs by running these chromosomes is highly dynamic. The dendritic/axonal branches and synaptic connections form and change in response to situations encountered in the learning task. The approach has been evaluated in the context of maze-solving and the board game of checkers (draughts) demonstrating interesting learning capabilities. The motivation underlying this research is to, ab initio, evolve genotypes that build phenotypes with an ability to learn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradonjic, Milan; Hagberg, Aric; Hengartner, Nick
We analyze component evolution in general random intersection graphs (RIGs) and give conditions on existence and uniqueness of the giant component. Our techniques generalize the existing methods for analysis on component evolution in RIGs. That is, we analyze survival and extinction properties of a dependent, inhomogeneous Galton-Watson branching process on general RIGs. Our analysis relies on bounding the branching processes and inherits the fundamental concepts from the study on component evolution in Erdos-Renyi graphs. The main challenge becomes from the underlying structure of RIGs, when the number of offsprings follows a binomial distribution with a different number of nodes andmore » different rate at each step during the evolution. RIGs can be interpreted as a model for large randomly formed non-metric data sets. Besides the mathematical analysis on component evolution, which we provide in this work, we perceive RIGs as an important random structure which has already found applications in social networks, epidemic networks, blog readership, or wireless sensor networks.« less
N * → Nη ' decays from photoproduction of η ' -mesons off protons
Anisovich, A. V.; Burkert, V.; Collins, P. M.; ...
2017-06-27
We presented a study of the partial-wave content of themore » $$\\gamma p\\to \\eta^\\prime p$$ reaction in the fourth resonance region, which has been prompted by new measurements of polarization observables for that process. Using the Bonn-Gatchina partial-wave formalism, the incorporation of new data indicates that the $N(1895)1/2^-$, $N(1900)3/2^+$, $N(2100)1/2^+$, and $N(2120)3/2^-$ are the most significant contributors to the photoproduction process. Some new results for the branching ratios of the decays of these more prominent resonances to $$N\\eta^\\prime$$ final states are provided; such branches have not been indicated in the most recent edition of the Review of Particle Properties. Based on the analysis performed here, predictions for the helicity asymmetry $E$ for the $$\\gamma p\\to \\eta^\\prime p$$ reaction are presented.« less
NASA Astrophysics Data System (ADS)
Crespo Campo, L.; Bello Garrote, F. L.; Eriksen, T. K.; Görgen, A.; Guttormsen, M.; Hadynska-Klek, K.; Klintefjord, M.; Larsen, A. C.; Renstrøm, T.; Sahin, E.; Siem, S.; Springer, A.; Tornyi, T. G.; Tveten, G. M.
2016-10-01
Particle-γ coincidence data have been analyzed to obtain the nuclear level density and the γ -strength function of 64Ni by means of the Oslo method. The level density found in this work is in very good agreement with known energy levels at low excitation energies as well as with data deduced from particle-evaporation measurements at excitation energies above Ex≈5.5 MeV. The experimental γ -strength function presents an enhancement at γ energies below Eγ≈3 MeV and possibly a resonancelike structure centered at Eγ≈9.2 MeV. The obtained nuclear level density and γ -strength function have been used to estimate the (n ,γ ) cross section for the s -process branch-point nucleus 63Ni, of particular interest for astrophysical calculations of elemental abundances.
Four-body decays of B meson with lepton number violation
NASA Astrophysics Data System (ADS)
Yuan, Han; Wang, Tianhong; Jiang, Yue; Li, Qiang; Wang, Guo-Li
2018-06-01
The existence of heavy meson lepton number violating (LNV) processes shows the Majorana nature of the neutrino. Much of this theoretical and experimental researche focuses on this type of decay. Four-body epton-number violation (LNV) processes of the B meson may have sizable branching ratios as they share the same vertex and mixing parameters with the three-body case. Mixing parameters between the heavy Majorana neutrino and charged leptons extracted from the three-body case can be used to constrain the branching ratios of four-body decays of the B meson. So we can update the upper limits of these mixing parameters with new experimental data of the three-body LNV decays. We also analyze {B}0\\to {D}* -{{\\ell }}1+{{\\ell }}2+{M}2- using the updated parameters and estimate some channels’ reconstruction events using current experimental data from Belle.
The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning.
Nagalakshmi, Vidya K; Yu, Jing
2015-03-01
The mammalian metanephric kidney is composed of two epithelial components, the collecting duct system and the nephron epithelium, that differentiate from two different tissues -the ureteric bud epithelium and the nephron progenitors, respectively-of intermediate mesoderm origin. The collecting duct system is generated through reiterative ureteric bud branching morphogenesis, whereas the nephron epithelium is formed in a process termed nephrogenesis, which is initiated with the mesenchymal-epithelial transition of the nephron progenitors. Ureteric bud branching morphogenesis is regulated by nephron progenitors, and in return, the ureteric bud epithelium regulates nephrogenesis. The metanephric kidney is physiologically divided along the corticomedullary axis into subcompartments that are enriched with specific segments of these two epithelial structures. Here, we provide an overview of the major molecular and cellular processes underlying the morphogenesis and patterning of the ureteric bud epithelium and its roles in the cortico-medullary patterning of the metanephric kidney. © 2015 Wiley Periodicals, Inc.
Towards deconstruction of the Type D (2,0) theory
NASA Astrophysics Data System (ADS)
Bourget, Antoine; Pini, Alessandro; Rodriguez-Gomez, Diego
2017-12-01
We propose a four-dimensional supersymmetric theory that deconstructs, in a particular limit, the six-dimensional (2, 0) theory of type D k . This 4d theory is defined by a necklace quiver with alternating gauge nodes O(2 k) and Sp( k). We test this proposal by comparing the 6d half-BPS index to the Higgs branch Hilbert series of the 4d theory. In the process, we overcome several technical difficulties, such as Hilbert series calculations for non-complete intersections, and the choice of O versus SO gauge groups. Consistently, the result matches the Coulomb branch formula for the mirror theory upon reduction to 3d.
Iridium-Catalyzed Kinetic Asymmetric Transformations of Racemic Allylic Benzoates
Stanley, Levi M.; Bai, Chen; Ueda, Mitsuhiro; Hartwig, John F.
2010-01-01
Versatile methods for iridium-catalyzed, kinetic asymmetric substitution of racemic, branched allylic esters are reported. These reactions occur with a variety of aliphatic, aryl, and heteroaryl allylic benzoates to form the corresponding allylic substitution products in high yields (74–96%) with good to excellent enantioselectivity (84–98% ee) with a scope that encompasses a range of anionic carbon and heteroatom nucleophiles. These kinetic asymmetric processes occur with distinct stereochemical courses for racemic aliphatic and aromatic allylic benzoates, and the high reactivity of branched allylic benzoates enables enantioselective allylic substitutions that are slow or poorly selective with linear allylic electrophiles. PMID:20552969
On understanding nuclear reaction network flows with branchings on directed graphs
NASA Astrophysics Data System (ADS)
Meyer, Bradley S.
2018-04-01
Nuclear reaction network flow diagrams are useful for understanding which reactions are governing the abundance changes at a particular time during nucleosynthesis. This is especially true when the flows are largely unidirectional, such as during the s-process of nucleosynthesis. In explosive nucleosynthesis, when reaction flows are large, and when forward reactions are nearly balanced by their reverses, reaction flows no longer give a clear picture of the abundance evolution in the network. This paper presents a way of understanding network evolution in terms of sums of branchings on a directed graph, which extends the concept of reaction flows to allow for multiple reaction pathways.
Swain, Eric D.; Wexler, Eliezer J.
1996-01-01
Ground-water and surface-water flow models traditionally have been developed separately, with interaction between subsurface flow and streamflow either not simulated at all or accounted for by simple formulations. In areas with dynamic and hydraulically well-connected ground-water and surface-water systems, stream-aquifer interaction should be simulated using deterministic responses of both systems coupled at the stream-aquifer interface. Accordingly, a new coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH; the interfacing code is referred to as MODBRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference ground-water model, and BRANCH is a one-dimensional numerical model commonly used to simulate unsteady flow in open- channel networks. MODFLOW was originally written with the River package, which calculates leakage between the aquifer and stream, assuming that the stream's stage remains constant during one model stress period. A simple streamflow routing model has been added to MODFLOW, but is limited to steady flow in rectangular, prismatic channels. To overcome these limitations, the BRANCH model, which simulates unsteady, nonuniform flow by solving the St. Venant equations, was restructured and incorporated into MODFLOW. Terms that describe leakage between stream and aquifer as a function of streambed conductance and differences in aquifer and stream stage were added to the continuity equation in BRANCH. Thus, leakage between the aquifer and stream can be calculated separately in each model, or leakages calculated in BRANCH can be used in MODFLOW. Total mass in the coupled models is accounted for and conserved. The BRANCH model calculates new stream stages for each time interval in a transient simulation based on upstream boundary conditions, stream properties, and initial estimates of aquifer heads. Next, aquifer heads are calculated in MODFLOW based on stream stages calculated by BRANCH, aquifer properties, and stresses. This process is repeated until convergence criteria are met for head and stage. Because time steps used in ground-water modeling can be much longer than time intervals used in surface- water simulations, provision has been made for handling multiple BRANCH time intervals within one MODFLOW time step. An option was also added to BRANCH to allow the simulation of channel drying and rewetting. Testing of the coupled model was verified by using data from previous studies; by comparing results with output from a simpler, four-point implicit, open-channel flow model linked with MODFLOW; and by comparison to field studies of L-31N canal in southern Florida.
Determinate growth and modularity in a gorgonian octocoral.
Lasker, Howard R; Boller, Michael L; Castanaro, John; Sánchez, Juan Armando
2003-12-01
Growth rates of branches of colonies of the gorgonian Pseudopterogorgia elisabethae were monitored for 2 years on a reef at San Salvador Island, Bahamas. Images of 261 colonies were made at 6-month intervals and colony and branch growth analyzed. Branch growth rates differed between colonies and between the time intervals in which the measurements were made. Colonies developed a plumelike morphology through a pattern of branch origination and determinate growth in which branch growth rates were greatest at the time the branch originated and branches seldom grew beyond a length of 8 cm. A small number of branches had greater growth rates, did not stop growing, and were sites for the origination of subsequent "generations" of branches. The rate of branch origination decreased with each generation of branching, and branch growth rates were lower on larger colonies, leading to determinate colony growth. Although colonial invertebrates like P. elisabethae grow through the addition of polyps, branches behave as modules with determinate growth. Colony form and size is generated by the iterative addition of branches.
Simultaneous extraction of centerlines, stenosis, and thrombus detection in renal CT angiography
NASA Astrophysics Data System (ADS)
Subramanyan, Krishna; Durgan, Jacob; Hodgkiss, Thomas D.; Chandra, Shalabh
2004-05-01
The Renal Artery Stenosis (RAS) is the major cause of renovascular hypertension and CT angiography has shown tremendous promise as a noninvasive method for reliably detecting renal artery stenosis. The purpose of this study was to validate the semi-automated methods to assist in extraction of renal branches and characterizing the associated renal artery stenosis. Automatically computed diagnostic images such as straight MIP, curved MPR, cross-sections, and diameters from multi-slice CT are presented and evaluated for its acceptance. We used vessel-tracking image processing methods to extract the aortic-renal vessel tree in a CT data in axial slice images. Next, from the topology and anatomy of the aortic vessel tree, the stenosis, and thrombus section and branching of the renal arteries are extracted. The results are presented in curved MPR and continuously variable MIP images. In this study, 15 patients were scanned with contrast on Mx8000 CT scanner (Philips Medical Systems), with 1.0 mm thickness, 0.5mm slice spacing, and 120kVp and a stack of 512x512x150 volume sets were reconstructed. The automated image processing took less than 50 seconds to compute the centerline and borders of the aortic/renal vessel tree. The overall assessment of manual and automatically generated stenosis yielded a weighted kappa statistic of 0.97 at right renal arteries, 0.94 at the left renal branches. The thrombus region contoured manually and semi-automatically agreed upon at 0.93. The manual time to process each case is approximately 25 to 30 minutes.
Sakashita, Tetsuya; Hamada, Nobuyuki; Kawaguchi, Isao; Hara, Takamitsu; Kobayashi, Yasuhiko; Saito, Kimiaki
2014-05-01
A single cell can form a colony, and ionizing irradiation has long been known to reduce such a cellular clonogenic potential. Analysis of abortive colonies unable to continue to grow should provide important information on the reproductive cell death (RCD) following irradiation. Our previous analysis with a branching process model showed that the RCD in normal human fibroblasts can persist over 16 generations following irradiation with low linear energy transfer (LET) γ-rays. Here we further set out to evaluate the RCD persistency in abortive colonies arising from normal human fibroblasts exposed to high-LET carbon ions (18.3 MeV/u, 108 keV/µm). We found that the abortive colony size distribution determined by biological experiments follows a linear relationship on the log-log plot, and that the Monte Carlo simulation using the RCD probability estimated from such a linear relationship well simulates the experimentally determined surviving fraction and the relative biological effectiveness (RBE). We identified the short-term phase and long-term phase for the persistent RCD following carbon-ion irradiation, which were similar to those previously identified following γ-irradiation. Taken together, our results suggest that subsequent secondary or tertiary colony formation would be invaluable for understanding the long-lasting RCD. All together, our framework for analysis with a branching process model and a colony formation assay is applicable to determination of cellular responses to low- and high-LET radiation, and suggests that the long-lasting RCD is a pivotal determinant of the surviving fraction and the RBE.
Genotype-Specific Measles Transmissibility: A Branching Process Analysis.
Ackley, Sarah F; Hacker, Jill K; Enanoria, Wayne T A; Worden, Lee; Blumberg, Seth; Porco, Travis C; Zipprich, Jennifer
2018-04-03
Substantial heterogeneity in measles outbreak sizes may be due to genotype-specific transmissibility. Using a branching process analysis, we characterize differences in measles transmission by estimating the association between genotype and the reproduction number R among postelimination California measles cases during 2000-2015 (400 cases, 165 outbreaks). Assuming a negative binomial secondary case distribution, we fit a branching process model to the distribution of outbreak sizes using maximum likelihood and estimated the reproduction number R for a multigenotype model. Genotype B3 is found to be significantly more transmissible than other genotypes (P = .01) with an R of 0.64 (95% confidence interval [CI], .48-.71), while the R for all other genotypes combined is 0.43 (95% CI, .28-.54). This result is robust to excluding the 2014-2015 outbreak linked to Disneyland theme parks (referred to as "outbreak A" for conciseness and clarity) (P = .04) and modeling genotype as a random effect (P = .004 including outbreak A and P = .02 excluding outbreak A). This result was not accounted for by season of introduction, age of index case, or vaccination of the index case. The R for outbreaks with a school-aged index case is 0.69 (95% CI, .52-.78), while the R for outbreaks with a non-school-aged index case is 0.28 (95% CI, .19-.35), but this cannot account for differences between genotypes. Variability in measles transmissibility may have important implications for measles control; the vaccination threshold required for elimination may not be the same for all genotypes or age groups.
