Science.gov

Sample records for brassica napus phosphatidylinositol-phospholipase

  1. Over-expression of Brassica napus phosphatidylinositol-phospholipase C2 in canola induces significant changes in gene expression and phytohormone distribution patterns, enhances drought tolerance and promotes early flowering and maturation.

    PubMed

    Georges, Fawzy; DAS, Shankar; Ray, Heather; Bock, Cheryl; Nokhrina, Kateryna; Kolla, Venkat Apparao; Keller, Wilf

    2009-12-01

    Phosphatidylinositol-specific phospholipase C (PtdIns-PLC2) plays a central role in the phosphatidylinositol-specific signal transduction pathway. It catalyses the hydrolysis of membrane-bound phosphatidylinositol 4,5-bisphosphate to produce two second messengers, sn-1,2-diacylglycerol and inositol 1,4,5-trisphosphate. The former is a membrane activator of protein kinase C in mammalian systems, and the latter is a Ca(2+) modulator which induces distinctive oscillating bursts of cytosolic Ca(2+), resulting in regulation of gene expression and activation of proteins. Sustained over-expression of BnPtdIns-PLC2 in transgenic Brassica napus lines brought about an early shift from vegetative to reproductive phases, and shorter maturation periods, accompanied by notable alterations in hormonal distribution patterns in various tissues. The photosynthetic rate increased, while stomata were partly closed. Numerous gene expression changes that included induction of stress-related genes such as glutathione S-transferase, hormone-regulated and regulatory genes, in addition to a number of kinases, calcium-regulated factors and transcription factors, were observed. Other changes included increased phytic acid levels and phytohormone organization patterns. These results suggest the importance of PtdIns-PLC2 as an elicitor of a battery of events that systematically control hormone regulation, and plant growth and development in what may be a preprogrammed mode.

  2. Genetic enhancement of Brassica napus seed quality.

    PubMed

    Hannoufa, Abdelali; Pillai, Bhinu V S; Chellamma, Sreekala

    2014-02-01

    The ultimate value of the Brassica napus (canola) seed is derived from the oil fraction, which has long been recognized for its premium dietary attributes, including its low level of saturated fatty acids, high content of monounsaturated fatty acids, and favorable omega-3 fatty acid profile. However, the protein (meal) portion of the seed has also received favorable attention for its essential amino acids, including abundance of sulfur-containing amino acids, such that B. napus protein is being contemplated for large scale use in livestock and fish feed formulations. Efforts to optimize the composition of B. napus oil and protein fractions are well documented; therefore, this article will review research concerned with optimizing secondary metabolites that affect the quality of seed oil and meal, from undesirable anti-nutritional factors to highl value beneficial products. The biological, agronomic, and economic values attributed to secondary metabolites have brought much needed attention to those in Brassica oilseeds and other crops. This review focuses on increasing levels of beneficial endogenous secondary metabolites (such as carotenoids, choline and tochopherols) and decreasing undesirable antinutritional factors (glucosinolates, sinapine and phytate). Molecular genetic approaches are given emphasis relative to classical breeding.

  3. Transcriptional profiling of imbibed Brassica napus seed.

    PubMed

    Li, Fengling; Wu, Xianzhong; Tsang, Edward; Cutler, Adrian J

    2005-12-01

    Using an Arabidopsis microarray, we compared gene expression between germinating Brassica napus seeds and seeds in which germination was inhibited either by polyethylene glycol (PEG) or by the abscisic acid (ABA) analog PBI429, which produces stronger and longer lasting ABA-like effects. A total of 40 genes were induced relative to the germinating control by both treatments. Conspicuous among these were genes associated with late seed development. We identified 36 genes that were downregulated by both PEG and PBI429. Functions of these genes included carbohydrate metabolism, cell wall-related processes, detoxification of reactive oxygen, and triacylglycerol breakdown. The PBI429 treatment produced an increase in endogenous ABA and increased ABA catabolism. However, PEG treatment did not result in similar effects. The transcription factor ABI5 was consistently upregulated by both treatments and PKL was downregulated. These results suggest a greater importance of ABA signaling and reduced importance of GA signaling in nongerminating seeds.

  4. Characterization of Brassica napus Flavonol Synthase Involved in Flavonol Biosynthesis in Brassica napus L.

    PubMed

    Vu, Tien Thanh; Jeong, Chan Young; Nguyen, Hoai Nguyen; Lee, Dongho; Lee, Sang A; Kim, Ji Hye; Hong, Suk-Whan; Lee, Hojoung

    2015-09-09

    Recently, Brassica napus has become a very important crop for plant oil production. Flavonols, an uncolored flavonoid subclass, have a high antioxidative effect and are known to have antiproliferative, antiangiogenic, and neuropharmacological properties. In B. napus, some flavonoid structural genes have been identified, such as, BnF3H-1, BnCHS, and BnC4H-1. However, no studies on FLS genes in B. napus have been conducted. Thus, in this study, we cloned and characterized the function of BnFLS gene B. napus. By overexpression of the BnFLS gene, flavonol (kaempferol and quercetin) levels were recovered in the Arabidopsis atfls1-ko mutant. In addition, we found that the higher endogenous flavonol levels of BnFLS-ox in vitro shoots correlated with slightly higher ROS scavenging activities. Thus, our results indicate that the BnFLS gene encodes for a BnFLS enzyme that can be manipulated to specifically increase flavonol accumulation in oilseed plants and other species such as Arabidopsis.

  5. Chalazal seed coat development in Brassica napus.

    PubMed

    Millar, Jenna L; Khan, Deirdre; Becker, Michael G; Chan, Ainsley; Dufresne, André; Sumner, Michael; Belmonte, Mark F

    2015-12-01

    The chalazal seed coat (CZSC) is a maternal subregion adjacent to the funiculus which serves as the first point of entry into the developing seed. This subregion is of particular interest in Brassica napus (canola) because of its location within the seed and its putative contribution to seed filling processes. In this study, the CZSC of canola was characterized at an anatomical and molecular level to (i) describe the cellular and subcellular features of the CZSC throughout seed development, (ii) reveal cellular features of the CZSC that relate to transport processes, (iii) study gene activity of transporters and transcriptional regulators in the CZSC subregion over developmental time, and (iv) briefly investigate the contribution of the A and C constituent genomes to B. napus CZSC gene activity. We found that the CZSC contains terminating ends of xylem and phloem as well as a mosaic of endomembrane and plasmodesmatal connections, suggesting that this subregion is likely involved in the transport of material and information from the maternal tissues of the plant to other regions of the seed. Laser microdissection coupled with quantitative RT-PCR identified the relative abundance of sugar, water, auxin and amino acid transporter homologs inherited from the constituent genomes of this complex polyploid. We also studied the expression of three transcription factors that were shown to co-express with these biological processes providing a preliminary framework for the regulatory networks responsible for seed filling in canola and discuss the relationship of the CZSC to other regions and subregions of the seed and its role in seed development.

  6. Lead effects on Brassica napus photosynthetic organs.

    PubMed

    Ferreyroa, Gisele V; Lagorio, M Gabriela; Trinelli, María A; Lavado, Raúl S; Molina, Fernando V

    2017-06-01

    In this study, effects of lead on ultracellular structure and pigment contents of Brassica napus were examined. Pb(II) was added in soluble form to soil prior to sowing. Pb contents were measured in plant organs at the ontogenetic stages of flowering (FL) and physiological maturity (PM). Pigment contents were evaluated through reflectance measurements. Pb content in organs was found to decrease in the order; roots>stems>leaves. Lead content in senescent leaves at FL stage was significantly higher than harvested leaves, strongly suggesting a detoxification mechanism. Leaves and stems harvested at the PM stage showed damage at subcellular level, namely chloroplast disorganization, cell wall damage and presence of osmiophilic bodies. Chlorophyll content increased in the presence of Pb at the FL stage, compared with control; at the PM stage, chlorophyll contents decreased with low Pb concentration but showed no significant differences with control at high Pb soil concentration. The results suggest an increase in antioxidants at low Pb concentration and cell damage at higher lead concentration.

  7. Fatty acid breakdown in developing embryos of Brassica napus L.

    PubMed

    Chia, T; Rawsthorne, S

    2000-12-01

    Developing Brassica napus embryos are primarily concerned with the accumulation of storage products, namely oil, starch and protein. The presence of fatty acid catabolic pathways in the background of this biosynthetic activity was investigated. Enzymes involved in the process of lipid mobilization, such as malate synthase and isocitrate lyase, are detectable towards the late stages of embryo development. [(14)C]Acetate feeding experiments also reveal that fatty acid catabolism becomes increasingly functional as the embryo matures.

  8. Structural and functional comparative mapping between the Brassica A genomes in allotetraploid Brassica napus and diploid Brassica rapa.

    PubMed

    Jiang, Congcong; Ramchiary, Nirala; Ma, Yongbiao; Jin, Mina; Feng, Ji; Li, Ruiyuan; Wang, Hao; Long, Yan; Choi, Su Ryun; Zhang, Chunyu; Cowling, Wallace A; Park, Beom Seok; Lim, Yong Pyo; Meng, Jinling

    2011-10-01

    Brassica napus (AACC genome) is an important oilseed crop that was formed by the fusion of the diploids B. rapa (AA) and B. oleracea (CC). The complete genomic sequence of the Brassica A genome will be available soon from the B. rapa genome sequencing project, but it is not clear how informative the A genome sequence in B. rapa (A(r)) will be for predicting the structure and function of the A subgenome in the allotetraploid Brassica species B. napus (A(n)). In this paper, we report the results of structural and functional comparative mapping between the A subgenomes of B. napus and B. rapa based on genetic maps that were anchored with bacterial artificial chromosomes (BACs)-sequence of B. rapa. We identified segmental conservation that represented by syntenic blocks in over one third of the A genome; meanwhile, comparative mapping of quantitative trait loci for seed quality traits identified a dozen homologous regions with conserved function in the A genome of the two species. However, several genomic rearrangement events, such as inversions, intra- and inter-chromosomal translocations, were also observed, covering totally at least 5% of the A genome, between allotetraploid B. napus and diploid B. rapa. Based on these results, the A genomes of B. rapa and B. napus are mostly functionally conserved, but caution will be necessary in applying the full sequence data from B. rapa to the B. napus as a result of genomic rearrangements in the A genome between the two species.

  9. Pairing and recombination at meiosis of Brassica rapa (AA) x Brassica napus (AACC) hybrids.

    PubMed

    Leflon, M; Eber, F; Letanneur, J C; Chelysheva, L; Coriton, O; Huteau, V; Ryder, C D; Barker, G; Jenczewski, E; Chèvre, A M

    2006-11-01

    Interspecific crosses contribute significantly to plant evolution enabling gene exchanges between species. The efficiency of interspecific crosses depends on the similarity between the implicated genomes as high levels of genome similarity are required to ensure appropriate chromosome pairing and genetic recombination. Brassica napus (AACC) is an allopolyploid, resulting from natural hybridization between Brassica rapa (AA) and Brassica oleracea (CC), both being diploid species derived from a common ancestor. To study the relationships between genomes of these Brassica species, we have determined simultaneously the pairing and recombination pattern of A and C chromosomes during meiosis of AAC triploid hybrids, which result from the interspecific cross between natural B. napus and B. rapa. Different AAC triploid hybrids and their progenies have been analysed using cytogenetic, BAC-FISH, and molecular techniques. In 71% of the pollen mother cells, homologous A chromosomes paired regularly, and usually one chromosome of each pair was transmitted to the progeny. C chromosomes remained mainly univalent, but were involved in homoeologous pairing in 21.5% of the cells, and 13% of the transmitted C chromosomes were either recombined or broken. The rate of transmission of C chromosomes depended on the identity of the particular chromosome and on the way the hybrid was crossed, as the male or as the female parent, to B. napus or to B. rapa. Gene transfers in triploid hybrids are favoured between A genomes of B. rapa and B. napus, but also occur between A and C genomes though at lower rates.

  10. Citric acid assisted phytoremediation of copper by Brassica napus L.

    PubMed

    Zaheer, Ihsan Elahi; Ali, Shafaqat; Rizwan, Muhammad; Farid, Mujahid; Shakoor, Muhammad Bilal; Gill, Rafaqa Ali; Najeeb, Ullah; Iqbal, Naeem; Ahmad, Rehan

    2015-10-01

    Use of organic acids for promoting heavy metals phytoextraction is gaining worldwide attention. The present study investigated the influence of citric acid (CA) in enhancing copper (Cu) uptake by Brassica napus L. seedlings. 6 Weeks old B. napus seedlings were exposed to different levels of copper (Cu, 0, 50 and 100µM) alone or with CA (2.5mM) in a nutrient medium for 40 days. Exposure to elevated Cu levels (50 and 100µM) significantly reduced the growth, biomass production, chlorophyll content, gas exchange attributes and soluble proteins of B. napus seedlings. In addition, Cu toxicity increased the production of hydrogen peroxide (H2O2), malondialdehyde (MDA) and electrolyte leakage (EL) in leaf and root tissues of B. napus. Activities of antioxidant enzymes such as guaiacol peroxidase (POD), superoxide dismutase (SOD), catalases (CAT), ascorbate peroxidase (APX) in root and shoot tissues of B. napus were increased in response to lower Cu concentration (50µM) but increased under higher Cu concentration (100µM). Addition of CA into nutrient medium significantly alleviated Cu toxicity effects on B. napus seedlings by improving photosynthetic capacity and ultimately plant growth. Increased activities of antioxidant enzymes in CA-treated plants seems to play a role in capturing of stress-induced reactive oxygen species as was evident from lower level of H2O2, MDA and EL in CA-treated plants. Increasing Cu concentration in the nutrient medium significantly increased Cu concentration in in B. napus tissues. Cu uptake was further increased by CA application. These results suggested that CA might be a useful strategy for increasing phytoextraction of Cu from contaminated soils.

  11. Microarray expression analysis of the main inflorescence in Brassica napus.

    PubMed

    Huang, Yi; Shi, Jiaqin; Tao, Zhangsheng; Zhang, Lida; Liu, Qiong; Wang, Xinfa; Yang, Qing; Liu, Guihua; Wang, Hanzhong

    2014-01-01

    The effect of the number of pods on the main inflorescence (NPMI) on seed yield in Brassica napus plants grown at high density is a topic of great economic and scientific interest. Here, we sought to identify patterns of gene expression that determine the NPMI during inflorescence differentiation. We monitored gene expression profiles in the main inflorescence of two B. napus F6 RIL pools, each composed of nine lines with a low or high NPMI, and their parental lines, Zhongshuang 11 (ZS11) and 73290, using a Brassica 90K elements oligonucleotide array. We identified 4,805 genes that were differentially expressed (≥1.5 fold-change) between the low- and high-NPMI samples. Of these, 82.8% had been annotated and 17.2% shared no significant homology with any known genes. About 31 enriched GO clusters were identified amongst the differentially expressed genes (DEGs), including those involved in hormone responses, development regulation, carbohydrate metabolism, signal transduction, and transcription regulation. Furthermore, 92.8% of the DEGs mapped to chromosomes that originated from B. rapa and B. oleracea, and 1.6% of the DEGs co-localized with two QTL intervals (PMI10 and PMI11) known to be associated with the NPMI. Overexpression of BnTPI, which co-localized with PMI10, in Arabidopsis suggested that this gene increases the NPMI. This study provides insight into the molecular factors underlying inflorescence architecture, NPMI determination and, consequently, seed yield in B. napus.

  12. Characterisation of cell wall polysaccharides from rapeseed (Brassica napus) meal.

    PubMed

    Pustjens, Annemieke M; Schols, Henk A; Kabel, Mirjam A; Gruppen, Harry

    2013-11-06

    To enable structural characteristics of individual cell wall polysaccharides from rapeseed (Brassica napus) meal (RSM) to be studied, polysaccharide fractions were sequentially extracted. Fractions were analysed for their carbohydrate (linkage) composition and polysaccharide structures were also studied by enzymatic fingerprinting. The RSM fractions analysed contained pectic polysaccharides: homogalacturonan in which 60% of the galacturonic acid residues are methyl-esterified, arabinan branched at the O-2 position and arabinogalactan mainly type II. This differs from characteristics previously reported for Brassica campestris meal, another rapeseed cultivar. Also, in the alkali extracts hemicelluloses were analysed as xyloglucan both of the XXGG- and XXXG-type decorated with galactosyl, fucosyl and arabinosyl residues, and as xylan with O-methyl-uronic acid attached. The final residue after extraction still contained xyloglucan and remaining (pectic) polysaccharides next to cellulose, showing that the cell wall matrix of RSM is very strongly interconnected.

  13. Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome.

    PubMed

    Qian, W; Chen, X; Fu, D; Zou, J; Meng, J

    2005-05-01

    This paper reports the observation on the intersubgenomic heterosis for seed yield among hybrids between natural Brassica napus (A(n)A(n)C(n)C(n)) and a new type of B. napus with introgressions of genomic components of Brassica rapa (A(r)A(r)). This B. napus was selected from the progeny of B. napus x B. rapa and (B. napus x B. rapa) x B. rapa based on extensive phenotypic and cytological observation. Among the 129 studied partial intersubgenomic hybrids, which were obtained by randomly crossing 13 lines of the new type of B. napus in F(3) or BC(1)F(3) to 27 cultivars of B. napus from different regions as tester lines, about 90% of combinations exceeded the yield of their respective tester lines, whereas about 75% and 25% of combinations surpassed two elite Chinese cultivars, respectively. This strong heterosis was further confirmed by reevaluating 2 out of the 129 combinations in a successive year and by surveying hybrids between 20 lines of the new type of B. napus in BC(1)F(5) and its parental B. napus in two locations. Some DNA segments from B. rapa were identified with significant effects on seed yield and yield components of the new type of B. napus in BC(1)F(5) and intersubgenomic hybrids in positive or negative direction. It seems that the genomic components introgressed from B. rapa contributed to improvement of seed yield of rapeseed.

  14. NMR metabolomics of ripened and developing oilseed rape (Brassica napus) and turnip rape (Brassica rapa).

    PubMed

    Kortesniemi, Maaria; Vuorinen, Anssi L; Sinkkonen, Jari; Yang, Baoru; Rajala, Ari; Kallio, Heikki

    2015-04-01

    The oilseeds of the commercially important oilseed rape (Brassica napus) and turnip rape (Brassica rapa) were investigated with (1)H NMR metabolomics. The compositions of ripened (cultivated in field trials) and developing seeds (cultivated in controlled conditions) were compared in multivariate models using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Differences in the major lipids and the minor metabolites between the two species were found. A higher content of polyunsaturated fatty acids and sucrose were observed in turnip rape, while the overall oil content and sinapine levels were higher in oilseed rape. The genotype traits were negligible compared to the effect of the growing site and concomitant conditions on the oilseed metabolome. This study demonstrates the applicability of NMR-based analysis in determining the species, geographical origin, developmental stage, and quality of oilseed Brassicas.

  15. Storage lipid biosynthesis in microspore-derived Brassica napus embryos

    SciTech Connect

    Taylor, D.C.; Underhill, E.W.; Weber, N. ); Pomeroy, M.K. ); Edwards, L. )

    1989-04-01

    Erucic acid, a fatty acid which is confined to the neutral lipids in developing seed cotyledons or rape, was chosen as a marker to study triacylglycerol (TAG) biosynthesis in a Brassica napus L. cv Reston microspore-derived embryo culture system. Accumulation and changes in acyl composition of TAGs during embryogenesis strongly paralleled that observed during seed development. Homogenates of 29-day cultured embryos were examined for the ability to incorporate erucoyl moieties into storage lipids. In the presence of {sup 14}C erucoyl CoA and various acceptors, including glycerol-3-phosphate (G3P), {sup 14}C erucic acid was rapidly incorporated into the TAG fraction. However, in contrast to studies with {sup 14}C oleoyl CoA, there was no measurable radioactivity in any Kennedy Pathway intermediates or within membrane lipid components. Analysis of the radiolabelled TAG species suggested that erucoyl moieties were incorporated into the sn-3 position by a highly active diacylglyercol acyltransferase.

  16. Physiological and proteomic analyses on artificially aged Brassica napus seed.

    PubMed

    Yin, Xiaojian; He, Dongli; Gupta, Ravi; Yang, Pingfang

    2015-01-01

    Plant seeds lose their viability when they are exposed to long term storage or controlled deterioration treatments, by a process known as seed aging. Based on previous studies, artificially aging treatments have been developed to accelerate the process of seed aging in order to understand its underlying mechanisms. In this study, we used Brassica napus seeds to investigate the mechanisms of aging initiation. B. napus seeds were exposed to artificially aging treatment (40°C and 90% relative humidity) and their physio-biochemical characteristics were analyzed. Although the treatment delayed germination, it did not increase the concentration of cellular reactive oxygen species (ROS). Comparative proteomic analysis was conducted among the control and treated seeds at different stages of germination. The proteins responded to the treatment were mainly involved in metabolism, protein modification and destination, stress response, development, and miscellaneous enzymes. Except for peroxiredoxin, no changes were observed in the accumulation of other antioxidant enzymes in the artificially aged seeds. Increased content of abscisic acid (ABA) was observed in the artificially treated seeds which might be involved in the inhibition of germination. Taken together, our results highlight the involvement of ABA in the initiation of seed aging in addition to the ROS which was previously reported to mediate the seed aging process.

  17. Identification, evolution, and expression partitioning of miRNAs in allopolyploid Brassica napus.

    PubMed

    Shen, Enhui; Zou, Jun; Hubertus Behrens, Falk; Chen, Li; Ye, Chuyu; Dai, Shutao; Li, Ruiyan; Ni, Meng; Jiang, Xiaoxue; Qiu, Jie; Liu, Yang; Wang, Weidi; Zhu, Qian-Hao; Chalhoub, Boulos; Bancroft, Ian; Meng, Jinling; Cai, Daguang; Fan, Longjiang

    2015-12-01

    The recently published genome of Brassica napus offers for the first time the opportunity to gain insights into the genomic organization and the evolution of miRNAs in oilseed rape. In this study, 12 small RNA libraries from two B. napus cultivars (Tapidor and Ningyou7) and their four double-haploid lines were sequenced, employing the newly sequenced B. napus genome, together with genomes of its progenitors Brassica rapa and Brassica oleracea. A total of 645 miRNAs including 280 conserved and 365 novel miRNAs were identified. Comparative analysis revealed a high level of genomic conservation of MIRNAs (75.9%) between the subgenomes of B. napus and its two progenitors' genomes, and MIRNA lost/gain events (133) occurred in B. napus after its speciation. Furthermore, significant partitioning of miRNA expressions between the two subgenomes in B. napus was detected. The data of degradome sequencing, miRNA-mediated cleavage, and expression analyses support specific interactions between miRNAs and their targets in the modulation of diverse physiological processes in roots and leaves, as well as in biosynthesis of, for example, glucosinolates and lipids in oilseed rape. These data provide a first genome-wide view on the origin, evolution, and genomic organization of B. napus MIRNAs.

  18. Integration of Brassica A genome genetic linkage map between Brassica napus and B. rapa.

    PubMed

    Suwabe, Keita; Morgan, Colin; Bancroft, Ian

    2008-03-01

    An integrated linkage map between B. napus and B. rapa was constructed based on a total of 44 common markers comprising 41 SSR (33 BRMS, 6 Saskatoon, and 2 BBSRC) and 3 SNP/indel markers. Between 3 and 7 common markers were mapped onto each of the linkage groups A1 to A10. The position and order of most common markers revealed a high level of colinearity between species, although two small regions on A4, A5, and A10 revealed apparent local inversions between them. These results indicate that the A genome of Brassica has retained a high degree of colinearity between species, despite each species having evolved independently after the integration of the A and C genomes in the amphidiploid state. Our results provide a genetic integration of the Brassica A genome between B. napus and B. rapa. As the analysis employed sequence-based molecular markers, the information will accelerate the exploitation of the B. rapa genome sequence for the improvement of oilseed rape.

  19. Transcriptomic basis for drought-resistance in Brassica napus L.

    PubMed Central

    Wang, Pei; Yang, Cuiling; Chen, Hao; Song, Chunpeng; Zhang, Xiao; Wang, Daojie

    2017-01-01

    Based on transcriptomic data from four experimental settings with drought-resistant and drought-sensitive cultivars under drought and well-watered conditions, statistical analysis revealed three categories encompassing 169 highly differentially expressed genes (DEGs) in response to drought in Brassica napus L., including 37 drought-resistant cultivar-related genes, 35 drought-sensitive cultivar-related genes and 97 cultivar non-specific ones. We provide evidence that the identified DEGs were fairly uniformly distributed on different chromosomes and their expression patterns are variety specific. Except commonly enriched in response to various stimuli or stresses, different categories of DEGs show specific enrichment in certain biological processes or pathways, which indicated the possibility of functional differences among the three categories. Network analysis revealed relationships among the 169 DEGs, annotated biological processes and pathways. The 169 DEGs can be classified into different functional categories via preferred pathways or biological processes. Some pathways might simultaneously involve a large number of shared DEGs, and these pathways are likely to cross-talk and have overlapping biological functions. Several members of the identified DEGs fit to drought stress signal transduction pathway in Arabidopsis thaliana. Finally, quantitative real-time PCR validations confirmed the reproducibility of the RNA-seq data. These investigations are profitable for the improvement of crop varieties through transgenic engineering. PMID:28091614

  20. Storage oil breakdown during embryo development of Brassica napus (L.).

    PubMed

    Chia, Tansy Y P; Pike, Marilyn J; Rawsthorne, Stephen

    2005-05-01

    In this study it is shown that at least 10% of the major storage product of developing embryos of Brassica napus (L.), triacylglycerol, is lost during the desiccation phase of seed development. The metabolism of this lipid was studied by measurements of the fate of label from [1-(14)C]decanoate supplied to isolated embryos, and by measurements of the activities of enzymes of fatty acid catabolism. Measurements on desiccating embryos have been compared with those made on embryos during lipid accumulation and on germinating seedlings. Enzymes of beta-oxidation and the glyoxylate cycle, and phosphoenolpyruvate carboxykinase were present in embryos during oil accumulation, and increased in activity and abundance as the seeds matured and became desiccated. Although the activities were less than those measured during germination, they were at least comparable to the in vivo rate of fatty acid synthesis in the embryo during development. The pattern of labelling, following metabolism of decanoate by isolated embryos, indicated a much greater involvement of the glyoxylate cycle during desiccation than earlier in oil accumulation, and showed that much of the (14)C-label from decanoate was released as CO(2) at both stages. Sucrose was not a product of decanoate metabolism during embryo development, and therefore lipid degradation was not associated with net gluconeogenic activity. These observations are discussed in the context of seed development, oil yield, and the synthesis of novel fatty acids in plants.

  1. Transcriptomic basis for drought-resistance in Brassica napus L.

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Yang, Cuiling; Chen, Hao; Song, Chunpeng; Zhang, Xiao; Wang, Daojie

    2017-01-01

    Based on transcriptomic data from four experimental settings with drought-resistant and drought-sensitive cultivars under drought and well-watered conditions, statistical analysis revealed three categories encompassing 169 highly differentially expressed genes (DEGs) in response to drought in Brassica napus L., including 37 drought-resistant cultivar-related genes, 35 drought-sensitive cultivar-related genes and 97 cultivar non-specific ones. We provide evidence that the identified DEGs were fairly uniformly distributed on different chromosomes and their expression patterns are variety specific. Except commonly enriched in response to various stimuli or stresses, different categories of DEGs show specific enrichment in certain biological processes or pathways, which indicated the possibility of functional differences among the three categories. Network analysis revealed relationships among the 169 DEGs, annotated biological processes and pathways. The 169 DEGs can be classified into different functional categories via preferred pathways or biological processes. Some pathways might simultaneously involve a large number of shared DEGs, and these pathways are likely to cross-talk and have overlapping biological functions. Several members of the identified DEGs fit to drought stress signal transduction pathway in Arabidopsis thaliana. Finally, quantitative real-time PCR validations confirmed the reproducibility of the RNA-seq data. These investigations are profitable for the improvement of crop varieties through transgenic engineering.

  2. Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors.

    PubMed

    Xiong, Zhiyong; Pires, J Chris

    2011-01-01

    Investigating recombination of homoeologous chromosomes in allopolyploid species is central to understanding plant breeding and evolution. However, examining chromosome pairing in the allotetraploid Brassica napus has been hampered by the lack of chromosome-specific molecular probes. In this study, we establish the identification of all homoeologous chromosomes of allopolyploid B. napus by using robust molecular cytogenetic karyotypes developed for the progenitor species Brassica rapa (A genome) and Brassica oleracea (C genome). The identification of every chromosome among these three Brassica species utilized genetically mapped bacterial artificial chromosomes (BACs) from B. rapa as probes for fluorescent in situ hybridization (FISH). With this BAC-FISH data, a second karyotype was developed using two BACs that contained repetitive DNA sequences and the ubiquitous ribosomal and pericentromere repeats. Using this diagnostic probe mix and a BAC that contained a C-genome repeat in two successive hybridizations allowed for routine identification of the corresponding homoeologous chromosomes between the A and C genomes of B. napus. When applied to the B. napus cultivar Stellar, we detected one chromosomal rearrangement relative to the parental karyotypes. This robust novel chromosomal painting technique will have biological applications for the understanding of chromosome pairing, homoeologous recombination, and genome evolution in the genus Brassica and will facilitate new applied breeding technologies that rely upon identification of chromosomes.

  3. Gene transferability from transgenic Brassica napus L. to various subspecies and varieties of Brassica rapa.

    PubMed

    Xiao, Ling; Lu, Changming; Zhang, Bing; Bo, Huijie; Wu, Yuhua; Wu, Gang; Cao, Yinglong; Yu, Deyue

    2009-10-01

    Gene transferability from transgenic rapeseed to various subspecies and varieties of Brassica rapa was assessed in this study. Artificial crossability was studied in 118 cultivars of 7 B. rapa subspecies and varieties with the transgenic rapeseed GT73 (Brassica napus) as the pollen donor. On average 5.7 seeds were obtained per pollination, with a range from 0.05 to 19.4. The heading type of B. rapa L. showed significantly higher crossability than non-heading types of B. rapa. The spontaneous outcrossing rate between B. rapa (female) and the transgenic rapeseed Ms8 x Rf3 (B. napus) (male) ranged from 0.039 to 0.406%, with an average of 0.19%. The fertilization process and the development of the hybrid seeds as shown by fluorescent staining techniques indicated that the number of adhered pollens on the stigma was reduced by 80%, the number of pollen tubes in the style was reduced by 2/3 and the fertilization time was delayed by over 20 h when pollinated with the transgenic rapeseed Ms8 x Rf3 in comparison with the bud self-pollination of B. rapa as control. About 10-70% of the interspecific hybrid embryos were aborted in the course of development. Some seeds looked cracked in mature pods, which showed germination abilities lower than 10%. The spontaneous outcrossing rates were much lower than the artificial crossability, and their survival fitness of the interspecific hybrid was very low, indicating that it should be possible to keep the adventitious presence of the off-plants under the allowed threshold, if proper measures are taken.

  4. Selection against hybrids in mixed populations of Brassica rapa and Brassica napus: model and synthesis.

    PubMed

    de Jong, Tom J; Hesse, Elze

    2012-06-01

    Pollen of the crop oilseed rape (Brassica napus, AACC) can cross-fertilize ovules of Brassica rapa (AA), which leads to an influx of unpaired C-chromosomes into wild B. rapa populations. The presence of such extra chromosomes is thought to be an indicator of introgression. Backcrosses and F(1) hybrids were found in Danish populations but, surprisingly, only F(1) hybrids were found in the UK and the Netherlands. Here, a model tests how the level of selection and biased vs unbiased transmission affect the population frequency of C-chromosomes. In the biased-transmission scenario the experimental results of the first backcross are extrapolated to estimate survival of gametes with different numbers of C-chromosomes from all crosses in the population. With biased transmission, the frequency of C-chromosomes always rapidly declines to zero. With unbiased transmission, the continued presence of plants with extra C-chromosomes depends on selection in the adult stage and we argue that this is the most realistic option for modeling populations. We suggest that selection in the field against plants with unpaired C-chromosomes is strong in Dutch and UK populations. The model highlights what we do not know and makes suggestions for further research on introgression.

  5. Physical Localization and Genetic Mapping of Fertility Restoration Gene Rfo in Canola (Brassica napus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Ogu cytoplasm for male fertility and its fertility restorer gene Rfo in canola (Brassica napus L.) were originally introgressed from radish (Raphanus sativus L.) and have been widely used for canola hybrid production and breeding. The objective of this study was to determine the physical locati...

  6. Effects of Fe deficiency on the protein profile of Brassica napus phloem sap

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this work was to study the effect of Fe deficiency on the protein profile of phloem sap exudates from Brassica napus using 2-DE (IEF-SDS PAGE). The experiment was repeated thrice and two technical replicates per treatment were done. Two hundred sixty-three spots were consistently detected...

  7. Effect of Phosphorus, Potassium, and Chloride Nutrition on Cold Tolerance of Winter Canola (Brassica napus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field experiment was conducted to determine whether fertility treatments improve cold hardiness of canola (Brassica napus L.). Measurements of chlorophyll fluorescence and overwinter survival of field-grown canola were used to evaluate the effect of chloride (Cl), potassium (K), and phosphorus (P)...

  8. Characteristics Analysis of F1 Hybrids between Genetically Modified Brassica napus and B. rapa.

    PubMed

    Sohn, Soo-In; Oh, Young-Ju; Lee, Kyeong-Ryeol; Ko, Ho-Cheol; Cho, Hyun-Suk; Lee, Yeon-Hee; Chang, Ancheol

    2016-01-01

    A number of studies have been conducted on hybridization between transgenic Brassica napus and B. rapa or backcross of F1 hybrid to their parents. However, trait changes must be analyzed to evaluate hybrid sustainability in nature. In the present study, B. rapa and transgenic (BrAGL20) B. napus were hybridized to verify the early flowering phenomenon of F1 hybrids, and F1 hybrid traits were analyzed to predict their impact on sustainability. Flowering of F1 hybrid has been induced slightly later than that of the transgenic B. napus, but flowering was available in the greenhouse without low temperature treatment to young plant, similar to the transgenic B. napus. It is because the BrAGL20 gene has been transferred from transgenic B. napus to F1 hybrid. The size of F1 hybrid seeds was intermediate between those of B. rapa and transgenic B. napus, and ~40% of F1 pollen exhibited abnormal size and morphology. The form of the F1 stomata was also intermediate between that of B. rapa and transgenic B. napus, and the number of stomata was close to the parental mean. Among various fatty acids, the content of erucic acid exhibited the greatest change, owing to the polymorphism of parental FATTY ACID ELONGASE 1 alleles. Furthermore, F2 hybrids could not be obtained. However, BC1 progeny were obtained by hand pollination of B. rapa with F1 hybrid pollen, with an outcrossing rate of 50%.

  9. Characteristics Analysis of F1 Hybrids between Genetically Modified Brassica napus and B. rapa

    PubMed Central

    Sohn, Soo-In; Oh, Young-Ju; Lee, Kyeong-Ryeol; Ko, Ho-Cheol; Cho, Hyun-Suk; Lee, Yeon-Hee; Chang, Ancheol

    2016-01-01

    A number of studies have been conducted on hybridization between transgenic Brassica napus and B. rapa or backcross of F1 hybrid to their parents. However, trait changes must be analyzed to evaluate hybrid sustainability in nature. In the present study, B. rapa and transgenic (BrAGL20) B. napus were hybridized to verify the early flowering phenomenon of F1 hybrids, and F1 hybrid traits were analyzed to predict their impact on sustainability. Flowering of F1 hybrid has been induced slightly later than that of the transgenic B. napus, but flowering was available in the greenhouse without low temperature treatment to young plant, similar to the transgenic B. napus. It is because the BrAGL20 gene has been transferred from transgenic B. napus to F1 hybrid. The size of F1 hybrid seeds was intermediate between those of B. rapa and transgenic B. napus, and ~40% of F1 pollen exhibited abnormal size and morphology. The form of the F1 stomata was also intermediate between that of B. rapa and transgenic B. napus, and the number of stomata was close to the parental mean. Among various fatty acids, the content of erucic acid exhibited the greatest change, owing to the polymorphism of parental FATTY ACID ELONGASE 1 alleles. Furthermore, F2 hybrids could not be obtained. However, BC1 progeny were obtained by hand pollination of B. rapa with F1 hybrid pollen, with an outcrossing rate of 50%. PMID:27632286

  10. Effect of microwave treatment on the efficacy of expeller pressing of Brassica napus rapeseed and Brassica juncea mustard seeds.

    PubMed

    Niu, Yanxing; Rogiewicz, Anna; Wan, Chuyun; Guo, Mian; Huang, Fenghong; Slominski, Bogdan A

    2015-04-01

    A study was conducted to evaluate the effect of microwave heating on the efficacy of expeller pressing of rapeseed and mustard seed and the composition of expeller meals in two types of Brassica napus rapeseed (intermediate- and low-glucosinolate) and in Brassica juncea mustard (high-glucosinolate). Following microwave treatment, the microstructure of rapeseed using transmission electron microscopy showed a significant disappearance of oil bodies and myrosin cells. After 6 min of microwave heating (400 g, 800 W), the oil content of rapeseed expeller meal decreased from 44.9 to 13.5% for intermediate-glucosinolate B. napus rapeseed, from 42.6 to 11.3% for low-glucosinolate B. napus rapeseed, and from 44.4 to 14.1% for B. juncea mustard. The latter values were much lower than the oil contents of the corresponding expeller meals derived from the unheated seeds (i.e., 26.6, 22.6, and 29.8%, respectively). Neutral detergent fiber (NDF) contents showed no differences except for the expeller meal from the intermediate-glucosinolate B. napus rapeseed, which increased from 22.7 to 29.2% after 6 min of microwave heating. Microwave treatment for 4 and 5 min effectively inactivated myrosinase enzyme of intermediate-glucosinolate B. napus rapeseed and B. juncea mustard seed, respectively. In low-glucosinolate B. napus rapeseed the enzyme appeared to be more heat stable, with some activity being present after 6 min of microwave heating. Myrosinase enzyme inactivation had a profound effect on the glucosinolate content of expeller meals and prevented their hydrolysis to toxic breakdown products during the expelling process. It appeared evident from this study that microwave heating for 6 min was an effective method of producing expeller meal without toxic glucosinolate breakdown products while at the same time facilitating high yield of oil during the expelling process.

  11. Population genomic analysis reveals differential evolutionary histories and patterns of diversity across subgenomes and subpopulations of Brassica napus L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassica napus (L.) is a crop of major economic importance that produces canola oil (seed), vegetables, fodder and animal meal. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this s...

  12. Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus.

    PubMed

    Raman, Harsh; Raman, Rosy; Kilian, Andrzej; Detering, Frank; Carling, Jason; Coombes, Neil; Diffey, Simon; Kadkol, Gururaj; Edwards, David; McCully, Margaret; Ruperao, Pradeep; Parkin, Isobel A P; Batley, Jacqueline; Luckett, David J; Wratten, Neil

    2014-01-01

    Resistance to pod shattering (shatter resistance) is a target trait for global rapeseed (canola, Brassica napus L.), improvement programs to minimise grain loss in the mature standing crop, and during windrowing and mechanical harvest. We describe the genetic basis of natural variation for shatter resistance in B. napus and show that several quantitative trait loci (QTL) control this trait. To identify loci underlying shatter resistance, we used a novel genotyping-by-sequencing approach DArT-Seq. QTL analysis detected a total of 12 significant QTL on chromosomes A03, A07, A09, C03, C04, C06, and C08; which jointly account for approximately 57% of the genotypic variation in shatter resistance. Through Genome-Wide Association Studies, we show that a large number of loci, including those that are involved in shattering in Arabidopsis, account for variation in shatter resistance in diverse B. napus germplasm. Our results indicate that genetic diversity for shatter resistance genes in B. napus is limited; many of the genes that might control this trait were not included during the natural creation of this species, or were not retained during the domestication and selection process. We speculate that valuable diversity for this trait was lost during the natural creation of B. napus. To improve shatter resistance, breeders will need to target the introduction of useful alleles especially from genotypes of other related species of Brassica, such as those that we have identified.

  13. Multiple Evolutionary Events Involved in Maintaining Homologs of Resistance to Powdery Mildew 8 in Brassica napus.

    PubMed

    Li, Qin; Li, Jing; Sun, Jin-Long; Ma, Xian-Feng; Wang, Ting-Ting; Berkey, Robert; Yang, Hui; Niu, Ying-Ze; Fan, Jing; Li, Yan; Xiao, Shunyuan; Wang, Wen-Ming

    2016-01-01

    The Resistance to Powdery Mildew 8 (RPW8) locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs) in Brassica rapa and three in Brassica oleracea (BoHRs). Brassica napus (Bn) is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs). It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here, we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion, and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants.

  14. Determination of the net energy content of canola meal from Brassica napus yellow and Brassica juncea yellow fed to growing pigs using indirect calorimetry.

    PubMed

    Heo, Jung Min; Adewole, Deborah; Nyachoti, Martin

    2014-07-01

    The net energy (NE) content of canola meals (CM; i.e. Brassica napus yellow and Brassica juncea yellow) in growing pigs was determined using an indirect calorimetry chamber or published prediction equations. The study was conducted as a completely randomized design (n=6), with (i) a basal diet and (ii) 2 diets containing 700 g/kg of the basal diet and 300 g/kg of either of the two varieties of CM. A total of 18 growing barrows were housed in metabolism crates for the determination of digestible (DE) and metabolizable (ME) energy. Thereafter, pigs were transferred to the indirect calorimetry chamber to determine heat production (HP). The NE contents of diets containing Brassica napus yellow and Brassica juncea yellow determined with the direct determination technique and prediction equations were 9.8 versus 10.3 MJ/kg dry matter (DM) and 10.2 versus 10.4 MJ/kg DM, respectively. Retained energy (RE) and fasting heat production (FHP) of diets containing Brassica napus yellow and Brassica juncea yellow were 5.5 versus 5.7 MJ/kg and 4.3 versus 4.5 MJ/kg, respectively, when measured with the direct determination technique and prediction equations. The NE contents of Brassica napus yellow and Brassica juncea yellow were determined to be 8.8 and 9.8 MJ/kg DM, respectively, using the direct determination technique.

  15. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea.

    PubMed

    Lee, Kyeong-Ryeol; In Sohn, Soo; Jung, Jin Hee; Kim, Sun Hee; Roh, Kyung Hee; Kim, Jong-Bum; Suh, Mi Chung; Kim, Hyun Uk

    2013-12-01

    Fatty acid desaturase 2 (FAD2), which resides in the endoplasmic reticulum (ER), plays a crucial role in producing linoleic acid (18:2) through catalyzing the desaturation of oleic acid (18:1) by double bond formation at the delta 12 position. FAD2 catalyzes the first step needed for the production of polyunsaturated fatty acids found in the glycerolipids of cell membranes and the triacylglycerols in seeds. In this study, four FAD2 genes from amphidiploid Brassica napus genome were isolated by PCR amplification, with their enzymatic functions predicted by sequence analysis of the cDNAs. Fatty acid analysis of budding yeast transformed with each of the FAD2 genes showed that whereas BnFAD2-1, BnFAD2-2, and BnFAD2-4 are functional enzymes, and BnFAD2-3 is nonfunctional. The four FAD2 genes of B. napus originated from synthetic hybridization of its diploid progenitors Brassica rapa and Brassica oleracea, each of which has two FAD2 genes identical to those of B. napus. The BnFAD2-3 gene of B. napus, a nonfunctional pseudogene mutated by multiple nucleotide deletions and insertions, was inherited from B. rapa. All BnFAD2 isozymes except BnFAD2-3 localized to the ER. Nonfunctional BnFAD2-3 localized to the nucleus and chloroplasts. Four BnFAD2 genes can be classified on the basis of their expression patterns.

  16. Comparative quantitative trait loci for silique length and seed weight in Brassica napus.

    PubMed

    Fu, Ying; Wei, Dayong; Dong, Hongli; He, Yajun; Cui, Yixin; Mei, Jiaqin; Wan, Huafang; Li, Jiana; Snowdon, Rod; Friedt, Wolfgang; Li, Xiaorong; Qian, Wei

    2015-09-23

    Silique length (SL) and seed weight (SW) are important yield-associated traits in rapeseed (Brassica napus). Although many quantitative trait loci (QTL) for SL and SW have been identified in B. napus, comparative analysis for those QTL is seldom performed. In the present study, 20 and 21 QTL for SL and SW were identified in doubled haploid (DH) and DH-derived reconstructed F2 populations in rapeseed, explaining 55.1-74.3% and 24.4-62.9% of the phenotypic variation across three years, respectively. Of which, 17 QTL with partially or completely overlapped confidence interval on chromosome A09, were homologous with two overlapped QTL on chromosome C08 by aligning QTL confidence intervals with the reference genomes of Brassica crops. By high density selective genotyping of DH lines with extreme phenotypes, using a Brassica single-nucleotide polymorphism (SNP) array, the QTL on chromosome A09 was narrowed, and aligned into 1.14-Mb region from 30.84 to 31.98 Mb on chromosome R09 of B. rapa and 1.05-Mb region from 27.21 to 28.26 Mb on chromosome A09 of B. napus. The alignment of QTL with Brassica reference genomes revealed homologous QTL on A09 and C08 for SL. The narrowed QTL region provides clues for gene cloning and breeding cultivars by marker-assisted selection.

  17. Transcriptome Analysis of Stem and Globally Comparison with Other Tissues in Brassica napus

    PubMed Central

    Miao, Liyun; Zhang, Libin; Raboanatahiry, Nadia; Lu, Guangyuan; Zhang, Xuekun; Xiang, Jun; Gan, Jianping; Fu, Chunhua; Li, Maoteng

    2016-01-01

    Brassica napus is one of the most important oilseed crops in the world. However, there is currently no enough stem transcriptome information and comparative transcriptome analysis of different tissues, which impedes further functional genomics research on B. napus. In this study, the stem transcriptome of B. napus was characterized by RNA-seq technology. Approximately 13.4 Gb high-quality clean reads with an average length of 100 bp were generated and used for comparative transcriptome analysis with the existing transcriptome sequencing data of roots, leaves, flower buds, and immature embryos of B. napus. All the transcripts were annotated against GO and KEGG databases. The common genes in five tissues, differentially expressed genes (DEGs) of the common genes between stems and other tissues, and tissue-specific genes were detected, and the main biochemical activities and pathways implying the common genes, DEGs and tissue-specific genes were investigated. Accordingly, the common transcription factors (TFs) in the five tissues and tissue-specific TFs were identified, and a TFs-based regulation network between TFs and the target genes involved in ‘Phenylpropanoid biosynthesis’ pathway were constructed to show several important TFs and key nodes in the regulation process. Collectively, this study not only provided an available stem transcriptome resource in B. napus, but also revealed valuable comparative transcriptome information of five tissues of B. napus for future investigation on specific processes, functions and pathways. PMID:27708656

  18. Suppression of Specific Apple Root Pathogens by Brassica napus Seed Meal Amendment Regardless of Glucosinolate Content.

    PubMed

    Mazzola, M; Granatstein, D M; Elfving, D C; Mullinix, K

    2001-07-01

    ABSTRACT The impact of Brassica napus seed meal on the microbial complex that incites apple replant disease was evaluated in greenhouse trials. Regardless of glucosinolate content, seed meal amendment at a rate of 0.1% (vol/vol) significantly enhanced growth of apple and suppressed apple root infection by Rhizoctonia spp. and Pratylenchus penetrans. High glucosinolate B. napus cv. Dwarf Essex seed meal amendments did not consistently suppress soil populations of Pythium spp. or apple root infection by this pathogen. Application of a low glucosinolate containing B. napus seed meal at a rate of 1.0% (vol/vol) resulted in a significant increase in recovery of Pythium spp. from apple roots, and a corresponding reduction in apple seedling root biomass. When applied at lower rates, B. napus seed meal amendments enhanced populations of fluorescent Pseudomonas spp., but these bacteria were not recovered from soils amended with seed meal at a rate of 2% (vol/vol). Seed meal amendments resulted in increased soil populations of total bacteria and actinomycetes. B. napus cv. Dwarf Essex seed meal amendments were phytotoxic to apple when applied at a rate of 2% (vol/vol), and phytotoxicity was not diminished when planting was delayed for as long as 12 weeks after application. These findings suggest that B. napus seed meal amendments can be a useful tool in the management of apple replant disease and, in the case of Rhizoctonia spp., that disease control operates through mechanisms other than production of glucosinolate hydrolysis products.

  19. A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes.

    PubMed

    Dalton-Morgan, Jessica; Hayward, Alice; Alamery, Salman; Tollenaere, Reece; Mason, Annaliese S; Campbell, Emma; Patel, Dhwani; Lorenc, Michał T; Yi, Bin; Long, Yan; Meng, Jinling; Raman, Rosy; Raman, Harsh; Lawley, Cindy; Edwards, David; Batley, Jacqueline

    2014-12-01

    Single-nucleotide polymorphisms (SNPs)are molecular markers based on nucleotide variation and can be used for genotyping assays across populations and to track genomic inheritance. SNPs offer a comprehensive genotyping alternative to whole-genome sequencing for both agricultural and research purposes including molecular breeding and diagnostics, genome evolution and genetic diversity analyses, genetic mapping, and trait association studies. Here genomic SNPs were discovered between four cultivars of the important amphidiploid oilseed species Brassica napus and used to develop a B. napus Infinium™ array containing 5,306 SNPs randomly dispersed across the genome. Assay success was high, with >94 % of these producing a reproducible, polymorphic genotype in the 1,070 samples screened. Although the assay was designed to B. napus, successful SNP amplification was achieved in the B. napus progenitor species, Brassica rapa and Brassica oleracea, and to a lesser extent in the related species Brassica nigra. Phylogenetic analysis was consistent with the expected relationships between B. napus individuals. This study presents an efficient custom SNP assay development pipeline in the complex polyploid Brassica genome and demonstrates the utility of the array for high-throughput genotyping in a number of related Brassica species. It also demonstrates the utility of this assay in genotyping resistance genes on chromosome A7, which segregate amongst the 1,070 samples.

  20. Identification of Putative Candidate Genes for Water Stress Tolerance in Canola (Brassica napus)

    PubMed Central

    Zhang, Jing; Mason, Annaliese S.; Wu, Jian; Liu, Sheng; Zhang, Xuechen; Luo, Tao; Redden, Robert; Batley, Jacqueline; Hu, Liyong; Yan, Guijun

    2015-01-01

    Drought stress can directly inhibit seedling establishment in canola (Brassica napus), resulting in lower plant densities and reduced yields. To dissect this complex trait, 140 B. napus accessions were phenotyped under normal (0.0 MPa, S0) and water-stressed conditions simulated by polyethylene glycol (PEG) 6000 (−0.5 MPa, S5) in a hydroponic system. Phenotypic variation and heritability indicated that the root to shoot length ratio was a reliable indicator for water stress tolerance. Thereafter, 66 accessions (16 water stress tolerant, 34 moderate and 16 sensitive lines) were genotyped using 25,495 Brassica single nucleotide polymorphisms (SNPs). Genome-wide association studies (GWAS) identified 16 loci significantly associated with water stress response. Two B. napus accessions were used for RNA sequencing, with differentially-expressed genes under normal and water-stressed conditions examined. By combining differentially-expressed genes detected by RNA sequencing with significantly associated loci from GWAS, 79 candidate genes were identified, of which eight were putatively associated with drought tolerance based on gene ontology of Arabidopsis. Functional validation of these genes may confirm key drought-related genes for selection and breeding in B. napus. Our results provide insight into the genetic basis of water stress tolerance in canola. PMID:26640475

  1. Computational Prediction of acyl-coA Binding Proteins Structure in Brassica napus.

    PubMed

    Raboanatahiry, Nadia Haingotiana; Lu, Guangyuan; Li, Maoteng

    2015-01-01

    Acyl-coA binding proteins could transport acyl-coA esters from plastid to endoplasmic reticulum, prior to fatty acid biosynthesis, leading to the formation of triacylglycerol. The structure and the subcellular localization of acyl-coA binding proteins (ACBP) in Brassica napus were computationally predicted in this study. Earlier, the structure analysis of ACBPs was limited to the small ACBPs, the current study focused on all four classes of ACBPs. Physicochemical parameters including the size and the length, the intron-exon structure, the isoelectric point, the hydrophobicity, and the amino acid composition were studied. Furthermore, identification of conserved residues and conserved domains were carried out. Secondary structure and tertiary structure of ACBPs were also studied. Finally, subcellular localization of ACBPs was predicted. The findings indicated that the physicochemical parameters and subcellular localizations of ACBPs in Brassica napus were identical to Arabidopsis thaliana. Conserved domain analysis indicated that ACBPs contain two or three kelch domains that belong to different families. Identical residues in acyl-coA binding domains corresponded to eight amino acid residues in all ACBPs of B. napus. However, conserved residues of common ACBPs in all species of animal, plant, bacteria and fungi were only inclusive in small ACBPs. Alpha-helixes were displayed and conserved in all the acyl-coA binding domains, representing almost the half of the protein structure. The findings confirm high similarities in ACBPs between A. thaliana and B. napus, they might share the same functions but loss or gain might be possible.

