Sample records for brannerite

  1. Heavy ion irradiation effects of brannerite-type ceramics

    NASA Astrophysics Data System (ADS)

    Lian, J.; Wang, L. M.; Lumpkin, G. R.; Ewing, R. C.

    2002-05-01

    Brannerite, UTi 2O 6, occurs in polyphase Ti-based, crystalline ceramics that are under development for plutonium immobilization. In order to investigate radiation effects caused by α-decay events of Pu, a 1 MeV Kr + irradiation on UTi 2O 6, ThTi 2O 6, CeTi 2O 6 and a more complex material, composed of Ca-containing brannerite and pyrochlore, was performed over a temperature range of 25-1020 K. The ion irradiation-induced crystalline-to-amorphous transformation was observed in all brannerite samples. The critical amorphization temperatures of the different brannerite compositions are: 970 K, UTi 2O 6; 990 K, ThTi 2O 6; 1020 K, CeTi 2O 6. The systematic increase in radiation resistance from Ce-, Th- to U-brannerite is related to the difference of mean atomic mass of A-site cation in the structure. As compared with the pyrochlore structure-type, brannerite phases are more susceptible to ion irradiation-induced amorphization. The effects of structure and chemical compositions on radiation resistance of brannerite-type and pyrochlore-type ceramics are discussed.

  2. Enthalpies of formation of U-, Th-, Ce-brannerite: implications for plutonium immobilization

    NASA Astrophysics Data System (ADS)

    Helean, K. B.; Navrotsky, A.; Lumpkin, G. R.; Colella, M.; Lian, J.; Ewing, R. C.; Ebbinghaus, B.; Catalano, J. G.

    2003-08-01

    Brannerite, ideally MTi 2O 6, (M=actinides, lanthanides and Ca) occurs in titanate-based ceramics proposed for the immobilization of plutonium. Standard enthalpies of formation, Δ H0f at 298 K, for three brannerite compositions (kJ/mol): CeTi 2O 6 (-2948.8 ± 4.3), U 0.97Ti 2.03O 6 (-2977.9 ± 3.5) and ThTi 2O 6 (-3096.5 ± 4.3) were determined by high temperature oxide melt drop solution calorimetry at 975 K using 3Na 2O · 4MoO 3 solvent. The enthalpies of formation were also calculated from an oxide phase assemblage (Δ H0f-ox at 298 K): MO 2 + 2TiO 2=MTi 2O 6. Only UTi 2O 6 is energetically stable with respect to an oxide assemblage: U 0.97Ti 2.03O 6 (Δ H0f-ox=-7.7±2.8 kJ/mol). Both CeTi 2O 6 and ThTi 2O 6 are higher in enthalpy with respect to their oxide assemblages with (Δ H0f-ox=+29.4±3.6 kJ/mol) and (Δ H0f-ox=+19.4±1.6 kJ/mol) respectively. Thus, Ce- and Th-brannerite are entropy stabilized and are thermodynamically stable only at high temperature.

  3. Examination of U valence states in the brannerite structure by near-infrared diffuse reflectance and X-ray photoelectron spectroscopies

    NASA Astrophysics Data System (ADS)

    Finnie, Kim S.; Zhang, Zhaoming; Vance, Eric R.; Carter, Melody L.

    2003-04-01

    The valence state of uranium doped into a f 0 thorium analog of brannerite (i.e., thorutite) has been examined using near-infrared (NIR) diffuse reflectance (DRS) and X-ray photoelectron (XPS) spectroscopies. NIR transitions of U 4+, which are not observed in spectra of brannerite, have been detected in the samples of U xTh 1- xTi 2O 6, and we propose that strong specular reflectance is responsible for the lack of U 4+ features in UTi 2O 6. Characteristic U 5+ bands have been identified in samples in which sufficient Ca 2+ has been added to nominally effect complete oxidation to U 5+. XPS results support the assignments of U 4+ and U 5+ by DRS. The presence of residual U 4+ bands in the spectra of the Ca-doped samples is consistent with segregation of Ca 2+ to the grain boundaries during high temperature sintering.

  4. Assessing the oxidation states and structural stability of the Ce analogue of brannerite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aluri, Esther Rani; Bachiu, Lisa M.; Grosvenor, Andrew P.