On the biophysics and kinetics of toehold-mediated DNA strand displacement
Srinivas, Niranjan; Ouldridge, Thomas E.; Šulc, Petr; Schaeffer, Joseph M.; Yurke, Bernard; Louis, Ard A.; Doye, Jonathan P. K.; Winfree, Erik
2013-01-01
Dynamic DNA nanotechnology often uses toehold-mediated strand displacement for controlling reaction kinetics. Although the dependence of strand displacement kinetics on toehold length has been experimentally characterized and phenomenologically modeled, detailed biophysical understanding has remained elusive. Here, we study strand displacement at multiple levels of detail, using an intuitive model of a random walk on a 1D energy landscape, a secondary structure kinetics model with single base-pair steps and a coarse-grained molecular model that incorporates 3D geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Two factors explain the dependence of strand displacement kinetics on toehold length: (i) the physical process by which a single step of branch migration occurs is significantly slower than the fraying of a single base pair and (ii) initiating branch migration incurs a thermodynamic penalty, not captured by state-of-the-art nearest neighbor models of DNA, due to the additional overhang it engenders at the junction. Our findings are consistent with previously measured or inferred rates for hybridization, fraying and branch migration, and they provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems. PMID:24019238
On the biophysics and kinetics of toehold-mediated DNA strand displacement.
Srinivas, Niranjan; Ouldridge, Thomas E; Sulc, Petr; Schaeffer, Joseph M; Yurke, Bernard; Louis, Ard A; Doye, Jonathan P K; Winfree, Erik
2013-12-01
Dynamic DNA nanotechnology often uses toehold-mediated strand displacement for controlling reaction kinetics. Although the dependence of strand displacement kinetics on toehold length has been experimentally characterized and phenomenologically modeled, detailed biophysical understanding has remained elusive. Here, we study strand displacement at multiple levels of detail, using an intuitive model of a random walk on a 1D energy landscape, a secondary structure kinetics model with single base-pair steps and a coarse-grained molecular model that incorporates 3D geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Two factors explain the dependence of strand displacement kinetics on toehold length: (i) the physical process by which a single step of branch migration occurs is significantly slower than the fraying of a single base pair and (ii) initiating branch migration incurs a thermodynamic penalty, not captured by state-of-the-art nearest neighbor models of DNA, due to the additional overhang it engenders at the junction. Our findings are consistent with previously measured or inferred rates for hybridization, fraying and branch migration, and they provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.
Nakamichi, Masayuki
2004-01-30
The present study examined the use and making of tools to obtain foodstuffs in artificial-mound holes by five captive, group-living Sumatran orangutans (Pongo pygmaeus abelii). Three adult orangutans frequently stripped leaves and twigs from a branch provided (tool-making), and then inserted the tool into a hole to obtain foodstuffs (tool-using). A 5-year-old female juvenile usually used the tools that adult orangutans had previously used, but rarely made tools herself. A 2-year-old male infant did not use any tools. The adult orangutans tend to leave one to several leaves at the top of the branch than to leave many leaves on the branch or to strip all leaves. It seemed likely that tools with appropriate leaves are easier to insert into holes and obtain more foodstuffs, compared with branches with many leaves or sticks without any leaves. When the orangutans were unable to insert a tool into a hole, they usually modified the tool and/or changed their tool-using technique, such as changing how they grasped the tool. These findings are discussed from the perspectives of the orangutan's behavioral flexibility regarding tool-use skills and hierarchical organization in food-processing techniques.
Branches of NF-κb signaling pathway regulate hepatocyte proliferation in rat liver regeneration.
Chang, C F; Zhao, W M; Mei, J X; Zhou, Y; Pan, C Y; Xu, T T; Xu, C S
2015-07-13
Previous studies have demonstrated that the nuclear factor κB (NF-κB) pathway is involved in promoting cell proliferation. To further explore the regulatory branches and their sequence in the NF-κB pathway in the promotion of hepatocyte proliferation at the transcriptional level during rat liver regeneration, Rat Genome 230 2.0 array was used to detect the expression changes of the isolated hepatocytes. We found that many genes involved in the NF-κB pathway (including 73 known genes and 19 homologous genes) and cell proliferation (including 484 genes and 104 homologous genes) were associated with liver regeneration. Expression profile function (Ep) was used to analyze the biological processes. It was revealed that the NF-κB pathway promoted hepatocyte proliferation through three branches. Several methods of integrated statistics were applied to extract and screen key genes in liver regeneration, and it indicated that eight genes may play a vital role in rat liver regeneration. To confirm the above predicted results, Ccnd1, Jun and Myc were analyzed using qRT-PCR, and the results were generally consistent with that of microarray data. It is concluded that 3 branches and 8 key genes involved in the NF-κB pathway regulate hepatocyte proliferation during rat liver regeneration.
Liu, Yuanyuan; Li, Yu; Liu, Change; Sun, Yuanshao; Hu, Qingxi
2016-01-01
Vascularization plays a crucial role in the regeneration of different damaged or diseased tissues and organs. Vascularized networks bring sufficient nutrients and oxygen to implants and receptors. However, the fabrication of engineered structures with branched micro-channels (ESBM) is still the main technological barrier. To address this problem, this paper introduced a novel method for fabricating ESBM; the manufacturability and feasibility of this method was investigated. A triaxial nozzle with automatic cleaning function was mounted on a homemade 3D bioprinter to coaxially extrude sodium alginate (NaAlg) and calcium chloride (CaCl2) to form the hollow hydrogel fibers. With the incompleteness of cross-linking and proper trimming, ESBM could be produced rapidly. Different concentrations of NaAlg and CaCl2 were used to produce ESBM, and mechanical property tests were conducted to confirm the optimal material concentration for making the branched structures. Cell media could be injected into the branched channel, which showed a good perfusion. Fibroblasts were able to maintain high viability after being cultured for a few days, which verified the non-cytotoxicity of the gelation and fabrication process. Thus, hollow hydrogel fibers were proved to be a potential method for fabricating micro-channels for vascularization. PMID:27965729
NASA Technical Reports Server (NTRS)
Crasner, Aaron I.; Scola,Salvatore; Beyon, Jeffrey Y.; Petway, Larry B.
2014-01-01
Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Thermal modeling software was used to run steady state thermal analyses, which were used to both validate the designs and recommend further changes. Analyses were run on each redesign, as well as the original system. Thermal Desktop was used to run trade studies to account for uncertainty and assumptions about fan performance and boundary conditions. The studies suggested that, even if the assumptions were significantly wrong, the redesigned systems would remain within operating temperature limits.
Ranjan, Amit; Kalraiya, Rajiv D
2013-12-01
Expression of β1,6-branched N-linked oligosaccharides have a definite association with invasion and metastasis of cancer cells. However, the mechanism by which these oligosaccharides regulate these processes is not well understood. Invasive variants of B16 murine melanoma, B16F10 (parent) and B16BL6 (highly invasive variant) cell lines have been used for these studies. We demonstrate that substitution of α2,6-linked sialic acids on multiantennary structures formed as a result of β1,6-branching modulate cellular adhesion on both extracellular matrix (ECM) and basement membrane (BM) components. Removal of α2,6 sialic acids either by enzymatic desialylation or by stably down-regulating the ST6Gal-I (enzyme that catalyses the addition of α2,6-linked sialic acids on N-linked oligosaccharides) by lentiviral driven shRNA decreased the adhesion on both ECM and BM components and invasion through reconstituted BM matrigel.
Synthesis of Renewable Lubricant Alkanes from Biomass-Derived Platform Chemicals.
Gu, Mengyuan; Xia, Qineng; Liu, Xiaohui; Guo, Yong; Wang, Yanqin
2017-10-23
The catalytic synthesis of liquid alkanes from renewable biomass has received tremendous attention in recent years. However, bio-based platform chemicals have not to date been exploited for the synthesis of highly branched lubricant alkanes, which are currently produced by hydrocracking and hydroisomerization of long-chain n-paraffins. A selective catalytic synthetic route has been developed for the production of highly branched C 23 alkanes as lubricant base oil components from biomass-derived furfural and acetone through a sequential four-step process, including aldol condensation of furfural with acetone to produce a C 13 double adduct, selective hydrogenation of the adduct to a C 13 ketone, followed by a second condensation of the C 13 ketone with furfural to generate a C 23 aldol adduct, and finally hydrodeoxygenation to give highly branched C 23 alkanes in 50.6 % overall yield from furfural. This work opens a general strategy for the synthesis of high-quality lubricant alkanes from renewable biomass. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lepton flavor violating B meson decays via a scalar leptoquark
NASA Astrophysics Data System (ADS)
Sahoo, Suchismita; Mohanta, Rukmani
2016-06-01
We study the effect of scalar leptoquarks in the lepton flavor violating B meson decays induced by the flavor-changing transitions b →q li+lj- with q =s , d . In the standard model, these transitions are extremely rare as they are either two-loop suppressed or proceed via box diagrams with tiny neutrino masses in the loop. However, in the leptoquark model, they can occur at tree level and are expected to have significantly large branching ratios. The leptoquark parameter space is constrained using the experimental limits on the branching ratios of Bq→l+l- processes. Using such constrained parameter space, we predict the branching ratios of LFV semileptonic B meson decays, such as B+→K+(π+)li+lj-, B+→(K*+,ρ+)li+lj-, and Bs→ϕ li+lj-, which are found to be within the experimental reach of LHCb and the upcoming Belle II experiments. We also investigate the rare leptonic KL ,S→μ+μ-(e+e-) and KL→μ∓e± decays in the leptoquark model.
Hunting Down Massless Dark Photons in Kaon Physics.
Fabbrichesi, M; Gabrielli, E; Mele, B
2017-07-21
If dark photons are massless, they couple to standard-model particles only via higher dimensional operators, while direct (renormalizable) interactions induced by kinetic mixing, which motivates most of the current experimental searches, are absent. We consider the effect of possible flavor-changing magnetic-dipole couplings of massless dark photons in kaon physics. In particular, we study the branching ratio for the process K^{+}→π^{+}π^{0}γ[over ¯] with a simplified-model approach, assuming the chiral quark model to evaluate the hadronic matrix element. Possible effects in the K^{0}-K[over ¯]^{0} mixing are taken into account. We find that branching ratios up to O(10^{-7}) are allowed-depending on the dark-sector masses and couplings. Such large branching ratios for K^{+}→π^{+}π^{0}γ[over ¯] could be of interest for experiments dedicated to rare K^{+} decays like NA62 at CERN, where γ[over ¯] can be detected as a massless invisible system.
Smith, Benjamin A; Padrick, Shae B; Doolittle, Lynda K; Daugherty-Clarke, Karen; Corrêa, Ivan R; Xu, Ming-Qun; Goode, Bruce L; Rosen, Michael K; Gelles, Jeff
2013-09-03
During cell locomotion and endocytosis, membrane-tethered WASP proteins stimulate actin filament nucleation by the Arp2/3 complex. This process generates highly branched arrays of filaments that grow toward the membrane to which they are tethered, a conflict that seemingly would restrict filament growth. Using three-color single-molecule imaging in vitro we revealed how the dynamic associations of Arp2/3 complex with mother filament and WASP are temporally coordinated with initiation of daughter filament growth. We found that WASP proteins dissociated from filament-bound Arp2/3 complex prior to new filament growth. Further, mutations that accelerated release of WASP from filament-bound Arp2/3 complex proportionally accelerated branch formation. These data suggest that while WASP promotes formation of pre-nucleation complexes, filament growth cannot occur until it is triggered by WASP release. This provides a mechanism by which membrane-bound WASP proteins can stimulate network growth without restraining it. DOI:http://dx.doi.org/10.7554/eLife.01008.001.
A master equation approach to actin polymerization applied to endocytosis in yeast.
Wang, Xinxin; Carlsson, Anders E
2017-12-01
We present a Master Equation approach to calculating polymerization dynamics and force generation by branched actin networks at membranes. The method treats the time evolution of the F-actin distribution in three dimensions, with branching included as a directional spreading term. It is validated by comparison with stochastic simulations of force generation by actin polymerization at obstacles coated with actin "nucleation promoting factors" (NPFs). The method is then used to treat the dynamics of actin polymerization and force generation during endocytosis in yeast, using a model in which NPFs form a ring around the endocytic site, centered by a spot of molecules attaching the actin network strongly to the membrane. We find that a spontaneous actin filament nucleation mechanism is required for adequate forces to drive the process, that partial inhibition of branching and polymerization lead to different characteristic responses, and that a limited range of polymerization-rate values provide effective invagination and obtain correct predictions for the effects of mutations in the active regions of the NPFs.
Influence of gender in choosing a career amongst engineering fields: a survey study from Turkey
NASA Astrophysics Data System (ADS)
Bucak, Seyda; Kadirgan, Neset
2011-10-01
The aim of this study is to understand the motivating factors behind students' choices in their decision-making process and also get an insight on their perception of different engineering branches. A survey was prepared and the results were evaluated amongst 1163 answers. Two major influences on student's decision in their professional choices are shown to be career services and family members. Generally, students have claimed to choose a profession based on 'finding a job' and 'being happy'. Some engineering branches such as Genetic and Bioengineering, Chemical Engineering, Environmental Engineering and Industrial Engineering, are shown to be distinctly preferred by female students, whereas mechanical, civil and electronic engineering are favourites for male students. The survey results were also compared with the distribution of male and female students in various engineering departments. This study clearly shows that certain engineering branches are perceived as more appropriate for women and are thus favoured by female students, while those perceived as more appropriate for men are favoured by male students.
Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures
Moore, Brian R.; Höhna, Sebastian; May, Michael R.; Rannala, Bruce; Huelsenbeck, John P.