  2. Comparing the effects of excess copper in the leaves of Brassica juncea (L. Czern) and Brassica napus (L.) seedlings: Growth inhibition, oxidative stress and photosynthetic damage.

    PubMed

    Feigl, Gábor; Kumar, Devanand; Lehotai, Nóra; Pető, Andrea; Molnár, Árpád; Rácz, Éva; Ördög, Attila; Erdei, László; Kolbert, Zsuzsanna; Laskay, Gábor

    2015-06-01

    Hydroponic experiments were conducted to compare the effects of excess copper (Cu) on growth and photosynthesis in young Indian mustard (Brassica juncea) and oilseed rape (Brassica napus). We compared the effects of excess Cu on the two Brassica species at different physiological levels from antioxidant levels to photosynthetic activity. Nine-day-old plants were treated with Cu (10, 25 and 50 μM CuSO4) for 7 and 14 days. Both species took up Cu from the external solution to a similar degree but showed slight root-to-shoot translocation. Furthermore, after seven days of treatment, excess Cu significantly decreased other microelement content, such as iron (Fe) and manganese (Mn), especially in the shoots of B. napus. As a consequence, the leaves of young Brassica napus plants showed decreased concentrations of photosynthetic pigments and more intense growth inhibition; however, accumulation of highly reactive oxygen species (hROS) were not detected. After 14 days of Cu exposure the reduction of Fe and Mn contents and shoot growth proved to be comparable in the two species. Moreover, a significant Cu-induced hROS accumulation was observed in both Brassica species. The diminution in pigment contents and photosynthetic efficiency were more pronounced in B. napus during prolonged Cu exposure. Based on all the parameters, B. juncea appears to be more resistant to excess Cu than B. napus, rendering it a species with higher potential for phytoremediation.

  3. Phytotoxicity evaluation of some commonly used shampoos using Brassica napus L.

    PubMed

    Naeem, Faiqa; Ahmed, Faiza; Kanwal, Memoona; Murad, Waheed; Azizullah, Azizullah

    2015-10-01

    Hair shampoos are among the most commonly used chemicals in everyday life. Since shampoos are a major component of domestic and municipal wastewater, they may affect plants when irrigated with wastewater. However, their effects on plants have never been investigated in detail. The present study was aimed to evaluate the effect of some commonly used hair shampoos on seed germination and seedling vigor of Brassica napus. Seeds of Brassica napus were exposed to different concentrations of hair shampoos, i.e., 0 (control), 0.001, 0.01, 0.1, 1.0, and 10 %. The obtained results revealed that germination was not very sensitive to shampoo stress and was significantly inhibited only at the highest tested concentration (10 %) of shampoo except in the case of one shampoo where it was inhibited at concentration of 1 % or above. The other tested parameters of Brassica napus were comparatively more sensitive than germination to shampoo stress. However, at lower concentrations of shampoos, stimulatory effects were also observed in some cases. Although no exact data is available on shampoo concentration in wastewater used for irrigation, it is unlikely that shampoo concentration in irrigation water reach so high and pose adversity to plants.

  4. Proteome Dynamics and Physiological Responses to Short-Term Salt Stress in Brassica napus Leaves.

    PubMed

    Jia, Huan; Shao, Mingquan; He, Yongjun; Guan, Rongzhan; Chu, Pu; Jiang, Haidong

    2015-01-01

    Salt stress limits plant growth and crop productivity and is an increasing threat to agriculture worldwide. In this study, proteomic and physiological responses of Brassica napus leaves under salt stress were investigated. Seedlings under salt treatment showed growth inhibition and photosynthesis reduction. A comparative proteomic analysis of seedling leaves exposed to 200 mM NaCl for 24 h, 48 h and 72 h was conducted. Forty-four protein spots were differentially accumulated upon NaCl treatment and 42 of them were identified, including several novel salt-responsive proteins. To determine the functional roles of these proteins in salt adaptation, their dynamic changes in abundance were analyzed. The results suggested that the up-accumulated proteins, which were associated with protein metabolism, damage repair and defense response, might contribute to the alleviation of the deleterious effect of salt stress on chlorophyll biosynthesis, photosynthesis, energy synthesis and respiration in Brassica napus leaves. This study will lead to a better understanding of the molecular basis of salt stress adaptation in Brassica napus and provides a basis for genetic engineering of plants with improved salt tolerance in the future.

  5. Latent S alleles are widespread in cultivated self-compatible Brassica napus.

    PubMed

    Ekuere, U U; Parkin, I A P; Bowman, C; Marshall, D; Lydiate, D J

    2004-04-01

    The genetic control of self-incompatibility in Brassica napus was investigated using crosses between resynthesized lines of B. napus and cultivars of oilseed rape. These crosses introduced eight C-genome S alleles from Brassica oleracea (S16, S22, S23, S25, S29, S35, S60, and S63) and one A-genome S allele from Brassica rapa (SRM29) into winter oilseed rape. The inheritance of S alleles was monitored using genetic markers and S phenotypes were determined in the F1, F2, first backcross (B1), and testcross (T1) generations. Two different F1 hybrids were used to develop populations of doubled haploid lines that were subjected to genetic mapping and scored for S phenotype. These investigations identified a latent S allele in at least two oilseed rape cultivars and indicated that the S phenotype of these latent alleles was masked by a suppressor system common to oilseed rape. These latent S alleles may be widespread in oilseed rape varieties and are possibly associated with the highly conserved C-genome S locus of these crop types. Segregation for S phenotype in subpopulations uniform for S genotype suggests the existence of suppressor loci that influenced the expression of the S phenotype. These suppressor loci were not linked to the S loci and possessed suppressing alleles in oilseed rape and non-suppressing alleles in the diploid parents of resynthesized B. napus lines.

  6. Proteomic analysis of residual proteins in blades and petioles of fallen leaves of Brassica napus.

    PubMed

    Desclos-Théveniau, M; Coquet, L; Jouenne, T; Etienne, P

    2015-03-01

    Brassica napus L. is an important crop plant, characterised by high nitrogen (N) levels in fallen leaves, leading to a significant restitution of this element to the soil, with important consequences at the economic and environmental levels. It is now well established that the N in fallen leaves is due to weak N remobilisation that is especially related to incomplete degradation of foliar proteins during leaf senescence. Identification of residual proteins in a fallen leaf (i.e. incompletely degraded in the last step of the N remobilisation process) constitutes important information for improving nutrient use efficiency. Proteome analysis of the vascular system (petioles) and blades from fallen leaves of Brassica napus was performed, and the 30 most abundant residual proteins in each tissue were identified. Among them, several proteins involved in N recycling remain in the leaf after abscission. Moreover, this study reveals that some residual proteins are associated with energy metabolism, protection against oxidative stress, and more surprisingly, photosynthesis. Finally, comparison of blade and petiole proteomes show that, despite their different physiological roles in the non-senescing leaf, both organs redirect their metabolism in order to ensure catabolic reactions. Taken together, the results suggest that a better degradation of these leaf proteins during the senescence process could enable improvements in the N use efficiency of Brassica napus.

  7. High-throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus, Brassica rapa and Brassica oleracea.

    PubMed

    Qiao, Jiangwei; Cai, Mengxian; Yan, Guixin; Wang, Nian; Li, Feng; Chen, Binyun; Gao, Guizhen; Xu, Kun; Li, Jun; Wu, Xiaoming

    2016-01-01

    Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole-genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C-genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts.

  8. Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus.

    PubMed

    Somers, D J; Rakow, G; Prabhu, V K; Friesen, K R

    2001-12-01

    The development of yellow-seeded Brassica napus for improving the canola-meal quality characteristics of lower fibre content and higher protein content has been restricted because no yellow-seeded forms of B. napus exist, and their conventional development requires interspecific introgression of yellow seed coat colour genes from related species. A doubled-haploid (DH) population derived from the F1 generation of the cross 'Apollo' (black-seeded) x YN90-1016 (yellow-seeded) B. napus was analysed via bulked segregant analysis to identify molecular markers associated with the yellow-seed trait in B. napus for future implementation in marker-assisted breeding. A single major gene (pigment 1) flanked by eight RAPD markers was identified co-segregating with the yellow seed coat colour trait in the population. This gene explained over 72% of the phenotypic variation in seed coat colour. Further analysis of the yellow-seeded portion of this DH population revealed two additional genes favouring 'Apollo' alleles, explaining 11 and 8.5%, respectively, of the yellow seed coat colour variation. The data suggested that there is a dominant, epistatic interaction between the pigment I locus and the two additional genes. The potential of the markers to be implemented in plant breeding for the yellow-seed trait in B. napus is discussed.

  9. Sequence-level comparative analysis of the Brassica napus genome around two stearoyl-ACP desaturase loci.

    PubMed

    Cho, Kwangsoo; O'Neill, Carmel M; Kwon, Soo-Jin; Yang, Tae-Jin; Smooker, Andrew M; Fraser, Fiona; Bancroft, Ian

    2010-02-01

    We conducted a sequence-level comparative analyses, at the scale of complete bacterial artificial chromosome (BAC) clones, between the genome of the most economically important Brassica species, Brassica napus (oilseed rape), and those of Brassica rapa, the genome of which is currently being sequenced, and Arabidopsis thaliana. We constructed a new B. napus BAC library and identified and sequenced clones that contain homoeologous regions of the genome including stearoyl-ACP desaturase-encoding genes. We sequenced the orthologous region of the genome of B. rapa and conducted comparative analyses between the Brassica sequences and those of the orthologous region of the genome of A. thaliana. The proportion of genes conserved (approximately 56%) is lower than has been reported previously between A. thaliana and Brassica (approximately 66%). The gene models for sets of conserved genes were used to determine the extent of nucleotide conservation of coding regions. This was found to be 84.2 +/- 3.9% and 85.8 +/- 3.7% between the B. napus A and C genomes, respectively, and that of A. thaliana, which is consistent with previous results for other Brassica species, and 97.5 +/- 3.1% between the B. napus A genome and B. rapa, and 93.1 +/- 4.9% between the B. napus C genome and B. rapa. The divergence of the B. napus genes from the A genome and the B. rapa genes was greater than anticipated and indicates that the A genome ancestor of the B. napus cultivar studied was relatively distantly related to the cultivar of B. rapa selected for genome sequencing.

  10. A detailed survey of seed coat flavonoids in developing seeds of Brassica napus L.

    PubMed

    Auger, Bathilde; Marnet, Nathalie; Gautier, Véronique; Maia-Grondard, Alessandra; Leprince, Françoise; Renard, Michel; Guyot, Sylvain; Nesi, Nathalie; Routaboul, Jean-Marc

    2010-05-26

    Proanthocyanidins (PAs) are seed coat flavonoids that impair the digestibility of Brassica napus meal. Development of low-PA lines is associated with a high-quality meal and with increased contents in oil and proteins, but requires better knowledge of seed flavonoids. Flavonoids in Brassica mature seed are mostly insoluble so that very few qualitative and quantitative data are available yet. In the present study, the profiling of seed coat flavonoids was established in eight black-seeded B. napus genotypes, during seed development when soluble flavonoids were present and predominated over the insoluble forms. Thirteen different flavonoids including (-)-epicatechin, five procyanidins (PCs which are PAs composed of epicatechin oligomers only) and seven flavonols (quercetin-3-O-glucoside, quercetin-dihexoside, isorhamnetin-3-O-glucoside, isorhamnetin-hexoside-sulfate, isorhamnetin-dihexoside, isorhamnetin-sinapoyl-trihexoside and kaempferol-sinapoyl-trihexoside) were identified and quantified using liquid chromatography coupled to electrospray ionization-mass spectrometry (LC-ESI-MS(n)). These flavonol derivatives were characterized for the first time in the seed coat of B. napus, and isorhamnetin-hexoside-sulfate and isorhamnetin-sinapoyl-trihexoside were newly identified in Brassica spp. High amounts of PCs accumulated in the seed coat, with solvent-soluble polymers of (-)-epicatechin reaching up to 10% of the seed coat weight during seed maturation. In addition, variability for both PC and flavonol contents was observed within the panel of eight black-seeded genotypes. Our results provide new insights into breeding for low-PC B. napus genotypes.

  11. Functional Analysis of the Brassica napus L. Phytoene Synthase (PSY) Gene Family

    PubMed Central

    López-Emparán, Ada; Quezada-Martinez, Daniela; Zúñiga-Bustos, Matías; Cifuentes, Víctor; Iñiguez-Luy, Federico; Federico, María Laura

    2014-01-01

    Phytoene synthase (PSY) has been shown to catalyze the first committed and rate-limiting step of carotenogenesis in several crop species, including Brassica napus L. Due to its pivotal role, PSY has been a prime target for breeding and metabolic engineering the carotenoid content of seeds, tubers, fruits and flowers. In Arabidopsis thaliana, PSY is encoded by a single copy gene but small PSY gene families have been described in monocot and dicotyledonous species. We have recently shown that PSY genes have been retained in a triplicated state in the A- and C-Brassica genomes, with each paralogue mapping to syntenic locations in each of the three “Arabidopsis-like” subgenomes. Most importantly, we have shown that in B. napus all six members are expressed, exhibiting overlapping redundancy and signs of subfunctionalization among photosynthetic and non photosynthetic tissues. The question of whether this large PSY family actually encodes six functional enzymes remained to be answered. Therefore, the objectives of this study were to: (i) isolate, characterize and compare the complete protein coding sequences (CDS) of the six B. napus PSY genes; (ii) model their predicted tridimensional enzyme structures; (iii) test their phytoene synthase activity in a heterologous complementation system and (iv) evaluate their individual expression patterns during seed development. This study further confirmed that the six B. napus PSY genes encode proteins with high sequence identity, which have evolved under functional constraint. Structural modeling demonstrated that they share similar tridimensional protein structures with a putative PSY active site. Significantly, all six B. napus PSY enzymes were found to be functional. Taking into account the specific patterns of expression exhibited by these PSY genes during seed development and recent knowledge of PSY suborganellar localization, the selection of transgene candidates for metabolic engineering the carotenoid content of

  12. Functional analysis of the Brassica napus L. phytoene synthase (PSY) gene family.

    PubMed

    López-Emparán, Ada; Quezada-Martinez, Daniela; Zúñiga-Bustos, Matías; Cifuentes, Víctor; Iñiguez-Luy, Federico; Federico, María Laura

    2014-01-01

    Phytoene synthase (PSY) has been shown to catalyze the first committed and rate-limiting step of carotenogenesis in several crop species, including Brassica napus L. Due to its pivotal role, PSY has been a prime target for breeding and metabolic engineering the carotenoid content of seeds, tubers, fruits and flowers. In Arabidopsis thaliana, PSY is encoded by a single copy gene but small PSY gene families have been described in monocot and dicotyledonous species. We have recently shown that PSY genes have been retained in a triplicated state in the A- and C-Brassica genomes, with each paralogue mapping to syntenic locations in each of the three "Arabidopsis-like" subgenomes. Most importantly, we have shown that in B. napus all six members are expressed, exhibiting overlapping redundancy and signs of subfunctionalization among photosynthetic and non photosynthetic tissues. The question of whether this large PSY family actually encodes six functional enzymes remained to be answered. Therefore, the objectives of this study were to: (i) isolate, characterize and compare the complete protein coding sequences (CDS) of the six B. napus PSY genes; (ii) model their predicted tridimensional enzyme structures; (iii) test their phytoene synthase activity in a heterologous complementation system and (iv) evaluate their individual expression patterns during seed development. This study further confirmed that the six B. napus PSY genes encode proteins with high sequence identity, which have evolved under functional constraint. Structural modeling demonstrated that they share similar tridimensional protein structures with a putative PSY active site. Significantly, all six B. napus PSY enzymes were found to be functional. Taking into account the specific patterns of expression exhibited by these PSY genes during seed development and recent knowledge of PSY suborganellar localization, the selection of transgene candidates for metabolic engineering the carotenoid content of oilseeds

  13. SNP markers-based map construction and genome-wide linkage analysis in Brassica napus.

    PubMed

    Raman, Harsh; Dalton-Morgan, Jessica; Diffey, Simon; Raman, Rosy; Alamery, Salman; Edwards, David; Batley, Jacqueline

    2014-09-01

    An Illumina Infinium array comprising 5306 single nucleotide polymorphism (SNP) markers was used to genotype 175 individuals of a doubled haploid population derived from a cross between Skipton and Ag-Spectrum, two Australian cultivars of rapeseed (Brassica napus L.). A genetic linkage map based on 613 SNP and 228 non-SNP (DArT, SSR, SRAP and candidate gene markers) covering 2514.8 cM was constructed and further utilized to identify loci associated with flowering time and resistance to blackleg, a disease caused by the fungus Leptosphaeria maculans. Comparison between genetic map positions of SNP markers and the sequenced Brassica rapa (A) and Brassica oleracea (C) genome scaffolds showed several genomic rearrangements in the B. napus genome. A major locus controlling resistance to L. maculans was identified at both seedling and adult plant stages on chromosome A07. QTL analyses revealed that up to 40.2% of genetic variation for flowering time was accounted for by loci having quantitative effects. Comparative mapping showed Arabidopsis and Brassica flowering genes such as Phytochrome A/D, Flowering Locus C and agamous-Like MADS box gene AGL1 map within marker intervals associated with flowering time in a DH population from Skipton/Ag-Spectrum. Genomic regions associated with flowering time and resistance to L. maculans had several SNP markers mapped within 10 cM. Our results suggest that SNP markers will be suitable for various applications such as trait introgression, comparative mapping and high-resolution mapping of loci in B. napus.

  14. Diversity Array Technology Markers: Genetic Diversity Analyses and Linkage Map Construction in Rapeseed (Brassica napus L.)

    PubMed Central

    Raman, Harsh; Raman, Rosy; Nelson, Matthew N.; Aslam, M.N.; Rajasekaran, Ravikesavan; Wratten, Neil; Cowling, Wallace A.; Kilian, A.; Sharpe, Andrew G.; Schondelmaier, Joerg

    2012-01-01

    We developed Diversity Array Technology (DArT) markers for application in genetic studies of Brassica napus and other Brassica species with A or C genomes. Genomic representation from 107 diverse genotypes of B. napus L. var. oleifera (rapeseed, AACC genomes) and B. rapa (AA genome) was used to develop a DArT array comprising 11 520 clones generated using PstI/BanII and PstI/BstN1 complexity reduction methods. In total, 1547 polymorphic DArT markers of high technical quality were identified and used to assess molecular diversity among 89 accessions of B. napus, B. rapa, B. juncea, and B. carinata collected from different parts of the world. Hierarchical cluster and principal component analyses based on genetic distance matrices identified distinct populations clustering mainly according to their origin/pedigrees. DArT markers were also mapped in a new doubled haploid population comprising 131 lines from a cross between spring rapeseed lines ‘Lynx-037DH’ and ‘Monty-028DH’. Linkage groups were assigned on the basis of previously mapped simple sequence repeat (SSRs), intron polymorphism (IP), and gene-based markers. The map consisted of 437 DArT, 135 SSR, 6 IP, and 6 gene-based markers and spanned 2288 cM. Our results demonstrate that DArT markers are suitable for genetic diversity analysis and linkage map construction in rapeseed. PMID:22193366

  15. Targeted deep sequencing of flowering regulators in Brassica napus reveals extensive copy number variation

    PubMed Central

    Schiessl, Sarah; Huettel, Bruno; Kuehn, Diana; Reinhardt, Richard; Snowdon, Rod J.

    2017-01-01

    Gene copy number variation (CNV) is increasingly implicated in control of complex trait networks, particularly in polyploid plants like rapeseed (Brassica napus L.) with an evolutionary history of genome restructuring. Here we performed sequence capture to assay nucleotide variation and CNV in a panel of central flowering time regulatory genes across a species-wide diversity set of 280 B. napus accessions. The genes were chosen based on prior knowledge from Arabidopsis thaliana and related Brassica species. Target enrichment was performed using the Agilent SureSelect technology, followed by Illumina sequencing. A bait (probe) pool was developed based on results of a preliminary experiment with representatives from different B. napus morphotypes. A very high mean target coverage of ~670x allowed reliable calling of CNV, single nucleotide polymorphisms (SNPs) and insertion-deletion (InDel) polymorphisms. No accession exhibited no CNV, and at least one homolog of every gene we investigated showed CNV in some accessions. Some CNV appear more often in specific morphotypes, indicating a role in diversification. PMID:28291231

  16. Diversity array technology markers: genetic diversity analyses and linkage map construction in rapeseed (Brassica napus L.).

    PubMed

    Raman, Harsh; Raman, Rosy; Nelson, Matthew N; Aslam, M N; Rajasekaran, Ravikesavan; Wratten, Neil; Cowling, Wallace A; Kilian, A; Sharpe, Andrew G; Schondelmaier, Joerg

    2012-01-01

    We developed Diversity Array Technology (DArT) markers for application in genetic studies of Brassica napus and other Brassica species with A or C genomes. Genomic representation from 107 diverse genotypes of B. napus L. var. oleifera (rapeseed, AACC genomes) and B. rapa (AA genome) was used to develop a DArT array comprising 11 520 clones generated using PstI/BanII and PstI/BstN1 complexity reduction methods. In total, 1547 polymorphic DArT markers of high technical quality were identified and used to assess molecular diversity among 89 accessions of B. napus, B. rapa, B. juncea, and B. carinata collected from different parts of the world. Hierarchical cluster and principal component analyses based on genetic distance matrices identified distinct populations clustering mainly according to their origin/pedigrees. DArT markers were also mapped in a new doubled haploid population comprising 131 lines from a cross between spring rapeseed lines 'Lynx-037DH' and 'Monty-028DH'. Linkage groups were assigned on the basis of previously mapped simple sequence repeat (SSRs), intron polymorphism (IP), and gene-based markers. The map consisted of 437 DArT, 135 SSR, 6 IP, and 6 gene-based markers and spanned 2288 cM. Our results demonstrate that DArT markers are suitable for genetic diversity analysis and linkage map construction in rapeseed.

  17. An S receptor kinase gene in self-compatible Brassica napus has a 1-bp deletion.

    PubMed Central

    Goring, D R; Glavin, T L; Schafer, U; Rothstein, S J

    1993-01-01

    S locus glycoprotein (SLG) and S locus receptor kinase (SRK) cDNAs were isolated from an S allele present in a number of self-compatible Brassica napus lines. This A10 allele did not segregate with self-incompatibility in crosses involving other self-incompatible B. napus lines. The SLG-A10 cDNA was found to contain an intact open reading frame and was predicted to encode an SLG protein with sequence similarities to those previously associated with phenotypically strong self-incompatibility reactions. SLG-A10 transcripts were detected in the developing stigma at steady state levels even higher than those detected for SLG alleles linked with self-incompatibility. Analysis of the corresponding SRK-A10 cDNA showed that it was very similar to other S locus receptor kinase genes and was expressed predominantly in the stigma. However, a 1-bp deletion was detected in the SRK gene toward the 3' end of the SLG homology domain. This deletion would lead to premature termination of translation and the production of a truncated SRK protein. The A10 allele was determined to represent a B. oleracea S allele based on its segregation pattern with the B. oleracea S24 allele when both these alleles were present in the same B. napus background. These results suggest that a functional SRK gene is required for Brassica self-incompatibility. PMID:8518554

  18. Frequency-dependent fitness of hybrids between oilseed rape (Brassica napus) and weedy B. rapa (Brassicaceae).

    PubMed

    Hauser, Thure P; Damgaard, Christian; Jørgensen, Rikke B

    2003-04-01

    Fitness of interspecific hybrids is sometimes high relative to their parents, despite the conventional belief that they are mostly unfit. F(1) hybrids between oilseed rape (Brassica napus) and weedy B. rapa can be significantly more fit than their weedy parents under some conditions; however, under other conditions they are less fit. To understand the reasons, we measured the seed production of B. napus, B. rapa, and different generations of hybrid plants at three different densities and in mixtures of different frequencies (including pure stands). Brassica napus, B. rapa, and backcross plants (F(1) ♀ × B. rapa) produced many more seeds per plant in pure plots than in mixtures and more seeds in plots when each was present at high frequency. The opposite was true for F(1) plants that produced many more seeds than B. rapa in mixtures, but fewer in pure stands. Both vegetative and reproductive interactions may be responsible for these effects. Our results show that the fitness of both parents and hybrids is strongly frequency-dependent and that the likelihood of introgression of genes between the species thus may depend on the numbers and densities of parents and their various hybrid offspring in the population.

  19. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress.

    PubMed

    Liu, Chunqing; Zhang, Xuekun; Zhang, Ka; An, Hong; Hu, Kaining; Wen, Jing; Shen, Jinxiong; Ma, Chaozhi; Yi, Bin; Tu, Jinxing; Fu, Tingdong

    2015-08-11

    Drought stress is one of the major abiotic factors affecting Brassica napus (B. napus) productivity. In order to identify genes of potential importance to drought stress and obtain a deeper understanding of the molecular mechanisms regarding the responses of B. napus to dehydration stress, we performed large-scale transcriptome sequencing of B. napus plants under dehydration stress using the Illumina sequencing technology. In this work, a relatively drought tolerant B. napus line, Q2, identified in our previous study, was used. Four cDNA libraries constructed from mRNAs of control and dehydration-treated root and leaf were sequenced by Illumina technology. A total of 6018 and 5377 differentially expressed genes (DEGs) were identified in root and leaf. In addition, 1745 genes exhibited a coordinated expression profile between the two tissues under drought stress, 1289 (approximately 74%) of which showed an inverse relationship, demonstrating different regulation patterns between the root and leaf. The gene ontology (GO) enrichment test indicated that up-regulated genes in root were mostly involved in "stimulus" "stress" biological process, and activated genes in leaf mainly functioned in "cell" "cell part" components. Furthermore, a comparative network related to plant hormone signal transduction and AREB/ABF, AP2/EREBP, NAC, WRKY and MYC/MYB transcription factors (TFs) provided a view of different stress tolerance mechanisms between root and leaf. Some of the DEGs identified may be candidates for future research aimed at detecting drought-responsive genes and will be useful for understanding the molecular mechanisms of drought tolerance in root and leaf of B. napus.

  20. Hybridisation and introgression between Brassica napus and B. rapa in the Netherlands.

    PubMed

    Luijten, S H; Schidlo, N S; Meirmans, P G; de Jong, T J

    2015-01-01

    We used flow cytometry, chromosome counting and AFLP markers to investigate gene flow from the crop plant oilseed rape, Brassica napus (AACC) to wild B. rapa (AA) in the Netherlands. From 89 B. napus source populations investigated, all near cropping fields or at transhipment sites, only 19 contained a B. rapa population within a 2.5-km radius. During our survey we found only three populations with F1 hybrids (AAC), as recognized by their nine extra chromosomes and by flow cytometry. These hybrids were all collected in mixed populations where the two species grew in close proximity. Populations with F1 hybrids were not close to crops, but instead were located on road verges with highly disturbed soils, in which both species were probably recruited from the soil seed bank. Many plants in the F2, BC1 or higher backcrosses are expected to carry one to eight C chromosomes. However, these plants were not observed among the hybrids. We further investigated introgression with molecular markers (AFLP) and compared sympatric B. rapa populations (near populations of B. napus) with control populations of B. rapa (no B. napus within at least 7 km). We found no difference between sympatric and control populations in the number of C markers in B. rapa, nor did we find that these sympatric populations closely resembled B. napus. Our data show that hybrids occur but also suggest no recent introgression of alleles from the crop plant B. napus into wild B. rapa in the Dutch populations studied.

  1. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress

    PubMed Central

    Liu, Chunqing; Zhang, Xuekun; Zhang, Ka; An, Hong; Hu, Kaining; Wen, Jing; Shen, Jinxiong; Ma, Chaozhi; Yi, Bin; Tu, Jinxing; Fu, Tingdong

    2015-01-01

    Drought stress is one of the major abiotic factors affecting Brassica napus (B. napus) productivity. In order to identify genes of potential importance to drought stress and obtain a deeper understanding of the molecular mechanisms regarding the responses of B. napus to dehydration stress, we performed large-scale transcriptome sequencing of B. napus plants under dehydration stress using the Illumina sequencing technology. In this work, a relatively drought tolerant B. napus line, Q2, identified in our previous study, was used. Four cDNA libraries constructed from mRNAs of control and dehydration-treated root and leaf were sequenced by Illumina technology. A total of 6018 and 5377 differentially expressed genes (DEGs) were identified in root and leaf. In addition, 1745 genes exhibited a coordinated expression profile between the two tissues under drought stress, 1289 (approximately 74%) of which showed an inverse relationship, demonstrating different regulation patterns between the root and leaf. The gene ontology (GO) enrichment test indicated that up-regulated genes in root were mostly involved in “stimulus” “stress” biological process, and activated genes in leaf mainly functioned in “cell” “cell part” components. Furthermore, a comparative network related to plant hormone signal transduction and AREB/ABF, AP2/EREBP, NAC, WRKY and MYC/MYB transcription factors (TFs) provided a view of different stress tolerance mechanisms between root and leaf. Some of the DEGs identified may be candidates for future research aimed at detecting drought-responsive genes and will be useful for understanding the molecular mechanisms of drought tolerance in root and leaf of B. napus. PMID:26270661

  2. Possibilities of direct introgression from Brassica napus to B. juncea and indirect introgression from B. napus to related Brassicaceae through B. juncea

    PubMed Central

    Tsuda, Mai; Ohsawa, Ryo; Tabei, Yutaka

    2014-01-01

    The impact of genetically modified canola (Brassica napus) on biodiversity has been examined since its initial stage of commercialization. Various research groups have extensively investigated crossability and introgression among species of Brassicaceae. B. rapa and B. juncea are ranked first and second as the recipients of cross-pollination and introgression from B. napus, respectively. Crossability between B. napus and B. rapa has been examined, specifically in terms of introgression from B. napus to B. rapa, which is mainly considered a weed in America and European countries. On the other hand, knowledge on introgression from B. napus to B. juncea is insufficient, although B. juncea is recognized as the main Brassicaceae weed species in Asia. It is therefore essential to gather information regarding the direct introgression of B. napus into B. juncea and indirect introgression of B. napus into other species of Brassicaceae through B. juncea to evaluate the influence of genetically modified canola on biodiversity. We review information on crossability and introgression between B. juncea and other related Brassicaseae in this report. PMID:24987292

  3. A large-scale introgression of genomic components of Brassica rapa into B. napus by the bridge of hexaploid derived from hybridization between B. napus and B. oleracea.

    PubMed

    Li, Qinfei; Mei, Jiaqin; Zhang, Yongjing; Li, Jiana; Ge, Xianhong; Li, Zaiyun; Qian, Wei

    2013-08-01

    Brassica rapa (AA) has been used to widen the genetic basis of B. napus (AACC), which is a new but important oilseed crop worldwide. In the present study, we have proposed a strategy to develop new type B. napus carrying genomic components of B. rapa by crossing B. rapa with hexaploid (AACCCC) derived from B. napus and B. oleracea (CC). The hexaploid exhibited large flowers and high frequency of normal chromosome segregation, resulting in good seed set (average of 4.48 and 12.53 seeds per pod by self and open pollination, respectively) and high pollen fertility (average of 87.05 %). It was easy to develop new type B. napus by crossing the hexaploid with 142 lines of B. rapa from three ecotype groups, with the average crossability of 9.24 seeds per pod. The genetic variation of new type B. napus was diverse from that of current B. napus, especially in the A subgenome, revealed by genome-specific simple sequence repeat markers. Our data suggest that the strategy proposed here is a large-scale and highly efficient method to introgress genomic components of B. rapa into B. napus.

  4. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus.

    PubMed

    Wu, Jian; Zhao, Qing; Yang, Qingyong; Liu, Han; Li, Qingyuan; Yi, Xinqi; Cheng, Yan; Guo, Liang; Fan, Chuchuan; Zhou, Yongming

    2016-01-08

    Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most devastating diseases in many important crops including Brassica napus worldwide. Quantitative resistance is the only source for genetic improvement of Sclerotinia-resistance in B. napus, but the molecular basis for such a resistance is largely unknown. Here, we performed dynamic transcriptomic analyses to understand the differential defense response to S. sclerotiorum in a resistant line (R-line) and a susceptible line (S-line) of B. napus at 24, 48 and 96 h post-inoculation. Both the numbers of and fold changes in differentially expressed genes in the R-line were larger than those in the S-line. We identified 9001 relative differentially expressed genes in the R-line compared with the S-line. The differences between susceptibility and resistance were associated with the magnitude of expression changes in a set of genes involved in pathogen recognition, MAPK signaling cascade, WRKY transcription regulation, jasmonic acid/ethylene signaling pathways, and biosynthesis of defense-related protein and indolic glucosinolate. The results were supported by quantitation of defense-related enzyme activity and glucosinolate contents. Our results provide insights into the complex molecular mechanism of the defense response to S. sclerotiorum in B. napus and for development of effective strategies in Sclerotinia-resistance breeding.

  5. Identification of Candidate Genes for Seed Glucosinolate Content Using Association Mapping in Brassica napus L.

    PubMed

    Qu, Cun-Min; Li, Shi-Meng; Duan, Xiu-Jian; Fan, Jin-Hua; Jia, Le-Dong; Zhao, Hui-Yan; Lu, Kun; Li, Jia-Na; Xu, Xin-Fu; Wang, Rui

    2015-11-18

    Rapeseed contains glucosinolates, a toxic group of sulfur-containing glucosides, which play critical roles in defense against herbivores and microbes. However, the presence of glucosinolates in rapeseed reduces the value of the meal as feed for livestock. We performed association mapping of seed glucosinolate (GS) content using the 60K Brassica Infinium single nucleotide polymorphism (SNP) array in 520 oilseed rape accessions. A total of 11 peak SNPs significantly associated with GS content were detected in growing seasons of 2013 and 2014 and were located on B. napus chromosomes A08, A09, C03, and C09, respectively. Two associated regions of GS content covered by these markers were further verified, and three B. napus homologous genes involved in the biosynthesis and accumulation of GS were identified. These genes were multigene family members and were distributed on different chromosomes. Moreover, two genes (BnGRT2 and BnMYB28) associated with GS content were validated by the qRT-PCR analysis of their expression profiles. The further identification and functionalization of these genes will provide useful insight into the mechanism underlying GS biosynthesis and allocation in B. napus, and the associated SNPs markers could be helpful for molecular maker-assisted breeding for low seed GS in B. napus.

  6. Targeted modulation of sinapine biosynthesis pathway for seed quality improvement in Brassica napus.

    PubMed

    Bhinu, V-S; Schäfer, Ulrike A; Li, Rong; Huang, Jun; Hannoufa, Abdelali

    2009-02-01

    Arabidopsis thaliana and other members of the Brassicaceae accumulate the hydroxycinnamic acid esters sinapoylmalate in leaves and sinapoylcholine in seeds. Our recent understanding of the phenylpropanoid pathway although complex has enabled us to perturb the sinapine biosynthesis pathway in plants. Sinapine (sinapoylcholine) is the most abundant antinutritional phenolic compound in seeds of cruciferous species and therefore is a target for elimination in canola (Brassica napus) meal. We analysed A. thaliana mutants with specific blocks in the phenylpropanoid pathway and identified mutant lines with significantly altered sinapine content. Knowledge gained from A. thaliana was extended to B. napus and the corresponding phenylpropanoid pathway genes were manipulated to disrupt sinapine biosynthesis in B. napus. Based on our understanding of the A. thaliana genetics, we have successfully developed transgenic B. napus lines with ferulic acid 5-hydroxylase (FAH) and sinapoylglucose:choline sinapoyltransferase (SCT)-antisense. These lines with concomitant downregulation of FAH and SCT showed up to 90% reduction in sinapine. In addition to reduced sinapine content, we detected higher levels of free choline accumulation in the seeds. These results indicate that it is possible to develop plants with low sinapine and higher choline by manipulating specific steps in the biosynthetic pathway. These improvements are important to add value to canola meal for livestock feed.

  7. Proteomic Dissection of Seed Germination and Seedling Establishment in Brassica napus.

    PubMed

    Gu, Jianwei; Chao, Hongbo; Gan, Lu; Guo, Liangxing; Zhang, Kai; Li, Yonghong; Wang, Hao; Raboanatahiry, Nadia; Li, Maoteng

    2016-01-01

    The success of seed germination and establishment of a normal seedling are key determinants of plant species propagation. At present, only a few studies have focused on the genetic control of seed germination by using a proteomic approach in Brassica napus. In the present study, the protein expression pattern of seed germination was investigated using differential fluorescence two-dimensional gel electrophoresis in B. napus. One hundred and thirteen differentially expressed proteins (DEPs) that were mainly involved in storage (23.4%), energy metabolism (18.9%), protein metabolism (16.2%), defense/disease (12.6%), seed maturation (11.7%), carbohydrate metabolism (4.5%), lipid metabolism (4.5%), amino acids metabolism (3.6%), cell growth/division (3.6%), and some unclear functions (2.7%) were observed by proteomic analysis. Seventeen genes corresponding to 11 DEPs were identified within or near the associated linkage disequilibrium regions related to seed germination and vigor quantitative traits reported in B. napus in previous studies. The expression pattern of proteins showed that heterotrophic metabolism could be activated in the process of seed germination and that the onset of defense mechanisms might start during seed germination. These findings will help generate a more in-depth understanding of the mobilization of seed storage reserves and regulation mechanisms of the germination process in B. napus.

  8. Proteomic Dissection of Seed Germination and Seedling Establishment in Brassica napus

    PubMed Central

    Gu, Jianwei; Chao, Hongbo; Gan, Lu; Guo, Liangxing; Zhang, Kai; Li, Yonghong; Wang, Hao; Raboanatahiry, Nadia; Li, Maoteng

    2016-01-01

    The success of seed germination and establishment of a normal seedling are key determinants of plant species propagation. At present, only a few studies have focused on the genetic control of seed germination by using a proteomic approach in Brassica napus. In the present study, the protein expression pattern of seed germination was investigated using differential fluorescence two-dimensional gel electrophoresis in B. napus. One hundred and thirteen differentially expressed proteins (DEPs) that were mainly involved in storage (23.4%), energy metabolism (18.9%), protein metabolism (16.2%), defense/disease (12.6%), seed maturation (11.7%), carbohydrate metabolism (4.5%), lipid metabolism (4.5%), amino acids metabolism (3.6%), cell growth/division (3.6%), and some unclear functions (2.7%) were observed by proteomic analysis. Seventeen genes corresponding to 11 DEPs were identified within or near the associated linkage disequilibrium regions related to seed germination and vigor quantitative traits reported in B. napus in previous studies. The expression pattern of proteins showed that heterotrophic metabolism could be activated in the process of seed germination and that the onset of defense mechanisms might start during seed germination. These findings will help generate a more in-depth understanding of the mobilization of seed storage reserves and regulation mechanisms of the germination process in B. napus. PMID:27822216

  9. Identification of Candidate Genes for Seed Glucosinolate Content Using Association Mapping in Brassica napus L.

    PubMed Central

    Qu, Cun-Min; Li, Shi-Meng; Duan, Xiu-Jian; Fan, Jin-Hua; Jia, Le-Dong; Zhao, Hui-Yan; Lu, Kun; Li, Jia-Na; Xu, Xin-Fu; Wang, Rui

    2015-01-01

    Rapeseed contains glucosinolates, a toxic group of sulfur-containing glucosides, which play critical roles in defense against herbivores and microbes. However, the presence of glucosinolates in rapeseed reduces the value of the meal as feed for livestock. We performed association mapping of seed glucosinolate (GS) content using the 60K Brassica Infinium single nucleotide polymorphism (SNP) array in 520 oilseed rape accessions. A total of 11 peak SNPs significantly associated with GS content were detected in growing seasons of 2013 and 2014 and were located on B. napus chromosomes A08, A09, C03, and C09, respectively. Two associated regions of GS content covered by these markers were further verified, and three B. napus homologous genes involved in the biosynthesis and accumulation of GS were identified. These genes were multigene family members and were distributed on different chromosomes. Moreover, two genes (BnGRT2 and BnMYB28) associated with GS content were validated by the qRT-PCR analysis of their expression profiles. The further identification and functionalization of these genes will provide useful insight into the mechanism underlying GS biosynthesis and allocation in B. napus, and the associated SNPs markers could be helpful for molecular maker-assisted breeding for low seed GS in B. napus. PMID:26593950

  10. Detection, introgression and localization of genes conferring specific resistance to Leptosphaeria maculans from Brassica rapa into B. napus.

    PubMed

    Leflon, M; Brun, H; Eber, F; Delourme, R; Lucas, M O; Vallée, P; Ermel, M; Balesdent, M H; Chèvre, A M

    2007-11-01

    Blackleg (stem canker) caused by the fungus Leptosphaeria maculans is one of the most damaging diseases of oilseed rape (Brassica napus). Crop relatives represent a valuable source of "new" resistance genes that could be used to diversify cultivar resistance. B. rapa, one of the progenitors of B. napus, is a potential source of new resistance genes. However, most of the accessions are heterozygous so it is impossible to directly detect the plant genes conferring specific resistance due to the complex patterns of avirulence genes in L. maculans isolates. We developed a strategy to simultaneously characterize and introgress resistance genes from B. rapa, by homologous recombination, into B. napus. One B. rapa plant resistant to one L. maculans isolate was used to produce B. rapa backcross progeny and a resynthesized B. napus plant from which a population of doubled haploid lines was derived after crossing with natural B. napus. We then used molecular analyses and resistance tests on these populations to identify and map the resistance genes and to characterize their introgression from B. rapa into B. napus. Three specific genes conferring resistance to L. maculans (Rlm1, Rlm2 and Rlm7) were identified in B. rapa. Comparisons of genetic maps showed that two of these genes were located on the R7 linkage group, in a region homologous to the region on linkage group N7 in B. napus, where these genes have been reported previously. The results of our study offer new perspectives for gene introgression and cloning in Brassicas.

  11. Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus).

    PubMed

    Cojocaru, Paula; Gusiatin, Zygmunt Mariusz; Cretescu, Igor

    2016-06-01

    This paper analyses the capacity of the rape (Brassica napus) to extract Cd and Zn from the soil and the effect of these metals on the morphometric parameters of the plant (length, weight, surface area, fractal dimension of leaves). Rape plants were mostly affected by the combined toxicity of the Cd and Zn mixture that caused a significant reduction in the rate of seed germination, the plant biomass quantity and the fractal dimension. In the case of Cd soil pollution, the bioaccumulation factor (BAF), bioaccumulation coefficient (BAC) as well as the heavy metal root-to-stalk translocation factor (TF) were determined. The results showed that B. napus had a great potential as a cadmium hyperaccumulator but not as an accumulator of Zn or Cd + Zn mixture. The efficiency of phytoextraction rape was 0.8-1.22 % for a soil heavily polluted with cadmium.

  12. Glyphosate-drift but not herbivory alters the rate of transgene flow from single and stacked trait transgenic canola (Brassica napus) to nontransgenic B. napus and B. rapa.

    PubMed

    Londo, Jason P; Bollman, Michael A; Sagers, Cynthia L; Lee, E Henry; Watrud, Lidia S

    2011-08-01

    • Transgenic plants can offer agricultural benefits, but the escape of transgenes is an environmental concern. In this study we tested the hypothesis that glyphosate drift and herbivory selective pressures can change the rate of transgene flow between the crop Brassica napus (canola), and weedy species and contribute to the potential for increased transgene escape risk and persistence outside of cultivation. • We constructed plant communities containing single transgenic B. napus genotypes expressing glyphosate herbicide resistance (CP4 EPSPS), lepidopteran insect resistance (Cry1Ac), or both traits ('stacked'), plus nontransgenic B. napus, Brassica rapa and Brassica nigra. Two different selective pressures, a sublethal glyphosate dose and lepidopteran herbivores (Plutella xylostella), were applied and rates of transgene flow and transgenic seed production were measured. • Selective treatments differed in the degree in which they affected gene flow and production of transgenic hybrid seed. Most notably, glyphosate-drift increased the incidence of transgenic seeds on nontransgenic B. napus by altering flowering phenology and reproductive function. • The findings of this study indicate that transgenic traits may be transmitted to wild populations and may increase in frequency in weedy populations through the direct and indirect effects of selection pressures on gene flow.

  13. Bioremediation of pesticide wastes in soil using two plant species, Kochia Scoparia and Brassica Napus

    SciTech Connect

    Kruger, E.L.; Anderson, T.A.; Coats, J.R.

    1995-12-31

    Radiotracer studies were conducted to determine the fate of atrazine and metolachlor, applied as a mixture, in soils taken from pesticide-contaminated sites. Samples taken from nonvegetated areas and from the rhizosphere of Kochia scoparia were treated with {sup 14}C-atrazine and unlabeled metolachlor (50 {mu}g/g each) and incubated for 30, 60 or 135 d. A mass balance of the {sup 14}C applied revealed significant differences between the two soil types in soil bound residues, {sup 14}CO{sub 2}, and the extractable organic fraction (p<0.05). After 135-d incubation, 28% of the applied {sup 14}C was mineralized in Kochia rhizosphere soil, compared to 4% in soil taken from a nonvegetated area. A greater amount of {sup 14}C was extractable from the nonvegetated soil compared to the rhizosphere soil (64% and 22%, respectively). The half-life of atrazine based on extractable {sup 14}C-atrazine was 193 d in nonvegetated soil and 50 d in Kochia rhizosphere soil. Additional subsamples of nonvegetated soils treated with a mixture of {sup 14}C-atrazine and metolachlor were allowed to age for 135 d, and then were either planted with Brassica napus, Kochia scoparia, or left unvegetated. Incubations were carried out in enclosed chambers under controlled conditions. After 30 additional days, a subset of samples was extracted and analyzed using thin-layer chromatography, soil and plant combustion, and liquid scintillation spectroscopy. The percent of applied {sup 14}C-atrazine remaining as atrazine in soil which was nonvegetated, or planted with Brassica napus or Kochia scoparia was 9.3, 6.5, and 4.2%, respectively. Combustion of plants revealed that 11% of the applied radioactivity was taken up in Kochia scoparia, while less than 1% was taken up in Brassica napus plants. The potential for vegetation to aid in bioremediating pesticide wastes in soil is promising.

  14. Physical localization and genetic mapping of the fertility restoration gene Rfo in canola (Brassica napus L.).

    PubMed

    Feng, Jiuhuan; Primomo, Valerio; Li, Zenglu; Zhang, Yongping; Jan, Chao-Chien; Tulsieram, Lomas; Xu, Steven S

    2009-04-01

    The Ogu cytoplasm for male sterility and its fertility restorer gene Rfo in canola (Brassica napus L.) were originally introgressed from radish (Raphanus sativus L.) and have been widely used for canola hybrid production and breeding. The objective of this study was to determine the physical location of the Rfo locus in the canola genome using fluorescence in situ hybridization and genetic mapping. For physical localization of the Rfo gene, two bacterial artificial chromosome (BAC) clones, G62 and B420, which were closely linked to the Rfo gene, were used as probes to hybridize with the somatic metaphase chromosomes of a canola hybrid variety, PHI-46 (46H02), containing the Rfo fragment. The results showed that both clones were physically located at the end of one large metacentric chromosome. By simultaneous use of two BAC clones and 45S rDNA repeated sequences as the probes, we demonstrated that the large metacentric chromosome probed with the two BAC clones did not carry 45S rDNA repeated sequences. The chromosome was 3.65 +/- 0.74 microm in average length (20 cells) and ranked second in size among the chromosomes without 45S rDNAs. The centromere index of the chromosome (20 cells) was calculated as 43.74 +/- 4.19. A comparison with previously reported putative karyotypes of B. napus (AACC) and its diploid ancestors Brassica rapa L. (AA) and Brassica oleracea L. (CC) suggests that the chromosome carrying the Rfo fragment might belong to one of three large metacentric chromosomes of the C genome. Genetic mapping has confirmed the localization of the Rfo fragment to the distal region of linkage group N19, which corresponds to the C genome in B. napus. This study has provided the evidence of the location of the Rfo gene on canola chromosomes and established a basic framework for further physical mapping and manipulation of the gene.

  15. Ultrastructural changes in shoot apical meristem of canola (Brassica napus cv. Symbol) treated with sodium chloride.

    PubMed

    Mahmoodzadeh, Homa

    2008-04-15

    In the present research, structure and ultrastructure of shoot apical meristem of canola (Brassica napus cv. Symbol) under salinity conditions were investigated. The experiments were conducted in five groups (0, 3, 6, 9, 12 dS m(-1)) under greenhouse conditions. Sampling of apical meristem and TEM tissue preparation procedure were carried out. Semithin and ultrathin sections were prepared and viewed in light and electron microscopy, respectively. The results included reduction of meristem size, disorders in meristem structure. Also formation of autophagic vacuoles was observed that is probably one of the plant responses to salt stress for more water storage in these vacuoles and decreasing of cell water requirements.

  16. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene

    SciTech Connect

    Grison, R.; Grezes-Besset, B.; Lucante, N.

    1996-05-01

    Constitutive overexpression of a protein involved in plant defense mechanisms to disease is one of the strategies proposed to increase plant tolerance to fungal pathogens. A hybrid endochitinase gene under a constitutive promoter was introduced by Agrobacterium-mediated transformation into a winter-type oilseed rape (Brassica napus var. oleifera) inbred line. Progeny from transformed plants was challenged using three different fungal pathogens (Cylindrosporium concentricum, Phoma lingam, Sclerotinia sclerotiorum) in field trials at two different geographical locations. These plants exhibited an increased tolerance to disease as compared with the nontransgenic parental plants. 31 refs., 1 fig., 2 tabs.

  17. RFLP and AFLP analysis of inter- and intraspecific variation of Brassica rapa and B. napus shows that B. rapa is an important genetic resource for B. napus improvement.

    PubMed

    Liu, Ren-Hu; Meng, Jin-Ling

    2006-09-01

    Fingerprinting of 29 accessions of oilseed rape, including seven accessions of Brassica napus, and 22 accessions of B. rapa (B. campestris) from Europe, North America, and China was analyzed using RFLP and AFLP markers. In total, 1,477 polymorphic RFLP bands and 183 polymorphic AFLP bands from 166 enzyme-probe combinations and two pairs of AFLP primers, respectively, were scored for the 29 accessions. On average, RFLP analysis showed that the Arabidopsis EST probe detected more polymorphic bands in Brassica than the random genomic probe performed. More polymorphic RFLP markers were detected with the digestion of EcoR I or BamH I than HindIII. According to the number of bands amplified from each accession, the copy numbers of each gene in the genomes of B. rapa and B. napus were estimated. The average copy numbers in B. rapa of China, B. rapa of Europe, and B. napus, were 3.2, 3.1, and 2.9, respectively. Genetic distance based on the AFLP data was well correlated with that based on the RFLP data (r = 0.72, P<0.001), but 0.39 smaller on average. Genetic diversity analysis showed that Chinese B. rapa was more polymorphic than Chinese B. napus and European materials. Some European B. napus accessions were clustered into European B. rapa, which were distinctly different from Chinese B. napus. The larger variations of Chinese accessions of B. rapa suggest that they are valuable in oilseed rape breeding. Novel strategies to use intersubgenomic heterosis between genome of B. rapa (A(r)A(r)) and genome of B. napus (A(n)A(n)C(n)C(n)) were elucidated.

