Motion in Brane World Models: The Bazanski Approach
Kahil, M.E.
2007-11-20
Recently, path equations have been obtained for charged and spinning objects in brane world models, using a modified Bazanski Lagrangian. In this study, path deviation equations of extended objects are derived. The significance of moving extended objects in brane world models is examined. Motion in non-symmetric brane world models is also considered.
Fermions in 5D brane world models
NASA Astrophysics Data System (ADS)
Smolyakov, Mikhail
2016-10-01
In the present manuscript the fermion fields in the background of 5D brane world models with compact extra dimension are examined. It is shown that the only case that allows one to perform the Kaluza-Klein decomposition in a mathematically consistent way without unnatural fine-tunings and possible pathologies, is the one which does not admit localization of the zero mode. The report is based on the results presented in [1].
Clustering of galaxies in brane world models
NASA Astrophysics Data System (ADS)
Hameeda, Mir; Faizal, Mir; Ali, Ahmed Farag
2016-04-01
In this paper, we analyze the clustering of galaxies using a modified Newtonian potential. This modification of the Newtonian potential occurs due to the existence of extra dimensions in brane world models. We will analyze a system of galaxies interacting with each other through this modified Newtonian potential. The partition function for this system of galaxies will be calculated, and this partition function will be used to calculate the free energy of this system of galaxies. The entropy and the chemical potential for this system will also be calculated. We will derive explicit expression for the clustering parameter for this system. This parameter will determine the behavior of this system, and we will be able to express various thermodynamic quantities using this clustering parameter. Thus, we will be able to explicitly analyze the effect that modifying the Newtonian potential can have on the clustering of galaxies. We also analyse the effect of extra dimensions on the two-point functions between galaxies.
Simple brane-world inflationary models — An update
NASA Astrophysics Data System (ADS)
Okada, Nobuchika; Okada, Satomi
2016-05-01
In the light of the Planck 2015 results, we update simple inflationary models based on the quadratic, quartic, Higgs and Coleman-Weinberg potentials in the context of the Randall-Sundrum brane-world cosmology. Brane-world cosmological effect alters the inflationary predictions of the spectral index (ns) and the tensor-to-scalar ratio (r) from those obtained in the standard cosmology. In particular, the tensor-to-scalar ratio is enhanced in the presence of the 5th dimension. In order to maintain the consistency with the Planck 2015 results for the inflationary predictions in the standard cosmology, we find a lower bound on the five-dimensional Planck mass (M5). On the other hand, the inflationary predictions laying outside of the Planck allowed region can be pushed into the allowed region by the brane-world cosmological effect with a suitable choice of M5.
Maartens, Roy; Koyama, Kazuya
2010-01-01
The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+d-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the d extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∼ TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at low energies - the 5-dimensional Dvali-Gabadadze-Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.
Energy scales in a stabilized brane world
Boos, Edward E.; Mikhailov, Yuri S.; Smolyakov, Mikhail N.; Volobuev, Igor P.; /SINP, Moscow
2004-12-01
Brane world gravity looks different for observers on positive and negative tension branes. First we consider the well-known RS1 model with two branes embedded into the AdS5 space-time and recall the results on the relations between the energy scales for an observer on the negative tension brane, which is supposed to be ''our'' brane. Then from the point of view of this observer we study energy scales and masses for the radion and graviton excitations in a stabilized brane world model. We argue that there may be several possibilities leading to scales of the order 1-10 TeV or even less for new physics effects on our brane. In particular, an interesting scenario can arise in the case of a ''symmetric'' brane world with a nontrivial warp factor in the bulk, which however takes equal values on both branes.
Fermions in five-dimensional brane world models
NASA Astrophysics Data System (ADS)
Smolyakov, Mikhail N.
2016-06-01
In the present paper the fermion fields, living in the background of five-dimensional warped brane world models with compact extra dimension, are thoroughly examined. The Kaluza-Klein decomposition and isolation of the physical degrees of freedom is performed for those five-dimensional fermion field Lagrangians, which admit such a decomposition to be performed in a mathematically consistent way and provide a physically reasonable four-dimensional effective theory. It is also shown that for the majority of five-dimensional fermion field Lagrangians there are no (at least rather obvious) ways to perform the Kaluza-Klein decomposition consistently. Moreover, in these cases one may expect the appearance of various pathologies in the four-dimensional effective theory. Among the cases, for which the Kaluza-Klein decomposition can be performed in a mathematically consistent way, the case, which reproduces the Standard Model by the zero Kaluza-Klein modes most closely regardless of the size of the extra dimension, is examined in detail in the background of the Randall-Sundrum model.
On Closed Timelike Curves and Warped Brane World Models
NASA Astrophysics Data System (ADS)
Slagter, Reinoud Jan
2013-09-01
At first glance, it seems possible to construct in general relativity theory causality violating solutions. The most striking one is the Gott spacetime. Two cosmic strings, approaching each other with high velocity, could produce closed timelike curves. It was quickly recognized that this solution violates physical boundary conditions. The effective one particle generator becomes hyperbolic, so the center of mass is tachyonic. On a 5-dimensional warped spacetime, it seems possible to get an elliptic generator, so no obstruction is encountered and the velocity of the center of mass of the effective particle has an overlap with the Gott region. So a CTC could, in principle, be constructed. However, from the effective 4D field equations on the brane, which are influenced by the projection of the bulk Weyl tensor on the brane, it follows that no asymptotic conical space time is found, so no angle deficit as in the 4D counterpart model. This could also explain why we do not observe cosmic strings.
Bouhmadi-Lopez, Mariam; Ferrera, Antonio E-mail: a.ferrera.pardo@gmail.com
2008-10-15
We construct a new brane-world model composed of a bulk with a dilatonic field, plus a brane with brane tension coupled to the dilaton, cold dark matter and an induced gravity term. It is possible to show that, depending on the nature of the coupling between the brane tension and the dilaton, this model can describe the late time acceleration of the brane expansion (for the normal branch) as it moves within the bulk. The acceleration is produced together with a mimicry of the crossing of the cosmological constant line (w = -1) on the brane, although this crossing of the phantom divide is obtained without invoking any phantom matter either on the brane or in the bulk. The role of dark energy is played by the brane tension, which reaches a maximum positive value along the cosmological expansion of the brane. It is precisely at that maximum that the crossing of the phantom divide takes place. We also show that these results remain valid when the induced gravity term on the brane is switched off.
NASA Astrophysics Data System (ADS)
Yi, Piljin
2005-12-01
We consider reheating processes at the end of string theory inflation involving unstable D-brane systems. Nucleosynthesis restricts how much of reheating energy may be present in the nonstandard matter sector, such as gravitons and gravitinos, introducing some constraints on reheating process. In string theory setting, these may not be avoided ad hoc by fine-tuning and provide a useful tool in weeding out unrealistic scenarios. In this talk, we how the energy gets deposited into various light degrees of freedom in open and closed strings sectors. We show that a viable reheating is possible in a single throat case of KKLMMT type inflation model. Depending on details of the geometry, however, a potential problem with long-lived KK relic is present. For multi-throat case, this problem of KK relic is typically more severe and generic.
Brane-world cosmology with black strings
NASA Astrophysics Data System (ADS)
Gergely, László Á.
2006-07-01
We consider the simplest scenario when black strings/cigars penetrate the cosmological brane. As a result, the brane has a Swiss-cheese structure, with Schwarzschild black holes immersed in a Friedmann-Lemaître-Robertson-Walker brane. There is no dark radiation in the model, the cosmological regions of the brane are characterized by a cosmological constant Λ and flat spatial sections. Regardless of the value of Λ, these brane-world universes forever expand and forever decelerate. The totality of source terms in the modified Einstein equation sum up to a dust, establishing a formal equivalence with the general relativistic Einstein-Straus model. However in this brane-world scenario with black strings the evolution of the cosmological fluid strongly depends on Λ. For Λ≤0 it has positive energy density ρ and negative pressure p and at late times it behaves as in the Einstein-Straus model. For (not too high) positive values of Λ the cosmological evolution begins with positive ρ and negative p, but this is followed by an epoch with both ρ and p positive. Eventually, ρ becomes negative, while p stays positive. A similar evolution is present for high positive values of Λ, however in this case the evolution ends in a pressure singularity, accompanied by a regular behavior of the cosmic acceleration. This is a novel type of singularity appearing in brane-worlds.
Brane-World Cosmology and Varying G
NASA Astrophysics Data System (ADS)
Amarilla, Leonardo; Vucetich, Héctor
We consider a brane-world cosmological model coupled to a bulk scalar field. Since the brane tension turns out to be proportional to Newton's coupling G, in such a model a time variation of G naturally occurs. By resorting to available bounds on the variation of G, the parameters of the model are constrained. The constraints coming from nucleosynthesis and CMB result to be the severest ones.
Cross sections for production of closed superstrings at high energy colliders in brane world models
Chialva, Diego; Iengo, Roberto; Russo, Jorge G.
2005-05-15
In brane world string models with large extra dimensions, there are processes where fermion and antifermion (or two gluons) can annihilate producing a light particle (e.g. gluon) carrying transverse momentum and a Kaluza-Klein graviton or an excited closed string that propagates in the extra dimensions. In high energy colliders, this process gives a missing-momentum signature. We compute the total cross section for this process within the context of type II superstring theory in the presence of a D-brane. This includes all missing-energy sources for this string-theory model up to s=8M{sub s}{sup 2}, and it can be used to put new limits on the string scale M{sub s}.
Effective theory approach to brane world black holes
McFadden, Paul L.; Turok, Neil
2005-04-15
We derive static spherically symmetric vacuum solutions of the low-energy effective action for the two brane Randall-Sundrum model. The solutions with nontrivial radion belong to a one-parameter family describing traversable wormholes between the branes and a black hole, and were first discovered in the context of Einstein gravity with a conformally coupled scalar field. From a brane world perspective, a distinctive feature of all the solutions with nontrivial radion is a brane intersection about which the bulk geometry is conical but the induced metrics on the branes are regular. Contrary to earlier claims in the literature, we show these solutions are stable under monopole perturbations.
Asymmetric Swiss-cheese brane-worlds
NASA Astrophysics Data System (ADS)
Gergely, László Á.; Képíró, Ibolya
2007-07-01
We study a brane-world cosmological scenario with local inhomogeneities represented by black holes. The brane is asymmetrically embedded into the bulk. The black strings/cigars penetrating the Friedmann brane generate a Swiss-cheese-type structure. This universe forever expands and decelerates, as its general relativistic analogue. The evolution of the cosmological fluid, however, can proceed along four branches, two allowed to have positive energy density, and one of them having the symmetric embedding limit. On this branch a future pressure singularity can arise for either (a) a difference in the cosmological constants of the cosmological and black hole brane regions or (b) a difference in the left and right bulk cosmological constants. While behaviour (a) can be avoided by a redefinition of the fluid variables, (b) establishes a critical value of the asymmetry over which the pressure singularity occurs. We introduce the pressure singularity censorship which bounds the degree of asymmetry in the bulk cosmological constant. We also show as a model-independent generic feature that the asymmetry source term due to the bulk cosmological constant increases in the early universe. In order to obey the nucleosynthesis constraints, the brane tension should be constrained therefore both from below and from above. With the maximal degree of asymmetry obeying the pressure singularity censorship, the higher limit is ten times the lower limit. The degree of asymmetry allowed by present cosmological observations is, however, much less, pushing the upper limit to infinity.
Phantomlike behavior in a brane-world model with curvature effects
Bouhmadi-Lopez, Mariam; Moniz, Paulo Vargas
2008-10-15
Recent observational evidence seems to allow the possibility that our Universe may currently be under a dark energy effect of a phantom nature. A suitable effective phantom fluid behavior can emerge in brane cosmology; in particular, within the normal non-self-accelerating Dvali-Gabadadze-Porrati branch, without any exotic matter and due to curvature effects from induced gravity. The phantomlike behavior is based in defining an effective energy density that grows as the brane expands. This effective description breaks down at some point in the past when the effective energy density becomes negative and the effective equation of state parameter blows up. In this paper we investigate if the phantomlike regime can be enlarged by the inclusion of a Gauss-Bonnet (GB) term into the bulk. The motivation is that such a GB component would model additional curvature effects on the brane setting. More precisely, our aim is to determine if the GB term, dominating and modifying the early behavior of the brane universe, may eventually extend the regime of validity of the phantom mimicry on the brane. However, we show that the opposite occurs: the GB effect seems instead to induce a breakdown of the phantomlike behavior at an even smaller redshift.
Gravity on codimension 2 brane worlds
Navarro, Ignacio; Santiago, Jose; /Durham U., IPPP /Fermilab
2004-11-01
The authors compute the matching conditions for a general thick codimension 2 brane, a necessary previous step towards the investigation of gravitational phenomena in co-dimension 2 braneworlds. They show that, provided the brane is weakly curved, they are specified by the integral in the extra dimensions of the brane energy-momentum, independently of its detailed internal structure. These general matching conditions can then be used as boundary conditions for the bulk solution. By evaluating Einstein equations at the brane boundary they are able to write an evolution equation for the induced metric on the brane depending only on physical brane parameters and the bulk energy-momentum tensor. They particularize to a cosmological metric and show that a realistic cosmology can be obtained in the simplest case of having just a non-zero cosmological constant in the bulk. They point out several parallelisms between this case and the codimension 1 brane worlds in an AdS space.
Brane worlds in critical gravity
NASA Astrophysics Data System (ADS)
Chen, Feng-Wei; Liu, Yu-Xiao; Zhong, Yuan; Wang, Yong-Qiang; Wu, Shao-Feng
2013-11-01
Recently, Lü and Pope proposed critical gravities in [Phys. Rev. Lett. 106, 181302 (2011)]. In this paper we construct analytic brane solutions in critical gravity with matter. The Gibbons-Hawking surface term and junction condition are investigated, and the thin and thick brane solutions are obtained. All these branes are embedded in five-dimensional anti-de Sitter spacetimes. Our solutions are stable against scalar perturbations, and the zero modes of scalar perturbations cannot be localized on the branes.
Gauge unification in supersymmetric intersecting brane worlds
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Lüst, Dieter; Stieberger, Stephan
2003-07-01
We show that contrary to first expectations realistic three generation supersymmetric intersecting brane world models give rise to phenomenologically interesting predictions about gauge coupling unification. Assuming the most economical way of realizing the matter content of the MSSM via intersecting branes we obtain a model independent relation among the three gauge coupling constants at the string scale. In order to correctly reproduce the experimentally known values of sin2[thetaW(Mz)] and alphas(Mz) this relation leads to natural gauge coupling unification at a string scale close to the standard GUT scale 2 x 1016 GeV. Additional vector-like matter can push the unification scale up to the Planck scale.
Conformal symmetry of brane world effective actions
McFadden, Paul L.; Turok, Neil
2005-01-15
A simple derivation of the low-energy effective action for brane worlds is given, highlighting the role of conformal invariance. We show how to improve the effective action for a positive- and negative-tension brane pair using the AdS/CFT correspondence.
Warped brane worlds in critical gravity
NASA Astrophysics Data System (ADS)
Zhong, Yi; Chen, Feng-Wei; Xie, Qun-Ying; Liu, Yu-Xiao
2014-12-01
We investigate the brane models in arbitrary dimensional critical gravity presented in Lu and Pope (Phys Rev Lett 106:181302, 2011). For the models of the thin branes with codimension one, the Gibbons-Hawking surface term and the junction conditions are derived, with which the analytical solutions for the flat, AdS, and dS branes are obtained at the critical point of the critical gravity. It is found that all these branes are embedded in an AdS spacetime, but, in general, the effective cosmological constant of the AdS spacetime is not equal to the naked one in the critical gravity, which can be positive, zero, and negative. Another interesting result is that the brane tension can also be positive, zero, or negative, depending on the symmetry of the thin brane and the values of the parameters of the theory, which is very different from the case in general relativity. It is shown that the mass hierarchy problem can be solved in the braneworld model in the higher-derivative critical gravity. We also study the thick brane model and find analytical and numerical solutions of the flat, AdS, and dS branes. It is found that some branes will have inner structure when some parameters of the theory are larger than their critical values, which may result in resonant KK modes for some bulk matter fields. The flat branes with positive energy density and AdS branes with negative energy density are embedded in an -dimensional AdS spacetime, while the dS branes with positive energy density are embedded in an -dimensional Minkowski one.
de Sitter and double asymmetric brane worlds
Guerrero, Rommel; Rodriguez, R. Omar; Torrealba, Rafael
2005-12-15
Asymmetric brane worlds with dS expansion and static double kink topology are obtained from a recently proposed method and their properties are analyzed. These domain walls interpolate between two spacetimes with different cosmological constants. In the dynamic case, the vacua correspond to dS and AdS geometry, unlike the static case where they correspond to AdS background. We show that it is possible to confine gravity on such branes. In particular, the double-brane world hosts two different walls, so that the gravity is localized on one of them.
Branes in Poisson sigma models
Falceto, Fernando
2010-07-28
In this review we discuss possible boundary conditions (branes) for the Poisson sigma model. We show how to carry out the perturbative quantization in the presence of a general pre-Poisson brane and how this is related to the deformation quantization of Poisson structures. We conclude with an open problem: the perturbative quantization of the system when the boundary has several connected components and we use a different pre-Poisson brane in every component.
Davis, Stephen C.; Brechet, Sylvain
2005-05-15
The bubble nucleation rate for a first order phase transition occurring on a brane world is calculated. Both the Coleman-de Luccia thin wall instanton and the Hawking-Moss instanton are considered. The results are compared with the corresponding nucleation rates for standard four-dimensional gravity.
Classical and quantum aspects of brane-world cosmology
Cordero, Ruben; Rojas, Efrain
2011-10-14
We give a brief overview of several models in brane-world cosmology. In particular, we focus on the asymmetric DGP and Regge-Teiltelboim models. We present the associated equations of motion governing the dynamics of the brane and their corresponding Friedmann-like equations. In order to develop the quantum Regge-Teiltelboim type cosmology we construct its Ostrogradski Hamiltonian formalism which naturally leads to the corresponding Wheeler-DeWitt equation. In addition, we comment on possible generalizations for these models including second order derivative geometrical terms.
Topics in brane world and quantum field theory
NASA Astrophysics Data System (ADS)
Corradini, Olindo
In the first part of the thesis we study various issues in the Brane World scenario with particular emphasis on gravity and the cosmological constant problem. First, we study localization of gravity on smooth domain-wall solutions of gravity coupled to a scalar field. In this context we discuss how the aforementioned localization is affected by including higher curvature terms in the theory, pointing out among other things that, general combinations of such terms lead to delocalization of gravity with the only exception of the Gauss-Bonnet combination (and its higher dimensional counterparts). We then find a solitonic 3-brane solution in 6D bulk in the Einstein-Hilbert-Gauss-Bonnet theory of gravity. Near to the brane the metric is that for a product of the 4D flat Minkowski space with a 2D wedge whose deficit angle is proportional to the brane tension. Consistency tests imposed on such backgrounds appear to require the localized matter on the brane to be conformal. We then move onto infinite volume extra dimension Brane World scenarios where we study gravity in a codimension-2 model, generalizing the work of Dvali, Gabadadze and Porrati to tensionful branes. We point out that, in the presence of the bulk Gauss-Bonnet combination, the Einstein-Hilbert term is induced on the brane already at the classical level. Consistency tests are presented here as well. To conclude we discuss, using String Theory, an interesting class of large-N gauge theories which have vanishing energy density even though these theories are non-covariant and non-supersymmetric. In the second part of the thesis we study a formulation of Quantum Mechanical Path Integrals in curved space. Such Path Integrals present superficial divergences which need to be regulated. We perform a three-loop calculation in mode regularization as a nontrivial check of the non-covariant counterterms required by such scheme. We discover that dimensional regularization can be successfully adopted to evaluate the
Abundance of Asymmetric Dark Matter in Brane World Cosmology
NASA Astrophysics Data System (ADS)
Abdusattar, Haximjan; Iminniyaz, Hoernisa
2016-09-01
Relic abundance of asymmetric Dark Matter particles in brane world cosmological scenario is investigated in this article. Hubble expansion rate is enhanced in brane world cosmology and it affects the relic abundance of asymmetric Dark Matter particles. We analyze how the relic abundance of asymmetric Dark Matter is changed in this model. We show that in such kind of nonstandard cosmological scenario, indirect detection of asymmetric Dark Matter is possible if the cross section is small enough which let the anti-particle abundance kept in the same amount with the particle. We show the indirect detection signal constraints can be used to such model only when the cross section and the 5-dimensional Planck mass scale are in appropriate values. Supported by the National Natural Science Foundation of China under Grant No. 11365022
NASA Astrophysics Data System (ADS)
Bena, Iosif; Blåbäck, Johan; Savelli, Raffaele
2017-06-01
We find that the equations describing T-branes with constant worldvolume fields are identical to the equations found by Banks, Seiberg and Shenker twenty years ago to describe longitudinal five-branes in the BFSS matrix model. Besides giving new ways to construct T-brane solutions, this connection also helps elucidate the physics of T-branes in the regime of parameters where their worldvolume fields are larger than the string scale. We construct explicit solutions to the Banks-Seiberg-Shenker equations and show that the corresponding T-branes admit an alternative description as Abelian branes at angles.
Branes and integrable lattice models
NASA Astrophysics Data System (ADS)
Yagi, Junya
2017-01-01
This is a brief review of my work on the correspondence between four-dimensional 𝒩 = 1 supersymmetric field theories realized by brane tilings and two-dimensional integrable lattice models. I explain how to construct integrable lattice models from extended operators in partially topological quantum field theories, and elucidate the correspondence as an application of this construction.
NASA Astrophysics Data System (ADS)
Cordero, Rubén; Vilenkin, Alexander
2002-04-01
We discuss the brane world model of Dvali, Gabadadze and Porrati in which branes evolve in an infinite bulk and the brane curvature term is added to the action. If Z2 symmetry between the two sides of the brane is not imposed, we show that the model admits the existence of ``stealth branes'' which follow the standard 4D internal evolution and have no gravitational effect on the bulk space. Stealth branes can nucleate spontaneously in the bulk spacetime. This process is described by the standard 4D quantum cosmology formalism with tunneling boundary conditions for the brane world wave function. The notorious ambiguity in the choice of boundary conditions is fixed in this case due to the presence of the embedding spacetime. We also point to some problematic aspects of models admitting stealth brane solutions.
Gauge field localization on brane worlds
Guerrero, Rommel; Rodriguez, R. Omar; Melfo, Alejandra; Pantoja, Nelson
2010-04-15
We consider the effects of spacetime curvature and brane thickness on the localization of gauge fields on a brane via kinetic terms induced by localized fermions. We find that in a warped geometry with an infinitely thin brane, both the infrared and the ultraviolet behavior of the electromagnetic propagator are affected, providing a more stringent bound on the brane's tension than that coming from the requirement of four-dimensional gravity on the brane. On the other hand, for a thick wall in a flat spacetime, where the fermions are localized by means of a Yukawa coupling, we find that four-dimensional electromagnetism is recovered in a region bounded from above by the same critical distance appearing in the thin case, but also from below by a new scale related to the brane's thickness and the electromagnetic couplings. This imposes very stringent bounds on the brane's thickness which seem to invalidate the localization mechanism for this case.
Cosmological tests of generalized RS brane-worlds with Weyl fluid
NASA Astrophysics Data System (ADS)
Gergely, László Á.; Keresztes, Zoltán; Szabó, Gyula M.
2007-11-01
A class of generalized Randall-Sundrum type II (RS) brane-world models with Weyl fluid are confronted with the Gold supernovae data set and BBN constraints. We consider three models with different evolutionary history of the Weyl fluid, characterized by the parameter α. For α = 0 the Weyl curvature of the bulk appears as dark radiation on the brane, while for α = 2 and 3 the brane radiates, leaving a Weyl fluid on the brane with energy density decreasing slower than that of (dark) matter. In each case the contribution Ωd of the Weyl fluid represents but a few percent of the energy content of the Universe. All models fit reasonably well the Gold2006 data. The best fit model for α = 0 is for Ωd = 0.04. In order to obey BBN constraints in this model however, the brane had to radiate at earlier times.
The Einstein equations on the 3-brane world
NASA Astrophysics Data System (ADS)
Shiromizu, Tetsuya; Maeda, Kei-Ichi; Sasaki, Misao
2000-07-01
We carefully investigate the gravitational equations of the brane world, in which all the matter forces except gravity are confined on the 3-brane in a 5-dimensional spacetime with Z2 symmetry. We derive the effective gravitational equations on the brane, which reduce to the conventional Einstein equations in the low energy limit. From our general argument we conclude that the first Randall-Sundrum-type theory predicts that the brane with a negative tension is an antigravity world and hence should be excluded from the physical point of view. Their second-type theory where the brane has a positive tension provides the correct signature of gravity. In this latter case, if the bulk spacetime is exactly anti-de Sitter spacetime, generically the matter on the brane is required to be spatially homogeneous because of the Bianchi identities. By allowing deviations from anti-de Sitter spacetime in the bulk, the situation will be relaxed and the Bianchi identities give just the relation between the Weyl tensor and the energy momentum tensor. In the present brane world scenario, the effective Einstein equations cease to be valid during an era when the cosmological constant on the brane is not well defined, such as in the case of the matter dominated by the potential energy of the scalar field.
Effective contact interactions in a stabilized RS1 brane world model
Boos, E. E. Bunichev, V. E. Smolyakov, M. N. Volobuev, I. P.
2010-06-15
We consider the effective Lagrangian due to the exchange of heavy Kaluza-Klein (KK) tensor graviton and scalar radion states in a stabilized Randall-Sundrum model (RS1) and compute explicitly the corresponding effective coupling constants. The Drell-Yan lepton pair production at the Tevatron and the LHC is analyzed in two situations, when the first KK resonance is too heavy to be directly detected at the colliders, and when the first KK resonance is visible but other states are still too heavy. In the first case the effective Lagrangian reduces to a contact interaction of Standard Model (SM) particles, whereas in the second case it includes a coupling of SM particles to the first KK mode and a contact interaction due to the exchange of all the heavier modes. It is shown that in both cases the contribution from the invisible KK tower leads to a modification of final particles distributions. In particular, for the second case a nontrivial interference between the first KK mode and the rest KK tower takes place. Expected 95% C.L. limits for model parameters for the Tevatron and the LHC are given. The numerical results are obtained by means of the CompHEP code, in which all new effective interactions are implemented providing a tool for simulation of corresponding events and a more detailed analysis.
On the extra force in brane world scenario
NASA Astrophysics Data System (ADS)
Bejancu, Aurel; Farran, Hani Reda
2014-09-01
In the study of the dynamics in a 5D bulk from brane world scenario, an extra force with abnormal properties was detected (cf. [D. Youm, Extra force in brane worlds, Phys. Rev. D62 (2000) 084002; D. Youm, Null geodesics in brane world universe, Mod. Phys. Lett. A16 (2001) 2371; L. F. Zhang and Y. Z. Zhang, Null geodesics in brane world scenarios, Commun. Theor. Phys. (Beijing)41 (2004) 48]). In this paper, by using the Riemannian horizontal connection introduced in [A. Bejancu, A new point of view on general Kaluza-Klein theories, Progr. Theor. Phys.128 (2012) 541], we give a new definition for the extra force in a 5D bulk, and show that it does not contradict the 4D physics. In particular, we show that this force appears very rarely along geodesics in a warped 5D bulk.
M-Brane Models and Loop Spaces
NASA Astrophysics Data System (ADS)
Sämann, Christian
2012-06-01
I review an extension of the ADHMN construction of monopoles to M-brane models. This extended construction gives a map from solutions to the Basu-Harvey equation to solutions to the self-dual string equation transgressed to loop space. Loop spaces appear in fact quite naturally in M-brane models. This is demonstrated by translating a recently proposed M5-brane model to loop space. Finally, I comment on some recent developments related to the loop space approach to M-brane models.
Gravity Mediation in 6d Brane-World Supergravity
Lee, Hyun Min
2005-12-02
We consider the gravity-mediated SUSY breaking within the effective theory of six-dimensional brane-world supergravity. We construct the supersymmetric bulk-brane action by Noether method and find the nontrivial moduli coupling of the brane F- and D-terms. We find that the low energy Kaehler potential is not of sequestered form, so gravity mediation may occur at tree level. In moduli stabilization with anomaly effects included, the scalar soft mass squared can be positive at tree level and it can be comparable to the anomaly mediation.
Signals from the brane-world black hole
Shen Jianyong; Wang Bin; Su Rukeng
2006-08-15
We have studied the wave dynamics and the Hawking radiation for a scalar field as well as a brane-localized gravitational field in the background of a brane-world black hole with a tidal charge containing information on the extra dimension. Comparing with four-dimensional black holes, we have observed the signature of the tidal charge which presents the signals of the extra dimension both in the wave dynamics and the Hawking radiation.
Generalized complex geometry, generalized branes and the Hitchin sigma model
NASA Astrophysics Data System (ADS)
Zucchini, Roberto
2005-03-01
Hitchin's generalized complex geometry has been shown to be relevant in compactifications of superstring theory with fluxes and is expected to lead to a deeper understanding of mirror symmetry. Gualtieri's notion of generalized complex submanifold seems to be a natural candidate for the description of branes in this context. Recently, we introduced a Batalin-Vilkovisky field theoretic realization of generalized complex geometry, the Hitchin sigma model, extending the well known Poisson sigma model. In this paper, exploiting Gualtieri's formalism, we incorporate branes into the model. A detailed study of the boundary conditions obeyed by the world sheet fields is provided. Finally, it is found that, when branes are present, the classical Batalin-Vilkovisky cohomology contains an extra sector that is related non trivially to a novel cohomology associated with the branes as generalized complex submanifolds.
Bulk renormalization and particle spectrum in codimension-two brane worlds
NASA Astrophysics Data System (ADS)
Salvio, Alberto
2013-04-01
We study the Casimir energy due to bulk loops of matter fields in codimension-two brane worlds and discuss how effective field theory methods allow us to use this result to renormalize the bulk and brane operators. In the calculation we explicitly sum over the Kaluza-Klein (KK) states with a new convenient method, which is based on a combined use of zeta function and dimensional regularization. Among the general class of models we consider we include a supersymmetric example, 6D gauged chiral supergravity. Although much of our discussion is more general, we treat in some detail a class of compactifications, where the extra dimensions parametrize a rugby ball shaped space with size stabilized by a bulk magnetic flux. The rugby ball geometry requires two branes, which can host the Standard Model fields and carry both tension and magnetic flux (of the bulk gauge field), the leading terms in a derivative expansion. The brane properties have an impact on the KK spectrum and therefore on the Casimir energy as well as on the renormalization of the brane operators. A very interesting feature is that when the two branes carry exactly the same amount of flux, one half of the bulk supersymmetries survives after the compactification, even if the brane tensions are large. We also discuss the implications of these calculations for the natural value of the cosmological constant when the bulk has two large extra dimensions and the bulk supersymmetry is partially preserved (or completely broken).
Zeta functions in brane world cosmology
NASA Astrophysics Data System (ADS)
Flachi, Antonino; Knapman, Alan; Naylor, Wade; Sasaki, Misao
2004-12-01
We present a calculation of the zeta function and of the functional determinant for a Laplace-type differential operator, corresponding to a scalar field in a higher-dimensional deSitter brane background, which consists of a higher-dimensional anti deSitter bulk spacetime bounded by a deSitter section, representing a brane. Contrary to the existing examples, which all make use of conformal transformations, we evaluate the zeta function working directly with the higher-dimensional wave operator. We also consider a generic mass term and coupling to curvature, generalizing previous results. The massless, conformally coupled case is obtained as a limit of the general result and compared with known calculations. In the limit of large anti deSitter radius, the zeta determinant for the ball is recovered in perfect agreement with known expressions, providing an interesting check of our result and an alternative way of obtaining the ball determinant.
Brane-world stars from minimal geometric deformation, and black holes
NASA Astrophysics Data System (ADS)
Casadio, Roberto; Ovalle, Jorge
2014-02-01
Using the effective four-dimensional Einstein field equations, we build analytical models of spherically symmetric stars in the brane-world, in which the external space-time contains both an ADM mass and a tidal charge. In order to determine the interior geometry, we apply the principle of minimal geometric deformation, which allows one to map general relativistic solutions to solutions of the effective four-dimensional brane-world equations. We further restrict our analysis to stars with a radius linearly related to the total general relativistic mass, and obtain a general relation between the latter, the brane-world ADM mass and the tidal charge. In these models, the value of the star's radius can then be taken to zero smoothly, thus obtaining brane-world black hole metrics with a tidal charge solely determined by the mass of the source and the brane tension. We find configurations which entail a partial screening of the gravitational mass, and general conclusions regarding the minimum mass for semiclassical black holes are also drawn.
Low-Energy Brane-World Effective Actions and Partial Supersymmetry Breaking
Klein, Matthias
2003-03-18
As part of a programme for the general study of the low-energy implications of supersymmetry breaking in brane-world scenarios, we study the nonlinear realization of supersymmetry which occurs when breaking N = 2 to N = 1 supergravity. We consider three explicit realizations of this supersymmetry breaking pattern, which correspond to breaking by one brane, by one antibrane or by two (or more) parallel branes. We derive the minimal field content, the effective action and supersymmetry transformation rules for the resulting N = 1 theory perturbatively in powers of {kappa} = 1/M{sub Planck}. We show that the way the massive gravitino and spin-1 fields assemble into N = 1 multiplets implies the existence of direct brane-brane contact interactions at order {Omicron}({kappa}). This result is contrary to the {Omicron}({kappa}{sup 2}) predicted by the sequestering scenario but in agreement with recent work of Anisimov et al. Our low-energy approach is model independent and is a first step towards determining the low-energy implications of more realistic brane models which completely break all supersymmetries.
Brane brick models in the mirror
NASA Astrophysics Data System (ADS)
Franco, Sebastián; Lee, Sangmin; Seong, Rak-Kyeong; Vafa, Cumrun
2017-02-01
Brane brick models are Type IIA brane configurations that encode the 2 d N=(0,2) gauge theories on the worldvolume of D1-branes probing toric Calabi-Yau 4-folds. We use mirror symmetry to improve our understanding of this correspondence and to provide a systematic approach for constructing brane brick models starting from geometry. The mirror configuration consists of D5-branes wrapping 4-spheres and the gauge theory is determined by how they intersect. We also explain how 2 d (0 , 2) triality is realized in terms of geometric transitions in the mirror geometry. Mirror symmetry leads to a geometric unification of dualities in different dimensions, where the order of duality is n - 1 for a Calabi-Yau n-fold. This makes us conjecture the existence of a quadrality symmetry in 0 d. Finally, we comment on how the M-theory lift of brane brick models connects to the classification of 2 d (0 , 2) theories in terms of 4-manifolds.
Gravity and antigravity in a brane world with metastable gravitons
NASA Astrophysics Data System (ADS)
Gregory, R.; Rubakov, V. A.; Sibiryakov, S. M.
2000-09-01
In the framework of a five-dimensional three-brane model with quasi-localized gravitons we evaluate metric perturbations induced on the positive tension brane by matter residing thereon. We find that at intermediate distances, the effective four-dimensional theory coincides, up to small corrections, with General Relativity. This is in accord with Csaki, Erlich and Hollowood and in contrast to Dvali, Gabadadze and Porrati. We show, however, that at ultra-large distances this effective four-dimensional theory becomes dramatically different: conventional tensor gravity changes into scalar anti-gravity.
Farakos, K.; Koutsoumbas, G.; Pasipoularides, P.
2007-09-15
Brane world models with a nonminimally coupled bulk scalar field have been studied recently. In this paper we consider metric fluctuations around an arbitrary gravity-scalar background solution, and we show that the corresponding spectrum includes a localized zero mode which strongly depends on the profile of the background scalar field. For a special class of solutions, with a warp factor of the RS form, we solve the linearized Einstein equations, for a pointlike mass source on the brane, by using the brane bending formalism. We see that general relativity on the brane is recovered only if we impose restrictions on the parameter space of the models under consideration.
On Realistic Brane Worlds from Type i Strings
NASA Astrophysics Data System (ADS)
Aldazabal, Gerardo; IbÁñez, Luis E.; Quevedo, Fernando
We review recent progress in constructing realistic brane models from type I string vacua. Explicit models with three families of the standard model gauge group and its l-right generalizations are presented with supersymmetry broken at the string scale of order Ms ~ 1010-12
Casimir force in brane worlds: Coinciding results from Green's and zeta function approaches
Linares, Roman; Morales-Tecotl, Hugo A.; Pedraza, Omar
2010-06-15
Casimir force encodes the structure of the field modes as vacuum fluctuations and so it is sensitive to the extra dimensions of brane worlds. Now, in flat spacetimes of arbitrary dimension the two standard approaches to the Casimir force, Green's function, and zeta function yield the same result, but for brane world models this was only assumed. In this work we show that both approaches yield the same Casimir force in the case of universal extra dimensions and Randall-Sundrum scenarios with one and two branes added by p compact dimensions. Essentially, the details of the mode eigenfunctions that enter the Casimir force in the Green's function approach get removed due to their orthogonality relations with a measure involving the right hypervolume of the plates, and this leaves just the contribution coming from the zeta function approach. The present analysis corrects previous results showing a difference between the two approaches for the single brane Randall-Sundrum; this was due to an erroneous hypervolume of the plates introduced by the authors when using the Green's function. For all the models we discuss here, the resulting Casimir force can be neatly expressed in terms of two four-dimensional Casimir force contributions: one for the massless mode and the other for a tower of massive modes associated with the extra dimensions.
Higher-order brane gravity models
Dabrowski, Mariusz P.; Balcerzak, Adam
2010-06-23
We discuss a very general theory of gravity, of which Lagrangian is an arbitrary function of the curvature invariants, on the brane. In general, the formulation of the junction conditions (except for Euler characteristics such as Gauss-Bonnet term) leads to the powers of the delta function and requires regularization. We suggest the way to avoid such a problem by imposing the metric and its first derivative to be regular at the brane, the second derivative to have a kink, the third derivative of the metric to have a step function discontinuity, and no sooner as the fourth derivative of the metric to give the delta function contribution to the field equations. Alternatively, we discuss the reduction of the fourth-order gravity to the second order theory by introducing extra scalar and tensor fields: the scalaron and the tensoron. In order to obtain junction conditions we apply two methods: the application of the Gauss-Codazzi formalism and the application of the generalized Gibbons-Hawking boundary terms which are appended to the appropriate actions. In the most general case we derive junction conditions without assuming the continuity of the scalaron and the tensoron on the brane. The derived junction conditions can serve studying the cosmological implications of the higher-order brane gravity models.
Coisotropic D8-branes and model-building
NASA Astrophysics Data System (ADS)
Font, Anamaría; Ibáñez, Luis E.; Marchesano, Fernando
2006-09-01
Up to now chiral type IIA vacua have been mostly based on intersecting D6-branes wrapping special Lagrangian 3-cycles on a CY3 manifold. We argue that there are additional BPS D-branes which have so far been neglected, and which seem to have interesting model-building features. They are coisotropic D8-branes, in the sense of Kapustin and Orlov. The D8-branes wrap 5-dimensional submanifolds of the CY3 which are trivial in homology, but contain a worldvolume flux that induces D6-brane charge on them. This induced D6-brane charge not only renders the D8-brane BPS, but also creates D = 4 chirality when two D8-branes intersect. We discuss in detail the case of a type IIA T6/(Bbb Z2 × Bbb Z2) orientifold, where we provide explicit examples of coisotropic D8-branes. We study the chiral spectrum, SUSY conditions, and effective field theory of different systems of D8-branes in this orientifold, and show how the magnetic fluxes generate a superpotential for untwisted Kähler moduli. Finally, using both D6-branes and coisotropic D8-branes we construct new examples of MSSM-like type IIA vacua.
New models for asymmetric kinks and branes
NASA Astrophysics Data System (ADS)
Menezes, R.; Moreira, D. C.
2017-08-01
We investigate new models for scalar fields in flat and curved spacetime. We note that the global reflection symmetry of the potential that identify the scalar field model does not exclude the presence of internal asymmetries that give rise to asymmetric structures. Despite the asymmetry, the new structures are linearly stable and in the braneworld scenario with an extra dimension of infinite extend, they may generate new families of asymmetric thick branes that are robust against small fluctuations in the warped geometry.
Notes on the two-brane model with variable tension
Abdalla, M. C. B.; Hoff da Silva, J. M. Hoff; Rocha, R. da
2009-08-15
Motivated by possible extensions of the braneworld models with two branes, we investigate some consequences of a variable brane tension, using the well established results on consistency conditions. By a slight modification of the usual stress-tensor used in order to derive the braneworld sum rules, we find some important constraints obeyed by time-dependent brane tensions. In particular, it is shown that the tensions of two Randall-Sundrum-like branes obeying, at the same time, an Eoetvoes law, aggravate the fine-tuning problem. Also, it is shown that if the hidden brane tension obeys an Eoetvoes law, then the visible brane has a mixed behavior allowing a bouncinglike period at early times while it is dominated by an Eoetvoes law now. To finalize, we discuss some qualitative characteristics, which may arise in the scope of dynamical brane tensions, as anisotropic background and branons production.
Brane model with two asymptotic regions
NASA Astrophysics Data System (ADS)
Lubo, Musongela
2005-02-01
Some brane models rely on a generalization of the Melvin magnetic universe including a complex scalar field among the sources. We argue that the geometric interpretation of Kip. S. Thorne of this geometry restricts the kind of potential a complex scalar field can display to keep the same asymptotic behavior. While a finite energy is not obtained for a Mexican hat potential in this interpretation, this is the case for a potential displaying a broken phase and an unbroken one. We use for technical simplicity and illustrative purposes an ad hoc potential which however shares some features with those obtained in some supergravity models. We construct a sixth dimensional cylindrically symmetric solution which has two asymptotic regions: the Melvin-like metric on one side and a flat space displaying a conical singularity on the other. The causal structure of the configuration is discussed. Unfortunately, gravity is not localized on the brane.
Brane model with two asymptotic regions
Lubo, Musongela
2005-02-15
Some brane models rely on a generalization of the Melvin magnetic universe including a complex scalar field among the sources. We argue that the geometric interpretation of Kip. S. Thorne of this geometry restricts the kind of potential a complex scalar field can display to keep the same asymptotic behavior. While a finite energy is not obtained for a Mexican hat potential in this interpretation, this is the case for a potential displaying a broken phase and an unbroken one. We use for technical simplicity and illustrative purposes an ad hoc potential which however shares some features with those obtained in some supergravity models. We construct a sixth dimensional cylindrically symmetric solution which has two asymptotic regions: the Melvin-like metric on one side and a flat space displaying a conical singularity on the other. The causal structure of the configuration is discussed. Unfortunately, gravity is not localized on the brane.
Linear Sigma Model Toolshed for D-brane Physics
Hellerman, Simeon
2001-08-23
Building on earlier work, we construct linear sigma models for strings on curved spaces in the presence of branes. Our models include an extremely general class of brane-worldvolume gauge field configurations. We explain in an accessible manner the mathematical ideas which suggest appropriate worldsheet interactions for generating a given open string background. This construction provides an explanation for the appearance of the derived category in D-brane physic complementary to that of recent work of Douglas.
Casimir force for a scalar field in warped brane worlds
Linares, Roman; Morales-Tecotl, Hugo A.; Pedraza, Omar
2008-03-15
In looking for imprints of extra dimensions in braneworld models one usually builds these so that they are compatible with known low energy physics and thus focuses on high energy effects. Nevertheless, just as submillimeter Newton's law tests probe the mode structure of gravity other low energy tests might apply to matter. As a model example, in this work we determine the 4D Casimir force corresponding to a scalar field subject to Dirichlet boundary conditions on two parallel planes lying within the single brane of a Randall-Sundrum scenario extended by one compact extra dimension. Using the Green's function method such a force picks the contribution of each field mode as if it acted individually but with a weight given by the square of the mode wave functions on the brane. In the low energy regime one regains the standard 4D Casimir force that is associated to a zero mode in the massless case or to a quasilocalized or resonant mode in the massive one while the effect of the extra dimensions gets encoded as an additional term.
k-stabilization in brane models
Olechowski, M.
2008-10-15
Stabilization of interbrane distance is analyzed in five-dimensional models with higher-order scalar kinetic terms. Equations of motion and boundary conditions for background and for scalar perturbations are presented. Conditions sufficient and (with one exception) necessary for stability are derived and discussed. It is shown that it is possible to construct stable brane configurations even without scalar potentials and cosmological constants. As a by-product we identify a large class of nonstandard boundary conditions for which the Sturm-Liouville operator is Hermitian.
Brane-world stars with a solid crust and vacuum exterior
NASA Astrophysics Data System (ADS)
Ovalle, Jorge; Gergely, László Á.; Casadio, Roberto
2015-02-01
The minimal geometric deformation approach is employed to show the existence of brane-world stellar distributions with a vacuum Schwarzschild exterior, thus without energy leaking from the exterior of the brane-world star into the extra dimension. The interior satisfies all the elementary criteria of physical acceptability for a stellar solution, namely, it is regular at the origin, the pressure and density are positive and decrease monotonically with increasing radius, and all energy conditions are fulfilled. A very thin solid crust with negative radial pressure separates the interior from the exterior, having a thickness Δ inversely proportional to both the brane tension σ and the radius R of the star, i.e. {{Δ }-1}˜ Rσ . This brane-world star with Schwarzschild exterior would appear only thermally radiating to a distant observer and be fully compatible with the stringent constraints imposed on stellar parameters by observations of gravitational lensing, orbital evolutions or properties of accretion disks.
Wightman function and vacuum fluctuations in higher dimensional brane models
NASA Astrophysics Data System (ADS)
Saharian, Aram A.
2006-02-01
The Wightman function and the vacuum expectation value of the field square are evaluated for a massive scalar field with a general curvature coupling parameter subject to Robin boundary conditions on two codimension-one parallel branes located on a (D+1)-dimensional background spacetime AdSD1+1×Σ with a warped internal space Σ. The general case of different Robin coefficients on separate branes is considered. The application of the generalized Abel-Plana formula for the series over zeros of combinations of cylinder functions allows us to manifestly extract the part due to the bulk without boundaries. Unlike the purely anti-de Sitter (AdS) bulk, the vacuum expectation value of the field square induced by a single brane, in addition to the distance from the brane, depends also on the position of the brane in the bulk. The brane induced part in this expectation value vanishes when the brane position tends to the AdS horizon or the AdS boundary. The asymptotic behavior of the vacuum densities near the branes and at large distances is investigated. The contribution of Kaluza-Klein modes along Σ is discussed in various limiting cases. In the limit when the curvature radius for the AdS spacetime tends to infinity, we derive the results for two parallel Robin plates on the background spacetime R(D1,1)×Σ. For strong gravitational fields corresponding to large values of the AdS energy scale, both the single brane and interference parts of the expectation values integrated over the internal space are exponentially suppressed. As an example the case Σ=S1 is considered, corresponding to the AdSD+1 bulk with one compactified dimension. An application to the higher dimensional generalization of the Randall-Sundrum brane model with arbitrary mass terms on the branes is discussed.
Wightman function and vacuum fluctuations in higher dimensional brane models
Saharian, Aram A.
2006-02-15
The Wightman function and the vacuum expectation value of the field square are evaluated for a massive scalar field with a general curvature coupling parameter subject to Robin boundary conditions on two codimension-one parallel branes located on a (D+1)-dimensional background spacetime AdS{sub D{sub 1}}{sub +1}x{sigma} with a warped internal space {sigma}. The general case of different Robin coefficients on separate branes is considered. The application of the generalized Abel-Plana formula for the series over zeros of combinations of cylinder functions allows us to manifestly extract the part due to the bulk without boundaries. Unlike the purely anti-de Sitter (AdS) bulk, the vacuum expectation value of the field square induced by a single brane, in addition to the distance from the brane, depends also on the position of the brane in the bulk. The brane induced part in this expectation value vanishes when the brane position tends to the AdS horizon or the AdS boundary. The asymptotic behavior of the vacuum densities near the branes and at large distances is investigated. The contribution of Kaluza-Klein modes along {sigma} is discussed in various limiting cases. In the limit when the curvature radius for the AdS spacetime tends to infinity, we derive the results for two parallel Robin plates on the background spacetime R{sup (D{sub 1},1)}x{sigma}. For strong gravitational fields corresponding to large values of the AdS energy scale, both the single brane and interference parts of the expectation values integrated over the internal space are exponentially suppressed. As an example the case {sigma}=S{sup 1} is considered, corresponding to the AdS{sub D+1} bulk with one compactified dimension. An application to the higher dimensional generalization of the Randall-Sundrum brane model with arbitrary mass terms on the branes is discussed.
De Sitter brane-world, localization of gravity, and the cosmological constant
Neupane, Ishwaree P.
2011-04-15
Cosmological models with a de Sitter 3-brane embedded in a 5-dimensional de Sitter spacetime (dS{sub 5}) give rise to a finite 4D Planck mass similar to that in Randall-Sundrum (RS) brane-world models in anti-de Sitter 5-dimensional spacetime(AdS{sub 5}). Yet, there arise a few important differences as compared to the results with a flat 3-brane or 4D Minkowski spacetime. For example, the mass reduction formula (MRF) M{sub Pl}{sup 2}=M{sub (5)}{sup 3}l{sub AdS} as well as the relationship M{sub Pl}{sup 2}=M{sub Pl(4+n)}{sup n+2}L{sup n} (with L being the average size or the radius of the n extra dimensions) expected in models of product-space (or Kaluza-Klein) compactifications get modified in cosmological backgrounds. In an expanding universe, a physically relevant MRF encodes information upon the 4-dimensional Hubble expansion parameter, in addition to the length and mass parameters L, M{sub Pl}, and M{sub Pl(4+n)}. If a bulk cosmological constant is present in the solution, then the reduction formula is further modified. With these new insights, we show that the localization of a massless 4D graviton as well as the mass hierarchy between M{sub Pl} and M{sub Pl(4+n)} can be explained in cosmological brane-world models. A notable advantage of having a 5D de Sitter bulk is that in this case the zero-mass wave function is normalizable, which is not necessarily the case if the bulk spacetime is anti-de Sitter. In spacetime dimensions D{>=}7, however, the bulk cosmological constant {Lambda}{sub b} can take either sign ({Lambda}{sub b}<0, =0, or >0). The D=6 case is rather inconclusive, in which case {Lambda}{sub b} may be introduced together with 2-form gauge field (or flux). We obtain some interesting classical gravity solutions that compactify higher-dimensional spacetime to produce a Robertson-Walker universe with de Sitter-type expansion plus one extra noncompact direction. We also show that such models can admit both an effective 4-dimensional Newton constant
Intersecting branes and Nambu-Jona-Lasinio model
Dhar, Avinash; Nag, Partha
2009-06-15
We discuss chiral symmetry breaking in the intersecting brane model of Sakai and Sugimoto at weak coupling for a generic value of separation L between the flavor D8 and anti-D8-branes. For any finite value of the radius R of the circle around which the color D4-branes wrap, a nonlocal Nambu-Jona-Lasinio-type short-range interaction couples the flavor branes and antibranes. We argue that chiral symmetry is broken in this model only above a certain critical value of the four-dimensional 't Hooft coupling and confirm this through numerical calculations of solutions to the gap equation. We also numerically investigate chiral symmetry breaking in the limit R{yields}{infinity} keeping L fixed, but find that simple ways of implementing this limit do not lead to a consistent picture of chiral symmetry breaking in the noncompact version of the nonlocal Nambu-Jona-Lasinio model.
Stability of the graviton Bose-Einstein condensate in the brane-world
NASA Astrophysics Data System (ADS)
Casadio, Roberto; da Rocha, Roldão
2016-12-01
We consider a solution of the effective four-dimensional Einstein equations, obtained from the general relativistic Schwarzschild metric through the principle of Minimal Geometric Deformation (MGD). Since the brane tension can, in general, introduce new singularities on a relativistic Eötvös brane model in the MGD framework, we require the absence of observed singularities, in order to constrain the brane tension. We then study the corresponding Bose-Einstein condensate (BEC) gravitational system and determine the critical stability region of BEC MGD stellar configurations. Finally, the critical stellar densities are shown to be related with critical points of the information entropy.
Brane-inspired models in gravitation and cosmology
NASA Astrophysics Data System (ADS)
Gal'tsov, Dmitri
We discuss some recent development in gravitation and cosmology related to the concept of branes. These lectures include: a brief review of braneworld scenarios with an emphasis on the black hole problem, soliton and black hole solutions of the gravitating non-Abelian Born-Infeld (NBI) model, NBI homogeneous and isotropic cosmology, brane NBI cosmology, the issue of Yang-Mills chaos in the context of the NBI dynamics.
Cosmological constraints on parameters of one-brane models with extra dimension
Iofa, Mikhail Z.