2016-01-01
Bayesian analysis of macroevolutionary mixtures (BAMM) has recently taken the study of lineage diversification by storm. BAMM estimates the diversification-rate parameters (speciation and extinction) for every branch of a study phylogeny and infers the number and location of diversification-rate shifts across branches of a tree. Our evaluation of BAMM reveals two major theoretical errors: (i) the likelihood function (which estimates the model parameters from the data) is incorrect, and (ii) the compound Poisson process prior model (which describes the prior distribution of diversification-rate shifts across branches) is incoherent. Using simulation, we demonstrate that these theoretical issues cause statistical pathologies; posterior estimates of the number of diversification-rate shifts are strongly influenced by the assumed prior, and estimates of diversification-rate parameters are unreliable. Moreover, the inability to correctly compute the likelihood or to correctly specify the prior for rate-variable trees precludes the use of Bayesian approaches for testing hypotheses regarding the number and location of diversification-rate shifts using BAMM. PMID:27512038
Measurement of partial branching fractions of inclusive charmless B meson decays to K+, K0, and π+
NASA Astrophysics Data System (ADS)
Del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.; Blanc, F.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Jasper, H.; Petzold, A.; Spaan, B.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Zhao, M.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Simard, M.; Taras, P.; de Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kass, R.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Renga, F.; Buenger, C.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Guttman, N.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.; Ahmed, H.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.
2011-02-01
We present measurements of partial branching fractions of B→K+X, B→K0X, and B→π+X, where X denotes any accessible final state above the endpoint for B decays to charmed mesons, specifically for momenta of the candidate hadron greater than 2.34 (2.36) GeV for kaons (pions) in the B rest frame. These measurements are sensitive to potential new-physics particles which could enter the b→s(d) loop transitions. The analysis is performed on a data sample consisting of 383×106BB¯ pairs collected with the BABAR detector at the PEP-II e+e- asymmetric energy collider. We observe the inclusive B→π+X process, and we set upper limits for B→K+X and B→K0X. Our results for these inclusive branching fractions are consistent with those of known exclusive modes, and exclude large enhancements due to sources of new physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knížat, Branislav, E-mail: branislav.knizat@stuba.sk; Urban, František, E-mail: frantisek.urban@stuba.sk; Mlkvik, Marek, E-mail: marek.mlkvik@stuba.sk
A natural circulation helium loop appears to be a perspective passive method of a nuclear reactor cooling. When designing this device, it is important to analyze the mechanism of an internal flow. The flow of helium in the loop is set in motion due to a difference of hydrostatic pressures between cold and hot branch. Steady flow at a requested flow rate occurs when the buoyancy force is adjusted to resistances against the flow. Considering the fact that the buoyancy force is proportional to a difference of temperatures in both branches, it is important to estimate the losses correctly inmore » the process of design. The paper deals with the calculation of losses in branches of the natural circulation helium loop by methods of CFD. The results of calculations are an important basis for the hydraulic design of both exchangers (heater and cooler). The analysis was carried out for the existing model of a helium loop of the height 10 m and nominal heat power 250 kW.« less
Ren, Jingli; Chen, Cun; Wang, Gang; ...
2017-03-22
This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less
Decibel: The Relational Dataset Branching System
Maddox, Michael; Goehring, David; Elmore, Aaron J.; Madden, Samuel; Parameswaran, Aditya; Deshpande, Amol
2017-01-01
As scientific endeavors and data analysis become increasingly collaborative, there is a need for data management systems that natively support the versioning or branching of datasets to enable concurrent analysis, cleaning, integration, manipulation, or curation of data across teams of individuals. Common practice for sharing and collaborating on datasets involves creating or storing multiple copies of the dataset, one for each stage of analysis, with no provenance information tracking the relationships between these datasets. This results not only in wasted storage, but also makes it challenging to track and integrate modifications made by different users to the same dataset. In this paper, we introduce the Relational Dataset Branching System, Decibel, a new relational storage system with built-in version control designed to address these shortcomings. We present our initial design for Decibel and provide a thorough evaluation of three versioned storage engine designs that focus on efficient query processing with minimal storage overhead. We also develop an exhaustive benchmark to enable the rigorous testing of these and future versioned storage engine designs. PMID:28149668
NASA Technical Reports Server (NTRS)
2003-01-01
Spanning over 4 decades, NASA's bolt tension monitoring technology has benefited automakers, airplane builders, and other major manufacturers that rely on the devices to evaluate the performance of computerized torque wrenches and other assembly line mechanisms. In recent years, the advancement of ultrasonic sensors has drastically eased this process for users, ensuring that proper tension and torque are being applied to bolts and fasteners, with less time needed for data analysis. Langley Research Center s Nondestructive Evaluation Branch is one of the latest NASA programs to incorporate ultrasonic sensors within a bolt tension measurement instrument. As a multi-disciplined research group focused on spacecraft and aerospace transportation safety, one of the branch s many commitments includes transferring problem solutions to industry. In 1998, the branch carried out this obligation in a licensing agreement with Micro Control, Inc., of West Bloomfield, Michigan. Micro Control, an automotive inspection company, obtained the licenses to two Langley patents to provide an improved-but-inexpensive means of ultrasonic tension measurement.
A master equation approach to actin polymerization applied to endocytosis in yeast
Wang, Xinxin
2017-01-01
We present a Master Equation approach to calculating polymerization dynamics and force generation by branched actin networks at membranes. The method treats the time evolution of the F-actin distribution in three dimensions, with branching included as a directional spreading term. It is validated by comparison with stochastic simulations of force generation by actin polymerization at obstacles coated with actin “nucleation promoting factors” (NPFs). The method is then used to treat the dynamics of actin polymerization and force generation during endocytosis in yeast, using a model in which NPFs form a ring around the endocytic site, centered by a spot of molecules attaching the actin network strongly to the membrane. We find that a spontaneous actin filament nucleation mechanism is required for adequate forces to drive the process, that partial inhibition of branching and polymerization lead to different characteristic responses, and that a limited range of polymerization-rate values provide effective invagination and obtain correct predictions for the effects of mutations in the active regions of the NPFs. PMID:29240771
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brigmon, R..L.
This final report details the operations and results of a 3-year Seepline Phytoremediation Project performed adjacent to Tims Branch, which is located in the Southern Sector of the Savannah River Site (SRS) A/M Area. Phytoremediation is a process where interactions between vegetation, associated microorganisms, and the host substrate combine to effectively degrade contaminated soils, sediments, and groundwater. Phytoremediation is a rapidly developing technology that shows promise for the effective and safe cleanup of certain hazardous wastes. It has the potential to remediate numerous volatile organic compounds (VOCs). Extensive characterization work has demonstrated that two VOCs, tetrachloroethylene (PCE) and trichloroethylene (TCE)more » are the major components of the VOC-contaminated groundwater that is migrating through the Southern Sector and Tims Branch seepline area (WSRC, 1999). The PCE and TCE are chlorinated ethenes (CE), and have been detected in seepline soils and ground water adjacent to the ecologically-sensitive Tims Branch seepline area.« less
Bringing the U.S. Senate to Your Classroom: A Role Play Activity.
ERIC Educational Resources Information Center
Hack, Ken
1989-01-01
Advocates role playing for teaching a unit on the legislative branch of government. Students were divided into political parties, sat on committees, and produced legislation. Concludes that experiencing the governmental process enhances citizen participation. (GG)
75 FR 9185 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-01
...: * * * * * SYSTEM LOCATION: Delete entry and replace with ``Financial Services and Accounting Division, Accounting... Services and Accounting Division, Accounting Operations Branch, Headquarters, Defense Logistics Agency... collection process, documents furnished by individual concerning financial condition, personnel actions, and...
Aggregates, broccoli and cauliflower
NASA Astrophysics Data System (ADS)
Grey, Francois; Kjems, Jørgen K.
1989-09-01
Naturally grown structures with fractal characters like broccoli and cauliflower are discussed and compared with DLA-type aggregates. It is suggested that the branching density can be used to characterize the growth process and an experimental method to determine this parameter is proposed.
Library Services to University Branch Campuses: The Ohio State Experience
ERIC Educational Resources Information Center
Schmidt, C. James; And Others
1970-01-01
The Ohio State University Main Library acquires and processes books, on a cost-supported contract basis, for each of four regional campus undergraduate libraries. The article describes requirements, rationale, and procedures, and diagrams procedural flow. (Author/NH)
A structurally based analytic model for estimation of biomass and fuel loads of woodland trees
Robin J. Tausch
2009-01-01
Allometric/structural relationships in tree crowns are a consequence of the physical, physiological, and fluid conduction processes of trees, which control the distribution, efficient support, and growth of foliage in the crown. The structural consequences of these processes are used to develop an analytic model based on the concept of branch orders. A set of...
Subperitoneal extension of disease processes between the chest, abdomen, and the pelvis.
Osman, Sherif; Moshiri, Mariam; Robinson, Tracy J; Gunn, Martin; Lehnert, Bruce; Sundarkumar, Dinesh; Katz, Douglas S
2015-08-01
The subserous space is a large, anatomically continuous potential space that interconnects the chest, abdomen, and pelvis. The subserous space is formed from areolar and adipose tissue, and contains branches of the vascular, lymphatic, and nervous systems. As such, it provides one large continuous space in which many disease processes can spread between the chest, abdomen, and the pelvis.
Alcaire, Maria; Sanchez-Valencia, Juan R; Aparicio, Francisco J; Saghi, Zineb; Gonzalez-Gonzalez, Juan C; Barranco, Angel; Zian, Youssef Oulad; Gonzalez-Elipe, Agustin R; Midgley, Paul; Espinos, Juan P; Groening, Pierangelo; Borras, Ana
2011-11-01
Hierarchical (branched) and hybrid metal-NPs/organic supported NWs are fabricated through controlled plasma processing of metalloporphyrin, metallophthalocyanine and perylene nanowires. The procedure is also applied for the development of a general template route for the synthesis of supported metal and metal oxide nanowires.
Top quark decays with flavor violation in the B-LSSM
NASA Astrophysics Data System (ADS)
Yang, Jin-Lei; Feng, Tai-Fu; Zhang, Hai-Bin; Ning, Guo-Zhu; Yang, Xiu-Yi
2018-06-01
The decays of top quark t→ cγ ,t→ cg,t→ cZ,t→ ch are extremely rare processes in the standard model (SM). The predictions on the corresponding branching ratios in the SM are too small to be detected in the future, hence any measurable signal for the processes at the LHC is a smoking gun for new physics. In the extension of minimal supersymmetric standard model with an additional local U(1)_B {-}L gauge symmetry (B-LSSM), new gauge interaction and new flavor changing interaction affect the theoretical evaluations on corresponding branching ratios of those processes. In this work, we analyze those processes in the B-LSSM, under a minimal flavor violating assumption for the soft breaking terms. Considering the constraints from updated experimental data, the numerical results imply Br(t→ cγ )˜ 5× 10^{-7}, Br(t→ cg)˜ 2× 10^{-6}, Br(t→ cZ)˜ 4× 10^{-7} and Br(t→ ch)˜ 3× 10^{-9} in our chosen parameter space. Simultaneously, new gauge coupling constants g_{_B},g_{_{YB}} in the B-LSSM can also affect the numerical results of Br(t→ cγ ,cg,cZ,ch).
Liesenjohann, Thilo; Neuhaus, Birger; Schmidt-Rhaesa, Andreas
2006-08-01
The anterior and posterior head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha) were investigated by transmission electron microscopy (TEM). In addition, whole individuals were labeled with phalloidin to mark F-actin and with anti-alpha-tubulin antibodies to mark microtubuli and studied with confocal laser scanning microscopy. Immunocytochemistry reveals that the large number of ciliary processes in the anterior head sensory organ contain F-actin; no signal could be detected for alpha-tubulin. Labeling with anti-alpha-tubulin antibodies revealed that the anterior and posterior head sensory organs are innervated by a common stem of nerves from the lateral nerve cords just anterior of the dorsal brain commissure. TEM studies showed that the anterior head sensory organ is composed of one sheath cell and one sensory cell with a single branching cilium that possesses a basal inflated part and regularly arranged ciliary processes. Each ciliary process contains one central microtubule. The posterior head sensory organ consists of at least one pigmented sheath cell and several probably monociliary sensory cells. Each cilium branches into irregularly arranged ciliary processes. These characters are assumed to belong to the ground pattern of the Gastrotricha. Copyright 2006 Wiley-Liss, Inc.
Freeman, B M; Chaves-Campos, J
2016-06-01
Fallen branches are often incorporated into Atta cephalotes (L.) foraging trails to optimize leaf tissue transport rates and economize trail maintenance. Recent studies in lowlands show laden A. cephalotes travel faster across fallen branches than on ground, but more slowly ascending or descending a branch. The latter is likely because (1) it is difficult to travel up or downhill and (2) bottlenecks occur when branches are narrower than preceding trail. Hence, both branch height and width should determine whether branches decrease net travel times, but no study has evaluated it yet. Laden A. cephalotes were timed in relation to branch width and height across segments preceding, accessing, across, and departing a fallen branch in the highlands of Costa Rica. Ants traveled faster on branches than on cleared segments of trunk-trail, but accelerated when ascending or descending the branch-likely because of the absence of bottlenecks during the day in the highlands. Branch size did not affect ant speed in observed branches; the majority of which (22/24) varied from 11 to 120 mm in both height and width (average 66 mm in both cases). To determine whether ants exclude branches outside this range, ants were offered the choice between branches within this range and branches that were taller/wider than 120 mm. Ants strongly preferred the former. Our results indicate that A. cephalotes can adjust their speed to compensate for the difficulty of traveling on branch slopes. More generally, branch size should be considered when studying ant foraging efficiency.