  18. Type 1 diacylglycerol acyltransferases of Brassica napus preferentially incorporate oleic acid into triacylglycerol

    PubMed Central

    Aznar-Moreno, Jose; Denolf, Peter; Van Audenhove, Katrien; De Bodt, Stefanie; Engelen, Steven; Fahy, Deirdre; Wallis, James G.; Browse, John

    2015-01-01

    DGAT1 enzymes (acyl-CoA:diacylglycerol acyltransferase 1, EC 2.3.1.20) catalyse the formation of triacylglycerols (TAGs), the most abundant lipids in vegetable oils. Thorough understanding of the enzymology of oil accumulation is critical to the goal of modifying oilseeds for improved vegetable oil production. Four isoforms of BnDGAT1, the final and rate-limiting step in triacylglycerol synthesis, were characterized from Brassica napus, one of the world’s most important oilseed crops. Transcriptional profiling of developing B. napus seeds indicated two genes, BnDGAT1-1 and BnDGAT1-2, with high expression and two, BnDGAT1-3 and BnDGAT1-4, with low expression. The activities of each BnDGAT1 isozyme were characterized following expression in a strain of yeast deficient in TAG synthesis. TAG from B. napus seeds contain only 10% palmitic acid (16:0) at the sn-3 position, so it was surprising that all four BnDGAT1 isozymes exhibited strong (4- to 7-fold) specificity for 16:0 over oleic acid (18:1) as the acyl-CoA substrate. However, the ratio of 18:1-CoA to 16:0-CoA in B. napus seeds during the peak period of TAG synthesis is 3:1. When substrate selectivity assays were conducted with 18:1-CoA and 16:0-CoA in a 3:1 ratio, the four isozymes incorporated 18:1 in amounts 2- to 5-fold higher than 16:0. This strong sensitivity of the BnDGAT1 isozymes to the relative concentrations of acyl-CoA substrates substantially explains the observed fatty acid composition of B. napus seed oil. Understanding these enzymes that are critical for triacylglycerol synthesis will facilitate genetic and biotechnological manipulations to improve this oilseed crop. PMID:26195728

  19. BnNAC485 is involved in abiotic stress responses and flowering time in Brassica napus.

    PubMed

    Ying, Lu; Chen, Haiying; Cai, Weiming

    2014-06-01

    NAC domain proteins are plant-specific transcription factors that play important roles in plant growth and development. In this present study, we isolated BnNAC485 from Brassica napus L. (cv. HuYou15) and found that it showed high homology (84% at the amino acid level) with a NAC protein called AtRD26/ANAC072. BnNAC485 was specifically expressed in cotyledons and leaves of young seedlings, and expression was induced by abiotic stress and abscisic acid (ABA) treatment. The BnNAC485 protein localized to the nucleus. Over-expression of BnNAC485 enhanced tolerance to abiotic stress compared with wild-type plants in both B. napus and Arabidopsis thaliana. Furthermore, under exogenous ABA stress, BnNAC485 over-expression lines showed hypersensitivity to this treatment compared with wild-type B. napus and A. thaliana plants. Moreover, exogenous ABA treatment enhanced stomatal closing in B. napus plants over-expressing BnNAC485. Real-time RT-PCR assays showed that some abiotic- or ABA-responsive genes were up-regulated in A. thaliana plants over-expressing BnNAC485. Additionally, the transgenic lines flowered earlier than the wild-type B. napus and A. thaliana plants and the expression patterns of certain circadian clock genes were found to have changed. These results suggest that BnNAC485 acts in response to abiotic stress in plants via an ABA-mediated pathway and this gene can also alter plant flowering time.

  20. Type 1 diacylglycerol acyltransferases of Brassica napus preferentially incorporate oleic acid into triacylglycerol.

    PubMed

    Aznar-Moreno, Jose; Denolf, Peter; Van Audenhove, Katrien; De Bodt, Stefanie; Engelen, Steven; Fahy, Deirdre; Wallis, James G; Browse, John

    2015-10-01

    DGAT1 enzymes (acyl-CoA:diacylglycerol acyltransferase 1, EC 2.3.1.20) catalyse the formation of triacylglycerols (TAGs), the most abundant lipids in vegetable oils. Thorough understanding of the enzymology of oil accumulation is critical to the goal of modifying oilseeds for improved vegetable oil production. Four isoforms of BnDGAT1, the final and rate-limiting step in triacylglycerol synthesis, were characterized from Brassica napus, one of the world's most important oilseed crops. Transcriptional profiling of developing B. napus seeds indicated two genes, BnDGAT1-1 and BnDGAT1-2, with high expression and two, BnDGAT1-3 and BnDGAT1-4, with low expression. The activities of each BnDGAT1 isozyme were characterized following expression in a strain of yeast deficient in TAG synthesis. TAG from B. napus seeds contain only 10% palmitic acid (16:0) at the sn-3 position, so it was surprising that all four BnDGAT1 isozymes exhibited strong (4- to 7-fold) specificity for 16:0 over oleic acid (18:1) as the acyl-CoA substrate. However, the ratio of 18:1-CoA to 16:0-CoA in B. napus seeds during the peak period of TAG synthesis is 3:1. When substrate selectivity assays were conducted with 18:1-CoA and 16:0-CoA in a 3:1 ratio, the four isozymes incorporated 18:1 in amounts 2- to 5-fold higher than 16:0. This strong sensitivity of the BnDGAT1 isozymes to the relative concentrations of acyl-CoA substrates substantially explains the observed fatty acid composition of B. napus seed oil. Understanding these enzymes that are critical for triacylglycerol synthesis will facilitate genetic and biotechnological manipulations to improve this oilseed crop.

  1. [Gene flow and its ecological risks of transgenic oilseed rape ( Brassica napus)].

    PubMed

    Tang, Guixiang; Song, Wenjian; Zhou, Weijun

    2005-12-01

    Transgenic oilseed rape Brassica napus, one of the first genetically modified crops, has now been released to commercial use in Canada and Australia. As a cross-pollinating crop, its natural crossing rate is 30%, and it is liable to cross with other Brassica species. The ecological risk of transgenic oilseed rape has been concerned by the scientists all over the world. There are two ways for the pollens flow of transgenic oilseed rape, one takes place between transgenic oilseed rape and other related wild species, and the other occurs between transgenic and nontransgenic oilseed rape. The gene may flow to other related wild species, but it is unlikely to get hybrids in field. Because the gene can really flow to the conventional oilseed rape, it is necessary to have a sufficient isolation distance in cultivating transgenic oilseed rape.

  2. Glyphostate-drift but not herbivory alters the rate of transgene flow from single and stacked trait transgenic canola (Brassica napus L.) to non-transgenic B. napus and B. rapa

    EPA Science Inventory

    While transgenic plants can offer agricultural benefits, the escape of transgenes out of crop fields is a major environmental concern. Escape of transgenic herbicide resistance has occurred between transgenic Brassica napus (canola) and weedy species in numerous locations. In t...

  3. Identification and characterization of candidate Rlm4 blackleg resistance genes in Brassica napus using next-generation sequencing.

    PubMed

    Tollenaere, Reece; Hayward, Alice; Dalton-Morgan, Jessica; Campbell, Emma; Lee, Joanne R M; Lorenc, Michal T; Manoli, Sahana; Stiller, Jiri; Raman, Rosy; Raman, Harsh; Edwards, David; Batley, Jacqueline

    2012-08-01

    A thorough understanding of the relationships between plants and pathogens is essential if we are to continue to meet the agricultural needs of the world's growing population. The identification of genes underlying important quantitative trait loci is extremely challenging in complex genomes such as Brassica napus (canola, oilseed rape or rapeseed). However, recent advances in next-generation sequencing (NGS) enable much quicker identification of candidate genes for traits of interest. Here, we demonstrate this with the identification of candidate disease resistance genes from B. napus for its most devastating fungal pathogen, Leptosphaeria maculans (blackleg fungus). These two species are locked in an evolutionary arms race whereby a gene-for-gene interaction confers either resistance or susceptibility in the plant depending on the genotype of the plant and pathogen. Preliminary analysis of the complete genome sequence of Brassica rapa, the diploid progenitor of B. napus, identified numerous candidate genes with disease resistance characteristics, several of which were clustered around a region syntenic with a major locus (Rlm4) for blackleg resistance on A7 of B. napus. Molecular analyses of the candidate genes using B. napus NGS data are presented, and the difficulties associated with identifying functional gene copies within the highly duplicated Brassica genome are discussed.

  4. Chemical variation for leaf cuticular waxes and their levels revealed in a diverse panel of Brassica napus L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassica napus L. is one of the most important oilseed crops in the world, providing oil and protein used for food, fuel, and industrial purposes. Despite high oil yields and desirable agronomic traits, its geographical range is mainly limited to temperate climates, and oil yields and quality are ne...

  5. Transcriptome Analysis of Canola (Brassica napus) under Salt Stress at the Germination Stage

    PubMed Central

    Long, Weihua; Zou, Xiling; Zhang, Xuekun

    2015-01-01

    Canola (Brassica napus) is one of the most important oil crops in the world. However, its yield has been constrained by salt stress. In this study, transcriptome profiles were explored using Digital Gene Expression (DGE) at 0, 3, 12 and 24 hours after H2O (control) and NaCl treatments on B. napus roots at the germination stage. Comparisons of gene-expression between the control and the treatment were conducted after tag-mapping to the sequenced Brassica rapa genome. The differentially expressed genes during the time course of salt stress were focused on, and 163 genes were identified to be differentially expressed at all the time points. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that some of the genes were involved in proline metabolism, inositol metabolism, carbohydrate metabolic processes and oxidation-reduction processes and may play vital roles in the salt-stress response at the germination stage. Thus, this study provides new candidate salt stress responding genes, which may function in novel putative nodes in the molecular pathways of salt stress resistance. PMID:25679513

  6. Transcriptome analysis of canola (Brassica napus) under salt stress at the germination stage.

    PubMed

    Long, Weihua; Zou, Xiling; Zhang, Xuekun

    2015-01-01

    Canola (Brassica napus) is one of the most important oil crops in the world. However, its yield has been constrained by salt stress. In this study, transcriptome profiles were explored using Digital Gene Expression (DGE) at 0, 3, 12 and 24 hours after H2O (control) and NaCl treatments on B. napus roots at the germination stage. Comparisons of gene-expression between the control and the treatment were conducted after tag-mapping to the sequenced Brassica rapa genome. The differentially expressed genes during the time course of salt stress were focused on, and 163 genes were identified to be differentially expressed at all the time points. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that some of the genes were involved in proline metabolism, inositol metabolism, carbohydrate metabolic processes and oxidation-reduction processes and may play vital roles in the salt-stress response at the germination stage. Thus, this study provides new candidate salt stress responding genes, which may function in novel putative nodes in the molecular pathways of salt stress resistance.

  7. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus.

    PubMed

    Zhu, Lixia; Yang, Zonghui; Zeng, Xinhua; Gao, Jie; Liu, Jie; Yi, Bin; Ma, Chaozhi; Shen, Jinxiong; Tu, Jinxing; Fu, Tingdong; Wen, Jing

    2017-04-01

    We previously described a Brassica napus chlorophyll-deficient mutant (ygl) with yellow-green seedling leaves and mapped the related gene, BnaC.YGL, to a 0.35 cM region. However, the molecular mechanisms involved in this chlorophyll defect are still unknown. In this study, the BnaC07.HO1 gene (equivalent to BnaC.YGL) was isolated by the candidate gene approach, and its function was confirmed by genetic complementation. Comparative sequencing analysis suggested that BnaC07.HO1 was lost in the mutant, while a long noncoding-RNA was inserted into the promoter of the homologous gene BnaA07.HO1. This insert was widely present in B. napus cultivars and down-regulated BnaA07.HO1 expression. BnaC07.HO1 was highly expressed in the seedling leaves and encoded heme oxygenase 1, which was localized in the chloroplast. Biochemical analysis showed that BnaC07.HO1 can catalyze heme conversion to form biliverdin IXα. RNA-seq analysis revealed that the loss of BnaC07.HO1 impaired tetrapyrrole metabolism, especially chlorophyll biosynthesis. According, the levels of chlorophyll intermediates were reduced in the ygl mutant. In addition, gene expression in multiple pathways was affected in ygl. These findings provide molecular evidences for the basis of the yellow-green leaf phenotype and further insights into the crucial role of HO1 in B. napus.

  8. Seed Quality Traits Can Be Predicted with High Accuracy in Brassica napus Using Genomic Data

    PubMed Central

    Liu, Peifa; Shi, Lei; Wang, Xiaohua; Wang, Meng; Meng, Jinling; Reif, Jochen Christoph

    2016-01-01

    Improving seed oil yield and quality are central targets in rapeseed (Brassica napus) breeding. The primary goal of our study was to examine and compare the potential and the limits of marker-assisted selection and genome-wide prediction of six important seed quality traits of B. napus. Our study is based on a bi-parental population comprising 202 doubled haploid lines and a diverse validation set including 117 B. napus inbred lines derived from interspecific crosses between B. rapa and B. carinata. We used phenotypic data for seed oil, protein, erucic acid, linolenic acid, stearic acid, and glucosinolate content. All lines were genotyped with a 60k SNP array. We performed five-fold cross-validations in combination with linkage mapping and four genome-wide prediction approaches in the bi-parental population. Quantitative trait loci (QTL) with large effects were detected for erucic acid, stearic acid, and glucosinolate content, blazing the trail for marker-assisted selection. Despite substantial differences in the complexity of the genetic architecture of the six traits, genome-wide prediction models had only minor impacts on the prediction accuracies. We evaluated the effects of training population size, marker density and phenotyping intensity on the prediction accuracy. The prediction accuracy in the independent and genetically very distinct validation set still amounted to 0.14 for protein content and 0.17 for oil content reflecting the utility of the developed calibration models even in very diverse backgrounds. PMID:27880793

  9. Isolation of an embryogenic line from non-embryogenic Brassica napus cv. Westar through microspore embryogenesis

    PubMed Central

    Malik, Meghna R.; Wang, Feng; Dirpaul, Joan M.; Zhou, Ning; Hammerlindl, Joe; Keller, Wilf; Abrams, Suzanne R.; Ferrie, Alison M. R.; Krochko, Joan E.

    2008-01-01

    Brassica napus cultivar Westar is non-embryogenic under all standard protocols for induction of microspore embryogenesis; however, the rare embryos produced in Westar microspore cultures, induced with added brassinosteroids, were found to develop into heritably stable embryogenic lines after chromosome doubling. One of the Westar-derived doubled haploid (DH) lines, DH-2, produced up to 30% the number of embryos as the highly embryogenic B. napus line, Topas DH4079. Expression analysis of marker genes for embryogenesis in Westar and the derived DH-2 line, using real-time reverse transcription-PCR, revealed that the timely expression of embryogenesis-related genes such as LEAFY COTYLEDON1 (LEC1), LEC2, ABSCISIC ACID INSENSITIVE3, and BABY BOOM1, and an accompanying down-regulation of pollen-related transcripts, were associated with commitment to embryo development in Brassica microspores. Microarray comparisons of 7 d cultures of Westar and Westar DH-2, using a B. napus seed-focused cDNA array (10 642 unigenes), identified highly expressed genes related to protein synthesis, translation, and response to stimulus (Gene Ontology) in the embryogenic DH-2 microspore-derived cell cultures. In contrast, transcripts for pollen-expressed genes were predominant in the recalcitrant Westar microspores. Besides being embryogenic, DH-2 plants showed alterations in morphology and architecture as compared with Westar, for example epinastic leaves, non-abscised petals, pale flower colour, and longer lateral branches. Auxin, cytokinin, and abscisic acid (ABA) profiles in young leaves, mature leaves, and inflorescences of Westar and DH-2 revealed no significant differences that could account for the alterations in embryogenic potential or phenotype. Various mechanisms accounting for the increased capacity for embryogenesis in Westar-derived DH lines are considered. PMID:18552352

  10. Disruption of Germination and Seedling Development in Brassica napus by Mutations Causing Severe Seed Hormonal Imbalance.

    PubMed

    Nguyen, Tung C T; Obermeier, Christian; Friedt, Wolfgang; Abrams, Suzanne R; Snowdon, Rod J

    2016-01-01

    The Brassica napus (oilseed rape) accession 1012-98 shows a disturbed germination phenotype that was thought to be associated with its lack of testa pigmentation and thin seed coat. Here, we demonstrate that the disturbed germination and seedling development are actually due to independent mutations that disrupt the balance of hormone metabolites and their regulators in the seeds. High-throughput UPLC-MS/MS hormone profiling of seeds and seedlings before and after germination revealed that 1012-98 has a severely disturbed hormone balance with extremely atypical, excessive quantities of auxin and ABA metabolites. The resulting hypersensitivity to abscisic acid (ABA) and a corresponding increase in dormancy often results in death of the embryo after imbibition or high frequencies of disturbed, often lethal developmental phenotypes, resembling Arabidopsis mutants for the auxin regulatory factor gene ARF10 or the auxin-overproducing transgenic line iaaM-OX. Molecular cloning of Brassica ARF10 orthologs revealed four loci in normal B. napus, two derived from the Brassica A genome and two from the C genome. On the other hand, the phenotypic mutant 1012-98 exhibited amplification of C-genome BnaC.ARF10 copy number along with a chimeric allele originating from recombination between homeologous A and C genome loci which lead to minor increase of Bna.ARF10 transcription on the critical timepoint for seed germination, the indirect regulator of ABI3, the germinative inhibitor. Bna.GH3.5 expression was upregulated to conjugate free auxin to IAA-asp between 2 and 6 DAS. Functional amino acid changes were also found in important DNA binding domains of one BnaC.ARF10 locus, suggesting that regulatory changes in Bna.ARF10 are collectively responsible for the observed phenotpyes in 1012-98. To our knowledge, this study is the first to report disruption of germination and seedling development in Brassica napus caused by the crosstalk of auxin-ABA and the corresponding regulators Bna

  11. Disruption of Germination and Seedling Development in Brassica napus by Mutations Causing Severe Seed Hormonal Imbalance

    PubMed Central

    Nguyen, Tung C. T.; Obermeier, Christian; Friedt, Wolfgang; Abrams, Suzanne R.; Snowdon, Rod J.

    2016-01-01

    The Brassica napus (oilseed rape) accession 1012-98 shows a disturbed germination phenotype that was thought to be associated with its lack of testa pigmentation and thin seed coat. Here, we demonstrate that the disturbed germination and seedling development are actually due to independent mutations that disrupt the balance of hormone metabolites and their regulators in the seeds. High-throughput UPLC-MS/MS hormone profiling of seeds and seedlings before and after germination revealed that 1012-98 has a severely disturbed hormone balance with extremely atypical, excessive quantities of auxin and ABA metabolites. The resulting hypersensitivity to abscisic acid (ABA) and a corresponding increase in dormancy often results in death of the embryo after imbibition or high frequencies of disturbed, often lethal developmental phenotypes, resembling Arabidopsis mutants for the auxin regulatory factor gene ARF10 or the auxin-overproducing transgenic line iaaM-OX. Molecular cloning of Brassica ARF10 orthologs revealed four loci in normal B. napus, two derived from the Brassica A genome and two from the C genome. On the other hand, the phenotypic mutant 1012-98 exhibited amplification of C-genome BnaC.ARF10 copy number along with a chimeric allele originating from recombination between homeologous A and C genome loci which lead to minor increase of Bna.ARF10 transcription on the critical timepoint for seed germination, the indirect regulator of ABI3, the germinative inhibitor. Bna.GH3.5 expression was upregulated to conjugate free auxin to IAA-asp between 2 and 6 DAS. Functional amino acid changes were also found in important DNA binding domains of one BnaC.ARF10 locus, suggesting that regulatory changes in Bna.ARF10 are collectively responsible for the observed phenotpyes in 1012-98. To our knowledge, this study is the first to report disruption of germination and seedling development in Brassica napus caused by the crosstalk of auxin-ABA and the corresponding regulators Bna

  12. Hydrogen sulfide alleviates cadmium-induced morpho-physiological and ultrastructural changes in Brassica napus.

    PubMed

    Ali, Basharat; Gill, Rafaqat A; Yang, Su; Gill, Muhammad B; Ali, Shafaqat; Rafiq, Muhammad T; Zhou, Weijun

    2014-12-01

    In the present study, role of hydrogen sulfide (H2S) in alleviating cadmium (Cd) induced stress in oilseed rape (Brassica napus L.) was studied under greenhouse conditions. Plants were grown hydroponically under three levels (0, 100, and 500µM) of Cd and three levels (0, 100 and 200µM) of H2S donor, sodium hydrosulfide (NaHS). Results showed that application of H2S significantly improved the plant growth, root morphology, chlorophyll contents, elements uptake and photosynthetic activity in B. napus plants under Cd stress. Moreover, addition of H2S reduced the Cd concentration in the leaves and roots of B. napus plants under Cd-toxicity. Exogenously applied H2S decreased the production of malondialdehyde and reactive oxygen species in the leaves and roots by improving the enzymatic antioxidant activities under Cd stress conditions. The microscopic examination indicated that application of exogenous H2S improved the cell structures and enabled a clean mesophyll cell having a well developed chloroplast with thylakoid membranes, and a number of mitochondria could be observed in the micrographs. A number of modifications could be found in root tip cell i.e. mature mitochondria, long endoplasmic reticulum and golgibodies under combined application of H2S and Cd. On the basis of these findings, it can be concluded that application of exogenous H2S has a protective role on plant growth, photosynthetic parameters, elements uptake, antioxidants enzyme activities and ultrastructural changes in B. napus under high Cd stress conditions.

  13. EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L.

    PubMed

    Habiba, Ume; Ali, Shafaqat; Farid, Mujahid; Shakoor, Muhammad Bilal; Rizwan, Muhammad; Ibrahim, Muhammad; Abbasi, Ghulam Hasan; Hayat, Tahir; Ali, Basharat

    2015-01-01

    Copper (Cu) is an essential micronutrient for normal plant growth and development, but in excess, it is also toxic to plants. The present study investigated the influence of ethylenediaminetetraacetic acid (EDTA) in enhancing Cu uptake and tolerance as well as the morphological and physiological responses of Brassica napus L. seedlings under Cu stress. Four-week-old seedlings were transferred to hydroponics containing Hoagland's nutrient solution. After 2 weeks of transplanting, three levels (0, 50, and 100 μM) of Cu were applied with or without application of 2.5 mM EDTA and plants were further grown for 8 weeks in culture media. Results showed that Cu alone significantly decreased plant growth, biomass, photosynthetic pigments, and gas exchange characteristics. Cu stress also reduced the activities of antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) along with protein contents. Cu toxicity increased the concentration of reactive oxygen species (ROS) as indicated by the increased production of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in both leaves and roots. The application of EDTA significantly alleviated Cu-induced toxic effects in B. napus, showing remarkable improvement in all these parameters. EDTA amendment increased the activity of antioxidant enzymes by decreasing the concentrations of MDA and H2O2 both in leaves and roots of B. napus. Although, EDTA amendment with Cu significantly increased Cu uptake in roots, stems, and leaves in decreasing order of concentration but increased the growth, photosynthetic parameters, and antioxidant enzymes. These results showed that the application of EDTA can be a useful strategy for phytoextraction of Cu by B. napus from contaminated soils.

  14. Effect of wood ash application on the morphological, physiological and biochemical parameters of Brassica napus L.

    PubMed

    Nabeela, Farhat; Murad, Waheed; Khan, Imran; Mian, Ishaq Ahmad; Rehman, Hazir; Adnan, Muhammad; Azizullah, Azizullah

    2015-10-01

    The present study was conducted to determine the effect of wood ash application on different parameters of Brassica napus L. including seed germination, seedling growth, fresh and dry biomass, water content in seedlings, photosynthetic pigments, soluble sugars, total protein and cell viability. In addition, the effect of wood ash on soil microflora and accumulation of trace elements in seedlings were determined. The seeds of B. napus were grown at different doses of wood ash (0, 1, 10, 25, 50 and 100 g (wood ash)/kg (soil)) and the effect on various parameters was determined. Wood ash significantly inhibited seed germination at doses above 25 g/kg and there was no germination at 100 g/kg of wood ash. At lower concentrations of wood ash, most of the growth parameters of seedlings were stimulated, but at higher concentrations of wood ash most of the studied parameters were adversely affected. Wood ash was found to be very detrimental to B. napus when applied above 25 g/kg. Wood ash application resulted in an increased bioaccumulation of trace elements in seedlings of B. napus. Almost all trace elements were significantly higher in seedlings grown in wood ash above 10 g/kg as compared to the control. An increase in total microbial count was observed with wood ash treatment which was statistically significant at 1 and 10 g/kg of wood ash. It is concluded that at very high concentration, wood ash can be detrimental to plants; however, its application at lower application rate can be recommended.

  15. Dissecting Quantitative Trait Loci for Boron Efficiency across Multiple Environments in Brassica napus

    PubMed Central

    Zhao, Zunkang; Wu, Likun; Nian, Fuzhao; Ding, Guangda; Shi, Taoxiong; Zhang, Didi; Shi, Lei; Xu, Fangsen; Meng, Jinling

    2012-01-01

    High yield is the most important goal in crop breeding, and boron (B) is an essential micronutrient for plants. However, B deficiency, leading to yield decreases, is an agricultural problem worldwide. Brassica napus is one of the most sensitive crops to B deficiency, and considerable genotypic variation exists among different cultivars in response to B deficiency. To dissect the genetic basis of tolerance to B deficiency in B. napus, we carried out QTL analysis for seed yield and yield-related traits under low and normal B conditions using the double haploid population (TNDH) by two-year and the BQDH population by three-year field trials. In total, 80 putative QTLs and 42 epistatic interactions for seed yield, plant height, branch number, pod number, seed number, seed weight and B efficiency coefficient (BEC) were identified under low and normal B conditions, singly explaining 4.15–23.16% and 0.53–14.38% of the phenotypic variation. An additive effect of putative QTLs was a more important controlling factor than the additive-additive effect of epistatic interactions. Four QTL-by-environment interactions and 7 interactions between epistatic interactions and the environment contributed to 1.27–4.95% and 1.17–3.68% of the phenotypic variation, respectively. The chromosome region on A2 of SYLB-A2 for seed yield under low B condition and BEC-A2 for BEC in the two populations was equivalent to the region of a reported major QTL, BE1. The B. napus homologous genes of Bra020592 and Bra020595 mapped to the A2 region and were speculated to be candidate genes for B efficiency. These findings reveal the complex genetic basis of B efficiency in B. napus. They provide a basis for the fine mapping and cloning of the B efficiency genes and for breeding B-efficient cultivars by marker-assisted selection (MAS). PMID:23028855

  16. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus.

    PubMed

    Xiong, Zhiyong; Gaeta, Robert T; Pires, J Chris

    2011-05-10

    Polyploidy has contributed to the evolution of eukaryotes, particularly flowering plants. The genomic consequences of polyploidy have been extensively studied, but the mechanisms for chromosome stability and diploidization in polyploids remain largely unknown. By using new cytogenetic tools to identify all of the homoeologous chromosomes, we conducted a cytological investigation of 50 resynthesized Brassica napus allopolyploids across generations S(0:1) to S(5:6) and in the S(10:11) generation. Changes in copy number of individual chromosomes were detected in the S(0:1) generation and increased in subsequent generations, despite the fact that the mean chromosome number among lines was approximately 38. The chromosome complement of individual plants (segregants) ranged from 36 to 42, with a bias toward the accumulation of extra chromosomes. Karyotype analysis of the S(10:11) generation detected aneuploidy and inter- and intragenomic rearrangements, chromosome breakage and fusion, rDNA changes, and loss of repeat sequences. Chromosome sets with extensive homoeology showed the greatest instability. Dosage balance requirements maintained chromosome numbers at or near the tetraploid level, and the loss and gain of chromosomes frequently involved homoeologous chromosome replacement and compensation. These data indicate that early generations of resynthesized B. napus involved aneuploidy and gross chromosomal rearrangements, and that dosage balance mechanisms enforced chromosome number stability. Seed yield and pollen viability were inversely correlated with increasing aneuploidy, and the greatest fertility was observed in two lines that were additive for parental chromosomes. These data on resynthesized B. napus and the correlation of fertility with additive karyotypes cast light on the origins and establishment of natural B. napus.

  17. Cytogenetic characterization and fae1 gene variation in progenies from asymmetric somatic hybrids between Brassica napus and Crambe abyssinica.

    PubMed

    Wang, Y P; Snowdon, R J; Rudloff, E; Wehling, P; Friedt, W; Sonntag, K

    2004-08-01

    Sexual progenies of asymmetric somatic hybrids between Brassica napus and Crambe abyssinica were analyzed with respect to chromosomal behavior, fae1 gene introgression, fertility, and fatty-acid composition of the seed. Among 24 progeny plants investigated, 11 plants had 38 chromosomes and were characterized by the occurrence of normal meiosis with 19 bivalents. The other 13 plants had more than 38 chromosomes, constituting a complete chromosomal set from B. napus plus different numbers of additional chromosomes from C. abyssinica. The chromosomes of B. napus and C. abyssinica origin could be clearly discriminated by genomic in situ hybridization (GISH) in mitotic and meiotic cells. Furthermore, meiotic GISH enabled identification of intergenomic chromatin bridges and of asynchrony between the B. napus and C. abyssinca meiotic cycles. Lagging, bridging and late disjunction of univalents derived from C. abyssinica were observed. Analysis of cleaved amplified polymorphic sequence (CAPS) markers derived from the fae1 gene showed novel patterns different from the B. napus recipient in some hybrid offspring. Most of the progeny plants had a high pollen fertility and seed set, and some contained significantly greater amounts of seed erucic acid than the B. napus parent. This study demonstrates that a part of the C. abyssinica genome can be transferred into B. napus via asymmetric hybridization and maintained in sexual progenies of the hybrids. Furthermore, it confirms that UV irradiation improves the fertility of the hybrid and of its sexual progeny via chromosomal elimination and facilitates the introgression of exotic genetic material into crop species.

  18. Production of high yield short duration Brassica napus by interspecific hybridization between B. oleracea and B. rapa.

    PubMed

    Karim, Md Masud; Siddika, Asfakun; Tonu, Nazmoon Naher; Hossain, Delwar M; Meah, Md Bahadur; Kawanabe, Takahiro; Fujimoto, Ryo; Okazaki, Keiichi

    2014-03-01

    Brassica napus is a leading oilseed crop throughout many parts of the world. It is well adapted to long day photoperiods, however, it does not adapt well to short day subtropical regions. Short duration B. napus plants were resynthesized through ovary culture from interspecific crosses in which B. rapa cultivars were reciprocally crossed with B. oleracea. From five different combinations, 17 hybrid plants were obtained in both directions. By self-pollinating the F1 hybrids or introgressing them with cultivated B. napus, resynthesized (RS) F3 and semi-resynthesized (SRS) F2 generations were produced, respectively. In field trial in Bangladesh, the RS B. napus plants demonstrated variation in days to first flowering ranging from 29 to 73 days; some of which were similar to cultivated short duration B. napus, but not cultivated short duration B. rapa. The RS and SRS B. napus lines produced 2-4.6 and 1.6-3.7 times higher yields, respectively, as compared to cultivated short duration B. napus. Our developed RS lines may be useful for rapeseed breeding not only for subtropical regions, but also for areas such as Canada and Europe where spring rapeseed production can suffer from late spring frosts. Yield and earliness in RS lines are discussed.

  19. Production of high yield short duration Brassica napus by interspecific hybridization between B. oleracea and B. rapa

    PubMed Central

    Karim, Md. Masud; Siddika, Asfakun; Tonu, Nazmoon Naher; Hossain, Delwar M.; Meah, Md. Bahadur; Kawanabe, Takahiro; Fujimoto, Ryo; Okazaki, Keiichi

    2014-01-01

    Brassica napus is a leading oilseed crop throughout many parts of the world. It is well adapted to long day photoperiods, however, it does not adapt well to short day subtropical regions. Short duration B. napus plants were resynthesized through ovary culture from interspecific crosses in which B. rapa cultivars were reciprocally crossed with B. oleracea. From five different combinations, 17 hybrid plants were obtained in both directions. By self-pollinating the F1 hybrids or introgressing them with cultivated B. napus, resynthesized (RS) F3 and semi-resynthesized (SRS) F2 generations were produced, respectively. In field trial in Bangladesh, the RS B. napus plants demonstrated variation in days to first flowering ranging from 29 to 73 days; some of which were similar to cultivated short duration B. napus, but not cultivated short duration B. rapa. The RS and SRS B. napus lines produced 2–4.6 and 1.6–3.7 times higher yields, respectively, as compared to cultivated short duration B. napus. Our developed RS lines may be useful for rapeseed breeding not only for subtropical regions, but also for areas such as Canada and Europe where spring rapeseed production can suffer from late spring frosts. Yield and earliness in RS lines are discussed. PMID:24757390

  20. [Production and cytogenetics of hybrids of Ogura CMS Brassica campestris var. purpuraria x Raphanus sativus x Brassica napus].

    PubMed

    Huang, Bang-Quan; Liu, You-Qi; Wu, Wen-Hua; Xue, Xiao-Qiao

    2002-05-01

    Crosses of Ogura CMS Brassica campestris var. purpuraria x Raphanus sativus x Brassica napus were made and four hybrids were produced. One plant (PRN-1) was mosaic with yellow and milk white flowers and some flowers had both yellow and white petals. The others (PRN-2, -3, -4) had white flowers. PRN-4 had degenerated anthers, the other three had three to six anthers and could produce some pollens, but the pollens of PRN-2 were unstainable by I2-KI solution. PRN-2 had four normal honey glands, PRN-1 and PRN-3 had two, and PRN-4 had none. PRN-2 had normal leaf color and the other three showed different degrees of chlorophyll deficiency at low temperature. The chromosome number of PRN-1 was 2n = 38 and had the mean chromosome paring configuration of 14.67 I + 10.07 II + 1.06 III, and its chromosome set constitution might be AACR. This chromosome constitution may be due to the fertilization of female gamete of n = 19 (AR) with male gamete of n = 19 (AC) from B. napus. The occurrence of mosaic flower color in this plant may be attributed to the chromosome abnormalities caused by wide hybridization, such as chromosome deficiency and the formation of chromosome fragments and chromosome bridges. The chromosome number of PRN-2 was 2n = 35 and the mean chromosome paring configuration was 13.89 I + 8.33 II + 1.33 III + 0.11 IV. The chromosome number of PRN-3 was 2n = 33 and the mean chromosome paring configuration was 14.00 I + 7.82 II + 1.00 III + 0.09 IV. The chromosome number of PRN-4 was not determined as there was no pollen mother cell formation. Chromosome bridges and laggards were observed in PRN-1-3. Some seeds were harvested from PRN-1-3 but none was harvested from PRN-4 when backcrossed with B. napus. It seems possible for us to overcome the chlorophyll deficiency and honey gland abnormality and restore the male fertility in Ogura CMS by introduction of the nucleus of R. sativus into this cytoplasmic male sterile line.

  1. Physiological and Transcriptional Analyses Reveal Differential Phytohormone Responses to Boron Deficiency in Brassica napus Genotypes

    PubMed Central

    Zhou, Ting; Hua, Yingpeng; Huang, Yupu; Ding, Guangda; Shi, Lei; Xu, Fangsen

    2016-01-01

    Phytohormones play pivotal roles in the response of plants to various biotic and abiotic stresses. Boron (B) is an essential microelement for plants, and Brassica napus (B. napus) is hypersensitive to B deficiency. However, how auxin responds to B deficiency remained a dilemma for many years and little is known about how other phytohormones respond to B deficiency. The identification of B-efficient/inefficient B. napus indicates that breeding might overcome these constraints in the agriculture production. Here, we seek to identify phytohormone-related processes underlying B-deficiency tolerance in B. napus at the physiological and gene expression levels. Our study indicated low-B reduced indole-3-acetic acid (IAA) concentration in both the shoots and roots of B. napus, and affected the expression of the auxin biosynthesis gene BnNIT1 and the efflux gene BnPIN1 in a time-dependent manner. Low-B increased the jasmonates (JAs) and abscisic acid (ABA) concentrations and induced the expression of the ABA biosynthesis gene BnNCED3 and the ABA sensor gene BnPYL4 in the shoot. In two contrasting genotypes, the auxin concentration decreased more drastically in the B-inefficient genotype ‘W10,’ and together the expression of BnNIT1 and BnPIN1 also decreased more significantly in ‘W10’ under long-term B deficiency. While the JAs concentration was considerably higher in this genotype, and the ABA concentration was induced in ‘W10’ compared with the B-efficient genotype ‘QY10.’ Digital gene expression (DGE) profiling confirmed the differential expression of the phytohormone-related genes, indicating more other phyohormone differences involving in gene regulation between ‘QY10’ and ‘W10’ under low-B stress. Additionally, the activity of DR5:GFP was reduced in the root under low-B in Arabidopsis, and the application of exogenous IAA could partly restore the B-defective phenotype in ‘W10.’ Overall, our data suggested that low-B disturbed phytohormone

  2. Consequences of gene flow between oilseed rape (Brassica napus) and its relatives.

    PubMed

    Liu, Yongbo; Wei, Wei; Ma, Keping; Li, Junsheng; Liang, Yuyong; Darmency, Henri

    2013-10-01

    Numerous studies have focused on the probability of occurrence of gene flow between transgenic crops and their wild relatives and the likelihood of transgene escape, which should be assessed before the commercial release of transgenic crops. This review paper focuses on this issue for oilseed rape, Brassica napus L., a species that produces huge numbers of pollen grains and seeds. We analyze separately the distinct steps of gene flow: (1) pollen and seeds as vectors of gene flow; (2) spontaneous hybridization; (3) hybrid behavior, fitness cost due to hybridization and mechanisms of introgression; (4) and fitness benefit due to transgenes (e.g. herbicide resistance and Bt toxin). Some physical, biological and molecular means of transgene containment are also described. Although hybrids and first generation progeny are difficult to identify in fields and non-crop habitats, the literature shows that transgenes could readily introgress into Brassica rapa, Brassica juncea and Brassica oleracea, while introgression is expected to be rare with Brassica nigra, Hirschfeldia incana and Raphanus raphanistrum. The hybrids grow well but produce less seed than their wild parent. The difference declines with increasing generations. However, there is large uncertainty about the evolution of chromosome numbers and recombination, and many parameters of life history traits of hybrids and progeny are not determined with satisfactory confidence to build generic models capable to really cover the wide diversity of situations. We show that more studies are needed to strengthen and organize biological knowledge, which is a necessary prerequisite for model simulations to assess the practical and evolutionary outputs of introgression, and to provide guidelines for gene flow management.

  3. Growth performance and preference studies to evaluate solvent-extracted Brassica napus or Brassica juncea canola meal fed to weaned pigs.

    PubMed

    Landero, J L; Beltranena, E; Zijlstra, R T

    2012-12-01

    Inclusion of conventional dark-seeded (Brassica napus) and novel yellow-seeded (Brassica juncea) canola meal (CM) can potentially replace soybean (Glycine max) meal (SBM) in pig diets. Our objective was to examine the preference of weaned pigs fed diets containing SBM or B. napus or B. juncea CM and to compare it against previously reported growth performance data (Exp. 1 and 2). In Exp. 1 and 2, growth performance was evaluated using 220 and 240 weaned pigs, respectively, by replacing dietary SBM with up to 20% B. napus (Exp. 1) or 24% B. juncea CM (Exp. 2). Feeding up to 20% B. napus CM to pigs did not affect growth performance, but increasing inclusion of B. juncea CM linearly reduced (P < 0.001) ADFI, ADG, and G:F most likely due to the higher content of glucosinolates, particularly gluconapin in B. juncea CM as confirmed by principle component analysis. In Exp. 3 and 4, SBM and B. napus and B. juncea CM fed at 20% dietary inclusion were evaluated in 2 preference studies using 216 and 144 pigs of 35 d of age, respectively. Pens equipped with 2 feeders housed 8 or 4 pigs per pen, in Exp. 3 and 4, respectively. Diets formulated to equal NE and standardized ileal digestible AA were offered in a paired choice as mash (Exp. 3) or pellets (Exp. 4) for 3 consecutive 7-d periods (3 d nontest and 4 d preference test). The 3 treatments offered were (i) SBM vs. B. napus CM, (ii) SBM vs. B. juncea CM, and (iii) B. napus vs. B. juncea CM. Pigs preferred SBM (P < 0.001) over B. napus and B. juncea CM diets, and pigs preferred B. napus (P < 0.001) over B. juncea CM diet. High content of the glucosinolate gluconapin likely reduced feed preference in B. juncea more than in B. napus CM. In conclusion, the contrast between preference and performance studies feeding CM to pigs indicates that preference studies should be interpreted cautiously until validated by growth performance data.

  4. Exploiting comparative mapping among Brassica species to accelerate the physical delimitation of a genic male-sterile locus (BnRf) in Brassica napus.

    PubMed

    Xie, Yanzhou; Dong, Faming; Hong, Dengfeng; Wan, Lili; Liu, Pingwu; Yang, Guangsheng

    2012-07-01

    The recessive genic male sterility (RGMS) line 9012AB has been used as an important pollination control system for rapeseed hybrid production in China. Here, we report our study on physical mapping of one male-sterile locus (BnRf) in 9012AB by exploiting the comparative genomics among Brassica species. The genetic maps around BnRf from previous reports were integrated and enriched with markers from the Brassica A7 chromosome. Subsequent collinearity analysis of these markers contributed to the identification of a novel ancestral karyotype block F that possibly encompasses BnRf. Fourteen insertion/deletion markers were further developed from this conserved block and genotyped in three large backcross populations, leading to the construction of high-resolution local genetic maps where the BnRf locus was restricted to a less than 0.1-cM region. Moreover, it was observed that the target region in Brassica napus shares a high collinearity relationship with a region from the Brassica rapa A7 chromosome. A BnRf-cosegregated marker (AT3G23870) was then used to screen a B. napus bacterial artificial chromosome (BAC) library. From the resulting 16 positive BAC clones, one (JBnB089D05) was identified to most possibly contain the BnRf (c) allele. With the assistance of the genome sequence from the Brassica rapa homolog, the 13.8-kb DNA fragment covering both closest flanking markers from the BAC clone was isolated. Gene annotation based on the comparison of microcollinear regions among Brassica napus, B. rapa and Arabidopsis showed that five potential open reading frames reside in this fragment. These results provide a foundation for the characterization of the BnRf locus and allow a better understanding of the chromosome evolution around BnRf.

  5. Gene conversion events and variable degree of homogenization of rDNA loci in cultivars of Brassica napus

    PubMed Central

    Sochorová, Jana; Coriton, Olivier; Kuderová, Alena; Lunerová, Jana; Chèvre, Anne-Marie; Kovařík, Aleš

    2017-01-01

    Background and aims Brassica napus (AACC, 2n = 38, oilseed rape) is a relatively recent allotetraploid species derived from the putative progenitor diploid species Brassica rapa (AA, 2n = 20) and Brassica oleracea (CC, 2n = 18). To determine the influence of intensive breeding conditions on the evolution of its genome, we analysed structure and copy number of rDNA in 21 cultivars of B. napus, representative of genetic diversity. Methods We used next-generation sequencing genomic approaches, Southern blot hybridization, expression analysis and fluorescence in situ hybridization (FISH). Subgenome-specific sequences derived from rDNA intergenic spacers (IGS) were used as probes for identification of loci composition on chromosomes. Key Results Most B. napus cultivars (18/21, 86 %) had more A-genome than C-genome rDNA copies. Three cultivars analysed by FISH (‘Darmor’, ‘Yudal’ and ‘Asparagus kale’) harboured the same number (12 per diploid set) of loci. In B. napus ‘Darmor’, the A-genome-specific rDNA probe hybridized to all 12 rDNA loci (eight on the A-genome and four on the C-genome) while the C-genome-specific probe showed weak signals on the C-genome loci only. Deep sequencing revealed high homogeneity of arrays suggesting that the C-genome genes were largely overwritten by the A-genome variants in B. napus ‘Darmor’. In contrast, B. napus ‘Yudal’ showed a lack of gene conversion evidenced by additive inheritance of progenitor rDNA variants and highly localized hybridization signals of subgenome-specific probes on chromosomes. Brassica napus ‘Asparagus kale’ showed an intermediate pattern to ‘Darmor’ and ‘Yudal’. At the expression level, most cultivars (95 %) exhibited stable A-genome nucleolar dominance while one cultivar (‘Norin 9’) showed co-dominance. Conclusions The B. napus cultivars differ in the degree and direction of rDNA homogenization. The prevalent direction of gene conversion (towards the A-genome) correlates

  6. Nutritional and nutraceutical potential of rape (Brassica napus L. var. napus) and "tronchuda" cabbage (Brassica oleraceae L. var. costata) inflorescences.

    PubMed

    Batista, Cátia; Barros, Lillian; Carvalho, Ana Maria; Ferreira, Isabel C F R

    2011-06-01

    Two traditional cultivated vegetables highly consumed among Northern Portuguese regions were tested for their chemical composition, nutritional profile and in vitro antioxidant properties using four assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging activity, reducing power, inhibition of β-carotene bleaching and inhibition of lipid peroxidation by thiobarbituric acid reactive substances (TBARS) assay. The studied varieties of two Brassica species, locally known as "grelos" (rape) and "espigos" ("tronchuda" cabbage) are nutritionally well-balanced vegetables; particularly "tronchuda" cabbage revealed the highest levels of moisture, proteins, fat, energy, β-carotene and vitamin C; rape gave the highest contents of ash, carbohydrates, sugars (including fructose, glucose, sucrose and raffinose), essential n-3 fatty acid α-linolenic acid, and the best ratios of PUFA/SFA and n-6/n-3 fatty acids, tocopherols, lycopene, chlorophylls, phenolics, flavonoids, and also the highest antioxidant properties. The health benefits associated to the antioxidant properties reinforce their contribution to a healthy and balanced diet, highlight the interest of their consumption, validate the empirical use and add new values to traditional/regional products which have been used for a long time.

  7. A complex recombination pattern in the genome of allotetraploid Brassica napus as revealed by a high-density genetic map.

    PubMed

    Cai, Guangqin; Yang, Qingyong; Yi, Bin; Fan, Chuchuan; Edwards, David; Batley, Jacqueline; Zhou, Yongming

    2014-01-01

    Polyploidy plays a crucial role in plant evolution. Brassica napus (2n = 38, AACC), the most important oil crop in the Brassica genus, is an allotetraploid that originated through natural doubling of chromosomes after the hybridization of its progenitor species, B. rapa (2n = 20, AA) and B. oleracea (2n = 18, CC). A better understanding of the evolutionary relationship between B. napus and B. rapa, B. oleracea, as well as Arabidopsis, which has a common ancestor with these three species, will provide valuable information about the generation and evolution of allopolyploidy. Based on a high-density genetic map with single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers, we performed a comparative genomic analysis of B. napus with Arabidopsis and its progenitor species B. rapa and B. oleracea. Based on the collinear relationship of B. rapa and B. oleracea in the B. napus genetic map, the B. napus genome was found to consist of 70.1% of the skeleton components of the chromosomes of B. rapa and B. oleracea, with 17.7% of sequences derived from reciprocal translocation between homoeologous chromosomes between the A- and C-genome and 3.6% of sequences derived from reciprocal translocation between non-homologous chromosomes at both intra- and inter-genomic levels. The current study thus provides insights into the formation and evolution of the allotetraploid B. napus genome, which will allow for more accurate transfer of genomic information from B. rapa, B. oleracea and Arabidopsis to B. napus.

  8. Seeds of a possible natural hybrid between herbicide-resistant Brassica napus and Brassica rapa detected on a riverbank in Japan.

    PubMed

    Aono, Mitsuko; Wakiyama, Seiji; Nagatsu, Masato; Kaneko, Yukio; Nishizawa, Toru; Nakajima, Nobuyoshi; Tamaoki, Masanori; Kubo, Akihiro; Saji, Hikaru

    2011-01-01

    Transgenic herbicide-resistant varieties of Brassica napus, or oilseed rape, from which canola oil is obtained, are imported into Japan, where this plant is not commercially cultivated to a large extent. This study aimed to examine the distribution of herbicide-resistant B. napus and transgene flow to escaped populations of its closely related species, B. rapa and B. juncea. Samples were collected from 12 areas near major ports through which oilseed rape imports into Japan passed--Kashima, Chiba, Yokohama, Shimizu, Nagoya, Yokkaichi, Sakai-Senboku, Kobe, Uno, Mizushima, Kita-Kyushu, and Hakata--and the presence of glyphosate- and/or glufosinate-resistant B. napus was confirmed in all areas except Yokohama, Sakai-Senboku, Uno, and Kita-Kyushu. The Yokkaichi area was the focus because several herbicide-resistant B. napus plants were detected not only on the roadside where oilseed rape spilled during transportation but also on the riverbanks, where escaped populations of B. rapa and B. juncea grew. Samples of B. napus that were tolerant to both herbicides were detected in four continuous years (2005-2008) in this area, suggesting the possibility of intraspecific transgene flow within the escaped B. napus populations. Moreover, in 2008, seeds of a possible natural hybrid between herbicide-tolerant B. napus (2n = 38) and B. rapa (2n = 20) were detected; some seedlings derived from the seeds collected at a Yokkaichi site showed glyphosate resistance and had 2n = 29 chromosomes. This observation strongly suggests the occurrence of hybridization between herbicide-resistant B. napus and escaped B. rapa and the probability of introgression of a herbicide-resistance gene into related escaped species.

  9. Production of partial new-typed Brassica napus by introgression of genomic components from B. rapa and B. carinata.

    PubMed

    Li, Maoteng; Liu, Jianmin; Wang, Yanting; Yu, Longjiang; Meng, Jinling

    2007-05-01

    A breeding strategy for widening the germplasm of Brassica napus was proposed by introgression of the A(r) subgenome of B. rapa (A(r)A(r)) and C(c) of B. carinata (B(c)B(c)C(c)C(c)) into natural B. napus (A(n)A(n)C(n)C(n)). The progenies with 38 chromosomes that were derived from the self-pollinated seeds of pentaploid hybrids (A(r)A(n)B(c)C(c)C(n)) were used for further research. Some of the partial new-typed B. napus showed normal meiotic behavior, high portion of germinated pollen and normal embryological development. This indicates that the selected new-typed B. napus had a balanced genetic base. Molecular analysis showed that about 50% of the genome in the new-typed B. napus was replaced by A(r) and C(c) subgenome from B. rapa and B. carinata. Considering the genetic diversity among different lines of new-typed B. napus it was deduced that the introgression of the genomic components from B. rapa and B. carinata could widen the genetic diversity of rapeseed.

  10. Indications of Selenium Protection against Cadmium and Lead Toxicity in Oilseed Rape (Brassica napus L.)

    PubMed Central

    Wu, Zhilin; Yin, Xuebin; Bañuelos, Gary S.; Lin, Zhi-Qing; Liu, Ying; Li, Miao; Yuan, Linxi

    2016-01-01

    The present study investigated the beneficial role of selenium (Se) in protecting oilseed rape (Brassica napus L.) plants from cadmium (Cd+2) and lead (Pb+2) toxicity. Exogenous Se markedly reduced Cd and Pb concentration in both roots and shoots. Supplementation of the medium with Se (5, 10, and 15 mg kg-1) alleviated the negative effect of Cd and Pb on growth and led to a decrease in oxidative damages caused by Cd and Pb. Furthermore, Se-enhanced superoxide free radicals (O2•¯), hydrogen peroxide (H2O2), and lipid peroxidation, as indicated by malondialdehyde accumulation, but decreased superoxide dismutase and glutathione peroxidase activities. Meanwhile, the presence of Cd and Pb in the medium affected Se speciation in shoots. The results suggest that Se could alleviate Cd and Pb toxicity by preventing oxidative stress in oilseed rape plant. PMID:28018407

  11. Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed.

    PubMed

    Nesi, Nathalie; Delourme, Régine; Brégeon, Michel; Falentin, Cyril; Renard, Michel

    2008-10-01

    Oilseed rape (Brassica napus L.) is a major oil crop that also supplies proteins for the feed industry. In order to reduce total cost production, the objective is to increase oil yield while reducing crop inputs (especially nitrogen and pesticides). Concomitantly, it is necessary to anticipate specific uses (e.g., fatty acid composition) and to ensure the valorisation of the by-products (rapeseed meal). By the past, improvement of seed quality focused on fatty acid balance and low seed glucosinolate content. Current goals include the breeding of yellow-seeded rapeseed lines with high content of seed oil. The use of molecular tools and the exploitation of Arabidopsis knowledge will be presented and discussed.

  12. Indications of Selenium Protection against Cadmium and Lead Toxicity in Oilseed Rape (Brassica napus L.).

    PubMed

    Wu, Zhilin; Yin, Xuebin; Bañuelos, Gary S; Lin, Zhi-Qing; Liu, Ying; Li, Miao; Yuan, Linxi

    2016-01-01

    The present study investigated the beneficial role of selenium (Se) in protecting oilseed rape (Brassica napus L.) plants from cadmium (Cd(+2)) and lead (Pb(+2)) toxicity. Exogenous Se markedly reduced Cd and Pb concentration in both roots and shoots. Supplementation of the medium with Se (5, 10, and 15 mg kg(-1)) alleviated the negative effect of Cd and Pb on growth and led to a decrease in oxidative damages caused by Cd and Pb. Furthermore, Se-enhanced superoxide free radicals ([Formula: see text]), hydrogen peroxide (H2O2), and lipid peroxidation, as indicated by malondialdehyde accumulation, but decreased superoxide dismutase and glutathione peroxidase activities. Meanwhile, the presence of Cd and Pb in the medium affected Se speciation in shoots. The results suggest that Se could alleviate Cd and Pb toxicity by preventing oxidative stress in oilseed rape plant.

  13. Mg deficiency affects leaf Mg remobilization and the proteome in Brassica napus.

    PubMed

    Billard, Vincent; Maillard, Anne; Coquet, Laurent; Jouenne, Thierry; Cruz, Florence; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Ourry, Alain; Etienne, Philippe

    2016-10-01

    In order to cope with variable mineral nutrient availability, higher plants have developed numerous strategies including the remobilization of nutrients from source to sink tissues. However, such processes remain relatively unknown for magnesium (Mg), which is the third most important cation in plant tissues. Using Mg depletion of Brassica napus, we have demonstrated that Mg is remobilized from old leaves to young shoot tissues. Moreover, this study showed that Mg depletion induces modification of nutrient uptake, especially Zn and Mn. Finally, comparative proteomic analysis of old leaves (source of Mg) revealed amongst other results that some proteins requiring Mg for their functionality (isocitrate dehydrogenase for example) were up-regulated. Moreover, down-regulation of proteases suggested that mobilization of Mg from old leaves was not associated with senescence.