2009-11-01
We study some aspects of cosmologies in 5D models with one infinite extra dimension. Matter is confined to the brane, gravity extends to the bulk. Models with positive and negative tension of the brane are considered. Cosmological evolution of the 4D world is described by warped solutions of the generalized Friedmann equation. Cosmological solutions on the brane are obtained with the input of the present-time observational cosmological parameters. We estimate the age of the Universe and abundance of {sup 4}He produced in primordial nucleosynthesis in different models. Using these estimates we find constraints on dimensionless combinations of the 5D gravitational scale, scale of the warp factor and coupling at the 4D curvature term in the action.
Towards an explicit model of D-brane inflation
Baumann, Daniel; Dymarsky, Anatoly; Klebanov, Igor R; McAllister, Liam E-mail: dymarsky@stanford.edu E-mail: liam@lepp.cornell.edu
2008-01-15
We present a detailed analysis of an explicit model of warped D-brane inflation, incorporating the effects of moduli stabilization. We consider the potential for D3-brane motion in a warped conifold background that includes fluxes and holomorphically embedded D7-branes involved in moduli stabilization. Although the D7-branes significantly modify the inflaton potential, they do not correct the quadratic term in the potential, and hence do not cause a uniform change in the slow roll parameter eta. Nevertheless, we present a simple example based on the Kuperstein embedding of D7-branes, z{sub 1} = constant, in which the potential can be fine-tuned to be sufficiently flat for inflation. To derive this result, it is essential to incorporate the fact that the compactification volume changes slightly as the D3-brane moves. We stress that the compactification geometry dictates certain relationships among the parameters in the inflaton Lagrangian, and these microscopic constraints impose severe restrictions on the space of possible models. We note that the shape of the final inflaton potential differs from projections given in earlier studies: in configurations where inflation occurs, it does so near an inflection point. Finally, we comment on the difficulty of making precise cosmological predictions in this scenario. This is the companion paper to Baumann et al (2007 Phys. Rev. Lett. 99 141601)
Towards an explicit model of D-brane inflation
NASA Astrophysics Data System (ADS)
Baumann, Daniel; Dymarsky, Anatoly; Klebanov, Igor R.; McAllister, Liam
2008-01-01
We present a detailed analysis of an explicit model of warped D-brane inflation, incorporating the effects of moduli stabilization. We consider the potential for D3-brane motion in a warped conifold background that includes fluxes and holomorphically embedded D7-branes involved in moduli stabilization. Although the D7-branes significantly modify the inflaton potential, they do not correct the quadratic term in the potential, and hence do not cause a uniform change in the slow roll parameter eta. Nevertheless, we present a simple example based on the Kuperstein embedding of D7-branes, z1 = constant, in which the potential can be fine-tuned to be sufficiently flat for inflation. To derive this result, it is essential to incorporate the fact that the compactification volume changes slightly as the D3-brane moves. We stress that the compactification geometry dictates certain relationships among the parameters in the inflaton Lagrangian, and these microscopic constraints impose severe restrictions on the space of possible models. We note that the shape of the final inflaton potential differs from projections given in earlier studies: in configurations where inflation occurs, it does so near an inflection point. Finally, we comment on the difficulty of making precise cosmological predictions in this scenario. This is the companion paper to Baumann et al (2007 Phys. Rev. Lett. 99 141601).
Spontaneous symmetry breaking in general relativity: Brane world concept
Meierovich, Boris E.
2009-05-15
Gravitational properties of a hedgehog-type topological defect in two extra dimensions are considered in general relativity employing a vector as the order parameter. The developed macroscopic theory of phase transitions with spontaneous symmetry breaking is applied to the analysis of possible ''thick'' brane structures. The previous considerations were done using the order parameter in the form of a multiplet in a target space of scalar fields. The difference of these two approaches is analyzed and demonstrated in detail. There are two different symmetries of regular solutions of Einstein equations for a hedgehog-type vector order parameter. Both solutions are analyzed in parallel analytically and numerically. Regular configurations in cases of a vector order parameter have one more free parameter in comparison with the scalar multiplet solutions. It is shown that the existence of a negative cosmological constant is sufficient for the spontaneous symmetry breaking of the initially plain bulk. Regular configurations have a growing gravitational potential and are able to trap the matter to the brane. Among others there are solutions with the gravitational potential having several points of minimum such as being identical in the uniform bulk spinless particles, being trapped within separate points of minimum, acquiring different masses, and appearing to an observer within the brane as different particles with integer spins.
Noncommutative brane-world, (Anti) de Sitter vacua and extra dimensions
NASA Astrophysics Data System (ADS)
Kar, Supriya
2006-10-01
We investigate a curved brane-world, inspired by a noncommutative D3-brane, in a type IIB string theory. We obtain, an axially symmetric and a spherically symmetric, (anti) de Sitter black holes in 4D. The event horizons of these black holes possess a constant curvature and may be seen to be governed by different topologies. The extremal geometries are explored, using the noncommutative scaling in the theory, to reassure the attractor behavior at the black hole event horizon. The emerging two dimensional, semi-classical, black hole is analyzed to provide evidence for the extra dimensions in a curved brane-world. It is argued that the gauge nonlinearity in the theory may be redefined by a potential in a moduli space. As a result, D = 11 and D = 12 dimensional geometries may be obtained at the stable extrema of the potential.
Frolov, Valeri P.; Mukohyama, Shinji
2011-02-15
The aim of this paper is to demonstrate that in models with large extra dimensions under special conditions one can extract information from the interior of 4D black holes. For this purpose we study an induced geometry on a test brane in the background of a higher-dimensional static black string or a black brane. We show that, at the intersection surface of the test brane and the bulk black string or brane, the induced metric has an event horizon, so that the test brane contains a black hole. We call it a brane hole. When the test brane moves with a constant velocity V with respect to the bulk black object, it also has a brane hole, but its gravitational radius r{sub e} is greater than the size of the bulk black string or brane r{sub 0} by the factor (1-V{sup 2}){sup -1}. We show that bulk ''photon'' emitted in the region between r{sub 0} and r{sub e} can meet the test brane again at a point outside r{sub e}. From the point of view of observers on the test brane, the events of emission and capture of the bulk photon are connected by a spacelike curve in the induced geometry. This shows an example in which extra dimensions can be used to extract information from the interior of a lower-dimensional black object. Instead of the bulk black string or brane, one can also consider a bulk geometry without a horizon. We show that nevertheless the induced geometry on the moving test brane can include a brane hole. In such a case the extra dimensions can be used to extract information from the complete region of the brane-hole interior. We discuss thermodynamic properties of brane holes and interesting questions which arise when such an extra-dimensional channel for the information mining exists.
Casimir force for a scalar field in a single brane world
Linares, R.; Morales-Tecotl, H. A.; Pedraza, O.
2010-02-10
Vacuum force is an interesting low energy test for brane worlds due to its dependence on field's modes and its role in submillimeter gravity experiments. In this contribution we obtain the scalar field vacuum force between two parallel plates lying in the brane of a Randall-Sundrum scenario extended by p compact dimensions (RSII-{sub p}). We obtain the force using the Green's function technique and we compare our results with the ones obtained by using the zeta function regularization method. As a result we obtain agreement in the expression for the force independently of the method used, thus we solve a previous discrepancy between the two approaches.
Micro-orbits in a many-brane model and deviations from Newton's 1/r^2 law
NASA Astrophysics Data System (ADS)
Donini, A.; Marimón, S. G.
2016-12-01
We consider a five-dimensional model with geometry M = M_4 × S_1, with compactification radius R. The Standard Model particles are localized on a brane located at y=0, with identical branes localized at different points in the extra dimension. Objects located on our brane can orbit around objects located on a brane at a distance d=y/R, with an orbit and a period significantly different from the standard Newtonian ones. We study the kinematical properties of the orbits, finding that it is possible to distinguish one motion from the other in a large region of the initial conditions parameter space. This is a warm-up to study if a SM-like mass distribution on one (or more) distant brane(s) may represent a possible dark matter candidate. After using the same technique to the study of orbits of objects lying on the same brane (d=0), we apply this method to the detection of generic deviations from the inverse-square Newton law. We propose a possible experimental setup to look for departures from Newtonian motion in the micro-world, finding that an order of magnitude improvement on present bounds can be attained at the 95% CL under reasonable assumptions.
D3-Brane Model Building and the Supertrace Rule.
Bena, Iosif; Graña, Mariana; Kuperstein, Stanislav; Ntokos, Praxitelis; Petrini, Michela
2016-04-08
A common way to obtain standard-model-like Lagrangians in string theory is to place D3-branes inside flux compactifications. The bosonic and fermionic masses and couplings of the resulting gauge theory are determined by the ten-dimensional metric and the fluxes, respectively, and the breaking of supersymmetry is soft. However, not any soft-supersymmetry-breaking Lagrangian can be obtained this way since the string theory equations of motion impose certain relations between the soft couplings. We show that for D3-branes in background fluxes, these relations imply that the sums of the squares of the boson and of the fermion masses are equal and that, furthermore, one- and two-loop quantum corrections do not spoil this equality. This makes the use of D3-branes for constructing computationally controllable models for physics beyond the standard model problematic.
Particle Physics of Brane Worlds and Extra Dimensions
NASA Astrophysics Data System (ADS)
Raychaudhuri, Sreerup; Sridhar, K.
2016-06-01
Preface; 1. Dimensional dreams; 2. The Standard Model and beyond; 3. The birth of compact dimensions; 4. String theory: a review; 5. Effective theories; 6. Large extra dimensions; 7. Visible towers of invisible gravitons; 8. Making black holes; 9. Universal extra dimensions; 10. Warped compactifications; 11. Graviton resonances; 12. Stability of warped Worlds; 13. Exploring the bulk; 14. Epilogue; Appendix A. General relativity in a nutshell; Appendix B. Testing the inverse square law; Index.
Stability of Dark Energy Models on the Brane Universes
NASA Astrophysics Data System (ADS)
Saadat, Hassan
2013-08-01
In this paper the equation of state formalism for the dark energy models on the brane considered and stability of theory investigated. We consider four different cases of the Little Rip, Asymptotic de Sitter, Asymptotic breakdown, and Big Freeze singularity models and find that the only stable model is Asymptotic de Sitter case. In other cases we get negative value of squared sound speed.
Phenomenological Lagrangians, gauge models and branes
NASA Astrophysics Data System (ADS)
Zheltukhin, A. A.
2017-03-01
Phenomenological Lagrangians for physical systems with spontaneously broken symmetries are reformulated in terms of gauge field theory. Description of the Dirac p-branes in terms of the Yang-Mills- Cartan gauge multiplets interacting with gravity, is proved to be equivalent to their description as a closed dynamical system with the symmetry ISO(1, D - 1) spontaneously broken to ISO(1, p) × SO( D - p - 1).
Comments on SUSY Inflation Models on the Brane
NASA Astrophysics Data System (ADS)
Lee, Lu-Yun; Cheung, Kingman; Lin, Chia-Min
In this paper we consider a class of inflation models on the brane where the dominant part of the inflaton scalar potential does not depend on the inflaton field value during inflation. In particular, we consider supernatural inflation, its hilltop version, A-term inflation, and supersymmetric (SUSY) D- and F-term hybrid inflation on the brane. We show that the parameter space can be broadened, the inflation scale generally can be lowered, and still possible to have the spectral index ns = 0.96.
Black hole as a point radiator and recoil effect on the brane world.
Frolov, Valeri; Stojković, Dejan
2002-10-07
A small black hole attached to a brane in a higher-dimensional space emitting quanta into the bulk may leave the brane as a result of a recoil. We construct a field theory model in which such a black hole is described as a massive scalar particle with internal degrees of freedom. In this model, the probability of transition between the different internal levels is identical to the probability of thermal emission calculated for the Schwarzschild black hole. The discussed recoil effect implies that the thermal emission of the black holes, which might be created by interaction of high energy particles in colliders, could be terminated and the energy nonconservation can be observed in the brane experiments.
SU(2) WZW D-Branes and Quantized World-Volume U(1) Flux on S2
NASA Astrophysics Data System (ADS)
Kling, Alexander; Kreuzer, Maximilian; Zhou, Jian-Ge
We discuss possible D-brane configurations on SU(2) group manifolds in the sigma model approach. When we turn the boundary conditions of the space-time fields into the boundary gluing conditions of chiral currents, we find that for all D-branes except the spherical D2-branes, the gluing matrices Rab depend on the fields, so the chiral Kac-Moody symmetry is broken, but conformal symmetry is maintained. Matching the spherical D2-branes derived from the sigma model with those from the boundary state approach we obtain a U(1) field strength that is consistent with flux quantization.
Decay of massive Dirac hair on a brane-world black hole
Gibbons, Gary W.; Rogatko, Marek; Szyplowska, Agnieszka
2008-03-15
We investigate the intermediate and late-time behavior of the massive Dirac spinor field in the background of static spherically symmetric brane-world black hole solutions. The intermediate asymptotic behavior of the massive spinor field exhibits a dependence on the field's parameter mass as well as the multiple number of the wave mode. On the other hand, the late-time behavior power-law decay has a rate which is independent of those factors.
Limits on brane-world and particle dark radiation from big bang nucleosynthesis and the CMB
NASA Astrophysics Data System (ADS)
Sasankan, N.; Gangopadhyay, Mayukh R.; Mathews, G. J.; Kusakabe, M.
The term dark radiation is used both to describe a noninteracting neutrino species and as a correction to the Friedmann Equation in the simplest five-dimensional (5D) RS-II brane-world cosmology. In this paper, we consider the constraints on both the meanings of dark radiation-based upon the newest results for light-element nuclear reaction rates, observed light-element abundances and the power spectrum of the Cosmic Microwave Background (CMB). Adding dark radiation during big bang nucleosynthesis (BBN) alters the Friedmann expansion rate causing the nuclear reactions to freeze out at a different temperature. This changes the final light element abundances at the end of BBN. Its influence on the CMB is to change the effective expansion rate at the surface of the last scattering. We find that the BBN constraint reduces the allowed range for both types of dark radiation at 10Mev to between ‑ 12.1% and + 6.2% of the total background energy density at 10Mev. Combining this result with fits to the CMB power spectrum, produces different results for particle versus brane-world dark radiation. In the brane-world, the range decreases from + 6.2% to ‑ 6.0%. Thus, we find that the ratio of dark radiation to the background total relativistic mass energy density ρDR/ρ is consistent with zero although there remains a very slight preference for a positive (rather than negative) contribution.
NASA Astrophysics Data System (ADS)
Ebert, Dietmar; Plefka, Jan; Rodigast, Andreas
2009-02-01
We study the question of a modification of the running gauge coupling of Yang-Mills theories due to quantum gravitational effects in a compact large extra dimensional brane world scenario with a low energy quantum gravity scale. The ADD scenario is applied for a D = d+δ dimensional space-time in which gravitons freely propagate, whereas the non-abelian gauge fields are confined to a d-dimensional brane. The extra dimensions are taken to be toroidal and the transverse fluctuation modes (branons) of the brane are taken into account. On this basis we have calculated the one-loop corrections due to virtual Kaluza-Klein graviton and branon modes for the gluon two- and three-point functions in an effective field theory treatment. Applying momentum cut-off regularization we find that for a d = 4 brane the leading gravitational divergencies cancel irrespective of the number of extra dimensions δ, generalizing previous results in the absence of extra-dimensions. Hence, again the Yang-Mills β-function receives no gravitational corrections at one-loop. This is no longer true in a `universal' extra dimensional scenario with a d > 4 dimensional brane. Moreover, the subleading power-law gravitational divergencies induce higher-dimensional counterterms, which we establish in our scheme. Interestingly, for d = 4 these gravitationally induced counterterms are of the form recently considered in non-abelian Lee-Wick extensions of the standard model—now with a possible mass scale in the TeV range due to the presence of large extra dimensions.
Minimal left-right symmetric intersecting D-brane model
NASA Astrophysics Data System (ADS)
Anchordoqui, Luis A.; Antoniadis, Ignatios; Goldberg, Haim; Huang, Xing; Lüst, Dieter; Taylor, Tomasz R.
2017-01-01
We investigate left-right symmetric extensions of the standard model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. The left-handed and right-handed fermions transform as doublets under S p (1 )L and S p (1 )R, and so their masses must be generated by the introduction of Higgs fields in a bifundamental (2 ,2 ) representation under the two S p (1 ) gauge groups. For such D-brane configurations the left-right symmetry must be broken by Higgs fields in the doublet representation of S p (1 )R and therefore Majorana mass terms are suppressed by some higher physics scale. The left-handed and right-handed neutrinos pair up to form Dirac fermions which control the decay widths of the right-handed W' boson to yield comparable branching fractions into dilepton and dijet channels. Using the most recent searches at LHC13 Run II with 2016 data we constrain the (gR,mW') parameter space. Our analysis indicates that independent of the coupling strength gR, gauge bosons with masses mW'≳3.5 TeV are not ruled out. As the LHC is just beginning to probe the TeV scale, significant room for W' discovery remains.
A toy model for gauge-mediation in intersecting brane models
Kumar, Jason
2009-03-15
We discuss the phenomenology of a toy intersecting brane model where supersymmetry is dynamically broken in an open-string hidden sector and gauge-mediated to the visible sector. Scalar masses {approx}TeV are easily realizable, and R-symmetry is broken. These ideas are easily generalizable to other intersecting brane models.
Model to localize gauge and tensor fields on thick branes
NASA Astrophysics Data System (ADS)
Chumbes, A. E. R.; Hoff da Silva, J. M.; Hott, M. B.
2012-04-01
It is shown that the introduction of a suitable function in the higher-dimensional gauge field action may be used in order to achieve gauge bosons localization on a thick brane. The model is constructed upon analogies to the effective coupling of neutral scalar field to electromagnetic field and to the Friedberg-Lee model for hadrons. After that we move forward studying the localization of the Kalb-Ramond field via this procedure.
Gergely, Laszlo Arpad
2009-04-15
The high value of brane tension has a crucial role in recovering Einstein's general relativity at low energies. In the framework of a recently developed formalism with variable brane tension, one can pose the question of whether it was always that high. In analogy with fluid membranes, in this paper we allow for temperature-dependent brane tension, according to the corresponding law established by Eoetvoes. For cosmological branes this assumption leads to several immediate consequences: (a) The brane universe was created at a finite temperature T{sub c} and scale factor a{sub min}. (b) Both the brane tension and the four-dimensional gravitational coupling ''constant'' increase with the scale factor from zero to asymptotic values. (c) The four-dimensional cosmological constant evolves with a, starting with a huge negative value, passing through zero, finally reaching a small positive value. Such a scale-factor-dependent cosmological constant is able to generate a surplus of attraction at small a (as dark matter does) and a late-time repulsion at large a (dark energy). In the particular toy model discussed here, the evolution of the brane tension is compensated by energy interchange between the brane and the fifth dimension, such that the continuity equation holds for the cosmological fluid. The resulting cosmology closely mimics the standard model at late times, a decelerated phase being followed by an accelerated expansion. The energy absorption of the brane drives the five-dimensional space-time towards maximal symmetry, becoming anti-de Sitter.
On higher rank coisotropic A-branes
NASA Astrophysics Data System (ADS)
Herbst, Manfred
2012-02-01
This article is devoted to a world sheet analysis of A-type D-branes in N=(2,2) supersymmetric non-linear sigma models. In addition to the familiar Lagrangian submanifolds with flat connection we reproduce the rank one A-branes of Kapustin and Orlov, which are supported on coisotropic submanifolds. The main focus is however on gauge fields of higher rank and on tachyon profiles on brane-antibrane pairs. This will lead to the notion of a complex of coisotropic A-branes. A particular role is played by the noncommutative geometry on the brane world volume. It ensures that brane-antibrane pairs localize again on coisotropic submanifolds.
D-branes in Massive IIA and Solitons in Chern-Simons Theory
Brodie, John H
2001-07-25
We investigate D2-branes and D4-branes parallel to D8-branes. The low energy world volume theory on the branes is non-supersymmetric Chern-Simons theory. We identify the fundamental strings as the anyons of the 2+1 Chern-Simons theory and the D0-branes as solitons. The Chern-Simons theory with a boundary is modeled using NS 5-branes with ending D6-branes. The brane set-up provides for a graphical description of anomaly inflow. We also model the 4+1 Chern-Simons theory using branes and conjecture that D4-branes with a boundary describes a supersymmetric version of Kaplan's theory of chiral fermions.
Possibility of catastrophic black hole growth in the warped brane-world scenario at the LHC
Casadio, Roberto; Fabi, Sergio; Harms, Benjamin
2009-10-15
In this paper, we present the results of our analysis of the growth and decay of black holes possibly produced at the Large Hadron Collider, based on our previous study of black holes in the context of the warped brane-world scenario. The black hole mass accretion and decay is obtained as a function of time, and the maximum black hole mass are obtained as a function of a critical mass parameter. The latter occurs in our expression for the luminosity and is related to the size of extra-dimensional corrections to Newton's law. Based on this analysis, we argue against the possibility of catastrophic black hole growth at the LHC.
Towards realistic standard model from D-brane configurations
Leontaris, G. K.; Tracas, N. D.; Korakianitis, O.; Vlachos, N. D.
2007-12-01
Effective low energy models arising in the context of D-brane configurations with standard model (SM) gauge symmetry extended by several gauged Abelian factors are discussed. The models are classified according to their hypercharge embeddings consistent with the SM spectrum hypercharge assignment. Particular cases are analyzed according to their perspectives and viability as low energy effective field theory candidates. The resulting string scale is determined by means of a two-loop renormalization group calculation. Their implications in Yukawa couplings, neutrinos and flavor changing processes are also presented.
Generalized Born-Infeld-like models for kinks and branes
NASA Astrophysics Data System (ADS)
Bazeia, D.; Marques, M. A.; Menezes, R.
2017-04-01
In this work we deal with a non-canonical scalar field in the two-dimensional spacetime. We search for a generalized model that is twin of the standard model, supporting the same defect structure with the same energy density. We also study the stability of the defect solution under small fluctuations, which is governed by a Sturm-Liouville equation, and show how to make it stable. The model is then modified and used in the five-dimensional spacetime to construct a thick brane that engenders the first-order framework and preserves the twinlike behavior, under tensorial fluctuations of the metric in its gravitational sector.
Two-branes with variable tension model and the effective Newtonian constant
Hoff da Silva, J. M.
2011-03-15
It is shown that, in the two brane time variation model framework, if the hidden brane tension varies according to the phenomenological Eoetvoes law, the visible brane tension behavior is such that its time derivative is negative in the past and positive after a specific time of cosmological evolution. This behavior is interpreted in terms of a useful mechanical system analog and its relation with the variation of the Newtonian (effective) gravitational ''constant'' is explored.
How a Randall-Sundrum Brane-World Effective Potential Influences Inflation Physics
Beckwith, A. W.
2007-01-30
In string theory, even when there are ten to the thousand power vacuum states, does inflation produce overwhelmingly one preferred type of vacuum state? We respond affirmatively to questions whether existence of graviton production is confirmable using present detector methodology. We use an explicit Randall-Sundrum brane-world effective potential as congruent with an inflationary quadratic potential start. This occurs after Bogomolnyi inequality eliminates need for ad hoc assumption of axion wall mass high temperature related disappearing. Graviton production has explicit links with a five-dimensional brane-world negative cosmological constant and a four-dimensional positive valued cosmological constant, whose temperature dependence permits an early universe graviton production activity burst. We show how di quarks, wave functions, and various forms tie into the Wheeler-De Witt equation. This permits investigating a discretized quantum bounce and a possible link to the initial phases of present universe's evolution with a prior universe's collapse to the bounce point--the initial starting point to inflationary expansion. This opens a possibility of realistically investigating gravitons as part of a space propulsion system and dealing with problems from a beam of gravity waves, which would create a g-force because the geodestic structure is near field. It can be applied to existing and to new space propulsion concepts.
Lepton flavour violation in RS models with a brane- or nearly brane-localized Higgs
NASA Astrophysics Data System (ADS)
Beneke, M.; Moch, P.; Rohrwild, J.
2016-05-01
We perform a comprehensive study of charged lepton flavour violation in Randall-Sundrum (RS) models in a fully 5D quantum-field-theoretical framework. We consider the RS model with minimal field content and a "custodially protected" extension as well as three implementations of the IR-brane localized Higgs field, including the non-decoupling effect of the KK excitations of a narrow bulk Higgs. Our calculation provides the first complete result for the flavour-violating electromagnetic dipole operator in Randall-Sundrum models. It contains three contributions with different dependence on the magnitude of the anarchic 5D Yukawa matrix, which can all be important in certain parameter regions. We study the typical range for the branching fractions of μ → eγ, μ → 3 e, μN → eN as well as τ → μγ, τ → 3 μ and the electron electric dipole moment by a numerical scan in both the minimal and the custodial RS model. The combination of μ → eγ and μN → eN currently provides the most stringent constraint on the parameter space of the model. A typical lower limit on the KK scale T is around 2 TeV in the minimal model (up to 4 TeV in the bulk Higgs case with large Yukawa couplings), and around 4 TeV in the custodially protected model, which corresponds to a mass of about 10 TeV for the first KK excitations, far beyond the lower limit from the non-observation of direct production at the LHC.
Brane world corrections to the scalar vacuum force in the Randall-Sundrum II-p scenario
Linares, Roman; Morales-Tecotl, Hugo A.; Pedraza, Omar
2008-09-15
Vacuum force is an interesting low energy test for brane worlds due to its dependence on field's modes and its role in submillimeter gravity experiments. In this work, we generalize a previous model example: the scalar field vacuum force between two parallel plates lying in the brane of a Randall-Sundrum scenario extended by p compact dimensions (RSII-p). Upon use of Green's function technique, for the massless scalar field, the 4D force is obtained from a zero mode while leading order corrections due to the noncompact dimension turn out attractive and depend on the separation between plates as l{sup -(6+p)}. For the massive scalar field, a quasilocalized mode yields the 4D force with attractive corrections behaving like l{sup -(10+p)}. Corrections are negligible with respect to 4D force for anti-de Sitter (AdS{sub (5+p)}) radius much less than {approx}10{sup -6} m. In the massless case we also determined, numerically, the corrections due to compact dimensions. To avoid conflict with experimental data we get R{<=}0.4 {mu}m, 0.3 {mu}m for the cases p=1, 2, respectively. Although the p=0 case is not physically viable due to the different behavior in regard to localization for the massless scalar and electromagnetic fields it yields a useful comparison between the dimensional regularization and Green's function techniques as we describe in the discussion.
D-brane probes in the matrix model
NASA Astrophysics Data System (ADS)
Ferrari, Frank
2014-03-01
Recently, a new approach to large N gauge theories, based on a generalization of the concept of D-brane probes to any gauge field theory, was proposed. In the present note, we compute the probe action in the one matrix model with a quartic potential. This allows to illustrate several non-trivial aspects of the construction in an exactly solvable set-up. One of our main goal is to test the bare bubble approximation. The approximate free energy found in this approximation, which can be derived from a back-of-an-envelope calculation, matches the exact result for all values of the 't Hooft coupling with a surprising accuracy. Another goal is to illustrate the remarkable properties of the equivariant partial gauge-fixing procedure, which is at the heart of the formalism. For this we use a general ξ-gauge to compute the brane action. The action depends on ξ in a very non-trivial way, yet we show explicitly that its critical value does not and coincides with twice the free energy, as required by general consistency. This is made possible by a phenomenon of ghost condensation and the spontaneous breaking of the equivariant BRST symmetry.
Probing topologically charged black holes on brane worlds in f({R}) bulk
NASA Astrophysics Data System (ADS)
Kuerten, André M.; da Rocha, Roldão
2016-07-01
The perihelion precession, the deflection of light and the radar echo delay are classical tests of General Relativity here used to probe brane-world topologically charged black holes in a f(R) bulk. Moreover, such tests are used to constrain the parameter that arises from the Shiromizu-Maeda-Sasaki procedure applied to a f(R) bulk. Observational data constrain the possible values of the tidal charge parameter and the effective cosmological constant in this context. We show that the observational/experimental data for both perihelion precession and radar echo delay make the black hole parameters to be more strict than the ones for the DMPR black hole. Moreover, the deflection of light constrains the tidal charge parameter similarly as the DMPR black holes, due to a peculiarity in the equation of motion.
Brane-world and loop cosmology from a gravity-matter coupling perspective
NASA Astrophysics Data System (ADS)
Olmo, Gonzalo J.; Rubiera-Garcia, D.
2015-01-01
We show that the effective brane-world and the loop quantum cosmology background expansion histories can be reproduced from a modified gravity perspective in terms of an f (R) gravity action plus a g (R) term non-minimally coupled with the matter Lagrangian. The reconstruction algorithm that we provide depends on a free function of the matter density that must be specified in each case and allows to obtain analytical solutions always. In the simplest cases, the function f (R) is quadratic in the Ricci scalar, R, whereas g (R) is linear. Our approach is compared with recent results in the literature. We show that working in the Palatini formalism there is no need to impose any constraint that keeps the equations second-order, which is a key requirement for the successful implementation of the reconstruction algorithm.
Coannihilation effects in supergravity and D-brane models
NASA Astrophysics Data System (ADS)
Arnowitt, R.; Dutta, B.; Santoso, Y.
2001-07-01
Coannihilation effects in neutralino relic density calculations are examined for a full range of supersymmetry parameters including large /tanβ and large A0 for stau, chargino, stop and sbottom coannihilation with the neutralino. Supergravity models possessing grand unification with universal soft breaking (mSUGRA), models with nonuniversal soft breaking in the Higgs and third generation sparticles, and D-brane models with nonuniversal gaugino masses were analysed. Unlike low /tanβ where m0 is generally small, stau coannihilation corridors with high /tanβ are highly sensitive to A0, and large A0 allows m0 to become as large as 1 TeV. Nonuniversal soft breaking models at high /tanβ also allow the opening of a new annihilation channel through the /s-channel /Z pole with acceptable relic density, allowing a new wide band in the m0-m1/2 plane with m1/2>~400 GeV and m0 rising to 1 TeV. The D-brane models considered possess stau coannihilations regions similar to mSUGRA, as well as small regions of chargino coannihilation. Neutralino-proton cross sections are analysed for all models and it is found that future detectors for halo wimps will be able to scan essentially the full parameter space with m1/2<1 TeV except for a region with /μ<0 where accidental cancellations occur when /5<~tanβ<~30. Analytic explanations of much of the above phenomena are given. The above analyses include current LEP bounds on the Higgs mass, large /tanβ NLO correction to the /b-->sγ decay, and large /tanβ SUSY corrections to the /b and /τ masses.
Higher-dimensional bulk wormholes and their manifestations in brane worlds
Rodrigo, Enrico
2006-11-15
There is nothing to prevent a higher-dimensional anti-de Sitter bulk spacetime from containing various other branes in addition to hosting our universe, presumed to be a positive-tension 3-brane. In particular, it could contain closed, microscopic branes that form the boundary surfaces of void bubbles and thus violate the null energy condition in the bulk. The possible existence of such micro branes can be investigated by considering the properties of the ground state of a pseudo-Wheeler-DeWitt equation describing brane quantum dynamics in minisuperspace. If they exist, a concentration of these micro branes could act as a fluid of exotic matter able to support macroscopic wormholes connecting otherwise-distant regions of the bulk. Were the brane constituting our universe to expand into a region of the bulk containing such higher-dimensional macroscopic wormholes, they would likely manifest themselves in our brane as wormholes of normal dimensionality, whose spontaneous appearance and general dynamics would seem inexplicably peculiar. This encounter could also result in the formation of baby universes of a particular type.
Bulk Casimir densities and vacuum interaction forces in higher dimensional brane models
Saharian, Aram A.
2006-03-15
Vacuum expectation value of the energy-momentum tensor and the vacuum interaction forces are evaluated for a massive scalar field with general curvature coupling parameter satisfying Robin boundary conditions on two codimension one parallel branes embedded in (D+1)-dimensional background spacetime AdS{sub D{sub 1}}{sub +1}x{sigma} with a warped internal space {sigma}. The vacuum energy-momentum tensor is presented as a sum of boundary-free, single brane-induced, and interference parts. The latter is finite everywhere including the points on the branes and is exponentially small for large interbrane distances. Unlike to the purely anti-de Sitter (AdS) bulk, the part induced by a single brane, in addition to the distance from the brane, depends also on the position of the brane in the bulk. The asymptotic behavior of this part is investigated for the points near the brane and for the position of the brane close to the AdS horizon and AdS boundary. The contribution of Kaluza-Klein modes along {sigma} is discussed in various limiting cases. The vacuum forces acting on the branes are presented as a sum of the self-action and interaction terms. The first one contains well-known surface divergences and needs a further renormalization. The interaction forces between the branes are finite for all nonzero interbrane distances and are investigated as functions of the brane positions and the length scale of the internal space. We show that there is a region in the space of parameters in which these forces are repulsive for small distances and attractive for large distances. As an example, the case {sigma}=S{sup D{sub 2}} is considered. An application to the higher dimensional generalization of the Randall-Sundrum brane model with arbitrary mass terms on the branes is discussed. Taking the limit with infinite curvature radius for the AdS bulk, from the general formulas we derive the results for two parallel Robin plates on background of R{sup (D{sub 1},1)}x{sigma} spacetime.
Revolving D-branes and spontaneous gauge-symmetry breaking
NASA Astrophysics Data System (ADS)
Iso, Satoshi; Kitazawa, Noriaki
2015-12-01
We propose a new mechanism of spontaneous gauge-symmetry breaking in the world-volume theory of revolving D-branes around a fixed point of orbifolds. In this paper, we consider a simple model of the T^6/Z_3 orbifold on which we put D3-branes, D7-branes, and their anti-branes. The configuration breaks supersymmetry, but the Ramond-Ramond tadpole cancellation conditions are satisfied. A set of three D3-branes at an orbifold fixed point can separate from the point, but, when they move perpendicular to the anti-D7-branes put on the fixed point, they are pulled back due to an attractive interaction between the D3- and anti-D7-branes. In order to stabilize the separation of the D3-branes at nonzero distance, we consider revolution of the D3-branes around the fixed point. Then the gauge symmetry on the D3-branes is spontaneously broken, and the rank of the gauge group is reduced. The distance can be set at will by appropriately choosing the angular momentum of the revolving D3-branes, which should be determined by the initial condition of the cosmological evolution of the D-brane configurations. The distance corresponds to the vacuum expectation values of brane moduli fields in the world-volume theory and, if it is written as M/M_s^2 in terms of the string scale M_s, the scale of gauge-symmetry breaking is given by M. Angular momentum conservation of revolving D3-branes assures the stability of the scale M against M_s.
D7-brane dynamics and thermalization in the Kuperstein-Sonnenschein model
NASA Astrophysics Data System (ADS)
Kaviani, Dariush
2017-06-01
We study the temperature of rotating probe D7-branes, dual to the temperature of flavored quarks, in the Kuperstein-Sonnenschein holographic model including the effects of spontaneous breakdown of the conformal and chiral flavor symmetry. The model embeds probe D7-branes into the Klebanov-Witten gravity dual of conformal gauge theory, with the embedding parameter, given by the minimal radial extension of the probe, setting the IR scale of conformal and chiral flavor symmetry breakdown. We show that when the minimal extension is positive definite and additional spin is turned on, the induced world volume metrics on the probe admit thermal horizons and Hawking temperatures despite the absence of black holes in the bulk. We find the scale and behavior of the temperature in flavored quarks are controlled dramatically by the IR scale of symmetry breaking, and by the strength and sort of external fields. We also derive the energy-stress tensor of the rotating probe and study its backreaction and energy dissipation. We show that at the IR scale the backreaction is nonnegligible and find the energy can flow from the probe to the bulk, dual to the energy dissipation from the flavor sector into the gauge theory.
From the currency rate quotations onto strings and brane world scenarios
NASA Astrophysics Data System (ADS)
Horváth, D.; Pincak, R.
2012-11-01
In the paper, we study the projections of the real exchange rate dynamics onto the string-like topology. Our approach is inspired by the contemporary movements in the string theory. The string map of data is defined here by the boundary conditions, characteristic length, real valued and the method of redistribution of information. As a practical matter, this map represents the detrending and data standardization procedure. We introduced maps onto 1-end-point and 2-end-point open strings that satisfy the Dirichlet and Neumann boundary conditions. The questions of the choice of extra-dimensions, symmetries, duality and ways to the partial compactification are discussed. Subsequently, we pass to higher dimensional and more complex objects. The 2D-Brane was suggested which incorporated bid-ask spreads. Polarization by the spread was considered which admitted analyzing arbitrage opportunities on the market where transaction costs are taken into account. The model of the rotating string which naturally yields calculation of angular momentum is suitable for tracking of several currency pairs. The systematic way which allows one suggest more structured maps suitable for a simultaneous study of several currency pairs was analyzed by means of the Gâteaux generalized differential calculus. The effect of the string and brane maps on test data was studied by comparing their mean statistical characteristics. The study revealed notable differences between topologies. We review the dependence on the characteristic string length, mean fluctuations and properties of the intra-string statistics. The study explores the coupling of the string amplitude and volatility. The possible utilizations of the string theory approach in financial markets are slight.
Gibbons-Hawking boundary terms and junction conditions for higher-order brane gravity models
Balcerzak, Adam; Dabrowski, Mariusz P. E-mail: mpdabfz@wmf.univ.szczecin.pl
2009-01-15
We derive the most general junction conditions for the fourth-order brane gravity constructed of arbitrary functions of curvature invariants. We reduce these fourth-order theories to second order theories at the expense of introducing new scalar and tensor fields - the scalaron and the tensoron. In order to obtain junction conditions we apply the method of generalized Gibbons-Hawking boundary terms which are appended to the appropriate actions. After assuming the continuity of the scalaron and the tensoron on the brane, we recover junction conditions for such general brane universe models previously obtained by different methods. The derived junction conditions can serve studying the cosmological implications of the higher-order brane gravity models.
Cosmic constraint to DGP brane model: Geometrical and dynamical perspectives
Xu Lixin; Wang Yuting
2010-08-15
In this paper, the Dvali-Gabadadze-Porrati (DGP) brane model is confronted by current cosmic observational data sets from geometrical and dynamical perspectives. On the geometrical side, the recently released Union2 557 of type Ia supernovae (SN Ia), the baryon acoustic oscillation from the Sloan Digital Sky Survey and the Two Degree Galaxy Redshift Survey (transverse and radial to line-of-sight data points), the cosmic microwave background measurement given by the seven-year Wilkinson Microwave Anisotropy Probe observations [shift parameters R, l{sub a}(z{sub *}) and redshift at the last scatter surface z{sub *}], ages of high redshifts galaxies, i.e., the lookback time and the high redshift gamma ray bursts are used. On the dynamical side, data points about the growth function of matter linear perturbations are used. Using the same data set combination, we also constrain the flat {Lambda}CDM model as a comparison. The results show that current geometrical and dynamical observational data sets much favor the flat {Lambda}CDM model and the departure from it is above 4{sigma}(6{sigma}) for the spatially flat DGP model with (without) SN systematic errors. The consistence of growth function data points is checked in terms of a relative departure of redshift-distance relation.
Chacko, Z.; Graesser, M.L.; Grojean, C.; Pilo, L.
2003-12-11
At present no theory of a massive graviton is known that is consistent with experiments at both long and short distances. The problem is that consistency with long distance experiments requires the graviton mass to be very small. Such a small graviton mass however implies an ultraviolet cutoff for the theory at length scales far larger than the millimeter scale at which gravity has already been measured. In this paper we attempt to construct a model which avoids this problem. We consider a brane world setup in warped AdS spacetime and we investigate the consequences of writing a mass term for the graviton on a the infrared brane where the local cutoff is of order a large (galactic) distance scale. The advantage of this setup is that the low cutoff for physics on the infrared brane does not significantly affect the predictivity of the theory for observers localized on the ultraviolet brane. For such observers the predictions of this theory agree with general relativity at distances smaller than the infrared scale but go over to those of a theory of massive gravity at longer distances. A careful analysis of the graviton two-point function, however, reveals the presence of a ghost in the low energy spectrum. A mode decomposition of the higher dimensional theory reveals that the ghost corresponds to the radion field. We also investigate the theory with a brane localized mass for the graviton on the ultraviolet brane, and show that the physics of this case is similar to that of a conventional four dimensional theory with a massive graviton, but with one important difference: when the infrared brane decouples and the would-be massive graviton gets heavier than the regular Kaluza-Klein modes, it becomes unstable and it has a finite width to decay off the brane into the continuum of Kaluza-Klein states.
World-sheet duality for D-branes with travelling waves
NASA Astrophysics Data System (ADS)
Bachas, Constantin P.; Gaberdiel, Matthias R.
2004-03-01
We study D-branes with plane waves of arbitrary profiles as examples of time-dependent backgrounds in string theory. We show how to reproduce the quantum mechanical (one-to-one) open-string S-matrix starting from the closed-string boundary state for the D-branes, thereby establishing the channel duality of this calculation. The required Wick rotation to a lorentzian worldsheet singles out as `prefered' time coordinate the open-string light-cone time.
No Swiss-cheese universe on the brane
NASA Astrophysics Data System (ADS)
Gergely, László Á.
2005-04-01
We study the possibility of brane-world generalization of the Einstein-Straus Swiss-cheese cosmological model. We find that the modifications induced by the brane-world scenario are excessively restrictive. At a first glance only the motion of the boundary is modified and the fluid in the exterior region is allowed to have pressure. The general relativistic Einstein-Straus model emerges in the low density limit. However by imposing that the central mass in the Schwarzschild voids is constant, a combination of the junction conditions and modified cosmological evolution leads to the conclusion that the brane is flat. Thus no generic Swiss-cheese universe can exist on the brane. The conclusion is not altered by the introduction of a cosmological constant in the FLRW regions. This shows that although allowed in the low density limit, the Einstein-Straus universe cannot emerge from cosmological evolution in the brane-world scenario.
Regularization of the linearized gravitational self-force for branes.
Battye, Richard A; Carter, Brandon; Mennim, Andrew
2004-05-21
We discuss the linearized, gravitational self-interaction of a brane of arbitrary codimension in a spacetime of arbitrary dimension. We find that in the codimension two case the gravitational self-force is exactly zero for a Nambu-Goto equation of state, generalizing a previous result for a string in four dimensions. For the case of a 3-brane, this picks out the case of a six-dimensional brane-world model as having special properties that we discuss. In particular, we see that bare tension on the brane has no effect locally, suppressing the cosmological constant problem.
Dynamics of scalar-tensor cosmology from a Randall-Sundrum two-brane model
Jaerv, Laur; Kuusk, Piret; Saal, Margus
2007-01-15
We consider a Randall-Sundrum two-brane cosmological model in the low energy gradient expansion approximation by Kanno and Soda. It is a scalar-tensor theory with a specific coupling function and a specific potential. Upon introducing the Friedmann-Lemaitre-Robertson-WalkerFLRW metric and perfect fluid matter on both branes in the Jordan frame, the effective dynamical equation for the A-brane (our Universe) scale factor decouples from the scalar field and B-brane matter leaving only a nonvanishing integration constant (the dark radiation term). We find exact solutions for the A-brane scale factor for four types of matter: cosmological constant, radiation, dust, and cosmological constant plus radiation. We perform a complementary analysis of the dynamics of the scalar field (radion) using phase space methods and examine convergence towards the limit of general relativity. In particular, we find that radion stabilizes at a certain finite value for suitable negative matter densities on the B-brane. Observational constraints from solar system experiments (PPN) and primordial nucleosynthesis (BBN) are also briefly discussed.
Super-Lie n-algebra extensions, higher WZW models and super-p-branes with tensor multiplet fields
NASA Astrophysics Data System (ADS)
Fiorenza, Domenico; Sati, Hisham; Schreiber, Urs
2015-12-01
We formalize higher-dimensional and higher gauge WZW-type sigma-model local prequantum field theory, and discuss its rationalized/perturbative description in (super-)Lie n-algebra homotopy theory (the true home of the "FDA"-language used in the supergravity literature). We show generally how the intersection laws for such higher WZW-type σ-model branes (open brane ending on background brane) are encoded precisely in (super-)L∞-extension theory and how the resulting "extended (super-)space-times" formalize spacetimes containing σ-model brane condensates. As an application we prove in Lie n-algebra homotopy theory that the complete super-p-brane spectrum of superstring/M-theory is realized this way, including the pure σ-model branes (the "old brane scan") but also the branes with tensor multiplet worldvolume fields, notably the D-branes and the M5-brane. For instance the degree-0 piece of the higher symmetry algebra of 11-dimensional (11D) spacetime with an M2-brane condensate turns out to be the "M-theory super-Lie algebra". We also observe that in this formulation there is a simple formal proof of the fact that type IIA spacetime with a D0-brane condensate is the 11D sugra/M-theory spacetime, and of (prequantum) S-duality for type IIB string theory. Finally we give the non-perturbative description of all this by higher WZW-type σ-models on higher super-orbispaces with higher WZW terms in stacky differential cohomology.
Hashimoto, Koji; Ho, Pei-Ming; Wang, John E
2003-04-11
We derive effective actions for "spacelike branes" (S-branes) and find a solution describing the formation of fundamental strings in the rolling tachyon background. The S-brane action is a Dirac-Born-Infeld action for Euclidean world volumes defined in the context of time-dependent tachyon condensation of non-BPS (Bogomol'nyi-Prasad-Sommerfield) branes. It includes gauge fields and, in particular, a scalar field associated with translation along the time direction. We show that the BIon spike solutions constructed in this system correspond to the production of a confined electric flux tube (a fundamental string) at late time of the rolling tachyon.
Brane models with a Ricci-coupled scalar field
Bogdanos, C.; Dimitriadis, A.; Tamvakis, K.
2006-08-15
We consider the problem of a scalar field, nonminimally coupled to gravity through a -{xi}{phi}{sup 2}R term, in the presence of a brane. Exact solutions, for a wide range of values of the coupling parameter {xi}, for both {phi}-dependent and {phi}-independent brane tension, are derived and their behavior is studied. In the case of a Randall-Sundrum geometry, a class of the resulting scalar field solutions exhibits a folded-kink profile. We go beyond the Randall-Sundrum geometry studying general warp factor solutions in the presence of a kink scalar. Analytic and numerical results are provided for the case of a brane or for smooth geometries, where the scalar field acts as a thick brane. It is shown that finite geometries with warp factors that asymptotically decrease exponentially are realizable for a wide range of parameter values. We also study graviton localization in our setup and find that the localizing potential for gravitons with the characteristic volcanolike profile develops a local maximum located at the origin for high values of the coupling {xi}.
Intersecting S-branes and an anisotropic models of dark energy
Orlov, Dmitry G.
2008-10-10
We consider an anisotropic S-brane (space-like hyperbrane) solutions in application to cosmological model. The gravity-dilaton-antisymmetric form field initial model is compactified of extra space and we get four dimensional space (space of three dimensional S-brane plus time coordinate). Dynamic of obtained model depends from the dynamic of compactified space. In all cases of extra space in such cosmological models the primordial inflationary phase was obtained. Focus attention to the question of an anisotropy of space and an improving a number of e-folding.
Elliptic genera of 2d (0,2) gauge theories from brane brick models
NASA Astrophysics Data System (ADS)
Franco, Sebastian; Ghim, Dongwook; Lee, Sangmin; Seong, Rak-Kyeong
2017-06-01
Multiresonance modes in sine-Gordon brane models
NASA Astrophysics Data System (ADS)
Cruz, W. T.; Maluf, R. V.; Dantas, D. M.; Almeida, C. A. S.
2016-12-01
In this work, we study the localization of the vector gauge field in two five-dimensional braneworlds generated by scalar fields coupled to gravity. The sine-Gordon like potentials are employed to produce different thick brane setups. A zero mode localized is obtained, and we show the existence of reverberations with the wave solutions indicating a quasi-localized massive mode. More interesting results are achieved when we propose a double sine-Gordon potential to the scalar field. The resulting thick brane shows a more detailed topology with the presence of an internal structure composed by two kinks. The massive spectrum of the gauge field is revalued on this scenario revealing the existence of various resonant modes. Furthermore, we compute the corrections to Coulomb law coming from these massive KK vector modes in these thick scenarios, which is concluded that the dilaton parameter regulates these corrections.
Multiresonance modes in sine–Gordon brane models
Cruz, W.T.; Maluf, R.V.; Dantas, D.M.; Almeida, C.A.S.
2016-12-15
In this work, we study the localization of the vector gauge field in two five-dimensional braneworlds generated by scalar fields coupled to gravity. The sine–Gordon like potentials are employed to produce different thick brane setups. A zero mode localized is obtained, and we show the existence of reverberations with the wave solutions indicating a quasi-localized massive mode. More interesting results are achieved when we propose a double sine–Gordon potential to the scalar field. The resulting thick brane shows a more detailed topology with the presence of an internal structure composed by two kinks. The massive spectrum of the gauge field is revalued on this scenario revealing the existence of various resonant modes. Furthermore, we compute the corrections to Coulomb law coming from these massive KK vector modes in these thick scenarios, which is concluded that the dilaton parameter regulates these corrections.
Regarding the radion in Randall-Sundrum models with brane curvature
NASA Astrophysics Data System (ADS)
Dillon, Barry M.; George, Damien P.; McDonald, Kristian L.
2016-09-01
In Randall-Sundrum models, one typically expects the radion to be the lightest new "gravity" state, as it is dual to a composite pseudo-Goldstone boson associated with conformal symmetry breaking in the IR. Here, we investigate the effects of localized brane curvature on the properties of the radion in Goldberger-Wise stabilized Randall-Sundrum models. We point out that both the radion mass and coupling to brane matter are sensitive to the brane curvature. Radion/Higgs kinetic mixing, via an IR-localized nonminimal coupling to the Higgs, is also investigated, in relation to the ghostlike radion that can occur for O (10 ) values of the IR curvature (as required to significantly suppress the first Kaluza-Klein graviton mass). We also discuss a class of IR-localized terms involving the radion. Basic comments regarding the dual four-dimensional theory are offered.
Multibrane DGP model: Our universe as a stack of (2+1)-dimensional branes
NASA Astrophysics Data System (ADS)
Dai, De-Chang; Stojkovic, Dejan; Wang, Bin; Zhang, Cheng-Yong
2014-09-01
We consider a scenario in which our (3+1)-dim universe is actually a dense stack of multiple parallel (2+1)-dim branes. For this purpose, we generalize the Dvali-Gabadadze-Porrati model to a multibrane case. We solve for the propagation of the scalar field and gravity in this setup. At short distances (high momenta) along the branes interactions follow the (2+1)-dim laws, while at large distances (low momenta) interactions follow the usual (3+1)-dim laws. This feature is inherited from the original Dvali-Gabadadze-Porrati model. In the direction perpendicular to the brane, we show that interactions become (3+1)-dim at low momenta which are unable to resolve the interbrane separation. Thus, this is one of the explicit constructs of the "vanishing dimensions" scenario where high energy physics appears to be lower dimensional rather than higher dimensional.
NASA Astrophysics Data System (ADS)
Bazeia, D.; Lima, Elisama E. M.; Losano, L.
2017-02-01
This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios.
Quantum self-consistency of AdS×Σ brane models
NASA Astrophysics Data System (ADS)
Flachi, Antonino; Pujolàs, Oriol
2003-07-01
Continuing our previous work, we consider a class of higher dimensional brane models with the topology of AdSD1+1×Σ, where Σ is a one-parameter compact manifold and two branes of codimension one are located at the orbifold fixed points. We consider a setup where such a solution arises from Einstein-Yang-Mills theory and evaluate the one-loop effective potential induced by gauge fields and by a generic bulk scalar field. We show that this type of brane model resolves the gauge hierarchy between the Planck and electroweak scales through redshift effects due to the warp factor a=e-πkr. The value of a is then fixed by minimizing the effective potential. We find that, as in the Randall-Sundrum case, the gauge field contribution to the effective potential stabilizes the hierarchy without fine-tuning as long as the Laplacian ΔΣ on Σ has a zero eigenvalue. Scalar fields can stabilize the hierarchy depending on the mass and the nonminimal coupling. We also address the quantum self-consistency of the solution, showing that the classical brane solution is not spoiled by quantum effects.
Extended Holography: Double-Trace Deformation and Brane-Induced Gravity Models
NASA Astrophysics Data System (ADS)
Barvinsky, A. O.
2017-03-01
We put forward a conjecture that for a special class of models - models of the double-trace deformation and brane-induced gravity types - the principle of holographic dualitiy can be extended beyond conformal invariance and anti-de Sitter (AdS) isometry. Such an extension is based on a special relation between functional determinants of the operators acting in the bulk and on the boundary.
Extended Holography: Double-Trace Deformation and Brane-Induced Gravity Models
NASA Astrophysics Data System (ADS)
Barvinsky, A. O.
2017-03-01
We put forward a conjecture that for a special class of models - models of the double-trace deformation and brane-induced gravity types - the principle of holographic dualitiy can be extended beyond conformal invariance and anti-de Sitter (AdS) isometry. Such an extension is based on a special relation between functional determinants of the operators acting in the bulk and on the boundary.