Spatial Arrangement of Branches in Relation to Slope and Neighbourhood Competition
SUMIDA, AKIHIRO; TERAZAWA, IKUE; TOGASHI, ASAKO; KOMIYAMA, AKIRA
2002-01-01
To gain a better understanding of the effects of spatial structure on patterns of neighbourhood competition among hardwood trees, the three‐dimensional extension of primary branches was surveyed for ten community‐grown Castanea crenata (Fagaceae) trees with respect to the positioning of neighbouring branches and the slope of the forest floor. There were significantly more branches extending towards the lower side of the slope than towards the upper side, but structural properties such as branch length and vertical angle were not affected by slope. When horizontal extension of a branch towards its neighbour was compared for a C. crenata branch and a neighbouring heterospecific, the former was significantly narrower than the latter when the inter‐branch distance (horizontal distance between the base positions of two neighbouring branches) was short (< approx. 5 m). Castanea crenata branches tended to extend in a direction avoiding neighbouring branches of heterospecifics when the inter‐branch distance was short. Furthermore, for an inter‐branch distance <3 m, the horizontal extension of a C. crenata branch was less when it was neighbouring a heterospecific branch than when neighbouring a conspecific branch. These results suggest that horizontal extension of C. crenata branches is more prone to spatial invasion by nearby neighbouring branches of heterospecifics, and that the invasion can be lessened when C. crenata trees are spatially aggregated. The reason why such an arrangement occurs is discussed in relation to the later leaf‐flush of C. crenata compared with that of other species in the forest. PMID:12096742
2014-01-01
Background Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families. While some gene duplications occurred in the Archaeplastida ancestor, most were generated during the sbp redirection process, and the remaining few paralogs were generated through compartmentalization or tissue specialization during the evolution of the land plants. In the present study, we tested models of duplicated gene evolution in order to understand the evolutionary forces that have led to the development of SBP in angiosperms. We combined phylogenetic analyses and tests on the rates of evolution along branches emerging from major duplication events in six gene families encoding sbp enzymes. Results We found evidence of positive selection along branches following cytosolic or plastidial specialization in two starch phosphorylases and identified numerous residues that exhibited changes in volume, polarity or charge. Starch synthases, branching and debranching enzymes functional specializations were also accompanied by accelerated evolution. However, none of the sites targeted by selection corresponded to known functional domains, catalytic or regulatory. Interestingly, among the 13 duplications tested, 7 exhibited evidence of positive selection in both branches emerging from the duplication, 2 in only one branch, and 4 in none of the branches. Conclusions The majority of duplications were followed by accelerated evolution targeting specific residues along both branches. This pattern was consistent with the optimization of the two sub-functions originally fulfilled by the ancestral gene before duplication. Our results thereby provide strong support to the so-called “Escape from Adaptive Conflict” (EAC) model. Because none of the residues targeted by selection occurred in characterized functional domains, we propose that enzyme specialization has occurred through subtle changes in affinity, activity or interaction with other enzymes in complex formation, while the basic function defined by the catalytic domain has been maintained. PMID:24884572
A Rogues’ Gallery of Andromeda's Dwarf Galaxies. I. A Predominance of Red Horizontal Branches
NASA Astrophysics Data System (ADS)
Martin, Nicolas F.; Weisz, Daniel R.; Albers, Saundra M.; Bernard, Edouard; Collins, Michelle L. M.; Dolphin, Andrew E.; Ferguson, Annette M. N.; Ibata, Rodrigo A.; Laevens, Benjamin; Lewis, Geraint F.; Mackey, A. Dougal; McConnachie, Alan; Rich, R. Michael; Skillman, Evan D.
2017-11-01
We present homogeneous, sub-horizontal branch photometry of 20 dwarf spheroidal satellite galaxies of M31 observed with the Hubble Space Telescope. Combining our new data for 16 systems with archival data in the same filters for another four, we show that Andromeda dwarf spheroidal galaxies favor strikingly red horizontal branches or red clumps down to ˜104.2 L ⊙ (M V ˜ -5.8). The age-sensitivity of horizontal branch stars implies that a large fraction of the M31 dwarf galaxies have extended star formation histories (SFHs), and appear inconsistent with early star formation episodes that were rapidly shutdown. Systems fainter than ˜105.5 L ⊙ show the widest range in the ratios and morphologies of red and blue horizontal branches, indicative of both complex SFHs and a diversity in quenching timescales and/or mechanisms, which is qualitatively different from what is currently known for faint Milky Way (MW) satellites of comparable luminosities. Our findings bolster similar conclusions from recent deeper data for a handful of M31 dwarf galaxies. We discuss several sources for diversity of our data such as varying halo masses, patchy reionization, mergers/accretion, and the environmental influence of M31 and the Milky Way on the early evolution of their satellite populations. A detailed comparison between the histories of M31 and MW satellites would shed signifiant insight into the processes that drive the evolution of low-mass galaxies. Such a study will require imaging that reaches the oldest main-sequence turnoffs for a significant number of M31 companions.
Modeling electron transfer in photosystem I.
Makita, Hiroki; Hastings, Gary
2016-06-01
Nanosecond to millisecond time-resolved absorption spectroscopy has been used to study electron transfer processes in photosystem I particles from Synechocystis sp. PCC 6803 with eight different quinones incorporated into the A1 binding site, at both 298 and 77K. A detailed kinetic model was constructed and solved within the context of Marcus electron transfer theory, and it was found that all of the data could be well described only if the in situ midpoint potentials of the quinones fell in a tightly defined range. For photosystem I with phylloquinone incorporated into the A1 binding site all of the time-resolved optical data is best modeled when the in situ midpoint potential of phylloquinone on the A/B branch is -635/-690 mV, respectively. With the midpoint potential of the F(X) iron sulfur cluster set at -680 mV, this indicates that forward electron transfer from A(1)(-) to F(X) is slightly endergonic/exergonic on the A/B branch, respectively. Additionally, for forward electron transfer from A(1)(-) to F(X), on both the A and B branches the reorganization energy is close to 0.7 eV. Reorganization energies of 0.4 or 1.0 eV are not possible. For the eight different quinones incorporated, the same kinetic model was used, allowing us to establish in situ redox potentials for all of the incorporated quinones on both branches. A linear correlation was found between the in situ and in vitro midpoint potentials of the quinones on both branches. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Erik Karl; Tidwell, Vincent Carroll
2009-10-01
This document outlines ways to more effectively communicate with U.S. Federal decision makers by outlining the structure, authority, and motivations of various Federal groups, how to find the trusted advisors, and how to structure communication. All three branches of Federal governments have decision makers engaged in resolving major policy issues. The Legislative Branch (Congress) negotiates the authority and the resources that can be used by the Executive Branch. The Executive Branch has some latitude in implementation and prioritizing resources. The Judicial Branch resolves disputes. The goal of all decision makers is to choose and implement the option that best fitsmore » the needs and wants of the community. However, understanding the risk of technical, political and/or financial infeasibility and possible unintended consequences is extremely difficult. Primarily, decision makers are supported in their deliberations by trusted advisors who engage in the analysis of options as well as the day-to-day tasks associated with multi-party negotiations. In the best case, the trusted advisors use many sources of information to inform the process including the opinion of experts and if possible predictive analysis from which they can evaluate the projected consequences of their decisions. The paper covers the following: (1) Understanding Executive and Legislative decision makers - What can these decision makers do? (2) Finding the target audience - Who are the internal and external trusted advisors? (3) Packaging the message - How do we parse and integrate information, and how do we use computer simulation or models in policy communication?« less
Ackerman, D.J.
1980-01-01
In order to design a network to monitor the effects of works of improvement in the Middle and North Branch Park River watersheds, and to determine the major factors controlling water-quality conditions in the watersheds, an evaluation of sediment transport, water chemistry, and biology was conducted during the spring and early summer of 1978.Major factors controlling water quality are geology, stream gradient, ground-water seepage, and the duration of streamflow.Sediment loads originate on the Pembina Escarpment. The coarse silt and sand parts of these loads are deposited on the Lake Agassiz Plain. Transport of sediment is lowered and flow duration is increased on the Middle Branch Park River due to the presence of small dams. Observations suggest that bedload transport is a significant process, particularly in the upstream reaches. However, no quantitative bedload data were collected.During periods of low flow, analyses of water from the rivers in both watersheds show downstream increases in sodium and chloride due to ground-water seepage or the unregulated flow of wells. Diversity of benthic invertebrates indicates water-quality conditions are better on the Middle Branch Park River than on the North Branch, and are better at upstream sites than at downstream sites. A program through which the Soil Conservation Service can monitor the effects of present and future works of improvement on the watersheds was designed. The monitoring program consists of intensive sampling at four locations for sediment and water chemistry during spring and early summer runoff events and by profiles of water chemistry during summer base runoff.
Scheduling multirobot operations in manufacturing by truncated Petri nets
NASA Astrophysics Data System (ADS)
Chen, Qin; Luh, J. Y.
1995-08-01
Scheduling of operational sequences in manufacturing processes is one of the important problems in automation. Methods of applying Petri nets to model and analyze the problem with constraints on precedence relations, multiple resources allocation, etc. have been available in literature. Searching for an optimum schedule can be implemented by combining the branch-and-bound technique with the execution of the timed Petri net. The process usually produces a large Petri net which is practically not manageable. This disadvantage, however, can be handled by a truncation technique which divides the original large Petri net into several smaller size subnets. The complexity involved in the analysis of each subnet individually is greatly reduced. However, when the locally optimum schedules of the resulting subnets are combined together, it may not yield an overall optimum schedule for the original Petri net. To circumvent this problem, algorithms are developed based on the concepts of Petri net execution and modified branch-and-bound process. The developed technique is applied to a multi-robot task scheduling problem of the manufacturing work cell.
Scandaglia, Marilyn; Benito, Eva; Morenilla-Palao, Cruz; Fiorenza, Anna; del Blanco, Beatriz; Coca, Yaiza; Herrera, Eloísa; Barco, Angel
2015-01-01
The stimulus-regulated transcription factor Serum Response Factor (SRF) plays an important role in diverse neurodevelopmental processes related to structural plasticity and motile functions, although its precise mechanism of action has not yet been established. To further define the role of SRF in neural development and distinguish between cell-autonomous and non cell-autonomous effects, we bidirectionally manipulated SRF activity through gene transduction assays that allow the visualization of individual neurons and their comparison with neighboring control cells. In vitro assays showed that SRF promotes survival and filopodia formation and is required for normal asymmetric neurite outgrowth, indicating that its activation favors dendrite enlargement versus branching. In turn, in vivo experiments demonstrated that SRF-dependent regulation of neuronal morphology has important consequences in the developing cortex and retina, affecting neuronal migration, dendritic and axonal arborization and cell positioning in these laminated tissues. Overall, our results show that the controlled and timely activation of SRF is essential for the coordinated growth of neuronal processes, suggesting that this event regulates the switch between neuronal growth and branching during developmental processes. PMID:26638868
Top quark rare decays via loop-induced FCNC interactions in extended mirror fermion model
NASA Astrophysics Data System (ADS)
Hung, P. Q.; Lin, Yu-Xiang; Nugroho, Chrisna Setyo; Yuan, Tzu-Chiang
2018-02-01
Flavor changing neutral current (FCNC) interactions for a top quark t decays into Xq with X represents a neutral gauge or Higgs boson, and q a up- or charm-quark are highly suppressed in the Standard Model (SM) due to the Glashow-Iliopoulos-Miami mechanism. Whilst current limits on the branching ratios of these processes have been established at the order of 10-4 from the Large Hadron Collider experiments, SM predictions are at least nine orders of magnitude below. In this work, we study some of these FCNC processes in the context of an extended mirror fermion model, originally proposed to implement the electroweak scale seesaw mechanism for non-sterile right-handed neutrinos. We show that one can probe the process t → Zc for a wide range of parameter space with branching ratios varying from 10-6 to 10-8, comparable with various new physics models including the general two Higgs doublet model with or without flavor violations at tree level, minimal supersymmetric standard model with or without R-parity, and extra dimension model.
66.7-keV γ -line intensity of 171Tm determined via neutron activation
NASA Astrophysics Data System (ADS)
Weigand, M.; Heftrich, T.; Düllmann, Ch. E.; Eberhardt, K.; Fiebiger, S.; Glorius, J.; Göbel, K.; Haas, R.; Langer, C.; Lohse, S.; Reifarth, R.; Renisch, D.; Wolf, C.
2018-03-01
Background: About 50% of the heavy elements are produced in stars during the slow neutron capture process. The analysis of branching points allows to set constraints on the temperature and the neutron density in the interior of stars. The temperature dependence of the branch point 171Tm is weak. Hence, the 171Tm neutron capture cross section can be used to constrain the neutron density during the main component of the s process in thermally pulsing asymptotic giant branch stars. Purpose: In order to perform neutron capture experiments on 171Tm, sample material has to be produced and characterized. The characterization is done by γ spectroscopy, relying on the intensities of the involved γ lines. Only the 66.7-keV γ line can be observed whose intensity was uncertain so far. Method: An enriched 170Er sample was activated with thermal neutrons at the TRIGA (Training, Research, Isotopes, General Atomics) research reactor at the Johannes Gutenberg-Universität Mainz. The activation resulted in an easily quantifiable number of 171Er nuclei that subsequently decayed to 171Tm. Result: The intensity of the 66.7-keV γ line of the 171Tm decay was measured to Iγ=(0.144 ±0.010 )% . Conclusions: Our result is in good agreement with the value found in the literature.
Space Flight Software Development Software for Intelligent System Health Management
NASA Technical Reports Server (NTRS)
Trevino, Luis C.; Crumbley, Tim
2004-01-01
The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.
Classroom Demonstrations of Polymer Principles Part II. Polymer Formation.
ERIC Educational Resources Information Center
Rodriguez, F.; And Others
1987-01-01
This is part two in a series on classroom demonstrations of polymer principles. Described is how large molecules can be assembled from subunits (the process of polymerization). Examples chosen include both linear and branched or cross-linked molecules. (RH)
Tree Branching: Leonardo da Vinci's Rule versus Biomechanical Models
Minamino, Ryoko; Tateno, Masaki
2014-01-01
This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule. PMID:24714065
Tree branching: Leonardo da Vinci's rule versus biomechanical models.
Minamino, Ryoko; Tateno, Masaki
2014-01-01
This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule.