  14. Tissue-Specific Distribution of Secondary Metabolites in Rapeseed (Brassica napus L.)

    PubMed Central

    Fang, Jingjing; Reichelt, Michael; Hidalgo, William; Agnolet, Sara; Schneider, Bernd

    2012-01-01

    Four different parts, hypocotyl and radicle (HR), inner cotyledon (IC), outer cotyledon (OC), seed coat and endosperm (SE), were sampled from mature rapeseed (Brassica napus L.) by laser microdissection. Subsequently, major secondary metabolites, glucosinolates and sinapine, as well as three minor ones, a cyclic spermidine conjugate and two flavonoids, representing different compound categories, were qualified and quantified in dissected samples by high-performance liquid chromatography with diode array detection and mass spectrometry. No qualitative and quantitative difference of glucosinolates and sinapine was detected in embryo tissues (HR, IC and OC). On the other hand, the three minor compounds were observed to be distributed unevenly in different rapeseed tissues. The hypothetic biological functions of the distribution patterns of different secondary metabolites in rapeseed are discussed. PMID:23133539

  15. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil.

    PubMed

    Marchiol, L; Assolari, S; Sacco, P; Zerbi, G

    2004-11-01

    Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels.

  16. Digestibility energy and amino acids of canola meal from two species (Brassica juncea and Brassica napus) fed to distal ileum cannulated grower pigs.

    PubMed

    Le, M H A; Buchet, A D G; Beltranena, E; Gerrits, W J J; Zijlstra, R T

    2012-12-01

    Yellow-seeded Brassica juncea is a novel canola species targeted to grow in the southern Canadian prairies where thermotolerance, disease resistance, and adaptation to dry agronomic conditions are required. The support of its cultivation needs nutritional evaluation of its coproduct. The B. juncea canola meal (CM) contains less fiber than conventional, dark-seeded Brassica napus CM but also slightly less Lys. In a 6 × 6 Latin square, 6 distal ileum cannulated pigs (47 kg BW) were fed 6 diets to determine the apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of CP and AA, AID and apparent total tract digestibility (ATTD) of energy, and VFA content in digesta and feces. Pigs were fed 6 diets: basal [46% wheat (Triticum aestivum) and corn (Zea mays) starch], 4 diets with 46% wheat and either B. juncea or B. napus CM at 25 or 50%, and a N-free diet based on corn starch. The B. juncea CM had higher (P < 0.05) ATTD of energy than B. napus CM (68.6 vs. 60.3%) likely due to its lower fiber content. Ileal total VFA was lower (P < 0.001) in pigs fed B. juncea than B. napus CM diets. In pigs fed B. juncea CM, the molar ratio in digesta was lower (P < 0.001) for acetate and butyrate whereas the propionate ratio was lower (P < 0.001) in feces than in pigs fed B. napus CM diets. The CM species did not affect the AID of energy, SID of AA, and feces VFA content. The DE value was higher (P < 0.05) and content of SID Lys was lower (P < 0.05) for B. juncea than B. napus CM. In conclusion, availability of B. juncea CM, a coproduct of a canola species grown in Canadian prairie land, will increase flexibility in swine feed formulation.

  17. Cytogenetic and Molecular Characterization of B-Genome Introgression Lines of Brassica napus L.

    PubMed

    Dhaliwal, Inderpreet; Mason, Annaliese S; Banga, Shashi; Bharti, Sakshi; Kaur, Beerpal; Gurung, Allison Mary; Salisbury, Phillip Anthony; Batley, Jacqueline; Banga, Surinder Singh

    2017-01-05

    Brassica napus introgression lines (ILs), having B-genome segments from B. carinata, were assessed genetically for extent of introgression and phenotypically for siliqua shatter resistance. Introgression lines had 7-9% higher DNA content, were meiotically stable, and had almost normal pollen fertility/seed set. Segment introgressions were confirmed by fluorescent genomic in situ hybridization (fl-GISH), SSR analyses, and SNP studies. Genotyping with 48 B-genome specific SSRs detected substitutions from B3, B4, B6, and B7 chromosomes on 39 of the 69 ILs whereas SNP genotyping detected a total of 23 B-segments (≥3 Mb) from B4, B6, and B7 introgressed into 10 of the 19 (C1, C2, C3, C5, C6, C8, C9, A3, A9, A10) chromosomes in 17 ILs. The size of substitutions varied from 3.0 Mb on chromosome A9 (IL59) to 42.44 Mb on chromosome C2 (IL54), ranging from 7 to 83% of the recipient chromosome. Average siliqua strength in ILs was observed to be higher than that of B. napus parents (2.2-6.0 vs. 1.9-4.0 mJ) while siliqua strength in some of the lines was almost equal to that of the donor parent B. carinata (6.0 vs.7.2 mJ). These ILs, with large chunks of substituted B-genome, can prove to be a useful prebreeding resource for germplasm enhancement in B. napus, especially for siliqua shatter resistance.

  18. Agronomic and Seed Quality Traits Dissected by Genome-Wide Association Mapping in Brassica napus

    PubMed Central

    Körber, Niklas; Bus, Anja; Li, Jinquan; Parkin, Isobel A. P.; Wittkop, Benjamin; Snowdon, Rod J.; Stich, Benjamin

    2016-01-01

    In Brassica napus breeding, traits related to commercial success are of highest importance for plant breeders. However, such traits can only be assessed in an advanced developmental stage. Molecular markers genetically linked to such traits have the potential to accelerate the breeding process of B. napus by marker-assisted selection. Therefore, the objectives of this study were to identify (i) genome regions associated with the examined agronomic and seed quality traits, (ii) the interrelationship of population structure and the detected associations, and (iii) candidate genes for the revealed associations. The diversity set used in this study consisted of 405 B. napus inbred lines which were genotyped using a 6K single nucleotide polymorphism (SNP) array and phenotyped for agronomic and seed quality traits in field trials. In a genome-wide association study, we detected a total of 112 associations between SNPs and the seed quality traits as well as 46 SNP-trait associations for the agronomic traits with a P < 1.28e-05 (Bonferroni correction of α = 0.05) for the inbreds of the spring and winter trial. For the seed quality traits, a single SNP-sulfur concentration in seeds (SUL) association explained up to 67.3% of the phenotypic variance, whereas for the agronomic traits, a single SNP-blossom color (BLC) association explained up to 30.2% of the phenotypic variance. In a basic local alignment search tool (BLAST) search within a distance of 2.5 Mbp around these SNP-trait associations, 62 hits of potential candidate genes with a BLAST-score of ≥100 and a sequence identity of ≥70% to A. thaliana or B. rapa could be found for the agronomic SNP-trait associations and 187 hits of potential candidate genes for the seed quality SNP-trait associations. PMID:27066036

  19. Cytogenetic and Molecular Characterization of B-Genome Introgression Lines of Brassica napus L.

    PubMed Central

    Dhaliwal, Inderpreet; Mason, Annaliese S.; Banga, Shashi; Bharti, Sakshi; Kaur, Beerpal; Gurung, Allison Mary; Salisbury, Phillip Anthony; Batley, Jacqueline; Banga, Surinder Singh

    2016-01-01

    Brassica napus introgression lines (ILs), having B-genome segments from B. carinata, were assessed genetically for extent of introgression and phenotypically for siliqua shatter resistance. Introgression lines had 7–9% higher DNA content, were meiotically stable, and had almost normal pollen fertility/seed set. Segment introgressions were confirmed by fluorescent genomic in situ hybridization (fl-GISH), SSR analyses, and SNP studies. Genotyping with 48 B-genome specific SSRs detected substitutions from B3, B4, B6, and B7 chromosomes on 39 of the 69 ILs whereas SNP genotyping detected a total of 23 B-segments (≥3 Mb) from B4, B6, and B7 introgressed into 10 of the 19 (C1, C2, C3, C5, C6, C8, C9, A3, A9, A10) chromosomes in 17 ILs. The size of substitutions varied from 3.0 Mb on chromosome A9 (IL59) to 42.44 Mb on chromosome C2 (IL54), ranging from 7 to 83% of the recipient chromosome. Average siliqua strength in ILs was observed to be higher than that of B. napus parents (2.2–6.0 vs. 1.9–4.0 mJ) while siliqua strength in some of the lines was almost equal to that of the donor parent B. carinata (6.0 vs.7.2 mJ). These ILs, with large chunks of substituted B-genome, can prove to be a useful prebreeding resource for germplasm enhancement in B. napus, especially for siliqua shatter resistance. PMID:27821632

  20. A Candidate Gene-Based Association Study of Tocopherol Content and Composition in Rapeseed (Brassica napus)

    PubMed Central

    Fritsche, Steffi; Wang, Xingxing; Li, Jinquan; Stich, Benjamin; Kopisch-Obuch, Friedrich J.; Endrigkeit, Jessica; Leckband, Gunhild; Dreyer, Felix; Friedt, Wolfgang; Meng, Jinling; Jung, Christian

    2012-01-01

    Rapeseed (Brassica napus L.) is the most important oil crop of temperate climates. Rapeseed oil contains tocopherols, also known as vitamin E, which is an indispensable nutrient for humans and animals due to its antioxidant and radical scavenging abilities. Moreover, tocopherols are also important for the oxidative stability of vegetable oils. Therefore, seed oil with increased tocopherol content or altered tocopherol composition is a target for breeding. We investigated the role of nucleotide variations within candidate genes from the tocopherol biosynthesis pathway. Field trials were carried out with 229 accessions from a worldwide B. napus collection which was divided into two panels of 96 and 133 accessions. Seed tocopherol content and composition were measured by HPLC. High heritabilities were found for both traits, ranging from 0.62 to 0.94. We identified polymorphisms by sequencing selected regions of the tocopherol genes from the 96 accession panel. Subsequently, we determined the population structure (Q) and relative kinship (K) as detected by genotyping with genome-wide distributed SSR markers. Association studies were performed using two models, the structure-based GLM + Q and the PK-mixed model. Between 26 and 12 polymorphisms within two genes (BnaX.VTE3.a, BnaA.PDS1.c) were significantly associated with tocopherol traits. The SNPs explained up to 16.93% of the genetic variance for tocopherol composition and up to 10.48% for total tocopherol content. Based on the sequence information we designed CAPS markers for genotyping the 133 accessions from the second panel. Significant associations with various tocopherol traits confirmed the results from the first experiment. We demonstrate that the polymorphisms within the tocopherol genes clearly impact tocopherol content and composition in B. napus seeds. We suggest that these nucleotide variations may be used as selectable markers for breeding rapeseed with enhanced tocopherol quality. PMID:22740840

  1. A candidate gene-based association study of tocopherol content and composition in rapeseed (Brassica napus).

    PubMed

    Fritsche, Steffi; Wang, Xingxing; Li, Jinquan; Stich, Benjamin; Kopisch-Obuch, Friedrich J; Endrigkeit, Jessica; Leckband, Gunhild; Dreyer, Felix; Friedt, Wolfgang; Meng, Jinling; Jung, Christian

    2012-01-01

    Rapeseed (Brassica napus L.) is the most important oil crop of temperate climates. Rapeseed oil contains tocopherols, also known as vitamin E, which is an indispensable nutrient for humans and animals due to its antioxidant and radical scavenging abilities. Moreover, tocopherols are also important for the oxidative stability of vegetable oils. Therefore, seed oil with increased tocopherol content or altered tocopherol composition is a target for breeding. We investigated the role of nucleotide variations within candidate genes from the tocopherol biosynthesis pathway. Field trials were carried out with 229 accessions from a worldwide B. napus collection which was divided into two panels of 96 and 133 accessions. Seed tocopherol content and composition were measured by HPLC. High heritabilities were found for both traits, ranging from 0.62 to 0.94. We identified polymorphisms by sequencing selected regions of the tocopherol genes from the 96 accession panel. Subsequently, we determined the population structure (Q) and relative kinship (K) as detected by genotyping with genome-wide distributed SSR markers. Association studies were performed using two models, the structure-based GLM + Q and the PK-mixed model. Between 26 and 12 polymorphisms within two genes (BnaX.VTE3.a, BnaA.PDS1.c) were significantly associated with tocopherol traits. The SNPs explained up to 16.93% of the genetic variance for tocopherol composition and up to 10.48% for total tocopherol content. Based on the sequence information we designed CAPS markers for genotyping the 133 accessions from the second panel. Significant associations with various tocopherol traits confirmed the results from the first experiment. We demonstrate that the polymorphisms within the tocopherol genes clearly impact tocopherol content and composition in B. napus seeds. We suggest that these nucleotide variations may be used as selectable markers for breeding rapeseed with enhanced tocopherol quality.

  2. Decreased seed oil production in FUSCA3 Brassica napus mutant plants.

    PubMed

    Elahi, Nosheen; Duncan, Robert W; Stasolla, Claudio

    2015-11-01

    Canola (Brassica napus L.) oil is extensively utilized for human consumption and industrial applications. Among the genes regulating seed development and participating in oil accumulation is FUSCA3 (FUS3), a member of the plant-specific B3-domain family of transcription factors. To evaluate the role of this gene during seed storage deposition, three BnFUSCA3 (BnFUS3) TILLING mutants were generated. Mutations occurring downstream of the B3 domain reduced silique number and repressed seed oil level resulting in increased protein content in developing seeds. BnFUS3 mutant seeds also had increased levels of linoleic acid, possibly due to the reduced expression of ω-3 FA DESATURASE (FAD3). These observed phenotypic alterations were accompanied by the decreased expression of genes encoding transcription factors stimulating fatty acid (FA) synthesis: LEAFY COTYLEDON1 and 2 (LEC1 and 2) ABSCISIC ACID-INSENSITIVE 3 (BnABI3) and WRINKLED1 (WRI1). Additionally, expression of genes encoding enzymes involved in sucrose metabolism, glycolysis, and FA modifications were down-regulated in developing seeds of the mutant plants. Collectively, these transcriptional changes support altered sucrose metabolism and reduced glycolytic activity, diminishing the carbon pool available for the synthesis of FA and ultimately seed oil production. Based on these observations, it is suggested that targeted manipulations of BnFUS3 can be used as a tool to influence oil accumulation in the economically important species B. napus.

  3. Comparative Proteomic Analysis of Brassica napus in Response to Drought Stress.

    PubMed

    Koh, Jin; Chen, Gang; Yoo, Mi-Jeong; Zhu, Ning; Dufresne, Daniel; Erickson, John E; Shao, Hongbo; Chen, Sixue

    2015-08-07

    Drought is one of the most widespread stresses leading to retardation of plant growth and development. We examined proteome changes of an important oil seed crop, canola (Brassica napus L.), under drought stress over a 14-day period. Using iTRAQ LC-MS/MS, we identified 1976 proteins expressed during drought stress. Among them, 417 proteins showed significant changes in abundance, and 136, 244, 286, and 213 proteins were differentially expressed in the third, seventh, 10th, and 14th day of stress, respectively. Functional analysis indicated that the number of proteins associated with metabolism, protein folding and degradation, and signaling decreased, while those related to energy (photosynthesis), protein synthesis, and stress and defense increased in response to drought stress. The seventh and 10th-day profiles were similar to each other but with more post-translational modifications (PTMs) at day 10. Interestingly, 181 proteins underwent PTMs; 49 of them were differentially changed in drought-stressed plants, and 33 were observed at the 10th day. Comparison of protein expression changes with those of gene transcription showed a positive correlation in B. napus, although different patterns between transcripts and proteins were observed at each time point. Under drought stress, most protein abundance changes may be attributed to gene transcription, and PTMs clearly contribute to protein diversity and functions.

  4. Species-wide genome sequence and nucleotide polymorphisms from the model allopolyploid plant Brassica napus.

    PubMed

    Schmutzer, Thomas; Samans, Birgit; Dyrszka, Emmanuelle; Ulpinnis, Chris; Weise, Stephan; Stengel, Doreen; Colmsee, Christian; Lespinasse, Denis; Micic, Zeljko; Abel, Stefan; Duchscherer, Peter; Breuer, Frank; Abbadi, Amine; Leckband, Gunhild; Snowdon, Rod; Scholz, Uwe

    2015-12-08

    Brassica napus (oilseed rape, canola) is one of the world's most important sources of vegetable oil for human nutrition and biofuel, and also a model species for studies investigating the evolutionary consequences of polyploidisation. Strong bottlenecks during its recent origin from interspecific hybridisation, and subsequently through intensive artificial selection, have severely depleted the genetic diversity available for breeding. On the other hand, high-throughput genome profiling technologies today provide unprecedented scope to identify, characterise and utilise genetic diversity in primary and secondary crop gene pools. Such methods also enable implementation of genomic selection strategies to accelerate breeding progress. The key prerequisite is availability of high-quality sequence data and identification of high-quality, genome-wide sequence polymorphisms representing relevant gene pools. We present comprehensive genome resequencing data from a panel of 52 highly diverse natural and synthetic B. napus accessions, along with a stringently selected panel of 4.3 million high-confidence, genome-wide SNPs. The data is of great interest for genomics-assisted breeding and for evolutionary studies on the origins and consequences in allopolyploidisation in plants.

  5. New NIRS calibrations for fiber fractions reveal broad genetic variation in Brassica napus seed quality.

    PubMed

    Wittkop, Benjamin; Snowdon, Rod J; Friedt, Wolfgang

    2012-03-07

    Near-infrared reflectance spectroscopy (NIRS) calibrations were developed for the estimation of neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) in intact seeds of oilseed rape ( Brassica napus ). A set of 338 diverse winter oilseed rape genotypes showing broad variation for seed color was used as a basis for the new calibrations. Different calibrations were generated for 10 or 1 mL seed volumes, respectively. In both seed volumes good coefficients of determination for external validation (R(2)) of the calibrations were obtained for ADL, the major antinutritional fiber fraction in oilseed rape meal, and adequate calibrations for NDF and ADF. Evaluation of diverse B. napus germplasm with the new calibrations revealed a surprisingly broad variation in contents of ADL in dark-seeded oilseed rape. The ability to use NIRS for efficient selection of low-fiber genotypes, irrespective of seed color, represents an important breakthrough in breeding for improved nutritional quality of seed extraction meals from oilseed rape.

  6. Genome-Wide Association Study of Genetic Control of Seed Fatty Acid Biosynthesis in Brassica napus

    PubMed Central

    Gacek, Katarzyna; Bayer, Philipp E.; Bartkowiak-Broda, Iwona; Szala, Laurencja; Bocianowski, Jan; Edwards, David; Batley, Jacqueline

    2017-01-01

    Fatty acids and their composition in seeds determine oil value for nutritional or industrial purposes and also affect seed germination as well as seedling establishment. To better understand the genetic basis of seed fatty acid biosynthesis in oilseed rape (Brassica napus L.) we applied a genome-wide association study, using 91,205 single nucleotide polymorphisms (SNPs) characterized across a mapping population with high-resolution skim genotyping by sequencing (SkimGBS). We identified a cluster of loci on chromosome A05 associated with oleic and linoleic seed fatty acids. The delineated genomic region contained orthologs of the Arabidopsis thaliana genes known to play a role in regulation of seed fatty acid biosynthesis such as Fatty acyl-ACP thioesterase B (FATB) and Fatty Acid Desaturase (FAD5). This approach allowed us to identify potential functional genes regulating fatty acid composition in this important oil producing crop and demonstrates that this approach can be used as a powerful tool for dissecting complex traits for B. napus improvement programs. PMID:28163710

  7. Proteomic and comparative genomic analysis of two Brassica napus lines differing in oil content.

    PubMed

    Gan, Lu; Zhang, Chun-yu; Wang, Xiao-dong; Wang, Hao; Long, Yan; Yin, Yong-tai; Li, Dian-rong; Tian, Jian-Hua; Li, Zai-yun; Lin, Zhi-wei; Yu, Long-Jiang; Li, Mao-Teng

    2013-11-01

    Ultrastructural observations, combined with proteomic and comparative genomic analyses, were applied to interpret the differences in protein composition and oil-body characteristics of mature seed of two Brassica napus lines with high and low oil contents of 55.19% and 36.49%, respectively. The results showed that oil bodies were arranged much closer in the high than in the low oil content line, and differences in cell size and thickness of cell walls were also observed. There were 119 and 32 differentially expressed proteins (DEPs) of total and oil-body proteins identified. The 119 DEPs of total protein were mainly involved in the oil-related, dehydration-related, storage and defense/disease, and some of these may be related to oil formation. The DEPs involved with dehydration-related were both detected in total and oil-body proteins for high and low oil lines and may be correlated with the number and size of oil bodies in the different lines. Some genes that corresponded to DEPs were confirmed by quantitative trait loci (QTL) mapping analysis for oil content. The results revealed that some candidate genes deduced from DEPs were located in the confidence intervals of QTL for oil content. Finally, the function of one gene that coded storage protein was verified by using a collection of Arabidopsis lines that can conditionally express the full length cDNA from developing seeds of B. napus.

  8. Fine mapping of a dominant gene conferring chlorophyll-deficiency in Brassica napus

    PubMed Central

    Wang, Yankun; He, Yongjun; Yang, Mao; He, Jianbo; Xu, Pan; Shao, Mingquan; Chu, Pu; Guan, Rongzhan

    2016-01-01

    Leaf colour regulation is important in photosynthesis and dry material production. Most of the reported chlorophyll-deficient loci are recessive. The dominant locus is rarely reported, although it may be more important than the recessive locus in the regulation of photosynthesis efficiency. During the present study, we mapped a chlorophyll-deficient dominant locus (CDE1) from the ethyl methanesulfonate-mutagenized Brassica napus line NJ7982. Using an F2 population derived from the chlorophyll-deficient mutant (cde1) and the canola variety ‘zhongshuang11’, a high-density linkage map was constructed, consisting of 19 linkage groups with 2,878 bins containing 13,347 SNP markers, with a total linkage map length of 1,968.6 cM. Next, the CDE1 locus was mapped in a 0.9-cM interval of chromosome C08 of B. napus, co-segregating with nine SNP markers. In the following fine-mapping of the gene using the inherited F2:3 populations of 620 individuals, the locus was identified in an interval with a length of 311 kb. A bioinformatics analysis revealed that the mapping interval contained 22 genes. These results produced a good foundation for continued research on the dominant locus involved in chlorophyll content regulation. PMID:27506952

  9. Mating system of Brassica napus and its relationship with morphological and ecological parameters in northwestern Spain.

    PubMed

    Soengas, Pilar; Velasco, Pablo; Vilar, Marta; Cartea, Maria Elena

    2013-01-01

    Mating systems play a central role in determining population genetic structure and the methods to be used to develop new cultivars and preserve the variability of a crop. A Brassica napus crop called nabicol is grown in northwestern Spain. Knowledge on its mating system is needed in order to manage the germplasm correctly and design breeding strategies. The aims of this work were to study the mating system of nabicol under field conditions and the relationship of different traits with the mating system. We analyzed 2 populations with microsatellites using a multilocus approach, finding that both had a mixed mating system with an outcrossing rate of 30%. This system would allow application of breeding methods for both autogamous and allogamous species in order to improve nabicol populations. Nabicol populations should be multiplied in isolation conditions in the same way as allogamous species in order to avoid contamination and preserve genetic integrity. The relationship of outcrossing rate, phenological, ecological, and morphological traits was studied, but the model explained only a small percentage of the variability. None of the traits studied could be used as indirect selection criteria for a type of mating system under the conditions of northwestern Spain. This is the first work that studies in depth the possible causes of the mixed mating system of B. napus, finding that, surprisingly, it is not related to the most obvious factors.

  10. Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase.

    PubMed

    Yu, Bianyun; Lydiate, Derek J; Young, Lester W; Schäfer, Ulrike A; Hannoufa, Abdelali

    2008-08-01

    The accumulation of carotenoids in higher plants is regulated by the environment, tissue type and developmental stage. In Brassica napus leaves, beta-carotene and lutein were the main carotenoids present while petals primarily accumulated lutein and violaxanthin. Carotenoid accumulation in seeds was developmentally regulated with the highest levels detected at 35-40 days post anthesis. The carotenoid biosynthesis pathway branches after the formation of lycopene. One branch forms carotenoids with two beta rings such as beta-carotene, zeaxanthin and violaxanthin, while the other introduces both beta- and epsilon-rings in lycopene to form alpha-carotene and lutein. By reducing the expression of lycopene epsilon-cyclase (epsilon-CYC) using RNAi, we investigated altering carotenoid accumulation in seeds of B. napus. Transgenic seeds expressing this construct had increased levels of beta-carotene, zeaxanthin, violaxanthin and, unexpectedly, lutein. The higher total carotenoid content resulting from reduction of epsilon-CYC expression in seeds suggests that this gene is a rate-limiting step in the carotenoid biosynthesis pathway. epsilon-CYC activity and carotenoid production may also be related to fatty acid biosynthesis in seeds as transgenic seeds showed an overall decrease in total fatty acid content and minor changes in the proportions of various fatty acids.

  11. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.)

    PubMed Central

    Xu, Liping; Hu, Kaining; Zhang, Zhenqian; Guan, Chunyun; Chen, Song; Hua, Wei; Li, Jiana; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong

    2016-01-01

    Flowering time adaptation is a major breeding goal in the allopolyploid species Brassica napus. To investigate the genetic architecture of flowering time, a genome-wide association study (GWAS) of flowering time was conducted with a diversity panel comprising 523 B. napus cultivars and inbred lines grown in eight different environments. Genotyping was performed with a Brassica 60K Illumina Infinium SNP array. A total of 41 single-nucleotide polymorphisms (SNPs) distributed on 14 chromosomes were found to be associated with flowering time, and 12 SNPs located in the confidence intervals of quantitative trait loci (QTL) identified in previous researches based on linkage analyses. Twenty-five candidate genes were orthologous to Arabidopsis thaliana flowering genes. To further our understanding of the genetic factors influencing flowering time in different environments, GWAS was performed on two derived traits, environment sensitivity and temperature sensitivity. The most significant SNPs were found near Bn-scaff_16362_1-p380982, just 13 kb away from BnaC09g41990D, which is orthologous to A. thaliana CONSTANS (CO), an important gene in the photoperiod flowering pathway. These results provide new insights into the genetic control of flowering time in B. napus and indicate that GWAS is an effective method by which to reveal natural variations of complex traits in B. napus. PMID:26659471

  12. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.).

    PubMed

    Xu, Liping; Hu, Kaining; Zhang, Zhenqian; Guan, Chunyun; Chen, Song; Hua, Wei; Li, Jiana; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong

    2016-02-01

    Flowering time adaptation is a major breeding goal in the allopolyploid species Brassica napus. To investigate the genetic architecture of flowering time, a genome-wide association study (GWAS) of flowering time was conducted with a diversity panel comprising 523 B. napus cultivars and inbred lines grown in eight different environments. Genotyping was performed with a Brassica 60K Illumina Infinium SNP array. A total of 41 single-nucleotide polymorphisms (SNPs) distributed on 14 chromosomes were found to be associated with flowering time, and 12 SNPs located in the confidence intervals of quantitative trait loci (QTL) identified in previous researches based on linkage analyses. Twenty-five candidate genes were orthologous to Arabidopsis thaliana flowering genes. To further our understanding of the genetic factors influencing flowering time in different environments, GWAS was performed on two derived traits, environment sensitivity and temperature sensitivity. The most significant SNPs were found near Bn-scaff_16362_1-p380982, just 13 kb away from BnaC09g41990D, which is orthologous to A. thaliana CONSTANS (CO), an important gene in the photoperiod flowering pathway. These results provide new insights into the genetic control of flowering time in B. napus and indicate that GWAS is an effective method by which to reveal natural variations of complex traits in B. napus.

  13. Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus.

    PubMed

    Hatzig, Sarah V; Frisch, Matthias; Breuer, Frank; Nesi, Nathalie; Ducournau, Sylvie; Wagner, Marie-Helene; Leckband, Gunhild; Abbadi, Amine; Snowdon, Rod J

    2015-01-01

    Rapid and uniform seed germination is a crucial prerequisite for crop establishment and high yield levels in crop production. A disclosure of genetic factors contributing to adequate seed vigor would help to further increase yield potential and stability. Here we carried out a genome-wide association study in order to define genomic regions influencing seed germination and early seedling growth in oilseed rape (Brassica napus L.). A population of 248 genetically diverse winter-type B. napus accessions was genotyped with the Brassica 60k SNP Illumina genotyping array. Automated high-throughput in vitro phenotyping provided extensive data for multiple traits related to germination and early vigor, such as germination speed, absolute germination rate and radicle elongation. The data obtained indicate that seed germination and radicle growth are strongly environmentally dependent, but could nevertheless be substantially improved by genomic-based breeding. Conditions during seed production and storage were shown to have a profound effect on seed vigor, and a variable manifestation of seed dormancy appears to contribute to differences in germination performance in B. napus. Several promising positional and functional candidate genes could be identified within the genomic regions associated with germination speed, absolute germination rate, radicle growth and thousand seed weight. These include B. napus orthologs of the Arabidopsis thaliana genes SNOWY COTYLEDON 1 (SCO1), ARABIDOPSIS TWO-COMPONENT RESPONSE REGULATOR (ARR4), and ARGINYL-t-RNA PROTEIN TRANSFERASE 1 (ATE1), which have been shown previously to play a role in seed germination and seedling growth in A. thaliana.

  14. Transformation of Brassica napus and Brassica oleracea Using Agrobacterium tumefaciens and the Expression of the bar and neo Genes in the Transgenic Plants

    PubMed Central

    De Block, Marc; De Brouwer, Dirk; Tenning, Paul

    1989-01-01

    An efficient and largely genotype-independent transformation method for Brassica napus and Brassica oleracea was established based on neo or bar as selectable marker genes. Hypocotyl explants of Brassica napus and Brassica oleracea cultivars were infected with Agrobacterium strains containing chimeric neo and bar genes. The use of AgNO3 was a prerequisite for efficient shoot regeneration under selective conditions. Vitrification was avoided by decreasing the water potential of the medium, by decreasing the relative humidity in the tissue culture vessel, and by lowering the cytokinin concentration. In this way, rooted transformed shoots were obtained with a 30% efficiency in 9 to 12 weeks. Southern blottings and genetic analysis of S1-progeny showed that the transformants contained on average between one and three copies of the chimeric genes. A wide range of expression levels of the chimeric genes was observed among independent transformants. Up to 25% of the transformants showed no detectable phosphinotricin acetyltransferase or neomycin phosphotransferase II enzyme activities although Southern blottings demonstrated that these plants were indeed transformed. Images Figure 1 Figure 2 PMID:16667089

  15. Reducing progoitrin and enriching glucoraphanin in Brassica napus seeds through silencing of the GSL-ALK gene family.

    PubMed

    Liu, Zheng; Hirani, Arvind H; McVetty, Peter B E; Daayf, Fouad; Quiros, Carlos F; Li, Genyi

    2012-05-01

    The hydrolytic products of glucosinolates in brassica crops are bioactive compounds. Some glucosinolate derivatives such as oxazolidine-2-thione from progoitrin in brassica oilseed meal are toxic and detrimental to animals, but some isothiocyanates such as sulforaphane are potent anti-carcinogens that have preventive effects on several human cancers. In most B. rapa, B. napus and B. juncea vegetables and oilseeds, there is no or only trace amount of glucoraphanin that is the precursor to sulforaphane. In this paper, RNA interference (RNAi) of the GSL-ALK gene family was used to down-regulate the expression of GSL-ALK genes in B. napus. The detrimental glucosinolate progoitrin was reduced by 65 %, and the beneficial glucosinolate glucoraphanin was increased to a relatively high concentration (42.6 μmol g(-1) seed) in seeds of B. napus transgenic plants through silencing of the GSL-ALK gene family. Therefore, there is potential application of the new germplasm with reduced detrimental glucosinolates and increased beneficial glucosinolates for producing improved brassica vegetables.

  16. Mapping the mosaic of ancestral genotypes in a cultivar of oilseed rape (Brassica napus) selected via pedigree breeding.

    PubMed

    Sharpe, A G; Lydiate, D J

    2003-06-01

    Recent oilseed rape breeding has produced low glucosinolate cultivars that yield proteinaceous meal suitable for animal feed. The low glucosinolate character was introduced into modern cultivars from Brassica napus 'Bronowski', a cultivar that is agronomically inferior in most other respects. Residual segments of 'Bronowski' genotype in modern cultivars probably cause reduced yield, poorer winter hardiness, and lower oil content. The quantity and distribution of the 'Bronowski' genotype in the modern oilseed rape cultivar Brassica napus 'Tapidor' was investigated using a segregating population derived from a cross between 'Tapidor' and its high glucosinolate progenitor. This population was analyzed with 65 informative Brassica RFLP probes and a genetic linkage map, based on the segregation at 77 polymorphic loci, was constructed. The mapping identified 15 residual segments of donor genotype in 'Tapidor', which together occupy approximately 29% of the B. napus genome. Mapping the loci that control variation for the accumulation of total seed glucosinolates in the segregating population has identified three loci that together explain >90% of the variation for this character. All of these loci are in donor segments of the 'Tapidor' genome. This result shows the extent to which conventional breeding programmes have difficulty in eliminating residual segments of donor genotype from elite material.

  17. MicroRNAs and their putative targets in Brassica napus seed maturation

    PubMed Central

    2013-01-01

    Background MicroRNAs (miRNAs) are 20–21 nucleotide RNA molecules that suppress the transcription of target genes and may also inhibit translation. Despite the thousands of miRNAs identified and validated in numerous plant species, only small numbers have been identified from the oilseed crop plant Brassica napus (canola) – especially in seeds. Results Using next-generation sequencing technologies, we performed a comprehensive analysis of miRNAs during seed maturation at 9 time points from 10 days after flowering (DAF) to 50 DAF using whole seeds and included separate analyses of radicle, hypocotyl, cotyledon, embryo, endosperm and seed coat tissues at 4 selected time points. We identified more than 500 conserved miRNA or variant unique sequences with >300 sequence reads and also found 10 novel miRNAs. Only 27 of the conserved miRNA sequences had been previously identified in B. napus (miRBase Release 18). More than 180 MIRNA loci were identified/annotated using the B. rapa genome as a surrogate for the B.napus A genome. Numerous miRNAs were expressed in a stage- or tissue-specific manner suggesting that they have specific functions related to the fine tuning of transcript abundance during seed development. miRNA targets in B. napus were predicted and their expression patterns profiled using microarray analyses. Global correlation analysis of the expression patterns of miRNAs and their targets revealed complex miRNA-target gene regulatory networks during seed development. The miR156 family was the most abundant and the majority of the family members were primarily expressed in the embryo. Conclusions Large numbers of miRNAs with diverse expression patterns, multiple-targeting and co-targeting of many miRNAs, and complex relationships between expression of miRNAs and targets were identified in this study. Several key miRNA-target expression patterns were identified and new roles of miRNAs in regulating seed development are suggested. miR156, miR159, miR172, mi

  18. Molecular characterization of the S locus in two self-incompatible Brassica napus lines.

    PubMed Central

    Yu, K; Schafer, U; Glavin, T L; Goring, D R; Rothstein, S J

    1996-01-01

    In Brassica species, self-incompatibility has been mapped genetically to a single chromosomal location. In this region, there are two closely linked genes coding for the S locus glycoprotein (SLG) and S locus receptor kinase (SRK). They appear to comprise the pistil component of the self-incompatibility reaction. SLG and SRK are thought to recognize an unknown pollen component on the incompatible pollen, and the gene encoding this pollen component must also be linked to the SLG and SRK genes. To further our understanding of self-incompatibility, the chromosomal region carrying the SLG and SRK genes has been studied. The physical region between the SLG-910 and the SRK-910 genes in the Brassica napus W1 line was cloned, and a search for genes expressed in the anther revealed two additional S locus genes located downstream of the SLG-910 gene. Because these two genes are novel and are conserved at other S alleles, we designated them as SLL1 and SLL2 (for S locus-linked genes 1 and 2, respectively). The SLL1 gene is S locus specific, whereas the SLL2 gene is not only present at the S locus but is also present in other parts of the genomes in both self-incompatible and self-compatible Brassica ssp lines. Expression of the SLL1 gene is only detectable in anthers of self-incompatible plants and is developmentally regulated during anther development, whereas the SLL2 gene is expressed in anthers and stigmas in both self-incompatible and self-compatible plants, with the highest levels of expression occurring in the stigmas. Although SLL1 and SLL2 are linked to the S locus region, it is not clear whether these genes function in self-incompatibility or serve some other cellular roles in pollen-pistil functions. PMID:8989888

  19. Genome-Wide Association and Transcriptome Analyses Reveal Candidate Genes Underlying Yield-determining Traits in Brassica napus

    PubMed Central

    Lu, Kun; Peng, Liu; Zhang, Chao; Lu, Junhua; Yang, Bo; Xiao, Zhongchun; Liang, Ying; Xu, Xingfu; Qu, Cunmin; Zhang, Kai; Liu, Liezhao; Zhu, Qinlong; Fu, Minglian; Yuan, Xiaoyan; Li, Jiana

    2017-01-01

    Yield is one of the most important yet complex crop traits. To improve our understanding of the genetic basis of yield establishment, and to identify candidate genes responsible for yield improvement in Brassica napus, we performed genome-wide association studies (GWAS) for seven yield-determining traits [main inflorescence pod number (MIPN), branch pod number (BPN), pod number per plant (PNP), seed number per pod (SPP), thousand seed weight, main inflorescence yield (MIY), and branch yield], using data from 520 diverse B. napus accessions from two different yield environments. In total, we detected 128 significant single nucleotide polymorphisms (SNPs), 93 of which were revealed as novel by integrative analysis. A combination of GWAS and transcriptome sequencing on 21 haplotype blocks from samples pooled by four extremely high-yielding or low-yielding accessions revealed the differential expression of 14 crucial candiate genes (such as Bna.MYB83, Bna.SPL5, and Bna.ROP3) associated with multiple traits or containing multiple SNPs associated with the same trait. Functional annotation and expression pattern analyses further demonstrated that these 14 candiate genes might be important in developmental processes and biomass accumulation, thus affecting the yield establishment of B. napus. These results provide valuable information for understanding the genetic mechanisms underlying the establishment of high yield in B. napus, and lay the foundation for developing high-yielding B. napus varieties. PMID:28261256

  20. Long-term monitoring of feral genetically modified herbicide-tolerant Brassica napus populations around unloading Japanese ports

    PubMed Central

    Katsuta, Kensuke; Matsuo, Kazuhito; Yoshimura, Yasuyuki; Ohsawa, Ryo

    2015-01-01

    Genetically modified, herbicide-tolerant (GMHT) Brassica napus plants originating from seed spill have recently been found along roadsides leading from Japanese ports that unload oilseed rape. Such introductions have potential biodiversity effects (as defined by the Cartagena Protocol): these include replacement of native elements in the biota through competitive suppression or hybridization. We conducted surveys in the period 2006–2011 to assess such threats. We examined shifts in the population distribution and occurrence of GMHT plants in 1,029 volunteer introduced assemblages of B. napus, 1,169 of B. juncea, and 184 of B. rapa around 12 ports. GMHT B. napus was found around 10 of 12 ports, but its proportion in the populations varied greatly by year and location. Over the survey period, the distributions of a pure non-GMHT population around Tobata and a pure GMHT population around Hakata increased significantly. However, there was no common trend of population expansion or contraction around the 12 ports. Furthermore, we found no herbicide tolerant B. juncea and B. rapa plants derived from crosses with GMHT B. napus. Therefore, GMHT B. napus is not invading native vegetation surrounding its populations and not likely to cross with congeners in Japanese environment. PMID:26175624

  1. Population Genomic Analysis Reveals Differential Evolutionary Histories and Patterns of Diversity across Subgenomes and Subpopulations of Brassica napus L.

    PubMed Central

    Gazave, Elodie; Tassone, Erica E.; Ilut, Daniel C.; Wingerson, Megan; Datema, Erwin; Witsenboer, Hanneke M. A.; Davis, James B.; Grant, David; Dyer, John M.; Jenks, Matthew A.; Brown, Jack; Gore, Michael A.

    2016-01-01

    The allotetraploid species Brassica napus L. is a global crop of major economic importance, providing canola oil (seed) and vegetables for human consumption and fodder and meal for livestock feed. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this species. We used sequence-based genotyping to identify and genotype 30,881 SNPs in a diversity panel of 782 B. napus accessions, representing samples of winter and spring growth habits originating from 33 countries across Europe, Asia, and America. We detected strong population structure broadly concordant with growth habit and geography, and identified three major genetic groups: spring (SP), winter Europe (WE), and winter Asia (WA). Subpopulation-specific polymorphism patterns suggest enriched genetic diversity within the WA group and a smaller effective breeding population for the SP group compared to WE. Interestingly, the two subgenomes of B. napus appear to have different geographic origins, with phylogenetic analysis placing WE and WA as basal clades for the other subpopulations in the C and A subgenomes, respectively. Finally, we identified 16 genomic regions where the patterns of diversity differed markedly from the genome-wide average, several of which are suggestive of genomic inversions. The results obtained in this study constitute a valuable resource for worldwide breeding efforts and the genetic dissection and prediction of complex B. napus traits. PMID:27148342

  2. Differential accumulation of phenolic compounds and expression of related genes in black- and yellow-seeded Brassica napus.

    PubMed

    Qu, Cunmin; Fu, Fuyou; Lu, Kun; Zhang, Kai; Wang, Rui; Xu, Xinfu; Wang, Min; Lu, Junxing; Wan, Huafang; Zhanglin, Tang; Li, Jiana

    2013-07-01

    Developing yellow-seeded Brassica napus (rapeseed) with improved qualities is a major breeding goal. The intermediate and final metabolites of the phenylpropanoid and flavonoid pathways affect not only oil quality but also seed coat colour of B. napus. Here, the accumulation of phenolic compounds was analysed in the seed coats of black-seeded (ZY821) and yellow-seeded (GH06) B. napus. Using toluidine blue O staining and liquid chromatography-mass spectrometry, histochemical and biochemical differences were identified in the accumulation of phenolic compounds between ZY821 and GH06. Two and 13 unique flavonol derivatives were detected in ZY821 and GH06, respectively. Quantitative real-time PCR analysis revealed significant differences between ZY821 and GH06 in the expression of common phenylpropanoid biosynthetic genes (BnPAL and BnC4H), common flavonoid biosynthetic genes (BnTT4 and BnTT6), anthocyanin- and proanthocyandin-specific genes (BnTT3 and BnTT18), proanthocyandin-specific genes (BnTT12, BnTT10, and BnUGT2) and three transcription factor genes (BnTTG1, BnTTG2, and BnTT8) that function in the flavonoid biosynthetic pathway. These data provide insight into pigment accumulation in B. napus, and serve as a useful resource for researchers analysing the formation of seed coat colour and the underlying regulatory mechanisms in B. napus.

  3. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1.

    PubMed

    Elahi, Nosheen; Duncan, Robert W; Stasolla, Claudio

    2016-03-01

    Over the last few decades, research focusing on canola (Brassica napus L.) seed oil content and composition has expanded. Oil production and accumulation are influenced by genes participating in embryo and seed development. The Arabidopsis LEAFY COTYLEDON1 (LEC1) is a well characterized regulator of embryo development that also enhances the expression of genes involved in fatty acid (FA) synthesis. B. napus lines over-expressing or down-regulating BnLEC1 were successfully generated by Agrobacterium-mediated transformation. The constitutive expression of BnLEC1 in B. napus var. Polo, increased seed oil content by 7-16%, while the down-regulation of BnLEC1 in B. napus var. Topas reduced oil content by 9-12%. Experimental manipulation of BnLEC1 caused transcriptional changes in enzymes participating in sucrose metabolism, glycolysis, and FA biosynthesis, suggesting an enhanced carbon flux towards FA biosynthesis in tissues over-expressing BnLEC1. The increase in oil content induced by BnLEC1 was not accompanied by alterations in FA composition, oil nutritional value or glucosinolate (GLS) levels. Suppression of BnLEC1 reduced seed oil accumulation and elevated the level of GLS possibly through the transcriptional regulation of BnST5a (Sulphotransferase5a), the last GLS biosynthetic enzyme. Collectively, these findings demonstrate that experimental alterations of BnLEC1 expression can be used to influence oil production and quality in B. napus.

  4. Population Genomic Analysis Reveals Differential Evolutionary Histories and Patterns of Diversity across Subgenomes and Subpopulations of Brassica napus L.

    PubMed

    Gazave, Elodie; Tassone, Erica E; Ilut, Daniel C; Wingerson, Megan; Datema, Erwin; Witsenboer, Hanneke M A; Davis, James B; Grant, David; Dyer, John M; Jenks, Matthew A; Brown, Jack; Gore, Michael A

    2016-01-01

    The allotetraploid species Brassica napus L. is a global crop of major economic importance, providing canola oil (seed) and vegetables for human consumption and fodder and meal for livestock feed. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this species. We used sequence-based genotyping to identify and genotype 30,881 SNPs in a diversity panel of 782 B. napus accessions, representing samples of winter and spring growth habits originating from 33 countries across Europe, Asia, and America. We detected strong population structure broadly concordant with growth habit and geography, and identified three major genetic groups: spring (SP), winter Europe (WE), and winter Asia (WA). Subpopulation-specific polymorphism patterns suggest enriched genetic diversity within the WA group and a smaller effective breeding population for the SP group compared to WE. Interestingly, the two subgenomes of B. napus appear to have different geographic origins, with phylogenetic analysis placing WE and WA as basal clades for the other subpopulations in the C and A subgenomes, respectively. Finally, we identified 16 genomic regions where the patterns of diversity differed markedly from the genome-wide average, several of which are suggestive of genomic inversions. The results obtained in this study constitute a valuable resource for worldwide breeding efforts and the genetic dissection and prediction of complex B. napus traits.

  5. Population genomic analysis reveals differential evolutionary histories and patterns of diversity across subgenomes and subpopulations of Brassica napus L.

    DOE PAGES

    Gazave, Elodie; Tassone, Erica E.; Ilut, Daniel C.; ...

    2016-04-21

    Here, the allotetraploid species Brassica napus L. is a global crop of major economic importance, providing canola oil (seed) and vegetables for human consumption and fodder and meal for livestock feed. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this species. We used sequence-based genotyping to identify and genotype 30,881 SNPs in a diversity panel of 782 B. napus accessions, representing samples of winter and spring growth habits originating from 33 countries across Europe, Asia, and America. We detected strong population structure broadlymore » concordant with growth habit and geography, and identified three major genetic groups: spring (SP), winter Europe (WE), and winter Asia (WA). Subpopulation-specific polymorphism patterns suggest enriched genetic diversity within the WA group and a smaller effective breeding population for the SP group compared to WE. Interestingly, the two subgenomes of B. napus appear to have different geographic origins, with phylogenetic analysis placing WE and WA as basal clades for the other subpopulations in the C and A subgenomes, respectively. Finally, we identified 16 genomic regions where the patterns of diversity differed markedly from the genome-wide average, several of which are suggestive of genomic inversions. The results obtained in this study constitute a valuable resource for worldwide breeding efforts and the genetic dissection and prediction of complex B. napus traits.« less

  6. Repeated Polyploidy Drove Different Levels of Crossover Suppression between Homoeologous Chromosomes in Brassica napus Allohaploids[C][W

    PubMed Central

    Cifuentes, Marta; Eber, Frédérique; Lucas, Marie-Odile; Lode, Maryse; Chèvre, Anne-Marie; Jenczewski, Eric

    2010-01-01

    Allopolyploid species contain more than two sets of related chromosomes (homoeologs) that must be sorted during meiosis to ensure fertility. As polyploid species usually have multiple origins, one intriguing, yet largely underexplored, question is whether different mechanisms suppressing crossovers between homoeologs may coexist within the same polyphyletic species. We addressed this question using Brassica napus, a young polyphyletic allopolyploid species. We first analyzed the meiotic behavior of 363 allohaploids produced from 29 accessions, which represent a large part of B. napus genetic diversity. Two main clear-cut meiotic phenotypes were observed, encompassing a twofold difference in the number of univalents at metaphase I. We then sequenced two chloroplast intergenic regions to gain insight into the maternal origins of the same 29 accessions; only two plastid haplotypes were found, and these correlated with the dichotomy of meiotic phenotypes. Finally, we analyzed genetic diversity at the PrBn locus, which was shown to determine meiotic behavior in a segregating population of B. napus allohaploids. We observed that segregation of two alleles at PrBn could adequately explain a large part of the variation in meiotic behavior found among B. napus allohaploids. Overall, our results suggest that repeated polyploidy resulted in different levels of crossover suppression between homoeologs in B. napus allohaploids. PMID:20639447

  7. Differential accumulation of phenolic compounds and expression of related genes in black- and yellow-seeded Brassica napus

    PubMed Central

    Qu, Cunmin; Fu, Fuyou; Lu, Kun; Zhang, Kai; Wang, Rui; Xu, Xinfu; Wang, Min; Lu, Junxing; Wan, Huafang; Zhanglin, Tang; Li, Jiana

    2013-01-01

    Developing yellow-seeded Brassica napus (rapeseed) with improved qualities is a major breeding goal. The intermediate and final metabolites of the phenylpropanoid and flavonoid pathways affect not only oil quality but also seed coat colour of B. napus. Here, the accumulation of phenolic compounds was analysed in the seed coats of black-seeded (ZY821) and yellow-seeded (GH06) B. napus. Using toluidine blue O staining and liquid chromatography–mass spectrometry, histochemical and biochemical differences were identified in the accumulation of phenolic compounds between ZY821 and GH06. Two and 13 unique flavonol derivatives were detected in ZY821 and GH06, respectively. Quantitative real-time PCR analysis revealed significant differences between ZY821 and GH06 in the expression of common phenylpropanoid biosynthetic genes (BnPAL and BnC4H), common flavonoid biosynthetic genes (BnTT4 and BnTT6), anthocyanin- and proanthocyandin-specific genes (BnTT3 and BnTT18), proanthocyandin-specific genes (BnTT12, BnTT10, and BnUGT2) and three transcription factor genes (BnTTG1, BnTTG2, and BnTT8) that function in the flavonoid biosynthetic pathway. These data provide insight into pigment accumulation in B. napus, and serve as a useful resource for researchers analysing the formation of seed coat colour and the underlying regulatory mechanisms in B. napus. PMID:23698630

  8. Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes.

    PubMed

    Shen, Dan; Suhrkamp, Ina; Wang, Yu; Liu, Shenyi; Menkhaus, Jan; Verreet, Joseph-Alexander; Fan, Longjiang; Cai, Daguang

    2014-11-01

    Verticillium longisporum, a soil-borne pathogenic fungus, causes vascular disease in oilseed rape (Brassica napus). We proposed that plant microRNAs (miRNAs) are involved in the plant-V. longisporum interaction. To identify oilseed rape miRNAs, we deep-sequenced two small RNA libraries made from V. longisporum infected/noninfected roots and employed Brassica rapa and Brassica oleracea genomes as references for miRNA prediction and characterization. We identified 893 B. napus miRNAs representing 360 conserved and 533 novel miRNAs, and mapped 429 and 464 miRNAs to the AA and CC genomes, respectively. Microsynteny analysis with the conserved miRNAs and their flanking protein coding sequences revealed 137 AA-CC genome syntenic miRNA pairs and 61 AA and 42 CC genome-unique miRNAs. Sixty-two miRNAs were responsive to the V. longisporum infection. We present data for specific interactions and simultaneously reciprocal changes in the expression levels of the miRNAs and their targets in the infected roots. We demonstrate that miRNAs are involved in the plant-fungus interaction and that miRNA168-Argonaute 1 (AGO1) expression modulation might act as a key regulatory module in a compatible plant-V. longisporum interaction. Our results suggest that V. longisporum may have evolved a virulence mechanism by interference with plant miRNAs to reprogram plant gene expression and achieve infection.

  9. Development of a population for substantial new type Brassica napus diversified at both A/C genomes.

    PubMed

    Xiao, Yong; Chen, Lunlin; Zou, Jun; Tian, Entang; Xia, Wei; Meng, Jinling

    2010-10-01

    Intersubgenomic heterosis in rapeseed has been revealed in previous studies by using traditional Brassica napus (A(n)A(n)C(n)C(n)) to cross partial new type B. napus with A(r)/C(c) introgression from the genomes of B. rapa and B. carinata, respectively. To further enlarge the genetic basis of B. napus and to facilitate a sustained heterosis breeding in rapeseed, it is crucial to create a population for substantial new type B. napus diversified at both A/C genomes. In this experiment, hundreds of artificial hexaploid plants (A(r)A(r)B(c)B(c)C(c)C(c)) involving hundreds of B. carinata/B. rapa combinations were first crossed with elite lines of partial new type B. napus. The pentaploid plants (AABCC) were open-pollinated in isolated conditions, and their offspring were successively self-pollinated and intensively selected for two generations. Thereafter, a population of substantial new type B. napus mainly with a genomic composition of A(r)A(r)C(c)C(c) harbouring genetic diversity from 25 original cultivars of B. rapa and 72 accessions of B. carinata was constructed. The population was cytologically verified to have the correct chromosome constitution of AACC and differed genetically from traditional B. napus, in terms of the genome components of A(r)/C(c) and B(c) as well as the novel genetic variations induced by the interspecific hybridisation process. Synchronously, rich phenotypic variation with plenty of novel valuable traits was observed in the population. The origin of the novel variations and the value of the population are discussed.