Higgs-gluon coupling in warped extra dimensional models with brane kinetic terms
NASA Astrophysics Data System (ADS)
Dey, Ujjal Kumar; Ray, Tirtha Sankar
2016-01-01
Warped models with the Higgs confined to the weak brane and the gauge and matter fields accessing the AdS5 bulk provide a viable setting to address the gauge hierarchy problem. Brane kinetic terms for the bulk fields are known to ease some of the tensions of these models with precision electroweak observables and flavor constraints. We study the loop-driven Higgs coupling to the gluons that are relevant to the Higgs program at the LHC, in this scenario. We demonstrate a partial cancellation in the contribution of the fermionic Kaluza-Klein (KK) towers within such framework relatively independent of the 5D parameters. The entire dependence of this coupling on the new physics arises from the mixing between the Standard Model states and the KK excitations. We find that the present precision in measurement of these couplings can lead to a constraint on the KK scale up to 1.2 TeV at 95% confidence level.
A Deconstruction Lattice Description of the D1/D5 Brane World-Volume Gauge Theory
Giedt, Joel
2011-01-01
I genermore » alize the deconstruction lattice formulation of Endres and Kaplan to two-dimensional super-QCD with eight supercharges, denoted by (4,4), and bifundamental matter. I specialize to a particularly interesting (4,4) gauge theory, with gauge group U ( N c ) × U ( N f ) , and U ( N f ) being weakly gauged. It describes the infrared limit of the D1/D5 brane system, which has been studied extensively as an example of the AdS 3 /CFT 2 correspondence. The construction here preserves two supercharges exactly and has a lattice structure quite similar to that which has previously appeared in the deconstruction approach, that is, site, link, and diagonal fields with both the Bose and Fermi statistics. I remark on possible applications of the lattice theory that would test the AdS 3 /CFT 2 correspondence, particularly one that would exploit the recent worldsheet instanton analysis of Chen and Tong.« less
NASA Astrophysics Data System (ADS)
Sahni, Varun
2016-07-01
The Phantom brane is based on the normal branch of the DGP braneworld. It possesses a phantom-like equation of state at late times, but no big-rip future singularity. In this braneworld, the cosmological constant is dynamically screened at late times. Consequently it provides a good fit to SDSS DR11 measurements of H(z) at high redshifts. We obtain a closed system of equations for scalar perturbations on the brane. Perturbations of radiation, matter and the Weyl fluid are self-consistently evolved until the present epoch. We find that the late time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials φ, Ψ evolve differently on the brane than in ΛCDM, for which φ = Ψ. On the Brane, by contrast, the ratio φ/Ψ exceeds unity during the late matter dominated epoch (z ≤ 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large scale structure. The phantom brane also displays a pole in its equation of state, which provides a key test of this dark energy model.
Multidimensional Gravitational Models: Fluxbrane and S-Brane Solutions with Polynomials
Ivashchuk, V. D.; Melnikov, V. N.
2007-06-21
Main results in obtaining exact solutions for multidimensional models and their application to solving main problems of modern cosmology and black hole physics are described. Some new results on composite fluxbrane and S-brane solutions for a wide class of intersection rules are presented. These solutions are defined on a product manifold R* x M1 x ... x Mn which contains n Ricci-flat spaces M1,...,Mn with 1-dimensional R* and M1. They are defined up to a set of functions obeying non-linear differential equations equivalent to Toda-type equations with certain boundary conditions imposed. Exact solutions corresponding to configurations with two branes and intersections related to simple Lie algebras C2 and G2 are obtained. In these cases the functions Hs(z), s = 1, 2, are polynomials of degrees: (3, 4) and (6, 10), respectively, in agreement with a conjecture suggested earlier. Examples of simple S-brane solutions describing an accelerated expansion of a certain factor-space are given explicitely.
Multidimensional Gravitational Models: Fluxbrane and S-Brane Solutions with Polynomials
NASA Astrophysics Data System (ADS)
Ivashchuk, V. D.; Melnikov, V. N.
2007-06-01
Main results in obtaining exact solutions for multidimensional models and their application to solving main problems of modern cosmology and black hole physics are described. Some new results on composite fluxbrane and S-brane solutions for a wide class of intersection rules are presented. These solutions are defined on a product manifold R* × M1 × ... × Mn which contains n Ricci-flat spaces M1,...,Mn with 1-dimensional R* and M1. They are defined up to a set of functions obeying non-linear differential equations equivalent to Toda-type equations with certain boundary conditions imposed. Exact solutions corresponding to configurations with two branes and intersections related to simple Lie algebras C2 and G2 are obtained. In these cases the functions Hs(z), s = 1, 2, are polynomials of degrees: (3, 4) and (6, 10), respectively, in agreement with a conjecture suggested earlier. Examples of simple S-brane solutions describing an accelerated expansion of a certain factor-space are given explicitely.
Inflation from Intersecting Branes
Leblond, Louis
2007-11-20
We propose a new scenario for D-term inflation which appears quite straightforwardly in the open string sector of intersecting brane models. We take the inflaton to be a chiral field in a bifundamental representation of the hidden sector and we argue that a sufficiently flat potential can be brane engineered. This type of model generically predicts a near gaussian red spectrum with negligible tensor modes.
Chern-Simons supersymmetric branes
NASA Astrophysics Data System (ADS)
Mora, Pablo
2001-01-01
The purpose of this paper is to continue the study of the class of models proposed in a previous letter. The model corresponds to a system of branes of diverse dimensionalities with Chern-Simons actions for a supergroup, embedded in a background described also by a Chern-Simons action. The model treats the background and the branes on an equal footing, providing a "brane-target space democracy". Here we suggest some possible extensions of the original model, and discuss its equations of motion, as well as the issue of currents and charges carried by the branes. We also discuss the relationship with M-theory and Superstring theory.
Nakayama, Yu; Nakayama, Yu
2007-06-06
We further investigate the dimensional duality (D-duality) proposed in arXiv: 0705.0550 by mainly focusing on the properties of D-branes in this background. We derive the world-sheet correspondence of static D-branes, and discuss the fate of non-static D-branes from the world-sheet viewpoint. The quantum string production with or without D-branes is also studied fromthe time-like Liouville theory. We find that the closed string production from the background is much larger than that from D-branes decaying into nothing.
McGreevy, John Austen; /Stanford U., Phys. Dept.
2005-07-06
This thesis is a study of D-branes in string compactifications. In this context, D-branes are relevant as an important component of the nonperturbative spectrum, as an incisive probe of these backgrounds, and as a natural stringy tool for localizing gauge interactions. In the first part of the thesis, we discuss half-BPS D-branes in compactifications of type II string theory on Calabi-Yau threefolds. The results we describe for these objects are pertinent both in their role as stringy brane-worlds, and in their role as solitonic objects. In particular, we determine couplings of these branes to the moduli determining the closed-string geometry, both perturbatively and non-perturbatively in the worldsheet expansion. We provide a local model for transitions in moduli space where the BPS spectrum jumps, and discuss the extension of mirror symmetry between Calabi-Yau manifolds to the case when D-branes are present. The next section is an interlude which provides some applications of D-branes to other curved backgrounds of string theory. In particular, we discuss a surprising phenomenon in which fundamental strings moving through background Ramond-Ramond fields dissolve into large spherical D3-branes. This mechanism is used to explain a previously-mysterious fact discovered via the AdS-CFT correspondence. Next, we make a connection between type IIA string vacua of the type discussed in the first section and M-theory compactifications on manifolds of G{sub 2} holonomy. Finally we discuss constructions of string vacua which do not have large radius limits. In the final part of the thesis, we develop techniques for studying the worldsheets of open strings ending on the curved D-branes studied in the first section. More precisely, we formulate a large class of massive two-dimensional gauge theories coupled to boundary matter, which flow in the infrared to the relevant boundary conformal field theories. Along with many other applications, these techniques are used to describe
Lehners, Jean-Luc
2007-11-20
In a braneworld description of our universe, we must allow for the possibility of having dynamical branes around the time of the big bang. Some properties of such domain walls in motion are discussed here, for example the ability of negative-tension domain walls to bounce off spacetime singularities and the consequences for cosmological perturbations. In this context, we will also review a colliding branes solution of heterotic M-theory that has been proposed as a model for early universe cosmology.
Backreacting D-brane instantons on branes at singularities
NASA Astrophysics Data System (ADS)
García-Valdecasas Tenreiro, Eduardo; Uranga, Angel
2017-08-01
Non-perturbative D-brane instanton effects in 4d N=1 string compactifications can be geometrized in terms of a backreacted generalized geometry. We extend earlier results to setups in which the D-brane instanton is charged under the 4d gauge symmetries, and show that the backreacted topology yields the correct charged field theory operators in the 4d effective action. In type IIA models with D6-branes, the backreaction of D2-brane instantons forces the recombination of D6-branes, such that the 4d charged field theory operators arise from basic worldsheet instantons in the backreacted geometry. We provide large classes of examples of D2-brane instanton effects on intersecting D6-brane systems in local models mirror to D3-branes at singularities. The backreacted geometry and the field theory operators are easily encoded in terms of simple operations in the graphs arising from the underlying dimer diagrams. This description agrees, in the appropriate cases, with the complex deformations triggered by certain fractional branes at the bottom of duality cascades.
First-order formalism for flat branes in generalized N-field models
NASA Astrophysics Data System (ADS)
Bazeia, D.; Lobão, A. S., Jr.; Losano, L.; Menezes, R.
2013-08-01
This work deals with braneworld scenarios obtained from N real scalar fields, whose dynamics is generalized to include higher-order power in the derivative of the fields. For the scalar fields being driven by nonstandard dynamics, we show how a first-order formalism can be obtained for a flat brane in the presence of several fields. We then illustrate our findings, investigating distinct potentials with one and two fields, and obtaining stable standard and compact solutions in the braneworld theory. In particular, we have found different models describing the very same warp factor.
Spherically symmetric thick branes cosmological evolution
NASA Astrophysics Data System (ADS)
Bernardini, A. E.; Cavalcanti, R. T.; da Rocha, Roldão
2015-01-01
Spherically symmetric time-dependent solutions for the 5D system of a scalar field canonically coupled to gravity are obtained and identified as an extension of recent results obtained by Ahmed et al. (JHEP 1404:061. arXiv:1312.3576 [hep-th], 2014). The corresponding cosmology of models with regularized branes generated by such a 5D scalar field scenario is also investigated. It has been shown that the anisotropic evolution of the warp factor and consequently the Hubble like parameter are both driven by the radial coordinate on the brane, which leads to an emergent thick brane-world scenario with spherically symmetric time dependent warp factor. Meanwhile, the separability of variables depending on fifth dimension, , which is exhibited by the equations of motion, allows one to recover the extra dimensional profiles obtained in Ahmed et al. (2014), namely the extra dimensional part of the scale (warp) factor and the scalar field dependence on . Therefore, our results are mainly concerned with the time dependence of a spherically symmetric warp factor. Besides evincing possibilities for obtaining asymmetric stable brane-world scenarios, the extra dimensional profiles here obtained can also be reduced to those ones investigated in Ahmed et al. (2014).
Flavor condensates in brane models and dark energy
Mavromatos, Nick E.; Sarkar, Sarben; Tarantino, Walter
2009-10-15
In the context of a microscopic model of string-inspired foam, in which foamy structures are provided by brany pointlike defects (D-particles) in space-time, we discuss flavor mixing as a result of flavor nonpreserving interactions of (low-energy) fermionic stringy matter excitations with the defects. Such interactions involve splitting and capture of the matter string state by the defect, and subsequent re-emission. As a result of charge conservation, only electrically neutral matter can interact with the D-particles. Quantum fluctuations of the D-particles induce a nontrivial space-time background; in some circumstances, this could be akin to a cosmological Friedman-Robertson-Walker expanding-universe, with weak (but nonzero) particle production. Furthermore, the D-particle medium can induce an Mikheyev-Smirnov-Wolfenstein-type effect. We have argued previously, in the context of bosons, that the so-called flavor vacuum is the appropriate state to be used, at least for low-energy excitations, with energies/momenta up to a dynamically determined cutoff scale. Given the intriguing mass scale provided by neutrino flavor mass differences from the point of view of dark energy, we evaluate the flavor-vacuum expectation value (condensate) of the stress-energy tensor of the 1/2-spin fields with mixing in an effective-low-energy quantum field theory in this foam-induced curved space-time. We demonstrate, at late epochs of the Universe, that the fermionic vacuum condensate behaves as a fluid with negative pressure and positive energy; however, the equation of state has w{sub fermion}>-1/3 and so the contribution of the fermion-fluid flavor vacuum alone could not yield accelerating universes. Such contributions to the vacuum energy should be considered as (algebraically) additive to the flavored boson contributions, evaluated in our previous works; this should be considered as natural from (broken) target-space supersymmetry that characterizes realistic superstring
Aspects of string dualities: Orientifolds, F-theory and super D-branes and the M5-brane
NASA Astrophysics Data System (ADS)
Park, Jaemo
We probe string dualities by using the orientifold and F- theory, and by investigating world volume actions of super D-branes and super M-branes. We first study orientifolds in various dimensions. We construct orientifolds dual to M-theory compactified on the Klein bottle and on the Mobius band, respectively. Six-dimensional orientifolds with N = 1 supersymmetry are constructed. They have multiple tensor multiplets, which cannot be obtained by the conventional Calabi-Yau compactifications. We find F-theory duals for some of these models, thereby making manifest the phase transitions involving the tensionless strings these models can have. We construct orientifold and F-theory duals of the heterotic string models constructed by Chaudhuri, Hockney and Lykken (CHL) and study N = 2 supersymmetric F-theory vacua in six dimensions. Next, we construct the supersymmetric world volume action of the M-theory 5-brane in a flat eleven-dimensional background. Finally, dual D-brane actions are obtained by carrying out a duality transformation of the world volume gauge field of the D-brane and their properties are studied.
Rajaraman, Arvind
2003-06-02
We suggest a duality invariant formula for the entropy and temperature of nonextreme black holes in supersymmetric string theory. The entropy is given in terms of the duality invariant parameter of the deviation from extremality and 56 SU(8) covariant central charges. It interpolates between the entropies of Schwarzschild solution and extremal solutions with various amount of unbroken supersymmetries and therefore serves for classification of black holes in supersymmetric string theories. We introduce the second auxiliary 56 via E(7) symmetric constraint. The symmetric and antisymmetric combinations of these two multiplets are related via moduli to the corresponding two fundamental representations of E(7): brane and anti-brane ''numbers.'' Using the CPT as well as C symmetry of the entropy formula and duality one can explain the mysterious simplicity of the non-extreme black hole area formula in terms of branes and anti-branes.
750 GeV diphoton excesses in a realistic D-brane model
NASA Astrophysics Data System (ADS)
Li, Tianjun; Maxin, James A.; Mayes, Van E.; Nanopoulos, Dimitri V.
2016-07-01
We study the diphoton excesses near 750 GeV recently reported by the ATLAS and CMS collaborations within the context of a phenomenologically interesting intersecting/magnetized D-brane model on a toroidal orientifold. It is shown that the model contains a Standard Model singlet scalar as well as vector-like quarks and leptons. In addition, it is shown that the singlet scalar has Yukawa couplings with vector-like quarks and leptons such that it may be produced in proton-proton collisions via gluon fusion as well as decay to diphotons through loops involving the vector-like quarks. Moreover, the required vector-like quarks and leptons may appear in complete S U (5 ) multiplets so that gauge coupling unification may be maintained. Finally, it is shown that the diphoton signal may be accommodated within the model.
On Branes and Oriented B fields
Shmakova, Marina
2003-06-26
Novel theories appear on the world-volume of branes by orienting B fields along various directions of the branes. We review some of the earlier developments and explore many new examples of these theories. In particular, among other things, we study the pinning effect of branes near conifold like singularities and brane-antibrane theories with different fluxes on their world-volumes. We show that all these theories arise from different limits of an M-theory configuration with appropriately chosen G-fluxes. This gives us a way to study them from a unified framework in M-theory.
Bergshoeff, Eric A.; Gibbons, Gary W.; Townsend, Paul K.
2006-12-08
We show how, in heterotic M theory, an M5-brane in the 11-dimensional bulk may end on an 'M9-brane' boundary, the M5-brane boundary being a Yang-monopole 4-brane. This possibility suggests various novel 5-brane configurations of heterotic M theory, in particular, a static M5-brane suspended between the two M9-brane boundaries, for which we find the asymptotic heterotic supergravity solution.
NASA Astrophysics Data System (ADS)
Budhwani, Karim Ismail
The tremendous quality of life impact notwithstanding, cardiovascular diseases and Cancer add up to over US$ 700bn each year in financial costs alone. Aging and population growth are expected to further expand the problem space while drug research and development remain expensive. However, preclinical costs can be substantially mitigated by substituting animal models with in vitro devices that accurately model human cardiovascular transport. Here we present a novel physiologically relevant lab-on-a-brane that simulates in vivo pressure, flow, strain, and shear waveforms associated with normal and pathological conditions in large and small blood vessels for studying molecular transport across the endothelial monolayer. The device builds upon previously demonstrated integrated microfluidic loop design by: (a) introducing nanoscale pores in the substrate membrane to enable transmembrane molecular transport, (b) transforming the substrate membrane into a nanofibrous matrix for 3D smooth muscle cell (SMC) tissue culture, (c) integrating electrospinning fabrication methods, (d) engineering an invertible sandwich cell culture device architecture, and (e) devising a healthy co-culture mechanism for human arterial endothelial cell (HAEC) monolayer and multiple layers of human smooth muscle cells (HSMC) to accurately mimic arterial anatomy. Structural and mechanical characterization was conducted using confocal microscopy, SEM, stress/strain analysis, and infrared spectroscopy. Transport was characterized using FITC-Dextran hydraulic permeability protocol. Structure and transport characterization successfully demonstrate device viability as a physiologically relevant arterial mimic for testing transendothelial transport. Thus, our lab-on-a-brane provides a highly effective and efficient, yet considerably inexpensive, physiologically relevant alternative for pharmacokinetic evaluation; possibly reducing animals used in pre-clinical testing, clinical trials cost from false
D-branes in Cosmological Backgrounds
NASA Astrophysics Data System (ADS)
Hikida, Yasuaki
2005-12-01
We investigate D-branes in cosmological models. In particuler, we examine Misner space, which can be constructed as a Lorentzian orbifold. This space includes big crunch/big bang singularity and closed time-like curves. We compute annulas amplitudes for open strings on D0-brane and D1-brane and find imaginary part of the amplitudes. The imaginary parts are interpreted as the rate of open string pair creation on D0-brane and as the emission rate of closed strings from D1-brane. We also compute 2-->2 scattering amplitude of open strings and examine its divergence structure.
Brane Effective Actions, Kappa-Symmetry and Applications.
Simón, Joan
2012-01-01
This is a review on brane effective actions, their symmetries and some of their applications. Its first part covers the Green-Schwarz formulation of single M- and D-brane effective actions focusing on kinematical aspects: the identification of their degrees of freedom, the importance of world volume diffeomorphisms and kappa symmetry to achieve manifest spacetime covariance and supersymmetry, and the explicit construction of such actions in arbitrary on-shell supergravity backgrounds. Its second part deals with applications. First, the use of kappa symmetry to determine supersymmetric world volume solitons. This includes their explicit construction in flat and curved backgrounds, their interpretation as Bogomol'nyi-Prasad-Sommerfield (BPS) states carrying (topological) charges in the supersymmetry algebra and the connection between supersymmetry and Hamiltonian BPS bounds. When available, I emphasise the use of these solitons as constituents in microscopic models of black holes. Second, the use of probe approximations to infer about the non-trivial dynamics of strongly-coupled gauge theories using the anti de Sitter/conformal field theory (AdS/CFT) correspondence. This includes expectation values of Wilson loop operators, spectrum information and the general use of D-brane probes to approximate the dynamics of systems with small number of degrees of freedom interacting with larger systems allowing a dual gravitational description. Its final part briefly discusses effective actions for N D-branes and M2-branes. This includes both Super-Yang-Mills theories, their higher-order corrections and partial results in covariantising these couplings to curved backgrounds, and the more recent supersymmetric Chern-Simons matter theories describing M2-branes using field theory, brane constructions and 3-algebra considerations.
Brane Effective Actions, Kappa-Symmetry and Applications
NASA Astrophysics Data System (ADS)
Simón, Joan
2012-12-01
This is a review on brane effective actions, their symmetries and some of their applications. Its first part covers the Green-Schwarz formulation of single M- and D-brane effective actions focusing on kinematical aspects: the identification of their degrees of freedom, the importance of world volume diffeomorphisms and kappa symmetry to achieve manifest spacetime covariance and supersymmetry, and the explicit construction of such actions in arbitrary on-shell supergravity backgrounds. Its second part deals with applications. First, the use of kappa symmetry to determine supersymmetric world volume solitons. This includes their explicit construction in flat and curved backgrounds, their interpretation as Bogomol’nyi-Prasad-Sommerfield (BPS) states carrying (topological) charges in the supersymmetry algebra and the connection between supersymmetry and Hamiltonian BPS bounds. When available, I emphasise the use of these solitons as constituents in microscopic models of black holes. Second, the use of probe approximations to infer about the non-trivial dynamics of strongly-coupled gauge theories using the anti de Sitter/conformal field theory (AdS/CFT) correspondence. This includes expectation values of Wilson loop operators, spectrum information and the general use of D-brane probes to approximate the dynamics of systems with small number of degrees of freedom interacting with larger systems allowing a dual gravitational description. Its final part briefly discusses effective actions for N D-branes and M2-branes. This includes both Super-Yang-Mills theories, their higher-order corrections and partial results in covariantising these couplings to curved backgrounds, and the more recent supersymmetric Chern-Simons matter theories describing M2-branes using field theory, brane constructions and 3-algebra considerations.
Shortcuts in cosmological branes
NASA Astrophysics Data System (ADS)
Abdalla, Elcio; Casali, Adenauer G.; Cuadros-Melgar, Bertha
2004-02-01
We consider a dynamical membrane world in a space-time with scalar bulk matter described by domain walls, as well as a dynamical membrane world in empty Anti de Sitter space-time. Using the solutions to Einstein equations and boundary conditions we investigate the possibility of having shortcuts for gravitons leaving the membrane and returning subsequently. In comparison with photons following a geodesic inside the brane we verify that shortcuts exist. For some Universes they are small, but sometimes are quite effective. In the case of matter branes, we argue that at times just before nucleosynthesis the effect is sufficiently large to provide corrections to the inflationary scenario, especially as concerning the horizon problem. This work has been supported by Fundca~o de Amparo à Pesquisa do Estado de Sa~o Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.
Casimir energies and special dimensions in a toy model for branes
NASA Astrophysics Data System (ADS)
Cohen, Isaac
1988-12-01
We consider a generalization to branes of the old action for the strings without reparamentrization invariance. These actions admit natural supplementary mass-shell conditions. By regularizing the Casimir energies we calculate the special dimensions at which these toy branes show vector massless states in its spectrum. They all turn out to be non-integers. On sabbatical leave from Departamento de Física, Facultad de Ciencias, Universidad Central de Venezuela, Apartado Postal 66961, Caracas 1061A, Venezuela.
Highly symmetric D-brane-anti-D-brane effective actions
NASA Astrophysics Data System (ADS)
Hatefi, Ehsan
2017-09-01
The entire S-matrix elements of four, five and six point functions of D-brane-anti D-brane system are explored. To deal with symmetries of string amplitudes as well as their all order α ' corrections we first address a four point function of one closed string Ramond-Ramond (RR) and two real tachyons on the world volume of brane-anti brane system. We then focus on symmetries of string theory as well as universal tachyon expansion to achieve both string and effective field theory of an RR and three tachyons where the complete algebraic analysis for the whole S-matrix < {V}_{C^{-1}}{V}_{T^{-1}}{V}_{T^0}{V}_{T^0}> was also revealed. Lastly, we employ all the conformal field theory techniques to < {V}_{C^{-1}}{V}_{T^{-1}}{V}_{T^0}{V}_{T^0}{V}_{T^0}> , working out with symmetries of theory and find out the expansion for the amplitude to be able to precisely discover all order singularity structures of D-brane-anti-D-brane effective actions of string theory. Various remarks about the so called generalized Veneziano amplitude and new string couplings are elaborated as well.
Anomalies and graded coisotropic branes
NASA Astrophysics Data System (ADS)
Li, Yi
2006-03-01
We compute the anomaly of the axial U(1) current in the A-model on a Calabi-Yau manifold, in the presence of coisotropic branes discovered by Kapustin and Orlov. Our results relate the anomaly-free condition to a recently proposed definition of graded coisotropic branes in Calabi-Yau manifolds. More specifically, we find that a coisotropic brane is anomaly-free if and only if it is gradable. We also comment on a different grading for coisotropic submanifolds introduced recently by Oh.
NASA Technical Reports Server (NTRS)
Janson, Siegfried
2017-01-01
A Brane Craft is a membrane spacecraft with solar cells, command and control electronics, communications systems, antennas, propulsion systems, attitude and proximity sensors, and shape control actuators as thin film structures manufactured on 10 micron thick plastic sheets. This revolutionary spacecraft design can have a thickness of tens of microns with a surface area of square meters to maximize area-to-mass ratios for exceptionally low-mass spacecraft. Communications satellites, solar power satellites, solar electric propulsion stages, and solar sails can benefit from Brane Craft design. It also enables new missions that require low-mass spacecraft with exceptionally high delta-V. Active removal of orbital debris from Earth orbit is the target application for this study.
Towards geometric D6-brane model building on non-factorisable toroidal ℤ 4-orbifolds
NASA Astrophysics Data System (ADS)
Berasaluce-González, Mikel; Honecker, Gabriele; Seifert, Alexander
2016-08-01
We present a geometric approach to D-brane model building on the non-factorisable torus backgrounds of T 6/ ℤ 4, which are A 3 × A 3 and A 3 × A 1 × B 2. Based on the counting of `short' supersymmetric three-cycles per complex structure vev, the number of physically inequivalent lattice orientations with respect to the anti-holomorphic involution ℛ of the Type IIA/Ωℛ orientifold can be reduced to three for the A 3 × A 3 lattice and four for the A 3 × A 1 × B 2 lattice. While four independent three-cycles on A 3 × A 3 cannot accommodate phenomenologically interesting global models with a chiral spectrum, the eight-dimensional space of three-cycles on A 3 × A 1 × B 2 is rich enough to provide for particle physics models, with several globally consistent two- and four-generation Pati-Salam models presented here.
A realistic intersecting D6-brane model after the first LHC run
NASA Astrophysics Data System (ADS)
Li, Tianjun; Nanopoulos, D. V.; Raza, Shabbar; Wang, Xiao-Chuan
2014-08-01
With the Higgs boson mass around 125 GeV and the LHC supersymmetry search constraints, we revisit a three-family Pati-Salam model from intersecting D6-branes in Type IIA string theory on the T 6/(ℤ2 × ℤ2) orientifold which has a realistic phenomenology. We systematically scan the parameter space for μ < 0 and μ > 0, and find that the gravitino mass is generically heavier than about 2 TeV for both cases due to the Higgs mass low bound 123 GeV. In particular, we identify a region of parameter space with the electroweak fine-tuning as small as Δ EW ~ 24-32 (3-4%). In the viable parameter space which is consistent with all the current constraints, the mass ranges for gluino, the first two-generation squarks and sleptons are respectively [3, 18] TeV, [3, 16] TeV, and [2, 7] TeV. For the third-generation sfermions, the light stop satisfying 5 σ WMAP bounds via neutralino-stop coannihilation has mass from 0.5 to 1.2 TeV, and the light stau can be as light as 800 GeV. We also show various coannihilation and resonance scenarios through which the observed dark matter relic density is achieved. Interestingly, the certain portions of parameter space has excellent t- b- τ and b- τ Yukawa coupling unification. Three regions of parameter space are highlighted as well where the dominant component of the lightest neutralino is a bino, wino or higgsino. We discuss various scenarios in which such solutions may avoid recent astrophysical bounds in case if they satisfy or above observed relic density bounds. Prospects of finding higgsino-like neutralino in direct and indirect searches are also studied. And we display six tables of benchmark points depicting various interesting features of our model. Note that the lightest neutralino can be heavy up to 2.8 TeV, and there exists a natural region of parameter space from low-energy fine-tuning definition with heavy gluino and first two-generation squarks/sleptons, we point out that the 33 TeV and 100 TeV proton-proton colliders
Cosmological evolution of a D-brane
Li Huiquan
2011-03-15
We study the cosmological evolution of a single BPS D-brane coupled to gravity in the absence of potential. When such a D-brane moves in the bulk with nonvanishing velocity, it tends to slow down to zero velocity via mechanisms like gravitational wave leakage to the bulk, losing its kinetic energy to fuel the expansion of the Universe on the D-brane. If the initial velocity of the D-brane is high enough, the Universe on the D-brane undergoes a dustlike stage at early times and an acceleration stage at late times, realizing the original Chaplygin gas model. When the D-brane velocity is initially zero, the D-brane will always remain fixed at some position in the bulk, with the brane tension over the Plank mass squared as a cosmological constant. It is further shown that this kind of fixed brane universe can arise as defects from tachyon inflation on a non-Bogomol'nyi-Prasad-Sommerfeld D-brane with one dimension higher.
Why do we live in a 4D world: Can cosmology, black holes and branes give an answer?
NASA Astrophysics Data System (ADS)
Zloshchastiev, Konstantin G.
2006-07-01
We derive the general form of the cosmological scalar field potential which is compatible both with the existence of black holes and p-branes related to string/M theory and with multidimensional inflationary cosmology. It is shown that the scalar potential alters non-trivially from dimension to dimension yet always obeys one single equation where the number of spacetime dimensions is a free parameter. Using this equation we formulate an eigenvalue problem for the dimensionality parameter. It turns out that in the low-energy regime of sub-Planckian values of the inflaton field, i.e., when the Universe has cooled and expanded sufficiently enough, the value four arises as the largest admissible (eigen)value of this parameter.
NASA Astrophysics Data System (ADS)
Ivashchuk, V. D.; Melnikov, V. N.
2006-02-01
A family of generalized S-brane solutions with orthogonal intersection rules and n Ricciflat factor spaces in the theory with several scalar fields, antisymmetric forms and multiple scalar potential is considered. Two subclasses of solutions with power-law and exponential behaviour of scale factors are singled out. These subclasses contain sub-families of solutions with accelerated expansion of certain factor spaces. The solutions depend on charge densities of branes, their dimensions and intersections, dilatonic couplings and the number of dilatonic fields. Certain examples of solutions with exponential dependence of one scale factor and constant scale factors of "internal" spaces (e.g. "Freund-Rubin" type solutions) are also considered.
A comprehensive survey of brane tilings
NASA Astrophysics Data System (ADS)
Franco, Sebastián; He, Yang-Hui; Sun, Chuang; Xiao, Yan
2017-08-01
An infinite class of 4d 𝒩 = 1 gauge theories can be engineered on the worldvolume of D3-branes probing toric Calabi-Yau 3-folds. This kind of setup has multiple applications, ranging from the gauge/gravity correspondence to local model building in string phenomenology. Brane tilings fully encode the gauge theories on the D3-branes and have substantially simplified their connection to the probed geometries. The purpose of this paper is to push the boundaries of computation and to produce as comprehensive a database of brane tilings as possible. We develop efficient implementations of brane tiling tools particularly suited for this search. We present the first complete classification of toric Calabi-Yau 3-folds with toric diagrams up to area 8 and the corresponding brane tilings. This classification is of interest to both physicists and mathematicians alike.
Christiansen, H. R.; Cunha, M. S.; Tahim, M. O.
2010-10-15
We analytically find the exact propagation modes of the electromagnetic and the Kalb-Ramond fields together in a five-dimensional curved space-time. The existence and localization of gauge particles into our four-dimensional world (4D) is studied in detail on a brane-world scenario in which two gauge fields interact with a dilaton and a gravitational background. The coupling to the dilaton is different in each case causing the splitting between gauge spectra. The gauge-field zero-modes and an infinite tower of Kaluza-Klein massive states are analytically obtained. Relevant conditions on the dilaton coupling constant are found in order to identify with precision every finite tensor and vector eigenstate in the theory. An exact quantization condition on the whole mass spectrum, depending on the dilaton coupling constant and the bulk Planck mass, is inherited from the extra-dimension. This allows finding an exact rule to prevent tachyons in the theory and, by the same token, predicting a possible tensor zero-mode in 4D world. We also show that KK massive-modes contributions onto 4D physics are strongly suppressed.
A note on intersections of S-branes with p-branes
Deger, Nihat Sadik
2007-06-15
We first investigate intersections of an S-brane with a single p-brane and show that in addition to the already known solutions, it is possible to place the S-brane so that the radial part of the p-brane is not included in its world volume. This leads to a new set of solutions. Second, we consider intersections of an S-brane with a supersymmetric Dp{sub 1}-Dp{sub 2} intersection and find the list of allowed solutions for both positions of the S-brane. Among them there are D1-D5-S1 and D1-D5-S5 intersections which might be appropriate for studying time dependent AdS/CFT correspondence.
NASA Astrophysics Data System (ADS)
Kastor, David; Ray, Sourya; Traschen, Jennie
2017-10-01
We study the problem of finding brane-like solutions to Lovelock gravity, adopting a general approach to establish conditions that a lower dimensional base metric must satisfy in order that a solution to a given Lovelock theory can be constructed in one higher dimension. We find that for Lovelock theories with generic values of the coupling constants, the Lovelock tensors (higher curvature generalizations of the Einstein tensor) of the base metric must all be proportional to the metric. Hence, allowed base metrics form a subclass of Einstein metrics. This subclass includes so-called ‘universal metrics’, which have been previously investigated as solutions to quantum-corrected field equations. For specially tuned values of the Lovelock couplings, we find that the Lovelock tensors of the base metric need to satisfy fewer constraints. For example, for Lovelock theories with a unique vacuum there is only a single such constraint, a case previously identified in the literature, and brane solutions can be straightforwardly constructed.
Kleihaus, Burkhard; Kunz, Jutta; Senkbeil, Daniel; Radu, Eugen
2011-05-15
We consider black holes localized on the brane in the Randall-Sundrum infinite braneworld model. These configurations are static and charged with respect to a spherically symmetric, electric Maxwell field living on the brane. We start by attempting to construct vacuum black holes, in which case our conclusions are in agreement with those of Yoshino [J. High Energy Phys. 01 (2009) 068]. Although approximate solutions appear to exist for sufficiently small brane tension, these are likely only numerical artifacts. The qualitative features of the configurations in the presence of a brane U(1) electric field are similar to those in the vacuum case. In particular, we find a systematic unnatural behavior of the metric functions in the asymptotic region in the vicinity of the anti-de Sitter horizon. Our results are most naturally interpreted as evidence for the nonexistence of static, nonextremal charged black holes on the brane. In contrast, extremal black holes are more likely to exist on the brane. We determine their near-horizon form by employing both analytical and numerical methods. For any bulk dimension d>4, we find good agreement between the properties of large extremal black holes and the predictions of general relativity, with calculable subleading corrections.
Fermion localization on a split brane
Chumbes, A. E. R.; Vasquez, A. E. O.; Hott, M. B.
2011-05-15
In this work we analyze the localization of fermions on a brane embedded in five-dimensional, warped and nonwarped, space-time. In both cases we use the same nonlinear theoretical model with a nonpolynomial potential featuring a self-interacting scalar field whose minimum energy solution is a soliton (a kink) which can be continuously deformed into a two-kink. Thus a single brane splits into two branes. The behavior of spin 1/2 fermions wave functions on the split brane depends on the coupling of fermions to the scalar field and on the geometry of the space-time.
Brane Inflation: From Superstring to Cosmic Strings
Tye, S.-H. Henry
2004-12-10
Brane inflation, where branes move towards each other in the brane world, has been shown to be quite natural in superstring theory. Inflation ends when branes collide and heat the universe, initiating the hot big bang. Cosmic strings (but not domain walls or monopoles) are copiously produced during the brane collision. Using the COBE data on the temperature anisotropy in the cosmic microwave background, the cosmic string tension {mu} is estimated to be around 10 -6 > G{mu} > 10-11, while the present observational bound is 7 x 10 -7 > G{mu}. This implies that the anisotropy that seeds structure formation comes mostly from inflation, but with a small component (< 10%) from cosmic string effects. This cosmic string effect should be testable in the near future via gravitational lensing, the cosmic microwave background radiation, and/or gravitational wave detectors like LIGO II/VIRGO.
Perturbations of nested branes with induced gravity
NASA Astrophysics Data System (ADS)
Sbisà, Fulvio; Koyama, Kazuya
2014-06-01
We study the behaviour of weak gravitational fields in models where a 4D brane is embedded inside a 5D brane equipped with induced gravity, which in turn is embedded in a 6D spacetime. We consider a specific regularization of the branes internal structures where the 5D brane can be considered thin with respect to the 4D one. We find exact solutions corresponding to pure tension source configurations on the thick 4D brane, and study perturbations at first order around these background solutions. To perform the perturbative analysis, we adopt a bulk-based approach and we express the equations in terms of gauge invariant and master variables using a 4D scalar-vector-tensor decomposition. We then propose an ansatz on the behaviour of the perturbation fields when the thickness of the 4D brane goes to zero, which corresponds to configurations where gravity remains finite everywhere in the thin limit of the 4D brane. We study the equations of motion using this ansatz, and show that they give rise to a consistent set of differential equations in the thin limit, from which the details of the internal structure of the 4D brane disappear. We conclude that the thin limit of the ``ribbon'' 4D brane inside the (already thin) 5D brane is well defined (at least when considering first order perturbations around pure tension configurations), and that the gravitational field on the 4D brane remains finite in the thin limit. We comment on the crucial role of the induced gravity term on the 5D brane.
Perturbations of nested branes with induced gravity
Sbisà, Fulvio; Koyama, Kazuya E-mail: kazuya.koyama@port.ac.uk
2014-06-01
We study the behaviour of weak gravitational fields in models where a 4D brane is embedded inside a 5D brane equipped with induced gravity, which in turn is embedded in a 6D spacetime. We consider a specific regularization of the branes internal structures where the 5D brane can be considered thin with respect to the 4D one. We find exact solutions corresponding to pure tension source configurations on the thick 4D brane, and study perturbations at first order around these background solutions. To perform the perturbative analysis, we adopt a bulk-based approach and we express the equations in terms of gauge invariant and master variables using a 4D scalar-vector-tensor decomposition. We then propose an ansatz on the behaviour of the perturbation fields when the thickness of the 4D brane goes to zero, which corresponds to configurations where gravity remains finite everywhere in the thin limit of the 4D brane. We study the equations of motion using this ansatz, and show that they give rise to a consistent set of differential equations in the thin limit, from which the details of the internal structure of the 4D brane disappear. We conclude that the thin limit of the ''ribbon'' 4D brane inside the (already thin) 5D brane is well defined (at least when considering first order perturbations around pure tension configurations), and that the gravitational field on the 4D brane remains finite in the thin limit. We comment on the crucial role of the induced gravity term on the 5D brane.
Operation of the World Master in the World Modeling System
1987-10-01
This research note describes the operation of the World Master process of the World Modeling System. It is intended to be an aid to maintainers of ... the World Master, and implementors of additional simulated physical properties of the world . The World Master is the core of the World Modeling System
Flachi, Antonino; Tanaka, Takahiro
2009-12-15
We consider the Casimir effect between two parallel plates localized on a brane. We argue that in order to properly compute the contribution to the Casimir energy due to any higher dimensional field, it is necessary to take into account the localization properties of the Kaluza-Klein modes. When the bulk field configuration is such that no massless mode appears in the spectrum, as, for instance, when the higher dimensional field obeys twisted boundary conditions across the branes, the correction to the Casimir energy is exponentially suppressed. When a massless mode is present in the spectrum, the correction to the Casimir energy can be, in principle, sizeable. However, when the bulk field is massless and strongly coupled to brane matter, the model is already excluded without resorting to any Casimir force experiment. The case which is in principle interesting is when the massless mode is not localized on the visible brane. We illustrate a method to compute the Casimir energy between two parallel plates, localized on the visible brane, approximating the Kaluza-Klein spectrum by truncation at the first excited mode. We treat this case by considering a pistonlike configuration and introduce a small parameter, {epsilon}, that takes into account the relative amplitude of the zero-mode wave function on the visible brane with respect to the massive excitation. We find that the Casimir energy is suppressed by two factors: at lowest order in {epsilon}, the correction to the Casimir energy comes entirely from the massive mode and turns out to be exponentially suppressed; the next-to-leading order correction in {epsilon} follows, instead, a power-law suppression due to the small wave-function overlap of the zero mode with matter confined on the visible brane. Generic comments on the constraints on new physics that may arise from Casimir force experiments are also made.
Full linear perturbations and localization of gravity on f( R, T) brane
NASA Astrophysics Data System (ADS)
Gu, Bao-Min; Zhang, Yu-Peng; Yu, Hao; Liu, Yu-Xiao
2017-02-01
We study the thick brane world system constructed in the recently proposed f( R, T) theories of gravity, with R the Ricci scalar and T the trace of the energy-momentum tensor. We try to get the analytic background solutions and discuss the full linear perturbations, especially the scalar perturbations. We compare how the brane world model is modified with that of general relativity coupled to a canonical scalar field. It is found that some more interesting background solutions are allowed, and only the scalar perturbation mode is modified. There is no tachyon state existing in this model and only the massless tensor mode can be localized on the brane, which recovers the effective four-dimensional gravity. These conclusions hold provided that two constraints on the original formalism of the action are satisfied.
Rapid world modelling for robotics
Littile, C.Q.; Wilson, C.W.
1996-04-01
The ability to use an interactive world model, whether it is for robotics simulation or most other virtual graphical environments, relies on the users ability to create an accurate world model. Typically this is a tedious process, requiring many hours to create 3-D CAD models of the surfaces within a workspace. The goal of this ongoing project is to develop usable methods to rapidly build world models of real world workspaces. This brings structure to an unstructured environment and allows graphical based robotics control to be accomplished in a reasonable time frame when traditional CAD modelling is not enough. To accomplish this, 3D range sensors are deployed to capture surface data within the workspace. This data is then transformed into surface maps, or models. A 3D world model of the workspace is built quickly and accurately, without ever having to put people in the environment.
Many-body treatment of white dwarf and neutron stars on the brane
Azam, Mofazzal; Sami, M.
2005-07-15
Brane-world models suggest modification of Newton's law of gravity on the 3-brane at submillimeter scales. The brane-world induced corrections are in higher powers of inverse distance and appear as additional terms with the Newtonian potential. The average interparticle distance in white dwarf and neutron stars is 10{sup -10} cms and 10{sup -13} cms, respectively, and therefore, the effect of submillimeter corrections needs to be investigated. We show, by carrying out simple many-body calculations, that the mass and mass-radius relationship of the white dwarf and neutron stars are not effected by submillimeter corrections. However, our analysis shows that the correction terms in the effective theory give rise to force akin to surface tension in normal liquids.
Cosmography of f(R)-brane cosmology
Bouhmadi-Lopez, Mariam; Capozziello, Salvatore; Cardone, Vincenzo F.
2010-11-15
Cosmography is a useful tool to constrain cosmological models, in particular, dark energy models. In the case of modified theories of gravity, where the equations of motion are generally quite complicated, cosmography can contribute to select realistic models without imposing arbitrary choices a priori. Indeed, its reliability is based on the assumptions that the universe is homogeneous and isotropic on large scale and luminosity distance can be ''tracked'' by the derivative series of the scale factor a(t). We apply this approach to induced gravity brane-world models where an f(R) term is present in the brane effective action. The virtue of the model is to self-accelerate the normal and healthy Dvali-Gabadadze-Porrati branch once the f(R) term deviates from the Hilbert-Einstein action. We show that the model, coming from a fundamental theory, is consistent with the {Lambda}CDM scenario at low redshift. We finally estimate the cosmographic parameters fitting the Union2 Type Ia Supernovae data set and the distance priors from baryon acoustic oscillations and then provide constraints on the present day values of f(R) and its second and third derivatives.
Radion-induced brane preheating.
Collins, Hael; Holman, R; Martin, Matthew R
2003-06-13
When the interbrane separation in the compact Randall-Sundrum model is stabilized using the Goldberger-Wise mechanism, a potential is generated for the four-dimensional field, the radion, that encodes this separation. Coherent oscillations of the radion in the early universe will produce an exponential growth in the number of brane particles due to parametric amplification. We describe the conditions necessary for this process, which resembles the preheating phase in inflation, and show the exponential growth in the case of a scalar field confined to a brane.
Horowitz, Gary; Lawrence, Albion; Silverstein, Eva; /SLAC /Stanford U., Phys. Dept. /Santa Barbara, KITP
2010-08-26
We study a simple model of a black hole in AdS and obtain a holographic description of the region inside the horizon. A key role is played by the dynamics of the scalar fields in the dual gauge theory. This leads to a proposal for a dual description of D-branes falling through the horizon of any AdS black hole. The proposal uses a field-dependent time reparameterization in the field theory. We relate this reparametrization to various gauge invariances of the theory. Finally, we speculate on information loss and the black hole singularity in this context.
NASA Astrophysics Data System (ADS)
Rasanen, Syksy
The thesis consists of three research papers and an introduction which provides background and also contains some new observations not included in the papers. In the thesis I consider certain questions in the new field of brane cosmology. The basic idea of brane cosmology is that the visible universe is a four- dimensional slice in higher-dimensional spacetime. I give a self-contained introduction to the field, starting from the Randall-Sundrum model and proceeding to the general case of brane gravity and cosmology in the case of one extra dimension. I emphasise the main result of studies of brane gravity: it is possible to obtain approximately four-dimensional gravity independent of the size of the extra dimension, in contrast to set-ups where the observers are not localised in the extra dimension. I proceed to examine a new and promising brave cosmology set-up, the ekpyrotic scenario, in detail. The ekpyrotic scenario aims to be a comprehensive model of the primordial universe and has been presented as an alternative to the prominent scenarios, inflation and pre-big bang. I give an overview of these three scenarios of the primordial universe. I then present the starting point of the ekpyrotic scenario and the construction of the four-dimensional effective theory. After briefly discussing the internal problems of the four-dimensional effective theory, I proceed to the far more serious problems of the four- dimensional construction itself. I conclude that the four-dimensional effective theory does not give a correct description even at a qualitative level. I then discuss some problems faced by the five-dimensional approach, and comment on the spin-off known as the “cyclic model of the universe”. I conclude that the ekpyrotic scenario is a welcome new idea but that most work done thus far is not solid. Careful analysis in the five-dimensional setting is needed to promote the scenario from an interesting concept to a working model with testable predictions.
Brane-induced-gravity shock waves.
Kaloper, Nemanja
2005-05-13
We construct exact gravitational field solutions for a relativistic particle localized on a tensional brane in brane-induced gravity. They are a generalization of gravitational shock waves in 4D de Sitter space. We provide the metrics for both the normal branch and the self-inflating branch Dvali-Gabadadze-Porrati brane worlds, and compare them to the 4D Einstein gravity solution and to the case when gravity resides only in the 5D bulk, without any brane-localized curvature terms. At short distances the wave profile looks the same as in four dimensions. The corrections appear only far from the source, where they differ from the long distance corrections in 4D de Sitter space. We also discover a new nonperturbative channel for energy emission into the bulk from the self-inflating [corrected] branch, when gravity is modified at the de Sitter radius.
M5-branes on S 2 × M 4: Nahm's equations and 4d topological sigma-models
NASA Astrophysics Data System (ADS)
Assel, Benjamin; Schäfer-Nameki, Sakura; Wong, Jin-Mann
2016-09-01
We study the 6d N = (0 , 2) superconformal field theory, which describes multiple M5-branes, on the product space S 2 × M 4, and suggest a correspondence between a 2d N = (0 , 2) half-twisted gauge theory on S 2 and a topological sigma-model on the four-manifold M 4. To set up this correspondence, we determine in this paper the dimensional reduction of the 6d N = (0 , 2) theory on a two-sphere and derive that the four-dimensional theory is a sigma-model into the moduli space of solutions to Nahm's equations, or equivalently the moduli space of k-centered SU(2) monopoles, where k is the number of M5-branes. We proceed in three steps: we reduce the 6d abelian theory to a 5d Super-Yang-Mills theory on I × M 4, with I an interval, then non-abelianize the 5d theory and finally reduce this to 4d. In the special case, when M 4 is a Hyper-Kähler manifold, we show that the dimensional reduction gives rise to a topological sigma-model based on tri-holomorphic maps. Deriving the theory on a general M 4 requires knowledge of the metric of the target space. For k = 2 the target space is the Atiyah-Hitchin manifold and we twist the theory to obtain a topological sigma-model, which has both scalar fields and self-dual two-forms.
Induced cosmological constant and other features of asymmetric brane embedding
Shtanov, Yuri; Sahni, Varun; Shafieloo, Arman; Toporensky, Alexey E-mail: varun@iucaa.ernet.in E-mail: lesha@xray.sai.msu.ru
2009-04-15
We investigate the cosmological properties of an 'induced gravity' brane scenario in the absence of mirror symmetry with respect to the brane. We find that brane evolution can proceed along one of four distinct branches. By contrast, when mirror symmetry is imposed, only two branches exist, one of which represents the self-accelerating brane, while the other is the so-called normal branch. This model incorporates many of the well-known possibilities of brane cosmology including phantom acceleration (w < -1), self-acceleration, transient acceleration, quiescent singularities, and cosmic mimicry. Significantly, the absence of mirror symmetry also provides an interesting way of inducing a sufficiently small cosmological constant on the brane. A small (positive) {Lambda}-term in this case is induced by a small asymmetry in the values of bulk fundamental constants on the two sides of the brane.
Non-geometric five-branes in heterotic supergravity
NASA Astrophysics Data System (ADS)
Sasaki, Shin; Yata, Masaya
2016-11-01
We study T-duality chains of five-branes in heterotic supergravity where the first order α'-corrections are present. By performing the α'-corrected T-duality transformations of the heterotic NS5-brane solutions, we obtain the KK5-brane and the exotic 5 2 2 -brane solutions associated with the symmetric, the neutral and the gauge NS5-branes. We find that the Yang-Mills gauge field in these solutions satisfies the self-duality condition in the three- and two-dimensional transverse spaces to the brane world-volumes. The O(2 , 2) monodromy structures of the 5 2 2 -brane solutions are investigated by the α'-corrected generalized metric. Our analysis shows that the symmetric 5 2 2 -brane solution, which satisfies the standard embedding condition, is a T-fold and it exhibits the non-geometric nature. We also find that the neutral 5 2 2 -brane solution is a T-fold at least at O({α}^') . On the other hand, the gauge 5 2 2 -brane solution is not a T-fold but show unusual structures of space-time.
Accidental SUSY: enhanced bulk supersymmetry from brane back-reaction
NASA Astrophysics Data System (ADS)
Burgess, C. P.; van Nierop, L.; Parameswaran, S.; Salvio, A.; Williams, M.
2013-02-01
We compute how bulk loops renormalize both bulk and brane effective interactions for codimension-two branes in 6D gauged chiral supergravity, as functions of the brane tension and brane-localized flux. We do so by explicitly integrating out hyper- and gauge-multiplets in 6D gauged chiral supergravity compactified to 4D on a flux-stabilized 2D rugby-ball geometry, specializing the results of a companion paper, arXiv:1210.3753, to the supersymmetric case. While the brane back-reaction generically breaks supersymmetry, we show that the bulk supersymmetry can be preserved if the amount of brane- localized flux is related in a specific BPS-like way to the brane tension, and verify that the loop corrections to the brane curvature vanish in this special case. In these systems it is the brane-bulk couplings that fix the size of the extra dimensions, and we show that in some circumstances the bulk geometry dynamically adjusts to ensure the supersymmetric BPS-like condition is automatically satisfied. We investigate the robustness of this residual supersymmetry to loops of non-supersymmetric matter on the branes, and show that supersymmetry-breaking effects can enter only through effective brane-bulk interactions involving at least two derivatives. We comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.
BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension
Dai Dechang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Tseng, Jeff; Rizvi, Eram
2008-04-01
We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/{approx}issever/BlackMax/blackmax.html.
BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension
NASA Astrophysics Data System (ADS)
Dai, De-Chang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Rizvi, Eram; Tseng, Jeff
2008-04-01
We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/~issever/BlackMax/blackmax.html.
Localised anti-branes in flux backgrounds
NASA Astrophysics Data System (ADS)
Hartnett, Gavin S.
2015-06-01
Solutions corresponding to finite temperature (anti)-D3 and M2 branes localised in flux backgrounds are constructed in a linear approximation. The flux backgrounds considered are toy models for the IR of the Klebanov-Strassler solution and its M-theory analogue, the Cvetič-Gibbons-Lü-Pope solution. Smooth solutions exist for either sign charge, in stark contrast with the previously considered case of smeared black branes. That the singularities of the anti-branes in the zero temperature extremal limit can be shielded behind a finite temperature horizon indicates that the singularities are physical and resolvable by string theory. As the charge of the branes grows large and negative, the flux at the horizon increases without bound and diverges in the extremal limit, which suggests a resolution via brane polarisation à la Polchinski-Strassler. It therefore appears that the anti-brane singularities do not indicate a problem with the SUSY-breaking metastable states corresponding to expanded anti-brane configurations in these backgrounds, nor with the use of these states in constructing the de Sitter landscape.