Yamada, Aya; Futagi, Masaharu; Fukumoto, Emiko; Saito, Kan; Yoshizaki, Keigo; Ishikawa, Masaki; Arakaki, Makiko; Hino, Ryoko; Sugawara, Yu; Ishikawa, Momoko; Naruse, Masahiro; Miyazaki, Kanako; Nakamura, Takashi; Fukumoto, Satoshi
2016-01-08
Cell-cell interaction via the gap junction regulates cell growth and differentiation, leading to formation of organs of appropriate size and quality. To determine the role of connexin43 in salivary gland development, we analyzed its expression in developing submandibular glands (SMGs). Connexin43 (Cx43) was found to be expressed in salivary gland epithelium. In ex vivo organ cultures of SMGs, addition of the gap junctional inhibitors 18α-glycyrrhetinic acid (18α-GA) and oleamide inhibited SMG branching morphogenesis, suggesting that gap junctional communication contributes to salivary gland development. In Cx43(-/-) salivary glands, submandibular and sublingual gland size was reduced as compared with those from heterozygotes. The expression of Pdgfa, Pdgfb, Fgf7, and Fgf10, which induced branching of SMGs in Cx43(-/-) samples, were not changed as compared with those from heterozygotes. Furthermore, the blocking peptide for the hemichannel and gap junction channel showed inhibition of terminal bud branching. FGF10 induced branching morphogenesis, while it did not rescue the Cx43(-/-) phenotype, thus Cx43 may regulate FGF10 signaling during salivary gland development. FGF10 is expressed in salivary gland mesenchyme and regulates epithelial proliferation, and was shown to induce ERK1/2 phosphorylation in salivary epithelial cells, while ERK1/2 phosphorylation in HSY cells was dramatically inhibited by 18α-GA, a Cx43 peptide or siRNA. On the other hand, PDGF-AA and PDGF-BB separately induced ERK1/2 phosphorylation in primary cultured salivary mesenchymal cells regardless of the presence of 18α-GA. Together, our results suggest that Cx43 regulates FGF10-induced ERK1/2 phosphorylation in salivary epithelium but not in mesenchyme during the process of SMG branching morphogenesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Kotak, Jenna; Saisana, Marina; Gegas, Vasilis; Pechlivani, Nikoletta; Kaldis, Athanasios; Papoutsoglou, Panagiotis; Makris, Athanasios; Burns, Julia; Kendig, Ashley L; Sheikh, Minnah; Kuschner, Cyrus E; Whitney, Gabrielle; Caiola, Hanna; Doonan, John H; Vlachonasios, Konstantinos E; McCain, Elizabeth R; Hark, Amy T
2018-05-30
The histone acetyltransferase GCN5 and associated transcriptional coactivator ADA2b are required to couple endoreduplication and trichome branching. Mutation of ADA2b also disrupts the relationship between ploidy and leaf cell size. Dynamic chromatin structure has been established as a general mechanism by which gene function is temporally and spatially regulated, but specific chromatin modifier function is less well understood. To address this question, we have investigated the role of the histone acetyltransferase GCN5 and the associated coactivator ADA2b in developmental events in Arabidopsis thaliana. Arabidopsis plants with T-DNA insertions in GCN5 (also known as HAG1) or ADA2b (also known as PROPORZ1) display pleiotropic phenotypes including dwarfism and floral defects affecting fertility. We undertook a detailed characterization of gcn5 and ada2b phenotypic effects in rosette leaves and trichomes to establish a role for epigenetic control in these developmental processes. ADA2b and GCN5 play specific roles in leaf tissue, affecting cell growth and division in rosette leaves often in complex and even opposite directions. Leaves of gcn5 plants display overall reduced ploidy levels, while ada2b-1 leaves show increased ploidy. Endoreduplication leading to increased ploidy is also known to contribute to normal trichome morphogenesis. We demonstrate that gcn5 and ada2b mutants display alterations in the number and patterning of trichome branches, with ada2b-1 and gcn5-1 trichomes being significantly less branched, while gcn5-6 trichomes show increased branching. Elongation of the trichome stalk and branches also vary in different mutant backgrounds, with stalk length having an inverse relationship with branch number. Taken together, our data indicate that, in Arabidopsis, leaves and trichomes ADA2b and GCN5 are required to couple nuclear content with cell growth and morphogenesis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false What is the appeal process... part? 1260.78 Section 1260.78 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS... Records Administration, 8601 Adelphi Road, College Park, MD. If a final decision on the appeal is not made...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false What is the appeal process... part? 1260.78 Section 1260.78 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS... Records Administration, 8601 Adelphi Road, College Park, MD. If a final decision on the appeal is not made...
Three ancient hormonal cues co-ordinate shoot branching in a moss.
Coudert, Yoan; Palubicki, Wojtek; Ljung, Karin; Novak, Ondrej; Leyser, Ottoline; Harrison, C Jill
2015-03-25
Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, P.Y.; Hao, E.; Patt, Y.
Conditional branches incur a severe performance penalty in wide-issue, deeply pipelined processors. Speculative execution and predicated execution are two mechanisms that have been proposed for reducing this penalty. Speculative execution can completely eliminate the penalty associated with a particular branch, but requires accurate branch prediction to be effective. Predicated execution does not require accurate branch prediction to eliminate the branch penalty, but is not applicable to all branches and can increase the latencies within the program. This paper examines the performance benefit of using both mechanisms to reduce the branch execution penalty. Predicated execution is used to handle the hard-to-protectmore » branches and speculative execution is used to handle the remaining branches. The hard-to-predict branches within the program are determined by profiling. We show that this approach can significantly reduce the branch execution penalty suffered by wide-issue processors.« less
A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process
NASA Technical Reports Server (NTRS)
Wang, Yi; Tamai, Tetsuo
2009-01-01
Since the complexity of software systems continues to grow, most engineers face two serious problems: the state space explosion problem and the problem of how to debug systems. In this paper, we propose a game-theoretic approach to full branching time model checking on three-valued semantics. The three-valued models and logics provide successful abstraction that overcomes the state space explosion problem. The game style model checking that generates counter-examples can guide refinement or identify validated formulas, which solves the system debugging problem. Furthermore, output of our game style method will give significant information to engineers in detecting where errors have occurred and what the causes of the errors are.
Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air
NASA Technical Reports Server (NTRS)
Porter, H. S.; Jackman, C. H.; Green, A. E. S.
1976-01-01
Relativistic electron and proton impact cross sections are obtained and represented by analytic forms which span the energy range from threshold to 1 GeV. For ionization processes, the Massey-Mohr continuum generalized oscillator strength surface is parameterized. Parameters are determined by simultaneous fitting to (1) empirical data, (2) the Bethe sum rule, and (3) doubly differential cross sections for ionization. Branching ratios for dissociation and predissociation from important states of N2 and O2 are determined. The efficiency for the production of atomic nitrogen and oxygen by protons with kinetic energy less than 1 GeV is determined using these branching ratio and cross section assignments.
Product analysis illuminates the final steps of IES deletion in Tetrahymena thermophila
Saveliev, Sergei V.; Cox, Michael M.
2001-01-01
DNA sequences (IES elements) eliminated from the developing macronucleus in the ciliate Tetrahymena thermophila are released as linear fragments, which have now been detected and isolated. A PCR-mediated examination of fragment end structures reveals three types of strand scission events, reflecting three steps in the deletion process. New evidence is provided for two steps proposed previously: an initiating double-stranded cleavage, and strand transfer to create a branched deletion intermediate. The fragment ends provide evidence for a previously uncharacterized third step: the branched DNA strand is cleaved at one of several defined sites located within 15–16 nucleotides of the IES boundary, liberating the deleted DNA in a linear form. PMID:11406601
Product analysis illuminates the final steps of IES deletion in Tetrahymena thermophila.
Saveliev, S V; Cox, M M
2001-06-15
DNA sequences (IES elements) eliminated from the developing macronucleus in the ciliate Tetrahymena thermophila are released as linear fragments, which have now been detected and isolated. A PCR-mediated examination of fragment end structures reveals three types of strand scission events, reflecting three steps in the deletion process. New evidence is provided for two steps proposed previously: an initiating double-stranded cleavage, and strand transfer to create a branched deletion intermediate. The fragment ends provide evidence for a previously uncharacterized third step: the branched DNA strand is cleaved at one of several defined sites located within 15-16 nucleotides of the IES boundary, liberating the deleted DNA in a linear form.
Bannwarth, Markus B; Utech, Stefanie; Ebert, Sandro; Weitz, David A; Crespy, Daniel; Landfester, Katharina
2015-03-24
The assembly of nanoparticles into polymer-like architectures is challenging and usually requires highly defined colloidal building blocks. Here, we show that the broad size-distribution of a simple dispersion of magnetic nanocolloids can be exploited to obtain various polymer-like architectures. The particles are assembled under an external magnetic field and permanently linked by thermal sintering. The remarkable variety of polymer-analogue architectures that arises from this simple process ranges from statistical and block copolymer-like sequencing to branched chains and networks. This library of architectures can be realized by controlling the sequencing of the particles and the junction points via a size-dependent self-assembly of the single building blocks.
Nanocrystals with linear and branched topology
Alivisatos, A. Paul; Milliron, Delia; Manna, Liberato; Hughes, Steven M.
2007-12-04
Disclosed herein are nanostructures comprising distinct dots and rods coupled through potential barriers of tuneable height and width, and arranged in three dimensional space at well defined angles and distances. Such control allows investigation of potential applications ranging from quantum information processing to artificial photosynthesis.
AEROSPACE NESHAP GUIDANCE: PAINTING AND DEPAINTING ALTERNATIVES FOR SELECTED DOD OPERATIONS
This project was sponsored by the DOD's Strategic Environmental Research and Development program (SERDP) and conducted by the EPA's Clean Processes and Products Branch at the NRMRL. In support of SERDP's objective of developing environmental solutions that improve mission readine...
DOT National Transportation Integrated Search
1987-01-01
Expert systems, a branch of artificial-intelligence studies, is introduced with a view to its relevance in transportation engineering. Knowledge engineering, the process of building expert systems or transferring knowledge from human experts to compu...
National Centers for Environmental Prediction
Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar The Mesoscale Modeling Branch conducts a program of research and development in support of the prediction. This research and development includes mesoscale four-dimensional data assimilation of domestic
Analysis of recent vessel traffic in the Chicago River
DOT National Transportation Integrated Search
2000-12-31
The Chicago Department of Transportation, in planning for the development of a Riverwalk along the Main Branch of the Chicago River, is in the process of evaluating the traffic conditions of vessel that travel through that area. This report is design...
The University and the Community: Planning for an Alternative Form of Educational Service Delivery.
ERIC Educational Resources Information Center
Strickland, Wayne G.
1980-01-01
The planning process and marketing strategy adopted by a large urban postsecondary institution investigating the feasibility of developing a branch campus is described. Among the planning elements were a market analysis and citizen interest survey. (MSE)
Existing branches correlatively inhibit further branching in Trifolium repens: possible mechanisms
Thomas, R. G.; Hay, M. J. M.
2011-01-01
In Trifolium repens removal of any number of existing branches distal to a nodal root stimulates development of axillary buds further along the stem such that the complement of branches distal to a nodal root remains constant. This study aimed to assess possible mechanisms by which existing branches correlatively inhibit the outgrowth of axillary buds distal to them. Treatments were applied to basal branches to evaluate the roles of three postulated inhibitory mechanisms: (I) the transport of a phloem-mobile inhibitory feedback signal from branches into the main stem; (II) the polar flow of auxin from branches into the main stem acting to limit further branch development; or (III) the basal branches functioning as sinks for a net root-derived stimulatory signal (NRS). Results showed that transport of auxin, or of a non-auxin phloem-mobile signal, from basal branches did not influence regulation of correlative inhibition and were consistent with the possibility that the intra-plant distribution of NRS could be involved in the correlative inhibition of distal buds by basal branches. This study supports existing evidence that regulation of branching in T. repens is dominated by a root-derived stimulatory signal, initially distributed via the xylem, the characterization of which will progress the generic understanding of branching regulation. PMID:21071681
Han, X F; Guo, X; Li, T Z; Liu, G R; Huang, L J
2017-12-18
To evaluate the efficiency of thoracic endovascular aortic repair (TEVAR) in dealing with abdominal aortic branch malperfusion based on the analysis of aortic computed tomography angiography (CTA) images in pre- and post-TEVAR. Retrospective analysis from September 2015 to March 2016 in single institution to 32 patients, diagnosed as Stanford B aortic dissection with abdominal aortic branch malperfusion, CTA images in pre- and post-TEVAR were collected. Based on the aortic branch malperfusion pattern redefined by Nagamine, we identified and characterized branch malperfusion pattern for four abdominal aortic branches (celiac trunk, superior mesenteric artery, bilateral renal artery) in statistical analysis. In the four abdominal aortic branches (total 128 branches), 86 branches (67.2%) expressed with Class I patterns, in which subtype I-b presented with 0.8%, subtype I-c with 5.5%; 14 branches (10.9%) expressed with Class II patterns, in which subtype II-b-1 with 3.9%, subtype II-b-2 with 3.1%; 16 branches (12.5%) expressed with Class III patterns, all with subtype III-a, no subtype III-b and III-c presented. The remaining 12 branches were normal. The 100% successful rate of TEVAR obtained in 32 patients performed. The mean following-up was 4 months. Aortic CTA showed that among the 14 "high-risk" abdominal aortic branch malperfusion, 13 (92.9%) with obvious branch malperfusion in post-TEVAR were observed to improve, and the remaining one branch malperfusion (7.1%) was observed to change from subtype I-b to I-c. Few ratios in abdominal aortic branches suffered with obvious malperfusion complicated by Stanford B aortic dissection. For branches with "high-risk" malperfusion pattern, optimal changes were observed in abdominal aortic branch without revascularization in post-TEVAR, as well other branches with non-"high-risk" pattern perfusion were mostly stable in post-TEVAR. It could be of profound benefit to extend branch malperfusion patterns redefined by Nagamine in clinical practice to assess aortic dissection and in further guide for revascularization or not.
Yang, Yi; Zhou, Yi; He, Qingguo; He, Chang; Yang, Chunhe; Bai, Fenglian; Li, Yongfang
2009-06-04
Three solution-processable red-emissive organic materials with a hole-transporting unit triphenylamine (TPA) as the core part and a D-pi-A bipolar structure as the branch part, TPA-BT (single-branched molecule), b-TPA-BT (bibranched molecule), and t-TPA-BT (tribranched molecule), were synthesized by the Heck coupling reaction. Herein, for the D-pi-A push-pull structure, we use TPA as the electron donor, benzothiodiazole (BT) as the electron acceptor, and the vinylene bond as the pi-bridge connecting the TPA and BT units. The compounds exhibit good solubility in common organic solvents, benefited from the three-dimensional spatial configuration of TPA units and the branch structure of the molecules. TPA-BT, b-TPA-BT, and t-TPA-BT show excellent photoluminescent properties with maximum emission peaks at ca. 630 nm. High-performance red-emission organic light-emitting diodes (OLEDs) were fabricated with the active layer spin coated from a solution of these compounds. The OLED based on TPA-BT displayed a low turn-on voltage of 2.0 V, a maximum luminance of 12192 cd/m2, and a maximum current efficiency of 1.66 cd/A, which is among the highest values for the solution-processed red-emission OLEDs. In addition, high-performance white-light-emitting diodes (WLEDs) with maximum luminance around 4400 cd/m2 and maximum current efficiencies above 4.5 cd/A were realized by separately doping the three TPA-BT-containing molecules as red emitter and poly(6,6'-bi-(9,9'-dihexylfluorene)- co-(9,9'-dihexylfluorene-3-thiophene-5'-yl)) as green emitter into blue poly(9,9-dioctylfluorene-2,7-diyl) host material with suitable weight ratios.
NASA Astrophysics Data System (ADS)
Thériault, R. D.; Fowler, A. D.