  10. Fitness of hybrids between rapeseed (Brassica napus) and wild Brassica rapa in natural habitats.

    PubMed

    Allainguillaume, J; Alexander, M; Bullock, J M; Saunders, M; Allender, C J; King, G; Ford, C S; Wilkinson, M J

    2006-04-01

    Fitness of hybrids between genetically modified (GM) crops and wild relatives influences the likelihood of ecological harm. We measured fitness components in spontaneous (non-GM) rapeseed x Brassica rapa hybrids in natural populations. The F1 hybrids yielded 46.9% seed output of B. rapa, were 16.9% as effective as males on B. rapa and exhibited increased self-pollination. Assuming 100% GM rapeseed cultivation, we conservatively predict < 7000 second-generation transgenic hybrids annually in the United Kingdom (i.e. approximately 20% of F1 hybrids). Conversely, whilst reduced hybrid fitness improves feasibility of bio-containment, stage projection matrices suggests broad scope for some transgenes to offset this effect by enhancing fitness.

  11. Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress.

    PubMed

    Feigl, Gábor; Kumar, Devanand; Lehotai, Nóra; Tugyi, Nóra; Molnár, Arpád; Ordög, Attila; Szepesi, Agnes; Gémes, Katalin; Laskay, Gábor; Erdei, László; Kolbert, Zsuzsanna

    2013-08-01

    Copper (Cu) is an essential microelement for growth and development, but in excess it can cause toxicity in plants. In this comparative study, the uptake and accumulation of Cu as well as the morphological and physiological responses of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) roots to Cu treatment were investigated. The possible involvement of redox active molecules (reactive oxygen species and nitric oxide) and modification in cell wall structure associated with Cu-induced morphological responses were also studied. In short- and long-term treatments, B. juncea suffered more pronounced growth inhibition as compared with B. napus. In addition to the shortening of primary and lateral roots, the number and the density of the laterals were also decreased by Cu. Exposure to copper induced nitric oxide generation in the root tips and this event proved to be dependent on the duration of the exposure and on the plant species. In short- and long-term treatments, Indian mustard showed more significant activation of superoxide dismutase (SOD), inhibition of ascorbate peroxidase (APX) and oxidation of ascorbate (AsA) than B. napus. Moreover, H2O2-dependent lignification was also observed in the Cu-exposed plants. In longer term, significant AsA accumulation and callose deposition were observed, reflecting serious oxidative stress in B. juncea. Based on the morphological and physiological results, we conclude that rapeseed tolerates Cu excess better than Indian mustard.

  12. Genetics and molecular mapping of resistance to Plasmodiophora brassicae pathotypes 2, 3, 5, 6, and 8 in rutabaga (Brassica napus var. napobrassica).

    PubMed

    Hasan, Muhammad Jakir; Rahman, Habibur

    2016-10-01

    Clubroot disease, caused by Plasmodiophora brassicae, is a threat to the production of Brassica crops including oilseed B. napus. In Canada, several pathotypes of this pathogen, such as pathotypes 2, 3, 5, 6, and 8, were identified, and resistance to these pathotypes was found in a rutabaga (B. napus var. napobrassica) genotype. In this paper, we report the genetic basis and molecular mapping of this resistance by use of F2, backcross (BC1), and doubled haploid (DH) populations generated from crossing of this rutabaga line to a susceptible spring B. napus canola line. The F1, F2, and BC1 populations were evaluated for resistance to pathotype 3, and the DH population was evaluated for resistance to pathotypes 2, 3, 5, 6, and 8. A 3:1 segregation in F2 and a 1:1 segregation in BC1 were found for resistance to pathotype 3, and a 1:1 segregation was found in the DH population for resistance to all pathotypes. Molecular mapping by using the DH population identified a genomic region on chromosome A8 carrying resistance to all five pathotypes. This suggests that a single gene or a cluster of genes, located in this genomic region, is involved in the control of resistance to these pathotypes.

  13. Mitigation using a tandem construct containing a selectively unfit gene precludes establishment of Brassica napus transgenes in hybrids and backcrosses with weedy Brassica rapa.

    PubMed

    Al-Ahmad, Hani; Gressel, Jonathan

    2006-01-01

    Transgenic oilseed rape (Brassica napus) plants can interbreed with nearby weedy Brassica rapa, potentially enhancing the weediness and/or invasiveness of subsequent hybrid offspring. We have previously demonstrated that transgenic mitigation effectively reduces the fitness of the transgenic dwarf and herbicide-resistant B. napus volunteers. We now report the efficacy of such a tandem construct, including a primary herbicide-resistant gene and a dwarfing mitigator gene, to preclude the risks of gene establishment in the related weed B. rapa and its backcross progeny. The transgenically mitigated and non-transgenic B. rapa x B. napus interspecific hybrids and the backcrosses (BC(1)) with B. rapa were grown alone and in competition with B. rapa weed. The reproductive fitness of hybrid offspring progressively decreased with increased B. rapa genes in the offspring, illustrating the efficacy of the concept. The fitness of F(2) interspecific non-transgenic hybrids was between 50% and 80% of the competing weedy B. rapa, whereas the fitness of the comparable T(2) interspecific transgenic hybrids was never more than 2%. The reproductive fitness of the transgenic T(2) BC(1) mixed with B. rapa was further severely suppressed to 0.9% of that of the competing weed due to dwarfism. Clearly, the mitigation technology works efficiently in a rapeseed crop-weed system under biocontainment-controlled environments, but field studies should further validate its utility for minimizing the risks of gene flow.

  14. Anatomy and transcript profiling of gynoecium development in female sterile Brassica napus mediated by one alien chromosome from Orychophragmus violaceus

    PubMed Central

    2014-01-01

    Background The gynoecium is one of the most complex organs of angiosperms specialized for seed production and dispersal, but only several genes important for ovule or embryo sac development were identified by using female sterile mutants. The female sterility in oilseed rape (Brassica napus) was before found to be related with one alien chromosome from another crucifer Orychophragmus violaceus. Herein, the developmental anatomy and comparative transcript profiling (RNA-seq) for the female sterility were performed to reveal the genes and possible metabolic pathways behind the formation of the damaged gynoecium. Results The ovules in the female sterile Brassica napus with two copies of the alien chromosomes (S1) initiated only one short integument primordium which underwent no further development and the female gametophyte development was blocked after the tetrad stage but before megagametogenesis initiation. Using Brassica_ 95k_ unigene as the reference genome, a total of 28,065 and 27,653 unigenes were identified to be transcribed in S1 and donor B. napus (H3), respectively. Further comparison of the transcript abundance between S1 and H3 revealed that 4540 unigenes showed more than two fold expression differences. Gene ontology and pathway enrichment analysis of the Differentially Expressed Genes (DEGs) showed that a number of important genes and metabolism pathways were involved in the development of gynoecium, embryo sac, ovule, integuments as well as the interactions between pollen and pistil. Conclusions DEGs for the ovule development were detected to function in the metabolism pathways regulating brassinosteroid (BR) biosynthesis, adaxial/abaxial axis specification, auxin transport and signaling. A model was proposed to show the possible roles and interactions of these pathways for the sterile gynoecium development. The results provided new information for the molecular mechanisms behind the gynoecium development at early stage in B. napus. PMID:24456102

  15. Inheritance and expression patterns of BN28, a low temperature induced gene in Brassica napus, throughout the Brassicaceae.

    PubMed

    Hawkins, G P; Nykiforuk, C L; Johnson-Flanagan, A M; Boothe, J G

    1996-08-01

    Molecular genetics is becoming an important tool in the breeding and selection of agronomically important traits. BN28 is a low temperature induced gene in Brassicaceae species. PCR and Southern blot analysis indicate that BN28 is polymorphic in the three diploid genomes: Brassica rapa (AA), Brassica nigra (BB), and Brassica oleracea (CC). Of the allotetraploids, Brassica napus (AACC) is the only species to have inherited homologous genes from both parental genomes. Brassica juncea (AABB) and Brassica carinata (BBCC) have inherited homologues from the AA and CC genomes, respectively, while Sinapsis arvensis (SS) contains a single homologue from the BB genome and Sinapsis alba (dd) appears to be different from all the diploid parents. All species show message induction when exposed to low temperature. However, differences in expression were noticed at the protein level, with silencing occurring in the BB genome at the level of translation. Results suggest that silencing is occurring in diploid species where duplication may not have occurred. Molecular characterization and inheritance of BN28 homologues in the Brassicaceae may play an important role in determining their quantitative function during exposure to low temperature. Key words : Brassicaceae, BN28, inheritance, polymorphism.

  16. A high-density genetic map identifies a novel major QTL for boron efficiency in oilseed rape (Brassica napus L.).

    PubMed

    Zhang, Didi; Hua, Yingpeng; Wang, Xiaohua; Zhao, Hua; Shi, Lei; Xu, Fangsen

    2014-01-01

    Low boron (B) seriously limits the growth of oilseed rape (Brassica napus L.), a high B demand species that is sensitive to low B conditions. Significant genotypic variations in response to B deficiency have been observed among B. napus cultivars. To reveal the genetic basis for B efficiency in B. napus, quantitative trait loci (QTLs) for the plant growth traits, B uptake traits and the B efficiency coefficient (BEC) were analyzed using a doubled haploid (DH) population derived from a cross between a B-efficient parent, Qingyou 10, and a B-inefficient parent, Westar 10. A high-density genetic map was constructed based on single nucleotide polymorphisms (SNPs) assayed using Brassica 60 K Infinium BeadChip Array, simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs). The linkage map covered a total length of 2139.5 cM, with 19 linkage groups (LGs) and an average distance of 1.6 cM between adjacent markers. Based on hydroponic evaluation of six B efficiency traits measured in three separate repeated trials, a total of 52 QTLs were identified, accounting for 6.14-46.27% of the phenotypic variation. A major QTL for BEC, qBEC-A3a, was co-located on A3 with other QTLs for plant growth and B uptake traits under low B stress. Using a subset of substitution lines, qBEC-A3a was validated and narrowed down to the interval between CNU384 and BnGMS436. The results of this study provide a novel major locus located on A3 for B efficiency in B. napus that will be suitable for fine mapping and marker-assisted selection breeding for B efficiency in B. napus.

  17. Genome-Wide Survey of Flavonoid Biosynthesis Genes and Gene Expression Analysis between Black- and Yellow-Seeded Brassica napus

    PubMed Central

    Qu, Cunmin; Zhao, Huiyan; Fu, Fuyou; Wang, Zhen; Zhang, Kai; Zhou, Yan; Wang, Xin; Wang, Rui; Xu, Xinfu; Tang, Zhanglin; Lu, Kun; Li, Jia-Na

    2016-01-01

    Flavonoids, the compounds that impart color to fruits, flowers, and seeds, are the most widespread secondary metabolites in plants. However, a systematic analysis of these loci has not been performed in Brassicaceae. In this study, we isolated 649 nucleotide sequences related to flavonoid biosynthesis, i.e., the Transparent Testa (TT) genes, and their associated amino acid sequences in 17 Brassicaceae species, grouped into Arabidopsis or Brassicaceae subgroups. Moreover, 36 copies of 21 genes of the flavonoid biosynthesis pathway were identified in Arabidopsis thaliana, 53 were identified in Brassica rapa, 50 in Brassica oleracea, and 95 in B. napus, followed the genomic distribution, collinearity analysis and genes triplication of them among Brassicaceae species. The results showed that the extensive gene loss, whole genome triplication, and diploidization that occurred after divergence from the common ancestor. Using qRT-PCR methods, we analyzed the expression of 18 flavonoid biosynthesis genes in 6 yellow- and black-seeded B. napus inbred lines with different genetic background, found that 12 of which were preferentially expressed during seed development, whereas the remaining genes were expressed in all B. napus tissues examined. Moreover, 14 of these genes showed significant differences in expression level during seed development, and all but four of these (i.e., BnTT5, BnTT7, BnTT10, and BnTTG1) had similar expression patterns among the yellow- and black-seeded B. napus. Results showed that the structural genes (BnTT3, BnTT18, and BnBAN), regulatory genes (BnTTG2 and BnTT16) and three encoding transfer proteins (BnTT12, BnTT19, and BnAHA10) might play an crucial roles in the formation of different seed coat colors in B. napus. These data will be helpful for illustrating the molecular mechanisms of flavonoid biosynthesis in Brassicaceae species. PMID:27999578

  18. A High-Density Genetic Map Identifies a Novel Major QTL for Boron Efficiency in Oilseed Rape (Brassica napus L.)

    PubMed Central

    Wang, Xiaohua; Zhao, Hua; Shi, Lei; Xu, Fangsen

    2014-01-01

    Low boron (B) seriously limits the growth of oilseed rape (Brassica napus L.), a high B demand species that is sensitive to low B conditions. Significant genotypic variations in response to B deficiency have been observed among B. napus cultivars. To reveal the genetic basis for B efficiency in B. napus, quantitative trait loci (QTLs) for the plant growth traits, B uptake traits and the B efficiency coefficient (BEC) were analyzed using a doubled haploid (DH) population derived from a cross between a B-efficient parent, Qingyou 10, and a B-inefficient parent, Westar 10. A high-density genetic map was constructed based on single nucleotide polymorphisms (SNPs) assayed using Brassica 60 K Infinium BeadChip Array, simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs). The linkage map covered a total length of 2139.5 cM, with 19 linkage groups (LGs) and an average distance of 1.6 cM between adjacent markers. Based on hydroponic evaluation of six B efficiency traits measured in three separate repeated trials, a total of 52 QTLs were identified, accounting for 6.14–46.27% of the phenotypic variation. A major QTL for BEC, qBEC-A3a, was co-located on A3 with other QTLs for plant growth and B uptake traits under low B stress. Using a subset of substitution lines, qBEC-A3a was validated and narrowed down to the interval between CNU384 and BnGMS436. The results of this study provide a novel major locus located on A3 for B efficiency in B. napus that will be suitable for fine mapping and marker-assisted selection breeding for B efficiency in B. napus. PMID:25375356

  19. Nitrogen Use Efficiency Is Mediated by Vacuolar Nitrate Sequestration Capacity in Roots of Brassica napus.

    PubMed

    Han, Yong-Liang; Song, Hai-Xing; Liao, Qiong; Yu, Yin; Jian, Shao-Fen; Lepo, Joe Eugene; Liu, Qiang; Rong, Xiang-Min; Tian, Chang; Zeng, Jing; Guan, Chun-Yun; Ismail, Abdelbagi M; Zhang, Zhen-Hua

    2016-03-01

    Enhancing nitrogen use efficiency (NUE) in crop plants is an important breeding target to reduce excessive use of chemical fertilizers, with substantial benefits to farmers and the environment. In Arabidopsis (Arabidopsis thaliana), allocation of more NO3 (-) to shoots was associated with higher NUE; however, the commonality of this process across plant species have not been sufficiently studied. Two Brassica napus genotypes were identified with high and low NUE. We found that activities of V-ATPase and V-PPase, the two tonoplast proton-pumps, were significantly lower in roots of the high-NUE genotype (Xiangyou15) than in the low-NUE genotype (814); and consequently, less vacuolar NO3 (-) was retained in roots of Xiangyou15. Moreover, NO3 (-) concentration in xylem sap, [(15)N] shoot:root (S:R) and [NO3 (-)] S:R ratios were significantly higher in Xiangyou15. BnNRT1.5 expression was higher in roots of Xiangyou15 compared with 814, while BnNRT1.8 expression was lower. In both B. napus treated with proton pump inhibitors or Arabidopsis mutants impaired in proton pump activity, vacuolar sequestration capacity (VSC) of NO3 (-) in roots substantially decreased. Expression of NRT1.5 was up-regulated, but NRT1.8 was down-regulated, driving greater NO3 (-) long-distance transport from roots to shoots. NUE in Arabidopsis mutants impaired in proton pumps was also significantly higher than in the wild type col-0. Taken together, these data suggest that decrease in VSC of NO3 (-) in roots will enhance transport to shoot and essentially contribute to higher NUE by promoting NO3 (-) allocation to aerial parts, likely through coordinated regulation of NRT1.5 and NRT1.8.

  20. Heterologous Expression of Hepatitis C Virus Core Protein in Oil Seeds of Brassica napus L.

    PubMed Central

    Mohammadzadeh, Sara; Roohvand, Farzin; Ajdary, Soheila; Ehsani, Parastoo; Hatef Salmanian, Ali

    2015-01-01

    Background: Hepatitis c virus (HCV), prevalent among 3% of the world population, is a major worldwide public health concern and an effective vaccination could help to overcome this problem. Plant seeds as low-cost vaccine expression platforms are highly desirable to produce antigens. Objectives: The present study was aimed at investigating the possible expression of recombinant HCV core protein, as a leading HCV vaccine candidate, in canola (Brassica napus) plant seeds in order to be used as an effective immunogen for vaccine researches. Materials and Methods: A codon-optimized gene harboring the Kozak sequence, 6 × His-tag, HCVcp (1 - 122 residues) and KDEL (Lys-Asp-Glu-Leu) peptide in tandem was designed and expressed under the control of the seed specific promoter, fatty acid elongase 1 (FAE1), to accumulate the recombinant protein in canola (B. napus L.) seeds. Transgenic lines were screened and the presence of the transgene was confirmed in the T0 plants by polymerase chain reaction (PCR). The quantity and quality of the HCV core protein (HCVcp) in transgenic seeds were evaluated by enzyme-linked immunosorbent assay (ELISA) and western blot, respectively. Results: Western blot analysis using anti-His antibody confirmed the presence of a 15 kDa protein in the seeds of T1 transgenic lines. The amount of antigenic protein accumulated in the seeds of these transgenic lines was up to 0.05% of the total soluble protein (TSP). Conclusions: The canola oilseeds could provide a useful expression system to produce HCV core protein as a vaccine candidate. PMID:26855744

  1. The effects of phenotypic plasticity on photosynthetic performance in winter rye, winter wheat and Brassica napus.

    PubMed

    Dahal, Keshav; Kane, Khalil; Gadapati, Winona; Webb, Elizabeth; Savitch, Leonid V; Singh, Jasbir; Sharma, Pooja; Sarhan, Fathey; Longstaffe, Fred J; Grodzinski, Bernard; Hüner, Norman P A

    2012-02-01

    The contributions of phenotypic plasticity to photosynthetic performance in winter (cv Musketeer, cv Norstar) and spring (cv SR4A, cv Katepwa) rye (Secale cereale) and wheat (Triticum aestivum) cultivars grown at either 20°C [non-acclimated (NA)] or 5°C [cold acclimated (CA)] were assessed. The 22-40% increase in light-saturated rates of CO₂ assimilation in CA vs NA winter cereals were accounted for by phenotypic plasticity as indicated by the dwarf phenotype and increased specific leaf weight. However, phenotypic plasticity could not account for (1) the differential temperature sensitivity of CO₂ assimilation and photosynthetic electron transport, (2) the increased efficiency and light-saturated rates of photosynthetic electron transport or (3) the decreased light sensitivity of excitation pressure and non-photochemical quenching between NA and NA winter cultivars. Cold acclimation decreased photosynthetic performance of spring relative to winter cultivars. However, the differences in photosynthetic performances between CA winter and spring cultivars were dependent upon the basis on which photosynthetic performance was expressed. Overexpression of BNCBF17 in Brassica napus generally decreased the low temperature sensitivity (Q₁₀) of CO₂ assimilation and photosynthetic electron transport even though the latter had not been exposed to low temperature. Photosynthetic performance in wild type compared to the BNCBF17-overexpressing transgenic B. napus indicated that CBFs/DREBs regulate not only freezing tolerance but also govern plant architecture, leaf anatomy and photosynthetic performance. The apparent positive and negative effects of cold acclimation on photosynthetic performance are discussed in terms of the apparent costs and benefits of phenotypic plasticity, winter survival and reproductive fitness.

  2. Resveratrol glucoside (Piceid) synthesis in seeds of transgenic oilseed rape (Brassica napus L.).

    PubMed

    Hüsken, Alexandra; Baumert, Alfred; Milkowski, Carsten; Becker, Heiko C; Strack, Dieter; Möllers, Christian

    2005-11-01

    Resveratrol is a phytoalexin produced in various plants like wine, peanut or pine in response to fungal infection or UV irradiation, but it is absent in members of the Brassicaceae. Moreover, resveratrol and its glucoside (piceid) are considered to have beneficial effects on human health, known to reduce heart disease, arteriosclerosis and cancer mortality. Therefore, the introduction of the gene encoding stilbene synthase for resveratrol production in rapeseed is a tempting approach to improve the quality of rapeseed products. The stilbene synthase gene isolated from grapevine (Vitis vinifera L.) was cloned under control of the seed-specific napin promotor and introduced into rapeseed (Brassica napus L.) by Agrobacterium-mediated co-transformation together with a ds-RNA-interference construct deduced from the sequence of the key enzyme for sinapate ester biosynthesis, UDP-glucose:sinapate glucosyltransferase (BnSGT1), assuming that the suppression of the sinapate ester biosynthesis may increase the resveratrol production in seeds through the increased availability of the precursor 4-coumarate. Resveratrol glucoside (piceid) was produced at levels up to 361 microg/g in the seeds of the primary transformants. This value exceeded by far piceid amounts reported from B. napus expressing VST1 in the wild type sinapine background. There was no significant difference in other important agronomic traits, like oil, protein, fatty acid and glucosinolate content in comparison to the control plants. In the third seed generation, up to 616 microg/g piceid was found in the seeds of a homozygous T3-plant with a single transgene copy integrated. The sinapate ester content in this homozygous T3-plant was reduced from 7.43 to 2.40 mg/g. These results demonstrate how the creation of a novel metabolic sink could divert the synthesis towards the production of piceid rather than sinapate ester, thereby increasing the value of oilseed products.

  3. Towards positional cloning in Brassica napus: generation and analysis of doubled haploid B. rapa possessing the B. napus pol CMS and Rfp nuclear restorer gene.

    PubMed

    Formanová, Natasa; Li, Xiu-Qing; Ferrie, Alison M R; Depauw, Mary; Keller, Wilf A; Landry, Benoit; Brown, Gregory G

    2006-05-01

    The Polima (pol) system of cytoplasmic male sterility (CMS) and its fertility restorer gene Rfp are used in hybrid rapeseed production in Brassica napus. To facilitate map-based cloning of the Rfp gene, we have successfully transferred the pol cytoplasm and Rfp from the amphidiploid B. napus to the diploid species B. rapa and generated a doubled haploid pol cytoplasm B. rapa population that segregates for the Rfp gene. This was achieved through interspecific crosses, in vitro rescue of hybrid embryos, backcrosses, and microspore culture. Male fertility conditioned by Rfp was shown to co-segregate in this population with Rfp-specific mitochondrial transcript modifications and with DNA markers previously shown to be linked to Rfp in B. napus. The selfed-progeny of one doubled haploid plant were confirmed to be characteristic B. rapa diploids by cytogenetic analysis. Clones recovered from a genomic library derived from this plant line using the RFLP probe cRF1 fell into several distinct physical contigs, one of which contained Rfp-linked polymorphic restriction fragments detected by this probe. This indicates that chromosomal DNA segments anchored in the Rfp region can be recovered from this library and that the library may therefore prove to be a useful resource for the eventual isolation of the Rfp gene.

  4. TRANSPARENT TESTA 12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait.

    PubMed

    Chai, You-Rong; Lei, Bo; Huang, Hua-Lei; Li, Jia-Na; Yin, Jia-Ming; Tang, Zhang-Lin; Wang, Rui; Chen, Li

    2009-01-01

    Molecular dissection of the Brassica yellow seed trait has been the subject of intense investigation. Arabidopsis thaliana TRANSPARENT TESTA 12 (AtTT12) encodes a multidrug and toxic compound extrusion (MATE) transporter involved in seed coat pigmentation. Two, one, and one full-length TT12 genes were isolated from B. napus, B. oleracea, and B. rapa, respectively, and Southern hybridization confirmed these gene numbers, implying loss of some of the triplicated TT12 genes in Brassica. BnTT12-1, BnTT12-2, BoTT12, and BrTT12 are 2,714, 3,062, 4,760, and 2,716 bp, with the longest mRNAs of 1,749, 1,711, 1,739, and 1,752 bp, respectively. All genes contained alternative transcriptional start and polyadenylation sites. BrTT12 and BoTT12 are the progenitors of BnTT12-1 and BnTT12-2, respectively, validating B. napus as an amphidiploid. All Brassica TT12 proteins displayed high levels of identity (>99%) to each other and to AtTT12 (>92%). Brassica TT12 genes resembled AtTT12 in such basic features as MatE/NorM CDs, subcellular localization, transmembrane helices, and phosphorylation sites. Plant TT12 orthologs differ from other MATE proteins by two specific motifs. Like AtTT12, all Brassica TT12 genes are most highly expressed in developing seeds. However, a range of organ specificity was observed with BnTT12 genes being less organ-specific. TT12 expression is absent in B. rapa yellow-seeded line 06K124, but not downregulated in B. oleracea yellow-seeded line 06K165. In B. napus yellow-seeded line L2, BnTT12-2 expression is absent, whereas BnTT12-1 is expressed normally. Among Brassica species, TT12 genes are differentially related to the yellow seed trait. The molecular basis for the yellow seed trait, in Brassica, and the theoretical and practical implications of the highly variable intron 1 of these TT12 genes are discussed.

  5. Involvement of genes encoding ABI1 protein phosphatases in the response of Brassica napus L. to drought stress.

    PubMed

    Babula-Skowrońska, Danuta; Ludwików, Agnieszka; Cieśla, Agata; Olejnik, Anna; Cegielska-Taras, Teresa; Bartkowiak-Broda, Iwona; Sadowski, Jan

    2015-07-01

    In this report we characterized the Arabidopsis ABI1 gene orthologue and Brassica napus gene paralogues encoding protein phosphatase 2C (PP2C, group A), which is known to be a negative regulator of the ABA signaling pathway. Six homologous B. napus sequences were identified and characterized as putative PP2C group A members. To gain insight into the conservation of ABI1 function in Brassicaceae, and understand better its regulatory effects in the drought stress response, we generated transgenic B. napus plants overexpressing A. thaliana ABI1. Transgenic plants subjected to drought showed a decrease in relative water content, photosynthetic pigments content and expression level of RAB18- and RD19A-drought-responsive marker genes relative to WT plants. We present the characterization of the drought response of B. napus with the participation of ABI1-like paralogues. The expression pattern of two evolutionarily distant paralogues, BnaA01.ABI1.a and BnaC07.ABI1.b in B. napus and their promoter activity in A. thaliana showed differences in the induction of the paralogues under dehydration stress. Comparative sequence analysis of both BnaABI1 promoters showed variation in positions of cis-acting elements that are especially important for ABA- and stress-inducible expression. Together, these data reveal that subfunctionalization following gene duplication may be important in the maintenance and functional divergence of the BnaABI1 paralogues. Our results provide a framework for a better understanding of (1) the role of ABI1 as a hub protein regulator of the drought response, and (2) the differential involvement of the duplicated BnaABI1 genes in the response of B. napus to dehydration-related stresses.

  6. Methyl Jasmonate Regulates Antioxidant Defense and Suppresses Arsenic Uptake in Brassica napus L.

    PubMed Central

    Farooq, Muhammad A.; Gill, Rafaqat A.; Islam, Faisal; Ali, Basharat; Liu, Hongbo; Xu, Jianxiang; He, Shuiping; Zhou, Weijun

    2016-01-01

    Methyl jasmonate (MJ) is an important plant growth regulator, involved in plant defense against abiotic stresses, however, its possible function in response to metal stress is poorly understood. In the present study, the effect of MJ on physiological and biochemical changes of the plants exposed to arsenic (As) stress were investigated in two Brassica napus L. cultivars (ZS 758 – a black seed type, and Zheda 622 – a yellow seed type). The As treatment at 200 μM was more phytotoxic, however, its combined application with MJ resulted in significant increase in leaf chlorophyll fluorescence, biomass production and reduced malondialdehyde content compared with As stressed plants. The application of MJ minimized the oxidative stress, as revealed via a lower level of reactive oxygen species (ROS) synthesis (H2O2 and OH-) in leaves and the maintenance of high redox states of glutathione and ascorbate. Enhanced enzymatic activities and gene expression of important antioxidants (SOD, APX, CAT, POD), secondary metabolites (PAL, PPO, CAD) and induction of lypoxygenase gene suggest that MJ plays an effective role in the regulation of multiple transcriptional pathways which were involved in oxidative stress responses. The content of As was higher in yellow seeded plants (cv. Zheda 622) as compared to black seeded plants (ZS 758). The application of MJ significantly reduced the As content in leaves and roots of both cultivars. Findings of the present study reveal that MJ improves ROS scavenging through enhanced antioxidant defense system, secondary metabolite and reduced As contents in both the cultivars. PMID:27148299

  7. Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content.

    PubMed

    Carvalho, Sofia D; Folta, Kevin M

    2014-01-01

    Different light wavelengths have specific effects on plant growth and development. Narrow-bandwidth light-emitting diode (LED) lighting may be used to directionally manipulate size, color and metabolites in high-value fruits and vegetables. In this report, Red Russian kale (Brassica napus) seedlings were grown under specific light conditions and analyzed for photomorphogenic responses, pigment accumulation and nutraceutical content. The results showed that this genotype responds predictably to darkness, blue and red light, with suppression of hypocotyl elongation, development of pigments and changes in specific metabolites. However, these seedlings were relatively hypersensitive to far-red light, leading to uncharacteristically short hypocotyls and high pigment accumulation, even after growth under very low fluence rates (<1 μmol m(-2) s(-1)). General antioxidant levels and aliphatic glucosinolates are elevated by far-red light treatments. Sequential treatments of darkness, blue light, red light and far-red light were applied throughout sprout development to alter final product quality. These results indicate that sequential treatment with narrow-bandwidth light may be used to affect key economically important traits in high-value crops.

  8. Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves.

    PubMed

    Yan, Hui; Filardo, Fiona; Hu, Xiaotao; Zhao, Xiaomin; Fu, DongHui

    2016-02-01

    In order to understand the physiological response of oilseed rape (Brassica napus L.) leaves to cadmium (Cd) stress and exploit the physiological mechanisms involved in Cd tolerance, macro-mineral and chlorophyll concentrations, reactive oxygen species (ROS) accumulation, activities of enzymatic antioxidants, nonenzymatic compounds metabolism, endogenous hormonal changes, and balance in leaves of oilseed rape exposed to 0, 100, or 200 μM CdSO4 were investigated. The results showed that under Cd exposure, Cd concentrations in the leaves continually increased while macro-minerals and chlorophyll concentrations decreased significantly. Meanwhile, with increased Cd stress, superoxide anion (O2(• -)) production rate and hydrogen peroxide (H2O2) concentrations in the leaves increased significantly, which caused malondialdehyde (MDA) accumulation and oxidative stress. For scavenging excess accumulated ROS and alleviating oxidative injury in the leaves, the activity of enzymatic antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), was increased significantly at certain stress levels. However, with increased Cd stress, the antioxidant enzyme activities all showed a trend towards reduction. The nonenzymatic antioxidative compounds, such as proline and total soluble sugars, accumulated continuously with increased Cd stress to play a long-term role in scavenging ROS. In addition, ABA levels also increased continuously with Cd stress while ZR decreased and the ABA/ZR ratio increased, which might also be providing a protective role against Cd toxicity.

  9. Modeling Allometric Relationships in Leaves of Young Rapeseed (Brassica napus L.) Grown at Different Temperature Treatments

    PubMed Central

    Tian, Tian; Wu, Lingtong; Henke, Michael; Ali, Basharat; Zhou, Weijun; Buck-Sorlin, Gerhard

    2017-01-01

    Functional–structural plant modeling (FSPM) is a fast and dynamic method to predict plant growth under varying environmental conditions. Temperature is a primary factor affecting the rate of plant development. In the present study, we used three different temperature treatments (10/14°C, 18/22°C, and 26/30°C) to test the effect of temperature on growth and development of rapeseed (Brassica napus L.) seedlings. Plants were sampled at regular intervals (every 3 days) to obtain growth data during the length of the experiment (1 month in total). Total leaf dry mass, leaf area, leaf mass per area (LMA), width-length ratio, and the ratio of petiole length to leaf blade length (PBR), were determined and statistically analyzed, and contributed to a morphometric database. LMA under high temperature was significantly smaller than LMA under medium and low temperature, while leaves at high temperature were significantly broader. An FSPM of rapeseed seedlings featuring a growth function used for leaf extension and biomass accumulation was implemented by combining measurement with literature data. The model delivered new insights into growth and development dynamics of winter oilseed rape seedlings. The present version of the model mainly focuses on the growth of plant leaves. However, future extensions of the model could be used in practice to better predict plant growth in spring and potential cold damage of the crop. PMID:28377775

  10. Effects of thermal stress of protein synthesis and gene expression in Brassica napus

    SciTech Connect

    Halle, J.R.; Ghosh, S.; Dumbroff, E.B.; Heikkila, J.J. )

    1989-04-01

    Leaf segments of Brassica napus were exposed to 22{degrees}, 35{degrees}, 38{degrees} or 40{degrees}C for up to 4 h. Analysis of radiolabelled proteins by 2-D SDS-PAGE and fluorography revealed two major groups of heat shock proteins (HSPs). One group comprised HSPs, 70, 76 and 87, with pIs ranging from 5.7 to 6.1, whereas the second group had molecular weights ranging from 23 to 16 kD and pIs from 5.6 to 6.9. Immunoblot analysis using antibodies directed against the large (RLSU) and small (RSSU) subunits of ribulose-1,5-bisphosphate carboxylase (RUBISCO) showed that increasing temperatures from 35{degrees} to 38{degrees} or 40{degrees}C or the duration of thermal stress from 1 to 5 h did not affect levels of the RSSU (15 kd) whereas levels of the RLSU (52 kD) fell sharply. Nevertheless, RUBISCO activity was not adversely affected at 38{degree}C for periods of up to 5 h. The increase observed in HSP 70 during heat shock was transcriptionally regulated, but the decrease in the RLSU was not accompanied by any detectable change in levels of its mRNA.

  11. Combined effects of Brassica napus seed meal and Trichoderma harzianum on two soilborne plant pathogens.

    PubMed

    Dandurand, L M; Mosher, R D; Knudsen, G R

    2000-11-01

    The effects of soil amendment with rapeseed meal from Brassica napus cv. 'Dwarf Essex' (high glucosinolate concentrations) and 'Stonewall' (low glucosinolate concentrations) on the biological control activity of Trichoderma harzianum towards Sclerotinia sclerotiorum and Aphanomyces euteiches were evaluated. Trichoderma harzianum added to soil reduced myceliogenic germination of S. sclerotiorum by 94%, but did not affect carpogenic germination. In contrast, 100% reduction in carpogenic germination was observed in soil amended with Dwarf Essex meal, along with a 33% reduction in myceliogenic germination. With Stonewall meal as soil amendment, carpogenic germination was reduced by 44% and myceliogenic germination was not affected. Both Dwarf Essex and Stonewall meals inhibited colonization of sclerotia in soil by T. harzianum, from 100% to 0% and 8%, respectively, so that biocontrol activity of T. harzianum was reduced in the presence of either meal. Aphanomyces euteiches root rot of pea was significantly reduced by T. harzianum alone (100%), by amendment with Dwarf Essex meal alone (77%), and by T. harzianum in combination with Dwarf Essex meal (100%). Amendment with Stonewall meal alone did not control root rot, and combination of Stonewall meal with T. harzianum reduced the biocontrol efficacy of T. harzianum.

  12. Preparation and antioxidative properties of a rapeseed ( Brassica napus ) protein hydrolysate and three peptide fractions.

    PubMed

    Xue, Zhaohui; Yu, Wancong; Liu, Zhiwei; Wu, Moucheng; Kou, Xiaohong; Wang, Jiehua

    2009-06-24

    This study investigated the possibility of converting the insoluble rapeseed meal protein into functionally active ingredients for food applications. The rapeseed ( Brassica napus ) meal protein isolates were first digested by Alcalase and Flavourzyme, and the resultant rapeseed crude hydrolysate (RSCH) exhibited a dose-dependent reducing antioxidant power and hydroxyl radical scavenging ability. RSCH could also inhibit the malonyldialdehyde (MDA) generation by 50% in blood serum at 150 mg/mL. RSCH was further separated into three fractions (RSP1, RSP2, and RSP3) by Sephadex gel filtration according to their different molecular weights. The amino acid compositions and antioxidant potentials were assessed for RSP1-3 fractions. All three fractions showed inhibiting effects on superoxide anion generation to various extents. They could also inhibit the autohemolysis of rat red blood cells and MDA formation in rat liver tissue homogenate. The results suggested that rapeseed peptide hydrolysate may be useful as a human food addition as a source of bioactive peptides with antioxidant properties.

  13. Effects of Fe deficiency on the protein profile of Brassica napus phloem sap.

    PubMed

    Gutierrez-Carbonell, Elain; Lattanzio, Giuseppe; Albacete, Alfonso; Rios, Juan José; Kehr, Julia; Abadía, Anunciación; Grusak, Michael A; Abadía, Javier; López-Millán, Ana Flor

    2015-11-01

    The aim of this work was to study the effect of Fe deficiency on the protein profile of phloem sap exudates from Brassica napus using 2DE (IEF-SDS-PAGE). The experiment was repeated thrice and two technical replicates per treatment were done. Phloem sap purity was assessed by measuring sugar concentrations. Two hundred sixty-three spots were consistently detected and 15.6% (41) of them showed significant changes in relative abundance (22 decreasing and 19 increasing) as a result of Fe deficiency. Among them, 85% (35 spots), were unambiguously identified. Functional categories containing the largest number of protein species showing changes as a consequence of Fe deficiency were signaling and regulation (32%), and stress and redox homeostasis (17%). The Phloem sap showed a higher oxidative stress and significant changes in the hormonal profile as a result of Fe deficiency. Results indicate that Fe deficiency elicits major changes in signaling pathways involving Ca and hormones, which are generally associated with flowering and developmental processes, causes an alteration in ROS homeostasis processes, and induces decreases in the abundances of proteins involved in sieve element repair, suggesting that Fe-deficient plants may have an impaired capacity to heal sieve elements upon injury.

  14. Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content

    PubMed Central

    Carvalho, Sofia D; Folta, Kevin M

    2014-01-01

    Different light wavelengths have specific effects on plant growth and development. Narrow-bandwidth light-emitting diode (LED) lighting may be used to directionally manipulate size, color and metabolites in high-value fruits and vegetables. In this report, Red Russian kale (Brassica napus) seedlings were grown under specific light conditions and analyzed for photomorphogenic responses, pigment accumulation and nutraceutical content. The results showed that this genotype responds predictably to darkness, blue and red light, with suppression of hypocotyl elongation, development of pigments and changes in specific metabolites. However, these seedlings were relatively hypersensitive to far-red light, leading to uncharacteristically short hypocotyls and high pigment accumulation, even after growth under very low fluence rates (<1 μmol m−2 s−1). General antioxidant levels and aliphatic glucosinolates are elevated by far-red light treatments. Sequential treatments of darkness, blue light, red light and far-red light were applied throughout sprout development to alter final product quality. These results indicate that sequential treatment with narrow-bandwidth light may be used to affect key economically important traits in high-value crops. PMID:26504531

  15. Expression of the 2S albumin from Bertholletia excelsa in Brassica napus.

    PubMed

    Guerche, P; De Almeida, E R; Schwarztein, M A; Gander, E; Krebbers, E; Pelletier, G

    1990-05-01

    The methionine rich 2S albumin seed storage protein of Bertholletia excelsa has been expressed in seeds of Brassica napus (rapeseed). A chimeric gene driven by the soybean lectin 5' flanking regions was used to produce a fusion protein consisting of the soybean lectin signal peptide and the propeptide of the Brazil nut 2S albumin. Several transgenic plants were studied at the RNA and protein levels; in each case the chimeric gene was expressed and the protein detected at levels ranging from 0.02% to 0.06% of total protein. Transcriptional studies in a particular transgenic plant show that expression of the gene is tissue specific and developmentally regulated during seed maturation. The endogenous napin genes and the introduced gene are regulated differently, with expression of the chimeric gene paralleling that seen when the soybean lectin gene is expressed in other plant species. Western analysis using antibodies to Brazil nut 2S albumins resulted in the detection of a protein whose size is consistent with correct processing of the precursor.

  16. Detection of Fungus Infection on Petals of Rapeseed (Brassica napus L.) Using NIR Hyperspectral Imaging

    PubMed Central

    Zhao, Yan-Ru; Yu, Ke-Qiang; Li, Xiaoli; He, Yong

    2016-01-01

    Infected petals are often regarded as the source for the spread of fungi Sclerotinia sclerotiorum in all growing process of rapeseed (Brassica napus L.) plants. This research aimed to detect fungal infection of rapeseed petals by applying hyperspectral imaging in the spectral region of 874–1734 nm coupled with chemometrics. Reflectance was extracted from regions of interest (ROIs) in the hyperspectral image of each sample. Firstly, principal component analysis (PCA) was applied to conduct a cluster analysis with the first several principal components (PCs). Then, two methods including X-loadings of PCA and random frog (RF) algorithm were used and compared for optimizing wavebands selection. Least squares-support vector machine (LS-SVM) methodology was employed to establish discriminative models based on the optimal and full wavebands. Finally, area under the receiver operating characteristics curve (AUC) was utilized to evaluate classification performance of these LS-SVM models. It was found that LS-SVM based on the combination of all optimal wavebands had the best performance with AUC of 0.929. These results were promising and demonstrated the potential of applying hyperspectral imaging in fungus infection detection on rapeseed petals. PMID:27958386

  17. Detection of Fungus Infection on Petals of Rapeseed (Brassica napus L.) Using NIR Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Yan-Ru; Yu, Ke-Qiang; Li, Xiaoli; He, Yong

    2016-12-01

    Infected petals are often regarded as the source for the spread of fungi Sclerotinia sclerotiorum in all growing process of rapeseed (Brassica napus L.) plants. This research aimed to detect fungal infection of rapeseed petals by applying hyperspectral imaging in the spectral region of 874–1734 nm coupled with chemometrics. Reflectance was extracted from regions of interest (ROIs) in the hyperspectral image of each sample. Firstly, principal component analysis (PCA) was applied to conduct a cluster analysis with the first several principal components (PCs). Then, two methods including X-loadings of PCA and random frog (RF) algorithm were used and compared for optimizing wavebands selection. Least squares-support vector machine (LS-SVM) methodology was employed to establish discriminative models based on the optimal and full wavebands. Finally, area under the receiver operating characteristics curve (AUC) was utilized to evaluate classification performance of these LS-SVM models. It was found that LS-SVM based on the combination of all optimal wavebands had the best performance with AUC of 0.929. These results were promising and demonstrated the potential of applying hyperspectral imaging in fungus infection detection on rapeseed petals.

  18. Frying stability of rapeseed Kizakinonatane (Brassica napus) oil in comparison with canola oil.

    PubMed

    Ma, Jin-Kui; Zhang, Han; Tsuchiya, Tomohiro; Akiyama, Yoshinobu; Chen, Jie-Yu

    2015-04-01

    This study was carried out to investigate the frying performance of Kizakinonatane (Brassica napus) oil during deep-fat frying of frozen French fries with/without replenishment. Commercial regular canola oil was used for comparison. The frying oils were used during intermittent frying of frozen French fries at 180, 200, and 220 ℃ for 7 h daily over four consecutive days. The Kizakinonatane oil exhibited lower levels of total polar compounds, carbonyl value, and viscosity as well as comparable color (optical density) values to that of the canola oil. The monounsaturated fatty acid/polyunsaturated fatty acid ratios were lower than that of canola oil, whereas the polyunsaturated fatty acid/saturated fatty acid ratios are higher than that of canola oil after heating. Results showed that fresh Kizakinonatane oil contains higher levels of acid value, viscosity, optical density values, tocopherols, and total phenolics contents than that of canola oil. Replenishment with fresh oil had significant effects on all chemical and physical parameters, except the acid value of the Kizakinonatane oil during frying processes. Based on the results, the Kizakinonatane oil is inherently suitable for preparing deep-fried foods at high temperatures.

  19. Sulfate resupply accentuates protein synthesis in coordination with nitrogen metabolism in sulfur deprived Brassica napus.

    PubMed

    Zhang, Qian; Lee, Bok-Rye; Park, Sang-Hyun; Zaman, Rashed; Avice, Jean-Christophe; Ourry, Alain; Kim, Tae-Hwan

    2015-02-01

    To investigate the regulatory interactions between S assimilation and N metabolism in Brassica napus, de novo synthesis of amino acids and proteins was quantified by (15)N and (34)S tracing, and the responses of transporter genes, assimilatory enzymes and metabolites pool involving in nitrate and sulfate metabolism were assessed under continuous sulfur supply, sulfur deprivation and sulfate resupply after 3 days of sulfur (S) deprivation. S-deprived plants were characterized by a strong induction of sulfate transporter genes, ATP sulfurylase (ATPS) and adenosine 5'-phosphosulfate reductase (APR), and by a repressed activity of nitrate reductase (NR) and glutamine synthetase (GS). Sulfate resupply to the S-deprived plants strongly increased cysteine, amino acids and proteins concentration. The increase in sulfate and cysteine concentration caused by sulfate resupply was not matched with the expression of sulfate transporters and the activity of ATPS and APR which were rapidly decreased by sulfate resupply. A strong induction of O-acetylserine(thiol)lyase (OASTL), NR and GS upon sulfate resupply was accompanied with the increase in cysteine, amino acids and proteins pool. Sulfate resupply resulted in a strong increase in de novo synthesis of amino acids and proteins, as evidenced by the increases in N and S incorporation into amino acids (1.8- and 2.4-fold increase) and proteins (2.2-and 6.3-fold increase) when compared to S-deprived plants. The results thus indicate that sulfate resupply followed by S-deprivation accelerates nitrate assimilation for protein synthesis.

  20. Thiol-based Redox Proteins in Brassica napus Guard Cell Abscisic Acid and Methyl Jasmonate Signaling

    PubMed Central

    Zhu, Mengmeng; Zhu, Ning; Song, Wen-yuan; Harmon, Alice C.; Assmann, Sarah M.; Chen, Sixue

    2014-01-01

    SUMMARY Reversibly oxidized cysteine sulfhydryl groups serve as redox sensors or targets of redox sensing that are important in different physiological processes. Little is known, however, about redox sensitive proteins in guard cells and how they function in stomatal signaling. In this study, Brassica napus guard cell proteins altered by redox in response to abscisic acid (ABA) or methyl jasmonate (MeJA) were identified by complementary proteomics approaches, saturation differential in-gel electrophoresis (DIGE) and isotope-coded affinity tag (ICAT). In total, 65 and 118 potential redox responsive proteins were identified in ABA and MeJA treated guard cells, respectively. All the proteins contain at least one cysteine, and over half of them are predicted to form intra-molecular disulfide bonds. Most of the proteins fall into the functional groups of energy, stress and defense, and metabolism. Based on the peptide sequences identified by mass spectrometry, 30 proteins were common to ABA and MeJA treated samples. A total of 44 cysteines was mapped in all the identified proteins, and their levels of redox sensitivity were quantified. Two of the proteins, a SNRK2 kinase and an isopropylmalate dehydrogenase were confirmed to be redox regulated and involved in stomatal movement. This study creates an inventory of potential redox switches, and highlights a protein redox regulatory mechanism in guard cell ABA and MeJA signal transduction. PMID:24580573

  1. Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration.

    PubMed

    Cheng, Fan; Liu, Yu-Feng; Lu, Guang-Yuan; Zhang, Xue-Kun; Xie, Ling-Li; Yuan, Cheng-Fei; Xu, Ben-Bo

    2016-04-01

    Researchers have proven that nanomaterials have a significant effect on plant growth and development. To better understand the effects of nanomaterials on plants, Zhongshuang 11 was treated with different concentrations of graphene oxide. The results indicated that 25-100mg/l graphene oxide treatment resulted in shorter seminal root length compared with the control samples. The fresh root weight decreased when treated with 50-100mg/l graphene oxide. The graphene oxide treatment had no significant effect on the Malondialdehyde (MDA) content. Treatment with 50mg/l graphene oxide increased the transcript abundance of genes involved in ABA biosynthesis (NCED, AAO, and ZEP) and some genes involved in IAA biosynthesis (ARF2, ARF8, IAA2, and IAA3), but inhibited the transcript levels of IAA4 and IAA7. The graphene oxide treatment also resulted in a higher ABA content, but a lower IAA content compared with the control samples. The results indicated that graphene oxide modulated the root growth of Brassica napus L. and affected ABA and IAA biosynthesis and concentration.

  2. Divergent patterns of allelic diversity from similar origins: the case of oilseed rape (Brassica napus L.) in China and Australia.

    PubMed

    Chen, S; Nelson, M N; Ghamkhar, K; Fu, T; Cowling, W A

    2008-01-01

    Oilseed rape (Brassica napus) in Australia and China have similar origins, with introductions from Europe, Canada, and Japan in the mid 20th century, and there has been some interchange of germplasm between China and Australia since that time. Allelic diversity of 72 B. napus genotypes representing contemporary germplasm in Australia and China, including samples from India, Europe, and Canada, was characterized by 55 polymorphic simple sequence repeat (SSR) markers spanning the entire B. napus genome. Hierarchical clustering and two-dimensional multidimensional scaling identified a Chinese group (China-1) that was separated from "mixed group" of Australian, Chinese (China-2), European, and Canadian lines. A small group from India was distinctly separated from all other B. napus genotypes. Chinese genotypes, especially in the China-1 group, have inherited unique alleles from interspecific crossing, primarily with B. rapa, and the China-2 group has many alleles in common with Australian genotypes. The concept of "private alleles" is introduced to describe both the greater genetic diversity and the genetic distinctiveness of Chinese germplasm, compared with Australian germplasm, after 50 years of breeding from similar origins.

  3. Citric acid improves lead (pb) phytoextraction in brassica napus L. by mitigating pb-induced morphological and biochemical damages.

    PubMed

    Shakoor, Muhammad Bilal; Ali, Shafaqat; Hameed, Amjad; Farid, Mujahid; Hussain, Sabir; Yasmeen, Tahira; Najeeb, Ullah; Bharwana, Saima Aslam; Abbasi, Ghulam Hasan

    2014-11-01

    Phytoextraction is an environmentally friendly and a cost-effective strategy for remediation of heavy metal contaminated soils. However, lower bioavailability of some of the metals in polluted environments e.g. lead (Pb) is a major constraint of phytoextraction process that could be overcome by applying organic chelators. We conducted a glasshouse experiment to evaluate the role of citric acid (CA) in enhancing Pb phytoextraction. Brassica napus L. seedlings were grown in hydroponic media and exposed to various treatments of Pb (50 and 100 μM) as alone or in combination with CA (2.5mM) for six weeks. Pb-induced damage in B. napus toxicity was evident from elevated levels of malondialdehyde (MDA) and H2O2 that significantly inhibited plant growth, biomass accumulation, leaf chlorophyll contents and gas exchange parameters. Alternatively, CA application to Pb-stressed B. napus plants arrested lipid membrane damage by limiting MDA and H2O2 production and by improving antioxidant enzyme activities. In addition, CA significantly increased the Pb accumulation in B. napus plants. The study concludes that CA has a potential to improve Pb phytoextraction without damaging plant growth.

  4. Glycerol-3-phosphate acyltransferase 4 is essential for the normal development of reproductive organs and the embryo in Brassica napus.

    PubMed

    Chen, Xue; Chen, Guanqun; Truksa, Martin; Snyder, Crystal L; Shah, Saleh; Weselake, Randall J

    2014-08-01

    The enzyme sn-glycerol-3-phosphate acyltransferase 4 (GPAT4) is involved in the biosynthesis of plant lipid poly-esters. The present study further characterizes the enzymatic activities of three endoplasmic reticulum-bound GPAT4 isoforms of Brassica napus and examines their roles in the development of reproductive organs and the embryo. All three BnGPAT4 isoforms exhibited sn-2 acyltransferase and phosphatase activities with dicarboxylic acid-CoA as acyl donor. When non-substituted acyl-CoA was used as acyl donor, the rate of acylation was considerably lower and phosphatase activity was not manifested. RNA interference (RNAi)-mediated down-regulation of all GPAT4 homologues in B. napus under the control of the napin promoter caused abnormal development of several reproductive organs and reduced seed set. Microscopic examination and reciprocal crosses revealed that both pollen grains and developing embryo sacs of the B. napus gpat4 lines were affected. The gpat4 mature embryos showed decreased cutin content and altered monomer composition. The defective embryo development further affected the oil body morphology, oil content, and fatty acid composition in gpat4 seeds. These results suggest that GPAT4 has a critical role in the development of reproductive organs and the seed of B. napus.