New class of effective field theories from embedded branes.
Goon, Garrett L; Hinterbichler, Kurt; Trodden, Mark
2011-06-10
We present a new general class of four-dimensional effective field theories with interesting global symmetry groups. These theories arise from purely gravitational actions for (3+1)-dimensional branes embedded in higher dimensional spaces with induced gravity terms. The simplest example is the well known Galileon theory, with its associated Galilean symmetry, arising as the limit of a DGP brane world. However, we demonstrate that this is a special case of a much wider range of theories, with varying structures, but with the same attractive features such as second order equations. In some circumstances, these new effective field theories allow potentials for the scalar fields on curved space, with small masses protected by nonlinear symmetries. Such models may prove relevant to the cosmology of both the early and late universe.
NASA Astrophysics Data System (ADS)
Anderson, Lara B.; Heckman, Jonathan J.; Katz, Sheldon
2014-05-01
T-branes are a non-abelian generalization of intersecting branes in which the matrix of normal deformations is nilpotent along some subspace. In this paper we study the geometric remnant of this open string data for six-dimensional F-theory vacua. We show that in the dual M-theory / IIA compactification on a smooth Calabi-Yau threefold X smth, the geometric remnant of T-brane data translates to periods of the three-form potential valued in the intermediate Jacobian of X smth. Starting from a smoothing of a singular Calabi-Yau, we show how to track this data in singular limits using the theory of limiting mixed Hodge structures, which in turn directly points to an emergent Hitchin-like system coupled to defects. We argue that the physical data of an F-theory compactification on a singular threefold involves specifying both a geometry as well as the remnant of three-form potential moduli and flux which is localized on the discriminant. We give examples of T-branes in compact F-theory models with heterotic duals, and comment on the extension of our results to four-dimensional vacua.
Quasinormal ringing on the brane
NASA Astrophysics Data System (ADS)
Chung, Hyeyoun; Randall, Lisa; Rodriguez, Maria J.; Varela, Oscar
2016-12-01
While the linear behavior of gravity in braneworld models is well understood, much less is known about full nonlinear gravitational effects. Even when they agree at the linear level, these could be expected to distinguish braneworlds from a lower-dimensional theory with no brane. Black holes are a good testing ground for such studies, as they are nonlinear solutions that would be expected to reflect the background geometry. In particular, we assess the role of black hole quasinormal modes (QNMs) in gravitational experiments devised to be sensitive to the existence of the brane, in a lower-dimensional setting where we have analytical control. We compute QNMs of brane-localized black holes and find that they follow the entropy of the corresponding black hole. This observation allows us to conclude that, surprisingly, the scattering problem we consider, at least in some regimes, does not distinguish between nonlinear gravitational effects of black holes in AdS space with a brane and black holes in a spacetime of one lower dimension.
On D-brane dynamics and moduli stabilization
NASA Astrophysics Data System (ADS)
Kitazawa, Noriaki
2017-09-01
We discuss the effect of the dynamics of D-branes on moduli stabilization in type IIB string theory compactifications, with reference to a concrete toy model of T6/Z 3 orientifold compactification with fractional D3-branes and anti-D3-branes at orbifold fixed points. The resulting attractive forces between anti-D3-branes and D3-branes, together with the repulsive forces between anti-D3-branes and O3-planes, can affect the stability of the compact space. There are no complex structure moduli in T6/Z 3 orientifold, which should thus capture some generic features of more general settings where all complex structure moduli are stabilized by three-form fluxes. The simultaneous presence of branes and anti-branes brings along the breaking of supersymmetry. Non-BPS combinations of this type are typical of “brane supersymmetry breaking” and are a necessary ingredient in the KKLT scenario for stabilizing the remaining Kähler moduli. The conclusion of our analysis is that, while mutual D-brane interactions sometimes help Kähler moduli stabilization, this is not always the case.
Denouement of a Wormhole-Brane Encounter
NASA Astrophysics Data System (ADS)
Rodrigo, Enrico
Higher-dimensional black holes have long been considered within the context of brane worlds. Recently, it was shown that the brane-world ethos also permits the consideration of higher-dimensional wormholes. When such a wormhole, pre-existing in the bulk, impinges upon our universe, taken to be a positive-tension three-brane, it can induce the creation in our universe of a wormhole of ordinary dimensionality. The throat of this wormhole might fully constrict, pinch off, and thus birth a baby universe. Alternatively, the induced wormhole might persist. I show that persistence is more likely and note that the persistent wormhole manifests itself as a particle-like object whose interaction with cosmic matter is purely gravitational. I consider the viability of this object as a dark matter candidate.
Brane resolution through fibration
NASA Astrophysics Data System (ADS)
Vázquez-Poritz, Justin F.; Zhang, Zhibai
2012-11-01
We consider p-branes with one or more circular directions fibered over the transverse space. The fibration, in conjunction with the transverse space having a blown-up cycle, enables these p-brane solutions to be completely regular. Some such circularly wrapped D3-brane solutions describe flows from SU(N)3 N=2 theory, F0 theory, as well as an infinite family of superconformal quiver gauge theories, down to three-dimensional field theories. We discuss the operators that are turned on away from the UV fixed points. Similarly, there are wrapped M2-brane solutions which describe smooth flows from known three-dimensional supersymmetric Chern-Simons matter theories, such as Aharony-Bergman-Jafferis-Maldacena theory. We also consider p-brane solutions on gravitational instantons, and discuss various ways in which U-duality can be applied to yield other nonsingular solutions.
Classical Renormalization of Codimension-two Brane Couplings
Rham, Claudia de
2007-11-20
The curvature on codimension-two and higher branes is not regular for arbitrary matter sources. Nevertheless, the low-energy theory for an observer on such a brane should be well-defined and independent to any regularization procedure. This is achieved via appropriate classical renormalization of the brane couplings, and leads to a natural hierarchy between standard model couplings and couplings to gravity.
Fermion localization on two-field thick branes
Castro, L. B.
2011-02-15
In a recent paper published in this journal, Almeida and collaborators [Phys. Rev. D 79, 125022 (2009)] analyze the issue of fermion localization of fermions on a brane constructed from two scalar fields coupled with gravity (Bloch brane model). In that meritorious research the simplest Yukawa coupling {eta}{Psi}{phi}{chi}{Psi} was considered. That work does not analyze the zero mode in details. In this paper, the localization of fermions on two-field thick branes is reinvestigated. It is found that the simplest Yukawa coupling does not support the localization of fermions on the brane. In addition, the problem of fermion localization for some other Yukawa couplings are analyzed. It is shown that the zero mode for left-handed and right-handed fermions can be localized on the brane depending on the values for the coupling constant {eta} and the Bloch brane's parameter a.
The gravity of dark vortices: effective field theory for branes and strings carrying localized flux
NASA Astrophysics Data System (ADS)
Burgess, C. P.; Diener, R.; Williams, M.
2015-11-01
A Nielsen-Olesen vortex usually sits in an environment that expels the flux that is confined to the vortex, so flux is not present both inside and outside. We construct vortices for which this is not true, where the flux carried by the vortex also permeates the `bulk' far from the vortex. The idea is to mix the vortex's internal gauge flux with an external flux using off-diagonal kinetic mixing. Such `dark' vortices could play a phenomenological role in models with both cosmic strings and a dark gauge sector. When coupled to gravity they also provide explicit ultra-violet completions for codimension-two brane-localized flux, which arises in extra-dimensional models when the same flux that stabilizes extra-dimensional size is also localized on space-filling branes situated around the extra dimensions. We derive simple formulae for observables such as defect angle, tension, localized flux and on-vortex curvature when coupled to gravity, and show how all of these are insensitive to much of the microscopic details of the solutions, and are instead largely dictated by low-energy quantities. We derive the required effective description in terms of a world-sheet brane action, and derive the matching conditions for its couplings. We consider the case where the dimensions transverse to the bulk compactify, and determine how the on- and off-vortex curvatures and other bulk features depend on the vortex properties. We find that the brane-localized flux does not gravitate, but just renormalizes the tension in a magnetic-field independent way. The existence of an explicit UV completion puts the effective description of these models on a more precise footing, verifying that brane-localized flux can be consistent with sensible UV physics and resolving some apparent paradoxes that can arise with a naive (but commonly used) delta-function treatment of the brane's localization within the bulk.
NASA Astrophysics Data System (ADS)
Roberts, Mark D.
2015-10-01
Solutions are found to field equations constructed from the Pauli, Bach and Gauss-Bonnet quadratic tensors to the Kasner and Kasner brane spacetimes in up to five dimensions. A double Kasner space is shown to have a vacuum solution. Brane solutions in which the bulk components of the Einstein tensor vanish are also looked at and for four-branes a solution similar to radiation Robertson-Walker spacetime is found. Matter trapping of a test scalar field and a test perfect fluid are investigated using energy conditions.
Cosmological and spherically symmetric solutions with intersecting p-branes
NASA Astrophysics Data System (ADS)
Ivashchuk, V. D.; Melnikov, V. N.
1999-12-01
Multidimensional model describing the cosmological evolution and/or spherically symmetric configuration with n+1 Einstein spaces in the theory with several scalar fields and forms is considered. When electro-magnetic composite p-brane ansatz is adopted, n ``internal'' spaces are Ricci-flat, one space M0 has a nonzero curvature, and all p-branes do not ``live'' in M0, a class of exact solutions is obtained if certain block-orthogonality relations on p-brane vectors are imposed. A subclass of spherically symmetric solutions (containing nonextremal p-brane black holes) is considered. Post-Newtonian parameters are calculated.
Comments on D-brane dynamics near NS5-branes
NASA Astrophysics Data System (ADS)
Sahakyan, David A.
2004-10-01
We study the properties of a D-brane in the presence of k NS5 branes. The Dirac-Born-Infeld action describing the dynamics of this D-brane is very similar to that of a non-BPS D-brane in ten dimensions. As the D-brane approaches the fivebranes, its equation of state approaches that of a pressureless fluid. In non-BPS D-brane case this is considered as an evidence for the decay of the D-brane into ``tachyon matter''. We show that in our case similar behavior is the consequence of the motion of the D-brane. In particular in the rest frame of the moving D-brane the equation of state is that of a usual D-brane, for which the pressure is equal to the energy density. We also compute the total cross-section for the decay of the D-brane into closed string modes and show that the emitted energy has a power like divergence for D0, D1 and D2 branes, while converges for higher dimensional D-branes. We also speculate on the possibility that the infalling D-brane describes a decaying defect in six dimensional Little String Theory.
D-Brane Anti-D-Brane System in String Theory
NASA Astrophysics Data System (ADS)
Hyakutake, Y.
In this paper, we review a system of D-brane and anti-D-brane in type II superstring theories. [A. Sen, hep-th/9904207 and references there in; Y. Hyakutake, Master-Th., Doctor-Th. (in Japanese)] This system is unstable and tachyonic modes, which have negative mass squared, appear from open strings between D-brane and anti-D-brane. The effective field theory on the world-volume is described by U(1) × U(1) gauge theory with a complex tachyon field. Since the mass squared of the tachyon field is negative, a tachyon potential would be like a wine bottle. In order to make the system stable, the tachyon rolls down the potential and gets some vacuum expectation value. This is called the tachyon condensation mechanism. During this mechanism, Dp-brane and anti-Dp-brane annihilate completely, if we admit Sen's conjecture. The suspicions between tachyon condensation and Hawking radiation are also discussed.
Koivisto, Tomi; Wills, Danielle; Zavala, Ivonne E-mail: d.e.wills@durham.ac.uk
2014-06-01
Disformally coupled cosmologies arise from Dirac-Born-Infeld actions in Type II string theories, when matter resides on a moving hidden sector D-brane. Since such matter interacts only very weakly with the standard model particles, this scenario can provide a natural origin for the dark sector of the universe with a clear geometrical interpretation: dark energy is identified with the scalar field associated to the D-brane's position as it moves in the internal space, acting as quintessence, while dark matter is identified with the matter living on the D-brane, which can be modelled by a perfect fluid. The coupling functions are determined by the (warped) extra-dimensional geometry, and are thus constrained by the theory. The resulting cosmologies are studied using both dynamical system analysis and numerics. From the dynamical system point of view, one free parameter controls the cosmological dynamics, given by the ratio of the warp factor and the potential energy scales. The disformal coupling allows for new scaling solutions that can describe accelerating cosmologies alleviating the coincidence problem of dark energy. In addition, this scenario may ameliorate the fine-tuning problem of dark energy, whose small value may be attained dynamically, without requiring the mass of the dark energy field to be unnaturally low.
Thermodynamics of anisotropic branes
NASA Astrophysics Data System (ADS)
Ávila, Daniel; Fernández, Daniel; Patiño, Leonardo; Trancanelli, Diego
2016-11-01
We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a `Minkowski embedding', in which they lie outside of the horizon, and a `black hole embedding', in which they fall into the horizon. This transition depends on the black hole temperature, its degree of anisotropy, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.
Spacetime Models for the World
NASA Astrophysics Data System (ADS)
Torretti, Roberto
In this paper I take a sceptical view of the standard cosmological model and its variants, mainly on the following grounds: (i) The method of mathematical modelling that characterises modern natural philosophy-as opposed to Aristotle's-goes well with the analytic, piecemeal approach to physical phenomena adopted by Galileo, Newton and their followers, but it is hardly suited for application to the whole world. (ii) Einstein's first cosmological model (1917) was not prompted by the intimations of experience but by a desire to satisfy Mach's Principle. (iii) The standard cosmological model-a Friedmann-Lemaı̂tre-Robertson-Walker spacetime expanding with or without end from an initial singularity-is supported by the phenomena of redshifted light from distant sources and very nearly isotropic thermal background radiation provided that two mutually inconsistent physical theories are jointly brought to bear on these phenomena, viz the quantum theory of elementary particles and Einstein's theory of gravity. (iv) While the former is certainly corroborated by high-energy experiments conducted under conditions allegedly similar to those prevailing in the early world, precise tests of the latter involve applications of the Schwarzschild solution or the PPN formalism for which there is no room in a Friedmann-Lemaı̂tre-Robertson-Walker spacetime.
NASA Astrophysics Data System (ADS)
Bachlechner, Thomas C.; McAllister, Liam
2013-10-01
We study the dynamics of ultrarelativistic D-branes. The dominant phenomenon is bremsstrahlung: mild acceleration induced by closed string interactions triggers extremely rapid energy loss through radiation of massless closed strings. After characterizing bremsstrahlung from a general k-dimensional extended object in a D-dimensional spacetime, we incorporate effects specific to D-branes, including velocity-dependent forces and open string pair creation. We then show that dissipation due to bremsstrahlung can substantially alter the dynamics in DBI inflation.
Duality cascade in brane inflation
Bean, Rachel; Chen Xingang; Hailu, Girma; Henry Tye, S-H; Xu Jiajun E-mail: xgchen@mit.edu E-mail: tye@lepp.cornell.edu
2008-03-15
We show that brane inflation is very sensitive to tiny sharp features in extra dimensions, including those in the potential and in the warp factor. This can show up as observational signatures in the power spectrum and/or non-Gaussianities of the cosmic microwave background radiation (CMBR). One general example of such sharp features is a succession of small steps in a warped throat, caused by Seiberg duality cascade using gauge/gravity duality. We study the cosmological observational consequences of these steps in brane inflation. Since the steps come in a series, the prediction of other steps and their properties can be tested by future data and analysis. It is also possible that the steps are too close to be resolved in the power spectrum, in which case they may show up only in the non-Gaussianity of the CMB temperature fluctuations and/or EE polarization. We study two cases. In the slow-roll scenario, where steps appear in the inflaton potential, the sensitivity of brane inflation to the height and width of the steps is increased by several orders of magnitude compared to that in previously studied large field models. In the IR DBI scenario, where steps appear in the warp factor, we find that the glitches in the power spectrum caused by these sharp features are generally small or even unobservable, but associated distinctive non-Gaussianity can be large. Together with its large negative running of the power spectrum index, this scenario clearly illustrates how rich and different a brane inflationary scenario can be when compared to generic slow-roll inflation. Such distinctive stringy features may provide a powerful probe of superstring theory.
D-branes in Type IIB plane wave background
Lee, Bum-Hoon
2007-01-12
We classify and summarize the intersecting supersymmetric D-branes in the type IIB plane wave background, based on the Green-Schwarz superstring formulation. Many new configurations appears if we turn on the electric or magnetic background fields or boost the D-branes. Applications to the phenomelogical models are left for further study.
Brane Localized Curvature for Warped Gravitons
Rizzo, Thomas G.
2003-06-26
We study the effects of including brane localized curvature terms in the Randall-Sundrum (RS) model of the hierarchy. This leads to the existence of brane localized kinetic terms for the graviton. Such terms can be induced by brane and bulk quantum effects as well as Higgs-curvature mixing on the brane. We derive the modified spectrum of Kaluza-Klein (KK) gravitons and their couplings to 4-dimensional fields in the presence of these terms. We find that the masses and couplings of the KK gravitons have considerable dependence on the size of the brane localized terms; the weak-scale phenomenology of the model is consequently modified . In particular, the weak-scale spin-2 graviton resonances which generically appear in the RS model may be significantly lighter than previously assumed. However, they may avoid detection as their widths may be too narrow to be observable at colliders. In the contact interaction limit, for a certain range of parameters, the experimental reach for the scale of the theory is independent of the size of the boundary terms.
Perturbations on and off de Sitter brane in anti-de Sitter bulk
NASA Astrophysics Data System (ADS)
Libanov, M.; Rubakov, V.
2016-09-01
Motivated by holographic models of a (pseudo)conformal Universe, we carry out a complete analysis of linearized metric perturbations in the time-dependent two-brane setup of the Lykken-Randall type. We present the equations of motion for the scalar, vector and tensor perturbations and identify light modes in the spectrum, which are scalar radion and transverse-traceless graviton. We show that there are no other modes in the discrete part of the spectrum. We pay special attention to properties of light modes and show, in particular, that the radion has red power spectrum at late times, as anticipated on holographic grounds. Unlike the graviton, the radion survives in the single-brane limit, when one of the branes is sent to the adS boundary. These properties imply that potentially observable features characteristic of the 4d (pseudo)conformal cosmology, such as statistical anisotropy and specific shapes of non-Gaussianity, are inherent also in holographic conformal models as well as in brane world inflation.
MODELING WORLD BIOENERGY CROP POTENTIAL
NASA Astrophysics Data System (ADS)
Hagiwara, Kensuke; Hanasaki, Naota; Kanae, Shinjiro
Bioenergy is regarded as clean energy due to its characteristics and expected to be a new support of world energy de¬mand, but there are few integrated assessments of the potential of bioenergy considering sustainable land use. We esti¬mated the global bioenergy potential with an integrated global water resources model, the H08. It can simulate the crop yields on global-scale at a spatial resolution of 0.50.5. Seven major crops in the world were considered; namely, maize, sugar beet, sugar cane, soybean, rapeseed, rice, and wheat, of which the first 5 are commonly used to produce biofuel now. Three different land-cover types were chosen as potential area for cultivation of biofuel-producing crop: fallow land, grassland, and portion of forests (excluding areas sensitive for biodiversity such as frontier forest). We attempted to estimate the maximum global bioenergy potential and it was estimated to be 1120EJ. Bioenergy potential depends on land-use limitations for the protection of bio-diversity and security of food. In another condition which assumed more land-use limitations, bioenergy potential was estimated to be 70-233EJ.
Surface Casimir densities and induced cosmological constant on parallel branes in AdS spacetime
NASA Astrophysics Data System (ADS)
Saharian, Aram A.
2004-09-01
Vacuum expectation value of the surface energy-momentum tensor is evaluated for a massive scalar field with general curvature coupling parameter subject to Robin boundary conditions on two parallel branes located on (D+1)-dimensional anti-de Sitter bulk. The general case of different Robin coefficients on separate branes is considered. As a regularization procedure the generalized zeta function technique is used, in combination with contour integral representations. The surface energies on the branes are presented in the form of the sums of single brane and second brane-induced parts. For the geometry of a single brane both regions, on the left (L-region) and on the right (R-region), of the brane are considered. The surface densities for separate L- and R-regions contain pole and finite contributions. For an infinitely thin brane taking these regions together, in odd spatial dimensions the pole parts cancel and the total surface energy is finite. The parts in the surface densities generated by the presence of the second brane are finite for all nonzero values of the interbrane separation. It is shown that for large distances between the branes the induced surface densities give rise to an exponentially suppressed cosmological constant on the brane. In the Randall-Sundrum braneworld model, for the interbrane distances solving the hierarchy problem between the gravitational and electroweak mass scales, the cosmological constant generated on the visible brane is of the right order of magnitude with the value suggested by the cosmological observations.
Emergence and expansion of cosmic space as due to M0-branes
NASA Astrophysics Data System (ADS)
Sepehri, Alireza; Setare, Mohammad Reza; Capozziello, Salvatore
2015-12-01
Recently, Padmanabhan (arXiv:1206.4916 [hep-th]) discussed that the difference between the number of degrees of freedom on the boundary surface and the number of degrees of freedom in a bulk region causes the accelerated expansion of the universe. The main question arising is: what is the origin of this inequality between the surface degrees of freedom and the bulk degrees of freedom? We answer this question in M-theory. In our model, first M0-branes are compactified on one circle and N D0-branes are created. Then N D0-branes join each other, grow, and form one D5-branes. Next, the D5-brane is compactified on two circles and our universe's D3-brane, two D1-branes and some extra energies are produced. After that, one of the D1-branes, which is closer to the universe's brane, gives its energy into it, and this leads to an increase in the difference between the numbers of degrees of freedom and the occurring inflation era. With the disappearance of this D1-brane, the number of degrees of freedom of boundary surface and bulk region become equal and inflation ends. At this stage, extra energies that are produced due to the compactification cause an expansion of the universe and deceleration epoch. Finally, another D1-brane dissolves in our universe's brane, leads to an inequality between degrees of freedom, and there occurs a new phase of acceleration.
D-brane Instantons in Type II String Theory
Blumenhagen, Ralph; Cvetic, Mirjam; Kachru, Shamit; Weigand, Timo; /SLAC
2009-06-19
We review recent progress in determining the effects of D-brane instantons in N=1 supersymmetric compactifications of Type II string theory to four dimensions. We describe the abstract D-brane instanton calculus for holomorphic couplings such as the superpotential, the gauge kinetic function and higher fermionic F-terms. This includes a discussion of multi-instanton effects and the implications of background fluxes for the instanton sector. Our presentation also highlights, but is not restricted to the computation of D-brane instanton effects in quiver gauge theories on D-branes at singularities. We then summarize the concrete consequences of stringy D-brane instantons for the construction of semi-realistic models of particle physics or SUSY-breaking in compact and non-compact geometries.
Fragmentation of spinning branes
NASA Astrophysics Data System (ADS)
Yamada, D.
2008-07-01
The near-horizon geometries of spinning D3-, M2- and M5-branes are examined by the probes immersed in a co-rotating frame. It is found that the geometries become unstable at critical values of the spin angular velocity by emitting the branes. We show that this instability corresponds to the metastability of the black hole systems and different from the known (local) thermodynamic instability. For the D3 case, the instability found here is in complete agreement with the known metastability of the \\mathcal{N}=4 super-Yang Mills theory with R-symmetry chemical potentials.
Brane inflation and the overshoot problem
Bird, Simeon; Peiris, Hiranya V.; Baumann, Daniel
2009-07-15
We investigate recent claims that brane inflation solves the overshoot problem through a combination of microphysical restrictions on the phase space of initial conditions and the existence of the Dirac-Born-Infeld attractor in regimes where the slow-roll attractor does not apply. Carrying out a comprehensive analysis of the parameter space allowed by the latest advances in brane inflation model-building, we find that these restrictions are insufficient to solve the overshoot problem. The vast majority of the phase space of initial conditions is still dominated by overshoot trajectories. We present an analytic proof that the brane-inflationary attractor must be close to the slow-roll limit, and update the predictions for observables such as non-Gaussianity, cosmic string tension, and tensor modes.
Brane inflation and the overshoot problem
NASA Astrophysics Data System (ADS)
Bird, Simeon; Peiris, Hiranya V.; Baumann, Daniel
2009-07-01
We investigate recent claims that brane inflation solves the overshoot problem through a combination of microphysical restrictions on the phase space of initial conditions and the existence of the Dirac-Born-Infeld attractor in regimes where the slow-roll attractor does not apply. Carrying out a comprehensive analysis of the parameter space allowed by the latest advances in brane inflation model-building, we find that these restrictions are insufficient to solve the overshoot problem. The vast majority of the phase space of initial conditions is still dominated by overshoot trajectories. We present an analytic proof that the brane-inflationary attractor must be close to the slow-roll limit, and update the predictions for observables such as non-Gaussianity, cosmic string tension, and tensor modes.
Gauge Field Localization on Deformed Branes
NASA Astrophysics Data System (ADS)
Tofighi, A.; Moazzen, M.; Farokhtabar, A.
2016-02-01
In this paper, we utilise the Chumbes-Holf da Silva-Hott (CHH) mechanism to investigate the issue of gauge field localization on a deformed brane constructed with one scalar field, which can be coupled to gravity minimally or non-minimally. The study of deformed defects is important because they contain internal structures which may have implications in braneworld models. With the CHH mechanism, we find that the massless zero mode of gauge field, in the case of minimal or non-minimal coupling is localized on the brane. Moreover, in the case of non-minimal coupling, it is shown that, when the non-minimal coupling constant is larger than its critical value, then the zero mode is localized on each sub brane.
Inflation from D3-brane motion in the background of D5-branes
Panda, Sudhakar; Sami, M.; Tsujikawa, Shinji; Ward, John
2006-04-15
We study inflation arising from the motion of a Bogomol'nyi-Prasad-Sommerfield D3-brane in the background of a stack of k parallel D5-branes. There are two scalar fields in this setup: (i) the radion field R, a real scalar field, and (ii) a complex tachyonic scalar field {chi} living on the world volume of the open string stretched between the D3 and D5 branes. We find that inflation is realized by the potential of the radion field, which satisfies observational constraints coming from the cosmic microwave background. After the radion becomes of the order of the string length scale l{sub s}, the dynamics is governed by the potential of the complex scalar field. Since this field has a standard kinematic term, reheating can be successfully realized by the mechanism of tachyonic preheating with spontaneous symmetry breaking.
Graviton Kaluza-Klein modes in nonflat branes with stabilized modulus
NASA Astrophysics Data System (ADS)
Paul, Tanmoy; SenGupta, Soumitra
2016-04-01
We consider a generalized two brane Randall-Sundrum model where the branes are endowed with nonzero cosmological constant. In this scenario, we re-examine the modulus stabilization mechanism and the nature of Kaluza-Klein (KK) graviton modes. Our result reveals that while the KK mode graviton masses may change significantly with the brane cosmological constant, the Goldberger-Wise stabilization mechanism, which assumes a negligible backreaction on the background metric, continues to hold even when the branes have a large cosmological constant. The possibility of having a global minimum for the modulus is also discussed. Our results also include an analysis for the radion mass in this nonflat brane scenario.
Bulk axions, brane back-reaction and fluxes
NASA Astrophysics Data System (ADS)
Burgess, C. P.; van Nierop, L.
2011-02-01
Extra-dimensional models can involve bulk pseudo-Goldstone bosons (pGBs) whose shift symmetry is explicitly broken only by physics localized on branes. Reliable calculation of their low-energy potential is often difficult because it requires an understanding of the dynamics that stabilizes the geometry of the extra dimensions. Rugby ball solutions provide simple examples of extra-dimensional configurations for which two compact extra dimensions are stabilized in the presence of only positive-tension brane sources. The effects of brane back-reaction can be computed explicitly for these systems, allowing the calculation of the shape of the low-energy pGB potential, V 4 D ( φ), as a function of the perturbing brane properties, as well as the response of both the extra dimensional and on-brane geometries to this stabilization. If the φ-dependence is a small part of the total brane tension a very general analysis is possible, permitting an exploration of how the system responds to frustration when the two branes disagree on what the proper scalar vacuum should be. We show how the low-energy potential is given by the sum of brane tensions (in agreement with common lore) when only the brane tensions couple to φ. We also show how a direct brane coupling to the flux stabilizing the extra dimensions corrects this result in a way that does not simply amount to the contribution of the flux to the brane tensions. The mass of the low-energy pseudo-Goldstone mode is of order m a ˜ ( μ/ F)2 m KK (where μ is the energy scale associated with the brane symmetry breaking and F < M p is the extra-dimensional axion decay constant). In principle this can be larger or smaller than the Kaluza-Klein scale, m KK, but when it is larger axion properties cannot be computed purely within a 4D approximation (as they usually are). We briefly describe several potential applications, including a brane realization of `natural inflation,' and a dynamical mechanism for suppressing the couplings
Brane-localized Kinetic Terms in the Randall-Sundrum Model
Rizzo, Thomas G.
2002-12-20
We examine the effects of boundary kinetic terms in the Randall-Sundrum model with gauge fields in the bulk. We derive the resulting gauge Kaluza-Klein (KK) state wavefunctions and their corresponding masses, as well as the KK gauge field couplings to boundary fermions, and find that they are modified in the presence of the boundary terms. In particular, for natural choices of the parameters, these fermionic couplings can be substantially suppressed compared to those in the conventional Randall-Sundrum scenario. This results in a significant relaxation of the bound on the lightest gauge KK mass obtained from precision electroweak data; we demonstrate that this bound can be as low as m{sub 1} {approx}> 5 TeV. Due to the relationship between the lightest gauge KK state and the electroweak scale in this model, this weakened constraint allows for the electroweak scale to be near a TeV in this minimal extension of the Randall-Sundrum model with bulk gauge fields, as opposed to the conventional scenario.
NASA Astrophysics Data System (ADS)
Ashour, Amani; Faizal, Mir; Ali, Ahmed Farag; Hammad, Fayçal
2016-05-01
In this work, we investigate the thermodynamics of black p-branes (BB) in the context of Gravity's Rainbow. We investigate this using rainbow functions that have been motivated from loop quantum gravity and κ -Minkowski non-commutative spacetime. Then for the sake of comparison, we examine a couple of other rainbow functions that have also appeared in the literature. We show that, for consistency, Gravity's Rainbow imposes a constraint on the minimum mass of the BB, a constraint that we interpret here as implying the existence of a black p-brane remnant. This interpretation is supported by the computation of the black p-brane's heat capacity that shows that the latter vanishes when the Schwarzschild radius takes on a value that is bigger than its extremal limit. We found that the same conclusion is reached for the third version of rainbow functions treated here but not with the second one for which only standard black p-brane thermodynamics is recovered.
The spectrum of FZZT branes beyond the planar limit
NASA Astrophysics Data System (ADS)
Atkin, Max R.; Wheater, John F.
2011-02-01
Minimal string theory has a number of FZZT brane boundary states; one for each Cardy state of the minimal model. It was conjectured by Seiberg and Shih that all branes in a minimal string theory could be expressed as a linear combination of the brane associated to the identity operator of the minimal model with complex shifts in the boundary cosmological constant. Subsequently it was found that this identification of FZZT branes does not hold exactly for some cylinder amplitudes but was spoiled by terms that are associated with vanishing worldsheet area and are therefore non-universal. In this paper we investigate this claim systematically, using both Liouville and matrix model methods, beyond the planar limit. We find that the aforementioned identification of FZZT branes is spoiled by terms that do not admit an interpretation as non-universal terms. Furthermore, the spoiling terms as computed using the matrix model are found to be in agreement with those coming from Liouville theory, which also suggests that these terms have universal meaning. Finally, we also investigate the identification of FZZT branes by replacing the boundary state with a sum of local operators. We find in this case that the brane associated with the identity operator appears to be special as it is the only one to correctly reproduce the correlation numbers for bulk operators on the torus.
Smith, David; Nomura, Yasunori; Weiner, Neal
2001-04-04
We present a five-dimensional supersymmetric SU(5) theory in which the gauge symmetry is broken maximally (i.e. at the 5D Planck scale M{sub *}) on the same 4D brane where chiral matter is localized. Masses of the lightest Kaluza-Klein modes for the colored Higgs and X and Y gauge fields are determined by the compactification scale of the fifth dimension, M{sub C} {approx} 10{sup 15} GeV, rather than by M{sub *}. These fields' wave functions are repelled from the GUT-breaking brane, so that proton decay rates are suppressed below experimental limits. Above the compactification scale, the differences between the standard model gauge couplings evolve logarithmically, so that ordinary logarithmic gauge coupling unification is preserved. The maximal breaking of the grand unified group can also lead to other effects, such as O(1) deviations from SU(5) predictions of Yukawa couplings, even in models utilizing the Froggatt-Nielsen mechanism.
Graviton resonances on deformed branes
NASA Astrophysics Data System (ADS)
Cruz, W. T.; Gomes, A. R.; Almeida, C. A. S.
2011-11-01
Plane-wave solutions of Schrödinger-like equations obtained from the metric perturbations in 5D braneworld scenarios can present resonant modes. The search for those structures is important because they can provide us with massive modes with not suppressed couplings with the membrane. We propose in this paper the study of graviton Kaluza-Klein spectrum in a special kind of membrane that possesses internal structure. The interest in the study of these deformed defects is due to the fact that they have a richer internal structure that has implications in the matter energy density along the extra dimensions and this produces a space-time background whose curvature has a splitting, if compared to the usual kink-like models. Such models arise from (4, 1)-branes constructed with one scalar field coupled with gravity where we find two-kink solutions from deformations of a phi4 potential. The main objective of this work is to observe the effects of deformation process in the resonant modes as well as in the coupling between the graviton massive modes and the brane.
Common world model for unmanned systems
NASA Astrophysics Data System (ADS)
Dean, Robert Michael S.
2013-05-01
The Robotic Collaborative Technology Alliance (RCTA) seeks to provide adaptive robot capabilities which move beyond traditional metric algorithms to include cognitive capabilities. Key to this effort is the Common World Model, which moves beyond the state-of-the-art by representing the world using metric, semantic, and symbolic information. It joins these layers of information to define objects in the world. These objects may be reasoned upon jointly using traditional geometric, symbolic cognitive algorithms and new computational nodes formed by the combination of these disciplines. The Common World Model must understand how these objects relate to each other. Our world model includes the concept of Self-Information about the robot. By encoding current capability, component status, task execution state, and histories we track information which enables the robot to reason and adapt its performance using Meta-Cognition and Machine Learning principles. The world model includes models of how aspects of the environment behave, which enable prediction of future world states. To manage complexity, we adopted a phased implementation approach to the world model. We discuss the design of "Phase 1" of this world model, and interfaces by tracing perception data through the system from the source to the meta-cognitive layers provided by ACT-R and SS-RICS. We close with lessons learned from implementation and how the design relates to Open Architecture.
Natural semidirect gauge mediation and D-branes at singularities
Argurio, Riccardo; Bertolini, Matteo; Ferretti, Gabriele; Mariotti, Alberto
2009-08-15
We consider semidirect gauge mediation models of supersymmetry breaking where the messengers are composite fields and their supersymmetric mass is naturally generated through quartic superpotential couplings. We show that such composite messenger models can be easily embedded in quiver gauge theories arising from D-branes at Calabi-Yau singularities, and argue that semidirect gauge mediation is in fact a very natural option for supersymmetry breaking in D-brane models. We provide several explicit examples and discuss their salient phenomenological properties.
A new approach to the classical and quantum dynamics of branes
NASA Astrophysics Data System (ADS)
Pavšič, Matej
2016-07-01
It is shown that the Dirac-Nambu-Goto brane can be described as a point particle in an infinite-dimensional brane space with a particular metric. This suggests a generalization to brane spaces with arbitrary metric, including the “flat” metric. Then quantization of such a system is straightforward: it is just like quantization of a bunch of noninteracting particles. This leads us to a system of a continuous set of scalar fields. For a particular choice of the metric in the space of fields we find that the classical Dirac-Nambu-Goto brane theory arises as an effective theory of such an underlying quantum field theory. Quantization of branes is important for the brane world scenarios, and thus for “quantum gravity.”
Apostolopoulos, P.S.; Brouzakis, N.; Saridakis, E.N.; Tetradis, N.
2005-08-15
We discuss features of the brane cosmological evolution that arise through the presence of matter in the bulk. As these deviations from the conventional evolution are not associated with some observable matter component on the brane, we characterize them as mirage effects. We review an example of expansion that can be attributed to mirage nonrelativistic matter (mirage cold dark matter) on the brane. The real source of the evolution is an anisotropic bulk fluid with negative pressure along the extra dimension. We also study the general problem of exchange of real nonrelativistic matter between the brane and the bulk, and discuss the related mirage effects. Finally, we derive the brane cosmological evolution within a bulk that contains a global monopole (hedgehog) configuration. This background induces a mirage curvature term in the effective Friedmann equation, which can cause a brane universe with positive spatial curvature to expand forever.
Bending branes for DCFT in two dimensions
NASA Astrophysics Data System (ADS)
Erdmenger, Johanna; Flory, Mario; Newrzella, Max-Niklas
2015-01-01
We consider a holographic dual model for defect conformal field theories (DCFT) in which we include the backreaction of the defect on the dual geometry. In particular, we consider a dual gravity system in which a two-dimensional hypersurface with matter fields, the brane, is embedded into a three-dimensional asymptotically Anti-de Sitter spacetime. Motivated by recent proposals for holographic duals of boundary conformal field theories (BCFT), we assume the geometry of the brane to be determined by Israel junction conditions. We show that these conditions are intimately related to the energy conditions for the brane matter fields, and explain how these energy conditions constrain the possible geometries. This has implications for the holographic entanglement entropy in particular. Moreover, we give exact analytical solutions for the case where the matter content of the brane is a perfect fluid, which in a particular case corresponds to a free massless scalar field. Finally, we describe how our results may be particularly useful for extending a recent proposal for a holographic Kondo model.
Inhomogeneous exact solution in brane gravity and its applications
NASA Astrophysics Data System (ADS)
Heydari-Fard, Malihe; Heydari-Fard, Mohaddese
2017-02-01
Considering an inhomogeneous brane embedded in a five dimensional constant curvature bulk, we find the non-static and spherically symmetric exact solutions of the Einstein equations on the brane. With different choices of the parameters, one interesting case/solution is studied. We show that an inhomogeneous brane model can explain the accelerated expansion of the universe at large distance scales and also the galaxy rotation curves of spiral galaxies without assuming the existence of dark matter or new modified theories at the galactic scales.
Fermion localization and resonances on two-field thick branes
NASA Astrophysics Data System (ADS)
Almeida, C. A. S.; Casana, R.; Ferreira, M. M., Jr.; Gomes, A. R.
2009-06-01
We consider (4, 1)-dimensional branes constructed with two scalar fields ϕ and χ coupled to a Dirac spinor field by means of a general Yukawa coupling. The equation of motion for the coefficients of the chiral decomposition of the spinor in curved spacetime leads to a Schrödinger-like equation whose solutions allow to obtain the masses of the fermionic modes. The simplest Yukawa coupling Ψ¯ϕχΨ is considered for the Bloch brane model and fermion localization is studied. We found resonances for both chiralities and related their appearance to branes with internal structure.
A compact codimension-two braneworld with precisely one brane
Akerblom, Nikolas; Cornelissen, Gunther
2010-06-15
Building on earlier work on football-shaped extra dimensions, we construct a compact codimension-two braneworld with precisely one brane. The two extra dimensions topologically represent a 2-torus which is stabilized by a bulk cosmological constant and magnetic flux. The torus has positive constant curvature almost everywhere, except for a single conical singularity at the location of the brane. In contradistinction to the football-shaped case, there is no fine-tuning required for the brane tension. We also present some plausibility arguments why the model should not suffer from serious stability issues.
Fermion localization and resonances on two-field thick branes
Almeida, C. A. S.; Casana, R.; Ferreira, M. M. Jr.; Gomes, A. R.
2009-06-15
We consider (4, 1)-dimensional branes constructed with two scalar fields {phi} and {chi} coupled to a Dirac spinor field by means of a general Yukawa coupling. The equation of motion for the coefficients of the chiral decomposition of the spinor in curved spacetime leads to a Schroedinger-like equation whose solutions allow to obtain the masses of the fermionic modes. The simplest Yukawa coupling {psi}{phi}{chi}{psi} is considered for the Bloch brane model and fermion localization is studied. We found resonances for both chiralities and related their appearance to branes with internal structure.
Light-cone M5 and multiple M2-branes
NASA Astrophysics Data System (ADS)
Bandos, Igor A.; Townsend, Paul K.
2008-12-01
We present the light-cone gauge fixed Lagrangian for the M5-brane; it has a residual 'exotic' gauge invariance with the group of 5-volume preserving diffeomorphisms, SDiff5, as gauge group. For an M5-brane of topology \\bb{R}^2\\times M_3 , for closed 3-manifold M3, we find an infinite tension limit that yields an SO(8)-invariant (1 + 2)-dimensional field theory with 'exotic' SDiff3 gauge invariance. We show that this field theory is the Carrollian limit of the Nambu bracket realization of the 'BLG' model for multiple M2-branes.
d-Brane Instantons in Type II Orientifolds
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Cvetič, Mirjam; Kachru, Shamit; Weigand, Timo
2009-11-01
We review recent progress in determining the effects of d-brane instantons in [Formula: see text] supersymmetric compactifications of Type II string theory to four dimensions. We describe the abstract d-brane instanton calculus for holomorphic couplings such as the superpotential, the gauge kinetic function, and higher fermionic F-terms, and we briefly discuss the implications of background fluxes for the instanton sector. We then summarize the concrete consequences of stringy d-brane instantons for the construction of semirealistic models of particle physics or supersymmetry breaking in compact and noncompact geometries.
Running with rugby balls: bulk renormalization of codimension-2 branes
NASA Astrophysics Data System (ADS)
Williams, M.; Burgess, C. P.; van Nierop, L.; Salvio, A.
2013-01-01
We compute how one-loop bulk effects renormalize both bulk and brane effective interactions for geometries sourced by codimension-two branes. We do so by explicitly integrating out spin-zero, -half and -one particles in 6-dimensional Einstein-Maxwell-Scalar theories compactified to 4 dimensions on a flux-stabilized 2D geometry. (Our methods apply equally well for D dimensions compactified to D - 2 dimensions, although our explicit formulae do not capture all divergences when D > 6.) The renormalization of bulk interactions are independent of the boundary conditions assumed at the brane locations, and reproduce standard heat-kernel calculations. Boundary conditions at any particular brane do affect how bulk loops renormalize this brane's effective action, but not the renormalization of other distant branes. Although we explicitly compute our loops using a rugby ball geometry, because we follow only UV effects our results apply more generally to any geometry containing codimension-two sources with conical singularities. Our results have a variety of uses, including calculating the UV sensitivity of one-loop vacuum energy seen by observers localized on the brane. We show how these one-loop effects combine in a surprising way with bulk back-reaction to give the complete low-energy effective cosmological constant, and comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.
NASA Astrophysics Data System (ADS)
Sepehri, Alireza
2016-07-01
Recently, some authors (Cruz and Rojas, 2013 [1]) have constructed a Born-Infeld type action which may be written in terms of the Lovelock brane Lagrangians for a given dimension p. We reconsider their model in M-theory and study the process of birth and growth of nonlinear spinor and bosonic gravity during the construction of Mp-branes. Then, by application of this idea to BIonic system, we construct a BIonic superconductor in the background of nonlinear gravity. In this model, first, M0-branes link to each other and build an M5-brane and an anti-M5-brane connected by an M2-brane. M0-branes are zero dimensional objects that only scalars are attached to them. By constructing higher dimensional branes from M0-branes, gauge fields are produced. Also, if M0-branes don't link to each other completely, the symmetry of system is broken and fermions are created. The curvature produced by fermions has the opposite sign the curvature produced by gauge fields. Fermions on M5-branes and M2 plays the role of bridge between them. By passing time, M2 dissolves in M5's and nonlinear bosonic and spinor gravities are produced. By closing M5-branes towards each other, coupling of two identical fermions on two branes to each other causes that the square mass of their system becomes negative and some tachyonic states are created. For removing these tachyons, M5-branes compact, the sign of gravity between branes reverses, anti-gravity is produced which causes that branes and identical fermions get away from each other. This is the reason for the emergence of Pauli exclusion principle in Bionic system. Also, the spinor gravity vanishes and its energy builds a new M2 between M5-branes. We obtain the resistivity in this system and find that its value decreases by closing M5 branes to each other and shrinks to zero at colliding point of branes. This idea has different applications. For example, in cosmology, universes are located on M5-branes and M2-brane has the role of bridge between
Kallosh, R.; Rajaraman, A.
1996-11-01
We suggest a duality-invariant formula for the entropy and temperature of nonextreme black holes in supersymmetric string theory. The entropy is given in terms of the duality-invariant parameter of the deviation from extremality and 56 SU(8) covariant central charges. It interpolates between the entropies of Schwarzschild solution and extremal solutions with various amount of unbroken supersymmetries, and therefore, serves for classification of black holes in supersymmetric string theories. We introduce the second auxiliary 56 via an E(7) symmetric constraint. The symmetric and antisymmetric combinations of these two multiplets are related via moduli to the corresponding two fundamental representations of E(7): brane and antibrane {open_quote}{open_quote}numbers.{close_quote}{close_quote} Using the {ital CPT} as well as {ital C} symmetry of the entropy formula and duality one can explain the mysterious simplicity of the nonextreme black hole area formula in terms of branes and antibranes. {copyright} {ital 1996 The American Physical Society.}
NASA Astrophysics Data System (ADS)
Kallosh, Renata; Rajaraman, Arvind
1996-11-01
We suggest a duality-invariant formula for the entropy and temperature of nonextreme black holes in supersymmetric string theory. The entropy is given in terms of the duality-invariant parameter of the deviation from extremality and 56 SU(8) covariant central charges. It interpolates between the entropies of Schwarzschild solution and extremal solutions with various amount of unbroken supersymmetries, and therefore, serves for classification of black holes in supersymmetric string theories. We introduce the second auxiliary 56 via an E(7) symmetric constraint. The symmetric and antisymmetric combinations of these two multiplets are related via moduli to the corresponding two fundamental representations of E(7): brane and antibrane ``numbers.'' Using the CPT as well as C symmetry of the entropy formula and duality one can explain the mysterious simplicity of the nonextreme black hole area formula in terms of branes and antibranes.
Hellerman, Simeon
2001-08-23
We engineer a configuration of branes in type IIB string theory whose mechanical structure is that of a DNA molecule. We obtain it by considering a T-dual description of the quantum Hall soliton. Using a probe analysis, we investigate the dynamics of the system and show that it is stable against radial perturbations. We exercise a certain amount of restraint in discussing applications to biophysics.
Black branes as piezoelectrics.
Armas, Jay; Gath, Jakob; Obers, Niels A
2012-12-14
We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six.
Hamiltonian Approach To Dp-Brane Noncommutativity
NASA Astrophysics Data System (ADS)
Nikolic, B.; Sazdovic, B.
2010-07-01
In this article we investigate Dp-brane noncommutativity using Hamiltonian approach. We consider separately open bosonic string and type IIB superstring which endpoints are attached to the Dp-brane. From requirement that Hamiltonian, as the time translation generator, has well defined derivatives in the coordinates and momenta, we obtain boundary conditions directly in the canonical form. Boundary conditions are treated as canonical constraints. Solving them we obtain initial coordinates in terms of the effective ones as well as effective momenta. Presence of momenta implies noncommutativity of the initial coordinates. Effective theory, defined as initial one on the solution of boundary conditions, is its Ω even projection, where Ω is world-sheet parity transformation Ω:σ→-σ. The effective background fields are expressed in terms of Ω even and squares of the Ω odd initial background fields.
Wronskians, dualities and FZZT-Cardy branes
NASA Astrophysics Data System (ADS)
Chan, Chuan-Tsung; Irie, Hirotaka; Niedner, Benjamin; Yeh, Chi-Hsien
2016-09-01
The resolvent operator plays a central role in matrix models. For instance, with utilizing the loop equation, all of the perturbative amplitudes including correlators, the free-energy and those of instanton corrections can be obtained from the spectral curve of the resolvent operator. However, at the level of non-perturbative completion, the resolvent operator is generally not sufficient to recover all the information from the loop equations. Therefore it is necessary to find a sufficient set of operators which provide the missing non-perturbative information. In this paper, we study generalized Wronskians of the Baker-Akhiezer systems as a manifestation of these new degrees of freedom. In particular, we derive their isomonodromy systems and then extend several spectral dualities to these systems. In addition, we discuss how these Wronskian operators are naturally aligned on the Kac table. Since they are consistent with the Seiberg-Shih relation, we propose that these new degrees of freedom can be identified as FZZT-Cardy branes in Liouville theory. This means that FZZT-Cardy branes are the bound states of elemental FZZT branes (i.e. the twisted fermions) rather than the bound states of principal FZZT-brane (i.e. the resolvent operator).
World Energy Projection System Plus Model Documentation: Industrial Model
2016-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Industrial Model (WIM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Electricity Model
2017-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Electricity Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
Mock modular index of M2-M5 brane systems
NASA Astrophysics Data System (ADS)
Okazaki, Tadashi; Smith, Douglas J.
2017-07-01
We present Bogomolny-Prasad-Sommerfield (BPS) indices of the supergroup Wess-Zumino-Witten (WZW) models that live on intersecting M2-M5-brane systems. They can encode data of the stretched M2-branes between M5-branes and count the BPS states. They are generally expressed in terms of mock theta functions via the Kac-Wakimoto character formula of the affine Lie superalgebra. We give an explicit expression of the index for the P S L (2 |2 )k =1 WZW model in terms of the second-order multivariable Appell-Lerch sum. It indicates that wall crossing occurs in the BPS state counting due to the C field on the M5-branes.
A delicate universe: compactification obstacles to D-brane inflation.
Baumann, Daniel; Dymarsky, Anatoly; Klebanov, Igor R; McAllister, Liam; Steinhardt, Paul J
2007-10-05
We investigate whether explicit models of warped D-brane inflation are possible in string compactifications. To this end, we study the potential for D3-brane motion in a warped conifold that includes holomorphically embedded D7-branes involved in moduli stabilization. The presence of the D7-branes significantly modifies the inflaton potential. We construct an example based on a very simple and symmetric embedding due to Kuperstein, z1= const, in which it is possible to fine-tune the potential so that slow-roll inflation can occur. The resulting model is rather delicate: inflation occurs in the vicinity of an inflection point, and the cosmological predictions are extremely sensitive to the precise shape of the potential.
Emergence and oscillation of cosmic space by joining M1-branes
NASA Astrophysics Data System (ADS)
Sepehri, Alireza; Rahaman, Farook; Capozziello, Salvatore; Ali, Ahmed Farag; Pradhan, Anirudh
2016-05-01
Recently, it has been proposed by Padmanabhan that the difference between the number of degrees of freedom on the boundary surface and the number of degrees of freedom in a bulk region leads to the expansion of the universe. Now, a natural question arises; how could this model explain the oscillation of the universe between contraction and expansion branches? We try to address this issue in the framework of a BIonic system. In this model, M0-branes join to each other and give rise to a pair of M1-anti- M1-branes. The fields which live on these branes play the roles of massive gravitons that cause the emergence of a wormhole between them and formation of a BIon system. This wormhole dissolves into M1-branes and causes a divergence between the number of degrees of freedom on the boundary surface of M1 and the bulk leading to an expansion of M1-branes. When M1-branes become close to each other, the square energy of their system becomes negative and some tachyonic states emerge. To remove these states, M1-branes become compact, the sign of compacted gravity changes, causing anti-gravity to arise: in this case, branes get away from each other. By articulating M1-BIons, an M3-brane and an anti- M3-brane are created and connected by three wormholes forming an M3-BIon. This new system behaves like the initial system and by closing branes to each other, they become compact and, by getting away from each other, they open. Our universe is located on one of these M3-branes and, by compactifying the M3-brane, it contracts and, by opening it, it expands.
Hadamard function and the vacuum currents in braneworlds with compact dimensions: Two-brane geometry
NASA Astrophysics Data System (ADS)
Bellucci, S.; Saharian, A. A.; Vardanyan, V.