1996-12-01
The formation of layers in mafic intrusions has been explained by various processes, making it the subject of much controversy. The concept that layering originates from gravitational settling of crystals has been superseded in recent years by models involving in situ fractional crystallization. Here we present evidence from the Centre Hill complex that both processes may be operative simultaneously within the same intrusion. The Centre Hill complex is part of the Munro Lake sill, an Archean layered mafic intrusion emplaced in volcanic rocks of the Abitibi Subprovince. The Centre Hill complex comprises the following lithostratigraphic units: six lower cyclic units of peridotite and clinopyroxenite; a middle unit of leucogabbro; six upper cyclic units of branching-textured gabbro (BTG) and clotted-textured gabbro (CTG), the uppermost of these units being overlain by a marginal zone of fine-grained gabbro. The cyclic units of peridotite/clinopyroxenite and BTG/CTG are interpreted to have formed concurrently through fractional crystallization, associated with periodic replenishment of magma to the chamber. The units of peridotite and clinopyroxenite formed by gravitational accumulation of crystals that grew under the roof. The cyclic units of BTG and CTG formed along the upper margin of the sill by two different mechanisms: (1) layers of BTG crystallized in situ along an inward-growing roof and (2) layers of CTG formed by accumulation of buoyant plagioclase crystals. The layers of BTG are characterized by branching pseudomorphs after fayalite up to 50 cm in length that extend away from the upper margin. The original branching crystals are interpreted to have grown from stagnant intercumulus melt in a high thermal gradient resulting from the injection of new magma to the chamber.
Branching habit and the allocation of reproductive resources in conifers.
Leslie, Andrew B
2012-09-01
Correlated relationships between branch thickness, branch density, and twig and leaf size have been used extensively to study the evolution of plant canopy architecture, but fewer studies have explored the impact of these relationships on the allocation of reproductive resources. This study quantifies pollen cone production in conifers, which have similar basic reproductive biology but vary dramatically in branching habit, in order to test how differences in branch diameter influence pollen cone size and the density with which they are deployed in the canopy. Measurements of canopy branch density, the number of cones per branch and cone size were used to estimate the amount of pollen cone tissues produced by 16 species in three major conifer clades. The number of pollen grains produced was also estimated using direct counts from individual pollen cones. The total amount of pollen cone tissues in the conifer canopy varied little among species and clades, although vegetative traits such as branch thickness, branch density and pollen cone size varied over several orders of magnitude. However, branching habit controls the way these tissues are deployed: taxa with small branches produce small pollen cones at a high density, while taxa with large branches produce large cones relatively sparsely. Conifers appear to invest similar amounts of energy in pollen production independent of branching habit. However, similar associations between branch thickness, branch density and pollen cone size are seen across conifers, including members of living and extinct groups not directly studied here. This suggests that reproductive features relating to pollen cone size are in large part a function of the evolution of vegetative morphology and branching habit.
An unusual branch of celiac trunk feeding suprarenal gland - a case report.
Sarkar, Munmun; Mukherjee, Pranab; Roy, Hironmoy; Sengupta, Sandip Kumar; Sarkar, Amarendra Nath
2014-04-01
During routine dissection, variation in branching pattern of coeliac trunk has been observed in adult 54-year-old male cadaver. Instead of normal three branches an additional branch i.e., Left inferior phrenic artery originated from it as fourth branch. Then it divided into two branches, one directly supplied the diaphragm and other branch divided into three sub-branches. First and second branch entered into the left suprarenal gland at its upper and middle pole and third one finally terminated by supplying to the diaphragm. There is no separate middle suprarenal artery on the left side, but inferior suprarenal artery was as usual. No variations have been found on right side in the lateral branches of abdominal aorta. Such a quadrifurcation of celiac trunk to supply suprarenal gland is quiet unique so far searched in literature.
Li, W; Zhai, S; Xu, K; Li, Q; Zhong, H; Li, T; Zhang, Z
2018-06-01
The aim was to evaluate the feasibility and safety of a new unibody branched stent graft for the reconstruction of the canine aortic arch. The unibody branched stent grafts included single branched stent grafts and double branched stent grafts. The main stent graft and branched limbs were sutured together. The branched stent grafts were folded into the introducer system, which consisted of a double channel catheter, a detachable sleeve, and an introducer sheath. The branched stent grafts were introduced and deployed into the aortic arch by the delivery system. Twenty adult mongrel dogs were used for the experiments. Ten dogs were implanted with single branched stent grafts; the other 10 were implanted with double branched stent grafts. The surviving animals were followed up for 3 months. Computed tomography angiography (CTA) was performed to observe the status of the branched stent grafts. All the unibody branched stent grafts were successfully implanted into the canine aortic arches. The technical success rate was 100%. There was no cerebral infarction, paraplegia or incision infection. CTA showed that all the branched stent grafts were patent; there was no endoleak or stent migration. The unibody branched stent graft system could be used to reconstruct the aortic arch. The animal experimental procedures demonstrated the safety and feasibility of the unibody branched stent graft system. Copyright © 2018 European Society for Vascular Surgery. Published by Elsevier B.V. All rights reserved.
Voloch, Carolina M; Capellão, Renata T; Mello, Beatriz; Schrago, Carlos G
2014-11-19
Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G), RNA-dependent RNA polymerase (L) and polymerase (P) genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups.
Voloch, Carolina M.; Capellão, Renata T.; Mello, Beatriz; Schrago, Carlos G.
2014-01-01
Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G), RNA-dependent RNA polymerase (L) and polymerase (P) genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups. PMID:25415197
NASA Astrophysics Data System (ADS)
Savrai, R. A.; Makarov, A. V.; Gorkunov, E. S.; Soboleva, N. N.; Kogan, L. Kh.; Malygina, I. Yu.; Osintseva, A. L.; Davydova, N. A.
2017-12-01
The possibilities of the eddy-current method for testing the fatigue degradation under contact loading of gas powder laser clad NiCrBSi-Cr3C2 composite coating with 15 wt.% of Cr3C2 additive have been investigated. It is shown that the eddy-current testing of the fatigue degradation under contact loading of the NiCrBSi-15%Cr3C2 composite coating can be performed at high excitation frequencies 72-120 kHz of the eddy-current transducer. At that, the dependences of the eddy-current instrument readings on the number of loading cycles have both downward and upward branches, with the boundary between the branches being 3×105 cycles in the given loading conditions. This is caused, on the one hand, by cracking, and, on the other hand, by cohesive spalling and compaction of the composite coating, which affect oppositely the material resistivity and, correspondingly, the eddy-current instrument readings. The downward branch can be used to monitor the processes of crack formation and growth, the upward branch - to monitor the degree of cohesive spalling, while taking into account in the testing methodology an ambiguous character of the dependences of the eddy-current instrument readings on the number of loading cycles.
[Introduction and advantage analysis of the stepwise method for the construction of vascular trees].
Zhang, Yan; Xie, Haiwei; Zhu, Kai
2010-08-01
A new method for constructing the model of vascular trees was proposed in this paper. By use of this method, the arterial trees in good agreement with the actual structure could be grown. In this process, all vessels in the vascular tree were divided into two groups: the conveying vessels, and the delivering branches. And different branches could be built by different ways. Firstly, the distributing rules of conveying vessels were ascertained by use of measurement data, and then the conveying vessels were constructed in accordance to the statistical rule and optimization criterion. Lastly, delivering branches were modeled by constrained constructive optimization (CCO) on the conveying vessel-trees which had already been generated. In order to compare the CCO method and stepwise method proposed here, two 3D arterial trees of human tongue were grown with their vascular tree having a special structure. Based on the corrosion casts of real arterial tree of human tongue, the data about the two trees constructed by different methods were compared and analyzed, including the averaged segment diameters at respective levels, the distribution and the diameters of the branches of first level at respective directions. The results show that the vascular tree built by stepwise method is more similar to the true arterial of human tongue when compared against the tree built by CCO method.
Implementation of Data Mining to Analyze Drug Cases Using C4.5 Decision Tree
NASA Astrophysics Data System (ADS)
Wahyuni, Sri
2018-03-01
Data mining was the process of finding useful information from a large set of databases. One of the existing techniques in data mining was classification. The method used was decision tree method and algorithm used was C4.5 algorithm. The decision tree method was a method that transformed a very large fact into a decision tree which was presenting the rules. Decision tree method was useful for exploring data, as well as finding a hidden relationship between a number of potential input variables with a target variable. The decision tree of the C4.5 algorithm was constructed with several stages including the selection of attributes as roots, created a branch for each value and divided the case into the branch. These stages would be repeated for each branch until all the cases on the branch had the same class. From the solution of the decision tree there would be some rules of a case. In this case the researcher classified the data of prisoners at Labuhan Deli prison to know the factors of detainees committing criminal acts of drugs. By applying this C4.5 algorithm, then the knowledge was obtained as information to minimize the criminal acts of drugs. From the findings of the research, it was found that the most influential factor of the detainee committed the criminal act of drugs was from the address variable.
Wang, Xin; Zhang, Yiping
2006-10-01
Based on the 2003-2004 laboratory and field observation data, and with scaling-up method, this paper studied the canopy rainfall storage capacity of tropical seasonal rainforest and rubber plantation in Xishuangbanna. The results showed that the canopy rainfall storage capacity was 0.45-0.79 mm for tropical seasonal rainforest and 0.48-0.71 mm for rubber plantation, and that of the branch and bark accounted for >50 % of the total. For these two forests, the canopy rainfall storage capacity was much higher in foggy season (from November to February) and dry-hot season (from March to April) than in rainy season (from May to October), and the duration needed to reach water saturation was about 5 min for leaf, 2-3 h for bark, and 2. 5-4 h for branch. During the processes of wetting and air-drying, leaf was easier while branch and bark were somewhat difficult to hold water and then be air-dried, suggesting that leaf played an important role in intercepting rainfall in short-duration rainfall events, while branch and bark could work much better in doing this in long-duration or high-intensity rainfall events. Compared with rubber plantation, tropical seasonal rainforest had a stronger rainfall-storage capacity due to its multi-layer structure of canopy and excellent water-holding performance.
Katsargyris, Athanasios; Marques de Marino, Pablo; Mufty, Hozan; Pedro, Luis Mendes; Fernandes, Ruy; Verhoeven, Eric L G
2018-05-01
Visceral arteries in fenestrated and branched endovascular repair (F/BEVAR) have been addressed by fenestrations or directional side branches. Inner branches, as used in the arch branched device, could provide an extra option for visceral arteries "unsuitable" for fenestrations or directional side branches. Early experience with the use of inner branches for visceral arteries in F/BEVAR is described. All consecutive patients treated by F/BEVAR for complex abdominal aortic aneurysm (AAA) or thoraco-abdominal aneurysm (TAAA) using stent grafts with inner branches were included. Data were collected prospectively. Thirty-two patients (28 male, mean age 71.6 ± 8.3 years) were included. Seven (21.9%) patients had a complex AAA and 25 (78.1%) had a TAAA. A stent graft with inner branches only was used in four (12.5%) patients. The remaining 28 (87.5%) patients received a stent graft with fenestrations and inner branches. In total 52 vessels were targeted with inner branches. Technical success was achieved in all 32 (100%) patients. All 38 inner branch target vessels in grafts including fenestrations and inner branches were instantly catheterised (<1 minute), whereas catheterisation of target vessels in "inner branch only" grafts proved more difficult (<1 minute, n = 3; 1-3 min, n = 4; and >3 min, n = 7). The 30 day operative mortality was 3.1% (1/32). Estimated survival at 1 year was 80.0% ± 8.3%. During follow-up, four renal inner branches occluded in three patients. The estimated inner branch target vessel stent patency at 1 year was 91.9 ± 4.5%. The estimated freedom from re-intervention at 1 year was 78.4% ± 8.9%. Early data suggest that visceral inner branches might represent a feasible third option to address selected target vessels in F/BEVAR. Stent grafts with inner branch(es) in combination with fenestrations seem to be a better configuration than stent grafts with inner branches alone. Durability of the inner branch design needs further investigation. Copyright © 2018 European Society for Vascular Surgery. Published by Elsevier B.V. All rights reserved.
Pure-rotational H2 thermometry by ultrabroadband coherent anti-Stokes Raman spectroscopy.
Courtney, Trevor L; Bohlin, Alexis; Patterson, Brian D; Kliewer, Christopher J
2017-06-14
Coherent anti-Stokes Raman spectroscopy (CARS) is a sensitive technique for probing highly luminous flames in combustion applications to determine temperatures and species concentrations. CARS thermometry has been demonstrated for the vibrational Q-branch and pure-rotational S-branch of several small molecules. Practical advantages of pure-rotational CARS, such as multi-species detection, reduction of coherent line mixing and collisional narrowing even at high pressures, and the potential for more precise thermometry, have motivated experimental and theoretical advances in S-branch CARS of nitrogen (N 2 ), for example, which is a dominant species in air-fed combustion processes. Although hydrogen (H 2 ) is of interest given its prevalence as a reactant and product in many gas-phase reactions, laser bandwidth limitations have precluded the extension of CARS thermometry to the H 2 S-branch. We demonstrate H 2 thermometry using hybrid femtosecond/picosecond pure-rotational CARS, in which a broadband pump/Stokes pulse enables simultaneous excitation of the set of H 2 S-branch transitions populated at flame temperatures over the spectral region of 0-2200 cm -1 . We present a pure-rotational H 2 CARS spectral model for data fitting and compare extracted temperatures to those from simultaneously collected N 2 spectra in two systems of study: a heated flow and a diffusion flame on a Wolfhard-Parker slot burner. From 300 to 650 K in the heated flow, the H 2 and N 2 CARS extracted temperatures are, on average, within 2% of the set temperature. For flame measurements, the fitted H 2 and N 2 temperatures are, on average, within 5% of each other from 300 to 1600 K. Our results confirm the viability of pure-rotational H 2 CARS thermometry for probing combustion reactions.
Pure-rotational H2 thermometry by ultrabroadband coherent anti-Stokes Raman spectroscopy
NASA Astrophysics Data System (ADS)
Courtney, Trevor L.; Bohlin, Alexis; Patterson, Brian D.; Kliewer, Christopher J.
2017-06-01
Coherent anti-Stokes Raman spectroscopy (CARS) is a sensitive technique for probing highly luminous flames in combustion applications to determine temperatures and species concentrations. CARS thermometry has been demonstrated for the vibrational Q-branch and pure-rotational S-branch of several small molecules. Practical advantages of pure-rotational CARS, such as multi-species detection, reduction of coherent line mixing and collisional narrowing even at high pressures, and the potential for more precise thermometry, have motivated experimental and theoretical advances in S-branch CARS of nitrogen (N2), for example, which is a dominant species in air-fed combustion processes. Although hydrogen (H2) is of interest given its prevalence as a reactant and product in many gas-phase reactions, laser bandwidth limitations have precluded the extension of CARS thermometry to the H2 S-branch. We demonstrate H2 thermometry using hybrid femtosecond/picosecond pure-rotational CARS, in which a broadband pump/Stokes pulse enables simultaneous excitation of the set of H2 S-branch transitions populated at flame temperatures over the spectral region of 0-2200 cm-1. We present a pure-rotational H2 CARS spectral model for data fitting and compare extracted temperatures to those from simultaneously collected N2 spectra in two systems of study: a heated flow and a diffusion flame on a Wolfhard-Parker slot burner. From 300 to 650 K in the heated flow, the H2 and N2 CARS extracted temperatures are, on average, within 2% of the set temperature. For flame measurements, the fitted H2 and N2 temperatures are, on average, within 5% of each other from 300 to 1600 K. Our results confirm the viability of pure-rotational H2 CARS thermometry for probing combustion reactions.