  5. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance.

    PubMed

    Yang, Minggui; Yang, Qingyong; Fu, Tingdong; Zhou, Yongming

    2011-03-01

    The GRAS proteins are a family of transcription regulators found in plants and play diverse roles in plant growth and development. To study the biological roles of GRAS family genes in Brassica napus, an Arabidopsis LAS homologous gene, BnLAS and its two homologs were cloned from B. napus and its two progenitor species, Brassica rapa and Brassica oleracea. Relatively high levels of BnLAS were observed in roots, shoot tips, lateral meristems and flower organs based on the analysis of the transcripts by quantitative RT-PCR and promoter-reporter assays. Constitutive overexpression of BnLAS in Arabidopsis resulted in inhibition of growth, and delays in leaf senescence and flowering time. A large portion of transgenic lines had darker leaf color and higher chlorophyll content than in wild type plants. Interestingly, water lose rates in transgenic leaves were reduced, and transgenic plants exhibited enhanced drought tolerance and increased recovery after exposed to dehydration treatment. The stomatal density on leaves of the transgenic plants increased significantly due to the smaller cell size. However, the stomatal aperture on the leaves of the transgenic plants reduced significantly compared with wild type plants. More epidermal wax deposition on transgenic leaves was observed. Furthermore, several genes involved in wax synthesis and regulation, including CER1, CER2, KCS1 and KCS2, were upregulated in the transgenic plants. Our results indicate a potential to utilize BnLAS in the improvement of drought tolerance in plants.

  6. A Genome-Wide Association Study Reveals New Loci for Resistance to Clubroot Disease in Brassica napus

    PubMed Central

    Li, Lixia; Luo, Yujie; Chen, Biyun; Xu, Kun; Zhang, Fugui; Li, Hao; Huang, Qian; Xiao, Xin; Zhang, Tianyao; Hu, Jihong; Li, Feng; Wu, Xiaoming

    2016-01-01

    Rapeseed (Brassica napus L.) is one of the most important oil crops in the world. However, the yield and quality of rapeseed were largely decreased by clubroot (Plasmodiophora brassicae Woronin). Therefore, it is of great importance for screening more resistant germplasms or genes and improving the resistance to P. brassicae in rapeseed breeding. In this study, a massive resistant identification for a natural global population was conducted in two environments with race/pathotype 4 of P. brassicae which was the most predominant in China, and a wide range of phenotypic variation was found in the population. In addition, a genome-wide association study of 472 accessions for clubroot resistance (CR) was performed with 60K Brassica Infinium SNP arrays for the first time. In total, nine QTLs were detected, seven of which were novel through integrative analysis. Furthermore, additive effects in genetic control of CR in rapeseed among the above loci were found. By bioinformatic analyses, the candidate genes of these loci were predicted, which indicated that TIR-NBS gene family might play an important role in CR. It is believable that the results presented in our study could provide valuable information for understanding the genetic mechanism and molecular regulation of CR. PMID:27746804

  7. Gene silencing of BnTT10 family genes causes retarded pigmentation and lignin reduction in the seed coat of Brassica napus.

    PubMed

    Zhang, Kai; Lu, Kun; Qu, Cunmin; Liang, Ying; Wang, Rui; Chai, Yourong; Li, Jiana

    2013-01-01

    Yellow-seed (i.e., yellow seed coat) is one of the most important agronomic traits of Brassica plants, which is correlated with seed oil and meal qualities. Previous studies on the Brassicaceae, including Arabidopsis and Brassica species, proposed that the seed-color trait is correlative to flavonoid and lignin biosynthesis, at the molecular level. In Arabidopsis thaliana, the oxidative polymerization of flavonoid and biosynthesis of lignin has been demonstrated to be catalyzed by laccase 15, a functional enzyme encoded by the AtTT10 gene. In this study, eight Brassica TT10 genes (three from B. napus, three from B. rapa and two from B. oleracea) were isolated and their roles in flavonoid oxidation/polymerization and lignin biosynthesis were investigated. Based on our phylogenetic analysis, these genes could be divided into two groups with obvious structural and functional differentiation. Expression studies showed that Brassica TT10 genes are active in developing seeds, but with differential expression patterns in yellow- and black-seeded near-isogenic lines. For functional analyses, three black-seeded B. napus cultivars were chosen for transgenic studies. Transgenic B. napus plants expressing antisense TT10 constructs exhibited retarded pigmentation in the seed coat. Chemical composition analysis revealed increased levels of soluble proanthocyanidins, and decreased extractable lignin in the seed coats of these transgenic plants compared with that of the controls. These findings indicate a role for the Brassica TT10 genes in proanthocyanidin polymerization and lignin biosynthesis, as well as seed coat pigmentation in B. napus.

  8. GISH analysis of disomic Brassica napus-Crambe abyssinica chromosome addition lines produced by microspore culture from monosomic addition lines.

    PubMed

    Wang, Youping; Sonntag, Karin; Rudloff, Eicke; Wehling, Peter; Snowdon, Rod J

    2006-02-01

    Two Brassica napus-Crambe abyssinica monosomic addition lines (2n=39, AACC plus a single chromosome from C. abyssinca) were obtained from the F(2) progeny of the asymmetric somatic hybrid. The alien chromosome from C. abyssinca in the addition line was clearly distinguished by genomic in situ hybridization (GISH). Twenty-seven microspore-derived plants from the addition lines were obtained. Fourteen seedlings were determined to be diploid plants (2n=38) arising from spontaneous chromosome doubling, while 13 seedlings were confirmed as haploid plants. Doubled haploid plants produced after treatment with colchicine and two disomic chromosome addition lines (2n=40, AACC plus a single pair of homologous chromosomes from C. abyssinca) could again be identified by GISH analysis. The lines are potentially useful for molecular genetic analysis of novel C. abyssinica genes or alleles contributing to traits relevant for oilseed rape (B. napus) breeding.

  9. Zn deficiency in Brassica napus induces Mo and Mn accumulation associated with chloroplast proteins variation without Zn remobilization.

    PubMed

    Billard, Vincent; Maillard, Anne; Garnica, Maria; Cruz, Florence; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Ourry, Alain; Etienne, Philippe

    2015-01-01

    The importance of zinc (Zn) has been of little concern in human nutrition despite a strong decrease of this element in crops since the rise of high yielding varieties. For better food quality, Zn biofortification can be used, but will be optimal only if mechanisms governing Zn management are better known. Using Zn deficiency, we are able to demonstrate that Zn is not remobilized in Brassica napus (B. napus). Thus, remobilization processes should not be targeted by biofortification strategies. This study also complemented previous work by investigating leaf responses to Zn deficiency, especially from proteomic and ionomic points of view, showing for example, an increase in Manganese (Mn) content and of the Mn-dependent protein, Oxygen Evolving Enhancer.

  10. Data for iTRAQ-based quantitative proteomics analysis of Brassica napus leaves in response to chlorophyll deficiency.

    PubMed

    Chu, Pu; Yan, Gui Xia; Yang, Qing; Zhai, Li Na; Zhang, Cheng; Zhang, Feng Qi; Guan, Rong Zhan

    2015-03-01

    The essential pigment chlorophyll (Chl) plays important roles in light harvesting and energy transfer during photosynthesis. Here we present the data from a comparative proteomic analysis of chlorophyll-deficient Brassica napus mutant cde1 and its corresponding wild-type using the iTRAQ approach (Pu Chu et al., 2014 [1]). The distribution of length and number of peptides, mass and sequence coverage of proteins identified was calculated, and the repeatability of the replicates was analyzed. A total of 443 differentially expressed proteins were identified in B. napus leaves, including 228 down-accumulated proteins mainly involved in photosynthesis, porphyrin and chlorophyll metabolism, biosynthesis of secondary metabolites, carbon fixation and 215 up-accumulated proteins that enriched in the spliceosome, mRNA surveillance and RNA degradation.

  11. Effect of enzyme-aided cell wall disintegration on protein extractability from intact and dehulled rapeseed (Brassica rapa L. and Brassica napus L.) press cakes.

    PubMed

    Rommi, Katariina; Hakala, Terhi K; Holopainen, Ulla; Nordlund, Emilia; Poutanen, Kaisa; Lantto, Raija

    2014-08-13

    Cell-wall- and pectin-degrading enzyme preparations were used to enhance extractability of proteins from rapeseed press cake. Rapeseed press cakes from cold pressing of intact Brassica rapa and partially dehulled Brassica napus seeds, containing 36-40% protein and 35% carbohydrates, were treated with pectinolytic (Pectinex Ultra SP-L), xylanolytic (Depol 740L), and cellulolytic (Celluclast 1.5L) enzyme preparations. Pectinex caused effective disintegration of embryonic cell walls through hydrolysis of pectic polysaccharides and glucans and increased protein extraction by up to 1.7-fold in comparison to treatment without enzyme addition. Accordingly, 56% and 74% of the total protein in the intact and dehulled press cakes was extracted. Light microscopy of the press cakes suggested the presence of pectins colocalized with proteins inside the embryo cells. Hydrolysis of these intracellular pectins and deconstruction of embryonic cell walls during Pectinex treatment were concluded to relate with enhanced protein release.

  12. Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus

    PubMed Central

    Hatzig, Sarah V.; Frisch, Matthias; Breuer, Frank; Nesi, Nathalie; Ducournau, Sylvie; Wagner, Marie-Helene; Leckband, Gunhild; Abbadi, Amine; Snowdon, Rod J.

    2015-01-01

    Rapid and uniform seed germination is a crucial prerequisite for crop establishment and high yield levels in crop production. A disclosure of genetic factors contributing to adequate seed vigor would help to further increase yield potential and stability. Here we carried out a genome-wide association study in order to define genomic regions influencing seed germination and early seedling growth in oilseed rape (Brassica napus L.). A population of 248 genetically diverse winter-type B. napus accessions was genotyped with the Brassica 60k SNP Illumina genotyping array. Automated high-throughput in vitro phenotyping provided extensive data for multiple traits related to germination and early vigor, such as germination speed, absolute germination rate and radicle elongation. The data obtained indicate that seed germination and radicle growth are strongly environmentally dependent, but could nevertheless be substantially improved by genomic-based breeding. Conditions during seed production and storage were shown to have a profound effect on seed vigor, and a variable manifestation of seed dormancy appears to contribute to differences in germination performance in B. napus. Several promising positional and functional candidate genes could be identified within the genomic regions associated with germination speed, absolute germination rate, radicle growth and thousand seed weight. These include B. napus orthologs of the Arabidopsis thaliana genes SNOWY COTYLEDON 1 (SCO1), ARABIDOPSIS TWO-COMPONENT RESPONSE REGULATOR (ARR4), and ARGINYL-t-RNA PROTEIN TRANSFERASE 1 (ATE1), which have been shown previously to play a role in seed germination and seedling growth in A. thaliana. PMID:25914704

  13. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus

    PubMed Central

    He, Yajun; Mao, Shaoshuai; Gao, Yulong; Zhu, Liying; Wu, Daoming; Cui, Yixin; Li, Jiana; Qian, Wei

    2016-01-01

    WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions

  14. Identification of a Novel Proline-Rich Antimicrobial Peptide from Brassica napus.

    PubMed

    Cao, Huihui; Ke, Tao; Liu, Renhu; Yu, Jingyin; Dong, Caihua; Cheng, Mingxing; Huang, Junyan; Liu, Shengyi

    2015-01-01

    Proline-rich antimicrobial peptides (PR-AMPs) are a group of cationic host defense peptides that are characterized by a high content of proline residues. Up to now, they have been reported in some insects, vertebrate and invertebrate animals, but are not found in plants. In this study, we performed an in silico screening of antimicrobial peptides, which led to discovery of a Brassica napus gene encoding a novel PR-AMP. This gene encodes a 35-amino acid peptide with 13 proline residues, designated BnPRP1. BnPRP1 has 40.5% identity with a known proline-rich antimicrobial peptide SP-B from the pig. BnPRP1 was artificially synthetized and cloned into the prokaryotic expression vector pET30a/His-EDDIE-GFP. Recombinant BnPRP1 was produced in Escherichia coli and has a predicted molecular mass of 3.8 kDa. Analysis of its activity demonstrated that BnPRP1 exhibited strong antimicrobial activity against Gram-positive bacterium, Gram-negative bacterium, yeast and also had strong antifungal activity against several pathogenic fungi, such as Sclerotinia sclerotiorum, Mucor sp., Magnaporthe oryzae and Botrytis cinerea. Circular dichroism (CD) revealed the main secondary structure of BnPRP1 was the random coil. BnPRP1 gene expression detected by qRT-PCR is responsive to pathogen inoculation. At 48 hours after S. sclerotiorum inoculation, the expression of BnPRP1 increased significantly in the susceptible lines while slight decrease occurred in resistant lines. These suggested that BnPRP1 might play a role in the plant defense response against S. sclerotiorum. BnPRP1 isolated from B. napus was the first PR-AMP member that was characterized in plants, and its homology sequences were found in some other Brassicaceae plants by the genome sequences analysis. Compared with the known PR-AMPs, BnPRP1 has the different primary sequences and antimicrobial activity. Above all, this study gives a chance to cast a new light on further understanding about the AMPs' mechanism and application.

  15. Molecular Mapping and QTL for Expression Profiles of Flavonoid Genes in Brassica napus

    PubMed Central

    Qu, Cunmin; Zhao, Huiyan; Fu, Fuyou; Zhang, Kai; Yuan, Jianglian; Liu, Liezhao; Wang, Rui; Xu, Xinfu; Lu, Kun; Li, Jia-Na

    2016-01-01

    Flavonoids are secondary metabolites that are extensively distributed in the plant kingdom and contribute to seed coat color formation in rapeseed. To decipher the genetic networks underlying flavonoid biosynthesis in rapeseed, we constructed a high-density genetic linkage map with 1089 polymorphic loci (including 464 SSR loci, 97 RAPD loci, 451 SRAP loci, and 75 IBP loci) using recombinant inbred lines (RILs). The map consists of 19 linkage groups and covers 2775 cM of the B. napus genome with an average distance of 2.54 cM between adjacent markers. We then performed expression quantitative trait locus (eQTL) analysis to detect transcript-level variation of 18 flavonoid biosynthesis pathway genes in the seeds of the 94 RILs. In total, 72 eQTLs were detected and found to be distributed among 15 different linkage groups that account for 4.11% to 52.70% of the phenotypic variance atrributed to each eQTL. Using a genetical genomics approach, four eQTL hotspots together harboring 28 eQTLs associated with 18 genes were found on chromosomes A03, A09, and C08 and had high levels of synteny with genome sequences of A. thaliana and Brassica species. Associated with the trans-eQTL hotspots on chromosomes A03, A09, and C08 were 5, 17, and 1 genes encoding transcription factors, suggesting that these genes have essential roles in the flavonoid biosynthesis pathway. Importantly, bZIP25, which is expressed specifically in seeds, MYC1, which controls flavonoid biosynthesis, and the R2R3-type gene MYB51, which is involved in the synthesis of secondary metabolites, were associated with the eQTL hotspots, and these genes might thus be involved in different flavonoid biosynthesis pathways in rapeseed. Hence, further studies of the functions of these genes will provide insight into the regulatory mechanism underlying flavonoid biosynthesis, and lay the foundation for elaborating the molecular mechanism of seed coat color formation in B. napus. PMID:27881992

  16. Development of rapeseed with high erucic acid content by asymmetric somatic hybridization between Brassica napus and Crambe abyssinica.

    PubMed

    Wang, Y P; Sonntag, K; Rudloff, E

    2003-05-01

    PEG-induced asymmetric somatic hybridization between Brassica napus and Crambe abyssinica was carried out. C. abyssinica is an annual cruciferous oil crop with a high content of erucic acid in the seed oil valuable for technical purposes. UV-irradiated mesophyll protoplasts of C. abyssinica cv 'Carmen' and cv 'Galactica' were fused with hypocotyl protoplasts of different genotypes of B. napus cv 'Maplus' and breeding line '11502'. Shoot regeneration frequency varied between 6.1% and 20.8% among the different doses of UV-irradiation, ranging from 0.05 J/cm(2) to 0.30 J/cm(2). In total, 124 shoots were regenerated, of which 20 asymmetric somatic hybrids were obtained and verified by nuclear DNA content and AFLP analysis. AFLP data showed that some of the characteristic bands from C. abyssinica were present in the hybrids. Cytological analysis of these hybrids showed that 9 out of 20 asymmetric hybrids had 38 chromosomes, the others contained 40-78 chromosomes, having additional chromosomes between 2 and 40 beyond the 38 expected for B. napus. The investigation into the fertility of asymmetric somatic hybrids indicated that the fertility increased with increasing UV-doses ranging from 0.05 J/cm(2) to 0.15 J/cm(2). All of the hybrids were cultured to full maturity, and could be fertilized and set seeds after self-pollination or backcrosses with B. napus. An analysis of fatty acid composition in the seeds was conducted and found to contain significantly greater amounts of erucic acid than B. napus. This study indicates that UV-irradiation could be used as a tool to produce asymmetric somatic hybrids and to promote the fertility of the hybrids.

  17. Genome-Wide Gene Expressions Respond Differently to A-subgenome Origins in Brassica napus Synthetic Hybrids and Natural Allotetraploid

    PubMed Central

    Zhang, Dawei; Pan, Qi; Tan, Chen; Zhu, Bin; Ge, Xianhong; Shao, Yujiao; Li, Zaiyun

    2016-01-01

    The young allotetraploid Brassica napus (2n = 38, AACC) is one of models to study genomic responses to allopolyploidization. The extraction of AA component from natural B. napus and then restitution of progenitor B. rapa should provide a unique opportunity to reveal the genome interplay for gene expressions during the evolution. Herein, B. napus hybrids (2n = 19, AC) between the extracted and extant B. rapa (2n = 20, AA) and the same B. oleracea genotype (2n = 18, CC) were studied by RNA-seq and compared with natural B. napus donor, to reveal the gene expression changes from hybridization and domestication and the effects of A genome with different origins. Upon the initial merger of two diploid genomes, additive gene expression was prevalent in these two hybrids, for non-additively expressed genes only represented a small portion of total expressed genes. A high proportion of genes exhibited expression level dominance, with no preference to either of the parental genomes. Comparison of homoeolog expressions also showed no bias toward any genomes and the parental expression patterns were often maintained in the hybrids and natural allotetraploids. Although, the overall patterns of gene expression were highly conserved between two hybrids, the extracted B. rapa responded less and appeared more compatible for hybridization than the extant B. rapa. Our results suggested that expression level dominance and homoeolog expressions bias were balanced at the initial stage of genome merger, and such balance were largely maintained during the domestication of B. napus, despite the increased extent over time. PMID:27790227

  18. Identification of a potential structural marker for embryogenic competency in the Brassica napus spp. oleifera embryogenic tissue.

    PubMed

    Namasivayam, Parameswari; Skepper, Jeremy; Hanke, David

    2006-09-01

    The Brassica napus secondary embryogenesis system requires no exogenous growth regulator to stimulate embryo development. It is stable embryogenically over a long period of culture and has a distinct pre-embryogenic stage. This system was used to investigate the morphological and cellular changes occurring in the embryogenic tissue compared to non-embryogenic tissue using various microscopy techniques. A unique ultrastructural feature designated the extracellular matrix (ECM) was observed on the surface of pre-embryogenic embryoids but not on the non-embryogenic individuals. The ECM layer was found to be dominant in the pre-embryogenic stage and reduced to fragments during embryo growth and development in mature embryogenic tissue. This is a novel aspect of the phenotype previously unreported in the Brassica system. This structure might be linked to acquisition of embryogenic competence.

  19. Multiple NUCLEAR FACTOR Y Transcription Factors Respond to Abiotic Stress in Brassica napus L

    PubMed Central

    Xu, Li; Lin, Zhongyuan; Tao, Qing; Liang, Mingxiang; Zhao, Gengmao; Yin, Xiangzhen; Fu, Ruixin

    2014-01-01

    Members of the plant NUCLEAR FACTOR Y (NF-Y) family are composed of the NF-YA, NF-YB, and NF-YC subunits. In Brassica napus (canola), each of these subunits forms a multimember subfamily. Plant NF-Ys were reported to be involved in several abiotic stresses. In this study, we demonstrated that multiple members of thirty three BnNF-Ys responded rapidly to salinity, drought, or ABA treatments. Transcripts of five BnNF-YAs, seven BnNF-YBs, and two BnNF-YCs were up-regulated by salinity stress, whereas the expression of thirteen BnNF-YAs, ten BnNF-YBs, and four BnNF-YCs were induced by drought stress. Under NaCl treatments, the expression of one BnNF-YA10 and four NF-YBs (BnNF-YB3, BnNF-YB7, BnNF-YB10, and BnNF-YB14) were greatly increased. Under PEG treatments, the expression levels of four NF-YAs (BnNF-YA9, BnNF-YA10, BnNF-YA11, and BnNF-YA12) and five NF-YBs (BnNF-YB1, BnNF-YB8, BnNF-YB10, BnNF-YB13, and BnNF-YB14) were greatly induced. The expression profiles of 20 of the 27 salinity- or drought-induced BnNF-Ys were also affected by ABA treatment. The expression levels of six NF-YAs (BnNF-YA1, BnNF-YA7, BnNF-YA8, BnNF-YA9, BnNF-YA10, and BnNF-YA12) and seven BnNF-YB members (BnNF-YB2, BnNF-YB3, BnNF-YB7, BnNF-YB10, BnNF-YB11, BnNF-YB13, and BnNF-YB14) and two NF-YC members (BnNF-YC2 and BnNF-YC3) were greatly up-regulated by ABA treatments. Only a few BnNF-Ys were inhibited by the above three treatments. Several NF-Y subfamily members exhibited collinear expression patterns. The promoters of all stress-responsive BnNF-Ys harbored at least two types of stress-related cis-elements, such as ABRE, DRE, MYB, or MYC. The cis-element organization of BnNF-Ys was similar to that of Arabidopsis thaliana, and the promoter regions exhibited higher levels of nucleotide sequence identity with Brassica rapa than with Brassica oleracea. This work represents an entry point for investigating the roles of canola NF-Y proteins during abiotic stress responses and provides insight into

  20. Multiple NUCLEAR FACTOR Y transcription factors respond to abiotic stress in Brassica napus L.

    PubMed

    Xu, Li; Lin, Zhongyuan; Tao, Qing; Liang, Mingxiang; Zhao, Gengmao; Yin, Xiangzhen; Fu, Ruixin

    2014-01-01

    Members of the plant NUCLEAR FACTOR Y (NF-Y) family are composed of the NF-YA, NF-YB, and NF-YC subunits. In Brassica napus (canola), each of these subunits forms a multimember subfamily. Plant NF-Ys were reported to be involved in several abiotic stresses. In this study, we demonstrated that multiple members of thirty three BnNF-Ys responded rapidly to salinity, drought, or ABA treatments. Transcripts of five BnNF-YAs, seven BnNF-YBs, and two BnNF-YCs were up-regulated by salinity stress, whereas the expression of thirteen BnNF-YAs, ten BnNF-YBs, and four BnNF-YCs were induced by drought stress. Under NaCl treatments, the expression of one BnNF-YA10 and four NF-YBs (BnNF-YB3, BnNF-YB7, BnNF-YB10, and BnNF-YB14) were greatly increased. Under PEG treatments, the expression levels of four NF-YAs (BnNF-YA9, BnNF-YA10, BnNF-YA11, and BnNF-YA12) and five NF-YBs (BnNF-YB1, BnNF-YB8, BnNF-YB10, BnNF-YB13, and BnNF-YB14) were greatly induced. The expression profiles of 20 of the 27 salinity- or drought-induced BnNF-Ys were also affected by ABA treatment. The expression levels of six NF-YAs (BnNF-YA1, BnNF-YA7, BnNF-YA8, BnNF-YA9, BnNF-YA10, and BnNF-YA12) and seven BnNF-YB members (BnNF-YB2, BnNF-YB3, BnNF-YB7, BnNF-YB10, BnNF-YB11, BnNF-YB13, and BnNF-YB14) and two NF-YC members (BnNF-YC2 and BnNF-YC3) were greatly up-regulated by ABA treatments. Only a few BnNF-Ys were inhibited by the above three treatments. Several NF-Y subfamily members exhibited collinear expression patterns. The promoters of all stress-responsive BnNF-Ys harbored at least two types of stress-related cis-elements, such as ABRE, DRE, MYB, or MYC. The cis-element organization of BnNF-Ys was similar to that of Arabidopsis thaliana, and the promoter regions exhibited higher levels of nucleotide sequence identity with Brassica rapa than with Brassica oleracea. This work represents an entry point for investigating the roles of canola NF-Y proteins during abiotic stress responses and provides insight into

  1. Draft Genome Sequence of the Beneficial Rhizobacterium Pseudomonas fluorescens DSM 8569, a Natural Isolate of Oilseed Rape (Brassica napus)

    PubMed Central

    Nesemann, Kai; Braus-Stromeyer, Susanna A.; Thuermer, Andrea; Daniel, Rolf

    2015-01-01

    Pseudomonas fluorescens DSM 8569 represents a natural isolate of the rhizosphere of oilseed rape (Brassica napus) in Germany and possesses antagonistic potential toward the fungal pathogen Verticillium. We report here the draft genome sequence of strain DSM 8569, which comprises 5,914 protein-coding sequences. PMID:25814596

  2. Meligethes aeneus pollen-feeding suppresses, and oviposition induces, Brassica napus volatiles: beetle attraction/repellence to lilac aldehydes and veratrole

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pollination and pollen-feeding can reduce plant volatile emissions and future insect floral attraction, with oviposition having different effects. Meligethes aeneus F. (Coleoptera: Nitidulidae), is a pollen-feeding pest beetle of oilseed rape, Brassica napus L. (Brassicaceae). We measured pla...

  3. Seeding date affects fall growth of winter canola (Brassica napus L. ‘Baldur’) and its performance as a winter cover crop in central Iowa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, interest has increased in finding non-grass cover crop species that could be planted after soybean (Glycine max (L) Merr.) and before corn (Zea mays L.) in Iowa crop rotations. In this study, we investigate the use of winter canola (Brassica napus L.) as an alternative cover crop fo...

  4. Effect of planting methods on spring canola (Brassica napus L.) establishment and yield in the low-rainfall region of the Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growers are becoming interested in producing canola (Brassica napus or rapa) in the dryland, wheat-fallow region of the Pacific Northwest (PNW). Currently, agronomic research for spring canola in this region has not been initiated. This study evaluated the effect of no-till planting methods on stand...

  5. Yield reduction in Brassica napus, B. rapa, B. juncea, and Sinapis alba caused by flea beetle (Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae)) infestation in northern Idaho.

    PubMed

    Brown, Jack; McCaffrey, Joseph P; Brown, Donna A; Harmon, Bradley L; Davis, James B

    2004-10-01

    Phyllotreta cruciferae is an important insect pest of spring-planted Brassica crops, especially during the seedling stage. To determine the effect of early season P. cruciferae infestation on seed yield, 10 genotypes from each of two canola species (Brassica napus L. and Brassica rapa L.) and two mustard species (Brassica juncea L. and Sinapis alba L.) were grown in 2 yr under three different P. cruciferae treatments: (1) no insecticide control; (2) foliar applications of endosulfan; and (3) carbofuran with seed at planting plus foliar application of carbaryl. Averaged over 10 genotypes, B. rapa showed most visible P. cruciferae injury and showed greatest yield reduction without insecticide application. Mustard species (S. alba and B. juncea) showed least visible injury and higher yield without insecticide compared with canola species (B. napus and B. rapa). Indeed, average seed yield of S. alba without insecticide was higher than either B. napus or B. rapa with most effective P. cruciferae control. Significant variation occurred within each species. A number of lines from B. napus, B. juncea, anid S. alba showed less feeding injury and yield reduction as a result of P. cruciferae infestation compared with other lines from the same species examined, thus having potential genetic background for developing resistant cultivars.

  6. Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L.

    PubMed

    Gill, Rafaqat A; Zang, Lili; Ali, Basharat; Farooq, Muhammad A; Cui, Peng; Yang, Su; Ali, Shafaqat; Zhou, Weijun

    2015-02-01

    In nature, plants are continuously exposed to several biotic and abiotic stresses. Among these stresses, chromium (Cr) stress is one of the most adverse factors that affects the plant growth, and productivity, and imposes a severe threat for sustainable crop production. In the present study, toxic effects of Cr were studied in hydroponically grown seedlings of four different cultivars of Brassica napus L. viz. ZS 758, Zheda 619, ZY 50 and Zheda 622. The study revealed that elevated Cr concentrations reduced the plant growth rate and biomass as compared to respective controls in all the cultivars and this decline was more obvious in Zheda 622. It was observed that reduction of photosynthetic attributes was more pronounced in Zheda 622 as compared to other cultivars; while, cultivar ZS 758 performed better under Cr-toxicity. Results showed that Cr contents in different parts of seedlings were higher in Zheda 622 as compared to other cultivars and Cr contents were higher in roots than shoots in all the cultivars. Accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) were induced under different Cr concentrations. Results showed that some of anti-oxidant enzyme activities in leaves and roots were increased under the Cr-toxicity. The electron microscopic study showed that ultrastructural damages in leaf mesophyll and root tip cells were more prominent in Zheda 622 as compared to other cultivars under 400 μM Cr stress. Under 400 μM Cr concentration, changes like broken cell wall, immature nucleus, a number of mitochondria, ruptured thylakoid membranes and large size of vacuole and starch grains were observed in leaf ultrastructures. The damages in root cells were observed in the form of disruption of golgibodies and diffused cell wall under the higher concentration of Cr (400 μM). On the basis of these observations, it was concluded that Zheda 622 was found to be more sensitive as followed by ZY 50, Zheda 619 and ZS 758 under Cr-toxicity.

  7. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L.

    PubMed

    Rossi, Lorenzo; Zhang, Weilan; Lombardini, Leonardo; Ma, Xingmao

    2016-12-01

    Dwindling high quality water resources and growing population are forcing growers to irrigate crops with water of high salinity. It is well recognized that salinity negatively affects plant physiology and biochemistry, and represents one of the most serious threats to crop production and food security. Meanwhile, engineered nanoparticles (ENPs) are increasingly detected in irrigation water and agricultural soils due to the rapid advancement of nanotechnology. Previous research has demonstrated that ENPs such as cerium oxide nanoparticles (CeO2-NPs) exert significant impact on plant growth and production. However, almost all previous studies were conducted in well controlled environment. Knowledge on how ENPs affect plant development in a stressed condition is almost empty. The goal of the present study was to understand the physiological and biochemical changes in Brassica napus L. (canola) cv. 'Dwarf Essex' under synergistic salt stress and CeO2-NPs effects. Two salinity levels: 0 (control) and 100 mM NaCl, and three CeO2-NPs concentrations: 0 (control), 200 and 1000 mg kg(-1) dry sand and clay mixture, were employed. As expected, 100 mM of NaCl significantly hindered plant growth and negatively affected the physiological processes of canola. Plants treated with CeO2-NPs had higher plant biomass, exhibited higher efficiency of the photosynthetic apparatus and less stress in both fresh water and saline water irrigation conditions Overall, our results demonstrated that CeO2-NPs led to changes in canola growth and physiology which improved the plant salt stress response but did not completely alleviate the salt stress of canola.

  8. A mutation screening platform for rapeseed (Brassica napus L.) and the detection of sinapine biosynthesis mutants.

    PubMed

    Harloff, Hans-Joachim; Lemcke, Susanne; Mittasch, Juliane; Frolov, Andrej; Wu, Jian Guo; Dreyer, Felix; Leckband, Gunhild; Jung, Christian

    2012-03-01

    We developed two mutant populations of oilseed rape (Brassica napus L.) using EMS (ethylmethanesulfonate) as a mutagen. The populations were derived from the spring type line YN01-429 and the winter type cultivar Express 617 encompassing 5,361 and 3,488 M(2) plants, respectively. A high-throughput screening protocol was established based on a two-dimensional 8× pooling strategy. Genes of the sinapine biosynthesis pathway were chosen for determining the mutation frequencies and for creating novel genetic variation for rapeseed breeding. The extraction meal of oilseed rape is a rich protein source containing about 40% protein. Its use as an animal feed or human food, however, is limited by antinutritive compounds like sinapine. The targeting-induced local lesions in genomes (TILLING) strategy was applied to identify mutations of major genes of the sinapine biosynthesis pathway. We constructed locus-specific primers for several TILLING amplicons of two sinapine synthesis genes, BnaX.SGT and BnaX.REF1, covering 80-90% of the coding sequences. Screening of both populations revealed 229 and 341 mutations within the BnaX.SGT sequences (135 missense and 13 nonsense mutations) and the BnaX.REF1 sequences (162 missense, 3 nonsense, 8 splice site mutations), respectively. These mutants provide a new resource for breeding low-sinapine oilseed rape. The frequencies of missense and nonsense mutations corresponded to the frequencies of the target codons. Mutation frequencies ranged from 1/12 to 1/22 kb for the Express 617 population and from 1/27 to 1/60 kb for the YN01-429 population. Our TILLING resource is publicly available. Due to the high mutation frequencies in combination with an 8× pooling strategy, mutants can be routinely identified in a cost-efficient manner. However, primers have to be carefully designed to amplify single sequences from the polyploid rapeseed genome.

  9. [Genetic analysis of a specially long pod character in artificially resythesized Brassica napus L].

    PubMed

    Wang, Yan-Hui; Niu, Ying-Ze

    2006-10-01

    Two hybrid combinations were made with a resynthesized specially-long pod line in H218 Brassica napus L., namely H218 x Zhongyou 821, H218 x MSP334 and their six generations F(1), F(2), backcrosses B(1) and B(2) and their parents P(1) and P(2) were used to study the inheritance of 3 pod related traits, namely the full pod length, the pod body length and the pod beak length. The results were the followings: the three traits in the F(2) population of the two combinations had a continuous normal distribution, indicating that these traits were quantitative in nature and controlled by polygenes. The broad-sense heritabilities of the full pod length, pod body length and pod beak length of the two combinations were 65.89%-70.77%, 60.14%-63.38% and 26.36%-46.44%, respectively. The narrow-sense heritabilities were 44.01%-46.78%, 46.89%-47.38% and 18.08%-37.87%, respectively. The results from the two combinations consistently showed that full pod length, pod body length and pod beak length were controlled by 5, 6 and 2 genes respectively. The preliminary study on the gene effect demonstrated that the three traits in the two combinations all fit the additive-dominant model and the epistatic effect was significant. The additive effects and the dominant effects of the three traits in the two combinations were both significant. Of the full pod length and the pod body length, the dominant effect was more significant than the additive effect; and it is the same case for the pod beak length.

  10. Expression of Engineered Nuclear Male Sterility in Brassica napus (Genetics, Morphology, Cytology, and Sensitivity to Temperature).

    PubMed Central

    Denis, M.; Delourme, R.; Gourret, J. P.; Mariani, C.; Renard, M.

    1993-01-01

    A dominant genetic male sterility trait obtained through transformation in rapeseed (Brassica napus) was studied in the progenies of 11 transformed plants. The gene conferring the male sterility consists of a ribonuclease gene under the control of a tapetum-specific promoter. Two ribonuclease genes, RNase T1 and barnase, were used. The chimaeric ribonuclease gene was linked to the bialophos-resistance gene, which confers resistance to the herbicide phosphinotricine (PPT). The resistance to the herbicide was used as a dominant marker for the male sterility trait. The study presented here concerns three aspects of this engineered male sterility: genetics correlated with the segregation of the T-DNA in the progenies; expression of the male sterility in relation to the morphology and cytology of the androecium; and stability of the engineered male sterility under different culture conditions. Correct segregation, 50% male-sterile, PPT-resistant plants, and 50% male-fertile, susceptible plants were observed in the progeny of seven transformants. The most prominent morphological change in the male-sterile flowers was a noticeable reduction in the length of the stamen filament. The first disturbances of microsporogenesis were observed from the free microspore stage and were followed by a simultaneous degeneration of microspore and tapetal cell content. At anthesis, the sterile anthers contained only empty exines. In some cases, reversion to fertility of male-sterile plants has been observed. Both ribonuclease genes are susceptible to instability. Instability of the RNase T1-male sterility trait increased at temperatures higher than 25[deg] C. Our results do not allow us to confirm this observation for the barnase male-sterile plants. However, the male-sterile plants of the progeny of two independent RNase T1 transformants were stably male sterile under all conditions studied. PMID:12231785

  11. Global Dynamic Transcriptome Programming of Rapeseed (Brassica napus L.) Anther at Different Development Stages

    PubMed Central

    Li, Zhanjie; Zhang, Peipei; Lv, Jinyang; Cheng, Yufeng; Cui, Jianmin; Zhao, Huixian; Hu, Shengwu

    2016-01-01

    Rapeseed (Brassica napus L.) is an important oil crop worldwide and exhibits significant heterosis. Effective pollination control systems, which are closely linked to anther development, are a prerequisite for utilizing heterosis. The anther, which is the male organ in flowering plants, undergoes many metabolic processes during development. Although the gene expression patterns underlying pollen development are well studied in model plant Arabidopsis, the regulatory networks of genome-wide gene expression during rapeseed anther development is poorly understood, especially regarding metabolic regulations. In this study, we systematically analyzed metabolic processes occurring during anther development in rapeseed using ultrastructural observation and global transcriptome analysis. Anther ultrastructure exhibited that numerous cellular organelles abundant with metabolic materials, such as elaioplast, tapetosomes, plastids (containing starch deposits) etc. appeared, accompanied with anther structural alterations during anther development, suggesting many metabolic processes occurring. Global transcriptome analysis revealed dynamic changes in gene expression during anther development that corresponded to dynamic functional alterations between early and late anther developmental stages. The early stage anthers preferentially expressed genes involved in lipid metabolism that are related to pollen extine formation as well as elaioplast and tapetosome biosynthesis, whereas the late stage anthers expressed genes associated with carbohydrate metabolism to form pollen intine and to accumulate starch in mature pollen grains. Finally, a predictive gene regulatory module responsible for early pollen extine formation was generated. Taken together, this analysis provides a comprehensive understanding of dynamic gene expression programming of metabolic processes in the rapeseed anther, especially with respect to lipid and carbohydrate metabolism during pollen development. PMID

  12. Effect of water stress on the agressiveness of oilsseed rape (Brassica napus L.) and two mustards (Sinapis alba L. and S. arvensis L.).

    PubMed

    Maataoui, A; Talouizte, A; Benbella, M; Bouhache, M

    2003-01-01

    Oilseed rape (Brassica napus L.), a winter sown crop, may compete for water especially with Brassicaceae weeds. Investigating plant competition under water stress conditions is necessary for achieving a good yield in a Mediterranean climate characterized by a scarse water availability. This experiment was carried out to study the competiveness of oilseed rape (Brassica napus L.) with two brassicaceae weeds (Sinapis alba L. and S. arvensis L.). Species were grown at a density of two plants per bucket either in monoculture or as a binary mixture under water stress conditions in a greenhouse. Results of monoculture showed that B. napus had the highest shoot dry matter. Shoot dry matter of B. napus was more reduced by intraspecific competition than by interspecific competition due to S. arvensis. Shoot dry matter of S. alba in monoculture was higher than in mixture with S. arvensis, but more reduced in mixture with B. napus. In case of S. arvensis, shoot dry matter was more reduced by interspecific competition than by intraspecific competition. Agressivity based on grain yield showed, that B. napus was the most agressive species followed by S. alba. This agressivity did not change by the imposed water stress.

  13. QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus.

    PubMed

    Fletcher, Richard S; Mullen, Jack L; Heiliger, Annie; McKay, John K

    2015-01-01

    Drought escape and dehydration avoidance represent alternative strategies for drought adaptation in annual crops. The mechanisms underlying these two strategies are reported to have a negative correlation, suggesting a trade-off. We conducted a quantitative trait locus (QTL) analysis of flowering time and root mass, traits representing each strategy, in Brassica napus to understand if a trade-off exists and what the genetic basis might be. Our field experiment used a genotyped population of doubled haploid lines and included both irrigated and rainfed treatments, allowing analysis of plasticity in each trait. We found strong genetic correlations among all traits, suggesting a trade-off among traits may exist. Summing across traits and treatments we found 20 QTLs, but many of these co-localized to two major QTLs, providing evidence that the trade-off is genetically constrained. To understand the mechanistic relationship between root mass, flowering time, and QTLs, we analysed the data by conditioning upon correlated traits. Our results suggest a causal model where such QTLs affect root mass directly as well as through their impacts on flowering time. Additionally, we used draft Brassica genomes to identify orthologues of well characterized Arabidopsis thaliana flowering time genes as candidate genes. This research provides valuable clues to breeding for drought adaptation as it is the first to analyse the inheritance of the root system in B. napus in relation to drought.

  14. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus.

    PubMed

    Wei, Lijuan; Jian, Hongju; Lu, Kun; Filardo, Fiona; Yin, Nengwen; Liu, Liezhao; Qu, Cunmin; Li, Wei; Du, Hai; Li, Jiana

    2016-06-01

    Brassica napus is one of the most important oil crops in the world, and stem rot caused by the fungus Sclerotinia sclerotiorum results in major losses in yield and quality. To elucidate resistance genes and pathogenesis-related genes, genome-wide association analysis of 347 accessions was performed using the Illumina 60K Brassica SNP (single nucleotide polymorphism) array. In addition, the detached stem inoculation assay was used to select five highly resistant (R) and susceptible (S) B. napus lines, 48 h postinoculation with S. sclerotiorum for transcriptome sequencing. We identified 17 significant associations for stem resistance on chromosomes A8 and C6, five of which were on A8 and 12 on C6. The SNPs identified on A8 were located in a 409-kb haplotype block, and those on C6 were consistent with previous QTL mapping efforts. Transcriptome analysis suggested that S. sclerotiorum infection activates the immune system, sulphur metabolism, especially glutathione (GSH) and glucosinolates in both R and S genotypes. Genes found to be specific to the R genotype related to the jasmonic acid pathway, lignin biosynthesis, defence response, signal transduction and encoding transcription factors. Twenty-four genes were identified in both the SNP-trait association and transcriptome sequencing analyses, including a tau class glutathione S-transferase (GSTU) gene cluster. This study provides useful insight into the molecular mechanisms underlying the plant's response to S. sclerotiorum.

  15. QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus

    PubMed Central

    Fletcher, Richard S.; Mullen, Jack L.; Heiliger, Annie; McKay, John K.

    2015-01-01

    Drought escape and dehydration avoidance represent alternative strategies for drought adaptation in annual crops. The mechanisms underlying these two strategies are reported to have a negative correlation, suggesting a trade-off. We conducted a quantitative trait locus (QTL) analysis of flowering time and root mass, traits representing each strategy, in Brassica napus to understand if a trade-off exists and what the genetic basis might be. Our field experiment used a genotyped population of doubled haploid lines and included both irrigated and rainfed treatments, allowing analysis of plasticity in each trait. We found strong genetic correlations among all traits, suggesting a trade-off among traits may exist. Summing across traits and treatments we found 20 QTLs, but many of these co-localized to two major QTLs, providing evidence that the trade-off is genetically constrained. To understand the mechanistic relationship between root mass, flowering time, and QTLs, we analysed the data by conditioning upon correlated traits. Our results suggest a causal model where such QTLs affect root mass directly as well as through their impacts on flowering time. Additionally, we used draft Brassica genomes to identify orthologues of well characterized Arabidopsis thaliana flowering time genes as candidate genes. This research provides valuable clues to breeding for drought adaptation as it is the first to analyse the inheritance of the root system in B. napus in relation to drought. PMID:25371500

  16. Functional characterization of Brassica napus DNA topoisomerase Iα-1 and its effect on flowering time when expressed in Arabidopsis thaliana.

    PubMed

    Gao, Chenhao; Qi, Shuanghui; Liu, Kaige; Li, Dong; Jin, Changyu; Duan, Shaowei; Zhang, Meng; Chen, Mingxun

    2017-03-08

    Previous studies have shown that DNA topoisomerase Iα (AtTOP1α) has specific developmental functions during growth and development in Arabidopsis thaliana. However, little is known about the roles of DNA topoisomerases in the closely related and commercially important plant, rapeseed (Brassica napus). Here, the full-length BnTOP1α-1 coding sequence was cloned from the A2 subgenome of the Brassica napus inbred line L111. We determine that all BnTOP1α paralogs showed differing patterns of expression in different organs of L111, and that when expressed in tobacco leaves as a fusion protein with green fluorescent protein, BnTOP1α-1 localized to the nucleus. We further showed that ectopic expression of BnTOP1α-1 in the A. thaliana top1α-7 mutant fully complemented the early flowering phenotype of the mutant. Moreover, altered expression levels in top1α-7 seedlings of several key genes controlling flowering time were restored to wild type levels by ectopic expression of BnTOP1α-1. These results provide valuable insights into the roles of rapeseed DNA topoisomerases in flowering time, and provide a promising target for genetic manipulation of this commercially significant process in rapeseed.

  17. The functional role of the photosynthetic apparatus in the recovery of Brassica napus plants from pre-emergent metazachlor exposure.

    PubMed

    Vercampt, H; Koleva, L; Vassilev, A; Horemans, N; Biermans, G; Vangronsveld, J; Cuypers, A

    2016-06-01

    Metazachlor is a chloroacetamide herbicide, frequently used in Brassica napus cultivations around the world. Its primary target is the inhibition of very long chain fatty acid biosynthesis. This study included a morphological and physiological screening of hydroponically grown B. napus, exposed to a concentration range of 0, 0.25, 0.50, 0.75 and 1.0kg metazachlor per hectare. The results indicate that within a month after application, growth and development of B. napus are severely affected by low metazachlor doses. At intermediate metazachlor concentrations, loss of phosphorous and potassium from the plant tissues suggests destabilisation of cellular membranes, which may be a direct consequence of metazachlor application. This membrane instability could be indirectly linked with alterations of electron transport and a reduction of carbon assimilation. At increased metazachlor doses of 0.75kga.i.ha(-1), pigment concentrations are strongly reduced. However, chlorophyll fluorescence parameters seem to remain unaffected at metazachlor doses up to 0.75kga.i.ha(-1). At a metazachlor concentration of 1.0kga.i.ha(-1), negative effects are observed on all tested parameters, resulting in limited survival. The results indicate photosynthesis is assured at intermediate metazachlor concentrations for the cost of growth and development. It is clear that photosynthesis plays a key role in the survival strategy of young plants to overcome initially induced chemical stress.

  18. Development of new restorer lines for CMS ogura system with the use of resynthesized oilseed rape (Brassica napus L.)

    PubMed Central

    Szała, Laurencja; Sosnowska, Katarzyna; Popławska, Wiesława; Liersch, Alina; Olejnik, Anna; Kozłowska, Katarzyna; Bocianowski, Jan; Cegielska-Taras, Teresa

    2016-01-01

    Resynthesized (RS) oilseed rape (Brassica napus L.) is potentially of great interest for hybrid breeding. However, a major problem with the direct use of RS B. napus is the quality of seed oil (high level of erucic acid) and seed meal (high glucosinolate content), which does not comply with double-low quality oilseed rape. Thus, additional developments are needed before RS B. napus can be introduced into breeding practice. In this study, RS oilseed rape was obtained through crosses between B. rapa ssp. chinensis var. chinensis and B. oleracea ssp. acephala var. sabellica. RS plant was then crossed with double-low (00) winter oilseed rape lines containing the Rfo gene for Ogura cytoplasmic male sterility (CMS ogu) system. Populations of doubled haploids (DH) were developed from these F1 hybrids using the microspore in vitro culture method. The seeds of semi-RS DH lines were analyzed for erucic acid and glucosinolate content. Among the populations of semi-RS DHs four 00-quality lines with the Rfo gene were selected. Using 344 AFLP markers to estimate genetic relatedness, we showed that the RS lines and semi-RS lines formed clusters that were clearly distinct from 96 winter oilseed rape parental lines of F1 hybrids. PMID:27795676

  19. Effect of plant density on competitiveness of Brassica napus, Sinapis alba and S. arvensis under water stress conditions.

    PubMed

    Maataoui, A; Talouizte, A; Benbella, M; Bouhache, M

    2005-01-01

    Under Mediterranean climate, oilseed rape is subjected especially to the competition of weeds with respect to water. Herbicides registered for this crop do not effectively control species of the same family, in particular Sinapis alba and Sinapis arvensis. Moreover, there are no results of the effect of plant density on the competitiveness of these species. The purpose of this experiment was to determine if the competitiveness of the species varies according to the total density. The experiment was carried out in pots under greenhouse conditions, according to a replacement series method. Plant densities tested were 2, 4 and 8 plants per pot. The results of the replacement series diagram and those of relative crowding coefficients showed that Brassica napus was the most competitive, whatever the density is. This classification is explained primarily by leaf area. Indeed, the intraspecific competition due to B. napus has affected more its leaf area than the interspecific competition. Conversely, the intraspecific competition due to S. arvensis has less affected its leaf area than the interspecific competition. Regarding S. alba, the intraspecific competition effect was less severe than the interspecific competition effect due to B. napus and more severe than the interspecific competition effect due to S. arvensis on S. alba

  20. Metabolic network reconstruction and flux variability analysis of storage synthesis in developing oilseed rape (Brassica napus L.) embryos

    SciTech Connect

    Hay, J.; Schwender, J.

    2011-08-01

    Computational simulation of large-scale biochemical networks can be used to analyze and predict the metabolic behavior of an organism, such as a developing seed. Based on the biochemical literature, pathways databases and decision rules defining reaction directionality we reconstructed bna572, a stoichiometric metabolic network model representing Brassica napus seed storage metabolism. In the highly compartmentalized network about 25% of the 572 reactions are transport reactions interconnecting nine subcellular compartments and the environment. According to known physiological capabilities of developing B. napus embryos, four nutritional conditions were defined to simulate heterotrophy or photoheterotrophy, each in combination with the availability of inorganic nitrogen (ammonia, nitrate) or amino acids as nitrogen sources. Based on mathematical linear optimization the optimal solution space was comprehensively explored by flux variability analysis, thereby identifying for each reaction the range of flux values allowable under optimality. The range and variability of flux values was then categorized into flux variability types. Across the four nutritional conditions, approximately 13% of the reactions have variable flux values and 10-11% are substitutable (can be inactive), both indicating metabolic redundancy given, for example, by isoenzymes, subcellular compartmentalization or the presence of alternative pathways. About one-third of the reactions are never used and are associated with pathways that are suboptimal for storage synthesis. Fifty-seven reactions change flux variability type among the different nutritional conditions, indicating their function in metabolic adjustments. This predictive modeling framework allows analysis and quantitative exploration of storage metabolism of a developing B. napus oilseed.

  1. Hydrogen sulfide alleviates the aluminum-induced changes in Brassica napus as revealed by physiochemical and ultrastructural study of plant.

    PubMed

    Ali, Basharat; Qian, Ping; Sun, Rui; Farooq, Muhammad A; Gill, Rafaqat A; Wang, Jian; Azam, Muhammad; Zhou, Weijun

    2015-02-01

    In the present study, ameliorating role of hydrogen sulfide (H2S) in oilseed rape (Brassica napus L.) was studied with or without application of H2S donor sodium hydrosulfide (NaHS) (0.3 mM) in hydroponic conditions under three levels (0, 0.1 and 0.3 mM) of aluminum (Al). Results showed that addition of H2S significantly improved the plant growth, photosynthetic gas exchange, and nutrients concentration in the leaves and roots of B. napus plants under Al stress. Exogenously applied H2S significantly lowered the Al concentration in different plant parts, and reduced the production of malondialdehyde and reactive oxygen species by improving antioxidant enzyme activities in the leaves and roots under Al stress. Moreover, the present study indicated that exogenously applied H2S improved the cell structure and displayed clean mesophyll and root tip cells. The chloroplast with well-developed thylakoid membranes could be observed in the micrographs. Under the combined application of H2S and Al, a number of modifications could be observed in root tip cell, such as mitochondria, endoplasmic reticulum, and golgi bodies. Thus, it can be concluded that exogenous application of H2S under Al stress improved the plant growth, photosynthetic parameters, elements concentration, and biochemical and ultrastructural changes in leaves and roots of B. napus.

  2. Improved Agrobacterium-mediated transformation and high efficiency of root formation from hypocotyl meristem of spring Brassica napus 'Precocity' cultivar.