    2017-07-04

    The Ce-containing analogue of brannerite (ie, UTi2O6) was previously considered to be stoichiometric (ie, CeTi2O6); however, it has recently been determined that the material is O deficient. This oxygen-deficient material has been suggested to be charged balanced by the presence of a minor concentration of Ce3+ or by the A-site being cation deficient with the Ce oxidation state being 4+. A variety of Ti-containing oxides (including brannerite) have been investigated as potential nuclear wasteforms, and it is necessary to understand the electronic structure of a proposed nuclear wasteform material as well as how the structure responds to radiation from incorporatedmore » waste elements. The radiation resistance of a material can be simulated by ion implantation. The objective of this study was to confirm the Ce oxidation state in the cation- and oxygen-deficient material (ie, Ce0.94Ti2O6 - δ) and to determine how radiation damage affects this material. X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge spectroscopy were used to study Ce0.94Ti2O6 - δ before and after being implanted with 2 MeV Au- ions. Analysis of the Ce 3d XPS spectra from the as-synthesized samples by using a previously developed fitting method has unequivocally shown that Ce adopts both 4+ (major) and 3+ (minor) oxidation states, which was confirmed by examination of magnetic susceptibility data. Analysis of XPS and X-ray absorption near-edge spectroscopy spectra from ion-implanted materials showed that both Ce and Ti were reduced because of radiation damage and that the local coordination environments of the cations are greatly affected by radiation damage.« less

  5. Process for making a ceramic composition for immobilization of actinides

    DOEpatents

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Herman, Connie Cicero; Hobson, Beverly F.; Herman, David Thomas; Curtis, Paul G.; Farmer, Joseph

    2001-01-01

    Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.

  6. The origin of the Avram Iancu U-Ni-Co-Bi-As mineralization, Băiţa (Bihor) metallogenic district, Bihor Mts., Romania

    NASA Astrophysics Data System (ADS)

    Zajzon, Norbert; Szentpéteri, Krisztián; Szakáll, Sándor; Kristály, Ferenc

    2015-10-01

    The Băiţa metallogenic district in the Bihor Mountains is a historically important mining area in Romania. Uranium mining took place between 1952 and 1998 from various deposits, but very little is known about the geology and mineralogy of these deposits. In this paper, we describe geology and mineralogy of uranium mineralization of the Avram Iancu uranium mine from waste dump samples collected before complete remediation of the site. Texturally and mineralogically complex assemblages of nickeline, cobaltite-gersdorffite solid solution, native Bi, Bi-sulfosalts, molybdenite, and pyrite-chalcopyrite-sphalerite occur with uraninite, "pitchblende," and brannerite in most of the ore samples. The association of nickel, cobalt, and arsenic with uranium is reminiscent of five-element association of vein type U-Ni-Co-Bi-As deposits; however, the Avram Iancu ores appear to be more replacement-type stratiform/stratabound. Avram Iancu ore samples contain multistage complex, skarn, uranium sulfide, arsenide assemblages that can be interpreted to have been formed in the retrograde cooling stages of the skarn hydrothermal system. This mineralizing system may have built-up along Upper Cretaceous-Paleogene "Banatite" intrusions of diorite-to-granite composition. The intrusions crosscut the underlying uraniferous Permian formations in the stacked NW-verging Biharia Nappe System. The mineralization forms stacked, multilayer replacement horizons, along carbonate-rich lithologies within the metavolcanic (tuffaceous) Muncel Series. Mineral paragenesis and some mineral chemistry suggest moderate-to-high <450, i.e., 350-310 °C, formation temperatures for the uranium sulfide stage along stratigraphically controlled replacement zones and minor veins. Uranium minerals formed abundantly in this early stage and include botryoidal, sooty and euhedral uraninite, brannerite, and coffinite. Later and/or lower-temperature mineral assemblages include heterogeneous, complexly zoned arsenide-sulfarsenide solid solutions associated with minute but abundant uranium minerals. Within the later arsenide-sulfarsenide mineral assemblage, there is great variation in Ni, Co, and S content with generally increasing arsenic content. Uranium minerals in this late-stage assemblage include very fine euhedral uraninite and brannerite inclusions in arsenide-sulfarsenide minerals. Native bismuth and Bi-sulfosalt krupkaite are observed in this As-S-rich assemblage strongly associated with cobaltite.