Li, Yan-Jun; Zhu, Shou-Hong; Zhang, Xin-Yu; Liu, Yong-Chang; Xue, Fei; Zhao, Lan-Jie; Sun, Jie
2017-06-12
Cotton fiber, a natural fiber widely used in the textile industry, is differentiated from single cell of ovule epidermis. A large number of genes are believed to be involved in fiber formation, but so far only a few fiber genes have been isolated and functionally characterized in this developmental process. The Kinesin13 subfamily was found to play key roles during cell division and cell elongation, and was considered to be involved in the regulation of cotton fiber development. The full length of coding sequence of GhKIS13A1 was cloned using cDNA from cotton fiber for functional characterization. Expression pattern analysis showed that GhKIS13A1 maintained a lower expression level during cotton fiber development. Biochemical assay showed that GhKIS13A1 has microtubule binding activity and basal ATPase activity that can be activated significantly by the presence of microtubules. Overexpression of GhKIS13A1 in Arabidopsis reduced leaf trichomes and the percentage of three-branch trichomes, and increased two-branch and shriveled trichomes compared to wild-type. Additionally, the expression of GhKIS13A1 in the Arabidopsis Kinesin-13a-1 mutant rescued the defective trichome branching pattern of the mutant, making its overall trichome branching pattern back to normal. Our results suggested that GhKIS13A1 is functionally compatible with AtKinesin-13A regarding their role in regulating the number and branching pattern of leaf trichomes. Given the developmental similarities between cotton fibers and Arabidopsis trichomes, it is speculated that GhKIS13A1 may also be involved in the regulation of cotton fiber development.
Olsen, Lisa D.; Spencer, Tracey A.
2000-01-01
The U.S. Geological Survey (USGS) collected 13 surface-water samples and 3 replicates from 5 sites in the West Branch Canal Creek area at Aberdeen Proving Ground from February through August 1999, as a part of an investigation of ground-water contamination and natural attenuation processes. The samples were analyzed for volatile organic compounds, including trichloroethylene, 1,1,2,2-tetrachloroethane, carbon tetrachloride, and chloroform, which are the four major contaminants that were detected in ground water in the Canal Creek area in earlier USGS studies. Field blanks were collected during the sampling period to assess sample bias. Field replicates were used to assess sample variability, which was expressed as relative percent difference. The mean variability of the surface-water replicate analyses was larger (35.4 percent) than the mean variability of ground-water replicate analyses (14.6 percent) determined for West Branch Canal Creek from 1995 through 1996. The higher variability in surface-water analyses is probably due to heterogeneities in the composition of the surface water rather than differences in sampling or analytical procedures. The most frequently detected volatile organic compound was 1,1,2,2- tetrachloroethane, which was detected in every sample and in two of the replicates. The surface-water contamination is likely the result of cross-media transfer of contaminants from the ground water and sediments along the West Branch Canal Creek. The full extent of surface-water contamination in West Branch Canal Creek and the locations of probable contaminant sources cannot be determined from this limited set of data. Tidal mixing, creek flow patterns, and potential effects of a drought that occurred during the sampling period also complicate the evaluation of surface-water contamination.
Koi, Satoshi; Kato, Masahiro
2007-01-01
Background and Aims In angiosperms, the shoot apical meristem produces a shoot system composed of stems, leaves and axillary buds. Podostemoideae, one of three subfamilies of the river-weed family Podostemaceae, have a unique ‘shoot’ that lacks a shoot apical meristem and is composed only of leaves. Tristichoideae have been interpreted to have a shoot apical meristem, although its branching pattern is uncertain. The shoot developmental pattern in Weddellinoideae has not been investigated with a focus on the meristem. Weddellinoideae are in a phylogenetically key position to reveal the process of shoot evolution in Podostemaceae. Methods The shoot development of Weddellina squamulosa, the sole species of Weddellinoideae, was investigated using scanning electron microscopy and semi-thin serial sections. Key Results The shoot of W. squamulosa has a tunica–corpus-organized apical meristem. It is determinate and successively initiates a new branch extra-axillarily at the base of an immediately older branch, resulting in a sympodial, approximately plane branching pattern. Large scaly leaves initiate acropetally on the flanks of the apical meristem, as is usual in angiosperms, whereas small scaly leaves scattered on the stem initiate basipetally in association with the elongation of internodes. Conclusions Weddellinoideae, like Tristichoideae, have a shoot apical meristem, leading to the hypothesis that the meristem was lost in Podostemoideae. The patterns of leaf formation in Podostemoideae and shoot branching in Weddellinoideae are similar in that these organs arise at the bases of older organs. This similarity leads to another hypothesis that the ‘branch’ in Weddellinoideae (and possibly Tristichoideae) and the ‘leaf’ in Podostemoideae are comparable, and that the shoot apical meristem disappeared in the early evolution of Podostemaceae. PMID:17468112
Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation
Chappell, John C.; Cluceru, Julia G.; Nesmith, Jessica E.; Mouillesseaux, Kevin P.; Bradley, Vanessa B.; Hartland, Caitlin M.; Hashambhoy-Ramsay, Yasmin L.; Walpole, Joseph; Peirce, Shayn M.; Mac Gabhann, Feilim; Bautch, Victoria L.
2016-01-01
Aims In developing blood vessel networks, the overall level of vessel branching often correlates with angiogenic sprout initiations, but in some pathological situations, increased sprout initiations paradoxically lead to reduced vessel branching and impaired vascular function. We examine the hypothesis that defects in the discrete stages of angiogenesis can uniquely contribute to vessel branching outcomes. Methods and results Time-lapse movies of mammalian blood vessel development were used to define and quantify the dynamics of angiogenic sprouting. We characterized the formation of new functional conduits by classifying discrete sequential stages—sprout initiation, extension, connection, and stability—that are differentially affected by manipulation of vascular endothelial growth factor-A (VEGF-A) signalling via genetic loss of the receptor flt-1 (vegfr1). In mouse embryonic stem cell-derived vessels genetically lacking flt-1, overall branching is significantly decreased while sprout initiations are significantly increased. Flt-1−/− mutant sprouts are less likely to retract, and they form increased numbers of connections with other vessels. However, loss of flt-1 also leads to vessel collapse, which reduces the number of new stable conduits. Computational simulations predict that loss of flt-1 results in ectopic Flk-1 signalling in connecting sprouts post-fusion, causing protrusion of cell processes into avascular gaps and collapse of branches. Thus, defects in stabilization of new vessel connections offset increased sprout initiations and connectivity in flt-1−/− vascular networks, with an overall outcome of reduced numbers of new conduits. Conclusions These results show that VEGF-A signalling has stage-specific effects on vascular morphogenesis, and that understanding these effects on dynamic stages of angiogenesis and how they integrate to expand a vessel network may suggest new therapeutic strategies. PMID:27142980
NASA Astrophysics Data System (ADS)
Koptev, A.; Calais, E.; Burov, E. B.; Leroy, S. D.; Gerya, T.
2014-12-01
Although many continental rift basins and their successfully rifted counterparts at passive continental margins are magmatic, some are not. This dichotomy prompted end-member views of the mechanism driving continental rifting, deep-seated and mantle plume-driven for some, owing to shallow lithospheric stretching for others. In that regard, the East African Rift (EAR), the 3000 km-long divergent boundary between the Nubian and Somalian plates, provides a unique setting with the juxtaposition of the eastern, magma-rich, and western, magma-poor, branches on either sides of the 250-km thick Tanzanian craton. Here we implement high-resolution rheologically realistic 3D numerical model of plume-lithosphere interactions in extensional far-field settings to explain this contrasted behaviour in a unified framework starting from simple, symmetrical initial conditions with an isolated mantle plume rising beneath a craton in an east-west tensional far field stress. The upwelling mantle plume is deflected by the cratonic keel and preferentially channelled along one of its sides. This leads to the coeval development of a magma-rich branch above the plume head and a magma-poor one along the opposite side of the craton, the formation of a rotating microplate between the two rift branches, and the feeding of melt to both branches form a single mantle source. The model bears strong similarities with the evolution of the eastern and western branches of the central EAR and the geodetically observed rotation of the Victoria microplate. This result reconciles the passive (plume-activated) versus active (far-field tectonic stresses) rift models as our experiments shows both processes in action and demonstrate the possibility of developing both magmatic and amagmatic rifts in identical geotectonic environments.
The normal variants in the left bundle branch system.
Elizari, M V
This article reviewed the main anatomic and physiopathological aspects of the left bundle branch from its origin in the His bundle and its intraventricular distribution on the left endocardial surface. The results are based on the relevant literature and on personal observations executed on 206 hearts distributed as follows: 67 dogs, 60 humans, 45 sheep, 22 pigs, 10 cows, 2 monkeys, 1 guanaco, and 1 sea lion. The main anatomical features of the His-Purkinje conducting system may be summarized as follows: The bundle of His is composed by two segments: the penetrating and branching portions. LBB originates in the branching portion located underneath the membranous septum. There is no true bifurcation of the bundle of His in a human heart. Short after its origin the LBB gives rise to its two main fascicles, anterior and posterior, both heading the anterior and posterior papillary muscles, respectively. The anterior division is thinner and longer than the posterior one. The RBB and the most anterior fibers of the LBB arise at the end of the branching portion. In some cases a well-defined left septal fascicle can be identified, usually arising from the posterior division. Each division gives off small fibers and false tendons crossing the left ventricular cavity connecting the papillary between them or the papillary muscles with the septal surface. From each division of the LBB, their corresponding Purkinje networks emerge covering the subendocardium of the septum and the free wall of the left ventricles. There are critical relationships of the proximal segments of the His-Purkinje system with the surrounding cardiac structures whose pathologic processes may damage the conducting tissue. Copyright © 2017 Elsevier Inc. All rights reserved.
Three ancient hormonal cues co-ordinate shoot branching in a moss
Coudert, Yoan; Palubicki, Wojtek; Ljung, Karin; Novak, Ondrej; Leyser, Ottoline; Harrison, C Jill
2015-01-01
Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport. DOI: http://dx.doi.org/10.7554/eLife.06808.001 PMID:25806686
Using the Git Software Tool on the Peregrine System | High-Performance
branch workflow. Create a local branch called "experimental" based on the current master... git branch experimental Use your branch (start working on that experimental branch....) git checkout experimental git pull origin experimental # work, work, work, commit.... Send local branch to the repo git push
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.
2014-01-01
This Essay traces the centuries-long history of the phenomenological disciplines of directional radiometry and radiative transfer in turbid media, discusses their fundamental weaknesses, and outlines the convoluted process of their conversion into legitimate branches of physical optics.
ERIC Educational Resources Information Center
Close Up Foundation, Arlington, VA.
Designed to encourage informed and critical thinking on contemporary political issues and processes, the articles, case studies, and activities in this student handbook can be incorporated into secondary school social studies units on government or current events. Seven chapters cover the executive branch of government, Congress, the judiciary,…
A Methodology for Conus APOE Reception Planning.
1982-09-01
mentioned, the reception process is a service-type system, which produces services to be rendered to the personnel and cargo flowing through it. The... Heizer , Ramon N. Chief, Supply Systems Branch, Dir- ectorate of Distribution, DCS/Logistics Operations, HQ AFLC, Wright-Patterson AFB OH. Personal inter
Fermentative organisms produce a range of compounds in addition to the desired product. For example, in addition to ethanol, standard yeast produce longer straight-chained and branched alcohols and organic acids. Additionally, biomass pretreatment process, particularly acid-bas...
Virus replication as a phenotypic version of polynucleotide evolution.
Antoneli, Fernando; Bosco, Francisco; Castro, Diogo; Janini, Luiz Mario
2013-04-01
In this paper, we revisit and adapt to viral evolution an approach based on the theory of branching process advanced by Demetrius et al. (Bull. Math. Biol. 46:239-262, 1985), in their study of polynucleotide evolution. By taking into account beneficial effects, we obtain a non-trivial multivariate generalization of their single-type branching process model. Perturbative techniques allows us to obtain analytical asymptotic expressions for the main global parameters of the model, which lead to the following rigorous results: (i) a new criterion for "no sure extinction", (ii) a generalization and proof, for this particular class of models, of the lethal mutagenesis criterion proposed by Bull et al. (J. Virol. 18:2930-2939, 2007), (iii) a new proposal for the notion of relaxation time with a quantitative prescription for its evaluation, (iv) the quantitative description of the evolution of the expected values in four distinct "stages": extinction threshold, lethal mutagenesis, stationary "equilibrium", and transient. Finally, based on these quantitative results, we are able to draw some qualitative conclusions.
Inference of epidemiological parameters from household stratified data
Walker, James N.; Ross, Joshua V.
2017-01-01
We consider a continuous-time Markov chain model of SIR disease dynamics with two levels of mixing. For this so-called stochastic households model, we provide two methods for inferring the model parameters—governing within-household transmission, recovery, and between-household transmission—from data of the day upon which each individual became infectious and the household in which each infection occurred, as might be available from First Few Hundred studies. Each method is a form of Bayesian Markov Chain Monte Carlo that allows us to calculate a joint posterior distribution for all parameters and hence the household reproduction number and the early growth rate of the epidemic. The first method performs exact Bayesian inference using a standard data-augmentation approach; the second performs approximate Bayesian inference based on a likelihood approximation derived from branching processes. These methods are compared for computational efficiency and posteriors from each are compared. The branching process is shown to be a good approximation and remains computationally efficient as the amount of data is increased. PMID:29045456
Szwengiel, Artur; Lewandowicz, Grażyna; Górecki, Adrian R; Błaszczak, Wioletta
2018-02-01
The effect of high hydrostatic pressure processing (650MPa/9min) on molecular mass distribution, and hydrodynamic and structural parameters of amylose (maize, sorghum, Hylon VII) and amylopectin (waxy maize, amaranth) starches was studied. The starches were characterized by high-performance size-exclusion chromatography (HPSEC) equipped with static light scattering and refractive index detectors and by Fourier Transform Infrared (FTIR) spectroscopy. Significant changes were observed in molecular mass distribution of pressurized waxy maize starch. Changes in branches/branch frequency, intrinsic viscosity, and radius of gyration were observed for all treated starches. The combination of SEC and FTIR data showed that α-1,6-glycosidic bonds are more frequently split in pressurized amaranth, Hylon VII, and waxy maize starch, while in sorghum and maize starches, the α-1,4 bonds are most commonly split. Our results show that the structural changes found for pressurized starches were more strongly determined by the starch origin than by the processing applied. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fixation Probability in a Haploid-Diploid Population
Bessho, Kazuhiro; Otto, Sarah P.