    PubMed

    Liu, X X; Lang, S R; Su, L Q; Liu, X; Wang, X F

    2015-12-14

    Rape seed (Brassica napus L.) is one of the most important oil seed crops in the world. Genetic manipulation of rapeseed requires a suitable tissue culture system and an efficient method for plant regeneration, as well as an efficient transformation procedure. However, development of transgenic B. napus has been problematic, and current studies are limited to cultivated varieties. In this study, we report a protocol for regeneration of transgenic rape after Agrobacterium-mediated transformation of hypocotyls from the spring B. napus 'Precocity' cultivar. We analyzed the effects of plant growth regulators in the medium on regeneration. Additionally, factors affecting the transformation efficiency, including seedling age, Agrobacterium concentration, infection time, and co-cultivation time, were assessed by monitoring GUS expression. Results from these experiments revealed that transformation was optimized when the meristematic parts of the hypocotyls were taken from 8 day-old seedlings, cultured on Murashinge and Skoog basal media containing 0.1 mg/L 1-naphthaleneacetic acid and 2.5 mg/L 6-benzylaminopurine, and incubated in Agrobacterium suspension (OD600 = 0.5) for 3 to 5 min, followed by 2 days of co-cultivation. Integration of T-DNA into the plant genome was confirmed by polymerase chain reaction (PCR), b-glucuronidase histochemical staining, and quantitative real-time PCR. The protocols developed for regeneration, transformation, and rooting described in this study could help to accelerate the development of transgenic spring rape varieties with novel features.

  3. Development of new restorer lines for CMS ogura system with the use of resynthesized oilseed rape (Brassica napus L.).

    PubMed

    Szała, Laurencja; Sosnowska, Katarzyna; Popławska, Wiesława; Liersch, Alina; Olejnik, Anna; Kozłowska, Katarzyna; Bocianowski, Jan; Cegielska-Taras, Teresa

    2016-09-01

    Resynthesized (RS) oilseed rape (Brassica napus L.) is potentially of great interest for hybrid breeding. However, a major problem with the direct use of RS B. napus is the quality of seed oil (high level of erucic acid) and seed meal (high glucosinolate content), which does not comply with double-low quality oilseed rape. Thus, additional developments are needed before RS B. napus can be introduced into breeding practice. In this study, RS oilseed rape was obtained through crosses between B. rapa ssp. chinensis var. chinensis and B. oleracea ssp. acephala var. sabellica. RS plant was then crossed with double-low (00) winter oilseed rape lines containing the Rfo gene for Ogura cytoplasmic male sterility (CMS ogu) system. Populations of doubled haploids (DH) were developed from these F1 hybrids using the microspore in vitro culture method. The seeds of semi-RS DH lines were analyzed for erucic acid and glucosinolate content. Among the populations of semi-RS DHs four 00-quality lines with the Rfo gene were selected. Using 344 AFLP markers to estimate genetic relatedness, we showed that the RS lines and semi-RS lines formed clusters that were clearly distinct from 96 winter oilseed rape parental lines of F1 hybrids.

  4. Genome-Wide Analysis of Seed Acid Detergent Lignin (ADL) and Hull Content in Rapeseed (Brassica napus L.).

    PubMed

    Wang, Jia; Jian, Hongju; Wei, Lijuan; Qu, Cunmin; Xu, Xinfu; Lu, Kun; Qian, Wei; Li, Jiana; Li, Maoteng; Liu, Liezhao

    2015-01-01

    A stable yellow-seeded variety is the breeding goal for obtaining the ideal rapeseed (Brassica napus L.) plant, and the amount of acid detergent lignin (ADL) in the seeds and the hull content (HC) are often used as yellow-seeded rapeseed screening indices. In this study, a genome-wide association analysis of 520 accessions was performed using the Q + K model with a total of 31,839 single-nucleotide polymorphism (SNP) sites. As a result, three significant associations on the B. napus chromosomes A05, A09, and C05 were detected for seed ADL content. The peak SNPs were within 9.27, 14.22, and 20.86 kb of the key genes BnaA.PAL4, BnaA.CAD2/BnaA.CAD3, and BnaC.CCR1, respectively. Further analyses were performed on the major locus of A05, which was also detected in the seed HC examination. A comparison of our genome-wide association study (GWAS) results and previous linkage mappings revealed a common chromosomal region on A09, which indicates that GWAS can be used as a powerful complementary strategy for dissecting complex traits in B. napus. Genomic selection (GS) utilizing the significant SNP markers based on the GWAS results exhibited increased predictive ability, indicating that the predictive ability of a given model can be substantially improved by using GWAS and GS.

  5. High-Density SNP Map Construction and QTL Identification for the Apetalous Character in Brassica napus L.

    PubMed Central

    Wang, Xiaodong; Yu, Kunjiang; Li, Hongge; Peng, Qi; Chen, Feng; Zhang, Wei; Chen, Song; Hu, Maolong; Zhang, Jiefu

    2015-01-01

    The apetalous genotype is a morphological ideotype for increasing seed yield and should be of considerable agricultural use; however, only a few studies have focused on the genetic control of this trait in Brassica napus. In the present study, a recombinant inbred line, the AH population, containing 189 individuals was derived from a cross between an apetalous line ‘APL01’ and a normally petalled variety ‘Holly’. The Brassica 60 K Infinium BeadChip Array harboring 52,157 single nucleotide polymorphism (SNP) markers was used to genotype the AH individuals. A high-density genetic linkage map was constructed based on 2,755 bins involving 11,458 SNPs and 57 simple sequence repeats, and was used to identify loci associated with petalous degree (PDgr). The linkage map covered 2,027.53 cM, with an average marker interval of 0.72 cM. The AH map had good collinearity with the B. napus reference genome, indicating its high quality and accuracy. After phenotypic analyses across five different experiments, a total of 19 identified quantitative trait loci (QTLs) distributed across chromosomes A3, A5, A6, A9 and C8 were obtained, and these QTLs were further integrated into nine consensus QTLs by a meta-analysis. Interestingly, the major QTL qPD.C8-2 was consistently detected in all five experiments, and qPD.A9-2 and qPD.C8-3 were stably expressed in four experiments. Comparative mapping between the AH map and the B. napus reference genome suggested that there were 328 genes underlying the confidence intervals of the three steady QTLs. Based on the Gene Ontology assignments of 52 genes to the regulation of floral development in published studies, 146 genes were considered as potential candidate genes for PDgr. The current study carried out a QTL analysis for PDgr using a high-density SNP map in B. napus, providing novel targets for improving seed yield. These results advanced our understanding of the genetic control of PDgr regulation in B. napus. PMID:26779193

  6. Characterization of interploid hybrids from crosses between Brassica juncea and B. oleracea and the production of yellow-seeded B. napus.

    PubMed

    Wen, Jing; Zhu, Lixia; Qi, Liping; Ke, Hongmei; Yi, Bin; Shen, Jinxiong; Tu, Jinxing; Ma, Chaozhi; Fu, Tingdong

    2012-06-01

    Yellow-seeded Brassica napus was for the first time developed from interspecific crosses using yellow-seeded B. juncea (AABB), yellow-seeded B. oleracea (CC), and black-seeded artificial B. napus (AACC). Three different mating approaches were undertaken to eliminate B-genome chromosomes after trigenomic hexaploids (AABBCC) were generated. Hybrids (AABCC, ABCC) from crosses AABBCC × AACC, AABBCC × CC and ABCC × AACC were advanced by continuous selfing in approach 1, 2 and 3, respectively. To provide more insight into Brassica genome evolution and the cytological basis for B. napus resynthesis in each approach, B-genome chromosome pairing and segregation were intensively analyzed in AABCC and ABCC plants using genomic in situ hybridization methods. The frequencies at which B-genome chromosomes underwent autosyndesis and allosyndesis were generally higher in ABCC than in AABCC plants. The difference was statistically significant for allosyndesis but not autosyndesis. Abnormal distributions of B-genome chromosomes were encountered at anaphase I, including chromosome lagging and precocious sister centromere separation of univalents. These abnormalities were observed at a significantly higher frequency in AABCC than in ABCC plants, which resulted in more rapid B-genome chromosome elimination in the AABCC derivatives. Yellow or yellow-brown seeds were obtained in all approaches, although true-breeding yellow-seeded B. napus was developed only in approaches 2 and 3. The efficiency of the B. napus construction approaches was in the order 1 > 3 > 2 whereas this order was 3 > 2 > 1 with respect to the construction of yellow-seeded B. napus. The results are discussed in relation to Brassica genome evolution and the development and utilization of the yellow-seeded B. napus obtained here.

  7. A comparative study on hypoglycemic properties, lipid profile and bioactive components of hydro-alcoholic extracts of cooked and raw Brassica napus

    PubMed Central

    Akbari, Fatemeh; Khodadadi, Samaneh; Asgari, Sedigheh; Shirzad, Hedaytolah; Mirhoseini, Mahmoud; Shahinfard, Najmeh; Rafieian-Kopaei, Mahmoud

    2016-01-01

    Introduction: Many plants with anti-oxidant properties proved to be effective on diabetes treatment. Brassica napus (turnip) is an anti-oxidant plant consumed raw or cooked. In this study, we examined and compared hypoglycemic and hypolipidemic properties of raw and cooked Brassica napus in diabetic rats. Objectives: Due to measuring bioactive component of Brassica napus as a rich source of flavonoid we investigate the hypoglycemic properties in raw and cooked type. Material and Methods: For this experimental study, 50 male Wistar rats weighing 200-250 g were designated into five groups of 10 consist of control, diabetic control, diabetic cooked turnip, diabetic raw turnip, and diabetic glibenclamide. The alloxan-induced diabetic rats received extracts orally for 4 weeks. Then, the serum biochemical factors were measured and compared statisticaly by analysis of variance (ANOVA) test. Results: Serum glucose, triglyceride (TG), cholesterol, and low density lipoprotein cholesterol (LDL-C) were significantly decreased in cooked and raw turnip rats compared to control ones. Cooked and raw Brassica napus extracts both helped high density lipoprotein cholesterol (HDL-C) increase; cooked turnip competency was superior in view of cholesterol and LDL-C decrease as well as HDL-C increase (P < 0.05). The mean difference in glucose and TG decrease was not significant between diabetic cooked turnip and diabetic raw turnip rats. Conclusion: Improving the blood glucose and lipid levels diabetic rats, in this study, may indicate that both raw and cooked Brassica napus extracts (especially the cooked one) may be beneficial in diabetic patients. PMID:28197509

  8. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea

    PubMed Central

    Yang, Qingyong; Cheng, Yan; Ma, Ming; Kliebenstein, Daniel J.; Zhou, Yongming

    2015-01-01

    Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with an extensive host range including Brassica crops. Glucosinolates (GSLs) are an important group of secondary metabolites characteristic of the Brassicales order, whose degradation products are proving to be increasingly important in plant protection. Enhancing the defense effect of GSL and their associated degradation products is an attractive strategy to strengthen the resistance of plants by transgenic approaches. We generated the lines of Brassica napus with three biosynthesis genes involved in GSL metabolic pathway (BnMAM1, BnCYP83A1 and BnUGT74B1), respectively. We then measured the foliar GSLs of each transgenic lines and inoculated them with S. sclerotiorum and B. cinerea. Compared with the wild type control, over-expressing BnUGT74B1 in B. napus increased the aliphatic and indolic GSL levels by 1.7 and 1.5 folds in leaves respectively; while over-expressing BnMAM1 or BnCYP83A1 resulted in an approximate 1.5-fold higher only in the aliphatic GSL level in leaves. The results of plant inoculation demonstrated that BnUGT74B1-overexpressing lines showed less severe disease symptoms and tissue damage compared with the wild type control, but BnMAM1 or BnCYP83A1-overexpressing lines showed no significant difference in comparison to the controls. These results suggest that the resistance to S. sclerotiorum and B. cinerea in B. napus could be enhanced through tailoring the GSL profiles by transgenic approaches or molecular breeding, which provides useful information to assist plant breeders to design improved breeding strategies. PMID:26465156

  9. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea.

    PubMed

    Zhang, Yuanyuan; Huai, Dongxin; Yang, Qingyong; Cheng, Yan; Ma, Ming; Kliebenstein, Daniel J; Zhou, Yongming

    2015-01-01

    Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with an extensive host range including Brassica crops. Glucosinolates (GSLs) are an important group of secondary metabolites characteristic of the Brassicales order, whose degradation products are proving to be increasingly important in plant protection. Enhancing the defense effect of GSL and their associated degradation products is an attractive strategy to strengthen the resistance of plants by transgenic approaches. We generated the lines of Brassica napus with three biosynthesis genes involved in GSL metabolic pathway (BnMAM1, BnCYP83A1 and BnUGT74B1), respectively. We then measured the foliar GSLs of each transgenic lines and inoculated them with S. sclerotiorum and B. cinerea. Compared with the wild type control, over-expressing BnUGT74B1 in B. napus increased the aliphatic and indolic GSL levels by 1.7 and 1.5 folds in leaves respectively; while over-expressing BnMAM1 or BnCYP83A1 resulted in an approximate 1.5-fold higher only in the aliphatic GSL level in leaves. The results of plant inoculation demonstrated that BnUGT74B1-overexpressing lines showed less severe disease symptoms and tissue damage compared with the wild type control, but BnMAM1 or BnCYP83A1-overexpressing lines showed no significant difference in comparison to the controls. These results suggest that the resistance to S. sclerotiorum and B. cinerea in B. napus could be enhanced through tailoring the GSL profiles by transgenic approaches or molecular breeding, which provides useful information to assist plant breeders to design improved breeding strategies.

  10. Selection of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in Brassica napus under various stress conditions.

    PubMed

    Wang, Zheng; Chen, Yu; Fang, Hedi; Shi, Haifeng; Chen, Keping; Zhang, Zhiyan; Tan, Xiaoli

    2014-10-01

    Data normalization is essential for reliable output of quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) assays, as the unsuitable choice of reference gene(s), whose expression might be influenced by exogenous treatments in plant tissues, could cause misinterpretation of results. To date, no systematic studies on reference genes have been performed in stressed Brassica napus. In this study, we investigated the expression variations of nine candidate reference genes in 40 samples of B. napus leaves subjected to various exogenous treatments. Parallel analyses by geNorm and NormFinder revealed that optimal reference genes differed across the different sets of samples. The best-ranked reference genes were PP2A and TIP41 for salt stress, TIP41 and ACT7 for heavy metal (Cr(6+)) stress, PP2A and UBC21 for drought stress, F-box and SAND for cold stress, F-box and ZNF for salicylic acid stress, TIP41, ACT7, and PP2A for methyl jasmonate stress, TIP41 and ACT7 for abscisic acid stress, and TIP41, UBC21, and PP2A for Sclerotinia sclerotiorum stress. Two newly employed reference genes, TIP41 and PP2A, showed better performances, suggesting their suitability in multiple conditions. To further validate the suitability of the reference genes, the expression patterns of BnWRKY40 and BnMKS1 were studied in parallel. This study is the first systematic analysis of reference gene selection for qRT-PCR normalization in B. napus, an agriculturally important crop, under different stress conditions. The results will contribute toward more accurate and widespread use of qRT-PCR in gene analysis of the genus Brassica.

  11. BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus.

    PubMed

    Dun, Xiaoling; Zhou, Zhengfu; Xia, Shengqian; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong

    2011-11-01

    Here, we describe the characteristics of a Brassica napus male sterile mutant 7365A with loss of the BnMs3 gene, which exhibits abnormal enlargement of the tapetal cells during meiosis. Later in development, the absence of the BnMs3 gene in the mutant results in a loss of the secretory function of the tapetum, as suggested by abortive callose dissolution and retarded tapetal degradation. The BnaC.Tic40 gene (equivalent to BnMs3) was isolated by a map-based cloning approach and was confirmed by genetic complementation. Sequence analyses suggested that BnaC.Tic40 originated from BolC.Tic40 on the Brassica oleracea linkage group C9, whereas its allele Bnms3 was derived from BraA.Tic40 on the Brassica rapa linkage group A10. The BnaC.Tic40 gene is highly expressed in the tapetum and encodes a putative plastid inner envelope membrane translocon, Tic40, which is localized into the chloroplast. Transmission electron microscopy (TEM) and lipid staining analyses suggested that BnaC.Tic40 is a key factor in controlling lipid accumulation in the tapetal plastids. These data indicate that BnaC.Tic40 participates in specific protein translocation across the inner envelope membrane in the tapetal plastid, which is required for tapetal development and function.

  12. Retention of triplicated phytoene synthase (PSY) genes in Brassica napus L. and its diploid progenitors during the evolution of the Brassiceae.

    PubMed

    Cárdenas, Pablo D; Gajardo, Humberto A; Huebert, Terry; Parkin, Isobel A; Iniguez-Luy, Federico L; Federico, María L

    2012-05-01

    The extent of genome redundancy exhibited by Brassica species provides a model to study the evolutionary fate of multi-copy genes and the effects of polyploidy in economically important crops. Phytoene synthase (PSY) catalyzes the first committed reaction of the carotenoid biosynthetic pathway, which has been shown to be rate-limiting in Brassica napus seeds. In Arabidopsis thaliana, a single PSY gene (AtPSY) regulates phytoene synthesis in all tissues. Considering that diploid Brassica genomes contain three Arabidopsis-like subgenomes, the objectives of the present work were to determine whether PSY gene families exist in B. napus (AACC) and its diploid progenitor species, Brassica rapa (AA) and Brassica oleracea (CC); to establish the level of retention of Brassica PSY genes; to map PSY gene family members in the A and C genomes and to compare Brassica PSY gene expression patterns. A total of 12 PSY homologues were identified, 6 in B. napus (BnaX.PSY.a-f) and 3 in B. rapa (BraA.PSY.a-c) and B. oleracea (BolC.PSY.a-c). Indeed, with six members, B. napus has the largest PSY gene family described to date. Sequence comparison between AtPSY and Brassica PSY genes revealed a highly conserved gene structure and identity percentages above 85% at the coding sequence (CDS) level. Altogether, our data indicate that PSY gene family expansion preceded the speciation of B. rapa and B. oleracea, dating back to the paralogous subgenome triplication event. In these three Brassica species, all PSY homologues are expressed, exhibiting overlapping redundancy and signs of subfunctionalization among photosynthetic and non-photosynthetic tissues. This evidence supports the hypothesis that functional divergence of PSY gene expression facilitates the accumulation of high levels of carotenoids in chromoplast-rich tissues. Thus, functional retention of triplicated Brassica PSY genes could be at least partially explained by the selective advantage provided by increased levels of gene

  13. Transcriptomic analysis of nitrogen starvation- and cultivar-specific leaf senescence in winter oilseed rape (Brassica napus L.).

    PubMed

    Koeslin-Findeklee, Fabian; Rizi, Vajiheh Safavi; Becker, Martin A; Parra-Londono, Sebastian; Arif, Muhammad; Balazadeh, Salma; Mueller-Roeber, Bernd; Kunze, Reinhard; Horst, Walter J

    2015-04-01

    High nitrogen (N) efficiency, characterized by high grain yield under N limitation, is an important agricultural trait in Brassica napus L. cultivars related to delayed senescence of older leaves during reproductive growth (a syndrome called stay-green). The aim of this study was thus to identify genes whose expression is specifically altered during N starvation-induced leaf senescence and that can be used as markers to distinguish cultivars at early stages of senescence prior to chlorophyll loss. To this end, the transcriptomes of leaves of two B. napus cultivars differing in stay-green characteristics and N efficiency were analyzed 4 days after the induction of senescence by either N starvation, leaf shading or detaching. In addition to N metabolism genes, N starvation mostly (and specifically) repressed genes related to photosynthesis, photorespiration and cell-wall structure, while genes related to mitochondrial electron transport and flavonoid biosynthesis were predominately up-regulated. A kinetic study over a period of 12 days with four B. napus cultivars differing in their stay-green characteristics confirmed the cultivar-specific regulation of six genes in agreement with their senescence behavior: the senescence regulator ANAC029, the anthocyanin synthesis-related genes ANS and DFR-like1, the ammonium transporter AMT1;4, the ureide transporter UPS5, and SPS1 involved in sucrose biosynthesis. The identified genes represent markers for the detection of cultivar-specific differences in N starvation-induced leaf senescence and can thus be employed as valuable tools in B. napus breeding.

  14. Regulation of Cadmium-Induced Proteomic and Metabolic Changes by 5-Aminolevulinic Acid in Leaves of Brassica napus L.

    PubMed

    Ali, Basharat; Gill, Rafaqat A; Yang, Su; Gill, Muhammad B; Farooq, Muhammad A; Liu, Dan; Daud, Muhammad K; Ali, Shafaqat; Zhou, Weijun

    2015-01-01

    It is evident from previous reports that 5-aminolevulinic acid (ALA), like other known plant growth regulators, is effective in countering the injurious effects of heavy metal-stress in oilseed rape (Brassica napus L.). The present study was carried out to explore the capability of ALA to improve cadmium (Cd2+) tolerance in B. napus through physiological, molecular, and proteomic analytical approaches. Results showed that application of ALA helped the plants to adjust Cd2+-induced metabolic and photosynthetic fluorescence changes in the leaves of B. napus under Cd2+ stress. The data revealed that ALA treatment enhanced the gene expressions of antioxidant enzyme activities substantially and could increase the expression to a certain degree under Cd2+ stress conditions. In the present study, 34 protein spots were identified that differentially regulated due to Cd2+ and/or ALA treatments. Among them, 18 proteins were significantly regulated by ALA, including the proteins associated with stress related, carbohydrate metabolism, catalysis, dehydration of damaged protein, CO2 assimilation/photosynthesis and protein synthesis/regulation. From these 18 ALA-regulated proteins, 12 proteins were significantly down-regulated and 6 proteins were up-regulated. Interestingly, it was observed that ALA-induced the up-regulation of dihydrolipoyl dehydrogenase, light harvesting complex photo-system II subunit 6 and 30S ribosomal proteins in the presence of Cd2+ stress. In addition, it was also observed that ALA-induced the down-regulation in thioredoxin-like protein, 2, 3-bisphosphoglycerate, proteasome and thiamine thiazole synthase proteins under Cd2+ stress. Taken together, the present study sheds light on molecular mechanisms involved in ALA-induced Cd2+ tolerance in B. napus leaves and suggests a more active involvement of ALA in plant physiological processes than previously proposed.

  15. Regulation of Cadmium-Induced Proteomic and Metabolic Changes by 5-Aminolevulinic Acid in Leaves of Brassica napus L.

    PubMed Central

    Ali, Basharat; Gill, Rafaqat A.; Yang, Su; Gill, Muhammad B.; Farooq, Muhammad A.; Liu, Dan; Daud, Muhammad K.; Ali, Shafaqat; Zhou, Weijun

    2015-01-01

    It is evident from previous reports that 5-aminolevulinic acid (ALA), like other known plant growth regulators, is effective in countering the injurious effects of heavy metal-stress in oilseed rape (Brassica napus L.). The present study was carried out to explore the capability of ALA to improve cadmium (Cd2+) tolerance in B. napus through physiological, molecular, and proteomic analytical approaches. Results showed that application of ALA helped the plants to adjust Cd2+-induced metabolic and photosynthetic fluorescence changes in the leaves of B. napus under Cd2+ stress. The data revealed that ALA treatment enhanced the gene expressions of antioxidant enzyme activities substantially and could increase the expression to a certain degree under Cd2+ stress conditions. In the present study, 34 protein spots were identified that differentially regulated due to Cd2+ and/or ALA treatments. Among them, 18 proteins were significantly regulated by ALA, including the proteins associated with stress related, carbohydrate metabolism, catalysis, dehydration of damaged protein, CO2 assimilation/photosynthesis and protein synthesis/regulation. From these 18 ALA-regulated proteins, 12 proteins were significantly down-regulated and 6 proteins were up-regulated. Interestingly, it was observed that ALA-induced the up-regulation of dihydrolipoyl dehydrogenase, light harvesting complex photo-system II subunit 6 and 30S ribosomal proteins in the presence of Cd2+ stress. In addition, it was also observed that ALA-induced the down-regulation in thioredoxin-like protein, 2, 3-bisphosphoglycerate, proteasome and thiamine thiazole synthase proteins under Cd2+ stress. Taken together, the present study sheds light on molecular mechanisms involved in ALA-induced Cd2+ tolerance in B. napus leaves and suggests a more active involvement of ALA in plant physiological processes than previously proposed. PMID:25909456

  16. Identification of heat responsive genes in Brassica napus siliques at the seed-filling stage through transcriptional profiling.

    PubMed

    Yu, Erru; Fan, Chuchuan; Yang, Qingyong; Li, Xiaodong; Wan, Bingxi; Dong, Yanni; Wang, Xuemin; Zhou, Yongming

    2014-01-01

    High temperature stress results in yield loss and alterations to seed composition during seed filling in oilseed rape (Brassica napus). However, the mechanism underlying this heat response is poorly understood. In this study, global transcription profiles of 20 d-old siliques of B. napus were analyzed after heat stress using a Brassica 95k EST microarray. The up-regulated genes included many HSF/HSP transcripts and other heat-related marker genes, such as ROF2, DREB2a, MBF1c and Hsa32, reflecting the conservation of key heat resistance factors among plants. Other up-regulated genes were preferentially expressed in heat-stressed silique walls or seeds, including some transcription factors and potential developmental regulators. In contrast, down-regulated genes differed between the silique wall and seeds and were largely tied to the biological functions of each tissue, such as glucosinolate metabolism in the silique wall and flavonoid synthesis in seeds. Additionally, a large proportion (one-third) of these differentially expressed genes had unknown functions. Based on these gene expression profiles, Arabidopsis mutants for eight heat-induced Brassica homologous genes were treated with different heat stress methods, and thermotolerance varied with each mutation, heat stress regimen and plant development stage. At least two of the eight mutants exhibited sensitivity to the heat treatments, suggesting the importance of the respective genes in responding to heat stress. In summary, this study elucidated the molecular bases of the heat responses in siliques during later reproductive stages and provides valuable information and gene resources for the genetic improvement of heat tolerance in oilseed rape breeding.

  17. Allopolyploidy has a moderate impact on restructuring at three contrasting transposable element insertion sites in resynthesized Brassica napus allotetraploids.

    PubMed

    Sarilar, Véronique; Palacios, Paulina Martinez; Rousselet, Agnès; Ridel, Céline; Falque, Matthieu; Eber, Frédérique; Chèvre, Anne-Marie; Joets, Johann; Brabant, Philippe; Alix, Karine

    2013-04-01

    The role played by whole-genome duplication (WGD) in evolution and adaptation is particularly well illustrated in allopolyploids, where WGD is concomitant with interspecific hybridization. This 'Genome Shock', usually accompanied by structural and functional modifications, has been associated with the activation of transposable elements (TEs). However, the impact of allopolyploidy on TEs has been studied in only a few polyploid species, and not in Brassica, which has been marked by recurrent polyploidy events. Here, we developed sequence-specific amplification polymorphism (SSAP) markers for three contrasting TEs, and compared profiles between resynthesized Brassica napus allotetraploids and their diploid Brassica progenitors. To evaluate restructuring at TE insertion sites, we scored changes in SSAP profiles and analysed a large set of differentially amplified SSAP bands. No massive structural changes associated with the three TEs surveyed were detected. However, several transposition events, specific to the youngest TE originating from the B. oleracea genome, were identified. Our study supports the hypothesis that TE responses to allopolyploidy are highly specific. The changes observed in SSAP profiles lead us to hypothesize that they may partly result from changes in DNA methylation, questioning the role of epigenetics during the formation of a new allopolyploid genome.

  18. Coordinate changes in gene expression and triacylglycerol composition in the developing seeds of oilseed rape (Brassica napus) and turnip rape (Brassica rapa).

    PubMed

    Vuorinen, Anssi L; Kalpio, Marika; Linderborg, Kaisa M; Kortesniemi, Maaria; Lehto, Kirsi; Niemi, Jarmo; Yang, Baoru; Kallio, Heikki P

    2014-02-15

    Crop production for vegetable oil in the northern latitudes utilises oilseed rape (Brassica napus subsp. oleifera) and turnip rape (B. rapa subsp. oleifera), having similar oil compositions. The oil consists mostly of triacylglycerols, which are synthesised during seed development. In this study, we characterised the oil composition and the expression levels of genes involved in triacylglycerol biosynthesis in the developing seeds in optimal, low temperature (15 °C) and short day (12-h day length) conditions. Gene expression levels of several genes were altered during seed development. Low temperature and short day treatments increased the level of 9,12,15-octadecatrienoic acid (18:3n-3) in turnip rape and short day treatment decreased the total oil content in both species. This study gives a novel view on seed oil biosynthesis under different growth conditions, bringing together gene expression levels of the triacylglycerol biosynthesis pathway and oil composition over a time series in two related oilseed species.

  19. Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.)

    PubMed Central

    2014-01-01

    Background Canola (Brassica napus L.) is one of the most important oil-producing crops in China and worldwide. The yield and quality of canola is frequently threatened by environmental stresses including drought, cold and high salinity. Calcium is a ubiquitous intracellular secondary messenger in plants. Calcineurin B-like proteins (CBLs) are Ca2+ sensors and regulate a group of Ser/Thr protein kinases called CBL-interacting protein kinases (CIPKs). Although the CBL-CIPK network has been demonstrated to play crucial roles in plant development and responses to various environmental stresses in Arabidopsis, little is known about their function in canola. Results In the present study, we identified seven CBL and 23 CIPK genes from canola by database mining and cloning of cDNA sequences of six CBLs and 17 CIPKs. Phylogenetic analysis of CBL and CIPK gene families across a variety of species suggested genome duplication and diversification. The subcellular localization of three BnaCBLs and two BnaCIPKs were determined using green fluorescence protein (GFP) as the reporter. We also demonstrated interactions between six BnaCBLs and 17 BnaCIPKs using yeast two-hybrid assay, and a subset of interactions were further confirmed by bimolecular fluorescence complementation (BiFC). Furthermore, the expression levels of six selected BnaCBL and 12 BnaCIPK genes in response to salt, drought, cold, heat, ABA, methyl viologen (MV) and low potassium were examined by quantitative RT-PCR and these CBL or CIPK genes were found to respond to multiple stimuli, suggesting that the canola CBL-CIPK network may be a point of convergence for several different signaling pathways. We also performed a comparison of interaction patterns and expression profiles of CBL and CIPK in Arabidospsis, canola and rice, to examine the differences between orthologs, highlighting the importance of studying CBL-CIPK in canola as a prerequisite for improvement of this crop. Conclusions Our findings indicate that

  20. Transcriptome Analysis Comparison of Lipid Biosynthesis in the Leaves and Developing Seeds of Brassica napus.

    PubMed

    Chen, Jie; Tan, Ren-Ke; Guo, Xiao-Juan; Fu, Zheng-Li; Wang, Zheng; Zhang, Zhi-Yan; Tan, Xiao-Li

    2015-01-01

    Brassica napus seed is a lipid storage organ containing approximately 40% oil, while its leaves contain many kinds of lipids for many biological roles, but the overall amounts are less than in seeds. Thus, lipid biosynthesis in the developing seeds and the leaves is strictly regulated which results the final difference of lipids. However, there are few reports about the molecular mechanism controlling the difference in lipid biosynthesis between developing seeds and leaves. In this study, we tried to uncover this mechanism by analyzing the transcriptome data for lipid biosynthesis. The transcriptome data were de novo assembled and a total of 47,216 unigenes were obtained, which had an N50 length and median of 1271 and 755 bp, respectively. Among these unigenes, 36,368 (about 77.02%) were annotated and there were 109 up-regulated unigenes and 72 down-regulated unigenes in the developing seeds lipid synthetic pathway after comparing with leaves. In the oleic acid pathway, 23 unigenes were up-regulated and four unigenes were down-regulated. During triacylglycerol (TAG) synthesis, the key unigenes were all up-regulated, such as phosphatidate phosphatase and diacylglycerol O-acyltransferase. During palmitic acid, palmitoleic acid, stearic acid, linoleic acid and linolenic acid synthesis in leaves, the unigenes were nearly all up-regulated, which indicated that the biosynthesis of these particular fatty acids were more important in leaves. In the developing seeds, almost all the unigenes in the ABI3VP1, RKD, CPP, E2F-DP, GRF, JUMONJI, MYB-related, PHD and REM transcript factor families were up-regulated, which helped us to discern the regulation mechanism underlying lipid biosynthesis. The differential up/down-regulation of the genes and TFs involved in lipid biosynthesis in developing seeds and leaves provided direct evidence that allowed us to map the network that regulates lipid biosynthesis, and the identification of new TFs that are up-regulated in developing seeds

  1. Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum.

    PubMed

    Rietz, Steffen; Bernsdorff, Friederike E M; Cai, Daguang

    2012-09-01

    Germin-like proteins (GLPs) are defined by their sequence homology to germins from barley and are present ubiquitously in plants. Analyses of corresponding genes have revealed diverse functions of GLPs in plant development and biotic and abiotic stresses. This study describes the identification of a family of 14 germin-like genes from Brassica napus (BnGLP) designated BnGLP1-BnGLP14 and investigated potential functions of BnGLPs in plant defense against the necrotrophic fungus Sclerotinia sclerotiorum. Sequence alignment and phylogenetic analyses classify the 14 BnGLPs into four groups, which were clearly distinguished from known germin oxalic acid oxidases. Transcriptional responses of the BnGLP genes to S. sclerotiorum infection was determined by comparing cultivars of susceptible B. napus 'Falcon' and partially resistant B. napus 'Zhongshuang 9'. Of the 14 BnGLP genes tested, BnGLP3 was transcriptionally upregulated in both B. napus cultivars at 6h after S. sclerotiorum infection, while upregulation of BnGLP12 was restricted to resistant B. napus 'Zhongshuang 9'. Biochemical analysis of five representative BnGLP members identified a H(2)O(2)-generating superoxide dismutase activity only for higher molecular weight complexes of BnGLP3 and BnGLP12. By analogy, H(2)O(2) formation at infected leaf sites increased after 6h, with even higher H(2)O(2) production in B. napus 'Zhongshuang 9' compared with B. napus 'Falcon'. Conversely, exogenous application of H(2)O(2) significantly reduced the susceptibility of B. napus 'Falcon'. These data suggest that early induction of BnGLP3 and BnGLP12 participates in an oxidative burst that may play a pivotal role in defence of B. napus against S. sclerotiorum.

  2. Systemic Resistance to Powdery Mildew in Brassica napus (AACC) and Raphanus alboglabra (RRCC) by Trichoderma harzianum TH12

    PubMed Central

    Alkooranee, Jawadayn Talib; Yin, Yongtai; Aledan, Tamarah Raad; Jiang, Yingfen; Lu, Guangyuan; Wu, Jiangsheng; Li, Maoteng

    2015-01-01

    Trichoderma harzianum TH12 is a microbial pesticide for certain rapeseed diseases. The mechanism of systemic resistance induced by TH12 or its cell-free culture filtrate (CF) in Brassica napus (AACC) and Raphanus alboglabra (RRCC) to powdery mildew disease caused by ascomycete Erysiphe cruciferarum was investigated. In this study, we conducted the first large-scale global study on the cellular and molecular aspects of B. napus and R. alboglabra infected with E. cruciferarum. The histological study showed the resistance of R. alboglabra to powdery mildew disease. The growth of fungal colonies was not observed on R. alboglabra leaves at 1, 2, 4, 6, 8, and 10 days post-inoculation (dpi), whereas this was clearly observed on B. napus leaves after 6 dpi. In addition, the gene expression of six plant defense-related genes, namely, PR-1, PR-2 (a marker for SA signaling), PR-3, PDF 1.2 (a marker for JA/ET signaling), CHI620, and CHI570, for both genotypes were analyzed in the leaves of B. napus and R. alboglabra after treatment with TH12 or CF and compared with the non-treated ones. The qRT-PCR results showed that the PR-1 and PR-2 expression levels increased in E. cruciferarum-infected leaves, but decreased in the TH12-treated leaves compared with leaves treated with CF. The expression levels of PR-3 and PDF1.2 decreased in plants infected by E. cruciferarum. However, expression levels increased when the leaves were treated with TH12. For the first time, we disclosed the nature of gene expression in B. napus and R. alboglabra to explore the resistance pathways in the leaves of both genotypes infected and non-infected by powdery mildew and inoculated or non-inoculated with elicitor factors. Results suggested that R. alboglabra exhibited resistance to powdery mildew disease, and the application of T. harzianum and its CF are a useful tool to facilitate new protection methods for resist or susceptible plants. PMID:26540161

  3. Systemic Resistance to Powdery Mildew in Brassica napus (AACC) and Raphanus alboglabra (RRCC) by Trichoderma harzianum TH12.

    PubMed

    Alkooranee, Jawadayn Talib; Yin, Yongtai; Aledan, Tamarah Raad; Jiang, Yingfen; Lu, Guangyuan; Wu, Jiangsheng; Li, Maoteng

    2015-01-01

    Trichoderma harzianum TH12 is a microbial pesticide for certain rapeseed diseases. The mechanism of systemic resistance induced by TH12 or its cell-free culture filtrate (CF) in Brassica napus (AACC) and Raphanus alboglabra (RRCC) to powdery mildew disease caused by ascomycete Erysiphe cruciferarum was investigated. In this study, we conducted the first large-scale global study on the cellular and molecular aspects of B. napus and R. alboglabra infected with E. cruciferarum. The histological study showed the resistance of R. alboglabra to powdery mildew disease. The growth of fungal colonies was not observed on R. alboglabra leaves at 1, 2, 4, 6, 8, and 10 days post-inoculation (dpi), whereas this was clearly observed on B. napus leaves after 6 dpi. In addition, the gene expression of six plant defense-related genes, namely, PR-1, PR-2 (a marker for SA signaling), PR-3, PDF 1.2 (a marker for JA/ET signaling), CHI620, and CHI570, for both genotypes were analyzed in the leaves of B. napus and R. alboglabra after treatment with TH12 or CF and compared with the non-treated ones. The qRT-PCR results showed that the PR-1 and PR-2 expression levels increased in E. cruciferarum-infected leaves, but decreased in the TH12-treated leaves compared with leaves treated with CF. The expression levels of PR-3 and PDF1.2 decreased in plants infected by E. cruciferarum. However, expression levels increased when the leaves were treated with TH12. For the first time, we disclosed the nature of gene expression in B. napus and R. alboglabra to explore the resistance pathways in the leaves of both genotypes infected and non-infected by powdery mildew and inoculated or non-inoculated with elicitor factors. Results suggested that R. alboglabra exhibited resistance to powdery mildew disease, and the application of T. harzianum and its CF are a useful tool to facilitate new protection methods for resist or susceptible plants.

  4. Helitron-like transposons contributed to the mating system transition from out-crossing to self-fertilizing in polyploid Brassica napus L.

    PubMed

    Gao, Changbin; Zhou, Guilong; Ma, Chaozhi; Zhai, Wen; Zhang, Tong; Liu, Zhiquan; Yang, Yong; Wu, Ming; Yue, Yao; Duan, Zhiqiang; Li, Yaya; Li, Bing; Li, Jijun; Shen, Jinxiong; Tu, Jinxing; Fu, Tingdong

    2016-09-21

    The mating system transition in polyploid Brassica napus (AACC) from out-crossing to selfing is a typical trait to differentiate it from their diploid progenitors. Elucidating the mechanism of mating system transition has profound consequences for understanding the speciation and evolution in B. napus. Functional complementation experiment has shown that the insertion of 3.6 kb into the promoter of self-incompatibility male determining gene, BnSP11-1 leads to its loss of function in B. napus. The inserted fragment was found to be a non-autonomous Helitron transposon. Further analysis showed that the inserted 3.6 kb non-autonomous Helitron transposon was widely distributed in B. napus accessions which contain the S haplotype BnS-1. Through promoter deletion analysis, an enhancer and a putative cis-regulatory element (TTCTA) that were required for spatio-temporal specific expression of BnSP11-1 were identified, and both might be disrupted by the insertion of Helitron transposon. We suggested that the insertion of Helitron transposons in the promoter of BnSP11-1 gene had altered the mating system and might facilitated the speciation of B. napus. Our findings have profound consequences for understanding the self-compatibility in B. napus as well as for the trait variations during evolutionary process of plant polyploidization.

  5. Helitron-like transposons contributed to the mating system transition from out-crossing to self-fertilizing in polyploid Brassica napus L.

    PubMed Central

    Gao, Changbin; Zhou, Guilong; Ma, Chaozhi; Zhai, Wen; Zhang, Tong; Liu, Zhiquan; Yang, Yong; Wu, Ming; Yue, Yao; Duan, Zhiqiang; Li, Yaya; Li, Bing; Li, Jijun; Shen, Jinxiong; Tu, Jinxing; Fu, Tingdong

    2016-01-01

    The mating system transition in polyploid Brassica napus (AACC) from out-crossing to selfing is a typical trait to differentiate it from their diploid progenitors. Elucidating the mechanism of mating system transition has profound consequences for understanding the speciation and evolution in B. napus. Functional complementation experiment has shown that the insertion of 3.6 kb into the promoter of self-incompatibility male determining gene, BnSP11-1 leads to its loss of function in B. napus. The inserted fragment was found to be a non-autonomous Helitron transposon. Further analysis showed that the inserted 3.6 kb non-autonomous Helitron transposon was widely distributed in B. napus accessions which contain the S haplotype BnS-1. Through promoter deletion analysis, an enhancer and a putative cis-regulatory element (TTCTA) that were required for spatio-temporal specific expression of BnSP11-1 were identified, and both might be disrupted by the insertion of Helitron transposon. We suggested that the insertion of Helitron transposons in the promoter of BnSP11-1 gene had altered the mating system and might facilitated the speciation of B. napus. Our findings have profound consequences for understanding the self-compatibility in B. napus as well as for the trait variations during evolutionary process of plant polyploidization. PMID:27650318

  6. Selection and evaluation of novel reference genes for quantitative reverse transcription PCR (qRT-PCR) based on genome and transcriptome data in Brassica napus L.

    PubMed

    Yang, Hongli; Liu, Jing; Huang, Shunmou; Guo, Tingting; Deng, Linbin; Hua, Wei

    2014-03-15

    Selection of reference genes in Brassica napus, a tetraploid (4×) species, is a very difficult task without information on genome and transcriptome. By now, only several traditional reference genes which show significant expression differentiation under different conditions are used in B. napus. In the present study, based on genome and transcriptome data of the rapeseed Zhongshuang-11 cultivar, 14 candidate reference genes were screened for investigation in different tissues, cultivars, and treated conditions of B. napus. These genes were as follows: ELF5, ENTH, F-BOX7, F-BOX2, FYPP1, GDI1, GYF, MCP2d, OTP80, PPR, SPOC, Unknown1, Unknown2 and UBA. Among them, excluding GYF and FYPP1, another 12 genes, were identified to perform better than traditional reference genes ACTIN7 and GAPDH. To further validate the accuracy of the newly developed reference genes in normalization, expression levels of BnCAT1 (B. napus catalase 1) in different rapeseed tissues and seedlings under stress conditions were normalized by the three most stable reference genes PPR, GDI1, and ENTH and little difference existed in normalization results. To the best of our knowledge, this is the first time B. napus reference genes have been provided with the help of complete genome and transcriptome information. The new reference genes provided in this study are more accurate than previously reported reference genes in quantifying expression levels of B. napus genes.

  7. Methylene blue adsorption onto swede rape straw (Brassica napus L.) modified by tartaric acid: equilibrium, kinetic and adsorption mechanisms.

    PubMed

    Feng, Yanfang; Zhou, Hui; Liu, Guohua; Qiao, Jun; Wang, Jinhua; Lu, Haiying; Yang, Linzhang; Wu, Yonghong

    2012-12-01

    The aim of this study was to develop a promising and competitive bioadsorbent with the abundant of source, low price and environmentally friendly characters to remove cationic dye from wastewater. The swede rape straw (Brassica napus L.) modified by tartaric acid (SRSTA) was prepared, characterized and used to remove methylene blue (MB) from aqueous solution at varied operational conditions (including MB initial concentrations, adsorbent dose, etc.). Results demonstrated that the equilibrium data was well fitted by Langmuir isotherm model. The maximum MB adsorption capacity of SRSTA was 246.4 mg g(-1), which was comparable to the results of some previous studied activated carbons. The higher dye adsorption capacity could be attributed to the presence of more functional groups such as carboxyl group on the surface of SRSTA. The adsorption mechanism was also discussed. The results indicate that SRSTA is a promising and valuable absorbent to remove methylene blue from wastewater.

  8. Analysis of embryo, cytoplasmic and maternal genetic correlations for seven essential amino acids in rapeseed meal (Brassica napus L.).

    PubMed

    Chen, Guo Lin; Wu, Jian Guo; Variath, Murali-Tottekkaad; Yang, Zhong Wei; Shi, Chun Hai

    2011-04-01

    Genetic correlations of nutrient quality traits including lysine, methionine, leucine, isoleucine, phenylalanine, valine and threonine contents in rapeseed meal were analysed by the genetic model for quantitative traits of diploid plants using a diallel design with nine parents of Brassica napus L. These results indicated that the genetic correlations of embryo, cytoplasm and/or maternal plant havemade different contribution to total genetic correlations of most pairwise nutrient quality traits. The genetic correlations among the amino acids in rapeseed meal were simultaneously controlled by genetic main correlations and genotype x environment (GE) interaction correlations, especially for the maternal dominance correlations. Most components of genetic main correlations and GE interaction correlations for the pairwise traits studied were significantly positive. Some of the pairwise traits had negative genetic correlations, especially between valine and other amino acid contents. Indirect selection for improving the quality traits of rapeseed meal could be expected in rape breeding according to the magnitude and direction of genetic correlation components.

  9. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content.

    PubMed

    Weselake, Randall J; Shah, Saleh; Tang, Mingguo; Quant, Patti A; Snyder, Crystal L; Furukawa-Stoffer, Tara L; Zhu, Weiming; Taylor, David C; Zou, Jitao; Kumar, Arvind; Hall, Linda; Laroche, Andre; Rakow, Gerhard; Raney, Phillip; Moloney, Maurice M; Harwood, John L

    2008-01-01

    Top-down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content.

  10. Quantitative trait loci for thermal time to flowering and photoperiod responsiveness discovered in summer annual-type Brassica napus L.

    PubMed

    Nelson, Matthew N; Rajasekaran, Ravikesavan; Smith, Alison; Chen, Sheng; Beeck, Cameron P; Siddique, Kadambot H M; Cowling, Wallace A

    2014-01-01

    Time of flowering is a key adaptive trait in plants and is conditioned by the interaction of genes and environmental cues including length of photoperiod, ambient temperature and vernalisation. Here we investigated the photoperiod responsiveness of summer annual-types of Brassica napus (rapeseed, canola). A population of 131 doubled haploid lines derived from a cross between European and Australian parents was evaluated for days to flowering, thermal time to flowering (measured in degree-days) and the number of leaf nodes at flowering in a compact and efficient glasshouse-based experiment with replicated short and long day treatments. All three traits were under strong genetic control with heritability estimates ranging from 0.85-0.93. There was a very strong photoperiod effect with flowering in the population accelerated by 765 degree-days in the long day versus short day treatments. However, there was a strong genetic correlation of line effects (0.91) between the long and short day treatments and relatively low genotype x treatment interaction indicating that photoperiod had a similar effect across the population. Bivariate analysis of thermal time to flowering in short and long days revealed three main effect quantitative trait loci (QTLs) that accounted for 57.7% of the variation in the population and no significant interaction QTLs. These results provided insight into the contrasting adaptations of Australian and European varieties. Both parents responded to photoperiod and their alleles shifted the population to earlier flowering under long days. In addition, segregation of QTLs in the population caused wide transgressive segregation in thermal time to flowering. Potential candidate flowering time homologues located near QTLs were identified with the aid of the Brassica rapa reference genome sequence. We discuss how these results will help to guide the breeding of summer annual types of B. napus adapted to new and changing environments.

  11. Altered Fruit and Seed Development of Transgenic Rapeseed (Brassica napus) Over-Expressing MicroRNA394.

    PubMed

    Song, Jian Bo; Shu, Xia Xia; Shen, Qi; Li, Bo Wen; Song, Jun; Yang, Zhi Min

    2015-01-01

    Fruit and seed development in plants is a complex biological process mainly involved in input and biosynthesis of many storage compounds such as proteins and oils. Although the basic biochemical pathways for production of the storage metabolites in plants are well characterized, their regulatory mechanisms are not fully understood. In this study, we functionally identified rapeseed (Brassica napus) miR394 with its target gene Brassica napus leaf curling responsiveness (BnLCR) to dissect a role of miR394 during the fruit and seed development. Transgenic rapeseed plants over-expressing miR394 under the control of the cauliflower mosaic virus 35S promoter were generated. miR394 over-expression plants exhibited a delayed flowering time and enlarged size of plants, leaf blade, pods and seed body, but developed seeds with higher contents of protein and glucosinolates (GLS) and lower levels of oil accumulation as compared to wild-type. Over-expression of miR394 altered the fatty acid (FA) composition by increasing several FA species such as C16:0 and C18:0 and unsaturated species of C20:1 and C22:1 but lowering C18:3. This change was accompanied by induction of genes coding for transcription factors of FA synthesis including leafy cotyledon1 (BnLEC1), BnLEC2, and FUSCA3 (FUS3). Because the phytohormone auxin plays a crucial role in fruit development and seed patterning, the DR5-GUS reporter was used for monitoring the auxin response in Arabidopsis siliques and demonstrated that the DR5 gene was strongly expressed. These results suggest that BnmiR394 is involved in rapeseed fruit and seed development.

  12. Comparative genomic analysis of duplicated homoeologous regions involved in the resistance of Brassica napus to stem canker.

    PubMed

    Fopa Fomeju, Berline; Falentin, Cyril; Lassalle, Gilles; Manzanares-Dauleux, Maria J; Delourme, Régine

    2015-01-01

    All crop species are current or ancient polyploids. Following whole genome duplication, structural and functional modifications result in differential gene content or regulation in the duplicated regions, which can play a fundamental role in the diversification of genes underlying complex traits. We have investigated this issue in Brassica napus, a species with a highly duplicated genome, with the aim of studying the structural and functional organization of duplicated regions involved in quantitative resistance to stem canker, a disease caused by the fungal pathogen Leptosphaeria maculans. Genome-wide association analysis on two oilseed rape panels confirmed that duplicated regions of ancestral blocks E, J, R, U, and W were involved in resistance to stem canker. The structural analysis of the duplicated genomic regions showed a higher gene density on the A genome than on the C genome and a better collinearity between homoeologous regions than paralogous regions, as overall in the whole B. napus genome. The three ancestral sub-genomes were involved in the resistance to stem canker and the fractionation profile of the duplicated regions corresponded to what was expected from results on the B. napus progenitors. About 60% of the genes identified in these duplicated regions were single-copy genes while less than 5% were retained in all the duplicated copies of a given ancestral block. Genes retained in several copies were mainly involved in response to stress, signaling, or transcription regulation. Genes with resistance-associated markers were mainly retained in more than two copies. These results suggested that some genes underlying quantitative resistance to stem canker might be duplicated genes. Genes with a hydrolase activity that were retained in one copy or R-like genes might also account for resistance in some regions. Further analyses need to be conducted to indicate to what extent duplicated genes contribute to the expression of the resistance phenotype.

  13. Metabolic network reconstruction and flux variability analysis of storage synthesis in developing oilseed rape (Brassica napus L.) embryos.

    PubMed

    Hay, Jordan; Schwender, Jörg

    2011-08-01

    Computational simulation of large-scale biochemical networks can be used to analyze and predict the metabolic behavior of an organism, such as a developing seed. Based on the biochemical literature, pathways databases and decision rules defining reaction directionality we reconstructed bna572, a stoichiometric metabolic network model representing Brassica napus seed storage metabolism. In the highly compartmentalized network about 25% of the 572 reactions are transport reactions interconnecting nine subcellular compartments and the environment. According to known physiological capabilities of developing B. napus embryos, four nutritional conditions were defined to simulate heterotrophy or photoheterotrophy, each in combination with the availability of inorganic nitrogen (ammonia, nitrate) or amino acids as nitrogen sources. Based on mathematical linear optimization the optimal solution space was comprehensively explored by flux variability analysis, thereby identifying for each reaction the range of flux values allowable under optimality. The range and variability of flux values was then categorized into flux variability types. Across the four nutritional conditions, approximately 13% of the reactions have variable flux values and 10-11% are substitutable (can be inactive), both indicating metabolic redundancy given, for example, by isoenzymes, subcellular compartmentalization or the presence of alternative pathways. About one-third of the reactions are never used and are associated with pathways that are suboptimal for storage synthesis. Fifty-seven reactions change flux variability type among the different nutritional conditions, indicating their function in metabolic adjustments. This predictive modeling framework allows analysis and quantitative exploration of storage metabolism of a developing B. napus oilseed.

  14. Integration of a constraint-based metabolic model of Brassica napus developing seeds with (13)C-metabolic flux analysis.