  7. Investigation of the stability of glass-ceramic composites containing CeTi 2 O 6 and CaZrTi 2 O 7 after ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paknahad, Elham; Grosvenor, Andrew P.

    Glass-ceramic composite materials have been investigated for nuclear waste sequestration applications due to their ability to incorporate large amounts of radioactive waste elements. A key property that needs to be understood when developing nuclear waste sequestration materials is how the structure of the material responds to radioactive decay of nuclear waste elements, which can be simulated by high energy ion implantation. Borosilicate glass-ceramic composites containing brannerite-type (CeTi2O6) or zirconolite-type (CaZrTi2O7) oxides were synthesized at different annealing temperatures and investigated after being implanted with high-energy Au ions to mimic radiation induced structural damage. Backscattered electron (BSE) images were collected to investigatemore » the interaction of the brannerite crystallites with the glass matrix before and after implantation and showed that the morphology of the crystallites in the composite materials were not affected by radiation damage. Surface sensitive Ti K-edge glancing angle XANES spectra collected from the implanted composite materials showed that the structures of the CeTi2O6 and CaZrTi2O7 ceramics were damaged as a result of implantation; however, analysis of Si L2,3-edge XANES spectra indicated that the glass matrix was not affected by ion implantation.« less

  8. Investigation of the stability of glass-ceramic composites containing CeTi2O6 and CaZrTi2O7 after ion implantation

    NASA Astrophysics Data System (ADS)

    Paknahad, Elham; Grosvenor, Andrew P.

    2017-12-01

    Glass-ceramic composite materials have been investigated for nuclear waste sequestration applications due to their ability to incorporate large amounts of radioactive waste elements. A key property that needs to be understood when developing nuclear waste sequestration materials is how the structure of the material responds to radioactive decay of nuclear waste elements, which can be simulated by high energy ion implantation. Borosilicate glass-ceramic composites containing brannerite-type (CeTi2O6) or zirconolite-type (CaZrTi2O7) oxides were synthesized at different annealing temperatures and investigated after being implanted with high-energy Au ions to mimic radiation induced structural damage. Backscattered electron (BSE) images were collected to investigate the interaction of the brannerite crystallites with the glass matrix before and after implantation and showed that the morphology of the crystallites in the composite materials were not affected by radiation damage. Surface sensitive Ti K-edge glancing angle XANES spectra collected from the implanted composite materials showed that the structures of the CeTi2O6 and CaZrTi2O7 ceramics were damaged as a result of implantation; however, analysis of Si L2,3-edge XANES spectra indicated that the glass matrix was not affected by ion implantation.

  9. Ages of Some Uranium and Thorium Minerals from East and Central Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darnley, A. G.

    1961-01-01

    method were accepted for minerals from a number of localities: uraninite, Nkana, Northern Rhodesia, 522 plus or minus 15 million years (m.y.); brannerite, Kansanshi, Northern Rhodesia, 503 plus or minus 15 m.y.; uraninite, Shinkolobwe, Katanga, 642 plus or minus 20 m.y.; davidite, Mavuzi, Mozambique, 578 plus or minus 15 m.y.;, monazite, Monkey Bay, Nyasaland, 597 plus or minus 25 m.y.; and samarskite, north-west Kenya, 635 plus or minus 25 m.y. The significance of the results is considered.

  10. Uranium-Bearing Srilankite from High-Pressure Garnetites of the Southern Urals: First Data

    NASA Astrophysics Data System (ADS)

    Gottman, I. A.; Pushkarev, E. V.; Khiller, V. V.

    2018-04-01

    This work presents the results of studying srilankite, a rare zirconium titanate (ZrTi2O6), associated with ilmenite, rutile, zircon, uraninite, and other minerals discovered in high-pressure garnetites of the lherzolite Mindyak massif (Southern Urals). Srilankite occurs as inclusions in ilmenite and rutile of up to several tens of microns in size. It was established for the first time that srilankite contains a significant UO2 admixture (up to 20%). The negative correlation between Zr and U is evidence of isomorphism in the srilankite-brannerite system. The association of srilankite with high-Zr rutile indicates that formation of these minerals occurred at T > 850°C.