2016-04-01
We evaluate the Hadamard function and the vacuum expectation value of the current density for a charged scalar field in the region between two codimension-one branes on the background of locally anti-de Sitter (AdS) spacetime with an arbitrary number of toroidally compactified spatial dimensions. Along compact dimensions periodicity conditions are considered with general values of the phases and on the branes Robin boundary conditions are imposed for the field operator. In addition, we assume the presence of a constant gauge field. The latter gives rise to an Aharonov-Bohm-type effect on the vacuum currents. There exists a range in the space of the Robin coefficients for separate branes where the vacuum state becomes unstable. Compared to the case of the standard AdS bulk, in models with compact dimensions the stability condition imposed on the parameters is less restrictive. The current density has nonzero components along compact dimensions only. These components are decomposed into the brane-free and brane-induced contributions. Different representations are provided for the latter that are well suited for the investigation of the near-brane, near-AdS boundary and near-AdS horizon asymptotics. An important feature, that distinguishes the current density from the expectation values of the field squared and energy-momentum tensor, is its finiteness on the branes. In particular, for Dirichlet boundary conditions the current density vanishes on the branes. We show that, depending on the constants in the boundary conditions, the presence of the branes may either increase or decrease the current density compared with that for the brane-free geometry. Applications are given to the Randall-Sundrum 2-brane model with extra compact dimensions. In particular, we estimate the effects of the hidden brane on the current density on the visible brane.
Spatially homogeneous rotating world models.
NASA Technical Reports Server (NTRS)
Ozsvath, I.
1971-01-01
The mathematical problem encountered when looking for the simplest expanding and rotating model of the universe without the compactness condition for the space sections is formulated. The Lagrangian function is derived for four different rotating universes simultaneously. These models correspond in a certain sense to Godel's (1950) ?symmetric case.'
World energy projection system: Model documentation
NASA Astrophysics Data System (ADS)
1992-06-01
The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES), provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report.
Brane surgery: energy conditions, traversable wormholes, and voids
NASA Astrophysics Data System (ADS)
Barceló1, C.; Visser, M.
2000-09-01
Branes are ubiquitous elements of any low-energy limit of string theory. We point out that negative tension branes violate all the standard energy conditions of the higher-dimensional spacetime they are embedded in; this opens the door to very peculiar solutions of the higher-dimensional Einstein equations. Building upon the (/3+1)-dimensional implementation of fundamental string theory, we illustrate the possibilities by considering a toy model consisting of a (/2+1)-dimensional brane propagating through our observable (/3+1)-dimensional universe. Developing a notion of ``brane surgery'', based on the Israel-Lanczos-Sen ``thin shell'' formalism of general relativity, we analyze the dynamics and find traversable wormholes, closed baby universes, voids (holes in the spacetime manifold), and an evasion (not a violation) of both the singularity theorems and the positive mass theorem. These features appear generic to any brane model that permits negative tension branes: This includes the Randall-Sundrum models and their variants.
Brane big bang brought on by a bulk bubble
NASA Astrophysics Data System (ADS)
Gen, Uchida; Ishibashi, Akihiro; Tanaka, Takahiro
2002-07-01
We propose an alternative inflationary universe scenario in the context of Randall-Sundrum braneworld cosmology. In this new scenario the existence of extra dimension(s) plays an essential role. First, the brane universe is initially in the inflationary phase driven by the effective cosmological constant induced by a small mismatch between the vacuum energy in the five-dimensional bulk and the brane tension. This mismatch arises since the bulk is initially in a false vacuum. Then, false vacuum decay occurs, nucleating a true vacuum bubble with negative energy inside the bulk. The nucleated bubble expands in the bulk and consequently hits the brane, causing a hot big-bang brane universe of the Randall-Sundrum type. Here, the termination of the inflationary phase is due to the change of the bulk vacuum energy. The bubble kinetic energy heats up the universe. As a simple realization, we propose a model in which we assume an interaction between the brane and the bubble. We derive the constraints on the model parameters taking into account the following requirements: solving the flatness problem, no force which prohibits the bubble from colliding with the brane, a sufficiently high reheating temperature for the standard nucleosynthesis to work, and the recovery of Newton's law up to 1 mm. We find that a fine-tuning is needed in order to satisfy the first and the second requirements simultaneously, although the other constraints are satisfied in a wide range of the model parameters.
Large field inflation from D-branes
NASA Astrophysics Data System (ADS)
Escobar, Dagoberto; Landete, Aitor; Marchesano, Fernando; Regalado, Diego
2016-04-01
We propose new large field inflation scenarios built on the framework of F-term axion monodromy. Our setup is based on string compactifications where D-branes create potentials for closed string axions via F-terms. Because the source of the axion potential is different from the standard sources of moduli stabilization, it is possible to lower the inflaton mass as compared to other massive scalars. We discuss a particular class of models based on type IIA flux compactifications with D6-branes. In the small field regime they describe supergravity models of quadratic chaotic inflation with a stabilizer field. In the large field regime the inflaton potential displays a flattening effect due to Planck suppressed corrections, allowing us to easily fit the cosmological parameters of the model within current experimental bounds.
Black branes dual to striped phases
NASA Astrophysics Data System (ADS)
Withers, Benjamin
2013-08-01
We construct inhomogeneous charged black branes in AdS, holographically dual to a phase at finite chemical potential with spontaneously broken translation invariance in one direction. These are obtained numerically, solving PDEs for the fully backreacted system. Fixing the periodicity scale, we find a second order phase transition to the inhomogeneous phase. We comment on the properties of the state emerging at low temperatures. For some models we demonstrate the existence of a branch of striped solutions but no continuous phase transition.
Magnetic Branes from Generalized 't Hooft Tensor
NASA Astrophysics Data System (ADS)
Duan, Yi-Shi; Wu, Shao-Feng
't Hooft-Polykov magnetic monopole regularly realizes the Dirac magnetic monopole in terms of a two-rank tensor, the so-called 't Hooft tensor in 3D space. Based on the Chern kernel method, we propose the arbitrary rank 't Hooft tensors, which universally determine the quantized low energy boundaries of generalized Georgi-Glashow models under asymptotic conditions. Furthermore, the dual magnetic branes theory is built up in terms of ϕ-mapping theory.
Exotic branes and nongeometric backgrounds.
de Boer, Jan; Shigemori, Masaki
2010-06-25
When string or M theory is compactified to lower dimensions, the U-duality symmetry predicts so-called exotic branes whose higher-dimensional origin cannot be explained by the standard string or M-theory branes. We argue that exotic branes can be understood in higher dimensions as nongeometric backgrounds or U folds, and that they are important for the physics of systems which originally contain no exotic charges, since the supertube effect generically produces such exotic charges. We discuss the implications of exotic backgrounds for black hole microstate (non-)geometries.
NASA Astrophysics Data System (ADS)
Clark, T. E.; ter Veldhuis, T.
2016-11-01
Coset methods are used to determine the action of a co-dimension one brane (domain wall) embedded in (d + 1)-dimensional AdS space in the Carroll limit in which the speed of light goes to zero. The action is invariant under the non-linearly realized symmetries of the AdS-Carroll spacetime. The Nambu-Goldstone field exhibits a static spatial distribution for the brane with a time varying momentum density related to the brane's spatial shape as well as the AdS-C geometry. The AdS-C vector field dual theory is obtained.
Localization and mass spectra of various matter fields on scalar-tensor brane
Xie, Qun-Ying; Zhao, Zhen-Hua; Zhong, Yi; Yang, Jie; Zhou, Xiang-Nan
2015-03-10
Recently, a new scalar-tensor braneworld model was presented in [http://dx.doi.org/10.1103/PhysRevD.86.127502]. It not only solves the gauge hierarchy problem but also reproduces a correct Friedmann-like equation on the brane. In this new model, there are two different brane solutions, for which the mass spectra of gravity on the brane are the same. In this paper, we investigate localization and mass spectra of various bulk matter fields (i.e., scalar, vector, Kalb-Ramond, and fermion fields) on the brane. It is shown that the zero modes of all the matter fields can be localized on the positive tension brane under some conditions, and the mass spectra of each kind of bulk matter field for the two brane solutions are different except for some special cases, which implies that the two brane solutions are not physically equivalent. When the coupling constants between the dilaton and bulk matter fields take special values, the mass spectra for both solutions are the same, and the scalar and vector zero modes are localized on the negative tension brane, while the KR zero mode is still localized on the positive tension brane.
AdS5 solutions from M5-branes on Riemann surface and D6-branes sources
NASA Astrophysics Data System (ADS)
Bah, Ibrahima
2015-09-01
We describe the gravity duals of four-dimensional N=1 superconformal field theories obtained by wrapping M5-branes on a punctured Riemann surface. The internal geometry, normal to the AdS 5 factor, generically preserves two U(1)s, with generators ( J +, J -), that are fibered over the Riemann surface. The metric is governed by a single potential that satisfies a version of the Monge-Ampère equation. The spectrum of N=1 punctures is given by the set of supersymmetric sources of the potential that are localized on the Riemann surface and lead to regular metrics near a puncture. We use this system to study a class of punctures where the geometry near the sources corresponds to M-theory description of D6-branes. These carry a natural ( p, q) label associated to the circle dual to the killing vector pJ + + qJ - which shrinks near the source. In the generic case the world volume of the D6-branes is AdS 5 × S 2 and they locally preserve N=2 supersymmetry. When p = - q, the shrinking circle is dual to a flavor U(1). The metric in this case is non-degenerate only when there are co-dimension one sources obtained by smearing M5-branes that wrap the AdS 5 factor and the circle dual the superconformal R-symmetry. The D6-branes are extended along the AdS 5 and on cups that end on the co-dimension one branes. In the special case when the shrinking circle is dual to the R-symmetry, the D6-branes are extended along the AdS 5 and wrap an auxiliary Riemann surface with an arbitrary genus. When the Riemann surface is compact with constant curvature, the system is governed by a Monge-Ampère equation.
Brane-localized masses in magnetic compactifications
NASA Astrophysics Data System (ADS)
Ishida, Makoto; Nishiwaki, Kenji; Tatsuta, Yoshiyuki
2017-05-01
We discuss the effects of the brane-localized mass terms on the fixed points of the toroidal orbifold T2/Z2 under the presence of background magnetic fluxes, where multiple lowest and higher-level Kaluza-Klein (KK) modes are realized before introducing the localized masses in general. Using linear algebra, we find that, in each KK level, one or more of the degenerate KK modes are almost inevitably perturbed, when single or multiple brane-localized mass terms are introduced. When the typical scale of the compactification is far above the electroweak scale or the TeV scale, we apply this mechanism for uplifting unwanted massless or light modes which are prone to appear in models on magnetized orbifolds.
Lectures on Warped Compactifications and Stringy Brane Constructions
Kachru, Shamit
2001-07-26
In these lectures, two different aspects of brane world scenarios in 5d gravity or string theory are discussed. In the first two lectures, work on how warped compactifications of 5d gravity theories can change the guise of the hierarchy problem and the cosmological constant problem is reviewed, and a discussion of several issues which remain unclear in this context is provided. In the next two lectures, microscopic constructions in string theory which involve D-branes wrapped on cycles of Calabi-Yau manifolds are described. The focus is on computing the superpotential in the brane worldvolume field theory. Such calculations may be a necessary step towards understanding e.g. supersymmetry breaking and moduli stabilization in stringy realizations of such scenarios, and are of intrinsic interest as probes of the quantum geometry of the Calabi-Yau space.
Fluid/gravity correspondence and the CFM black brane solutions
NASA Astrophysics Data System (ADS)
Casadio, R.; Cavalcanti, R. T.; da Rocha, Roldão
2016-10-01
We consider the lower bound for the shear viscosity-to-entropy density ratio, obtained from the fluid/gravity correspondence, in order to constrain the post-Newtonian parameter of brane-world metrics. In particular, we analyse the Casadio-Fabbri-Mazzacurati (CFM) effective solutions for the gravity side of the correspondence and argue that including higher-order terms in the hydrodynamic expansion can lead to a full agreement with the experimental bounds, for the Eddington-Robertson-Schiff post-Newtonian parameter in the CFM metrics. This lends further support to the physical relevance of the viscosity-to-entropy ratio lower bound and fluid/gravity correspondence. Hence we show that CFM black branes are, effectively, Schwarzschild black branes.
Brane Inflation, Solitons and Cosmological Solutions: I
Chen, P.
2005-01-25
In this paper we study various cosmological solutions for a D3/D7 system directly from M-theory with fluxes and M2-branes. In M-theory, these solutions exist only if we incorporate higher derivative corrections from the curvatures as well as G-fluxes. We take these corrections into account and study a number of toy cosmologies, including one with a novel background for the D3/D7 system whose supergravity solution can be completely determined. Our new background preserves all the good properties of the original model and opens up avenues to investigate cosmological effects from wrapped branes and brane-antibrane annihilation, to name a few. We also discuss in some detail semilocal defects with higher global symmetries, for example exceptional ones, that occur in a slightly different regime of our D3/D7 model. We show that the D3/D7 system does have the required ingredients to realize these configurations as non-topological solitons of the theory. These constructions also allow us to give a physical meaning to the existence of certain underlying homogeneous quaternionic Kahler manifolds.
Localization Issues for Robertson-Walker Branes
NASA Astrophysics Data System (ADS)
Mannheim, Philip D.
2002-07-01
We discuss some of the localization issues associated with the embedding of Robertson-Walker type Randall-Sundrum branes in a bulk AdS5. Specifically, we show that of the branes which are embeddable in AdS5 the geometry associated with M4 and dS4 branes warps away from the brane while that associated with AdS4 and RW branes of any spatial 3-curvature antiwarps away from the brane. We discuss the gravitational fluctuations around an M4 brane and analyze the specific role played by a delta function singularity at the brane. We show how a bulk sine-Gordon scalar field can without any fine-tuning naturally lead to localization of gravity around an M4 brane.
Rapid world modelling from a mobile platform
Barry, R.E.; Jones, J.P.; Little, C.Q.; Wilson, C.W.
1997-04-01
The ability to successfully use and interact with a computerized world model is dependent on the ability to create an accurate world model. The goal of this project was to develop a prototype system to remotely deploy sensors into a workspace, collect surface information, and rapidly build an accurate world model of that workspace. A key consideration was that the workspace areas are typically hazardous environments, where it is difficult or impossible for humans to enter. Therefore, the system needed to be fully remote, with no external connections. To accomplish this goal, an electric, mobile platform with battery power sufficient for both the platform and sensor electronics was procured and 3D range sensors were deployed on the platform to capture surface data within the workspace. A radio Ethernet connection was used to provide communications to the vehicle and all on-board electronics. Video from on-board cameras was also transmitted to the base station and used to teleoperate the vehicle. Range data generated by the on-board 3D sensors was transformed into surface maps, or models. Registering the sensor location to a consistent reference frame as the platform moved through the workspace allowed construction of a detailed 3D world model of the extended workspace.
Cosmic space and Pauli exclusion principle in a system of M0-branes
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; Saridakis, Emmanuel N.; Bamba, Kazuharu; Sepehri, Alireza; Rahaman, Farook; Ali, Ahmed Farag; Pincak, Richard; Pradhan, Anirudh
An emergence of cosmic space has been suggested by Padmanabhan [Emergence and expansion of cosmic space as due to the quest for holographic equipartition, arXiv:hep-th/1206.4916] where he proposed that the expansion of the universe originates from a difference between the number of degrees of freedom on a holographic surface and the one in the emerged bulk. Now, a natural question that arises is how this proposal would explain the production of fermions and an emergence of the Pauli exclusion principle during the evolution of the universe? We try to address this issue in a system of M0-branes. In this model, there is a high symmetry and the system is composed of M0-branes to which only scalar fields are attached that represent scalar modes of the graviton. Then, when M0-branes join each other and hence form M1-branes, this symmetry is broken and gauge fields are formed. Therefore, these M1-branes interact with the anti-M1-branes and the force between them leads to a break of a symmetry such as the lower and upper parts of these branes are not the same. In these conditions, gauge fields which are localized on M1-branes and scalars which are attached to them symmetrically, decay to fermions with upper and lower spins which attach to the upper and lower parts of the M1-branes anti-symmetrically. The curvature produced by the coupling of identical spins has the opposite sign of the curvature produced by non-identical spins which lead to an attractive force between anti-parallel spins and a repelling force between parallel spins and hence an emergence of the Pauli exclusion principle. By approaching M1-branes to each other, the difference between curvatures of parallel spins and curvatures of anti-parallel spins increases, which leads to an inequality between the number of degrees of freedom on the surface and the one in the emerged bulk and hence lead to an occurrence of the cosmic expansion. By approaching M1-branes to each other, the square of the energy of the
Holographic Systematics of D-brane Inflation
Baumann, Daniel; Dymarsky, Anatoly; Kachru, Shamit; Klebanov, Igor R.; McAllister, Liam; /Cornell U., Phys. Dept.
2008-11-05
We provide a systematic treatment of possible corrections to the inflaton potential for D-brane inflation in the warped deformed conifold. We consider the D3-brane potential in the presence of the most general possible corrections to the throat geometry sourced by coupling to the bulk of a compact Calabi-Yau space. This corresponds to the potential on the Coulomb branch of the dual gauge theory, in the presence of arbitrary perturbations of the Lagrangian. The leading contributions arise from perturbations by the most relevant operators that do not destroy the throat geometry. We find a generic contribution from a non-chiral operator of dimension {Delta} = 2 associated with a global symmetry current, resulting in a negative contribution to the inflaton mass-squared. If the Calabi-Yau preserves certain discrete symmetries, this is the dominant correction to the inflaton potential, and fine-tuning of the inflaton mass is possible. In the absence of such discrete symmetries, the dominant contribution comes from a chiral operator with {Delta} = 3/2, corresponding to a {phi}{sup 3/2} term in the inflaton potential. The resulting inflationary models are phenomenologically identical to the inflection point scenarios arising from specific D7-brane embeddings, but occur under far more general circumstances. Our strategy extends immediately to other warped geometries, given sufficient knowledge of the Kaluza-Klein spectrum.
World Energy Projection System Plus Model Documentation: Residential Model
2016-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Residential Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Transportation Model
2011-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) International Transportation model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Coal Model
2011-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Coal Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Natural Gas Model
2011-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Natural Gas Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Main Model
2016-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Main Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Refinery Model
2016-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: District Heat Model
2017-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) District Heat Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Greenhouse Gases Model
2011-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Greenhouse Gases Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
Cai Ronggen; Li Tong; Li Xueqian; Wang Xun
2007-11-15
Motivated by the alpha-magnetic-spectrometer (AMS) project, we assume that after the big bang or inflation epoch, antimatter was repelled onto one brane which is separated from our brane where all the observational matter resides. It is suggested that CP may be spontaneously broken, the two branes would correspond to ground states for matter and antimatter, respectively. Generally a complex scalar field which is responsible for the spontaneous CP violation, exists in the space between the branes. The matter and antimatter on the two branes attract each other via gravitational force, meanwhile the scalar field causes a Casimir effect to result in a repulsive force against the gravitation. We find that the Casimir force is much stronger than the gravitational force, as long as the separation of the two branes is small. Thus at early epoch after the big bang, the two branes were closer and then have been separated by the Casimir repulsive force from each other. The trend will continue until the separation is sufficiently large and then the gravitational force observed in our four-space would obviously deviate from the Newton's universal gravitational law. We suppose that there is a potential barrier at the brane boundary, which is similar to the surface tension for a water membrane. The barrier prevents the matter (antimatter) particles from entering the space between two branes and jump from one brane to another. However, by the quantum tunneling, a sizable antimatter flux may come to our brane and be observed by the AMS. In this work by considering two possible models, i.e. the naive flat space-time and Randall-Sundrum models, and using the observational data on the visible matter in our universe as inputs, we derive the antimatter flux which comes to our detector in the nonrelativistic approximation and make a rough numerical estimate of possible numbers of antihelium at AMS.
Lorentzian and signature changing branes
Mars, Marc; Senovilla, Jose M. M.; Vera, Rauel
2007-08-15
General hypersurface layers are considered in order to describe braneworlds and shell cosmologies. No restriction is placed on the causal character of the hypersurface which may thus have internal changes of signature. Strengthening the results in our previous paper [M. Mars, J. M. M. Senovilla, and R. Vera, Phys. Rev. Lett. 86, 4219 (2001).], we confirm that a good, regular, and consistent description of signature change is achieved in these brane/shells scenarios, while keeping the hypersurface and the bulk completely regular. Our formalism allows for a unified description of the traditional timelike branes/shells together with the signature changing, or pure null, ones. This allows for a detailed comparison of the results in both situations. An application to the case of hypersurface layers in static bulks is presented, leading to the general Robertson-Walker geometry on the layer--with a possible signature change. Explicit examples on anti-de Sitter bulks are then studied. The permitted behaviors in different settings (Z{sub 2}-mirror branes, asymmetric shells, signature changing branes) are analyzed in detail. We show, in particular, that (i) in asymmetric shells there is an upper bound for the energy density, and (ii) that the energy density within the brane vanishes when approaching a change of signature. The description of a signature change as a ''singularity'' seen from within the brane is considered. We also find new relations between the fundamental constants in the brane/shell, its tension, and the cosmological and gravitational constants of the bulk, independently of the existence or not of a change of signature.
Sp-branes: integrable multidimensional cosmologies
NASA Astrophysics Data System (ADS)
Baukh, V.; Zhuk, A.
2006-10-01
We investigate time-dependent solutions (Sp-brane solutions) for product manifolds consisting of factor spaces where only one of them is of a non-Ricci-flat type. Our model contains a minimally coupled free scalar field and form field (flux) as matter sources. We discuss the possibility of generating late-time acceleration of the Universe. For these models, we investigate the variation with time of the effective four-dimensional fundamental 'constants'. We show that experimental bounds for the fundamental constant variations apply strong restrictions to the considered models.
Brane induced gravity, its ghost and the cosmological constant problem
Hassan, S.F.; Strauss, Mikael von; Hofmann, Stefan E-mail: stefan.hofmann@physik.lmu.de
2011-01-01
''Brane Induced Gravity'' is regarded as a promising framework for addressing the cosmological constant problem, but it also suffers from a ghost instability for parameter values that make it phenomenologically viable. We carry out a detailed analysis of codimension > 2 models employing gauge invariant variables in a flat background approximation. It is argued that using instead a curved background sourced by the brane would not resolve the ghost issue, unless a very specific condition is satisfied (if satisfiable at all). As for other properties of the model, from an explicit analysis of the 4-dimensional graviton propagator we extract a mass, a decay width and a momentum dependent modification of the gravitational coupling for the spin 2 mode. In the flat space approximation, the mass of the problematic spin 0 ghost is instrumental in filtering out a brane cosmological constant. The mass replaces a background curvature that would have had the same function. The optical theorem is used to demonstrate the suppression of graviton leakage into the uncompactified bulk. Then, we derive the 4-dimensional effective action for gravity and show that general covariance is spontaneously broken by the bulk-brane setup. This provides a natural realization of the gravitational Higgs mechanism. We also show that the addition of extrinsic curvature dependent terms has no bearing on linearized brane gravity.
Inner brane: A D3-brane in Nappi-Witten space from an inner automorphism
NASA Astrophysics Data System (ADS)
Cheung, Yeuk-Kwan E.; Freidel, Laurent
2009-06-01
Wess-Zumino-Witten (WZW) models are abstract conformal field theories with an infinite-dimensional symmetry which accounts for their integrability, and at the same time they have a sigma-model description of closed-string propagation on group manifolds which, in turn, endows the models with an intuitive geometric meaning. We exploit this dual algebraic and geometric property of WZW models to construct an explicit example of a field-dependent reflection matrix for open strings in the Nappi-Witten model. Demanding the momentum outflow at the boundary to be zero determines a certain combination of the left and right chiral currents at the boundary. This same reflection matrix is obtained algebraically from an inner automorphism, giving rise to a space-filling D-brane. Half of the infinite-dimensional affine Kac-Moody symmetry present in the closed-string theory is preserved by this unique combination of the left and the right chiral currents. The operator-product expansions of these boundary currents are computed explicitly and they are shown to obey the same current algebra as those of the closed-string chiral currents. Different choices of the inner automorphisms correspond to different background gauge field configurations. Only those B-field configurations, and the corresponding D-branes, that preserve the diagonal part of the infinite-dimensional chiral algebras are allowed. In this way the existence of the D-branes in curved spaces is further constrained by the underlying symmetry of the ambient spacetime.
Microscopic entropy of nondilatonic branes: A 2D approach
NASA Astrophysics Data System (ADS)
Cadoni, Mariano; Serra, Nicola
2004-12-01
We investigate nondilatonic p-branes in the near-extremal, near-horizon regime. A two-dimensional gravity model, obtained from dimensional reduction, gives an effective description of the brane. We show that the AdSp+2/CFTp+1 correspondence at finite temperature admits an effective description in terms of a AdS2/CFT1 duality endowed with a scalar field, which breaks the conformal symmetry and generates a nonvanishing central charge. The entropy of the CFT1 is computed using Cardy formula. Fixing in a natural way a free, dimensionless, parameter introduced in the model by a renormalization procedure, we find exact agreement between the CFT1 entropy and the Bekenstein-Hawking entropy of the brane.
Validating agent based models through virtual worlds.
Lakkaraju, Kiran; Whetzel, Jonathan H.; Lee, Jina; Bier, Asmeret Brooke; Cardona-Rivera, Rogelio E.; Bernstein, Jeremy Ray Rhythm
2014-01-01
As the US continues its vigilance against distributed, embedded threats, understanding the political and social structure of these groups becomes paramount for predicting and dis- rupting their attacks. Agent-based models (ABMs) serve as a powerful tool to study these groups. While the popularity of social network tools (e.g., Facebook, Twitter) has provided extensive communication data, there is a lack of ne-grained behavioral data with which to inform and validate existing ABMs. Virtual worlds, in particular massively multiplayer online games (MMOG), where large numbers of people interact within a complex environ- ment for long periods of time provide an alternative source of data. These environments provide a rich social environment where players engage in a variety of activities observed between real-world groups: collaborating and/or competing with other groups, conducting battles for scarce resources, and trading in a market economy. Strategies employed by player groups surprisingly re ect those seen in present-day con icts, where players use diplomacy or espionage as their means for accomplishing their goals. In this project, we propose to address the need for ne-grained behavioral data by acquiring and analyzing game data a commercial MMOG, referred to within this report as Game X. The goals of this research were: (1) devising toolsets for analyzing virtual world data to better inform the rules that govern a social ABM and (2) exploring how virtual worlds could serve as a source of data to validate ABMs established for analogous real-world phenomena. During this research, we studied certain patterns of group behavior to compliment social modeling e orts where a signi cant lack of detailed examples of observed phenomena exists. This report outlines our work examining group behaviors that underly what we have termed the Expression-To-Action (E2A) problem: determining the changes in social contact that lead individuals/groups to engage in a particular behavior
Ostrogradski Hamiltonian approach for geodetic brane gravity
Cordero, Ruben; Molgado, Alberto
2010-12-07
We present an alternative Hamiltonian description of a branelike universe immersed in a flat background spacetime. This model is named geodetic brane gravity. We set up the Regge-Teitelboim model to describe our Universe where such field theory is originally thought as a second order derivative theory. We refer to an Ostrogradski Hamiltonian formalism to prepare the system to its quantization. This approach comprize the manage of both first- and second-class constraints and the counting of degrees of freedom follows accordingly.
Fermion localization on thick branes
Melfo, Alejandra; Pantoja, Nelson; Tempo, Jose David
2006-02-15
We consider chiral fermion confinement in scalar thick branes, which are known to localize gravity, coupled through a Yukawa term. The conditions for the confinement and their behavior in the thin-wall limit are found for various different BPS branes, including double walls and branes interpolating between different AdS{sub 5} spacetimes. We show that only one massless chiral mode is localized in all these walls, whenever the wall thickness is keep finite. We also show that, independently of wall's thickness, chiral fermionic modes cannot be localized in dS{sub 4} walls embedded in a M{sub 5} spacetime. Finally, massive fermions in double wall spacetimes are also investigated. We find that, besides the massless chiral mode localization, these double walls support quasilocalized massive modes of both chiralities.
Degenerate and critical Bloch branes
Souza Dutra, A. de; Amaro de Faria, A. C. Jr.; Hott, M.
2008-08-15
In the last few years a number of works reported the appearance of thick branes with internal structure, induced by the parameter which controls the interaction between two scalar fields coupled to gravity in (4,1) dimensions in warped space-time with one extra dimension. Here we show that one can implement the control over the brane thickness without needing to change the potential parameter. On the contrary, this is going to be done by means of the variation of a parameter associated with the domain wall degeneracy. We also report the existence of novel and qualitatively different solutions for a critical value of the degeneracy parameter, which could be called critical Bloch branes.
NASA Astrophysics Data System (ADS)
Pejhan, Hamed; Rahbardehghan, Surena
2016-09-01
In a previous work [S. Rahbardehghan and H. Pejhan, Phys. Lett. B 750, 627 (2015)], we considered a simple brane-world model: a single four-dimensional brane embedded in a five-dimensional de Sitter (dS) space-time. Then, by including a conformally coupled scalar field in the bulk, we studied the induced Casimir energy-momentum tensor. Technically, the Krein-Gupta-Bleuler quantization scheme as a covariant and renormalizable quantum field theory in dS space was used to perform the calculations. In the present paper, we generalize this study to a less idealized, but physically motivated, scenario; namely, we consider Friedmann-Robertson-Walker (FRW) space-time which behaves asymptotically as a dS space-time. More precisely, we evaluate a Casimir energy-momentum tensor for a system with two D -dimensional curved branes on background of D +1 -dimensional FRW space-time with negative spatial curvature and a conformally coupled bulk scalar field that satisfied the Dirichlet boundary condition on the branes.
NASA Astrophysics Data System (ADS)
Kofinas, Georgios; Irakleidou, Maria
2014-03-01
We raise on theoretical grounds the question of the physical relevance of Israel matching conditions and their generalizations to higher codimensions, the standard cornerstone of the braneworld and other membrane scenarios. Our reasoning is based on the incapability of the conventional matching conditions to accept the Nambu-Goto probe limit, the inconsistency of codimension-2 and -3 classical defects for D=4 and the probable inconsistency of high enough codimensional defects for any D since there is no high enough Lovelock density to support them. We propose alternative matching conditions which seem to overcome the previous puzzles. Instead of varying the brane-bulk action with respect to the bulk metric at the brane position, we vary with respect to the brane embedding fields so that the gravitational backreaction is included ("gravitating Nambu-Goto matching conditions"). Here, we consider in detail the case of a codimension-2 brane in 6-dim Einstein-Gauss-Bonnet gravity, prove its consistency for an axially symmetric cosmological configuration and show that the theory possesses richer structure compared to the standard theory. The cosmologies found have the Friedmann behavior and extra correction terms. For a radiation brane one solution avoids a cosmological singularity and undergoes accelerated expansion near the minimum scale factor. In the presence of an induced gravity term, there naturally appears in the theory the effective cosmological constant scale λ /(M64rc2), which for a brane tension λ ˜M64 (e.g. TeV4) and rc˜H0-1 gives the observed value of the cosmological constant.
NASA Astrophysics Data System (ADS)
Koivisto, Tomi Sebastian; Wills, Danielle Elizabeth
2013-10-01
A novel generalization of the Dirac-Born-Infeld string scenario is described. It is shown that matter residing on the moving brane is dark and has the so-called disformal coupling to gravity. This gives rise to cosmologies where dark matter stems from the oscillations of the open strings along the brane and the transverse oscillations result in dark energy. Furthermore, due to a new screening mechanism that conceals the fifth force from local experiments, one may even entertain the possibility that the visible sector is also moving along the extra dimensions.
Lifshitz hydrodynamics from Lifshitz black branes with linear momentum
NASA Astrophysics Data System (ADS)
Hartong, Jelle; Obers, Niels A.; Sanchioni, Marco
2016-10-01
We construct a new class of 4-dimensional z = 2 Lifshitz black branes that have a non-zero linear momentum. These are solutions of an Einstein-Proca-dilaton model that can be obtained by Scherk-Schwarz circle reduction of AdS5 gravity coupled to a free real scalar field. The boundary of a bulk Lifshitz space-time is a Newton-Cartan geometry. We show that the fluid dual to the moving Lifshitz black brane leads to a novel form of Lifshitz hydrodynamics on a Newton-Cartan space-time. Since the linear momentum of the black brane cannot be obtained by a boost transformation the velocity of the fluid or rather, by boundary rotational invariance, its magnitude plays the role of a chemical potential. The conjugate dual variable is mass density. The Lifshitz perfect fluid can be thought of as arising from a Schrödinger perfect fluid with broken particle number symmetry.
D-brane Anti-brane Annihilation in an Expanding Universe
NASA Astrophysics Data System (ADS)
Majumdar, Mahbub; Davis, Anne-Christine
2003-12-01
The time-varying density of D-branes and anti-D-branes in an expanding universe is calculated. The D-brane anti-brane annihilation rate is shown to be too small to compete with the expansion rate of a FRW type universe and the branes over-close the universe. This brane problem is analogous to the old monopole problem. Interestingly however, it is shown that small dimension D-branes annihilate more slowly than high dimension branes. Hence, an initially brany universe may be filled with only low dimension branes at late times. When combined with an appropriate late inflationary theory this leads to an attractive dynamical way to create a realistic braneworld scenario.
Branes in Extended Spacetime: Brane Worldvolume Theory Based on Duality Symmetry.
Sakatani, Yuho; Uehara, Shozo
2016-11-04
We propose a novel approach to the brane worldvolume theory based on the geometry of extended field theories: double field theory and exceptional field theory. We demonstrate the effectiveness of this approach by showing that one can reproduce the conventional bosonic string and membrane actions, and the M5-brane action in the weak-field approximation. At a glance, the proposed 5-brane action without approximation looks different from the known M5-brane actions, but it is consistent with the known nonlinear self-duality relation, and it may provide a new formulation of a single M5-brane action. Actions for exotic branes are also discussed.
Modelling ecological systems in a changing world.
Evans, Matthew R
2012-01-19
The world is changing at an unprecedented rate. In such a situation, we need to understand the nature of the change and to make predictions about the way in which it might affect systems of interest; often we may also wish to understand what might be done to mitigate the predicted effects. In ecology, we usually make such predictions (or forecasts) by making use of mathematical models that describe the system and projecting them into the future, under changed conditions. Approaches emphasizing the desirability of simple models with analytical tractability and those that use assumed causal relationships derived statistically from data currently dominate ecological modelling. Although such models are excellent at describing the way in which a system has behaved, they are poor at predicting its future state, especially in novel conditions. In order to address questions about the impact of environmental change, and to understand what, if any, action might be taken to ameliorate it, ecologists need to develop the ability to project models into novel, future conditions. This will require the development of models based on understanding the processes that result in a system behaving the way it does, rather than relying on a description of the system, as a whole, remaining valid indefinitely.
World Energy Projection System Plus Model Documentation: Industrial Module
2016-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Industrial Model (WIM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
D-branes and coherent topological charge structure in QCD
NASA Astrophysics Data System (ADS)
Thacker, Hank
2006-12-01
Monte Carlo studies of pure glue SU(3) gauge theory using the overlap-based topological charge operator have revealed a laminar structure in the QCD vacuum consisting of extended, thin, co- herent, locally 3-dimensional sheets of topological charge embedded in 4D space, with opposite sign sheets interleaved. Studies of localization properties of Dirac eigenmodes have also shown evidence for the delocalization of low-lying modes on effectively 3-dimensional surfaces. In this talk, I review some theoretical ideas which suggest the possibility of 3-dimensionally coherent topological charge structure in 4-dimensional gauge theory and provide a possible interpretation of the observed structure. I begin with Luscher's "Wilson bag" integral over the 3-index Chern- Simons tensor. The analogy with a Wilson loop as a charged world line in 2-dimensional CP N-1 sigma models suggests that the Wilson bag surface represents the world volume of a physical membrane. The large-N chiral Lagrangian arguments of Witten also indicate the existence of multiple "k-vacuum" states with discontinuous transitions between k-vacua at θ = odd multi- ples of π. The domain walls between these vacua have the properties of a Wilson bag surface. Finally, I review the AdS/CFT duality view of θ dependence in QCD. The dual realtionship be- tween topological charge in gauge theory and Ramond-Ramond charge in type IIA string theory suggests that the coherent topological charge sheets observed on the lattice are the holographic image of wrapped D6 branes.
A 10-form gauge potential and an M-9-brane Wess-Zumino action in massive 11D theory
NASA Astrophysics Data System (ADS)
Sato, T.
2000-03-01
We discuss some properties of an M-9-brane in ``massive 11D theory'' proposed by Bergshoeff, Lozano and Ortin. A 10-form gauge potential is consistently introduced into the massive 11D supergravity, and an M-9-brane Wess-Zumino action is constructed as that of a gauged /σ-model. Using duality relations is crucial in deriving the action, which we learn from the study of a 9-form potential in 10D massive IIA theory. A target space solution of an M-9-brane with a non-vanishing 10-form gauge field is also obtained, whose source is shown to be the M-9-brane effective action.
D0- and D1-branes with κ- and κ+ extended symmetry
NASA Astrophysics Data System (ADS)
Moshe, Moshe; Sakai, Norisuke
2000-10-01
D0-brane (D-particle) and D1-brane actions possess first and second class constraints that result in local κ symmetry. The κ symmetry of the D-particle and the D1-brane is extended here into a larger symmetry (κ- and κ+) in a larger phase space by turning second class constraints into first class constraints. Different gauge fixings of these symmetries result in different presentations of these systems while a ``unitary'' gauge fixing of the new κ+ symmetry retrieves the original action with κ-=κ symmetry. For a D1-brane our extended phase space makes all constraints into first class constraints in the case of a vanishing world sheet electric field [namely, (0,1) string].
World Energy Projection System model documentation
Hutzler, M.J.; Anderson, A.T.
1997-09-01
The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.
Sound waves in the compactified D0-D4 brane system
NASA Astrophysics Data System (ADS)
Cai, Wenhe; Li, Si-wen
2016-09-01
As an extension to our previous work, we study the transport properties of the Witten-Sakai-Sugimoto model in the black D4-brane background with smeared D0 branes (D0-D4/D8 system). Because of the presence of the D0 branes, in the bubble configuration, this model is holographically dual to four-dimensional QCD or Yang-Mills theory with a Chern-Simons term, and the number density of the D0 branes corresponds to the coupling constant (θ angle) of the Chern-Simons term in the dual field theory. In this paper, we accordingly focus on the small number density of the D0 branes to study the sound mode in the black D0-D4 brane system since the coupling of the Chern-Simons term should be quite weak in QCD. Then, we derive its five-dimensional effective theory and analytically compute the speed of sound and the sound wave attenuation in the approach of gauge/gravity duality. Our result shows the speed of sound and the sound wave attenuation are modified by the presence of the D0 branes. Thus, they depend on the θ angle or chiral potential in this holographic description.
Zero branes on a compact orbifold
NASA Astrophysics Data System (ADS)
Ramgoolam, Sanjaye; Waldram, Daniel
1998-07-01
The non-commutative algebra which defines the theory of zero-branes on T4/Z2 allows a unified description of moduli spaces associated with zero-branes, two-branes and four-branes on the orbifold space. Bundles on a dual space hat T4/Z2 play an important role in this description. We discuss these moduli spaces in the context of dualities of K3 compactifications, and in terms of properties of instantons on T4. Zero-branes on the degenerate limits of the compact orbifold lead to fixed points with six-dimensional scale but not conformal invariance. We identify some of these in terms of the ADS dual of the (0,2) theory at large N, giving evidence for an interesting picture of ``where the branes live'' in ADS.
Warm World Ocean Thermohaline Circulation Model
NASA Astrophysics Data System (ADS)
Zimov, N.; Zimov, S. A.
2014-12-01
Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic, filling the ocean interior with cold and heavy water. However, ocean circulation diminished during the last glaciation and consequently the downwelling of the cold. Therefore interior ocean water temperatures must have been affected by other mechanisms which are negligible in the current state. We propose that the submergence of highly saline water from warm seas with high rates of evaporation (like the Red or Mediterranean Sea) was a major factor controlling ocean circulation during the last glaciation. Even today, waters in these poorly connected seas are the heaviest waters in the World ocean (1.029 g/cm3). The second mechanism affecting ocean temperature is the geothermal heat flux. With no heat exchange between the atmosphere and the ocean, geothermal heat flux through the ocean floor is capable of increasing ocean temperature by tens of degrees C over a 100 thousand year glacial cycle. To support these hypotheses we present an ocean box model that describes thermohaline circulation in the World Ocean. According to the model parameters, all water circulation is driven by the water density gradient. Boxes include high-latitude seas, high salinity seas, surface ocean, glaciers, and rift and lateral zones of the ocean interior. External heat sources are radiative forcing, affected by Milankovich cycles, and geothermal heat flux. Additionally this model accounts for the heat produced by organic rain decay. Taking all input parameters close to currently observed values, the model manages to recreate the glacial-interglacial cycles. During the glacial periods only haline circulation takes place, the ocean is strongly stratified, and the interior ocean accumulates heat while high-latitudes accumulate ice. 112,000 years after glaciation starts, water density on the ocean bottom becomes equal to the density of water in high-latitude seas, strong thermal
Cosmology from quantum potential in brane-anti-brane system
NASA Astrophysics Data System (ADS)
Sepehri, Alireza
2015-09-01
Recently, some authors removed the big-bang singularity and predicted an infinite age of our universe. In this paper, we show that the same result can be obtained in string theory and M-theory; however, the shape of universe changes in different epochs. In our mechanism, first, N fundamental string decay to N D0-anti-D0-brane. Then, D0-branes join each other, grow and form a six-dimensional brane-antibrane system. This system is unstable, broken and at present the form of four-dimensional universes, one anti-universe in addition to one wormhole are produced. Thus, there isn't any big-bang in cosmology and the universe is a fundamental string at the beginning. Also, the total age of universe contains two parts, one is related to initial age and the other corresponds to the present age of universe (ttot =tinitial +tpresent). On the other hand, the initial age of universe includes two parts, the age of fundamental string and the time of transition (tinitial =ttransition +tf-string). We observe that only in the case of (tf-string → ∞), the scale factor of universe is zero and as a result, the total age of universe is infinity.
Localizing gravity on exotic thick 3-branes
Castillo-Felisola, Oscar; Melfo, Alejandra; Pantoja, Nelson; Ramirez, Alba
2004-11-15
We consider localization of gravity on thick branes with a nontrivial structure. Double walls that generalize the thick Randall-Sundrum solution, and asymmetric walls that arise from a Z{sub 2} symmetric scalar potential, are considered. We present a new asymmetric solution: a thick brane interpolating between two AdS{sub 5} spacetimes with different cosmological constants, which can be derived from a 'fake supergravity' superpotential, and show that it is possible to confine gravity on such branes.
Black hole microstates from branes at angle
NASA Astrophysics Data System (ADS)
Pieri, Lorenzo
2017-07-01
We derive the leading g s perturbation of the SUGRA fields generated by a supersymmetric configuration of respectively 1, 2 or 4 D3-branes intersecting at an arbitrary angle via the computation of the string theory disk scattering amplitude of one massless NSNS field interacting with open strings stretched between the branes. The configuration with four branes is expected to be relevant for black hole microstate counting in four dimensions.
Spinflation and Cycling Branes in Warped Throats
Easson, Damien A.
2007-11-20
The implications of brane motion in angular directions of Calabi-Yau flux compactifications is discussed from the point of view of an observer living on the worldvolume of such a brane and from the point of view of an observer living elsewhere in the three non-compact dimensions. The brane observer experiences cosmological bounces and cyclic behavior induced by centrifugal angular momentum barriers. Observers living elsewhere in the compactification experience marginally prolonged periods of inflation due to large angular momentum.
NASA Astrophysics Data System (ADS)
Sepehri, Alireza; Rahaman, Farook; Capozziello, Salvatore; Ali, Ahmed Farag; Pradhan, Anirudh
Recently, it has been suggested in [S. Chakraborty and N. Dadhich, Brown-York quasilocal energy in Lanczos-Lovelock gravity and black hole horizons, J. High Energ. Phys. 12 (2015) 003.] that the Brown-York mechanism can be used to measure the quasilocal energy in Lovelock gravity. We have used this method in a system of M0-branes and show that the Brown-York energy evolves in the process of birth and growth of Lovelock gravity. This can help us to predict phenomenological events which are emerged as due to dynamical structure of Lovelock gravity in our universe. In this model, first, M0-branes join each other and form an M3-brane and an anti-M3-branes connected by an M2-brane. This system is named BIon. Universes and anti-universes live on M3-branes and M2 plays the role of wormhole between them. By passing time, M2 dissolves in M3’s and nonlinear massive gravities like Lovelock massive gravity emerges and grows. By closing M3-branes, BIon evolves and wormhole between branes makes a transition to black hole. During this stage, Brown-York energy increases and shrinks to large values at the colliding points of branes. By approaching M3-branes towards each other, the square energy of their system becomes negative and some tachyonic states are produced. To remove these states, M3-branes compact, the sign of compacted gravity changes, anti-gravity is created which leads to getting away of branes from each other. Also, the Lovelock gravity disappears and its energy forms a new M2 between M3-branes. By getting away of branes from each other, Brown-York energy decreases and shrinks to zero.
Nernst branes from special geometry
NASA Astrophysics Data System (ADS)
Dempster, P.; Errington, D.; Mohaupt, T.
2015-05-01
We construct new black brane solutions in U(1) gauged N = 2 supergravity with a general cubic prepotential, which have entropy density s ˜ T 1/3 as T → 0 and thus satisfy the Nernst Law. By using the real formulation of special geometry, we are able to obtain analytical solutions in closed form as functions of two parameters, the temperature T and the chemical potential μ. Our solutions interpolate between hyperscaling violating Lifshitz geometries with ( z, θ) = (0 , 2) at the horizon and ( z, θ) = (1 , -1) at infinity. In the zero temperature limit, where the entropy density goes to zero, we recover the extremal Nernst branes of Barisch et al, and the parameters of the near horizon geometry change to ( z, θ) = (3 , 1).
Statistical mechanics of multiply wound D-branes
NASA Astrophysics Data System (ADS)
Polhemus, Gavin
1997-08-01
The D-brane counting of black hole entropy is commonly understood in terms of excitations carrying fractional charges living on long, multiply wound branes (e.g., open strings with fractional Kaluza-Klein momentum). This paper addresses why the branes become multiply wound. Since multiply wound branes are T dual to branes evenly spaced around the compact dimension, this tendency for branes to become multiply wound can be seen as an effective repulsion between branes in the T-dual picture. We also discuss how the fractional charges on multiply wound branes conspire to always form configurations with integer charge.
Inflation from D-D¯ brane annihilation
NASA Astrophysics Data System (ADS)
Alexander, Stephon H.
2002-01-01
We demonstrate that the initial conditions for inflation are met when a D5-D¯5 brane annihilates. This scenario uses Sen's conjecture that a codimension two vortex forms on the worldvolume of the annihilated 5-brane system. Analogous to a ``big bang,'' when the five branes annihilate, a vortex localized on a 3-brane forms and its false vacuum energy generates an inflationary space-time. We also provide two possible mechanisms for ending inflation via the decay of a metastable vortex, or radiation of the cosmological constant into the bulk space-time.
Cosmological dynamics of brane f(R) gravity
Haghani, Zahra; Sepangi, Hamid Reza; Shahidi, Shahab E-mail: hr-sepangi@sbu.ac.ir
2012-02-01
The cosmological dynamics of a brane world scenario where the bulk action is taken as a generic function of the Ricci scalar is considered in a framework where the use of the Z{sub 2} symmetry and Israel junction conditions are relaxed. The corresponding cosmological solutions for some specific forms of f(R) are obtained and shown to be in the form of exponential as well as power law for a vacuum brane space-time. It is shown that the existence of matter dominated epoch for a bulk action in the form of a power law for R can only be obtained in the presence of ordinary matter. Using phase space analysis, we show that the universe must start from an unstable matter dominated epoch and eventually falls into a stable accelerated expanding phase.
Black branes in flux compactifications
Torroba, Gonzalo; Wang, Huajia
2013-10-01
We construct charged black branes in type IIA flux compactifications that are dual to (2 + 1)-dimensional field theories at finite density. The internal space is a general Calabi-Yau manifold with fluxes, with internal dimensions much smaller than the AdS radius. Gauge fields descend from the 3-form RR potential evaluated on harmonic forms of the Calabi-Yau, and Kaluza-Klein modes decouple. Black branes are described by a four-dimensional effective field theory that includes only a few light fields and is valid over a parametrically large range of scales. This effective theory determines the low energy dynamics, stability and thermodynamic properties. Tools from flux compactifications are also used to construct holographic CFTs with no relevant scalar operators, that can lead to symmetric phases of condensed matter systems stable to very low temperatures. The general formalism is illustrated with simple examples such as toroidal compactifications and manifolds with a single size modulus. We initiate the classification of holographic phases of matter described by flux compactifications, which include generalized Reissner-Nordstrom branes, nonsupersymmetric AdS_{2}×R^{2} and hyperscaling violating solutions.
Supersymmetric Intersecting Branes on the Type IIA T6/Bbb Z4 Orientifold
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Görlich, Lars; Ott, Tassilo
2003-01-01
We study supersymmetric intersecting D6-branes wrapping 3-cycles in the Type IIA T6/Z4 orientifold background. As a new feature, the 3-cycles in this orbifold space arise both from the untwisted and the Z2 twisted sectors. We present an integral basis for the homology lattice, H3(M,Z), in terms of fractional 3-cycles, for which the intersection form involves the Cartan matrix of E8. We show that these fractional D6-branes can be used to construct supersymmetric brane configurations realizing a three generation Pati-Salam model. Via brane recombination processes preserving supersymmetry, this GUT model can be broken down to a standard-like model.
Marginal fluctuations as instantons on M2/D2-branes
NASA Astrophysics Data System (ADS)
Naghdi, M.
2014-03-01
We introduce some (anti-) M/D-branes through turning on the corresponding field strengths of the 11- and 10-dimensional supergravity theories over spaces, where we use and for the internal spaces. Indeed, when we add M2/D2-branes on the same directions with the near horizon branes of the Aharony-Bergman-Jafferis-Maldacena model, all symmetries and supersymmetries are preserved trivially. In this case, we obtain a localized object just in the horizon. This normalizable bulk massless scalar mode is a singlet of and , and it agrees with a marginal boundary operator of the conformal dimension of . However, after performing a special conformal transformation, we see that the solution is localized in the Euclideanized space and is attributable to the included anti-M2/D2-branes, which are also necessary to ensure that there is no back-reaction. The resultant theory now breaks all supersymmetries to , while the other symmetries are so preserved. The dual boundary operator is then set up from the skew-whiffing of the representations and for the supercharges and scalars, respectively, while the fermions remain fixed in of the original theory. Besides, we also address another alternate bulk to boundary matching procedure through turning on one of the gauge fields of the full gauge group along the same lines with a similar situation to the one faced in the AdS/CFT correspondence. The latter approach covers the difficulty already faced with in the bulk-boundary matching procedure for as well.
Teleparallel loop quantum cosmology in a system of intersecting branes
NASA Astrophysics Data System (ADS)
Sepehri, Alireza; Pradhan, Anirudh; Beesham, Aroonkumar; de Haro, Jaume
2016-09-01
Recently, some authors have removed the big bang singularity in teleparallel Loop Quantum Cosmology (LQC) and have shown that the universe may undergo a number of oscillations. We investigate the origin of this type of teleparallel theory in a system of intersecting branes in M-theory in which the angle between them changes with time. This system is constructed by two intersecting anti-D8-branes, one compacted D4-brane and a D3-brane. These branes are built by joining M0-branes which develop in decaying fundamental strings. The compacted D4-brane is located between two intersecting anti-D8 branes and glues to one of them. Our universe is located on the D3 brane which wraps around the D4 brane from one end and sticks to one of the anti-D8 branes from the other one. In this system, there are three types of fields, corresponding to compacted D4 branes, intersecting branes and D3-branes. These fields interact with each other and make the angle between branes oscillate. By decreasing this angle, the intersecting anti-D8 branes approach each other, the D4 brane rolls, the D3 brane wraps around the D4 brane, and the universe contracts. By separating the intersecting branes and increasing the angle, the D4 brane rolls in the opposite direction, the D3 brane separates from it and the expansion branch begins. Also, the interaction between branes in this system gives us the exact form of the relevant Lagrangian for teleparallel LQC.
Dirichlet branes and nonperturbative aspects of supersymmetric string and gauge theories
Yin, Zheng
1998-05-01
In chapter 1 the author reviews some elements of string theory relevant to the rest of this report. He touches on both the classical, i.e. perturbative, string physics before D-branes rise to prominence, and some of the progresses they brought forth. In chapter 2 he proceeds to give an exact algebraic formulation of D-branes in curved spaces. This allows one to classify them in backgrounds of interest and study their geometric properties. He applies this formalism to string theory on Calabi-Yau and other supersymmetry preserving manifolds. Then he studies the behavior of the D-branes under mirror symmetry in chapter 3. Mirror symmetry is known to be a symmetry of string theory perturbatively. He finds evidence for its nonperturbative validity when D-branes are also considered and compute some dynamical consequences. In chapter 4 he turns to examine the consistency of curved and/or intersecting D-brane configurations. They have been used recently to extract information about the field theories that arise in certain limits. It turns out that there are potential quantum mechanical inconsistencies associated with them. What saves the day are certain subtle topological properties of D-branes. This resolution has implications for the conserved charges carried by the D-branes, which he computes for the cases studied in chapter 2. In chapter 5 he uses intersecting brane configurations to study three dimensional supersymmetric gauge theories. There is also a mirror symmetry there that, among other things, exchanges classical and quantum mechanical quantities of a (mirror) pair of theories. It has an elegant realization in term of a symmetry of string theory involving D-branes. The author employs it to study a wide class of 3d models. He also predicts new mirror pairs and unconventional 3d field theories without Lagrangian descriptions.