2017-01-01
Classical population genetic theory generally assumes either a fully haploid or fully diploid life cycle. However, many organisms exhibit more complex life cycles, with both free-living haploid and diploid stages. Here we ask what the probability of fixation is for selected alleles in organisms with haploid-diploid life cycles. We develop a genetic model that considers the population dynamics using both the Moran model and Wright–Fisher model. Applying a branching process approximation, we obtain an accurate fixation probability assuming that the population is large and the net effect of the mutation is beneficial. We also find the diffusion approximation for the fixation probability, which is accurate even in small populations and for deleterious alleles, as long as selection is weak. These fixation probabilities from branching process and diffusion approximations are similar when selection is weak for beneficial mutations that are not fully recessive. In many cases, particularly when one phase predominates, the fixation probability differs substantially for haploid-diploid organisms compared to either fully haploid or diploid species. PMID:27866168
Neutron capture studies with a short flight path
NASA Astrophysics Data System (ADS)
Walter, Stephan; Heil, Michael; Käppeler, Franz; Plag, Ralf; Reifarth, René
The time of flight (TOF) method is an important tool for the experimental determination of neu- tron capture cross sections which are needed for s-process nucleosynthesis in general, and for analyses of branchings in the s-process reaction path in particular. So far, sample masses of at least several milligrams are required to compensate limitations in the currently available neutron fluxes. This constraint leads to unacceptable backgrounds for most of the relevant unstable branch point nuclei, due to the decay activity of the sample. A possible solution has been proposed by the NCAP project at the University of Frankfurt. A first step in this direction is reported here, which aims at enhancing the sensitivity of the Karlsruhe TOF array by reducing the neutron flight path to only a few centimeters. Though sample masses in the microgram regime can be used by this approach, the increase in neutron flux has to be paid by a higher background from the prompt flash related to neutron production. Test measurements with Au samples are reported.
A Metric on Phylogenetic Tree Shapes
Plazzotta, G.
2018-01-01
Abstract The shapes of evolutionary trees are influenced by the nature of the evolutionary process but comparisons of trees from different processes are hindered by the challenge of completely describing tree shape. We present a full characterization of the shapes of rooted branching trees in a form that lends itself to natural tree comparisons. We use this characterization to define a metric, in the sense of a true distance function, on tree shapes. The metric distinguishes trees from random models known to produce different tree shapes. It separates trees derived from tropical versus USA influenza A sequences, which reflect the differing epidemiology of tropical and seasonal flu. We describe several metrics based on the same core characterization, and illustrate how to extend the metric to incorporate trees’ branch lengths or other features such as overall imbalance. Our approach allows us to construct addition and multiplication on trees, and to create a convex metric on tree shapes which formally allows computation of average tree shapes. PMID:28472435
Planets, Planetary Nebulae, and Intermediate Luminosity Optical Transients (ILOTs)
NASA Astrophysics Data System (ADS)
Soker, Noam
2018-05-01
I review some aspects related to the influence of planets on the evolution of stars before and beyond the main sequence. Some processes include the tidal destruction of a planet on to a very young main sequence star, on to a low mass main sequence star, and on to a brown dwarf. This process releases gravitational energy that might be observed as a faint intermediate luminosity optical transient (ILOT) event. I then summarize the view that some elliptical planetary nebulae are shaped by planets. When the planet interacts with a low mass upper asymptotic giant branch (AGB) star it both enhances the mass loss rate and shapes the wind to form an elliptical planetary nebula, mainly by spinning up the envelope and by exciting waves in the envelope. If no interaction with a companion, stellar or sub-stellar, takes place beyond the main sequence, the star is termed a Jsolated star, and its mass loss rates on the giant branches are likely to be much lower than what is traditionally assumed.
Highly branched RuO2 Nanorods on Electrospun TiO2 Nanofibers toward Electrochemical Catalysts
NASA Astrophysics Data System (ADS)
Cho, Yukyung; Kim, Su-Jin; Lee, Nam-Suk; Kim, Myung Hwa; Lee, Youngmi
2014-03-01
We report a facile growth route to synthesize hierarchically grown single crystalline metallic RuO2 nanorods on electrospun TiO2 nanofibers via a combination of a simple vapour phase transport process with an electrospinning process. This synthetic strategy could be very useful to design a variety of highly branched network architectures of the functional hetero-nanostructures for electrochemical applications. Particularly, Ruthenium oxide (RuO2) 1-dimensional nanostructures can be used as the effective catalysts or electrochemical electrode materials. Thus, we first synthesize TiO2 nanofibers from mixture of titanium isopropoxide precursor and polymer and then ruthenium hydroxide precursor on TiO2 nanofibers are transformed into RuO2 nanorods by thermal treatment at 250oC in air. The crystalline structures of products are confirmed using scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) spectrum, Raman spectroscopy, and high resolution electron microscopy (HRTEM). The fundamental electrochemical performances are examined using cyclic voltammetry (CV).
NASA Technical Reports Server (NTRS)
Sepka, Steve; Vander Kam, Jeremy; McGuire, Kathy
2018-01-01
The Orion Thermal Protection System (TPS) margin process uses a root-sum-square approach with branches addressing trajectory, aerothermodynamics, and material response uncertainties in ablator thickness design. The material response branch applies a bond line temperature reduction between the Avcoat ablator and EA9394 adhesive by 60 C (108 F) from its peak allowed value of 260 C (500 F). This process is known as the Bond Line Temperature Material Margin (BTMM) and is intended to cover material property and performance uncertainties. The value of 60 C (108 F) is a constant, applied at any spacecraft body location and for any trajectory. By varying only material properties in a random (monte carlo) manner, the perl-based script mcCHAR is used to investigate the confidence interval provided by the BTMM. In particular, this study will look at various locations on the Orion heat shield forebody for a guided and an abort (ballistic) trajectory.
NASA Technical Reports Server (NTRS)
Sepka, Steven A.; McGuire, Mary Kathleen; Vander Kam, Jeremy C.
2018-01-01
The Orion Thermal Protection System (TPS) margin process uses a root-sum-square approach with branches addressing trajectory, aerothermodynamics, and material response uncertainties in ablator thickness design. The material response branch applies a bondline temperature reduction between the Avcoat ablator and EA9394 adhesive by 60 C (108 F) from its peak allowed value of 260 C (500 F). This process is known as the Bond Line Temperature Material Margin (BTMM) and is intended to cover material property and performance uncertainties. The value of 60 C (108 F) is a constant, applied at any spacecraft body location and for any trajectory. By varying only material properties in a random (monte carlo) manner, the perl-based script mcCHAR is used to investigate the confidence interval provided by the BTMM. In particular, this study will look at various locations on the Orion heat shield forebody for a guided and an abort (ballistic) trajectory.
Framework for cascade size calculations on random networks
NASA Astrophysics Data System (ADS)
Burkholz, Rebekka; Schweitzer, Frank
2018-04-01
We present a framework to calculate the cascade size evolution for a large class of cascade models on random network ensembles in the limit of infinite network size. Our method is exact and applies to network ensembles with almost arbitrary degree distribution, degree-degree correlations, and, in case of threshold models, for arbitrary threshold distribution. With our approach, we shift the perspective from the known branching process approximations to the iterative update of suitable probability distributions. Such distributions are key to capture cascade dynamics that involve possibly continuous quantities and that depend on the cascade history, e.g., if load is accumulated over time. As a proof of concept, we provide two examples: (a) Constant load models that cover many of the analytically tractable casacade models, and, as a highlight, (b) a fiber bundle model that was not tractable by branching process approximations before. Our derivations cover the whole cascade dynamics, not only their steady state. This allows us to include interventions in time or further model complexity in the analysis.
Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis
Niño, Carlos A; Chaparro, Jenny; Soffientini, Paolo; Polo, Simona; Wasserman, Moises
2013-01-01
Ubiquitination is a highly dynamic and versatile posttranslational modification that regulates protein function, stability, and interactions. To investigate the roles of ubiquitination in a primitive eukaryotic lineage, we utilized the early-branching eukaryote Giardia intestinalis. Using a combination of biochemical, immunofluorescence-based, and proteomics approaches, we assessed the ubiquitination status during the process of differentiation in Giardia. We observed that different types of ubiquitin modifications present specific cellular and temporal distribution throughout the Giardia life cycle from trophozoites to cyst maturation. Ubiquitin signal was detected in the wall of mature cysts, and enzymes implicated in cyst wall biogenesis were identified as substrates for ubiquitination. Interestingly, inhibition of proteasome activity did not affect trophozoite replication and differentiation, while it caused a decrease in cyst viability, arguing for proteasome involvement in cyst wall maturation. Using a proteomics approach, we identified around 200 high-confidence ubiquitinated candidates that vary their ubiquitination status during differentiation. Our results indicate that ubiquitination is critical for several cellular processes in this primitive eukaryote. PMID:23613346
Dependency of branch diameter growth in young Acer trees on light availability and shoot elongation.
Sone, Kosei; Noguchi, Ko; Terashima, Ichiro
2005-01-01
Many biomechanical and theoretical studies have been based on the pipe-model theory, according to which a tree is regarded as an assemblage of pipes, each having the same amount of leaf area or leaf mass. However, the physiological mechanisms underlying the theory have not been extensively examined, particularly at the branch level. We analyzed how branches and trunks thickened in nine young Acer mono Maxim. var. marmoratum (Nichols) Hara f. dissectum (Wesmael) Rehder. and A. rufinerve (Siebold & Zucc.) trees. In particular, we examined the roles of light, allocation of photosynthates and shoot heterogeneity. The cross-sectional area (A) of a branch was proportional to cumulative leaf mass or leaf area of the branch, and cumulative cross-sectional area of the daughter branches (SigmaA) above a branching point was equal to the A of the mother branch. These results indicate the validity of the pipe-model theory. However, the theory was invalid for current-year growth of branch cross-sectional area (DeltaA). The DeltaA/SigmaDeltaA for a branching point was greatest (nearly equal to 1) at the crown surface, decreased with crown depth, and tended to increase again at the trunk base, and DeltaA strongly depended on light interception and the yearly increment of leaves on the branch. We examined factors that influenced DeltaA with multiple regression analysis. The ratio of DeltaA of a branch to branch leaf area depended on both relative irradiance and mean current-year shoot length of the branch, suggesting that diameter growth of a branch is determined by the balance between supply of photosynthates, which depends on light interception by the branch, and demand for photosynthates, which is created by the high cambial activity associated with vigorous shoot elongation.
Nambeesan, Savithri U; Mandel, Jennifer R; Bowers, John E; Marek, Laura F; Ebert, Daniel; Corbi, Jonathan; Rieseberg, Loren H; Knapp, Steven J; Burke, John M
2015-03-11
Shoot branching is an important determinant of plant architecture and influences various aspects of growth and development. Selection on branching has also played an important role in the domestication of crop plants, including sunflower (Helianthus annuus L.). Here, we describe an investigation of the genetic basis of variation in branching in sunflower via association mapping in a diverse collection of cultivated sunflower lines. Detailed phenotypic analyses revealed extensive variation in the extent and type of branching within the focal population. After correcting for population structure and kinship, association analyses were performed using a genome-wide collection of SNPs to identify genomic regions that influence a variety of branching-related traits. This work resulted in the identification of multiple previously unidentified genomic regions that contribute to variation in branching. Genomic regions that were associated with apical and mid-apical branching were generally distinct from those associated with basal and mid-basal branching. Homologs of known branching genes from other study systems (i.e., Arabidopsis, rice, pea, and petunia) were also identified from the draft assembly of the sunflower genome and their map positions were compared to those of associations identified herein. Numerous candidate branching genes were found to map in close proximity to significant branching associations. In sunflower, variation in branching is genetically complex and overall branching patterns (i.e., apical vs. basal) were found to be influenced by distinct genomic regions. Moreover, numerous candidate branching genes mapped in close proximity to significant branching associations. Although the sunflower genome exhibits localized islands of elevated linkage disequilibrium (LD), these non-random associations are known to decay rapidly elsewhere. The subset of candidate genes that co-localized with significant associations in regions of low LD represents the most promising target for future functional analyses.
Branching habit and the allocation of reproductive resources in conifers
Leslie, Andrew B.
2012-01-01
Background and Aims Correlated relationships between branch thickness, branch density, and twig and leaf size have been used extensively to study the evolution of plant canopy architecture, but fewer studies have explored the impact of these relationships on the allocation of reproductive resources. This study quantifies pollen cone production in conifers, which have similar basic reproductive biology but vary dramatically in branching habit, in order to test how differences in branch diameter influence pollen cone size and the density with which they are deployed in the canopy. Methods Measurements of canopy branch density, the number of cones per branch and cone size were used to estimate the amount of pollen cone tissues produced by 16 species in three major conifer clades. The number of pollen grains produced was also estimated using direct counts from individual pollen cones. Key Results The total amount of pollen cone tissues in the conifer canopy varied little among species and clades, although vegetative traits such as branch thickness, branch density and pollen cone size varied over several orders of magnitude. However, branching habit controls the way these tissues are deployed: taxa with small branches produce small pollen cones at a high density, while taxa with large branches produce large cones relatively sparsely. Conclusions Conifers appear to invest similar amounts of energy in pollen production independent of branching habit. However, similar associations between branch thickness, branch density and pollen cone size are seen across conifers, including members of living and extinct groups not directly studied here. This suggests that reproductive features relating to pollen cone size are in large part a function of the evolution of vegetative morphology and branching habit. PMID:22782240
Electrical Characterization of Signal Processing Microcircuit
1989-04-01
Transistor Array 14 Liner Microcircuits Analog Switches Analog MUX Device Characterization Analog Multiplexer References nS report Covere tV Whe m ^~~ 11Ur...ity Assurance Branch of the Rome Air Development Center pertainIng to the electrical characterization and MIL- M -38510 specifi- cation of analog...PAGI ELECTRICAL CHARACTERIZATION OF SIGNAL PROCESSING MICROCIRCUITS SECTION TITLE PAGE I Introduction I-i II Analog Multipliers, MIL- M -38510/139 II-i III
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true What is the appeal process... part? § 1260.78 Section § 1260.78 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS... Records Administration, 8601 Adelphi Road, College Park, MD. If a final decision on the appeal is not made...