  11. Pyrochlore-rich titanate ceramics for the immobilization of plutonium: redox effects on phase equilibria in cerium- and thorium- substituted analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryerson, F J; Ebbinghaus, B

    2000-05-25

    Three compositions representing plutonium-free analogs of a proposed Ca-Ti-Gd-Hf-U-PU oxide ceramic for the immobilization of plutonium were equilibrated at 1 atm, 1350 C over a range of oxygen fugacities between air and that equivalent to the iron-wuestite buffer. The cerium analog replaces Pu on a mole-per-mole basic with Ce; the thorium analog replaces Pu with Th. A third material has 10 wt% Al{sub 2}O{sub 3} added to the cerium analog to encourage the formation of a Hf-analog of, CaHfTi{sub 2}O{sub 7}, zirconolite, which is referred to as hafnolite. The predominant phase produced in each formulation under all conditions is pyrochlore,more » A{sub 2}T{sub 2}O{sub 7}, where the T site is filled by Ti, and Ca, the lanthanides, Hf, U and Pu are accommodated on the A-site. Other lanthanide and uranium-bearing phases encountered include brannerite (UTi{sub 2}O{sub 6}), hafnolite (CaHfTi{sub 2}O{sub 7}), perovskite (CaTiO{sub 3}) and a calcium-lanthanide aluminotitanate with nominal stoichiometry (Ca,Ln)Ti{sub 2}Al{sub 9}O{sub 19}, where Ln is a lanthanide. The phase compositions show progressive shifts with decreasing oxygen fugacity. All of the phases observed have previously been identified in titanate-based high-level radioactive waste ceramics and demonstrate the flexibility of these ceramics to variations in processing parameters. The main variation is an increase in the uranium concentrations of pyrochlore and brannerite which must be accommodated by variations in modal abundance. Pyrochlore compositions are consistent with existing spectroscopic data suggesting that uranium is predominantly pentavalent in samples synthesized in air. A simple model based on ideal stoichiometry suggests the U{sup +4}/{Sigma}U varies linearly with log fO{sub 2} and that all of the uranium is quadravalent at the iron-wuestite buffer.« less

  12. New Defective Brannerite-Type Vanadates. I. Synthesis and Study of Mn 1- x- yφ xNa yV 2-2 x-yMo 2 x+yO 6 Solid Solutions

    NASA Astrophysics Data System (ADS)

    Masłowska, Bogna; Ziółkowski, Jacek

    1994-05-01

    MnV 2O 6 of the brannerite-type structure (below 540°C) doped with MoO 3 and Na 2O forms isomorphous solid solutions MnNaφ = Mn 1- x-yφ xNa yV 2-2 x-yMo 2 x+ yO 6 (φ cation vacancy in the original Mn position), belonging to the pseudoternary MnV 2O 6-NaVMoO 6-MoO 3 system. Particular cases are MnNa = Mn 1- yNa y V 2- yMo yO 6 ( x = 0), Mnφ = Mn 1- xφ xV 2-2 xMo 2 xO 6 ( y = 0), and Naφ = Na 1- xφ xV 1- xMo 1+ xO 6 ( x + y = 1). MnV 2O 6 and NaVMoO 6 show miscibility in the entire composition range (MnNa). The opposite boundary of MnNaφ passes through the (100 x, 100 y) points (45, 0), (33, 30), and (30, 70). The phase diagram of the pseudobinary MnV 2O 6-NaVMoO 6 system (determined with DTA) shows (i) a narrow double-lens-type solidus-liquidus gap at high values of y , (ii) two peritectic meltings at lower y (yielding the high temperature β-MnNa and Mn 2V 2O 7), and (iii) little area of β-MnNa. Lattice parameters of MnNa (determined with X-ray diffraction) reveal small deviations from Vegard's law. As the ionic radii of both dopants (Na + and Mo 6+) are, respectively, larger than those of mother ions (Mn 2+ and V 5+), the unit cell increases in all directions with rising y along the MnNa series of solid solutions. However, due to the anisotropy of the structure, parameter c is strongly sensitive to Na/Mn substitution, b is ruled by Mo/V, and a is weakly influenced by Mo/V. Close analogy to the behavior of the previously studied MnV 2O 6-LiVMoO 6-MoO 6 system is discussed.