World water dynamics: global modeling of water resources.
Simonovic, Slobodan P
2002-11-01
The growing scarcity of fresh and clean water is among the most important issues facing civilization in the 21st century. Despite the growing attention to a chronic, pernicious crisis in world's water resources our ability to correctly assess and predict global water availability, use and balance is still quite limited. An attempt is documented here in modeling global world water resources using system dynamics approach. Water resources sector (quantity and quality) is integrated with five sectors that drive industrial growth: population; agriculture; economy; nonrenewable resources; and persistent pollution. WorldWater model is developed on the basis of the last version of World3 model. Simulations of world water dynamics with WorldWater indicate that there is a strong relationship between the world water resources and future industrial growth of the world. It is also shown that the water pollution is the most important future water issue on the global level.
Sensory processing and world modeling for an active ranging device
NASA Technical Reports Server (NTRS)
Hong, Tsai-Hong; Wu, Angela Y.
1991-01-01
In this project, we studied world modeling and sensory processing for laser range data. World Model data representation and operation were defined. Sensory processing algorithms for point processing and linear feature detection were designed and implemented. The interface between world modeling and sensory processing in the Servo and Primitive levels was investigated and implemented. In the primitive level, linear features detectors for edges were also implemented, analyzed and compared. The existing world model representations is surveyed. Also presented is the design and implementation of the Y-frame model, a hierarchical world model. The interfaces between the world model module and the sensory processing module are discussed as well as the linear feature detectors that were designed and implemented.
World Energy Projection System Plus Model Documentation: Commercial Model
2016-01-01
The Commercial Model of the World Energy Projection System Plus (WEPS ) is an energy demand modeling system of the world commercial end?use sector at a regional level. This report describes the version of the Commercial Model that was used to produce the commercial sector projections published in the International Energy Outlook 2016 (IEO2016). The Commercial Model is one of 13 components of the WEPS system. The WEPS is a modular system, consisting of a number of separate energy models that are communicate and work with each other through an integrated system model. The model components are each developed independently, but are designed with well?defined protocols for system communication and interactivity. The WEPS modeling system uses a shared database (the “restart” file) that allows all the models to communicate with each other when they are run in sequence over a number of iterations. The overall WEPS system uses an iterative solution technique that forces convergence of consumption and supply pressures to solve for an equilibrium price.
From local to global in F-theory model building
NASA Astrophysics Data System (ADS)
Andreas, Björn; Curio, Gottfried
2010-09-01
When locally engineering F-theory models some D7-branes for the gauge group factors are specified and matter is localized on the intersection curves of the compact parts of the world-volumes. In this note, we discuss to what extent one can draw conclusions about F-theory models by just restricting the attention locally to a particular seven-brane. Globally, the possible D7-branes are not independent from each other and the (compact part of the) D7-brane can have unavoidable intrinsic singularities. Many special intersecting loci which were not chosen by hand occur inevitably, notably codimension-three loci which are not intersections of matter curves. We describe these complications specifically in a global SU(5) model and also their impact on the tadpole cancellation condition.
Standard 4D gravity on a brane in six-dimensional flux compactifications
NASA Astrophysics Data System (ADS)
Peloso, Marco; Sorbo, Lorenzo; Tasinato, Gianmassimo
2006-05-01
We consider a six-dimensional space-time, in which two of the dimensions are compactified by a flux. Matter can be localized on a codimension one brane coupled to the bulk gauge field and wrapped around an axis of symmetry of the internal space. By studying the linear perturbations around this background, we show that the gravitational interaction between sources on the brane is described by Einstein 4D gravity at large distances. Our model provides a consistent setup for the study of gravity in the rugby (or football) compactification, without having to deal with the complications of a deltalike, codimension two brane. To our knowledge, this is the first complete study of gravity in a realistic brane model with two extra dimensions, in which the mechanism of stabilization of the extra space is fully taken into account.
Standard 4D gravity on a brane in six-dimensional flux compactifications
Peloso, Marco; Sorbo, Lorenzo; Tasinato, Gianmassimo
2006-05-15
We consider a six-dimensional space-time, in which two of the dimensions are compactified by a flux. Matter can be localized on a codimension one brane coupled to the bulk gauge field and wrapped around an axis of symmetry of the internal space. By studying the linear perturbations around this background, we show that the gravitational interaction between sources on the brane is described by Einstein 4D gravity at large distances. Our model provides a consistent setup for the study of gravity in the rugby (or football) compactification, without having to deal with the complications of a deltalike, codimension two brane. To our knowledge, this is the first complete study of gravity in a realistic brane model with two extra dimensions, in which the mechanism of stabilization of the extra space is fully taken into account.
Improvements in Empirical Modelling of the World-Wide Ionosphere
1986-10-31
OF THE WORLD -’WIDE IONOSPHIERE.I Prof. Kurt Suchy Inst. f. Theor. Physik 11...ELEMENT NO. NO. NO ACCESSION NO 62101F 4643 08 11. TITLE (Andude Secu ty Clauiflcation) IMPROVEMENTS IN EMPIRICAL MODELLING OF THE WORLD -WIDE IONOSPHERE 1...THE FIGURES 53 - 57 ’ " " i " I ’ Q !NMI- P ’ I IMPROVE MENTS IN EMPIRICAL MODELLING OF THE WORLD -WIDE IONOSPHERE 1. INTRODUCTION Numerical Models
Meta-Stable Vacua and D-Branes at the Conifold
Argurio, Riccardo; Bertolini, Matteo; Kachru, Shamit
2008-07-28
We study gauge theories arising on D-branes on quotients of the conifold. They exhibit meta-stable SUSY breaking along the lines of the model by Intriligator, Seiberg and Shih. We propose a candidate for the extrapolation to large't Hooft coupling of the meta-stable state. It involves anti D3-branes in a smooth gravity dual of a cascading gauge theory.
Dimensional reduction for D3-brane moduli
NASA Astrophysics Data System (ADS)
Cownden, Brad; Frey, Andrew R.; Marsh, M. C. David; Underwood, Bret
2016-12-01
Warped string compactifications are central to many attempts to stabilize moduli and connect string theory with cosmology and particle phenomenology. We present a first-principles derivation of the low-energy 4D effective theory from dimensional reduction of a D3-brane in a warped Calabi-Yau compactification of type IIB string theory with imaginary self-dual 3-form flux, including effects of D3-brane motion beyond the probe approximation, and find the metric on the moduli space of brane positions, the universal volume modulus, and axions descending from the 4-form potential. As D3-branes may be considered as carrying either electric or magnetic charges for the self-dual 5-form field strength, we present calculations in both duality frames. Our results are consistent with, but extend significantly, earlier results on the low-energy effective theory arising from D3-branes in string compactifications.
Bouncing Brane Cosmologies from Warped String Compactifications
Kachru, Shamit
2002-08-08
We study the cosmology induced on a brane probing a warped throat region in a Calabi-Yau compactification of type IIB string theory. For the case of a BPS D3-brane probing the Klebanov-Strassler warped deformed conifold, the cosmology described by a suitable brane observer is a bouncing, spatially flat Friedmann-Robertson-Walker universe with time-varying Newton's constant, which passes smoothly from a contracting to an expanding phase. In the Klebanov-Tseytlin approximation to the Klebanov-Strassler solution the cosmology would end with a big crunch singularity. In this sense, the warped deformed conifold provides a string theory resolution of a spacelike singularity in the brane cosmology. The four-dimensional effective action appropriate for a brane observer is a simple scalar-tensor theory of gravity. In this description of the physics, a bounce is possible because the relevant energy-momentum tensor can classically violate the null energy condition.
The goldstino brane, the constrained superfields and matter in {N}=1 supergravity
NASA Astrophysics Data System (ADS)
Bandos, Igor; Heller, Markus; Kuzenko, Sergei M.; Martucci, Luca; Sorokin, Dmitri
2016-11-01
We show that different (brane and constrained superfield) descriptions for the Volkov-Akulov goldstino coupled to {N}=1 , D = 4 supergravity with matter produce similar wide classes of models with spontaneously broken local supersymmetry and discuss the relation between the different formulations. As with the formulations with irreducible constrained superfields, the geometric goldstino brane approach has the advantage of being manifestly off-shell supersymmetric without the need to introduce auxiliary fields. It provides an explicit solution of the nilpotent superfield constraints and avoids issues with non-Gaussian integration of auxiliary fields. We describe general couplings of the supersymmetry breaking sector, including the goldstino and other non-supersymmetric matter, to supergravity and matter supermultiplets. Among various examples, we discuss a goldstino brane contribution to the gravitino mass term and the supersymmetrization of the anti-D3-brane contribution to the effective theory of type IIB warped flux compactifications.
D-branes and extended characters in SL(2,R)/U(1)
NASA Astrophysics Data System (ADS)
Fotopoulos, Angelos; Niarchos, Vasilis; Prezas, Nikolaos
2005-03-01
We present a detailed study of D-branes in the axially gauged SL(2/U(1) coset conformal field theory for integer level k. Our analysis is based on the modular bootstrap approach and utilizes the extended SL(2,R)/U(1) characters and the embedding of the parafermionic coset algebra in the N=2 superconformal algebra. We propose three basic classes of boundary states corresponding to D0-, D1- and D2-branes. We verify that these boundary states satisfy the Cardy consistency conditions and discuss their physical properties. The D0- and D1-branes agree with those found in earlier work by Ribault and Schomerus using different methods (descent from the Euclidean AdS model). The D2-branes are new. They are not, in general, space-filling but extend from the asymptotic circle at infinity up to a minimum distance ρ⩾0 from the tip of the cigar.
Small Numbers From Tunneling Between Brane Throats
Kachru, Shamit
2001-07-25
Generic classes of string compactifications include ''brane throats'' emanating from the compact dimensions and separated by effective potential barriers raised by the background gravitational fields. The interaction of observers inside different throats occurs via tunneling and is consequently weak. This provides a new mechanism for generating small numbers in Nature. We apply it to the hierarchy problem, where supersymmetry breaking near the unification scale causes TeV sparticle masses inside the standard model throat. We also design naturally long-lived cold dark matter which decays within a Hubble time to the approximate conformal matter of a long throat. This may soften structure formation at galactic scales and raises the possibility that much of the dark matter of the universe is conformal matter. Finally, the tunneling rate shows that the coupling between throats, mediated by bulk modes, is stronger than a naive application of holography suggests.
Brane inflation revisited after WMAP five-year results
Ma, Yin-Zhe; Zhang, Xin E-mail: zhangxin@mail.neu.edu.cn
2009-03-15
In this paper, we revisit brane inflation models with the WMAP five-year results. The WMAP five-year data favor a red-tilted power spectrum of primordial fluctuations at the level of two standard deviations, which is the same as the WMAP three-year result qualitatively, but quantitatively the spectral index is slightly greater than the three-year value. This result can bring impacts on brane inflation models. According to the WMAP five-year data, we find that the KKLMMT model can survive at the level of one standard deviation, and the fine-tuning of the parameter {beta} can be alleviated to a certain extent at the level of two standard deviations.
Where does curvaton reside? Differences between bulk and brane frames
NASA Astrophysics Data System (ADS)
Larrouturou, François; Mukohyama, Shinji; Namba, Ryo; Watanabe, Yota
2017-03-01
Some classes of inflationary models naturally introduce two distinct metrics/frames, and their equivalence in terms of observables has often been put in question. D-brane inflation proposes candidates for an inflaton embedded in the string theory and possesses descriptions on the brane and bulk metrics/frames, which are connected by a conformal/disformal transformation that depends on the inflaton and its derivatives. It has been shown that curvature perturbations generated by the inflaton are identical in both frames, meaning that observables such as the spectrum of cosmic microwave background (CMB) anisotropies are independent of whether matter fields—including those in the standard model of particle physics—minimally couple to the brane or the bulk metric/frame. This is true despite the fact that the observables are eventually measured by the matter fields and that the total action including the matter fields is different in the two cases. In contrast, in curvaton scenarios, the observables depend on the frame to which the curvaton minimally couples. Among all inflationary scenarios, we focus on two models motivated by the KKLMMT fine-tuning problem: a slow-roll inflation with an inflection-point potential and a model of a rapidly rolling inflaton that conformally couples to gravity. In the first model, the difference between the frames in which the curvaton resides is encoded in the spectral index of the curvature perturbations, depicting the nature of the frame transformation. In the second model, the curvaton on the brane induces a spectral index significantly different from that in the bulk and is even falsified by the observations. This work thus demonstrates that two frames connected by a conformal/disformal transformation lead to different physical observables such as CMB anisotropies in curvaton models.
Dirac relaxation of the Israel junction conditions: Unified Randall-Sundrum brane theory
NASA Astrophysics Data System (ADS)
Davidson, Aharon; Gurwich, Ilya
2006-08-01
Following Dirac’s brane variation prescription, the brane must not be deformed during the variation process, or else the linearity of the variation may be lost. Alternatively, the variation of the brane is done, in a special Dirac frame, by varying the bulk coordinate system itself. Imposing appropriate Dirac-style boundary conditions on the constrained “sandwiched” gravitational action, we show how Israel junction conditions get relaxed, but remarkably, all solutions of the original Israel equations are still respected. The Israel junction conditions are traded, in the Z2-symmetric case, for a generalized Regge-Teitelboim type equation (plus a local conservation law), and in the generic Z2-asymmetric case, for a pair of coupled Regge-Teitelboim equations. The Randall-Sundrum model and its derivatives, such as the Dvali-Gabadadze-Porrati and the Collins-Holdom models, get generalized accordingly. Furthermore, Randall-Sundrum and Regge-Teitelboim brane theories appear now to be two different faces of the one and the same unified brane theory. Within the framework of unified brane cosmology, we examine the dark matter/energy interpretation of the effective energy/momentum deviations from general relativity.
World Energy Projection System Plus Model Documentation: Natural Gas Module
2011-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Natural Gas Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Transportation Module
2017-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) International Transportation model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Coal Module
2011-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Coal Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Main Module
2016-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Main Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Residential Module
2016-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Residential Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Refinery Module
2016-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Greenhouse Gases Module
2011-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Greenhouse Gases Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
Codimension-2 Brane Black Holes
NASA Astrophysics Data System (ADS)
Zamorano, Nelson; Arias, Cesar; Ordenes, Ariel; Guzman, Francisco
2012-03-01
We analyze the geometry associated to a six dimensional solution of the Einstein's equations. It describes a Schwarzschild de-Sitter black hole on a 3-brane, surrounded by a two dimensional compact bulk. A four dimensional effective cosmological constant and a Planck mass are matched to their six dimensional counterpart. Deviation from Newton's law are computed in both of the solutions found. To learn about the geometry of the bulk, we study the geodesics in this sector. At least, in our opinion, there are some features of these solutions that makes worth to pursue this analysis. The singularity associated to the warped bulk is controlled by the mass M of the black hole. It vanishes if we set M=0. In the same context, it makes an interesting problem to study the Gregory-Laflamme instability in this context [1]. Another feature is the rugby ball type of geometry exhibited by these solutions [2]. They end up in two conical singularities at its respective poles. The branes are located precisely at the poles. Besides, a Wick's rotation generates a connection between different solutions. [4pt] [1] R. Gregory and R. Laflamme, Phys. Rev Lett., 70,2837 (1993)[0pt] [2] S. M. Carroll and M. M. Guica, arXiv:hep-th/0302067
Ring relations and mirror map from branes
NASA Astrophysics Data System (ADS)
Assel, Benjamin
2017-03-01
We study the space of vacua of three-dimensional N = 4 theories from a novel approach building on the type IIB brane realization of the theory and in which the insertion of local chiral operators in the path integral is obtained from integrating out light modes in appropriate brane setups. Most of our analysis focuses on abelian quiver theories which can be realized as the low-energy theory of D3-D5-NS5 brane arrays. Their space of vacua contains a Higgs branch, parametrized by the vevs of half-BPS meson operators, and a Coulomb branch, parametrized by the vevs of half-BPS monopole operators. We show that the Higgs operators are inserted by adding F1 strings and D3 branes, while Coulomb operators are inserted by adding D1 strings and D3 branes, with specific orientations, to the initial brane setup of the theory. This approach has two main advantages. First the ring relations describing the Higgs and Coulomb branches can be derived by looking at specific brane setups with multiple interpretations in terms of operator insertions. This provides a new derivation of the Coulomb branch quantum relations. Secondly the map between the Higgs and Coulomb operators of mirror dual theories can be derived in a trivial way from IIB S-duality.
Near-horizon brane-scan revived
NASA Astrophysics Data System (ADS)
Duff, M. J.
2009-03-01
In 1987 two versions of the brane-scan of D-dimensional super p-branes were put forward. The first pinpointed those (p,D) slots consistent with kappa-symmetric Green-Schwarz type actions; the second generalized the membrane at the end of the universe idea to all those superconformal groups describing p-branes on the boundary of AdS×S. Although the second version predicted D3- and M5-branes in addition to those of the first, it came unstuck because the 1/2 BPS solitonic branes failed to exhibit the required symmetry enhancement in the near-horizon limit, except in the non-dilatonic cases (p=2,D=11), (p=3,D=10) and (p=5,D=11). Just recently, however, it has been argued that the fundamental D=10 heterotic string does indeed display a near-horizon enhancement to OSp(8|2) as predicted by the brane-scan, provided α corrections are taken into account. If this logic could be extended to the other strings and branes, it would resolve this 21-year-old paradox and provide a wealth of new AdS/CFT dualities, which we tabulate.
Metastable supersymmetry breaking and dynamical vacuum selection in intersecting brane systems
NASA Astrophysics Data System (ADS)
Royston, Andrew B.
In this thesis we study metastable supersymmetry breaking and dynamical vacuum selection in intersecting brane systems that are known to be useful for realizing supersymmetric gauge theories in string theory. Metastable supersymmetry breaking configurations of D-branes and NS5-branes in string theory often owe their existence to classical gravitational interactions between the branes. We show that in the effective theory of the light fields, these interactions give rise to a non-canonical Kahler potential and other D-terms. String theory provides a UV completion in which these non-renormalizable terms can be computed. We use these observations to clarify the relation between the phase structure of ISS-type models and their brane realizations. We then study dynamical vacuum selection in a system of D-branes localized near an intersection of Neveu-Schwarz fivebranes that is known to exhibit a rich landscape of supersymmetric and (metastable) supersymmetry breaking vacua. We show that early universe cosmology, in the form of excited fivebranes relaxing via Hawking radiation, drives the system to a particular long-lived supersymmetry breaking ground state.
AdS2 D-branes in Lorentzian AdS3
NASA Astrophysics Data System (ADS)
Deliduman, Cemsinan
2003-09-01
The boundary states for two dimensional anti de Sitter (AdS2) Dirichlet-branes (D-branes) in Lorentzian AdS3 space-time are presented. AdS2 D-branes are algebraically defined by twisted Dirichlet boundary conditions and are located on twisted conjugacy classes of SL(2,R). Using the free-field representation of symmetry currents in the SL(2,R) Wess-Zumino-Novikov-Witten model, the twisted Dirichlet gluing conditions among currents are translated to matching conditions among free fields and then to boundary conditions among the modes of free fields. The Ishibashi states are written as coherent states on AdS3 in the free field formalism and it is shown that twisted Dirichlet boundary conditions are satisfied on them. The tree-level amplitude of propagation of closed strings between two AdS2 D-branes is evaluated and by comparing it with the characters of sl^(2,R) Kac-Moody algebra it is shown that only states in the principal continuous series representation of sl^(2,R) Kac-Moody algebra contribute to the amplitude and thus they are the only ones that couple to AdS2 D-branes. The form of the character of sl^(2,R) principal continuous series and the boundary condition among the zero modes are used to determine the physical boundary states for AdS2 D-branes.
Black holes and wormholes in AdS branes
Molina, C.; Neves, J. C. S.
2010-08-15
In this work we have derived a class of geometries which describe black holes and wormholes in Randall-Sundrum-type brane models, focusing mainly on asymptotically anti-de Sitter backgrounds. We show that by continuously deforming the usual four-dimensional vacuum background, a specific family of solutions is obtained. Maximal extensions of the solutions are presented, and their causal structures are discussed.
Common world model for unmanned systems: Phase 2
NASA Astrophysics Data System (ADS)
Dean, Robert M. S.; Oh, Jean; Vinokurov, Jerry
2014-06-01
The Robotics Collaborative Technology Alliance (RCTA) seeks to provide adaptive robot capabilities which move beyond traditional metric algorithms to include cognitive capabilities. Key to this effort is the Common World Model, which moves beyond the state-of-the-art by representing the world using semantic and symbolic as well as metric information. It joins these layers of information to define objects in the world. These objects may be reasoned upon jointly using traditional geometric, symbolic cognitive algorithms and new computational nodes formed by the combination of these disciplines to address Symbol Grounding and Uncertainty. The Common World Model must understand how these objects relate to each other. It includes the concept of Self-Information about the robot. By encoding current capability, component status, task execution state, and their histories we track information which enables the robot to reason and adapt its performance using Meta-Cognition and Machine Learning principles. The world model also includes models of how entities in the environment behave which enable prediction of future world states. To manage complexity, we have adopted a phased implementation approach. Phase 1, published in these proceedings in 2013 [1], presented the approach for linking metric with symbolic information and interfaces for traditional planners and cognitive reasoning. Here we discuss the design of "Phase 2" of this world model, which extends the Phase 1 design API, data structures, and reviews the use of the Common World Model as part of a semantic navigation use case.
Not Available
1994-04-11
This manual is intended primarily for use as a reference by analysts applying the WORLD model to regional studies. It also provides overview information on WORLD features of potential interest to managers and analysts. Broadly, the manual covers WORLD model features in progressively increasing detail. Section 2 provides an overview of the WORLD model, how it has evolved, what its design goals are, what it produces, and where it can be taken with further enhancements. Section 3 reviews model management covering data sources, managing over-optimization, calibration and seasonality, check-points for case construction and common errors. Section 4 describes in detail the WORLD system, including: data and program systems in overview; details of mainframe and PC program control and files;model generation, size management, debugging and error analysis; use with different optimizers; and reporting and results analysis. Section 5 provides a detailed description of every WORLD model data table, covering model controls, case and technology data. Section 6 goes into the details of WORLD matrix structure. It provides an overview, describes how regional definitions are controlled and defines the naming conventions for-all model rows, columns, right-hand sides, and bounds. It also includes a discussion of the formulation of product blending and specifications in WORLD. Several Appendices supplement the main sections.
Branes, instantons, and Taub-NUT spaces
NASA Astrophysics Data System (ADS)
Witten, Edward
2009-06-01
ALE and Taub-NUT (or ALF) hyper-Kahler four-manifolds can be naturally constructed as hyper-Kahler quotients. In the ALE case, this construction has long been understood in terms of D-branes; here we give a D-brane derivation in the Taub-NUT case. Likewise, instantons on ALE spaces and on Taub-NUT spaces have ADHM-like constructions related to hyper-Kahler quotients. Here we refine the analysis in the Taub-NUT case by making use of a D-brane probe.
The Singularity Problem in Brane Cosmology
NASA Astrophysics Data System (ADS)
Antoniadis, Ignatios; Cotsakis, Spiros
2017-02-01
We review results about the development and asymptotic nature of singularities in `brane-bulk' systems. These arise for warped metrics obeying the 5-dimensional Einstein equations with fluid-like sources, and including a brane 4-metric that is either Minkowski or de Sitter or Anti-de Sitter. We characterize all singular Minkowski brane solutions, and look for regular solutions with nonzero curvature. We briefly comment on matching solutions, energy conditions and finite Planck mass criteria for admissibility, and we briefly discuss the connection of these results to ambient theory.
[The Bariloche model: a Latin American world model].
Johr, W A
1981-01-01
At the beginning of the 1970s, a research team under the direction of Amilcar O. Herrera was constituted within the Bariloche Foundation of Buenos Aires. Its task was to write a counterreport to the research work initiated by the Club of Rome, carried out under the direction of Dennis L. Meadows, and published with the title "The Limits to Growth." The 1st of 2 main parts of our study provides an extensive abstract of the basic arguments of the Bariloche Team. Its report begins by shaping the framework (socialist) of the proposed New Society which, it is claimed, would have the responsibility of satisfying the basic needs of all human beings in all parts of the world. With the aid of a projection model, comprising a period up to the year 2060, the authors attempt to answer the question of the extent to which the 4 world regions of the model can, under the conditions of the New Society, satisfy the basic needs of the population. In the 2nd critical part of our study, the main arguments of the Bariloche Team are examined. Regarding the proposed New Society, our criticism is that important questions remain unanswered; e.g., the question of the structure of the governmental organization of the New Society, and the important problem of coordinating the different enterprises of the entire economy. In spite of this and other shortcomings, however, we recognize that the Bariloche Report is an interesting and original approach attacking and trying to solve problems which are of the utmost importance for the world. (author's)
Quantum billiards with branes on product of Einstein spaces
NASA Astrophysics Data System (ADS)
Ivashchuk, V. D.
2016-05-01
We consider a gravitational model in dimension D with several forms, l scalar fields and a Λ -term. We study cosmological-type block-diagonal metrics defined on a product of an 1-dimensional interval and n oriented Einstein spaces. As an electromagnetic composite brane ansatz is adopted and certain restrictions on the branes are imposed the conformally covariant Wheeler-DeWitt (WDW) equation for the model is studied. Under certain restrictions, asymptotic solutions to the WDW equation are found in the limit of the formation of the billiard walls. These solutions reduce the problem to the so-called quantum billiard in (n + l -1)-dimensional hyperbolic space. Several examples of quantum billiards in the model with electric and magnetic branes, e.g. corresponding to hyperbolic Kac-Moody algebras, are considered. In the case n=2 we find a set of basis asymptotic solutions to the WDW equation and derive asymptotic solutions for the metric in the classical case.
Brane f(R) gravity and the dark side of the universe
Borzou, A.; Sepangi, H. R.; Shahidi, S.; Yousefi, R.
2009-10-27
We consider a brane world scenario in which the bulk action is assumed to have the form of a generic function of the Ricci scalar f(R) and derive the resulting Einstein field equation on the brane. In a constant curvature bulk a conserved geometric quantity appears in the field equations which can be associated with matter. We present spherically symmetric solutions which account for galaxy rotation curves in a specific form. Then cosmological solutions by assuming a specific form for f(R) are derived which can explain an accelerated expanding universe.
Reheating the D-brane universe via instant preheating
Panda, Sudhakar; Sami, M.; Thongkool, I.
2010-05-15
We investigate a possibility of reheating in a scenario of D-brane inflation in a warped deformed conifold background which includes perturbative corrections to throat geometry sourced by a chiral operator of dimension 3/2 in the conformal field theory. The effective D-brane potential, in this case, belongs to the class of nonoscillatory models of inflation for which the conventional reheating mechanism does not work. We find that gravitational particle production is inefficient and leads to reheating temperature of the order of 10{sup 8} GeV. We show that instant preheating is quite suitable to the present scenario and can easily reheat the universe to a temperature which is higher by about 3 orders of magnitude than its counterpart associated with gravitational particle production. The reheating temperature is shown to be insensitive to a particular choice of inflationary parameters suitable to observations.
Induced matter brane gravity and Einstein static universe
Heydarzade, Y.; Darabi, F. E-mail: f.darabi@azaruniv.edu
2015-04-01
We investigate stability of the Einstein static universe against the scalar, vector and tensor perturbations in the context of induced matter brane gravity. It is shown that in the framework of this model, the Einstein static universe has a positive spatial curvature. In contrast to the classical general relativity, it is found that a stable Einstein static universe against the scalar perturbations does exist provided that the variation of time dependent geometrical equation of state parameter is proportional to the minus of the variation of the scale factor, δ ω{sub g}(t) = −Cδ a(t). We obtain neutral stability against the vector perturbations, and the stability against the tensor perturbations is guaranteed due to the positivity of the spatial curvature of the Einstein static universe in induced matter brane gravity.
Nonminimal kinetic coupled gravity: Inflation on the warped DGP brane
NASA Astrophysics Data System (ADS)
Darabi, F.; Parsiya, A.; Atazadeh, K.
2016-03-01
We consider the nonminimally kinetic coupled version of DGP brane model, where the kinetic term of the scalar field is coupled to the metric and Einstein tensor on the brane by a coupling constant ζ. We obtain the corresponding field equations, using the Friedmann-Robertson-Walker metric and the perfect fluid, and study the inflationary scenario to confront the numerical analysis of six typical scalar field potentials with the current observational results. We find that among the suggested potentials and coupling constants, subject to the e-folding N = 60, the potentials V (ϕ) = σϕ, V (ϕ) = σϕ2 and V (ϕ) = σϕ3 provide the best fits with both Planck+WP+highL data and Planck+WP+highL+BICEP2 data.
Constrained superfields from an anti-D3-brane in KKLT
NASA Astrophysics Data System (ADS)
Vercnocke, Bert; Wrase, Timm
2016-08-01
The KKLT construction of dS vacua [1] relies on an uplift term that arises from an anti-D3-brane. It was argued by Kachru, Pearson and Verlinde [2] that this anti-D3-brane is an excited state in a supersymmetric theory since it can decay to a supersymmetric ground state. Hence the anti-D3-brane breaks supersymmetry spontaneously and one should be able to package all the world-volume fields on the anti-D3-brane into a four dimensional {N} = 1 supersymmetric action. Here we extend previous results and identify the constrained superfields that correspond to all the degrees of freedom on the anti-D3-brane. In particular, we show explicitly that the four 4D worldvolume spinors give rise to constrained chiral multiplets S and Y i , i = 1 , 2 , 3 that satisfy S 2 = SY i = 0. We also conjecture (and provide evidence in a forthcoming publication) that the vector field A μ and the three scalars ϕ i give rise to a field strength multiplet W α and three chiral multiplets H i that satisfy the constraints S{W}_{α }={overline{D}}_{overset{\\cdot }{α }}(S{overline{H}}^i)=0 . This is the first time that such constrained multiplets appear in string theory constructions.
Gauge symmetries decrease the number of Dp-brane dimensions. II. Inclusion of the Liouville term
Nikolic, B.; Sazdovic, B.
2007-04-15
The presence of the antisymmetric background field B{sub {mu}}{sub {nu}} leads to the noncommutativity of the Dp-brane manifold, while the linear dilaton field in the form {phi}(x)={phi}{sub 0}+a{sub {mu}}x{sup {mu}} causes the appearance of the commutative Dp-brane coordinate, x{sub c}=a{sub {mu}}x{sup {mu}}. In the present article we consider the case where the conformal invariance is realized by inclusion of the Liouville term. Then, the theory is conformally invariant even in the presence of the world-sheet conformal factor F, and it depends on the new parameter, the central charge c. As well as in the absence of the Liouville action, for particular relations between background fields, the local gauge symmetries appear in the theory. They turn some Neumann boundary conditions into the Dirichlet ones, and decrease the number of the Dp-brane dimensions.
A Conceptual Model of the World of Work.
ERIC Educational Resources Information Center
VanRooy, William H.
The conceptual model described in this paper resulted from the need to organize a body of knowledge related to the world of work which would enable curriculum developers to prepare accurate, realistic instructional materials. The world of work is described by applying Malinowski's scientific study of the structural components of culture. It is…
NASA Astrophysics Data System (ADS)
Cicoli, Michele; Quevedo, Fernando; Valandro, Roberto
2016-03-01
Hidden sector D7-branes with non-zero gauge flux are a generic feature of type IIB compactifications. A non-vanishing Fayet-Iliopoulos term induced by non-zero gauge flux leads to a T-brane configuration. Expanding the D7-brane action around this T-brane background in the presence of three-form supersymmetry breaking fluxes, we obtain a positive definite contribution to the moduli scalar potential which can be used as an uplifting source for de Sitter vacua. In this way we provide a higher-dimensional understanding of known 4D mechanisms of de Sitter uplifting based on hidden sector F-terms which are non-zero because of D-term stabilisation.
The geometry of branes and extended superspaces
NASA Astrophysics Data System (ADS)
Chryssomalakos, C.; de Azcárraga, J. A.; Izquierdo, J. M.; Pérez Bueno, J. C.
We argue that a description of supersymmetric extended objects from a unified geometric point of view requires an enlargement of superspace. To this aim we study in a systematic way how superspace groups and algebras arise from Grassmann spinors when these are assumed to be the only primary entities. In the process, we recover generalized space-time superalgebras and extensions of supersymmetry found earlier. The enlargement of ordinary superspace with new parameters gives rise to extended superspace groups, on which manifestly supersymmetric actions may be constructed for various types of p-branes, including D-branes (given by Chevalley-Eilenberg cocycles) with their Born-Infeld fields. This results in a field/extended superspace democracy for superbranes: all brane fields appear as pull-backs from a suitable target superspace. Our approach also clarifies some facts concerning the origin of the central charges for the different p-branes.
Brane f(R) gravity cosmologies
Balcerzak, Adam; DaPbrowski, Mariusz P.
2010-06-15
By the application of the generalized Israel junction conditions we derive cosmological equations for the fourth-order f(R) brane gravity and study their cosmological solutions. We show that there exists a nonstatic solution which describes a four-dimensional de Sitter (dS{sub 4}) brane embedded in a five-dimensional anti-de Sitter (AdS{sub 5}) bulk for a vanishing Weyl tensor contribution. On the other hand, for the case of a nonvanishing Weyl tensor contribution, there exists a static brane solution only. We claim that in order to get some more general nonstatic f(R) brane configurations, one needs to admit a dynamical matter energy-momentum tensor in the bulk rather than just a bulk cosmological constant.
Escape of Black Holes from the Brane
NASA Astrophysics Data System (ADS)
Flachi, Antonino; Tanaka, Takahiro
2005-10-01
TeV-scale gravity theories allow the possibility of producing small black holes at energies that soon will be explored at the CERN LHC or at the Auger observatory. One of the expected signatures is the detection of Hawking radiation that might eventually terminate if the black hole, once perturbed, leaves the brane. Here, we study how the “black hole plus brane” system evolves once the black hole is given an initial velocity that mimics, for instance, the recoil due to the emission of a graviton. The results of our dynamical analysis show that the brane bends around the black hole, suggesting that the black hole eventually escapes into the extra dimensions once two portions of the brane come in contact and reconnect. This gives a dynamical mechanism for the creation of baby branes.
A Real-World Network Modeling Project
2014-02-12
as a Red Team modeling project. A defensive analysis, where the defenders temporarily play the part of an intelligent attacker, is often called a Red ... Team exercise in military contexts – with the attackers designated as the Red Team , and the defenders as the Blue Team. The NPS network modeling...project began as an application of network interdiction models for such a Red Team exercise. Such an exercise helps our military officer students
Holographic thermalization from nonrelativistic branes
NASA Astrophysics Data System (ADS)
Roychowdhury, Dibakar
2016-05-01
In this paper, based on the fundamental principles of gauge/gravity duality and considering a global quench, we probe the physics of thermalization for certain special classes of strongly coupled nonrelativistic quantum field theories that are dual to an asymptotically Schrödinger D p brane space time. In our analysis, we note that during the prelocal stages of the thermal equilibrium the entanglement entropy has a faster growth in time compared to its relativistic cousin. However, it shows a linear growth during the postlocal stages of thermal equilibrium where the so-called tsunami velocity associated with the linear growth of the entanglement entropy saturates to that of its value corresponding to the relativistic scenario. Finally, we explore the saturation region and it turns out that one must constraint certain parameters of the theory in a specific way in order to have discontinuous transitions at the point of saturation.
Dynamical intersecting brane solutions of supergravity
Uzawa, Kunihito
2010-02-10
We present dynamical intersecting brane solutions in higher-dimensional gravitational theory coupled to dilaton and several forms. Assuming the forms of metric, form fields, and dilaton field, we can give the dynamical intersecting brane solutions. The dynamical solutions can be always obtained by replacing the constant modulus h{sub 0} in the warp factor for supersymmetric solutions by a linear function h{sub 0}(t) of the time coordinates t.
On the Cn/Zm fractional branes
NASA Astrophysics Data System (ADS)
Karp, Robert L.
2009-02-01
We construct several geometric representatives for the Cn/Zm fractional branes on either a partially or the completely resolved orbifold. In the process we use large radius and conifold-type monodromies and provide a strong consistency check. In particular, for C3/Z5 we give three different sets of geometric representatives. We also find the explicit Seiberg duality which connects our fractional branes to the ones given by the McKay correspondence.
Spiked instantons from intersecting D-branes
NASA Astrophysics Data System (ADS)
Nekrasov, Nikita; Prabhakar, Naveen S.
2017-01-01
The moduli space of spiked instantons that arises in the context of the BPS/CFT correspondence [22] is realised as the moduli space of classical vacua, i.e. low-energy open string field configurations, of a certain stack of intersecting D1-branes and D5-branes in Type IIB string theory. The presence of a constant B-field induces an interesting dynamics involving the tachyon condensation.
An econometric model of the world copper industry
Lewanika, M.W.
1989-01-01
This model of the world copper economy is fitted to 1960-1984 annual data. Here, unlike in previous models, an attempt is made to depart from the tendency to force the same functional form to represent individual country supply curves. The methodology utilized in constructing this model allows for individual countries to have supply curves that differ in functional form. The model consists of five categories - Western world consumption, Western world primary supply, Western world secondary supply, change in inventory, and net exports to the Centrally Planned Economies. Consumption, secondary supply, and change in inventory are each estimated by one equation aggregating the Western world. Primary supply is the sum of the supply equations for primary copper estimated for seven major producing countries and the Rest of the world. The seven countries are Chile, the United States, Canada, Zambia, Zaire, Peru, and Australia. The model is used to examine the copper industry in the coming decade under various scenarios. The copper market is found to be characterized by low short-run and slightly higher long-run price elasticities except in the case of the Rest of the World whose short-run elasticity is 1.52.
Rotating black holes on codimension 2 branes
Kiley, Derrick
2007-12-15
It has recently been demonstrated that certain types of nontensional stress-energy can live on tensional codimension-2 branes, including gravitational shockwaves and small Schwarzschild black holes. In this paper we generalize the earlier Schwarzschild results, and construct the exact gravitational fields of small rotating black holes on a codimension-2 brane. We focus on the phenomenologically interesting case of a three-brane embedded in a spacetime with two compactified extra dimensions. For a nonzero tension on the brane, we verify that these solutions also show the ''lightning rod'' effect found in the Schwarzschild solutions, the net effect of which is to rescale the fundamental Planck mass. This allows for larger black hole parameters, such as the event horizon, angular momentum, and lifetime than would be naively expected for a tensionless brane. It is also found that a black hole with angular momentum pointing purely along the brane directions has a smaller horizon angular velocity than the corresponding tensionless case, while a hole with bulk components of angular momentum has a larger angular velocity.
Brane induced gravity: Ghosts and naturalness
NASA Astrophysics Data System (ADS)
Eglseer, Ludwig; Niedermann, Florian; Schneider, Robert
2015-10-01
Linear stability of brane induced gravity in two codimensions on a static pure tension background is investigated. The brane is regularized as a ring of finite circumference in extra space. By explicitly calculating the vacuum persistence amplitude of the corresponding quantum theory, we show that the parameter space is divided into two regions—one corresponding to a stable Minkowski vacuum on the brane and one being plagued by ghost instabilities. This analytical result affirms a recent nonlinear, but mainly numerical analysis. The main result is that the ghost is absent for a sufficiently large brane tension, in perfect agreement with a value expected from a natural effective field theory point of view. Unfortunately, the linearly stable parameter regime is either ruled out phenomenologically or becomes unstable for nontrivial cosmologies. We argue that supercritical brane backgrounds constitute the remaining window of opportunity. In the special case of a tensionless brane, we find that the ghost exists for all phenomenologically relevant values of the induced gravity scale. Regarding this case, there are contradicting results in the literature, and we are able to fully resolve this controversy by explicitly uncovering the errors made in the "no-ghost" analysis. Finally, a Hamiltonian analysis generalizes the ghost result to more than two codimensions.
Modeling Community to Heal an Injured World
ERIC Educational Resources Information Center
Roper, Larry D.
2012-01-01
Our colleges and universities have the opportunity to play a role in transforming the tone of our current national discourse and model the core values of our democratic society as we prepare students to be civically responsible.
Precise lower bound on Monster brane boundary entropy
NASA Astrophysics Data System (ADS)
Friedan, Daniel; Konechny, Anatoly; Schmidt-Colinet, Cornelius
2013-07-01
In this paper we develop further the linear functional method of deriving lower bounds on the boundary entropy of conformal boundary conditions in 1+1 dimensional conformal field theories (CFTs). We show here how to use detailed knowledge of the bulk CFT spectrum. Applying the method to the Monster CFT with c = overline{c} = 24 we derive a lower bound s > -3.02×10-19 on the boundary entropy s = ln g, and find compelling evidence that the optimal bound is s ≥ 0. We show that all g=1 branes must have the same low-lying boundary spectrum, which matches the spectrum of the known g=1 branes, suggesting that the known examples comprise all possible g=1 branes, and also suggesting that the bound s ≥ 0 holds not just for critical boundary conditions but for all boundary conditions in the Monster CFT. The same analysis applied to a second bulk CFT — a certain c = 2 Gaussian model — yields a less strict bound, suggesting that the precise linear functional bound on s for the Monster CFT is exceptional.
Rapid prototype modeling in a multimodality world
NASA Astrophysics Data System (ADS)
Bidaut, Luc; Madewell, John; Yasko, Alan
2006-03-01
Introduction: Rapid prototype modeling (RPM) has been used in medicine principally for bones - that are easily extracted from CT data sets - for planning orthopaedic, plastic or maxillo-facial interventions, and/or for designing custom prostheses and implants. Based on newly available technology, highly valuable multimodality approaches can now be applied to RPM, particularly for complex musculo-skeletal (MSK) tumors where multimodality often transcends CT alone. Methods: CT data sets are acquired for primary evaluation of MSK tumors in parallel with other modalities (e.g., MR, PET, SPECT). In our approach, CT is first segmented to provide bony anatomy for RPM and all other data sets are then registered to the CT reference. Parametric information relevant to the tumor's characterization is then extracted from the multimodality space and merged with the CT anatomy to produce a hybrid RPM-ready model. This model - that also accommodates digital multimodality visualization - is then produced on the latest generation of 3D printers, which permits both shapes and colors. Results: Multimodality models of complex MSK tumors have been physically produced on modern RPM equipment. This new approach has been found to be a clear improvement over the previously disconnected physical RPM and digital multimodality visualization. Conclusions: New technical developments keep opening doors to sophisticated medical applications that can directly impact the quality of patient care. Although this early work still deals with bones as base models for RPM, its use to encompass soft tissues is already envisioned for future approaches.
Realistic Real World Contexts: Model Eliciting Activities
ERIC Educational Resources Information Center
Doruk, Bekir Kürsat
2016-01-01
Researchers have proposed a variety of methods to make a connection between real life and mathematics so that it can be learned in a practical way and enable people to utilise mathematics in their daily lives. Model-eliciting activities (MEAs) were developed to fulfil this need and are very capable of serving this purpose. The reason MEAs are so…
Realistic Real World Contexts: Model Eliciting Activities
ERIC Educational Resources Information Center
Doruk, Bekir Kürsat
2016-01-01
Researchers have proposed a variety of methods to make a connection between real life and mathematics so that it can be learned in a practical way and enable people to utilise mathematics in their daily lives. Model-eliciting activities (MEAs) were developed to fulfil this need and are very capable of serving this purpose. The reason MEAs are so…
Anti-de Sitter D-branes in curved backgrounds
NASA Astrophysics Data System (ADS)
Huang, Wung-Hong
2005-07-01
We investigate the properties of the AdS D1-branes which are the bound states of a curved D1-brane with n fundamental strings (F1) in the AdS3 spacetime, and the AdS D2-branes which are the axially symmetric bound states of a curved D2-brane with m D0-branes and n fundamental strings in the AdS3 × S3 spacetime. We see that, while the AdS D1-branes asymptotically approach to the event horizon of the AdS3 spacetime the AdS D2-branes will end on it. As the near horizon geometry of the F1/NS5 becomes the spacetime of AdS3 × S3 × T4 with NS-NS three form turned on, we furthermore investigate the corresponding AdS D-branes in the NS5-branes and macroscopic F-strings backgrounds, as an attempt to understand the origin of the AdS D-branes. From the found DBI solutions we see that in the F-strings background, both of the AdS D1-branes and AdS D2-branes will asymptotically approach to the position with a finite distance away from the F-strings. However, the AdS D2-branes therein could also end on the F-strings once it carries sufficient D0-branes charges. We also see that there does not exist any stable AdS D-branes in the NS5-branes backgrounds. We present physical arguments to explain these results, which could help us in understanding the intriguing mechanics of the formation of the AdS D-branes.
Consistent Alignment of World Embedding Models
2017-03-02
capture rich contextual semantics based on their word co-occurrence patterns. While these word vectors can provide very effective features used in many NLP ...embeddings are able to capture complex semantic patterns such as linguistic analogies and have shown remarkable performance improvements across various NLP ...Topic Modeling with Large Corpora. In Proc. of LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50, 2010. L.J.P. van der Maaten, E. O
How delicate is brane-antibrane inflation?
NASA Astrophysics Data System (ADS)
Hoi, Loison; Cline, James M.
2009-04-01
We systematically explore the parameter space of the state-of-the-art brane-antibrane inflation model (Baumann et al., arXiv:0706.0360, arXiv:0705.3837) which is one of the most rigorously derived from string theory, applying the cosmic background explorer normalization and constraint on the spectral index. We improve on previous treatments of uplifting by antibranes and show that the contributions from noninflationary throats play an important role in achieving a flat inflationary potential. To quantify the degree of fine-tuning needed by the model, we define an effective volume in the part of parameter space which is consistent with experimental constraints, and using Monte Carlo methods to search for a set of optimal parameters, we show that the degree of fine-tuning is alleviated by 8 orders of magnitude relative to a fiducial point which has previously been considered. In fact, close to the optimal parameter values, fine-tuning is no longer needed for any of the parameters. We show that in this natural region of the parameter space, larger values of ns close to 0.99 (still within 2σ of the WMAP5 central value) are favored, giving a new aspect of testability to the model.
How delicate is brane-antibrane inflation?
Hoi, Loison; Cline, James M.
2009-04-15
We systematically explore the parameter space of the state-of-the-art brane-antibrane inflation model (Baumann et al., arXiv:0706.0360, arXiv:0705.3837) which is one of the most rigorously derived from string theory, applying the cosmic background explorer normalization and constraint on the spectral index. We improve on previous treatments of uplifting by antibranes and show that the contributions from noninflationary throats play an important role in achieving a flat inflationary potential. To quantify the degree of fine-tuning needed by the model, we define an effective volume in the part of parameter space which is consistent with experimental constraints, and using Monte Carlo methods to search for a set of optimal parameters, we show that the degree of fine-tuning is alleviated by 8 orders of magnitude relative to a fiducial point which has previously been considered. In fact, close to the optimal parameter values, fine-tuning is no longer needed for any of the parameters. We show that in this natural region of the parameter space, larger values of n{sub s} close to 0.99 (still within 2{sigma} of the WMAP5 central value) are favored, giving a new aspect of testability to the model.
Simulation of a bounded symport/antiport P system with Brane calculi.
Vitale, Antonio; Mauri, Giancarlo; Zandron, Claudio
2008-03-01
Membrane systems (also called P systems) and Brane calculi have been recently introduced as formal models inspired by the structure and the functioning of living cells, but having in mind different goals. The aim of Membrane systems was the formal investigation of the computational nature and power of various features of the cell, while Brane calculi aims to define a model capable of a faithful and intuitive representation of various biological processes. The common background of the two formalisms and the recent growing of interests in applying P systems in Systems Biology have raised the natural question of bridging this two research areas. The present paper goes in this direction, as it presents a direct simulation of a variant of P systems by means of Brane calculi. In particular, we consider a Brane calculus based on three operations called Mate/Bud/Drip, and we show how to use such system to simulate Simple symport/antiport P systems, a variant of P systems purely based on communication of objects. As an example, a simplified sodium-potassium pump modeled in Simple SA is encoded in Mate/Bud/Drip Brane calculus.
Critical escape velocity of black holes from branes
Flachi, Antonino; Sasaki, Misao; Pujolas, Oriol; Tanaka, Takahiro
2006-08-15
In recent work we have shown that a black hole stacked on a brane escapes once it acquires a recoil velocity. This result was obtained in the probe-brane approximation, i.e., when the tension of the brane is negligibly small. Therefore, it is not clear whether the effect of the brane tension may prevent the black hole from escaping for small recoil velocities. The question is whether a critical escape velocity exists. Here, we analyze this problem by studying the interaction between a Dirac-Nambu-Goto brane and a black hole assuming adiabatic (quasistatic) evolution. By describing the brane in a fixed black hole spacetime, which restricts our conclusions to lowest order effects in the tension, we find that the critical escape velocity does not exist for codimension one branes, while it does for higher codimension branes.
Algebraic approach to small-world network models
NASA Astrophysics Data System (ADS)
Rudolph-Lilith, Michelle; Muller, Lyle E.
2014-01-01
We introduce an analytic model for directed Watts-Strogatz small-world graphs and deduce an algebraic expression of its defining adjacency matrix. The latter is then used to calculate the small-world digraph's asymmetry index and clustering coefficient in an analytically exact fashion, valid nonasymptotically for all graph sizes. The proposed approach is general and can be applied to all algebraically well-defined graph-theoretical measures, thus allowing for an analytical investigation of finite-size small-world graphs.
Relicts and models of the RNA world
NASA Astrophysics Data System (ADS)
Lehto, Kirsi; Karetnikov, Alexey
2005-01-01
It is widely believed that the current DNA-RNA-protein-based life forms have evolved from preceding RNA-protein-based life forms, and these again, from mere RNA replicons. By rationale, it can be assumed that the early RNA replicons were fully heterotrophic in terms of obtaining all their building blocks from their environment. In the absence of protein catalysts, their essential life functions had to be mediated by simple functional structures and mechanisms, such as RNA secondary structures, RNA-RNA interactions and RNA-mediated catalysis, and possibly by catalytic minerals or clays. The central role of RNA catalysts in early life forms is supported by the fact that several catalytic RNAs still perform central biological functions in current life forms, and at least some of these may be derived as molecular relicts from the early RNA-based life. The RNA-catalysed metabolic reactions and molecular fossils are more conserved in the eukaryotic life forms than in the prokaryotes, suggesting that the linear eukaryote genomes may more closely resemble the structure and function of the early RNA replicons, than what do the circular prokaryote genomes. Present-day RNA viruses and viroids utilize ultimately simple life strategies, which may be similar to those used by the early RNA replicons. Thus, molecular and functional properties of viruses and viroids may be considered as examples or models of the structures and replication mechanisms, which might have been used for the replication of the early biopolymers.
The joint US/UK 1990 epoch world magnetic model
NASA Technical Reports Server (NTRS)
Quinn, John M.; Coleman, Rachel J.; Peck, Michael R.; Lauber, Stephen E.
1991-01-01
A detailed summary of the data used, analyses performed, modeling techniques employed, and results obtained in the course of the 1990 Epoch World Magnetic Modeling effort are given. Also, use and limitations of the GEOMAG algorithm are presented. Charts and tables related to the 1990 World Magnetic Model (WMM-90) for the Earth's main field and secular variation in Mercator and polar stereographic projections are presented along with useful tables of several magnetic field components and their secular variation on a 5-degree worldwide grid.
Mirage cosmology with an unstable probe D3-brane
Jeong, Dong Hyeok; Kim, Jin Young
2005-10-15
We consider the mirage cosmology by an unstable probe brane whose action is represented by Dirac-Born-Infeld action with tachyon. We study how the presence of tachyon affects the evolution of the brane inflation. At the early stage of the brane inflation, the tachyon kinetic term can play an important role in curing the superluminal expansion in mirage cosmology.
Unstoppable brane-flux decay of \\overline{D6} branes
NASA Astrophysics Data System (ADS)
Danielsson, U. H.; Gautason, F. F.; Van Riet, T.
2017-03-01
We investigate p \\overline{D6} branes inside a flux throat that carries K × M D6 charges with K the 3-form flux quantum and M the Romans mass. In such a setup brane-flux annihilation can proceed through the nucleation of KK5 branes. We find that within the calculable supergravity regime where g s p is large, the \\overline{D6} branes annihilate immediately against the fluxes despite the existence of a metastable state at small p/M in the probe approximation. The crucial property that causes this naive conflict with effective field theory is a singularity in the 3-form flux, which we cut off at string scale. Our result explains the absence of regular solutions at finite temperature and suggests there should be a smooth time-dependent solution. We also discuss the qualitative differences between \\overline{D6} branes and \\overline{D3} branes, which makes it a priori not obvious to conclude the same instability for \\overline{D3} branes.