  13. How temperature influences the stoichiometry of CeTi2O6

    NASA Astrophysics Data System (ADS)

    Huynh, Lana T.; Eger, Shaylin B.; Walker, James D. S.; Hayes, John R.; Gaultois, Michael W.; Grosvenor, Andrew P.

    2012-06-01

    Of the many materials examined for the sequestration of nuclear waste, Ti oxides have received considerable attention. Brannerite (UTi2O6), in particular, has been studied extensively for this application. The Ce analogue of this material (CeTi2O6) has been widely investigated instead of the actinide versions owing to the reduced safety hazards and because Ce has similar crystal chemistry to U and Pu. In this study, examination of Ti K-, Ce L3-, and Ce M4,5-edge XANES spectra lead to the conclusion that CeTi2O6 was O-deficient when synthesized at high temperature and then quench cooled, and that the degree of O-deficiency was reduced upon post-annealing at lower temperatures. These observations can be ascribed to a temperature-dependant Ce3+/Ce4+ redox couple. This investigation suggests that Ce-containing materials may not properly simulate the actinide-bearing analogues; however, CeTi2O6 could be useful for other applications, such as catalysis.

  14. Les minéralisations Cu_(Ni_Bi_U_Au_Ag) d'Ifri (district du Haut Seksaoua, Maroc) : apport de l'étude texturale au débat syngenèse versus épigenèseThe Cu_(Ni_Bi_U_Au_Ag) mineralization of Ifri ('Haut Seksaoua' district, Morocco): contribution of a textural study to the discussion syngenetic versus epigenetic

    NASA Astrophysics Data System (ADS)

    Barbanson, Luc; Chauvet, Alain; Gaouzi, Aziz; Badra, Lakhifi; Mechiche, Mohamed; Touray, Jean Claude; Oukarou, Saı̈d

    2003-11-01

    The Cu ore of Ifri is a chalcopyrite stockwork hosted by Cambrian formations and was until now interpreted as a syngenetic massive sulphide deposit. Textural studies highlight two generations of pyrite early (Py I) and late (Py II) with respect to the regional deformation. The chalcopyrite stockwork overprinted Py II, outlining the epigenetic nature of the Cu mineralization. Regarding the origin of Cu-depositing fluids, the presence in the stockwork paragenesis of an U, W, Sn association and preliminary Pb/Pb dating of a brannerite belonging to this association suggest a contribution of the Tichka granite. To cite this article: L. Barbanson et al., C. R. Geoscience 335 (2003).

  15. Fractionation of uranium isotopes in minerals screened by gamma spectrometry.

    NASA Astrophysics Data System (ADS)

    Geiger, Jeffrey L.; Baldwin, Austin M.; Blatchley, Charles C.

    2008-03-01

    At least two groups have reported finding shifts in the ratio of U-235/U-238 for sandstone, black shale, and other sedimentary samples using precision ICP-MS. These shifts were tentatively attributed to a recently predicted isotope effect based on nuclear volume that causes fractionation for U^IV-U^VI transitions. However, fractionation of high Z elements may be less likely an explanation than U-235 depletion induced by galactic cosmic ray neutrons. Isotope depletion in marine sediments could therefore be an indicator of changes in cosmic ray flux due to nearby supernovae, gamma-ray bursts, or longer term changes during the 62 million year cycle of the Sun above and below the galactic plane. We report using a less precise approach than ICP-MS, but one which can quickly screen samples to look for anomalies in isotope ratios, namely HPGe gamma ray spectrometry. Various levels of depletion were measured for uranium rich minerals, including brannerite, carnotite, and pitchblende, as well as coal and limestone samples.

  16. Effects of PEG4000 template on sol-gel synthesis of porous cerium titanate photocatalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjie; Tao, Yingjie; Li, Chuanguo

    2018-04-01

    Porous cerium titanate was synthesized by sol-gel method, using polyethylene glycol (PEG4000) as template agent. Brannerite structured CeTi2O6 in monoclinic system is the major substance formed in the materials. Formation of CeO2 and rutile TiO2 depends on the amount of PEG4000. The addition of PEG4000 leads to production of fine particles in the samples, but it does not apparently affect the band gap energy. Pore volume of the cerium titanate sample continuously increases with rising PEG4000 amount. The sample obtained using 3.5 g PEG4000 has BET surface area of 16.2 m2/g and pore volume of 0.0232 cm3/g. The addition of PEG4000 can obviously promote photocatalytic activity of cerium titanate, which can be proven by both enhanced production of hydroxyl radical and ofloxacin degradation efficiency. As much as 95.2% of the initial ofloxacin molecules are removed from the solution after 50 min of photocatalytic degradation on the cerium titanate obtained using 3.5 g PEG4000, while only 48.4% ofloxacin is removed on cerium titanate obtained without PEG4000.

  17. Radiometric reconnaissance in the Garfield and Taylor park quadrangles, Chaffee and Gunnison counties, Colorado

    USGS Publications Warehouse

    Dings, M.G.; Schafer, Max

    1953-01-01

    During the summer of 1952 most of the mines and prospects in the Garfield and Taylor Park quadrangles of west-central Colorado were examined radiometrically by the U. S. Geological Survey to determine the extent, grade, and mode of occurrence of radioactive substances. The region contains a relatively large number of rock types, chiefly pre-Cambrian schists, gneisses, and granites; large and small isolated areas of sedimentary rocks of Paleozoic and Mesozoic ages; and a great succession of intrusive rocks of Tertiary age that range from andesite to granite and occur as stocks, chonoliths, sills, dikes, and one batholith. The prevailing structures are northwest-trending folds and faults. Ores valued at about $30,000,000 have been produced from this region. Silver, lead, zinc, and gold have accounted for most of this value, but small tonnages of copper, tungsten, and molybdenum have also been produced. The principal ore minerals are sphalerite, silver-bearing galena, cerussite, smithsonite, and gold-bearing pyrite and limonite; they occur chiefly as replacement bodies in limestone and as shoots in pyritic quartz veins. Anomalous radioactivity is uncommon and the four localities at which it is known are widely separated in space. The uranium content of samples from these localities is low. Brannerite, the only uranium-bearing mineral positively identified in the region, occurs sparingly in a few pegmatites and in one quartz-beryl-pyrite vein. Elsewhere radioactivity is associated with (l) black shale seams in the Manitou dolomite, (2) a quartz-pyrite-molybdenite vein, (3) a narrow border zone of oxidized material surrounding a small lead zinc ore body in the Manitou dolomite along a strong fault zone.

  18. Polymorphism of the bivalent metal vanadates MeV 2O 6 ( Me = Mg, Ca, Mn, Co, Ni, Cu, Zn, Cd)

    NASA Astrophysics Data System (ADS)

    Mocała, Krzysztof; Ziółkowski, Jacek

    1987-08-01

    Based on the literature data, our former findings and additional DTA and high-temperature X-ray studies performed for CdV 2O 6, MgV 2O 6, and MnV 2O 6, a consistent scheme of the phase transformations of the MeV 2O 6 ( Me = Mg, Ca, Mn, Co, Ni, Cu, Zn, Cd) metavanadates is constructed at normal pressure between room temperature and melting points. Three types of structures exist for the considered compounds: brannerite type (B), pseudobrannerite type (P), and NiV 2O 6 type (N). The following phase transformations have been observed: Me = Mg, B → P at 535°C; Me = Mn, B → P at 540°C; Me = Co, N → B at 660°C; Me = Cu, B (with triclinic distortion) → B at 625°C (secondary order); and Me = Cd, B → P at 170°. CaV 2O 6P, NiV 2O 6N, and ZnV 2O 6B exist in unique form in the entire temperature range. P-form seems to be favored by Me of larger ionic radii. N-form seems to appear at a peculiar d-shell structure and small Me size. Preliminary explanation of the dependence of the structure type on Me size is offered. New X-ray data are given for CdV 2O 6B, CdV 2O 6P, MgV 2O 6B, MgV 2O 6P, and MnV 2O 6P.

Top