Black brane solutions related to non-singular Kac-Moody algebras
NASA Astrophysics Data System (ADS)
Ivashchuk, V. D.; Melnikov, V. N.
2011-01-01
A multidimensional gravitational model containing scalar fields and antisymmetric forms is considered. The manifold is chosen in the form M = M_0 x M_1 x ... x M_n, where M_i are Einstein spaces (i > 0). The sigma-model approach and exact solutions with intersecting composite branes (e.g., solutions with harmonic functions and black brane ones) with intersection rules related to non-singular Kac-Moody (KM) algebras (e.g. hyperbolic ones) are considered. Some examples of black brane solutions are presented, e.g., those corresponding to hyperbolic KM algebras: H_2(q,q) (q > 2), HA_2^(1) = A_2^{++} and to the Lorentzian KM algebra P_{10}.
Multiple M0-brane system in an arbitrary eleven-dimensional supergravity background
Bandos, Igor A.
2010-11-15
The equations of motion of multiple M0-brane (multiple M-wave or mM0) systems in an arbitrary D=11 supergravity superspace, which generalize the matrix model equations for the case of interaction with a generic 11-dimensional supergravity background, are obtained in the frame of the superembedding approach. We also derive the Bogomol'nyi-Prasad-Sommerfeld (BPS) equations for supersymmetric bosonic solutions of these mM0 equations and show that the set of 1/2 BPS solutions contain a fuzzy sphere modeling M2 brane as well as that the Nahm equation appears as a particular case of the 1/4 BPS equations.
BCS instability and finite temperature corrections to tachyon mass in intersecting D1-branes
NASA Astrophysics Data System (ADS)
Chowdhury, Sudipto Paul; Sarkar, Swarnendu; Sathiapalan, B.
2014-09-01
A holographic description of BCS superconductivity is given in [1]. This model was constructed by insertion of a pair of D8-branes on a D4-background. The spectrum of intersecting D8-branes has tachyonic modes indicating an instability which is identified with the BCS instability in superconductors. Our aim is to study the stability of the intersecting branes under finite temperature effects. Many of the technical aspects of this problem are captured by a simpler problem of two intersecting D1-branes on flat background. In the simplified set-up we compute the one-loop finite temperature corrections to the tree-level tachyon mass-squared-squared using the frame-work of SU(2) Yang-Mills theory in (1 + 1)-dimensions. We show that the one-loop two-point functions are ultraviolet finite due to cancellation of ultraviolet divergence between the amplitudes containing bosons and fermions in the loop. The amplitudes are found to be infrared divergent due to the presence of massless fields in the loops. We compute the finite temperature mass-squared correction to all the massless fields and use these temperature dependent masses-squared to compute the tachyonic mass-squared correction. We show numerically the existence of a transition temperature at which the effective mass-squared of the tree-level tachyons becomes zero, thereby stabilizing the brane configuration.
Exciting gauge field and gravitons in brane-antibrane annihilation.
Mazumdar, Anupam; Stoica, Horace
2009-03-06
In this Letter we point out the inevitability of an explosive production of gauge field and gravity wave during an open string tachyon condensation in a cosmological setting, in an effective field theory model. We will be particularly studying a toy model of brane-antibrane inflation in a warped throat where inflation ends via tachyon condensation. We point out that a tachyonic instability helps fragmenting the homogeneous tachyon and excites gauge field and contributes to the stress-energy tensor which also feeds into the gravity waves.
Cosmology from quantum potential in a system of oscillating branes
NASA Astrophysics Data System (ADS)
Sepehri, Alireza
2016-11-01
Recently, some authors proposed a new mechanism which gets rid of the Big Bang singularity and shows that the age of the universe is infinite. In this paper, we will confirm their results and predict that the universe may expand and contract many N fundamental strings decay to N M0-anti-M0-branes. Then, M0-branes join each other and build a M8-anti-M8 system. This system is unstable, broken and two anti-M4-branes, a compactified M4-brane, a M3-brane in addition to one M0-brane are produced. The M3-brane wraps around the compactified M4-brane and both of them oscillate between two anti-M4-branes. Our universe is located on the M3-brane and interacts with other branes by exchanging the M0-brane and some scalars in transverse directions. By wrapping of M3-brane, the contraction epoch of universe starts and some higher order of derivatives of scalar fields in the relevant action of branes are produced which are responsible for generating the generalized uncertainty principle (GUP). By oscillating the compactified M4-M3-brane and approaching one of anti-M4-branes, one end of M3-brane glues to the anti-M4-brane and other end remains sticking and wrapping around M4-brane. Then, by getting away of the M4-M3 system, M4 rolls, wrapped M3 opens and expansion epoch of universe begins. By closing the M4 to anti-M4, the mass of some scalars become negative and they make a transition to tachyonic phase. To remove these states, M4 rebounds, rolls and M3 wraps around it again. At this stage, expansion branch ends and universe enters a contraction epoch again. This process is repeated many times and universe expands and contracts due to oscillation of branes. We obtain the scale factor of universe in this system and find that its values only at t →-∞ shrinks to zero. Thus, in our method, the Big Bang is replaced by the fundamental string and the age of universe is predicted to be infinite. Also, when tachyonic states disappear at the beginning of expansion branch, some extra
Branes and the Kraft-Procesi transition
NASA Astrophysics Data System (ADS)
Cabrera, Santiago; Hanany, Amihay
2016-11-01
The Coulomb and Higgs branches of certain 3 d N=4 gauge theories can be understood as closures of nilpotent orbits. Recently, a new theorem by Namikawa suggests that this is the simplest possible case, thus giving this class a special role. In this note we use branes to reproduce the mathematical work by Kraft and Procesi. It studies the classification of all nilpotent orbits for classical groups and it characterizes an inclusion relation via minimal singularities. We show how these minimal singularities arise naturally in the Type IIB superstring embedding of the 3 d A-type theories. The Higgs mechanism can be used to remove the minimal singularity, corresponding to a transition in the brane configuration that induces a new effective 3 d theory. This reproduces the Kraft-Procesi results, endowing the family of gauge theories with a new underlying structure. We provide an efficient procedure for computing such brane transitions.
Thermodynamics of Lovelock-Lifshitz black branes
Dehghani, M. H.; Mann, R. B.
2010-09-15
We investigate the thermodynamics of Lovelock-Lifshitz black branes. We begin by introducing the finite action of third order Lovelock gravity in the presence of a massive vector field for a flat boundary, and use it to compute the energy density of these black branes. Using the field equations, we find a conserved quantity along the r coordinate that relates the metric parameters at the horizon and at infinity. Remarkably, though the subleading large-r behavior of Lovelock-Lifshitz black branes differs substantively from their Einsteinian Lifshitz counterparts, we find that the relationship between the energy density, temperature, and entropy density is unchanged from Einsteinian gravity. Using the first law of thermodynamics to obtain the relationship between entropy and temperature, we find that it too is the same as the Einsteinian case, apart from a constant of integration that depends on the Lovelock coefficients.
On RR couplings and bulk singularity structures of non-BPS branes
NASA Astrophysics Data System (ADS)
Hatefi, Ehsan
2016-09-01
We compute the five point world sheet scattering amplitude of a symmetric closed string Ramond-Ramond, a transverse scalar field, a world volume gauge field and a real tachyon in both world volume and transverse directions of brane in type IIA and IIB superstring theory. We provide the complete analysis of
Derived Categories and Zero-Brane Stability
Lawrence, Albion
2001-07-25
We define a particular class of topological field theories associated to open strings and prove the resulting D-branes and open strings form the bounded derived category of coherent sheaves. This derivation is a variant of some ideas proposed recently by Douglas. We then argue that any 0-brane on any Calabi-Yau threefold must become unstable along some path in the Kahler moduli space. As a byproduct of this analysis we see how the derived category can be invariant under a birational transformation.
Brane decay and an initial spacelike singularity.
Kawai, Shinsuke; Keski-Vakkuri, Esko; Leigh, Robert G; Nowling, Sean
2006-01-27
We present a novel string theory scenario where matter in a spacetime originates from a decaying brane at the origin of time. The decay could be considered as a big-bang-like event at X0=0. The closed string interpretation is a time-dependent spacetime with a semi-infinite time direction, with the initial energy of the brane converted into energy flux from the origin. The open string interpretation can be viewed as a string theoretic nonsingular initial condition.
Avoiding cosmological oscillating behavior for S-brane solutions with diagonal metrics
Ivashchuk, V.D.; Melnikov, V.N.; Singleton, D.
2005-11-15
In certain string inspired higher dimensional cosmological models it has been conjectured that there is generic, chaotic oscillating behavior near the initial singularity - the Kasner parameters which characterize the asymptotic form of the metric jump between different, locally constant values and exhibit a never-ending oscillation as one approaches the singularity. In this paper we investigate a class of cosmological solutions with form fields and diagonal metrics which have a maximal number of composite electric S branes. We look at two explicit examples in D=4 and D=5 dimensions that do not have chaotic oscillating behavior near the singularity. When the composite branes are replaced by noncomposite branes chaotic oscillating behavior again occurs.
Non-supersymmetric D-branes with vanishing cylinder amplitudes in asymmetric orbifolds
NASA Astrophysics Data System (ADS)
Satoh, Yuji; Sugawara, Yuji; Uetoko, Takahiro
2017-08-01
We study the type II string vacua with chiral space-time SUSY constructed as asymmetric orbifolds of torus and K3 compactifications. Despite the fact that all the D-branes are non-BPS in any chiral SUSY vacua, we show that the relevant non-geometric vacua of asymmetric orbifolds allow rather generally configurations of D-branes which lead to vanishing cylinder amplitudes, implying the bose-fermi cancellation at each mass level of the open string spectrum. After working on simple models of toroidal asymmetric orbifolds, we focus on the asymmetric orbifolds of T 2 × ℳ, where ℳ is described by a general N = 4 SCFT with c = 6 defined by the Gepner construction for K3. Even when the modular invariant partition functions in the bulk remain unchanged, the spectra of such non-BPS D-branes with the bose-fermi cancellation can vary significantly according to the choice of orbifolding.
Prospects of inflation in delicate D-brane cosmology
Panda, Sudhakar; Sami, M.; Tsujikawa, Shinji
2007-11-15
We study D-brane inflation in a warped conifold background that includes brane-position dependent corrections for the nonperturbative superpotential. Instead of stabilizing the volume modulus {chi} at instantaneous minima of the potential and studying the inflation dynamics with an effective single field (radial distance between a brane and an antibrane) {phi}, we investigate the multifield inflation scenario involving these two fields. The two-field dynamics with the potential V({phi},{chi}) in this model is significantly different from the effective single-field description in terms of the field {phi} when the field {chi} is integrated out. The latter picture underestimates the total number of e-foldings even by 1 order of magnitude. We show that a correct single-field description is provided by a field {psi} obtained from a rotation in the two-field space along the background trajectory. This model can give a large number of e-foldings required to solve flatness and horizon problems at the expense of fine-tunings of model parameters. We also estimate the spectra of density perturbations and show that the slow-roll parameter {eta}{sub {psi}}{sub {psi}}=M{sub pl}{sup 2}V{sub ,{psi}}{sub {psi}}/V in terms of the rotated field {psi} determines the spectral index of scalar metric perturbations. We find that it is generally difficult to satisfy, simultaneously, both constraints of the spectral index and the cosmic background explorer normalization, while the tensor to scalar ratio is sufficiently small to match with observations.
Open M2-branes with flux and the modified Basu-Harvey equation
NASA Astrophysics Data System (ADS)
Chu, Chong-Sun; Sehmbi, Gurdeep S.
2011-04-01
The supersymmetric actions of closed multiple M2 branes with flux for the Bagger-Lambert (BL) and ABJM theories have been constructed recently by Lambert and Richmond (2009 J. High Energy Phys. JHEP10(2009)084). In this paper, we extend the construction to the case of open M2-branes with flux and derive the boundary conditions. This allows us to derive the modified Basu-Harvey equation in the presence of flux. As an example, we consider the Lorentzian BL model. A new feature of the fuzzy funnel solution describing a D2-D4 intersection is obtained as a result of the flux.
3d N=2 minimal SCFTs from wrapped M5-branes
NASA Astrophysics Data System (ADS)
Bae, Jin-Beom; Gang, Dongmin; Lee, Jaehoon
2017-08-01
We study CFT data of 3-dimensional superconformal field theories (SCFTs) arising from wrapped two M5-branes on closed hyperbolic 3-manifolds. Via so-called 3d/3d correspondence, central charges of these SCFTs are related to a SL(2) Chern-Simons (CS) invariant on the 3-manifolds. After developing a state-integral model for the invariant, we numerically evaluate the central charges for several closed 3-manifolds with small hyperbolic volume. The computation suggests that the wrapped M5-brane systems give infinitely many discrete SCFTs with small central charges.
A Dynamic Theory of World Press Motivation: An Integrative Model.
ERIC Educational Resources Information Center
Schillinger, Elisabeth
Addressing the dynamic and integrative nature of the world's press systems, this paper presents a comprehensive press theory and accompanying model. Three "primary motives"--survival, ideology, and market--are posited as determinants of press systems, using the nation state as the unit of analysis. The premises of the paper are: (1)…
Rapid world modeling: Fitting range data to geometric primitives
Feddema, J.; Little, C.
1996-12-31
For the past seven years, Sandia National Laboratories has been active in the development of robotic systems to help remediate DOE`s waste sites and decommissioned facilities. Some of these facilities have high levels of radioactivity which prevent manual clean-up. Tele-operated and autonomous robotic systems have been envisioned as the only suitable means of removing the radioactive elements. World modeling is defined as the process of creating a numerical geometric model of a real world environment or workspace. This model is often used in robotics to plan robot motions which perform a task while avoiding obstacles. In many applications where the world model does not exist ahead of time, structured lighting, laser range finders, and even acoustical sensors have been used to create three dimensional maps of the environment. These maps consist of thousands of range points which are difficult to handle and interpret. This paper presents a least squares technique for fitting range data to planar and quadric surfaces, including cylinders and ellipsoids. Once fit to these primitive surfaces, the amount of data associated with a surface is greatly reduced up to three orders of magnitude, thus allowing for more rapid handling and analysis of world data.
Making Connections to the "Real World": A Model Building Lesson
ERIC Educational Resources Information Center
Horibe, Shusaku; Underwood, Bret
2009-01-01
Classroom activities that include the process of model building, in which students build simplified physical representations of a system, have the potential to help students make meaningful connections between physics and the real world. We describe a lesson designed with this intent for an introductory college classroom that engages students in…
Constrained superfields on metastable anti-D3-branes
NASA Astrophysics Data System (ADS)
Aalsma, Lars; van der Schaar, Jan Pieter; Vercnocke, Bert
2017-05-01
We study the effect of brane polarization on the supersymmetry transformations of probe anti-D3-branes at the tip of a Klebanov-Strassler throat geometry. As is well known, the probe branes can polarize into NS5-branes and decay to a supersymmetric state by brane-flux annihilation. The effective potential has a metastable minimum as long as the number of anti-D3-branes is small compared to the number of flux quanta. We study the reduced four-dimensional effective NS5-brane theory and show that in the metastable minimum supersymmetry is non-linearly realized to leading order, as expected for spontaneously broken supersymmetry. However, a strict decoupling limit of the higher order corrections in terms of a standard nilpotent superfield does not seem to exist. We comment on the possible implications of these results for more general low-energy effective descriptions of inflation or de Sitter vacua.
Holographic cosmology from a system of M2-M5 branes
NASA Astrophysics Data System (ADS)
Sepehri, Alireza; Faizal, Mir; Setare, Mohammad Reza; Ali, Ahmed Farag
2016-05-01
In this paper, we analyze the holographic cosmology using a M2-M5 brane configuration. In this configuration, a M2-brane will be placed in between a M5-brane and an anti-M5-brane. The M2-brane will act as a channel for energy to flow from an anti-M5-brane to a M5-brane, and this will increase the degrees of freedom on the M5-brane causing inflation. The inflation will end when the M5-brane and anti-M5-brane get separated. However, at a later stage the distance between the M5-brane and the anti-M5-bran can reduce and this will cause the formation of tachyonic states. These tachyonic states will again open a bridge between the M5-branes and the anti-M5-branes, which will cause further acceleration of the universe.
Holographic cosmology from a system of M2–M5 branes
Sepehri, Alireza; Faizal, Mir; Setare, Mohammad Reza; Ali, Ahmed Farag
2016-05-15
In this paper, we analyze the holographic cosmology using a M2–M5 brane configuration. In this configuration, a M2-brane will be placed in between a M5-brane and an anti-M5-brane. The M2-brane will act as a channel for energy to flow from an anti-M5-brane to a M5-brane, and this will increase the degrees of freedom on the M5-brane causing inflation. The inflation will end when the M5-brane and anti-M5-brane get separated. However, at a later stage the distance between the M5-brane and the anti-M5-bran can reduce and this will cause the formation of tachyonic states. These tachyonic states will again open a bridge between the M5-branes and the anti-M5-branes, which will cause further acceleration of the universe.
Phenomenology of D-brane inflation with general speed of sound
Peiris, Hiranya; Baumann, Daniel; Friedman, Brett; Cooray, Asantha
2007-11-15
A characteristic of D-brane inflation is that fluctuations in the inflaton field can propagate at a speed significantly less than the speed of light. This yields observable effects that are distinct from those of single-field slow-roll inflation, such as a modification of the inflationary consistency relation and a potentially large level of non-Gaussianities. We present a numerical algorithm that extends the inflationary flow formalism to models with general speed of sound. For an ensemble of D-brane-inflation models parametrized by the Hubble parameter and the speed of sound as polynomial functions of the inflaton field, we give qualitative predictions for the key inflationary observables. We discuss various consistency relations for D-brane inflation, and compare the qualitative shapes of the warp factors we derive from the numerical models with analytical warp factors considered in the literature. Finally, we derive and apply a generalized microphysical bound on the inflaton field variation during brane inflation. While a large number of models are consistent with current cosmological constraints, almost all of these models violate the compactification constraint on the field range in four-dimensional Planck units. If the field range bound is to hold, then models with a detectable level of non-Gaussianity predict a blue scalar spectral index, and a tensor component that is far below the detection limit of any future experiment.
Investment planning model of the world petrochemical industry
Manouchehri Adib, P.
1985-01-01
The world petrochemical industry is faced with an overcapacity in traditionally producing areas such as the United States, Western Europe, and Japan. At the same time, an increasing amount of new capacities are either planned or almost complete in energy-rich regions such as Canada, Latin America, Eastern Europe, the Middle East and Africa, and the Far East and Oceania. Such a conflicting move may add significantly to the existing problems of the world petrochemical industry. A multi-period, multi-region, multi-product, multi-process linear programming model is developed to analyze investment decisions under selected scenarios. Embodied in the model are detailed technical information about processes and products as well as economic information on different regions. Based on this theoretical model for the world petrochemical industry, both a static and a dynamic model are developed. The static model covers nine regions, thirty-one products, and a five-year period, 1988 to 1992, while the dynamic model includes eight regions, eleven products, and three five-year periods, 1988 to 2002. A variety of different cases are examined including one in which product demand is decreased. Two other cases considered are (1) stricter import policies by traditional producers and (2) adjustment in base-year capacity to include possible new productive units added before 1988.
Collective excitations of massive flavor branes
NASA Astrophysics Data System (ADS)
Itsios, Georgios; Jokela, Niko; Ramallo, Alfonso V.
2016-08-01
We study the intersections of two sets of D-branes of different dimensionalities. This configuration is dual to a supersymmetric gauge theory with flavor hypermultiplets in the fundamental representation of the gauge group which live on the defect of the unflavored theory determined by the directions common to the two types of branes. One set of branes is dual to the color degrees of freedom, while the other set adds flavor to the system. We work in the quenched approximation, i.e., where the flavor branes are considered as probes, and focus specifically on the case in which the quarks are massive. We study the thermodynamics and the speeds of first and zero sound at zero temperature and non-vanishing chemical potential. We show that the system undergoes a quantum phase transition when the chemical potential approaches its minimal value and we obtain the corresponding non-relativistic critical exponents that characterize its critical behavior. In the case of (2 + 1)-dimensional intersections, we further study alternative quantization and the zero sound of the resulting anyonic fluid. We finally extend these results to non-zero temperature and magnetic field and compute the diffusion constant in the hydrodynamic regime. The numerical results we find match the predictions by the Einstein relation.
First law of p-brane thermodynamics
Rogatko, Marek
2009-08-15
We study the physical process version and the equilibrium state version of the first law of thermodynamics for a charged p-brane. The general setting for our investigations is (n+p+1)-dimensional Einstein dilaton gravity with (p+2) strength form fields.
From soft walls to infrared branes
Gersdorff, Gero von
2010-10-15
Five-dimensional warped spaces with soft walls are generalizations of the standard Randall-Sundrum compactifications, where instead of an infrared brane one has a curvature singularity (with vanishing warp factor) at finite proper distance in the bulk. We project the physics near the singularity onto a hypersurface located a small distance away from it in the bulk. This results in a completely equivalent description of the soft wall in terms of an effective infrared brane, hiding any singular point. We perform explicitly this calculation for two classes of soft wall backgrounds used in the literature. The procedure has several advantages. It separates in a clean way the physics of the soft wall from the physics of the five-dimensional bulk, facilitating a more direct comparison with standard two-brane warped compactifications. Moreover, consistent soft walls show a sort of universal behavior near the singularity which is reflected in the effective brane Lagrangian. Thirdly, for many purposes, a good approximation is obtained by assuming the bulk background away from the singularity to be the usual Randall-Sundrum metric, thus making the soft wall backgrounds better analytically tractable. We check the validity of this procedure by calculating the spectrum of bulk fields and comparing it to the exact result, finding very good agreement.
Schwarzschild solution in brane induced gravity
Gabadadze, Gregory; Iglesias, Alberto
2005-10-15
The metric of a Schwarzschild solution in brane induced gravity in five dimensions is studied. We find a nonperturbative solution for which an exact expression on the brane is obtained. We also find a linearized solution in the bulk and argue that a nonsingular exact solution in the entire space should exist. The exact solution on the brane is highly nontrivial as it interpolates between different distance scales. This part of the metric is enough to deduce an important property--the Arnowitt-Deser-Misner canonical formalism (ADM) mass of the solution is suppressed compared to the bare mass of a static source. This screening of the mass is due to nonlinear interactions which give rise to a nonzero curvature outside the source. The curvature extends away from the source to a certain macroscopic distance that coincides with the would-be strong interaction scale. The very same curvature shields the source from strong coupling effects. The four-dimensional law of gravity, including the correct tensorial structure, is recovered at observable distances. We find that the solution has no van Dam-Veltman-Zakharov discontinuity and show that the gravitational field on the brane is always weak, in spite of the fact that the solution is nonperturbative.
Quasinormal modes of near extremal black branes
NASA Astrophysics Data System (ADS)
Starinets, Andrei O.
2002-12-01
We find quasinormal modes of near extremal black branes by solving a singular boundary value problem for the Heun equation. The corresponding eigenvalues determine the dispersion law for the collective excitations in the dual strongly coupled N=4 supersymmetric Yang-Mills theory at finite temperature.
Cosmological constant, near brane behavior and singularities
NASA Astrophysics Data System (ADS)
Gautason, Fridrik Freyr; Junghans, Daniel; Zagermann, Marco
2013-09-01
We show that the classical cosmological constant in type II flux compactifications can be written as a sum of terms from the action of localized sources plus a specific contribution from non-trivial background fluxes. Exploiting two global scaling symmetries of the classical supergravity action, we find that the flux contribution can in many interesting cases be set to zero such that the cosmological constant is fully determined by the boundary conditions of the fields in the near-source region. This generalizes and makes more explicit previous arguments in the literature. We then discuss the problem of putting -branes at the tip of the Klebanov-Strassler throat glued to a compact space in type IIB string theory so as to engineer a de Sitter solution. Our result for the cosmological constant and a simple global argument indicate that inserting a fully localized and backreacting -brane into such a background yields a singular energy density for the NSNS and RR 3-form field strengths at the -brane. This argument does not rely on partial smearing of the -brane or a linearization of field equations, but on a few general assumptions that we also discuss carefully.
Primordial spikes from wrapped brane inflation
Kobayashi, Takeshi; Yokoyama, Jun'ichi E-mail: yokoyama@resceu.s.u-tokyo.ac.jp
2013-02-01
Cosmic inflation driven by branes wrapping the extra dimensions involves Kaluza-Klein (KK) degrees of freedom in addition to the zero-mode position of the brane which plays the role of the inflaton. As the wrapped brane passes by localized sources or features along its inflationary trajectory in the extra dimensional space, the KK modes along the wrapped direction are excited and start to oscillate during inflation. We show that the oscillating KK modes induce parametric resonance for the curvature perturbations, generating sharp signals in the perturbation spectrum. The effective four dimensional picture is a theory where the inflaton couples to the heavy KK modes. The Nambu-Goto action of the brane sources couplings between the inflaton kinetic terms and the KK modes, which trigger significant resonant amplification of the curvature perturbations. We find that the strong resonant effects are localized to narrow wave number ranges, producing spikes in the perturbation spectrum. Investigation of such resonant signals opens up the possibility of probing the extra dimensional space through cosmological observations.
Cosmological perturbations on the phantom brane
NASA Astrophysics Data System (ADS)
Bag, Satadru; Viznyuk, Alexander; Shtanov, Yuri; Sahni, Varun
2016-07-01
We obtain a closed system of equations for scalar perturbations in a multi-component braneworld. Our braneworld possesses a phantom-like equation of state at late times, weff < -1, but no big-rip future singularity. In addition to matter and radiation, the braneworld possesses a new effective degree of freedom—the `Weyl fluid' or `dark radiation'. Setting initial conditions on super-Hubble spatial scales at the epoch of radiation domination, we evolve perturbations of radiation, pressureless matter and the Weyl fluid until the present epoch. We observe a gradual decrease in the amplitude of the Weyl-fluid perturbations after Hubble-radius crossing, which results in a negligible effect of the Weyl fluid on the evolution of matter perturbations on spatial scales relevant for structure formation. Consequently, the quasi-static approximation of Koyama and Maartens provides a good fit to the exact results during the matter-dominated epoch. We find that the late-time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials Φ and Ψ evolve differently on the brane than in ΛCDM, for which Φ = Ψ. On the brane, by contrast, the ratio Φ/Ψ exceeds unity during the late matter-dominated epoch (z lesssim 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large-scale structure.
World Energy Projection System Plus Model Documentation: Commercial Module
2016-01-01
The Commercial Model of the World Energy Projection System Plus (WEPS ) is an energy demand modeling system of the world commercial end?use sector at a regional level. This report describes the version of the Commercial Model that was used to produce the commercial sector projections published in the International Energy Outlook 2016 (IEO2016). The Commercial Model is one of 13 components of the WEPS system. The WEPS is a modular system, consisting of a number of separate energy models that are communicate and work with each other through an integrated system model. The model components are each developed independently, but are designed with well?defined protocols for system communication and interactivity. The WEPS modeling system uses a shared database (the “restart” file) that allows all the models to communicate with each other when they are run in sequence over a number of iterations. The overall WEPS system uses an iterative solution technique that forces convergence of consumption and supply pressures to solve for an equilibrium price.
Kar, Supriya
2006-12-15
We obtain de Sitter (dS) and anti-de Sitter (AdS) generalized Reissner-Nordstrom-like black hole geometries in a curved D{sub 3}-brane framework, underlying a noncommutative gauge theory on the brane world. The noncommutative scaling limit is explored to investigate a possible tunneling of an AdS vacuum in string theory to dS vacuum in its low energy gravity theory. The Hagedorn transition is invoked into its self-dual gauge theory to decouple the gauge nonlinearity from the dS geometry, which in turn is shown to describe a pure dS vacuum.
Mesonic quasinormal modes of the Sakai-Sugimoto model at high temperature
Evans, Nick; Threlfall, Ed
2008-06-15
We examine the mesonic thermal spectrum of the Sakai-Sugimoto model of holographic QCD by finding the quasinormal frequencies of the supergravity dual. If flavor is added using D8-D8 branes there exist embeddings where the D-brane world volume contains a black hole. For these embeddings (the high-temperature phase of the Sakai-Sugimoto model) we determine the quasinormal spectra of scalar and vector mesons arising from the world volume Dirac-Born-Infeld (DBI) action of the D-brane. We stress the importance of a coordinate change that makes the infalling quasinormal modes regular at the horizon allowing a simple numerical shooting technique. Finally we examine the effect of finite spatial momentum on quasinormal spectra.
NASA Astrophysics Data System (ADS)
Kilinc, M.; Beringer, J.; Hutley, L.; Kurioka, K.; Wood, S.; D'Argent, N.; Martin, D.; McHugh, I.; Tapper, N.; McGuire, D.
2009-04-01
Natural forests store vast amounts of carbon in the terrestrial biosphere, and play an important role in the global carbon cycle. Given the significance of natural forests, there is a lack of carbon accounting of primary forests that are undisturbed by human activities. One reason for this lack of interest stems from ecological orthodoxy that suggests that primary forests should be close to dynamic equilibrium, in that Net Ecosystem Production (NEP) approaches zero. However, recent results from the northern hemisphere and tropics, using eddy covariance flux towers, indicate that primary forests are a greater sink than first thought. The role of evergreen primary forests in Australian carbon balance studies remain uncertain and hence may function differently to their deciduous counterparts in the Northern Hemisphere. In order to address the lack of baseline carbon accounts, an undisturbed, 300 year old Mountain Ash (Eucalyptus regnans) ecosystem, located in the Central Highlands of Victoria (Australia) was selected as a permanent study site to investigate carbon and water budgets over diurnal, seasonal and annual cycles. Mountain Ash trees are the world's tallest angiosperms (flowering plants), and one of the largest carbon reservoirs in the biosphere, with an estimated 1900 tC ha-1. A 110 m tall micrometeorological tower that includes eddy covariance instrumentation was installed in August 2005. An independent biometric approach quantifying the annual net gain or loss of carbon was also made within close proximity to the flux tower. Analysis of NEP in 2006 suggests that the ecosystem acted as a carbon sink of 2.5 tC ha-1 yr-1. Woody and soil biomass increment for the same year was estimated to be 2.8 tC ha-1yr-1, in which nearly half of the biomass production was partitioned into the aboveground woody tissue. These results indicate that temperate primary forests act as carbon sinks, and are able to maintain their carbon sink status due to their uneven stand
Fluid/gravity correspondence: A nonconformal realization in compactified D4 branes
NASA Astrophysics Data System (ADS)
Wu, Chao; Chen, Yidian; Huang, Mei
2015-08-01
We develop the framework of boundary derivative expansion (BDE) formalism of fluid/gravity correspondence in compactified D4-brane system, which is a nonconformal background used in top-down holographic QCD models. Such models contain the D4-D6 model and the Sakai-Sugimoto (SS) model, with the background of the compactified black D4 branes under the near horizon limit. By using the dimensional reduction technique, we derive a 5D Einstein gravity minimally coupled with 3 scalar fields from the 10D D4-brane background. Following the BDE formalism of fluid/gravity correspondence in the conformal background, we directly derive all the first order transport coefficients for nonconformal gluonic matter. The results of the ratio of the bulk to shear viscosity and the sound speed agree with those obtained from the Green-Kubo method. This agreement guarantees the validity of the BDE formalism of fluid/gravity duality in the nonconformal D-brane background, which can be used to calculate the second order transport coefficients in nonconformal background.
p-brane dynamics in (N+1)-dimensional FRW universes: A unified framework
Sousa, L.; Avelino, P. P.
2011-05-15
We develop a velocity-dependent one-scale model describing p-brane dynamics in flat homogeneous and isotropic backgrounds in a unified framework. We find the corresponding scaling laws in frictionless and friction-dominated regimes considering both expanding and collapsing phases.
A small-world network model of facial emotion recognition.
Takehara, Takuma; Ochiai, Fumio; Suzuki, Naoto
2016-01-01
Various models have been proposed to increase understanding of the cognitive basis of facial emotions. Despite those efforts, interactions between facial emotions have received minimal attention. If collective behaviours relating to each facial emotion in the comprehensive cognitive system could be assumed, specific facial emotion relationship patterns might emerge. In this study, we demonstrate that the frameworks of complex networks can effectively capture those patterns. We generate 81 facial emotion images (6 prototypes and 75 morphs) and then ask participants to rate degrees of similarity in 3240 facial emotion pairs in a paired comparison task. A facial emotion network constructed on the basis of similarity clearly forms a small-world network, which features an extremely short average network distance and close connectivity. Further, even if two facial emotions have opposing valences, they are connected within only two steps. In addition, we show that intermediary morphs are crucial for maintaining full network integration, whereas prototypes are not at all important. These results suggest the existence of collective behaviours in the cognitive systems of facial emotions and also describe why people can efficiently recognize facial emotions in terms of information transmission and propagation. For comparison, we construct three simulated networks--one based on the categorical model, one based on the dimensional model, and one random network. The results reveal that small-world connectivity in facial emotion networks is apparently different from those networks, suggesting that a small-world network is the most suitable model for capturing the cognitive basis of facial emotions.
Model for the growth of the world airline network
NASA Astrophysics Data System (ADS)
Verma, T.; Araújo, N. A. M.; Nagler, J.; Andrade, J. S.; Herrmann, H. J.
2016-06-01
We propose a probabilistic growth model for transport networks which employs a balance between popularity of nodes and the physical distance between nodes. By comparing the degree of each node in the model network and the World Airline Network (WAN), we observe that the difference between the two is minimized for α≈2. Interestingly, this is the value obtained for the node-node correlation function in the WAN. This suggests that our model explains quite well the growth of airline networks.
The joint US/UK EPOCH world magnetic model 1995
NASA Astrophysics Data System (ADS)
Quinn, John M.; Coleman, Rachel J.; Shiel, Donald L.
1995-04-01
This report contains a detailed summary of the data used, analyses performed, modeling techniques employed, and results obtained during the course of the 1995 Epoch World Magnetic Modeling effort. This report also contains the GEOMAG algorithm and describes its uses and limitations. Charts derived from the WMM-95 model and the GEOMAG algorithm for both the Main geomagnetic field components and their Secular Variations are presented on Mercator and polar stereographic projections. Additionally, the numerical values of the Main geomagnetic field components and their Secular Variations are tabulated on a 5-degree worldwide grid.
Developing mathematical models of neurobehavioral performance for the "real world".
Dean, Dennis A; Fletcher, Adam; Hursh, Steven R; Klerman, Elizabeth B
2007-06-01
Work-related operations requiring extended wake durations, night, or rotating shifts negatively affect worker neurobehavioral performance and health. These types of work schedules are required in many industries, including the military, transportation, and health care. These industries are increasingly using or considering the use of mathematical models of neurobehavioral performance as a means to predict the neurobehavioral deficits due to these operational demands, to develop interventions that decrease these deficits, and to provide additional information to augment existing decision-making processes. Recent advances in mathematical modeling have allowed its application to real-world problems. Developing application-specific expertise is necessary to successfully apply mathematical models, in part because development of new algorithms and methods linking the models to the applications may be required. During a symposium, "Modeling Human Neurobehavioral Performance II: Towards Operational Readiness," at the 2006 SIAM-SMB Conference on the Life Sciences, examples of the process of applying mathematical models, including model construction, model validation, or developing model-based interventions, were presented. The specific applications considered included refining a mathematical model of sleep/wake patterns of airline flight crew, validating a mathematical model using railroad operations data, and adapting a mathematical model to develop appropriate countermeasure recommendations based on known constraints. As mathematical models and their associated analytical methods continue to transition into operational settings, such additional development will be required. However, major progress has been made in using mathematical model outputs to inform those individuals making schedule decisions for their workers.
p-Wave superconductors in D-brane systems
NASA Astrophysics Data System (ADS)
Bu, Yanyan
2012-11-01
In this work we take the intersecting D-brane models to explore some properties of p-wave superconductor at strong coupling. Our studies are focused on four-dimensional spacetime, which is not completely researched as in planar case. Optimistically, the AdS/CFT approach to superconductor, or more precisely superconducting-like phase transition, can give us some intuitions about mysterious high Tc superconductors. Concretely, we use defect D4/D6 and D4/D4 (noncritical) models to carry out comparative investigations. To make the system in the finite temperature bath, we assume that the superconducting phase is in the deconfined and chiral symmetry restoring phase for black D4-brane geometry. For the background fields, we use both analytical and numerical methods to solve the coupled nonlinear equations of motion. Near the phase transition, both methods give the mean filed behavior for the superconducting condensate. We then study gauge field perturbations of the systems to probe the AC conductivity. Similar to previous results, there comes out a gap in low frequency regime and the conductivity gets exponentially small as the condensation is enhanced. In contrast to previous investigations, we also compute the AC conductivity along the x direction, which needs to study a coupled sets of fluctuation modes. This shows us the anisotropic feature of p-wave superconductors.
The beta distribution: A statistical model for world cloud cover
NASA Technical Reports Server (NTRS)
Falls, L. W.
1973-01-01
Much work has been performed in developing empirical global cloud cover models. This investigation was made to determine an underlying theoretical statistical distribution to represent worldwide cloud cover. The beta distribution with probability density function is given to represent the variability of this random variable. It is shown that the beta distribution possesses the versatile statistical characteristics necessary to assume the wide variety of shapes exhibited by cloud cover. A total of 160 representative empirical cloud cover distributions were investigated and the conclusion was reached that this study provides sufficient statical evidence to accept the beta probability distribution as the underlying model for world cloud cover.
Isolated Minkowski vacua, and stability analysis for an extended brane in the rugby ball
NASA Astrophysics Data System (ADS)
Himmetoǧlu, Burak; Peloso, Marco
2007-06-01
We study a recently proposed model, where a codimension one brane is wrapped around the axis of symmetry of an internal two-dimensional space compactified by a flux. This construction is free from the problems which plague delta-like, codimension two branes, where only tension can be present. In contrast, arbitrary fields can be localized on this extended brane, and their gravitational interaction is standard 4d gravity at large distances. In the first part of this work, we study the de Sitter (dS) vacua of the model. The landscape of these vacua is characterized by discrete points labeled by two integer numbers, related to the flux responsible for the compactification and to the current of a brane field. A Minkowski external space emerges only for a special ratio between these two integers, and it is therefore (topologically) isolated from the nearby dS solutions. In the second part, we show that the Minkowski vacua are stable under the most generic axially-symmetric perturbations, and we argue that this is sufficient to ensure the overall stability.
Heterotic warped Eguchi-Hanson spectra with five-branes and line bundles
NASA Astrophysics Data System (ADS)
Carlevaro, Luca; Nibbelink, Stefan Groot
2013-10-01
We consider heterotic strings on a warped Eguchi-Hanson space with five-brane and line bundle gauge fluxes. The heterotic string admits an exact CFT description in terms of an asymmetrically gauged WZW model, in a specific double scaling limit in which the blow-up radius and the string scale are sent to zero simultaneously. This allows us to compute the perturbative 6D spectra for these models in two independent fashions: i) Within the supergravity approximation we employ a representation dependent index; ii) In the double scaling limit we determine all marginal vertex operators of the coset CFT. To achieve agreement between the supergravity and the CFT spectra, we conjecture that the untwisted and the twisted CFT states correspond to the same set of hyper multiplets in supergravity. This is in a similar spirit as a conjectured duality between asymptotically linear dilaton CFTs and little string theory living on NS-five-branes. As the five-brane charge is non-vanishing, heterotic (anti-)five-branes have to be added in order to cancel irreducible gauge anomalies. The local spectra can be combined in such a way that supersymmetry is preserved on the compact resolved orbifold by choosing the local gauge fluxes appropriately.
Localization and mass spectrum of q-form fields on branes
NASA Astrophysics Data System (ADS)
Fu, Chun-E.; Zhong, Yuan; Xie, Qun-Ying; Liu, Yu-Xiao
2016-06-01
In this paper, we investigate localization of a bulk massless q-form field on codimension-one branes by using a new Kaluza-Klein (KK) decomposition, for which there are two types of KK modes for the bulk q-form field, the q-form and (q - 1)-form modes. The first modes may be massive or massless while the second ones are all massless. These two types of KK modes satisfy two Schrödinger-like equations. For a five-dimensional brane model with a finite extra dimension, the spectrum of a bulk 3-form field on the brane consists of some massive bound 3-form KK modes as well as some massless bound 2-form ones with different configuration along the extra dimension. These 2-form modes are different from those obtained from a bulk 2-form field. For a five-dimensional degenerated Bloch brane model with an infinite extra dimension, some massive 3-form resonant KK modes and corresponding massless 2-form resonant ones are obtained for a bulk 3-form field.
3-D world modeling for an autonomous robot
Goldstein, M.; Pin, F.G.; Weisbin, C.R.
1987-08-01
This paper presents a methodology for a concise representation of the 3-D world model for a mobile robot, using range data. The process starts with the segmentation of the scene into ''objects'' that are given a unique label, based on principles of range continuity. Then the external surface of each object is partitioned into homogeneous surface patches. Contours of surface patches in 3-D space are identified by estimating the normal and curvature associated with each pixel. The resulting surface patches are then classified as planar, convex or concave. Since the world model uses a volumetric representation for the 3-D environment, planar surfaces are represented by thin volumetric polyhedra. Spherical and cylindrical surfaces are extracted and represented by appropriate volumetric primitives. All other surfaces are represented using the boolean union of spherical volumes (as described in a separate paper by the same authors). The result is a general, concise representation of the external 3-D world, which allows for efficient and robust 3-D object recognition. 20 refs., 14 figs.
Documentation of the AMIP models on the World Wide Web
Phillips, T.J.
1995-08-01
The intercomparison of atmospheric general circulation model (AGCM) experiments of a similar type has become an increasingly popular methodology for assessing the strengths and weaknesses of climate simulations. In such endeavors, attempts to attribute differences among the simulations to specific model properties require, as a minimum prerequisite, the accurate and comprehensive documentation of these features. Regrettably however, atmospheric model documentation typically is fragmentary and scattered across numerous publications. It is also often inaccurate, in the sense that the pace of model development and the proliferation of new model versions usually outstrip their recorded descriptions. More often than not, the detailed configuration of a model for a particular experiment also is undocumented. In addition, there may be much unevenness in the descriptions of different facets of models. This incompleteness usually is replicated in published results of an intercomparison experiment, in that participating models` features often are summarized only perfunctorily. Summary documentation of the numerics, dynamics, and physics of models participating in the Atmospheric Model Intercomparison Project (AMIP) is now available on the Internet`s World Wide Web. This paper describes the principal attributes of the electronic model documentation and provides instructions on how to access it.
Perturbations of black p-branes
Abdalla, Elcio; Fernandez Piedra, Owen Pavel; Oliveira, Jeferson de; Molina, C.
2010-03-15
We consider black p-brane solutions of the low-energy string action, computing scalar perturbations. Using standard methods, we derive the wave equations obeyed by the perturbations and treat them analytically and numerically. We have found that tensorial perturbations obtained via a gauge-invariant formalism leads to the same results as scalar perturbations. No instability has been found. Asymptotically, these solutions typically reduce to a AdS{sub (p+2)}xS{sup (8-p)} space which, in the framework of Maldacena's conjecture, can be regarded as a gravitational dual to a conformal field theory defined in a (p+1)-dimensional flat space-time. The results presented open the possibility of a better understanding the AdS/CFT correspondence, as originally formulated in terms of the relation among brane structures and gauge theories.
Naked shell singularities on the brane
Seahra, Sanjeev S.
2005-04-15
By utilizing nonstandard slicings of 5-dimensional Schwarzschild and Schwarzschild-AdS manifolds based on isotropic coordinates, we generate static and spherically-symmetric braneworld spacetimes containing shell-like naked null singularities. For planar slicings, we find that the brane-matter sourcing the solution is a perfect fluid with an exotic equation of state and a pressure singularity where the brane crosses the bulk horizon. From a relativistic point of view, such a singularity is required to maintain matter infinitesimally above the surface of a black hole. From the point of view of the AdS/CFT conjecture, the singular horizon can be seen as one possible quantum correction to a classical black hole geometry. Various generalizations of planar slicings are also considered for a Ricci-flat bulk, and we find that singular horizons and exotic matter distributions are common features.
Transport coefficients of black MQGP -branes
NASA Astrophysics Data System (ADS)
Dhuria, Mansi; Misra, Aalok
2015-01-01
The Strominger-Yau-Zaslow (SYZ) mirror, in the `delocalised limit' of Becker et al. (Nucl Phys B 702:207, 2004), of -branes, fractional -branes and flavour -branes wrapping a non-compact four-cycle in the presence of a black hole (BH) resulting in a non-Kähler resolved warped deformed conifold (NKRWDC) in Mia et al. (Nucl Phys B 839:187, 2010), was carried out in Dhuria and Misra (JHEP 1311:001, 2013) and resulted in black -branes. There are two parts in our paper. In the first we show that in the `MQGP' limit discussed in Dhuria and Misra (JHEP 1311:001, 2013) a finite (and hence expected to be more relevant to QGP), finite and very large , and very small , we have the following. (i) The uplift, if valid globally (like Dasgupta et al., Nucl Phys B 755:21, 2006) for fractional branes in conifolds), asymptotically goes to -branes wrapping a two-cycle (homologously a (large) integer sum of two-spheres) in . (ii) Assuming the deformation parameter to be larger than the resolution parameter, by estimating the five structure torsion () classes we verify that in the large- limit, implying the NKRWDC reduces to a warped Kähler deformed conifold. (iii) The local of Dhuria and Misra (JHEP 1311:001, 2013) in the large- limit satisfies the same conditions as the maximal -invariant special Lagrangian three-cycle of of Ionel and Min-OO (J Math 52(3), 2008), partly justifying use of SYZ-mirror symmetry in the `delocalised limit' of Becker et al. (Nucl Phys B 702:207, 2004) in Dhuria and Misra (JHEP 1311:001, 2013). In the second part of the paper, by either integrating out the angular coordinates of the non-compact four-cycle which a -brane wraps around, using the Ouyang embedding, in the DBI action of a -brane evaluated at infinite radial boundary, or by dimensionally reducing the 11-dimensional EH action to five () dimensions and at the infinite radial boundary, we then calculate in particular the (part of the 'MQGP') limit, a variety of gauge and metric
Nonlinear stability of a brane wormhole
NASA Astrophysics Data System (ADS)
Akai, Yumi; Nakao, Ken-ichi
2017-07-01
We analytically study the nonlinear stability of a spherically symmetric wormhole supported by an infinitesimally thin brane of negative tension, which has been devised by Barcelo and Visser. We consider a situation in which a thin spherical shell composed of dust falls into an initially static wormhole; the dust shell plays the role of the nonlinear disturbance. The self-gravity of the falling dust shell is completely taken into account through Israel's formalism of the metric junction. When the dust shell goes through the wormhole, it necessarily collides with the brane supporting the wormhole. We assume the interaction between these shells is only gravity and show the condition under which the wormhole stably persists after the dust shell goes through it.
The visual system’s internal model of the world
Lee, Tai Sing
2015-01-01
The Bayesian paradigm has provided a useful conceptual theory for understanding perceptual computation in the brain. While the detailed neural mechanisms of Bayesian inference are not fully understood, recent computational and neurophysiological works have illuminated the underlying computational principles and representational architecture. The fundamental insights are that the visual system is organized as a modular hierarchy to encode an internal model of the world, and that perception is realized by statistical inference based on such internal model. In this paper, I will discuss and analyze the varieties of representational schemes of these internal models and how they might be used to perform learning and inference. I will argue for a unified theoretical framework for relating the internal models to the observed neural phenomena and mechanisms in the visual cortex. PMID:26566294
The visual system's internal model of the world.
Lee, Tai Sing
2015-08-01
The Bayesian paradigm has provided a useful conceptual theory for understanding perceptual computation in the brain. While the detailed neural mechanisms of Bayesian inference are not fully understood, recent computational and neurophysiological works have illuminated the underlying computational principles and representational architecture. The fundamental insights are that the visual system is organized as a modular hierarchy to encode an internal model of the world, and that perception is realized by statistical inference based on such internal model. In this paper, I will discuss and analyze the varieties of representational schemes of these internal models and how they might be used to perform learning and inference. I will argue for a unified theoretical framework for relating the internal models to the observed neural phenomena and mechanisms in the visual cortex.
Geometric phase and gravitational precession of D-branes
Pedder, Chris; Sonner, Julian; Tong, David
2007-12-15
We study Berry's phase in the D0-D4-brane system. When a D0-brane moves in the background of D4-branes, the first excited states undergo a holonomy described by a non-Abelian Berry connection. At weak coupling this is an SU(2) connection over R{sup 5}, known as the Yang monopole. At strong coupling, the holonomy is recast as the classical gravitational precession of a spinning particle. The Berry connection is the spin connection of the near-horizon limit of the D4-branes, which is a continuous deformation of the Yang and anti-Yang monopole.
Exact N=2 supergravity solutions with polarized branes
Bena, Iosif; Ciocarlie, Calin
2004-10-15
We construct several classes of exact supersymmetric supergravity solutions describing D4 branes polarized into NS5 branes and F-strings polarized into D2 branes. These setups belong to the same universality class as the perturbative solutions used by Polchinski and Strassler to describe the string dual of N=1* theories. The D4-NS5 setup can be interpreted as a string dual to a confining 4+1 dimensional theory with 8 supercharges, whose properties we discuss. By T-duality, our solutions give Type IIB supersymmetric backgrounds with polarized branes.
Hamilton-Jacobi method and effective actions of D-brane and M-brane in supergravity
NASA Astrophysics Data System (ADS)
Sato, Matsuo; Tsuchiya, Asato
2003-11-01
We show that the effective actions of D-brane and M-brane are solutions to the Hamilton-Jacobi (H-J) equations in supergravities. This fact means that these effective actions are on-shell actions in supergravities. These solutions to the H-J equations reproduce the supergravity solutions that represent D-branes in a B2 field, M2 branes and the M2-M5 bound states. The effective actions in these solutions are those of a probe D-brane and a probe M-brane. Our findings can be applied to the study of the gauge/gravity correspondence, especially the holographic renormalization group, and a search for new solutions of supergravity.
Gravitational couplings on D-brane revisited
NASA Astrophysics Data System (ADS)
Ghodsi, Ahmad; Jafari, Ghadir
2016-11-01
Gravitational couplings in bulk space-time include those terms which are fixed by scattering amplitude of strings and ambiguous terms that are coming from the field redefinitions. These field redefinitions can be fixed in the bulk by ghost-free condition. In this paper we have revised the effective gravitational couplings on D-branes by including the field redefinitions. We find the gravitational effective action up to α '2-order.
Fisher equation for a decaying brane
NASA Astrophysics Data System (ADS)
Ghoshal, Debashis
2011-12-01
We consider the inhomogeneous decay of an unstable D-brane. The dynamical equation that describes this process (in light-cone time) is a variant of the non-linear reaction-diffusion equation that first made its appearance in the pioneering work of (Luther and) Fisher and appears in a variety of natural phenomena. We analyze its travelling front solution using singular perturbation theory.
Chiral vortical effect from the compactified D4-branes with smeared D0-brane charge
NASA Astrophysics Data System (ADS)
Wu, Chao; Chen, Yidian; Huang, Mei
2017-03-01
By using the boundary derivative expansion formalism of fluid/gravity correspondence, we study the chiral vortical effect from the compactified D4-branes with smeared D0-brane charge. This background corresponds to a strongly coupled, nonconformal relativistic fluid with a conserved vector current. The presence of the chiral vortical effect is induced by the addition of a Chern-Simons term in the bulk action. Except that the non-dissipative anomalous viscous coefficient and the sound speed rely only on the chemical potential, most of the other thermal and hydrodynamical quantities of the first order depend both on the temperature and the chemical potential. According to our result, the way that the chiral vortical effect coefficient depends on the chemical potential seems irrelevant with whether the relativistic fluid is conformal or not. Stability analysis shows that this anomalous relativistic fluid is stable and the doping of the smeared D0-brane charge will slow down the sound speed.
Asymmetric Wormholes via Electrically Charged Lightlike Branes
Guendelman, E.; Kaganovich, A.; Nissimov, E.; Pacheva, S.
2010-06-17
We consider a self-consistent Einstein-Maxwell-Kalb-Ramond system in the bulk D = 4 space-time interacting with a variable-tension electrically charged lightlike brane. The latter serves both as a material and charge source for gravity and electromagnetism, as well as it dynamically generates a bulk space varying cosmological constant. We find an asymmetric wormhole solution describing two 'universes' with different spherically symmetric black-hole-type geometries connected through a 'throat' occupied by the lightlike brane. The electrically neutral 'left universe' comprises the exterior region of Schwarzschild-de-Sitter (or pure Schwarzschild) space-time above the inner(Schwarzschild-type) horizon, whereas the electrically charged 'right universe' consists of the exterior Reissner-Nordstroem (or Reissner-Nordstroem-de-Sitter) black hole region beyond the outer Reissner-Nordstroem horizon. All physical parameters of the wormhole are uniquely determined by two free parameters - the electric charge and Kalb-Ramond coupling of the lightlike brane.
Superradiant instability of the Kerr brane
NASA Astrophysics Data System (ADS)
Ishibashi, Akihiro; Pani, Paolo; Gualtieri, Leonardo; Cardoso, Vitor
2015-09-01
We consider linear gravitational perturbations of the Kerr brane, an exact solution of vacuum Einstein's equations in dimensions higher than four and a low-energy solution of string theory. Decomposing the perturbations in tensor harmonics of the trans-verse Ricci-flat space, we show that tensor- and vector-type metric perturbations of the Kerr brane satisfy respectively a massive Klein-Gordon equation and a Proca equation on the four-dimensional Kerr space, where the mass term is proportional to the eigenvalue of the harmonics. Massive bosonic fields trigger a well-known superradiant instability on a Kerr black hole. We thus establish that Kerr branes in dimensions D ≥ 6 are gravi-tationally unstable due to superradiance. These solutions are also unstable against the Gregory-Laflamme instability and we discuss the conditions for either instability to occur and their rather different nature. When the transverse dimensions are compactified and much smaller than the Kerr horizon, only the superradiant instability is present, with a time scale much longer than the dynamical time scale. Our formalism can be also used to discuss other types of higher-dimensional black objects, taking advantage of recent progress in studying linear perturbations of four-dimensional black holes.
Cosmological perturbations across an S-brane
Brandenberger, Robert H.; Kounnas, Costas; Partouche, Hervé; Patil, Subodh P.; Toumbas, Nicolaos E-mail: kounnas@lpt.ens.fr E-mail: subodh.patil@cern.ch
2014-03-01
Space-filling S-branes can mediate a transition between a contracting and an expanding universe in the Einstein frame. Following up on previous work that uncovered such bouncing solutions in the context of weakly coupled thermal configurations of a certain class of type II superstrings, we set up here the formalism in which we can study the evolution of metric fluctuations across such an S-brane. Our work shows that the specific nature of the S-brane, which is sourced by non-trivial massless thermal string states and appears when the universe reaches a maximal critical temperature, allows for a scale invariant spectrum of curvature fluctuations to manifest at late times via a stringy realization of the matter bounce scenario. The finite energy density at the transition from contraction to expansion provides calculational control over the propagation of the curvature perturbations through the bounce, furnishing a working proof of concept that such a stringy universe can result in viable late time cosmology.
Randall-Sundrum brane Universe as a ground state for Chern-Simons gravity
NASA Astrophysics Data System (ADS)
Cordonier-Tello, Fabrizio; Izaurieta, Fernando; Mella, Patricio; Rodríguez, Eduardo
2016-12-01
In stark contrast with the three-dimensional case, higher-dimensional Chern-Simons (CS) theories can have non-topological, propagating degrees of freedom. Finding those vacua that allow for the propagation of linear perturbations, however, proves to be surprisingly challenging. The simplest solutions are somehow ‘hyper-stable’, preventing the construction of realistic, four-dimensional physical models. Here, we show that a Randall-Sundrum (RS) brane Universe can be regarded as a vacuum solution of CS gravity in five-dimensional spacetime, with non vanishing torsion along the dimension perpendicular to the brane. Linearized perturbations around this solution not only exist, but behave as standard gravitational waves on a four-dimensional Minkowski background. In the non-perturbative regime, the solution leads to a four-dimensional ‘cosmological function’ {{Λ }}(x) which depends on the Euler density of the brane. Interestingly, the fact that the solution admits nontrivial linear perturbations seems to be related to an often neglected property of the RS spacetime: that it is a group manifold, or, more precisely, two identical group manifolds glued together along the brane. The gravitational theory is then built around this fact, adding the Lorentz generators and one scalar generator needed to close the algebra. In this way, a conjecture emerges: a spacetime that is also a group manifold can be regarded as the ground state of a CS theory for an appropriate Lie algebra.
Scalar field localization on 3-branes placed at a warped resolved conifold
Silva, J. E. G.; Almeida, C. A. S.
2011-10-15
We have studied the localization of a scalar field on a 3-brane embedded in a six-dimensional warped bulk of the form M{sub 4}xC{sub 2}, where M{sub 4} is a 3-brane and C{sub 2} is a 2-cycle of a six-dimensional resolved conifold C{sub 6} over a T{sup 1,1} space. Since the resolved conifold is singularity-free in r=0 depending on a resolution parameter a, we have analyzed the behavior of the localization of a scalar field when we vary the resolution parameter. On one hand, this enables us to study the effects that a singularity has on the field. On the other hand we can use the resolution parameter as a fine-tuning between the bulk Planck mass and 3-brane Planck mass and so it opens a new perspective to extend the hierarchy problem. Using a linear and a nonlinear warp factor, we have found that the massive and massless modes are trapped to the brane even in the singular cone (a{ne}0). We have also compared the results obtained in this geometry and those obtained in other six-dimensional models, such as stringlike geometry and cigarlike universe geometry.
Cancer Models and Real-world Data: Better Together.
Kim, Jane J; Tosteson, Anna Na; Zauber, Ann G; Sprague, Brian L; Stout, Natasha K; Alagoz, Oguzhan; Trentham-Dietz, Amy; Armstrong, Katrina; Pruitt, Sandi L; Rutter, Carolyn M
2016-02-01
Decision-analytic models are increasingly used to inform health policy decisions. These models synthesize available data on disease burden and intervention effectiveness to project estimates of the long-term consequences of care, which are often absent when clinical or policy decisions must be made. While models have been influential in informing US cancer screening guidelines under ideal conditions, incorporating detailed data on real-world screening practice has been limited given the complexity of screening processes and behaviors throughout diverse health delivery systems in the United States. We describe the synergies that exist between decision-analytic models and health care utilization data that are increasingly accessible through research networks that assemble data from the growing number of electronic medical record systems. In particular, we present opportunities to enrich cancer screening models by grounding analyses in real-world data with the goals of projecting the harms and benefits of current screening practices, evaluating the value of existing and new technologies, and identifying the weakest links in the cancer screening process where efforts for improvement may be most productively focused. We highlight the example of the National Cancer Institute-funded consortium Population-based Research Optimizing Screening through Personalized Regimens (PROSPR), a collaboration to harmonize and analyze screening process and outcomes data on breast, colorectal, and cervical cancers across seven research centers. The pairing of models with such data can create more robust models to not only better inform policy but also inform health care systems about best approaches to improve the provision of cancer screening in the United States.
World agriculture and climate change: Current modeling issues
Darwin, R.
1996-12-31
Recent studies suggest that although global increases in temperature and changes in precipitation patterns during the next century will affect world agriculture, farmer adaptations are likely to prevent climate change from jeopardizing world food production. The costs and benefits of global climate change, however, are not equally distributed around the world. Agricultural production may increase in high latitude and alpine areas, but decrease in tropical and some other areas. Also, land use changes that accompany climate-induced shifts in cropland and permanent pasture are likely to raise additional social and environmental issues. Despite these advances, some important aspects of climate change have not been adequately simulated in global models. These include the effects that climate-induced changes in water resources are likely to have on agricultural production, the well-documented beneficial effects of higher concentrations of atmospheric carbon dioxide on plant growth and water use, and the cooling effects of tropospheric emissions of sulfur dioxide. In addition, past research generally relied on equilibrium climates based on a doubling of atmospheric carbon dioxide. Now, however, results from transient climate change experiments are available.
Numerical modelling of floating debris in the world's oceans.
Lebreton, L C-M; Greer, S D; Borrero, J C
2012-03-01
A global ocean circulation model is coupled to a Lagrangian particle tracking model to simulate 30 years of input, transport and accumulation of floating debris in the world ocean. Using both terrestrial and maritime inputs, the modelling results clearly show the formation of five accumulation zones in the subtropical latitudes of the major ocean basins. The relative size and concentration of each clearly illustrate the dominance of the accumulation zones in the northern hemisphere, while smaller seas surrounded by densely populated areas are also shown to have a high concentration of floating debris. We also determine the relative contribution of different source regions to the total amount of material in a particular accumulation zone. This study provides a framework for describing the transport, distribution and accumulation of floating marine debris and can be continuously updated and adapted to assess scenarios reflecting changes in the production and disposal of plastic worldwide.
Epidemiology Model on Shortcut and Small World Networks
NASA Astrophysics Data System (ADS)
Shanker, O.; Hogg, Tad
We show that the behavior of an epidemiology model depends sensitively on the shortcut density in the shortcut network. This is consistent with an earlier work on other processes on the shortcut network. We analytically study the reason for the sensitivity. The shortcut network is similar to the small world network, and it has the advantage that the model dependence on the shortcut density can be analytically studied. The model would be relevant to the spread of diseases in human, animal, plant or other populations, to the spread of viruses in computer networks, or to the spread of social contagion in social networks. It would also be relevant in understanding the variations in the load on routers connecting different computer networks, as the network topology gets extended by the addition of new links, and in analyzing the placement of certain special sensors in a sensor network laid out in a non-random way with some shortcut links.
ERIC Educational Resources Information Center
Falk, Richard A.
The monograph examines the relationship of nuclear power to world order. The major purpose of the document is to stimulate research, education, dialogue, and political action for a just and peaceful world order. The document is presented in five chapters. Chapter I stresses the need for a system of global security to counteract dangers brought…
ERIC Educational Resources Information Center
Falk, Richard A.
The monograph examines the relationship of nuclear power to world order. The major purpose of the document is to stimulate research, education, dialogue, and political action for a just and peaceful world order. The document is presented in five chapters. Chapter I stresses the need for a system of global security to counteract dangers brought…
Phase transitions in thick branes endorsed by entropic information
NASA Astrophysics Data System (ADS)
Cruz, W. T.; Dantas, D. M.; Correa, R. A. C.; Almeida, C. A. S.
2017-09-01
The so-called configurational entropy (CE) framework has proved to be an efficient instrument to study nonlinear scalar field models featuring solutions with spatially-localised energy, since its proposal by Gleiser and Stamapoulos. Therefore, in this work, we apply this new physical quantity in order to investigate the properties of degenerate Bloch branes. We show that it is possible to construct a configurational entropy measure in functional space from the field configurations, where a complete set of exact solutions for the model studied displays both double and single-kink configurations. Our study shows a rich internal structure of the configurations, where we observe that the field configurations undergo a quick phase transition, which is endorsed by information entropy. Furthermore, the Bloch configurational entropy is employed to demonstrate a high organisational degree in the structure of the configurations of the system, stating that there is a best ordering for the solutions.
Implementation science in the real world: a streamlined model.
Knapp, Herschel; Anaya, Henry D
2012-01-01
The process of quality improvement may involve enhancing or revising existing practices or the introduction of a novel element. Principles of Implementation Science provide key theories to guide these processes, however, such theories tend to be highly technical in nature and do not provide pragmatic nor streamlined approaches to real-world implementation. This paper presents a concisely comprehensive six step theory-based Implementation Science model that we have successfully used to launch more than two-dozen self-sustaining implementations. In addition, we provide an abbreviated case study in which we used our streamlined theoretical model to successfully guide the development and implementation of an HIV testing/linkage to care campaign in homeless shelter settings in Los Angeles County.
[Cancer screening in Hungary: World Bank supported model programs].
Bodó, M; Döbrössy, L; Liszka, G; Ottó, S; Péter, Z
1997-07-13
Since 1995, a model cancer screening program has been in operation in Hungary, the overall purpose of which is to promote the establishment of effective and efficient screening programs by means of adapting the internationally agreed principles of organized screening to the needs and opportunities in Hungary. The establishment and operation of a national population-based cancer registration system is an other aim of the Program. The model program--financed partly from a loan from the World Bank, partly from local funds provided by the Government of Hungary--is to develop standard procedure for cervical, breast and colorectal screening and to end up with tested recommendations for introduction of organized screening of proved effectiveness, integrated into the health care system, on country-wide service bases in Hungary.
Vision in Drosophila: seeing the world through a model's eyes.
Paulk, Angelique; Millard, S Sean; van Swinderen, Bruno
2013-01-01
The fruit fly, Drosophila melanogaster, has been used for decades as a genetic model for unraveling mechanisms of development and behavior. In order to efficiently assign gene functions to cellular and behavioral processes, early measures were often necessarily simple. Much of what is known of developmental pathways was based on disrupting highly regular structures, such as patterns of cells in the eye. Similarly, reliable visual behaviors such as phototaxis and motion responses provided a solid foundation for dissecting vision. Researchers have recently begun to examine how this model organism responds to more complex or naturalistic stimuli by designing novel paradigms that more closely mimic visual behavior in the wild. Alongside these advances, the development of brain-recording strategies allied with novel genetic tools has brought about a new era of Drosophila vision research where neuronal activity can be related to behavior in the natural world.
The Big Crunch--Models in Physics Meet the Real World.
ERIC Educational Resources Information Center
Fisher, Brian
2001-01-01
Examines quantitative models in school physics, looking particularly at the degree to which they match the real world. Explores the positive aspects of a mismatch between models and real world conditions. (DDR)
NASA Astrophysics Data System (ADS)
McLeod, Roger; McLeod, David
2006-03-01
Model a `planar' electron by a closed string of vibrating neutrinos; displacement values are proportional to the speed of light times the square root of the mass. `Spin' supplies required inward spherical fields in three spatial dimensions. Interlocked quark loops model protons or neutrons; ideas like strong and weak forces, or an uncertainty principle, arise. Subtle, longer string-like `vibrating,' quasi-periodic, lighted phenomena we detect are at locations used by some of our Native American forebears, or by the Hopi or Maya -locations indicated by problematic constructions, by `sacred' place-names, or by individuals with `titles' identified as names. Lighted `tubes,' associated with EMF, required by our model for tornado generation, imply breaking the EMF lines will `kill' any tornado. `Kokopelli's hair,' is the place to construct a designated current loop.
Hydro-elastic complementarity in black branes at large D
NASA Astrophysics Data System (ADS)
Emparan, Roberto; Izumi, Keisuke; Luna, Raimon; Suzuki, Ryotaku; Tanabe, Kentaro
2016-06-01
We obtain the effective theory for the non-linear dynamics of black branes — both neutral and charged, in asymptotically flat or Anti-deSitter spacetimes — to leading order in the inverse-dimensional expansion. We find that black branes evolve as viscous fluids, but when they settle down they are more naturally viewed as solutions of an elastic soap-bubble theory. The two views are complementary: the same variable is regarded in one case as the energy density of the fluid, in the other as the deformation of the elastic membrane. The large- D theory captures finite-wavelength phenomena beyond the conventional reach of hydrodynamics. For asymptotically flat charged black branes (either Reissner-Nordstrom or p-brane-charged black branes) it yields the non-linear evolution of the Gregory-Laflamme instability at large D and its endpoint at stable non-uniform black branes. For Reissner-Nordstrom AdS black branes we find that sound perturbations do not propagate (have purely imaginary frequency) when their wavelength is below a certain charge-dependent value. We also study the polarization of black branes induced by an external electric field.
A new world lakes database for global hydrological modelling
NASA Astrophysics Data System (ADS)
Pimentel, Rafael; Hasan, Abdulghani; Isberg, Kristina; Arheimer, Berit
2017-04-01
Lakes are crucial systems in global hydrology, they constitutes approximately a 65% of the total amount of surface water over the world. The recent advances in remote sensing technology have allowed getting new higher spatiotemporal resolution for global water bodies information. Within them, ESA global map of water bodies, stationary map at 150 m spatial resolution, (Lamarche et al., 2015) and the new high-resolution mapping of global surface water and its long-term changes, 32 years product with a 30 m spatial resolution (Pekel et al., 2016). Nevertheless, these databases identifies all the water bodies, they do not make differences between lakes, rivers, wetlands and seas. Some global databases with isolate lake information are available, i.e. GLWD (Global Lakes and Wetland Database) (Lernhard and Döll, 2004), however the location of some of the lakes is shifted in relation with topography and their extension have also experimented changes since the creation of the database. This work presents a new world lake database based on ESA global map water bodies and relied on the lakes in GLWD. Lakes from ESA global map of water bodies were identified using a flood fill algorithm, which is initialized using the centroid of the lakes defined in GLWD. Some manual checks were done to split lakes that are really connected but identified as different lakes in GLWD database. In this way the database associated information provided in GLDW is maintained. Moreover, the locations of the outlet of all them were included in the new database. The high resolution upstream area information provided by Global Width Database for Large Rivers (GWD-LR) was used for that. This additional points location constitutes very useful information for watershed delineation by global hydrological modelling.. The methodology was validated using in situ information from Sweden lakes and extended over the world. 13 500 lakes greater than 0.1 km2 were identified.
Controlling reactive behavior with consistent world modeling and reasoning
NASA Astrophysics Data System (ADS)
Bou-Ghannam, Akram A.
1992-03-01
Based on the philosophical view of reflexive behaviors and cognitive modules working in a complementary fashion, this paper proposes a hybrid decomposition of the control architecture for an intelligent, fully autonomous mobile robot. This architecture follows a parallel distributed decomposition and supports a hierarchy of control with lower-level reflexive type behaviors working in parallel with higher-level planning and map building modules. The behavior-based component of the system provides the basic instinctive competences for the robot while the cognitive part performs higher machine intelligence functions such as planning. The interface between the two components utilizes motivated behaviors implemented as part of the behavior-based system. A motivated behavior is one whose response is dictated mainly by the internal state (or the motivation state) of the robot. Thus, the cognitive planning activity can execute its plans by merely setting the motivation state of the robot and letting the behavior-based subsystem worry about the details of plan execution. The goal of such a hybrid architecture is to gain the real-time performance of a behavior-based system without losing the effectiveness of a general purpose world model and planner. We view world models as essential to intelligent interaction with the environment, providing a `bigger picture' for the robot when reactive behaviors encounter difficulty. We describe a live experimental run of our robot under hybrid control in an unknown and unstructured lab environment. This experiment demonstrated the validity of the proposed hybrid control architecture and the sensory knowledge integrator (the underlying model for the map-builder module) for the task of mapping the environment. Results of the emergent robot behavior and different map representations of the environment are presented and discussed.
Left-right entanglement entropy of D p-branes
NASA Astrophysics Data System (ADS)
Zayas, Leopoldo A. Pando; Quiroz, Norma
2016-11-01
We compute the left-right entanglement entropy for Dp-branes in string theory. We employ the CFT approach to string theory Dp-branes, in particular, its presentation as coherent states of the closed string sector. The entanglement entropy is computed as the von Neumann entropy for a density matrix resulting from integration over the left-moving degrees of freedom. We discuss various crucial ambiguities related to sums over spin structures and argue that different choices capture different physics; however, we advance a themodynamic argument that seems to favor a particular choice of replica. We also consider Dp branes on compact dimensions and verify that the effects of T-duality act covariantly on the Dp brane entanglement entropy. We find that generically the left-right entanglement entropy provides a suitable generalization of boundary entropy and of the D-brane tension.
Electron Transport through Models for Small-World Nanomaterials
NASA Astrophysics Data System (ADS)
Solomon, Lazarus; Novotny, Mark
2008-03-01
We investigate the quantum transport of (spinless) electrons through simplified models related to small-world nanomaterials. We employ a tight-binding Hamiltonian, and obtain the transmission coefficient from a matrix solution of the associated time-independent Schrödinger Equation. The system studied corresponds to d=1 semi-infinite input and output leads, connected to a `blob' of N atoms. We first present exact results for N inter-connected atoms, a fully-connected graph. The exact solution, for any N, is given both for symmetric and non-symmetric connections between the `blob' and the input/output. We then present numerical results obtained by removing some of the connections within the N-site `blob', thereby approaching transport through a small-world nanomaterial [1-4]. [1] S. Caliskan, M.A. Novotny, and J.I. Cerd'a, J. Appl. Phys., 102, 013707 (2007). [2] M.A. Novotny et al., J. Appl. Phys., 97, 10B309 (2005). [3] M.A. Novotny and S.M. Wheeler, Braz. J. Physics 34, 395 (2004). [4] J. Yancey, M.A. Novotny, and S.R. Gwaltney, 2008 March Meeting presentation.
Discrete Torsion, (Anti) de Sitter D4-Brane and Tunneling
NASA Astrophysics Data System (ADS)
Singh, Abhishek K.; Pandey, P. K.; Singh, Sunita; Kar, Supriya
2014-06-01
We obtain quantum geometries on a vacuum created pair of a (DDbar)3-brane, at a Big Bang singularity, by a local two form on a D4-brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DDbar)-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D4-brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole.
Energy radiation by cosmic superstrings in brane inflation
Firouzjahi, Hassan
2008-01-15
The dominant method of energy loss by a loop of cosmic D-strings in models of warped brane inflation is studied. It is shown that the energy loss via Ramond-Ramond field radiation can dominate by many orders of magnitude over the energy radiation via gravitational wave emission. The ratio of these two energy loss mechanisms depends on the energy scale of inflation, the mass scale of string theory, and whether it is a single-throat or a multithroat inflationary scenario. This can have important consequences for the detection of cosmic superstrings in the near future. It is argued that the bounds from cosmic microwave background anisotropies and big bang nucleosynthesis are the dominant cosmological sources to constrain the physical parameters of the network of cosmic superstrings, whereas the role of the gravitational wave-based experiments may be secondary.
Quantum Criticality via Magnetic Branes
NASA Astrophysics Data System (ADS)
D'Hoker, Eric; Kraus, Per
Holographic methods are used to investigate the low temperature limit, including quantum critical behavior, of strongly coupled 4-dimensional gauge theories in the presence of an external magnetic field, and finite charge density. In addition to the metric, the dual gravity theory contains a Maxwell field with Chern-Simons coupling. In the absence of charge, the magnetic field induces an RG flow to an infrared {AdS}3 × {R}2 geometry, which is dual to a 2-dimensional CFT representing strongly interacting fermions in the lowest Landau level. Two asymptotic Virasoro algebras and one chiral Kac-Moody algebra arise as emergent symmetries in the IR. Including a nonzero charge density reveals a quantum critical point when the magnetic field reaches a critical value whose scale is set by the charge density. The critical theory is probed by the study of long-distance correlation functions of the boundary stress tensor and current. All quantities of major physical interest in this system, such as critical exponents and scaling functions, can be computed analytically. We also study an asymptotically AdS 6 system whose magnetic field induced quantum critical point is governed by an IR Lifshitz geometry, holographically dual to a D=2+1 field theory. The behavior of these holographic theories shares important similarities with that of real world quantum critical systems obtained by tuning a magnetic field, and may be relevant to materials such as Strontium Ruthenates.
Modelling the world in real time: how robots engineer information.
Davison, Andrew J
2003-12-15
Programming robots and other autonomous systems to interact with the world in real time is bringing into sharp focus general questions about representation, inference and understanding. These artificial agents use digital computation to interpret the data gleaned from sensors and produce decisions and actions to guide their future behaviour. In a physical system, however, finite computational resources unavoidably impose the need to approximate and make selective use of the information available to reach prompt deductions. Recent research has led to widespread adoption of the methodology of Bayesian inference, which provides the absolute framework to understand this process fully via modelling as informed, fully acknowledged approximation. The performance of modern systems has improved greatly on the heuristic methods of the early days of artificial intelligence. We discuss the general problem of real-time inference and computation, and draw on examples from recent research in computer vision and robotics: specifically visual tracking and simultaneous localization and mapping.
Effective World Modeling: Multisensor Data Fusion Methodology for Automated Driving
Elfring, Jos; Appeldoorn, Rein; van den Dries, Sjoerd; Kwakkernaat, Maurice
2016-01-01
The number of perception sensors on automated vehicles increases due to the increasing number of advanced driver assistance system functions and their increasing complexity. Furthermore, fail-safe systems require redundancy, thereby increasing the number of sensors even further. A one-size-fits-all multisensor data fusion architecture is not realistic due to the enormous diversity in vehicles, sensors and applications. As an alternative, this work presents a methodology that can be used to effectively come up with an implementation to build a consistent model of a vehicle’s surroundings. The methodology is accompanied by a software architecture. This combination minimizes the effort required to update the multisensor data fusion system whenever sensors or applications are added or replaced. A series of real-world experiments involving different sensors and algorithms demonstrates the methodology and the software architecture. PMID:27727171
Quintessential inflation on the brane and the relic gravity wave background
Sami, M.; Sahni, V.
2004-10-15
Quintessential inflation describes a scenario in which both inflation and dark energy (quintessence) are described by the same scalar field. In conventional braneworld models of quintessential inflation gravitational particle-production is used to reheat the universe. This reheating mechanism is very inefficient and results in an excessive production of gravity waves which violate nucleosynthesis constraints and invalidate the model. We describe a new method of realizing quintessential inflation on the brane in which inflation is followed by 'instant preheating' (Felder, Kofman and Linde 1999). The larger reheating temperature in this model results in a smaller amplitude of relic gravity waves which is consistent with nucleosynthesis bounds. The relic gravity wave background has a 'blue' spectrum at high frequencies and is a generic byproduct of successful quintessential inflation on the brane.
Localizing global hedgehogs on the brane
NASA Astrophysics Data System (ADS)
Cho, Inyong
2004-10-01
We investigate the localization of 4D topological global defects on the brane embedded in 5D. The defects are induced by 5D scalar fields with a symmetry-breaking potential. Taking an Ansatz which separates the scalar field into the 4D and the extra-D part, we find that the static-hedgehog configuration is accomplished and the defects are formed only in the AdS4/AdS5 background. In the extra dimension, the localization amplitude for the 4D defects is high where the warp factor is high.
Localizing global hedgehogs on the brane
Cho, Inyong
2004-10-15
We investigate the localization of 4D topological global defects on the brane embedded in 5D. The defects are induced by 5D scalar fields with a symmetry-breaking potential. Taking an Ansatz which separates the scalar field into the 4D and the extra-D part, we find that the static-hedgehog configuration is accomplished and the defects are formed only in the AdS{sub 4}/AdS{sub 5} background. In the extra dimension, the localization amplitude for the 4D defects is high where the warp factor is high.
Modeling falling groundwater tables in major cities of the world
NASA Astrophysics Data System (ADS)
Sutanudjaja, Edwin; Erkens, Gilles
2016-04-01
Groundwater use and its over-consumption are one of the major drivers in the hydrology of many major cities in the world, particularly in delta regions. Yet, a global assessment to identify cities with declining groundwater table problems has not been done yet. In this study we used the global hydrological model PCR-GLOBWB (10 km resolution, for 1960-2010). Using this model, we globally calculated groundwater recharge and river discharge/surface water levels, as well as global water demand and abstraction from ground- and surface water resources. The output of PCR-GLOBWB model was then used to force a groundwater MODFLOW-based model simulating spatio-temporal groundwater head dynamics, including groundwater head declines in all major cities - mainly in delta regions - due to escalation in abstraction of groundwater to meet increasing water demand. Using these coupled models, we managed to identify a number of critical cities having groundwater table falling rates above 50 cm/year (average in 2000-2010), such as Barcelona, Houston, Los Angeles, Mexico City, New York, Rome and many large cities in China, Libya, India and Pakistan, as well as in Middle East and Central Asia regions. However, our simulation results overestimate the depletion rates in San Jose, Tokyo, Venice, and other cities where groundwater usages have been aggressively managed and replaced by importing surface water from other places. Moreover, our simulation might underestimate the declining groundwater head trends in some familiar cases, such as Bangkok (12 cm/year), Ho Chi Minh City (34 cm/year), and Jakarta (26 cm/year). The underestimation was due to an over-optimistic model assumption in allocating surface water for satisfying urban water needs. In reality, many big cities, although they are located in wet regions and have abundant surface water availability, still strongly rely on groundwater sources due to inadequate facilities to treat and distribute surface water resources.
Modeling falling groundwater tables in major cities of the world
NASA Astrophysics Data System (ADS)
Sutanudjaja, E.; Erkens, G.
2015-12-01
Groundwater use and its over-consumption are one of the major drivers in the hydrology of many major cities in the world, particularly in delta regions. Yet, a global assessment to identify cities with declining groundwater table problems has not been done yet. In this study we used the global hydrological model PCR-GLOBWB (10 km resolution, for 1960-2010). Using this model, we globally calculated groundwater recharge and river discharge/surface water levels, as well as global water demand and abstraction from ground- and surface water resources. The output of PCR-GLOBWB model was then used to force a groundwater MODFLOW-based model simulating spatio-temporal groundwater head dynamics, including groundwater head declines in all major cities - mainly in delta regions - due to escalation in abstraction of groundwater to meet increasing water demand. Using these coupled models, we managed to identify a number of critical cities having groundwater table falling rates above 50 cm/year (average in 2000-2010), such as Barcelona, Houston, Los Angeles, Mexico City, New York, Rome and many large cities in China, Libya, India and Pakistan, as well as in Middle East and Central Asia regions. However, our simulation results overestimate the depletion rates in San Jose, Tokyo, Venice, and other cities where groundwater usages have been aggressively managed and replaced by importing surface water from other places. Moreover, our simulation might underestimate the declining groundwater head trends in some familiar cases, such as Bangkok (12 cm/year), Ho Chi Minh City (34 cm/year), and Jakarta (26 cm/year). The underestimation was due to an over-optimistic model assumption in allocating surface water for satisfying urban water needs. In reality, many big cities, although they are located in wet regions and have abundant surface water availability, still strongly rely on groundwater sources due to inadequate facilities to treat and distribute surface water resources.
Monte Carlo modelling of positron transport in real world applications
NASA Astrophysics Data System (ADS)
Marjanović, S.; Banković, A.; Šuvakov, M.; Petrović, Z. Lj
2014-05-01
Due to the unstable nature of positrons and their short lifetime, it is difficult to obtain high positron particle densities. This is why the Monte Carlo simulation technique, as a swarm method, is very suitable for modelling most of the current positron applications involving gaseous and liquid media. The ongoing work on the measurements of cross-sections for positron interactions with atoms and molecules and swarm calculations for positrons in gasses led to the establishment of good cross-section sets for positron interaction with gasses commonly used in real-world applications. Using the standard Monte Carlo technique and codes that can follow both low- (down to thermal energy) and high- (up to keV) energy particles, we are able to model different systems directly applicable to existing experimental setups and techniques. This paper reviews the results on modelling Surko-type positron buffer gas traps, application of the rotating wall technique and simulation of positron tracks in water vapor as a substitute for human tissue, and pinpoints the challenges in and advantages of applying Monte Carlo simulations to these systems.
On the 3-form formulation of axion potentials from D-brane instantons
NASA Astrophysics Data System (ADS)
García-Valdecasas, Eduardo; Uranga, Angel
2017-02-01
The study of axion models and quantum corrections to their potential has experienced great progress by phrasing the axion potential in terms of a 3-form field eating up the 2-form field dual to the axion. Such reformulation of the axion potential has been described for axion monodromy models and for axion potentials from non-perturbative gauge dynamics. In this paper we propose a 3-form description of the axion potentials from non-gauge D-brane instantons. Interestingly, the required 3-form field does not arise in the underlying geometry, but rather shows up in the KK compactification in the generalized geometry obtained when the backreaction of the D-brane instanton is taken into account.
Superimposed oscillations in brane inflation
Ávila, Santiago; Martin, Jérôme; Steer, Danièle A. E-mail: jmartin@iap.fr
2014-08-01
In canonical scalar field inflation, the Starobinsky model (with a linear potential but discontinuous slope) is remarkable in that though slow-roll is violated, both the power-spectrum and bi-spectrum can be calculated exactly analytically. The two-point function is characterised by different power on large and small scales, and a burst of small amplitude superimposed oscillations in between. We extend this analysis to Dirac Born Infeld (DBI) inflation, for which generalised slow-roll is violated at the discontinuity and a rapid variation in the speed of sound c{sub S} occurs. In an attempt to characterise the effect of non-linear kinetic terms on the oscillatory features of the primordial power-spectrum, we show that the resulting power spectrum has a shape and features which differ significantly from those of the standard Starobinsky model. In particular, when c{sub S} is small, the power-spectrum now takes very similar scale invariant values on large and small scales, while on intermediate scales it is characterised by much larger amplitude and higher frequency superimposed oscillations. We also show that calculating non-Gaussianities in this model is a complicated but interesting task since all terms in the cubic action now contribute. Investigating whether the superimposed oscillations could fit to the Planck Cosmic Microwave Background (CMB) data (for instance by explaining the large scale Planck anomalies) with, at the same time, small non-Gaussianities remains an intriguing and open possibility.
Constraining the cosmology of the phantom brane using distance measures
NASA Astrophysics Data System (ADS)
Alam, Ujjaini; Bag, Satadru; Sahni, Varun
2017-01-01
The phantom brane has several important distinctive features: (i) Its equation of state is phantomlike, but there is no future "big rip" singularity, and (ii) the effective cosmological constant on the brane is dynamically screened, because of which the expansion rate is smaller than that in Λ CDM at high redshifts. In this paper, we constrain the Phantom braneworld using distance measures such as type-Ia supernovae (SNeIa), baryon acoustic oscillations (BAO), and the compressed cosmic microwave background (CMB) data. We find that the simplest braneworld models provide a good fit to the data. For instance, BAO +SNeIa data can be accommodated by the braneworld for a large region in parameter space 0 ≤Ωℓ≲0.3 at 1 σ . The Hubble parameter can be as high as H0≲78 km s-1 Mpc-1 , and the effective equation of state at present can show phantomlike behavior with w0≲-1.2 at 1 σ . We note a correlation between H0 and w0, with higher values of H0 leading to a lower, and more phantomlike, value of w0. Inclusion of CMB data provides tighter constraints Ωℓ≲0.1 . (Here Ωℓ encodes the ratio of the five- and four-dimensional Planck mass.) The Hubble parameter in this case is more tightly constrained to H0≲71 km s-1 Mpc-1 , and the effective equation of state to w0≲-1.1 . Interestingly, we find that the Universe is allowed to be closed or open, with -0.5 ≲Ωκ≲0.5 , even on including the compressed CMB data. There appears to be some tension in the low and high-z BAO data which may either be resolved by future data, or act as a pointer to interesting new cosmology.
A 3D world model builder with a mobile robot
Zhang, Z.; Faugeras, O. )
1992-08-01
This article describes a system to incrementally build a world model with a mobile robot in an unknown environment. The model is, for the moment, segment based. A trinocular stereo system is used to build a local map about the environment. A global map is obtained by integrating a sequence of stereo frames taken when the robot navigates in the environment. The emphasis of this article is on the representation of the uncertainty of 3D segments from stereo and on the integration of segments from multiple views. The proposed representation is simple and very convenient to characterize the uncertainty of segment. A Kalman filter is used to merge matched line segments. An important characteristic of this integration strategy is that a segment observed by the stereo system corresponds only to one part of the segment in space, so the union of the different observations gives a better estimate on the segment in space. The authors have succeeded in integrating 35 stereo frames taken in their robot room.
Hierarchies from D-brane instantons in globally defined calabi-yau orientifolds
Cvetič, Mirjam; Weigand, Timo
2008-06-01
We construct the first globally consistent semi-realistic Type I string vacua on an elliptically fibered manifold where the zero modes of the Euclidean D1-instanton sector allow for the generation of non-perturbative Majorana masses of an intermediate scale. In another class of global models, a D1-brane instanton can generate a Polonyi-type superpotential breaking supersymmetry at an exponentially suppressed scale.
Quasilocalization of gravity on a brane by resonant modes.
Csáki, C; Erlich, J; Hollowood, T J
2000-06-26
We examine the behavior of gravity in brane theories with extra dimensions in a nonfactorizable background geometry. We find that for metrics which are asymptotically flat far from the brane there is a resonant graviton mode at zero energy. The presence of this resonance ensures quasilocalization of gravity, whereby at intermediate scales the gravitational laws on the brane are approximately four dimensional. However, for scales larger than the lifetime of the graviton resonance the five-dimensional laws of gravity will be reproduced due to the decay of the four-dimensional graviton. We also give a simple classification of effective gravity theories for general background geometries.
Localization of Vector Field on Pure Geometrical Thick Brane
NASA Astrophysics Data System (ADS)
Sui, Tao-Tao; Zhao, Li
2017-06-01
In this paper, we investigate the localization of a five-dimensional vector field on a pure geometrical thick brane. In previous work, it was shown that a free massless vector field cannot be localized on such thick brane. Hence we introduce the interaction between the vector field and the background scalar field. Two types of couplings are constructed as examples. We get a typical volcano potential for the first type of coupling and a finite square-well-like potential for the second one. Both of the two types of couplings ensure that the vector zero mode can be localized on the pure geometrical thick brane under some conditions.
Violation of cosmic censorship in dynamical p -brane systems
NASA Astrophysics Data System (ADS)
Maeda, Kengo; Uzawa, Kunihito
2016-02-01
We study the cosmic censorship of dynamical p -brane systems in a D -dimensional background. This is the generalization of the analysis in the Einstein-Maxwell-dilaton theory, which was discussed by Horne and Horowitz [Phys. Rev. D 48, R5457 (1993)]. We show that a timelike curvature singularity generically appears from an asymptotic region in the time evolution of the p -brane solution. Since we can set regular and smooth initial data in a dynamical M5-brane system in 11-dimensional supergravity, this implies a violation of cosmic censorship.
Gauge theories from D7-branes over vanishing 4-cycles
Franco, Sebastian; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.
2010-12-16
We study quiver gauge theories on D7-branes wrapped over vanishing holomorphic 4-cycles. We investigate how to incorporate O7-planes and/or flavor D7-branes, which are necessary to cancel anomalies. These theories are chiral, preserve four supercharges and exhibit very rich infrared dynamics. Geometric transitions and duality in the presence of O-planes are analyzed. We study the Higgs branch of these quiver theories, showing the emergence of fuzzy internal dimensions. This branch is related to noncommutative instantons on the divisor wrapped by the seven-branes. Our results have a natural application to the recently introduced F(uzz) limit of F-theory.
Intersecting D 3 -D3 ' -brane system at finite temperature
NASA Astrophysics Data System (ADS)
Cottrell, William; Hanson, James; Hashimoto, Akikazu; Loveridge, Andrew; Pettengill, Duncan
2017-02-01
We analyze the dynamics of the intersecting D 3 -D3 ' -brane system overlapping in 1 +1 dimensions, in a holographic treatment where N D3 branes are manifested as anti-de Sitter Schwartzschild geometry, and the D3 ' brane is treated as a probe. We extract the thermodynamic equation of state from the set of embedding solutions, and analyze the stability at the perturbative and the nonperturbative level. We review a systematic procedure to resolve local instabilities and multivaluedness in the equations of state based on classic ideas of convexity in the microcanonical ensemble. We then identify a runaway behavior which was not noticed previously for this system.
Interaction of dynamical fractional branes with background fields: Superstring calculations
NASA Astrophysics Data System (ADS)
Saidy-Sarjoubi, Maryam; Kamani, Davoud
2017-05-01
We compute the boundary state corresponding to a fractional Dp-brane with transverse motion and internal background fields: Kalb-Ramond and a U(1) gauge field. The space-time has the orbifold structure ℝ1,5 × ℂ2/ℤ 2. The calculations are in the superstring theory. Using this boundary state we shall obtain the interaction amplitude between two parallel moving fractional Dp-branes. We shall extract behavior of the interaction amplitude for large distances of the branes.
Supersymmetric orientifolds in 6D with D-branes at angles
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Görlich, Lars; Körs, Boris
2000-03-01
We study a new class of N=1 supersymmetric orientifolds in six space-time dimensions. The world-sheet parity transformation is combined with a permutation of the internal complex coordinates. In contrast to ordinary orientifolds the twisted sectors contribute to the Klein bottle amplitude leading to new tadpoles to be cancelled by twisted open string sectors. They arise from open strings stretched between D7-branes intersecting at non-trivial angles. We study in detail the Z3, Z4 and Z6 permutational orientifolds obtaining in all cases anomaly free massless spectra.
Intersecting 6-branes from new 7-manifolds with G2 holonomy
NASA Astrophysics Data System (ADS)
Behrndt, Klaus; Dall'Agata, Gianguido; Lüst, Dieter; Mahapatra, Swapna
2002-08-01
We discuss a new family of metrics of 7-manifolds with G2 holonomy, which are Bbb R3 bundles over a quaternionic space. The metrics depend on five parameters and have two abelian isometries. Certain singularities of the G2 manifolds are related to fixed points of these isometries; there are two combinations of Killing vectors that possess co-dimension four fixed points which yield upon compactification only intersecting D6-branes if one also identifies two parameters. Two of the remaining parameters are quantized and we argue that they are related to the number of D6-branes, which appear in three stacks. We perform explicitly the reduction to the type IIA model.
Non-BPS D-brane solutions in six dimensional orbifolds
NASA Astrophysics Data System (ADS)
Lozano, Y.
2000-08-01
Starting with the non-BPS D0-brane solution of IIB/(-1)FLI4 constructed recently by Eyras and Panda we construct via T-duality the non-BPS D2-brane and D1-brane solutions of IIB/(-1)FLI4 and IIA/(-1)FLI4 predicted by Sen. The D2-brane couples magnetically to the vector field of the NS5B-brane living in the twisted sector of the Type IIB orbifold, whereas the D1-brane couples (electrically and magnetically) to the self-dual 2-form potential of the NS5A-brane that is present in the twisted sector of the Type IIA orbifold construction. Finally we discuss the eleven dimensional interpretation of these branes as originating from a non-BPS M1-brane solution of M-theory orientifolded by ΩρI5.
Effects of Compactification in D-brane Inflation
Baumann, Daniel; Dymarsky, Anatoly; Kachru, Shamit; Klebanov, Igor R.; McAllister, Liam
2010-06-25
In D3-brane inflation, the inflaton potential receives important contributions from sources in the compact space, such as fluxes, other D-branes, and orientifold planes. Most previous analyses have considered only the effects of sources near to the inflationary D3-brane, but in fact distant sources do not generically decouple and can critically influence the dynamics during inflation. We provide a systematic method for incorporating the effects of arbitrary distant sources as perturbations to the local supergravity background. We use this approach to obtain the structure of the potential for a D3-brane in a warped throat geometry attached to a general compact space. A significant, and well-known, contribution to this potential arises from quantum effects involved in the stabilization of the compactification volume. Our method automatically captures these effects, encoding them in a suitable flux background.
Thick branes from self-gravitating scalar fields
Novikov, Oleg O.; Andrianov, Vladimir A.; Andrianov, Alexander A.
2014-07-23
The formation of a domain wall ('thick brane') induced by scalar matter dynamics and triggered by a thin brane defect is considered in noncompact five-dimensional space-time with warped AdS type geometry. The scalar matter is composed of two fields with softly broken O(2) symmetry and minimal coupling to gravity. The nonperturbative effects in the invariant mass spectrum of light localized scalar states are investigated for different values of the tension of the thin brane defect. Especially interesting is the case of the thin brane with negative tension when the singular barriers form a potential well with two infinitely tall walls and the discrete spectrum of localized states arises completely isolated from the bulk.
Holography for anisotropic branes with hyperscaling violation
NASA Astrophysics Data System (ADS)
Roychowdhury, Dibakar
2016-01-01
In this paper, based on the principles of Gauge/gavity duality, we explore the field theory description of certain special class of strongly coupled hyperscaling violating QFTs in the presence of scalar deformations near the effective dynamical scale ( r F ) of the theory. In the language of the AdS/CFT duality, the scalar deformations of the above type could be thought of as being sourced due to some massless scalar excitation in the bulk which explicitly break the SO(2) rotational invariance along the spatial directions of the brane. As a consequence of these deformations, it turns out that when we probe such QFTs in terms of its non-local observable like, the entanglement entropy as well as the Wilson operator they indeed receive finite contributions near the effective dynamical scale ( r F ) of the theory.
Note about unstable D-branes with dynamical tension
NASA Astrophysics Data System (ADS)
KlusoÅ, J.
2016-08-01
We propose an action for an unstable Dp-brane with dynamical tension. We show that the equations of motion are equivalent to the equations of motion derived from Dirac-Born-Infeld and Wess-Zumino actions for a non-Bogomol'nyi-Prasad-Sommerfield Dp-brane. We also find the Hamiltonian formulation of this action and analyze the properties of the solutions corresponding to the tachyon vacuum and zero-tension solution.
Modelling world gold prices and USD foreign exchange relationship using multivariate GARCH model
NASA Astrophysics Data System (ADS)
Ping, Pung Yean; Ahmad, Maizah Hura Binti
2014-12-01
World gold price is a popular investment commodity. The series have often been modeled using univariate models. The objective of this paper is to show that there is a co-movement between gold price and USD foreign exchange rate. Using the effect of the USD foreign exchange rate on the gold price, a model that can be used to forecast future gold prices is developed. For this purpose, the current paper proposes a multivariate GARCH (Bivariate GARCH) model. Using daily prices of both series from 01.01.2000 to 05.05.2014, a causal relation between the two series understudied are found and a bivariate GARCH model is produced.
Ballooning dispersal using silk: world fauna, phylogenies, genetics and models.
Bell, J R; Bohan, D A; Shaw, E M; Weyman, G S
2005-04-01
Aerial dispersal using silk ('ballooning') has evolved in spiders (Araneae), spider mites (Acari) and in the larvae of moths (Lepidoptera). Since the 17th century, over 500 observations of ballooning behaviours have been published, yet there is an absence of any evolutionary synthesis of these data. In this paper the literature is reviewed, extensively documenting the known world fauna that balloon and the principal behaviours involved. This knowledge is then incorporated into the current evolutionary phylogenies to examine how ballooning might have arisen. Whilst it is possible that ballooning co-evolved with silk and emerged as early as the Devonian (410-355 mya), it is arguably more likely that ballooning evolved in parallel with deciduous trees, herbaceous annuals and grasses in the Cretaceous (135-65 mya). During this period, temporal (e.g. bud burst, chlorophyll thresholds) and spatial (e.g. herbivory, trampling) heterogeneities in habitat structuring predominated and intensified into the Cenozoic (65 mya to the present). It is hypothesized that from the ancestral launch mechanism known as 'suspended ballooning', widely used by individuals in plant canopies, 'tip-toe' and 'rearing' take-off behaviours were strongly selected for as habitats changed. It is contended that ballooning behaviour in all three orders can be described as a mixed Evolutionary Stable Strategy. This comprises individual bet-hedging due to habitat unpredictability, giving an underlying randomness to individual ballooning, with adjustments to the individual ballooning probability being conferred by more predictable habitat changes or colonization strategies. Finally, current methods used to study ballooning, including modelling and genetic research, are illustrated and an indication of future prospects given.
Influence of World and Gravity Model Selection on Surface Interacting Vehicle Simulations
NASA Technical Reports Server (NTRS)
Madden, Michael M.
2007-01-01
A vehicle simulation is surface-interacting if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. Modeling of gravity is an influential environmental factor for surface-interacting simulations. Gravity is the free-fall acceleration observed from a world-fixed frame that rotates with the world. Thus, gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. In surface-interacting simulations, the fidelity of gravity at heights above the surface is more significant than gravity fidelity at locations in inertial space. A surface-interacting simulation cannot treat the gravity model separately from the world model, which simulates the motion and shape of the world. The world model's simulation of the world's rotation, or lack thereof, produces the centrifugal acceleration component of gravity. The world model s reproduction of the world's shape will produce different positions relative to the world center for a given height above the surface. These differences produce variations in the gravitation component of gravity. This paper examines the actual performance of world and gravity/gravitation pairs in a simulation using the Earth.
D-brane superpotentials: Geometric and worldsheet approaches
NASA Astrophysics Data System (ADS)
Baumgartl, Marco; Brunner, Ilka; Soroush, Masoud
2011-02-01
From the worldsheet perspective, the superpotential on a D-brane wrapping internal cycles of a Calabi-Yau manifold is given as a generating functional for disk correlation functions. On the other hand, from the geometric point of view, D-brane superpotentials are captured by certain chain integrals. In this work, we explicitly show for branes wrapping internal two-cycles how these two different approaches are related. More specifically, from the worldsheet point of view, D-branes at the Landau-Ginzburg point have a convenient description in terms of matrix factorizations. We use a formula derived by Kapustin and Li to explicitly evaluate disk correlators for families of D2-branes. On the geometry side, we then construct a three-chain whose period gives rise to the effective superpotential and show that the two expressions coincide. Finally, as an explicit example, we choose a particular compact Calabi-Yau hypersurface and compute the effective D2-brane superpotential in different branches of the open moduli space, in both geometric and worldsheet approaches.
Five-dimensional Nernst branes from special geometry
NASA Astrophysics Data System (ADS)
Dempster, P.; Errington, D.; Gutowski, J.; Mohaupt, T.
2016-11-01
We construct Nernst brane solutions, that is black branes with zero entropy density in the extremal limit, of FI-gauged minimal five-dimensional supergravity coupled to an arbitrary number of vector multiplets. While the scalars take specific constant values and dynamically determine the value of the cosmological constant in terms of the FI-parameters, the metric takes the form of a boosted AdS Schwarzschild black brane. This metric can be brought to the Carter-Novotný-Horský form that has previously been observed to occur in certain limits of boosted D3-branes. By dimensional reduction to four dimensions we recover the four-dimensional Nernst branes of arXiv:1501.07863 and show how the five-dimensional lift resolves all their UV singularities. The dynamics of the compactification circle, which expands both in the UV and in the IR, plays a crucial role. At asymptotic infinity, the curvature singularity of the four-dimensional metric and the run-away behaviour of the four-dimensional scalar combine in such a way that the lifted solution becomes asymptotic to AdS5. Moreover, the existence of a finite chemical potential in four dimensions is related to fact that the compactification circle has a finite minimal value. While it is not clear immediately how to embed our solutions into string theory, we argue that the same type of dictionary as proposed for boosted D3-branes should apply, although with a lower amount of supersymmetry.
Interaction of higher-dimensional rotating black holes with branes
NASA Astrophysics Data System (ADS)
Frolov, Valeri P.; Fursaev, Dmitri V.; Stojkovic, Dejan
2004-07-01
We study interaction of rotating higher-dimensional black holes with a brane in spacetimes with large extra dimensions. We demonstrate that in a general case a rotating black hole attached to a brane can lose bulk components of its angular momenta. A stationary black hole can have only those components of the angular momenta which are connected with Killing vectors generating transformations preserving a position of the brane. In a final stationary state the null Killing vector generating the black hole horizon is tangent to the brane. We discuss first the interaction of a cosmic string and a domain wall with the 4D Kerr black hole. We then prove the general result for slowly rotating higher-dimensional black holes interacting with branes. The characteristic time when a rotating black hole with gravitational radius r0 reaches this final stationary state is T ~ rp-10/(Gσ), where G is the higher-dimensional gravitational coupling constant, σ is the brane tension and p is the number of extra dimensions.
Fine-tuning with brane-localized flux in 6D supergravity
NASA Astrophysics Data System (ADS)
Niedermann, Florian; Schneider, Robert
2016-02-01
There are claims in the literature that the cosmological constant problem could be solved in a braneworld model with two large (micron-sized) supersymmetric extra dimensions. The mechanism relies on two basic ingredients: first, the cosmological constant only curves the compact bulk geometry into a rugby shape while the 4D curvature stays flat. Second, a brane-localized flux term is introduced in order to circumvent Weinberg's fine-tuning argument, which otherwise enters here through a backdoor via the flux quantization condition. In this paper, we show that the latter mechanism does not work in the way it was designed: the only localized flux coupling that guarantees a flat on-brane geometry is one which preserves the scale invariance of the bulk theory. Consequently, Weinberg's argument applies, making a fine-tuning necessary again. The only remaining window of opportunity lies within scale invariance breaking brane couplings, for which the tuning could be avoided. Whether the corresponding 4D curvature could be kept under control and in agreement with the observed value will be answered in our companion paper [1].
Fermion localization and resonances on a deSitter thick brane
NASA Astrophysics Data System (ADS)
Liu, Yu-Xiao; Yang, Jie; Zhao, Zhen-Hua; Fu, Chun-E.; Duan, Yi-Shi
2009-09-01
In C. A. S. Almeida, R. Casana, M. M. Ferreira, Jr., and A. R. Gomes, Phys. Rev. DPRVDAQ1550-7998 79, 125022 (2009)10.1103/PhysRevD.79.125022, the simplest Yukawa coupling ηΨ¯ϕχΨ was considered for a two-scalar-generated Bloch brane model. Fermionic resonances for both chiralities were obtained, and their appearance is related to branes with internal structure. Inspired on this result, we investigate the localization and resonance spectrum of fermions on a one-scalar-generated de Sitter thick brane with a class of scalar-fermion couplings ηΨ¯ϕkΨ with positive odd integer k. A set of massive fermionic resonances for both chiralities is obtained when provided large coupling constant η. We find that the masses and lifetimes of left and right chiral resonances are almost the same, which demonstrates that it is possible to compose massive Dirac fermions from the left and right chiral resonances. The resonance with lower mass has longer lifetime. For a same set of parameters, the number of resonances increases with k and the lifetime of the lower level resonance for larger k is much longer than the one for smaller k.