    PubMed

    Hay, Jordan O; Shi, Hai; Heinzel, Nicolas; Hebbelmann, Inga; Rolletschek, Hardy; Schwender, Jorg

    2014-01-01

    The use of large-scale or genome-scale metabolic reconstructions for modeling and simulation of plant metabolism and integration of those models with large-scale omics and experimental flux data is becoming increasingly important in plant metabolic research. Here we report an updated version of bna572, a bottom-up reconstruction of oilseed rape (Brassica napus L.; Brassicaceae) developing seeds with emphasis on representation of biomass-component biosynthesis. New features include additional seed-relevant pathways for isoprenoid, sterol, phenylpropanoid, flavonoid, and choline biosynthesis. Being now based on standardized data formats and procedures for model reconstruction, bna572+ is available as a COBRA-compliant Systems Biology Markup Language (SBML) model and conforms to the Minimum Information Requested in the Annotation of Biochemical Models (MIRIAM) standards for annotation of external data resources. Bna572+ contains 966 genes, 671 reactions, and 666 metabolites distributed among 11 subcellular compartments. It is referenced to the Arabidopsis thaliana genome, with gene-protein-reaction (GPR) associations resolving subcellular localization. Detailed mass and charge balancing and confidence scoring were applied to all reactions. Using B. napus seed specific transcriptome data, expression was verified for 78% of bna572+ genes and 97% of reactions. Alongside bna572+ we also present a revised carbon centric model for (13)C-Metabolic Flux Analysis ((13)C-MFA) with all its reactions being referenced to bna572+ based on linear projections. By integration of flux ratio constraints obtained from (13)C-MFA and by elimination of infinite flux bounds around thermodynamically infeasible loops based on COBRA loopless methods, we demonstrate improvements in predictive power of Flux Variability Analysis (FVA). Using this combined approach we characterize the difference in metabolic flux of developing seeds of two B. napus genotypes contrasting in starch and oil content.

  15. Physiological and molecular analyses of black and yellow seeded Brassica napus regulated by 5-aminolivulinic acid under chromium stress.

    PubMed

    Gill, Rafaqat A; Ali, Basharat; Islam, Faisal; Farooq, Muhammad A; Gill, Muhammad B; Mwamba, Theodore M; Zhou, Weijun

    2015-09-01

    Brassica napus L. is a promising oilseed crop among the oil producing species. So, it is prime concern to screen the metal tolerant genotypes in order to increase the oilseed rape production through the utilization of pollutant soil regimes. Nowadays, use of plant growth regulators against abiotic stress is one of the major objectives of researchers. In this study, an attempt was carried out to analyze the pivotal role of exogenously applied 5-amenolevulinic acid (ALA) on alleviating chromium (Cr)-toxicity in black and yellow seeded B. napus. Plants of two cultivars (ZS 758 - a black seed type, and Zheda 622 - a yellow seed type) were treated with 400 μM Cr with or without 15 and 30 mg/L ALA. Results showed that exogenously applied ALA improved the plant growth and increased ALA contents; however, it decreased the Cr concentration in B. napus leaves under Cr-toxicity. Moreover, exogenous ALA reduced oxidative stress by up-regulating antioxidant enzyme activities and their related gene expression. Further, results suggested that stress responsive protein's transcript level such as HSP90-1 and MT-1 were increased under Cr stress alone in both cultivars. Exogenously applied ALA further enhanced the expression rate in both genotypes and obviously results were found in favor of cultivar ZS 758. The ultrastructural changes were observed more obvious in yellow seeded than black seeded cultivar; however, exogenously applied ALA helped the plants to recover their cell turgidity under Cr stress. The present study describes a detailed molecular mechanism how ALA regulates the plant growth by improving antioxidant machinery and related transcript levels, cellular modification as well as stress related genes expression under Cr-toxicity.

  16. Comparative Transcriptome Analysis of Primary Roots of Brassica napus Seedlings with Extremely Different Primary Root Lengths Using RNA Sequencing

    PubMed Central

    Dun, Xiaoling; Tao, Zhangsheng; Wang, Jie; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2016-01-01

    Primary root (PR) development is a crucial developmental process that is essential for plant survival. The elucidation of the PR transcriptome provides insight into the genetic mechanism controlling PR development in crops. In this study, we performed a comparative transcriptome analysis to investigate the genome-wide gene expression profiles of the seedling PRs of four Brassica napus genotypes that were divided into two groups, short group (D43 and D61), and long group (D69 and D72), according to their extremely different primary root lengths (PRLs). The results generated 55,341,366–64,631,336 clean reads aligned to 62,562 genes (61.9% of the current annotated genes) in the B. napus genome. We provide evidence that at least 44,986 genes are actively expressed in the B. napus PR. The majority of the genes that were expressed during seedling PR development were associated with metabolism, cellular processes, response to stimulus, biological regulation, and signaling. Using a pairwise comparison approach, 509 differentially expressed genes (DEGs; absolute value of log2 fold-change ≥1 and p ≤ 0.05) between the long and short groups were revealed, including phytohormone-related genes, protein kinases and phosphatases, oxygenase, cytochrome P450 proteins, etc. Combining GO functional category, KEGG, and MapMan pathway analyses indicated that the DEGs involved in cell wall metabolism, carbohydrate metabolism, lipid metabolism, secondary metabolism, protein modification and degradation, hormone pathways and signaling pathways were the main causes of the observed PRL differences. We also identified 16 differentially expressed transcription factors (TFs) involved in PR development. Taken together, these transcriptomic datasets may serve as a foundation for the identification of candidate genes and may provide valuable information for understanding the molecular and cellular events related to PR development. PMID:27594860

  17. Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L.

    PubMed

    Afshan, Sehar; Ali, Shafaqat; Bharwana, Saima Aslam; Rizwan, Muhammad; Farid, Mujahid; Abbas, Farhat; Ibrahim, Muhammad; Mehmood, Muhammad Aamer; Abbasi, Ghulam Hasan

    2015-08-01

    Chromium (Cr) toxicity is widespread in crops grown on Cr-contaminated soils and has become a serious environmental issue which requires affordable strategies for the remediation of such soils. This study was performed to assess the performance of citric acid (CA) through growing Brassica napus in the phytoextraction of Cr from contaminated soil. Different Cr (0, 100, and 500 μM) and citric acid (0, 2.5, and 5.0 mM) treatments were applied alone and in combinations to 4-week-old seedlings of B. napus plants in soil under wire house condition. Plants were harvested after 12 weeks of sowing, and the data was recorded regarding growth characteristics, biomass, photosynthetic pigments, malondialdehyde (MDA), electrolytic leakage (EL), antioxidant enzymes, and Cr uptake and accumulation. The results showed that the plant growth, biomass, chlorophyll contents, and carotenoid as well as soluble protein concentrations significantly decreased under Cr stress alone while these adverse effects were alleviated by application of CA. Cr concentration in roots, stem, and leaves of CA-supplied plant was significantly reduced while total uptake of Cr increased in all plant parts with CA application. Furthermore, in comparison with Cr treatments alone, CA supply reduced the MDA and EL values in both shoots and roots. Moreover, the activity of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in shoots and roots markedly increased by 100 μM Cr exposure, while decreased at 500 μM Cr stress. CA application enhanced the activities of antioxidant enzymes compared to the same Cr treatment alone. Thus, the data indicate that exogenous CA application can increase Cr uptake and can minimize Cr stress in plants and may be beneficial in accelerating the phytoextraction of Cr through hyper-accumulating plants such as B. napus.

  18. Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level.

    PubMed

    Cao, Jia-Yi; Xu, You-Ping; Zhao, Li; Li, Shuang-Sheng; Cai, Xin-Zhong

    2016-09-01

    MicroRNAs (miRNAs) are multifunctional non-coding short nucleotide molecules. Nevertheless, the role of miRNAs in the interactions between plants and necrotrophic pathogens is largely unknown. Here, we report the identification of the miRNA repertoire of the economically important oil crop oilseed rape (Brassica napus) and those involved in interacting with its most devastating necrotrophic pathogen Sclerotinia sclerotiorum. We identified 280 B. napus miRNA candidates, including 53 novel candidates and 227 canonical members or variants of known miRNA families, by high-throughput deep sequencing of small RNAs from both normal and S. sclerotiorum-inoculated leaves. Target genes of 15 novel candidates and 222 known miRNAs were further identified by sequencing of degradomes from the two types of samples. MiRNA microarray analysis revealed that 68 miRNAs were differentially expressed between S. sclerotiorum-inoculated and uninoculated leaves. A set of these miRNAs target genes involved in plant defense to S. sclerotiorum and/or other pathogens such as nucleotide binding site-leucine-rich repeat (NBS-LRR) R genes and nitric oxygen and reactive oxygen species related genes. Additionally, three miRNAs target AGO1 and AGO2, key components of post-transcriptional gene silencing (PTGS). Expression of several viral PTGS suppressors reduced resistance to S. sclerotiorum. Arabidopsis mutants of AGO1 and AGO2 exhibited reduced resistance while transgenic lines over-expressing AGO1 displayed increased resistance to S. sclerotiorum in an AGO1 expression level-dependent manner. Moreover, transient over-expression of miRNAs targeting AGO1 and AGO2 decreased resistance to S. sclerotiorum in oilseed rape. Our results demonstrate that the interactions between B. napus and S. sclerotiorum are tightly regulated at miRNA level and probably involve PTGS.

  19. Oxidative injury and antioxidant enzymes regulation in arsenic-exposed seedlings of four Brassica napus L. cultivars.

    PubMed

    Farooq, Muhammad A; Li, Lan; Ali, Basharat; Gill, Rafaqat A; Wang, Jian; Ali, Shafaqat; Gill, Muhammad B; Zhou, Weijun

    2015-07-01

    Environmental contamination due to arsenic (As) has become a major risk throughout the world; this affects plant growth and productivity. Its accumulation in food chain may pose a severe threat to organisms. The present study was carried out to observe the toxic effects of As (0, 50, 100, and 200 μM) on physiological and biochemical changes in four Brassica napus cultivars (ZS 758, Zheda 619, ZY 50, and Zheda 622). Results showed that As toxicity provoked a significant inhibition in growth parameters of B. napus cultivars and this reduction was more obvious in cultivar Zheda 622. The highest concentration of MDA, H2O2, and O2 (-) contents in both leaf and root tissues were observed at 200 μM As level, and a gradual decrease was observed at lower concentrations. Increasing As concentration gradually decreased chlorophyll and carotenoids contents. Activity of antioxidant enzymes such as SOD, CAT, APX, GR, and GSH was positively correlated with As treatments in all cultivars. The microscopic study of leaves and roots at 200 μM As level showed the disorganization in cell organelles. Disturbance in the morphology of chloroplast, broken cell wall, increase in size, and number of starch grains and immature nucleus were found in leaf ultrastructures under higher concentration of As. Moreover, damaged nucleus, diffused cell wall, enlarged vacuoles, and a number of mitochondria were observed in root tip cells at 200 μM As level. These results suggest that B. napus cultivars have efficient mechanism to tolerate As toxicity, as evidenced by an increased level of antioxidant enzymes.

  20. Integration of a constraint-based metabolic model of Brassica napus developing seeds with 13C-metabolic flux analysis

    PubMed Central

    Hay, Jordan O.; Shi, Hai; Heinzel, Nicolas; Hebbelmann, Inga; Rolletschek, Hardy; Schwender, Jorg

    2014-01-01

    The use of large-scale or genome-scale metabolic reconstructions for modeling and simulation of plant metabolism and integration of those models with large-scale omics and experimental flux data is becoming increasingly important in plant metabolic research. Here we report an updated version of bna572, a bottom-up reconstruction of oilseed rape (Brassica napus L.; Brassicaceae) developing seeds with emphasis on representation of biomass-component biosynthesis. New features include additional seed-relevant pathways for isoprenoid, sterol, phenylpropanoid, flavonoid, and choline biosynthesis. Being now based on standardized data formats and procedures for model reconstruction, bna572+ is available as a COBRA-compliant Systems Biology Markup Language (SBML) model and conforms to the Minimum Information Requested in the Annotation of Biochemical Models (MIRIAM) standards for annotation of external data resources. Bna572+ contains 966 genes, 671 reactions, and 666 metabolites distributed among 11 subcellular compartments. It is referenced to the Arabidopsis thaliana genome, with gene-protein-reaction (GPR) associations resolving subcellular localization. Detailed mass and charge balancing and confidence scoring were applied to all reactions. Using B. napus seed specific transcriptome data, expression was verified for 78% of bna572+ genes and 97% of reactions. Alongside bna572+ we also present a revised carbon centric model for 13C-Metabolic Flux Analysis (13C-MFA) with all its reactions being referenced to bna572+ based on linear projections. By integration of flux ratio constraints obtained from 13C-MFA and by elimination of infinite flux bounds around thermodynamically infeasible loops based on COBRA loopless methods, we demonstrate improvements in predictive power of Flux Variability Analysis (FVA). Using this combined approach we characterize the difference in metabolic flux of developing seeds of two B. napus genotypes contrasting in starch and oil content. PMID

  1. Differential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress

    PubMed Central

    Bakhtari, Bahlanes; Razi, Hooman

    2014-01-01

    The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signaling pathway in Arabidopsis. This study aimed to clone and sequence an ortholog of the Arabidopsis SRK2D gene from Brassica napus, designated as BnSRK2D. An 833bp cDNA fragment of BnSRK2D, which shared high amino acid sequence identity with its Arabidopsis counterpart, was obtained suggesting a possible conserved function for these genes. The expression pattern of BnSRK2D and its potential target gene B. napus ABF2 (BnABF2) were then analyzed in the two cultivars with contrasting reaction to water deficit stress. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) showed that BnSRK2D and BnABF2 were water-deficit stress responsive genes with similar expression profiles. The accumulation of the BnSRK2D and BnABF2 transcripts in the two cultivars was linked with their level of drought tolerance, as the drought tolerant cultivar had significantly higher expression levels of both genes under normal and water deficit stress conditions. These findings suggest that BnSRK2D and BnABF2 genes may be involved in conferring drought tolerance in B. napus. PMID:27843988

  2. Integration of a constraint-based metabolic model of Brassica napus developing seeds with 13C-metabolic flux analysis

    DOE PAGES

    Hay, Jordan O.; Shi, Hai; Heinzel, Nicolas; ...

    2014-12-19

    The use of large-scale or genome-scale metabolic reconstructions for modeling and simulation of plant metabolism and integration of those models with large-scale omics and experimental flux data is becoming increasingly important in plant metabolic research. Here we report an updated version of bna572, a bottom-up reconstruction of oilseed rape (Brassica napus L.; Brassicaceae) developing seeds with emphasis on representation of biomass-component biosynthesis. New features include additional seed-relevant pathways for isoprenoid, sterol, phenylpropanoid, flavonoid, and choline biosynthesis. Being now based on standardized data formats and procedures for model reconstruction, bna572+ is available as a COBRA-compliant Systems Biology Markup Language (SBML) modelmore » and conforms to the Minimum Information Requested in the Annotation of Biochemical Models (MIRIAM) standards for annotation of external data resources. Bna572+ contains 966 genes, 671 reactions, and 666 metabolites distributed among 11 subcellular compartments. It is referenced to the Arabidopsis thaliana genome, with gene-protein-reaction (GPR) associations resolving subcellular localization. Detailed mass and charge balancing and confidence scoring were applied to all reactions. Using B. napus seed specific transcriptome data, expression was verified for 78% of bna572+ genes and 97% of reactions. Alongside bna572+ we also present a revised carbon centric model for 13C-Metabolic Flux Analysis (13C-MFA) with all its reactions being referenced to bna572+ based on linear projections. By integration of flux ratio constraints obtained from 13C-MFA and by elimination of infinite flux bounds around thermodynamically infeasible loops based on COBRA loopless methods, we demonstrate improvements in predictive power of Flux Variability Analysis (FVA). In conclusion, using this combined approach we characterize the difference in metabolic flux of developing seeds of two B. napus genotypes contrasting in starch

  3. Metabolic Characteristics in Meal of Black Rapeseed and Yellow-Seeded Progeny of Brassica napus-Sinapis alba Hybrids.

    PubMed

    Jiang, Jinjin; Wang, Yue; Xie, Tao; Rong, Hao; Li, Aimin; Fang, Yujie; Wang, Youping

    2015-11-30

    Breeding of yellow-seeded rapeseed (Brassica napus) is preferred over black-seeded rapeseed for the desirable properties of the former. This study evaluated the metabolites and nutritive values of black-seeded rapeseed meal and yellow-seeded meal from the progeny of a B. napus-Sinapis alba hybrid. Yellow-seed meal presented higher protein (35.46% vs. 30.29%), higher sucrose (7.85% vs. 7.29%), less dietary fiber (26.19% vs. 34.63%) and crude fiber (4.56% vs. 8.86%), and less glucosinolates (22.18 vs. 28.19 μmol/g) than black-seeded one. Amounts of ash (3.65% vs. 4.55%), phytic acid (4.98% vs. 5.60%), and total polyphenols (2.67% vs. 2.82%) were decreased slightly in yellow-seeded meal compared with black-seeded meal. Yellow-seeded meal contained more essential amino acids than black-seeded meal. Levels of the mineral elements Fe, Mn, and Zn in yellow-seeded meal were higher than black-seeded meal. By contrast, levels of P, Ca, and Mg were lower in yellow-seeded meal. Moreover, yellow-seeded meal showed lower flavonol (kaempferol, quercetin, isorhamnetin, and their derivatives) content than black-seeded meal. Comparison of metabolites between yellow and black rapeseed confirmed the improved nutritional value of meal from yellow-seeded B. napus, and this would be helpful to the breeding and improvement of rapeseed for animal feeding.

  4. Iron deprivation-induced reactive oxygen species generation leads to non-autolytic PCD in Brassica napus leaves

    PubMed Central

    Tewari, Rajesh Kumar; Hadacek, Franz; Sassmann, Stefan; Lang, Ingeborg

    2013-01-01

    Using iron-deprived (–Fe) chlorotic as well as green iron-deficient (5 μM Fe) and iron-sufficient supplied (50 μM Fe) leaves of young hydroponically reared Brassica napus plants, we explored iron deficiency effects on triggering programmed cell death (PCD) phenomena. Iron deficiency increased superoxide anion but decreased hydroxyl radical (•OH) formation (TBARS levels). Impaired photosystem II efficiency led to hydrogen peroxide accumulation in chloroplasts; NADPH oxidase activity, however, remained on the same level in all treatments. Non-autolytic PCD was observed especially in the chlorotic leaf of iron-deprived plants, to a lesser extent in iron-deficient plants. It correlated with higher DNAse-, alkaline protease- and caspase-3-like activities, DNA fragmentation and chromatin condensation, hydrogen peroxide accumulation and higher superoxide dismutase activity. A significant decrease in catalase activity together with rising levels of dehydroascorbic acid indicated a strong disturbance of the redox homeostasis, which, however, was not caused by •OH formation in concordance with the fact that iron is required to catalyse the Fenton reaction leading to •OH generation. This study documents the chain of events that contributes to the development of non-autolytic PCD in advanced stages of iron deficiency in B. napus leaves. PMID:23825883

  5. Subcellular distribution, modulation of antioxidant and stress-related genes response to arsenic in Brassica napus L.

    PubMed

    Farooq, Muhammad A; Gill, Rafaqat A; Ali, Basharat; Wang, Jian; Islam, Faisal; Ali, Shafaqat; Zhou, Weijun

    2016-03-01

    Arsenic (As) is an environmental toxin pollutant that affects the numerous physiological processes of plants. In present study, two Brassica napus L. cultivars were subjected to various concentrations (0, 50, 100, and 200 µM) of As for 14 days, plants were examined for As subcellular distribution, photosynthesis parameters, oxidative stress, and ultrastructural changes under As-stress. Differential fraction analysis showed that significant amount of As was accumulated in the cell wall as compared to other organelles. Decline in photosynthetic efficiency under As stress was observed in term of reduced pigment contents and gas exchange parameters. Differential responses of antioxidants at both enzymatic and gene levels to higher As stress were more pronounced in cultivar ZS 758 as compared to Zheda 622. The qRT-PCR analysis showed that heat shock protein 90 (Hsp90) and metallothionein were over-expressed in As stressed B. napus plants. Disorganization of cell structure and the damages in different organelles were some of the obvious variations in cultivar Zheda 622 as compared to ZS 758.

  6. Exogenous 3,3'-diindolylmethane increases Brassica napus L. seedling shoot growth through modulation of superoxide and hydrogen peroxide content.

    PubMed

    Gokul, Arun; Roode, Enrico; Klein, Ashwil; Keyster, Marshall

    2016-06-01

    Brassica napus L. (cv. AV Garnet) seeds were pre-treated with 15μM 3,3'-diindolylmethane (DIM) to investigate whether DIM could enhance seed germination. Further treatment of seedlings with 15μM DIM for 14days explored the effects on seedling shoot growth. Exogenous DIM led to improved germination percentage, increased seedling shoot lengths, and increased fresh and dry weights. Furthermore, DIM triggered induction of superoxide radical (O2(-)) and hydrogen peroxide (H2O2) content however, no change in malondialdehyde (MDA) content and cell death (assessed with Evans Blue assay) was detected for both the control and DIM treated seedling shoots. We also observed increases in superoxide dismutase (SOD) activity and ascorbate peroxidase (APX) activity in response to exogenous DIM, two fundamental enzymes in the control of reactive oxygen species (ROS) in plants. These results indicate that exogenous DIM treatment enhances seed germination and improves seedling shoot growth through possible activation of a reactive oxygen species signalling pathway involving O2(-) and H2O2 in B. napus.

  7. Characterization of the promoter and 5'-UTR intron of oleic acid desaturase (FAD2) gene in Brassica napus.

    PubMed

    Xiao, Gang; Zhang, Zhen Qian; Yin, Chang Fa; Liu, Rui Yang; Wu, Xian Meng; Tan, Tai Long; Chen, She Yuan; Lu, Chang Ming; Guan, Chun Yun

    2014-07-15

    In the present study, we characterized the transcriptional regulatory region (KF038144) controlling the expression of a constitutive FAD2 in Brassica napus. There are multiple FAD2 gene copies in B. napus genome. The FAD2 gene characterized and analyzed in the study is located on chromosome A5 and was designated as BnFAD2A5-1. BnFAD2A5-1 harbors an intron (1,192 bp) within its 5'-untranslated region (5'-UTR). This intron demonstrated promoter activity. Deletion analysis of the BnFAD2A5-1 promoter and intron through the β-glucuronidase (GUS) reporter system revealed that the -220 to -1 bp is the minimum promoter region, while -220 to -110 bp and +34 to +285 bp are two important regions conferring high-levels of transcription. BnFAD2 transcripts were induced by light, low temperature, and abscisic acid (ABA). These observations demonstrated that not only the promoter but also the intron are involved in controlling the expression of the BnFAD2A5-1 gene. The intron-mediated regulation is an essential aspect of the gene expression regulation.

  8. Involvement of phospholipases C and D in early response to SAR and ISR inducers in Brassica napus plants.

    PubMed

    Profotová, B; Burketová, L; Novotná, Z; Martinec, J; Valentová, O

    2006-01-01

    Phospholipid signaling is an important component in eukaryotic signal transduction pathways. In plants, it plays a key role in growth and development as well as in responses to environmental stresses, including pathogen attack. We investigated the involvement of both phospholipase C (PLC, EC 3.1.4.11) and D (PLD, EC 3.1.4.4) in early responses to the treatment of Brassica napus plants with the chemical inducers of systemic acquired resistance (SAR): salicylic acid (SA), benzothiadiazole (BTH), and with the inducer mediating the induced systemic resistance (ISR) pathway, methyl jasmonate (MeJA). Rapid activation (within 0.5-6 h treatment) of the in vitro activity level was found for phosphatidyl inositol 4,5 bisphosphate (PIP2)-specific PLC (PI-PLC) and three enzymatically different forms of PLD: conventional PLDalpha, PIP2-dependent PLD beta/gamma, and oleate-stimulated PLDdelta. The strongest response was found in case of cytosolic PIP2-dependent PLD beta/gamma after BTH treatment. PLDdelta was identified in B. napus leaves and was very rapidly activated after MeJA treatment with the highest degree of activation compared to the other PLD isoforms. Interestingly, an increase in the amount of protein was observed only for PLDgamma and/or delta after ISR induction, but later than the activation occurred. These results show that phospholipases are involved in very early processes leading to systemic responses in plants and that they are most probably initially first activated on post translational level.

  9. Genome-wide transcriptomic analysis uncovers the molecular basis underlying early flowering and apetalous characteristic in Brassica napus L

    PubMed Central

    Yu, Kunjiang; Wang, Xiaodong; Chen, Feng; Chen, Song; Peng, Qi; Li, Hongge; Zhang, Wei; Hu, Maolong; Chu, Pu; Zhang, Jiefu; Guan, Rongzhan

    2016-01-01

    Floral transition and petal onset, as two main aspects of flower development, are crucial to rapeseed evolutionary success and yield formation. Currently, very little is known regarding the genetic architecture that regulates flowering time and petal morphogenesis in Brassica napus. In the present study, a genome-wide transcriptomic analysis was performed with an absolutely apetalous and early flowering line, APL01, and a normally petalled line, PL01, using high-throughput RNA sequencing. In total, 13,205 differential expressed genes were detected, of which 6111 genes were significantly down-regulated, while 7094 genes were significantly up-regulated in the young inflorescences of APL01 compared with PL01. The expression levels of a vast number of genes involved in protein biosynthesis were altered in response to the early flowering and apetalous character. Based on the putative rapeseed flowering genes, an early flowering network, mainly comprised of vernalization and photoperiod pathways, was built. Additionally, 36 putative upstream genes possibly governing the apetalous character of line APL01 were identified, and six genes potentially regulating petal origination were obtained by combining with three petal-related quantitative trait loci. These findings will facilitate understanding of the molecular mechanisms underlying floral transition and petal initiation in B. napus. PMID:27460760

  10. 5-aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast.

    PubMed

    Naeem, Muhammad S; Warusawitharana, Hasitha; Liu, Hongbo; Liu, Dan; Ahmad, Rashid; Waraich, Ejaz Ahmad; Xu, Ling; Zhou, Weijun

    2012-08-01

    5-Aminolevulinic acid (ALA) is an important plant growth regulator which is derived from 5-carbon aliphatic amino acid. The present study investigates the interaction of increasing NaCl-salinity and ALA on plant growth, leaf pigment composition, leaf and root Na(+)/K(+) ratio and chloroplast ultrastructure in mesophyll cells of oilseed rape (Brassica napus) leaves. The plants were treated hydroponically with three different salinity levels (0, 100, 200 mM) and foliar application of ALA (30 mg l(-1)) simultaneously. Ten days after treatment, higher NaCl-salinity significantly reduced the plant biomass and height. However, ALA application restored the plant biomass and plant height under saline conditions. A concentration-dependent increase in Na(+) uptake was observed in the aerial parts of B. napus plants. On the other hand, ALA reduced Na(+) uptake, leading to a significant decrease in Na(+)/K(+) ratio. Accumulation of Na(+) augmented the oxidative stress, which was evident by electron microscopic images, highlighting several changes in cell shape and size, chloroplast swelling, increased number of plastogloubli, reduced starch granules and dilations of the thylakoids. Foliar application of ALA improved the energy supply and investment in mechanisms (higher chlorophyll and carotenoid contents, enhanced photosynthetic efficiency), reduced the oxidative stress as evident by the regular shaped chloroplasts with more intact thylakoids. On the basis of these results we can suggest that ALA is a promising plant growth regulator which can improve plant survival under salinity.

  11. Temporal and tissue-specific regulation of a Brassica napus stearoyl-acyl carrier protein desaturase gene.

    PubMed Central

    Slocombe, S P; Piffanelli, P; Fairbairn, D; Bowra, S; Hatzopoulos, P; Tsiantis, M; Murphy, D J

    1994-01-01

    The nucleotide sequence of a Brassica napus stearoyl-acyl carrier protein desaturase gene (Bn10) is presented. This gene is one member of a family of four closely related genes expressed in oilseed rape. The expression of the promoter of this gene in transgenic tobacco was found to be temporally regulated in the developing seed tissues. However, the promoter was also particularly active in other oleogenic tissues such as the tapetum and pollen grains. This raises the interesting question of whether seed-expressed lipid synthesis genes are regulated by separate tissue-specific determinants or by a single factor common to all oleogenic tissues. Parts of the plants undergoing rapid development such as the components of immature flowers and seedlings also exhibited high levels of promoter activity. These tissues are likely to have an elevated requirement for membrane lipid synthesis. Stearoyl-acyl carrier protein desaturase transcript levels have previously been shown to be temporally regulated in the B. napus embryo (S.P. Slocombe, I. Cummins, R.P. Jarvis, D.J. Murphy [1992] Plant Mol Biol 20: 151-155). Evidence is presented demonstrating the induction of desaturase mRNA by abscisic acid in the embryo. PMID:8016261

  12. An RNA-seq transcriptome analysis of floral buds of an interspecific Brassica hybrid between B. carinata and B. napus.

    PubMed

    Chu, Pu; Liu, Huijuan; Yang, Qing; Wang, Yankun; Yan, Guixia; Guan, Rongzhan

    2014-12-01

    Interspecific hybridizations promote gene transfer between species and play an important role in plant speciation and crop improvement. However, hybrid sterility that commonly found in the first generation of hybrids hinders the utilization of interspecific hybridization. The combination of divergent parental genomes can create extensive transcriptome variations, and to determine these gene expression alterations and their effects on hybrids, an interspecific Brassica hybrid of B. carinata × B. napus was generated. Scanning electron microscopy analysis indicated that some of the hybrid pollen grains were irregular in shape and exhibited abnormal exine patterns compared with those from the parents. Using the Illumina HiSeq 2000 platform, 39,598, 32,403 and 42,208 genes were identified in flower buds of B. carinata cv. W29, B. napus cv. Zhongshuang 11 and their hybrids, respectively. The differentially expressed genes were significantly enriched in pollen wall assembly, pollen exine formation, pollen development, pollen tube growth, pollination, gene transcription, macromolecule methylation and translation, which might be associated with impaired fertility in the F1 hybrid. These results will shed light on the mechanisms underlying the low fertility of the interspecific hybrids and expand our knowledge of interspecific hybridization.

  13. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance

    PubMed Central

    Sahni, Sangita; Prasad, Bishun D.; Liu, Qing; Grbic, Vojislava; Sharpe, Andrew; Singh, Surinder P.; Krishna, Priti

    2016-01-01

    As a resource allocation strategy, plant growth and defense responses are generally mutually antagonistic. Brassinosteroid (BR) regulates many aspects of plant development and stress responses, however, genetic evidence of its integrated effects on plant growth and stress tolerance is lacking. We overexpressed the Arabidopsis BR biosynthetic gene AtDWF4 in the oilseed plant Brassica napus and scored growth and stress response phenotypes. The transgenic B. napus plants, in comparison to wild type, displayed increased seed yield leading to increased overall oil content per plant, higher root biomass and root length, significantly better tolerance to dehydration and heat stress, and enhanced resistance to necrotrophic fungal pathogens Leptosphaeria maculans and Sclerotinia sclerotiorum. Transcriptome analysis supported the integrated effects of BR on growth and stress responses; in addition to BR responses associated with growth, a predominant plant defense signature, likely mediated by BES1/BZR1, was evident in the transgenic plants. These results establish that BR can interactively and simultaneously enhance abiotic and biotic stress tolerance and plant productivity. The ability to confer pleiotropic beneficial effects that are associated with different agronomic traits suggests that BR–related genes may be important targets for simultaneously increasing plant productivity and performance under stress conditions. PMID:27324083

  14. The Effects of Seed Size on Hybrids Formed between Oilseed Rape (Brassica napus) and Wild Brown Mustard (B. juncea)

    PubMed Central

    Liu, Yong-bo; Tang, Zhi-xi; Darmency, Henri; Stewart, C. Neal; Di, Kun; Wei, Wei; Ma, Ke-ping

    2012-01-01

    Background Seed size has significant implications in ecology, because of its effects on plant fitness. The hybrid seeds that result from crosses between crops and their wild relatives are often small, and the consequences of this have been poorly investigated. Here we report on plant performance of hybrid and its parental transgenic oilseed rape (Brassica napus) and wild B. juncea, all grown from seeds sorted into three seed-size categories. Methodology/Principal Findings Three seed-size categories were sorted by seed diameter for transgenic B. napus, wild B. juncea and their transgenic and non-transgenic hybrids. The seeds were sown in a field at various plant densities. Globally, small-seeded plants had delayed flowering, lower biomass, fewer flowers and seeds, and a lower thousand-seed weight. The seed-size effect varied among plant types but was not affected by plant density. There was no negative effect of seed size in hybrids, but it was correlated with reduced growth for both parents. Conclusions Our results imply that the risk of further gene flow would probably not be mitigated by the small size of transgenic hybrid seeds. No fitness cost was detected to be associated with the Bt-transgene in this study. PMID:22745814

  15. Molecular cloning of a Brassica napus thiohydroximate S-glucosyltransferase gene and its expression in Escherichia coli.

    PubMed

    Marillia, Elizabeth-France; MacPherson, Jim M.; Tsang, Edward W. T.; Van Audenhove, Katrien; Keller, Wilf A.; GrootWassink, Jan W. D.

    2001-10-01

    A genomic clone encoding a thiohydroximate S-glucosyltransferase (S-GT) was isolated from Brassica napus by library screening with probes generated by PCR using degenerated primers. Its corresponding cDNA was amplified by rapid amplification of cDNA ends (RACE) PCR and also cloned by cDNA library screening. The genomic clone was 5 896 bp long and contained a 173-bp intron. At least two copies of the S-GT gene were present in B. napus. The full-length cDNA clone was 1.5 kb long and contained an open reading frame encoding a 51-kDa polypeptide. The deduced amino acid sequence shared a significant degree of homology with other glucosyltransferases characterized in other species, including a highly conserved motif within this family of enzymes corresponding to the glucose-binding domain. The recombinant protein was expressed in Escherichia coli, and the enzyme activity was tested by a biochemical assay based on the measure of glucose incorporation. The high thiohydroximate S-GT activity detected from the recombinant protein confirmed that this clone was indeed a S-glucosyltransferase.

  16. QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems

    PubMed Central

    Zhang, Ying; Thomas, Catherine L.; Xiang, Jinxia; Long, Yan; Wang, Xiaohua; Zou, Jun; Luo, Ziliang; Ding, Guangda; Cai, Hongmei; Graham, Neil S.; Hammond, John P.; King, Graham J.; White, Philip J.; Xu, Fangsen; Broadley, Martin R.; Shi, Lei; Meng, Jinling

    2016-01-01

    A high-density SNP-based genetic linkage map was constructed and integrated with a previous map in the Tapidor x Ningyou7 (TNDH) Brassica napus population, giving a new map with a total of 2041 molecular markers and an average marker density which increased from 0.39 to 0.97 (0.82 SNP bin) per cM. Root and shoot traits were screened under low and ‘normal’ phosphate (Pi) supply using a ‘pouch and wick’ system, and had been screened previously in an agar based system. The P-efficient parent Ningyou7 had a shorter primary root length (PRL), greater lateral root density (LRD) and a greater shoot biomass than the P-inefficient parent Tapidor under both treatments and growth systems. Quantitative trait loci (QTL) analysis identified a total of 131 QTL, and QTL meta-analysis found four integrated QTL across the growth systems. Integration reduced the confidence interval by ~41%. QTL for root and shoot biomass were co-located on chromosome A3 and for lateral root emergence were co-located on chromosomes A4/C4 and C8/C9. There was a major QTL for LRD on chromosome C9 explaining ~18% of the phenotypic variation. QTL underlying an increased LRD may be a useful breeding target for P uptake efficiency in Brassica. PMID:27624881

  17. Hyperspectral and Thermal Imaging of Oilseed Rape (Brassica napus) Response to Fungal Species of the Genus Alternaria

    PubMed Central

    Baranowski, Piotr; Jedryczka, Malgorzata; Mazurek, Wojciech; Babula-Skowronska, Danuta; Siedliska, Anna; Kaczmarek, Joanna

    2015-01-01

    In this paper, thermal (8-13 µm) and hyperspectral imaging in visible and near infrared (VNIR) and short wavelength infrared (SWIR) ranges were used to elaborate a method of early detection of biotic stresses caused by fungal species belonging to the genus Alternaria that were host (Alternaria alternata, Alternaria brassicae, and Alternaria brassicicola) and non-host (Alternaria dauci) pathogens to oilseed rape (Brassica napus L.). The measurements of disease severity for chosen dates after inoculation were compared to temperature distributions on infected leaves and to averaged reflectance characteristics. Statistical analysis revealed that leaf temperature distributions on particular days after inoculation and respective spectral characteristics, especially in the SWIR range (1000-2500 nm), significantly differed for the leaves inoculated with A. dauci from the other species of Alternaria as well as from leaves of non-treated plants. The significant differences in leaf temperature of the studied Alternaria species were observed in various stages of infection development. The classification experiments were performed on the hyperspectral data of the leaf surfaces to distinguish days after inoculation and Alternaria species. The second-derivative transformation of the spectral data together with back-propagation neural networks (BNNs) appeared to be the best combination for classification of days after inoculation (prediction accuracy 90.5%) and Alternaria species (prediction accuracy 80.5%). PMID:25826369

  18. T-DNA tagging in Brassica napus as an efficient tool for the isolation of new promoters for selectable marker genes.

    PubMed

    Bade, Jacob; van Grinsven, Emiel; Custers, Jerome; Hoekstra, Sietske; Ponstein, Anne

    2003-05-01

    A simple strategy to identify and isolate new promoters suitable for driving the expression of selectable marker genes is described. By employing a Brassica napus hypocotyl transformation protocol and a promoterless gus::nptII tagging construct, a series of 20 kanamycin-resistant tagged lines was produced. Most of the regenerated plants showed hardly any GUS activity in leaf, stem and root tissues. However, expression was readily restored in callus tissue induced on in vitro leaf segments. Genomic sequences upstream of the gus::nptII insertions were isolated via plasmid rescue. Three clones originating from single copy T-DNA lines were selected for further evaluation. The rescued plasmids were cloned as linear fragments in binary vectors and re-transformed to Brassica napus hypocotyl and Solanum tuberosum stem segments. The new sequences maintained their promoter activity, demonstrated by transient and stable GUS activity after transformation. Furthermore, the promoters provided sufficient expression of the nptII gene to yield transgenic plants when using kanamycin as selective agent. Database searching (BLASTN) revealed that the promoters have significant homology with three Arabidopsis BAC clones, one Arabidopsis cDNA and one Brassica napus cDNA. The results presented in this paper illustrate the strength of combined methods for identification, isolation and testing of new plant promoters.

  19. A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1.

    PubMed

    Li, Huapeng; Wang, Yun; Li, Xiaocheng; Gao, Yong; Wang, Zhijun; Zhao, Yun; Wang, Maolin

    2011-01-01

    A dwarf mutant from Brassica napus, namely NDF-1, which was derived from a high doubled haploid (DH) line '3529'(Brassica napus L.) of which seeds were jointly treated with chemical inducers and fast neutron bombardment, was revealed that dwarfism is under the control of a major gene(designated as ndf1) with a mainly additive effect and non-significant dominance effect. The germination and hypocotyls elongation response of dwarf mutants after exogenous GA and uniconazol application showed NDF-1 was a gibberellin insensitive dwarf. We cloned the Brassica napus GID1 gene, named BnGID1, and found it was the ortholog of AtGID1a. The sequence blasting of the BnGID1 genes from NDF-1 and wild type showed there was no mutant in the gene. But the quantitative RT-PCR analysis of GID1 EST pointed out the mutation was caused by the low-level expression of BnGID1 gene. After sequenced the BnGID1 gene's upstream, we found three bases mutated in the pyrimidine box (P-box) of the BnGID1 promoter, which is linkage with the dwarf mutant.

  20. Genome Wide Identification and Functional Prediction of Long Non-Coding RNAs Responsive to Sclerotinia sclerotiorum Infection in Brassica napus

    PubMed Central

    Joshi, Raj Kumar; Megha, Swati; Basu, Urmila; Rahman, Muhammad H.; Kav, Nat N. V.

    2016-01-01

    Sclerotinia stem rot caused by Sclerotinia sclerotiorum affects canola production worldwide. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play important roles in the regulation of gene expression in plants, in response to both abiotic and biotic stress. So far, identification of lncRNAs has been limited to a few model plant species, and their roles in mediating responses to biotic stresses are yet to be characterized in Brassica napus. The present study reports the identification of novel lncRNAs responsive to S. sclerotiorum infection in B. napus at two time points after infection (24 hpi and 48 hpi) using a stranded RNA-Sequencing technique and a detection pipeline for lncRNAs. Of the total 3,181 lncRNA candidates, 2,821 lncRNAs were intergenic, 111 were natural antisense transcripts, 76 possessed exonic overlap with the reference coding transcripts while the remaining 173 represented novel lnc- isoforms. Forty one lncRNAs were identified as the precursors for microRNAs (miRNAs) including miR156, miR169 and miR394, with significant roles in mediating plant responses to fungal phytopathogens. A total of 931 differentially expressed lncRNAs were identified in response to S. sclerotiorum infection and the expression of 12 such lncRNAs was further validated using qRT-PCR. B. napus antisense lncRNA, TCONS_00000966, having 90% overlap with a plant defensin gene, showed significant induction at both infection stages, suggesting its involvement in the transcriptional regulation of defense responsive genes under S. sclerotiorum infection. Additionally, nine lncRNAs showed overlap with cis-regulatory regions of differentially expressed genes of B. napus. Quantitative RT-PCR verification of a set of S. sclerotiorum responsive sense/antisense transcript pairs revealed contrasting expression patterns, supporting the hypothesis that steric clashes of transcriptional machinery may lead to inactivation of sense promoter. Our findings highlight the potential

  1. Attack modes and defence reactions in pathosystems involving Sclerotinia sclerotiorum, Brassica carinata, B. juncea and B. napus

    PubMed Central

    Uloth, Margaret B.; Clode, Peta L.; You, Ming Pei; Barbetti, Martin J.

    2016-01-01

    Background and Aims Sclerotinia stem rot (SSR, Sclerotinia sclerotiorum) is a damaging disease of oilseed brassicas world-wide. Host resistance is urgently needed to achieve control, yet the factors that contribute to stem resistance are not well understood. This study investigated the mechanisms of resistance to SSR. Methods Stems of 5-week-old Brassica carinata, B. juncea and B. napus of known resistance were infected via filter paper discs impregnated with S. sclerotiorum mycelium under controlled conditions. Transverse sections of the stem and portions of the stem surface were examined using optical and scanning electron microscopy. The association of anatomical features with the severity of disease (measured by mean lesion length) was determined. Key Results Several distinct resistance mechanisms were recorded for the first time in these Brassica–pathogen interactions, including hypersensitive reactions and lignification within the stem cortex, endodermis and in tissues surrounding the lesions. Genotypes showing a strong lignification response 72 h post-infection (hpi) tended to have smaller lesions. Extensive vascular invasion by S. sclerotiorum was observed only in susceptible genotypes, especially in the vascular fibres and xylem. Mean lesion length was negatively correlated with the number of cell layers in the cortex, suggesting progress of S. sclerotiorum is impeded by more cell layers. Hyphae in the centre of lesions became highly vacuolate 72 hpi, reflecting an ageing process in S. sclerotiorum hyphal networks that was independent of host resistance. The infection process of S. sclerotiorum was analogous in B. carinata and B. napus. Infection cushions of the highly virulent isolate of S. sclerotiorum MBRS-1 were grouped together in dense parallel bundles, while hyphae in the infection cushions of a less aggressive isolate WW-3 were more diffuse, and this was unaffected by host genotype. Conclusions A variety of mechanisms contribute to host

  2. Growth and (137)Cs uptake and accumulation among 56 Japanese cultivars of Brassica rapa, Brassica juncea and Brassica napus grown in a contaminated field in Fukushima: Effect of inoculation with a Bacillus pumilus strain.

    PubMed

    Djedidi, Salem; Kojima, Katsuhiro; Ohkama-Ohtsu, Naoko; Bellingrath-Kimura, Sonoko Dorothea; Yokoyama, Tadashi

    2016-06-01

    Fifty six local Japanese cultivars of Brassica rapa (40 cultivars), Brassica juncea (10 cultivars) and Brassica napus (6 cultivars) were assessed for variability in growth and (137)Cs uptake and accumulation in association with a Bacillus pumilus strain. Field trial was conducted at a contaminated farmland in Nihonmatsu city, in Fukushima prefecture. Inoculation resulted in different responses of the cultivars in terms of growth and radiocesium uptake and accumulation. B. pumilus induced a significant increase in shoot dry weight in 12 cultivars that reached up to 40% in one B. rapa and three B. juncea cultivars. Differences in radiocesium uptake were observed between the cultivars of each Brassica species. Generally, inoculation resulted in a significant increase in (137)Cs uptake in 22 cultivars, while in seven cultivars it was significantly decreased. Regardless of plant cultivar and bacterial inoculation, the transfer of (137)Cs to the plant shoots (TF) varied by a factor of up to 5 and it ranged from to 0.011 to 0.054. Five inoculated cultivars, showed enhanced shoot dry weights and decreased (137)Cs accumulations, among which two B. rapa cultivars named Bitamina and Nozawana had a significantly decreased (137)Cs accumulation in their shoots. Such cultivars could be utilized to minimize the entry of radiocesium into the food chain; however, verifying the consistency of their radiocesium accumulation in other soils is strongly required. Moreover, the variations in growth and radiocesium accumulation, as influenced by Bacillus inoculation, could help selecting well grown inoculated Brassica cultivars with low radiocesium accumulation in their shoots.

  3. De novo genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a recombinant inbred line population of Brassica napus derived from interspecific hybridization with Brassica rapa.

    PubMed

    Zou, Jun; Fu, Donghui; Gong, Huihui; Qian, Wei; Xia, Wei; Pires, J Chris; Li, Ruiyuan; Long, Yan; Mason, Annaliese S; Yang, Tae-Jin; Lim, Yong P; Park, Beom S; Meng, Jinling

    2011-10-01

    Interspecific hybridization is a significant evolutionary force as well as a powerful method for crop breeding. Partial substitution of the AA subgenome in Brassica napus (A(n) A(n) C(n) C(n) ) with the Brassica rapa (A(r) A(r) ) genome by two rounds of interspecific hybridization resulted in a new introgressed type of B. napus (A(r) A(r) C(n) C(n) ). In this study, we construct a population of recombinant inbred lines of the new introgressed type of B. napus. Microsatellite, intron-based and retrotransposon markers were used to characterize this experimental population with genetic mapping, genetic map comparison and specific marker cloning analysis. Yield-related traits were also recorded for identification of quantitative trait loci (QTLs). A remarkable range of novel genomic alterations was observed in the population, including simple sequence repeat (SSR) mutations, chromosomal rearrangements and retrotransposon activations. Most of these changes occurred immediately after interspecific hybridization, in the early stages of genome stabilization and derivation of experimental lines. These novel genomic alterations affected yield-related traits in the introgressed B. napus to an even greater extent than the alleles alone that were introgressed from the A(r) subgenome of B. rapa, suggesting that genomic changes induced by interspecific hybridization are highly significant in both genome evolution and crop improvement.

  4. Silencing of BnTT1 family genes affects seed flavonoid biosynthesis and alters seed fatty acid composition in Brassica napus.

    PubMed

    Lian, Jianping; Lu, Xiaochun; Yin, Nengwen; Ma, Lijuan; Lu, Jing; Liu, Xue; Li, Jiana; Lu, Jun; Lei, Bo; Wang, Rui; Chai, Yourong

    2017-01-01

    TRANSPARENT TESTA1 (TT1) is a zinc finger protein that contains a WIP domain. It plays important roles in controlling differentiation and pigmentation of the seed coat endothelium, and can affect the expression of early biosynthetic genes and late biosynthetic genes of flavonoid biosynthesis in Arabidopsis thaliana. In Brassica napus (AACC, 2n=38), the functions of BnTT1 genes remain unknown and few studies have focused on their roles in fatty acid (FA) biosynthesis. In this study, BnTT1 family genes were silenced by RNA interference, which resulted in yellow rapeseed, abnormal testa development (a much thinner testa), decreased seed weight, and altered seed FA composition in B. napus. High-throughput sequencing of genes differentially expressed between developing transgenic B. napus and wild-type seeds revealed altered expression of numerous genes involved in flavonoid and FA biosynthesis. As a consequence of this altered expression, we detected a marked decrease of oleic acid (C18:1) and notable increases of linoleic acid (C18:2) and α-linolenic acid (C18:3) in mature transgenic B. napus seeds by gas chromatography and near-infrared reflectance spectroscopy. Meanwhile, liquid chromatography-mass spectrometry showed reduced accumulation of flavonoids in transgenic seeds. Therefore, we propose that BnTT1s are involved in the regulation of flavonoid biosynthesis, and may also play a role in FA biosynthesis in B. napus.

  5. Glyphosate drift promotes changes in fitness and transgene flow in canola (Brassica napus) and hybrids

    EPA Science Inventory

    1. With the advent of transgenic crops, genetically modified, herbicide resistant B. napus has become a model system for examining the risks of escape of transgenes from cultivation and for evaluating potential ecological consequences of novel genes in wild species. 2. We exam...

  6. Nutrient digestibility of solvent-extracted Brassica napus and Brassica juncea canola meals and their air-classified fractions fed to ileal-cannulated grower pigs.

    PubMed

    Zhou, X; Zijlstra, R T; Beltranena, E

    2015-01-01

    Energy and nutrient digestibility of solvent-extracted canola meal (CM) is limited in pigs by its relatively high fiber content. The seed hull, which greatly contributes to the fiber content of CM, is denser than the oil-free cotyledon. By utilizing streams of air, air classification partially separates these seed components on the basis of their different sizes and densities to produce a low-fiber, light-particle fraction and a high-fiber, heavy-particle fraction. Compared with parent CM, ADF and NDF were reduced by 31.9% and 29.5% in the light-particle fraction and were enriched by 16.5% and 9.0% in the heavy-particle fraction (DM basis), respectively. Particle size was 638, 18.9, and 76.1 µm for the parent CM and light- and heavy-particle fractions, respectively. To determine the nutrient digestibility of CM and their air-classified fractions, Brassica napus and B. juncea CM and their 2 air-classified fractions were evaluated in a 2 × 3 factorial arrangement together with a basal diet and an N-free diet. The experiment was conducted as an 8 × 8 Latin square in which diets contained 40% B. napus or B. juncea CM or their air-classified fractions and 60% basal diet. Digesta data from pigs fed the N-free diet served to subtract basal endogenous AA losses. Eight ileal-cannulated barrows (32 kg initial BW) were fed the 8 diets at 2.7 times maintenance DE for eight 11-d periods. At the end of each period, feces were collected for 48 h, and ileal digesta were collected for two 12-h periods. The DE and calculated NE values and the apparent total tract digestibility (ATTD) of GE were 6.3%, 10.0%, and 7.8% greater (P < 0.001) for B. juncea CM than for B. napus CM; 6.1%, 10.8%, and 5.3% greater (P < 0.001) for the light-particle fraction than for parent CM; and 5.4%, 7.2%, and 3.8% lower (P < 0.001) for the heavy-particle fraction than for parent CM, respectively. The standardized ileal digestibilities (SID) of His, Ile, Val, Asp, and Tyr were greater (P < 0.05) for B

  7. Hydroponics versus field lysimeter studies of urea, ammonium and nitrate uptake by oilseed rape (Brassica napus L.).

    PubMed

    Arkoun, Mustapha; Sarda, Xavier; Jannin, Laëtitia; Laîné, Philippe; Etienne, Philippe; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Ourry, Alain

    2012-09-01

    N-fertilizer use efficiencies are affected by their chemical composition and suffer from potential N-losses by volatilization. In a field lysimeter experiment, (15)N-labelled fertilizers were used to follow N uptake by Brassica napus L. and assess N-losses by volatilization. Use of urea with NBPT (urease inhibitor) showed the best efficiency with the lowest N losses (8% of N applied compared with 25% with urea alone). Plants receiving ammonium sulphate, had similar yield achieved through a better N mobilization from vegetative tissues to the seeds, despite a lower N uptake resulting from a higher volatilization (43% of applied N). Amounts of (15)N in the plant were also higher when plants were fertilized with ammonium nitrate but N-losses reached 23% of applied N. In parallel, hydroponic experiments showed a deleterious effect of ammonium and urea on the growth of oilseed rape. This was alleviated by the nitrate supply, which was preferentially taken up. B. napus was also characterized by a very low potential for urea uptake. BnDUR3 and BnAMT1, encoding urea and ammonium transporters, were up-regulated by urea, suggesting that urea-grown plants suffered from nitrogen deficiency. The results also suggested a role for nitrate as a signal for the expression of BnDUR3, in addition to its role as a major nutrient. Overall, the results of the hydroponic study showed that urea itself does not contribute significantly to the N nutrition of oilseed rape. Moreover, it may contribute indirectly since a better use efficiency for urea fertilizer, which was further increased by the application of a urease inhibitor, was observed in the lysimeter study.

  8. Dynamics of Nitrogen Uptake and Mobilization in Field-grown Winter Oilseed Rape (Brassica napus) from Stem Extension to Harvest

    PubMed Central

    MALAGOLI, P.; LAINE, P.; ROSSATO, L.; OURRY, A.

    2005-01-01

    • Background and Aims Despite its high capacity to take up nitrate from the soil, winter oilseed rape (Brassica napus) is characterized by a very low N recovery in the reproductive tissues under field conditions. A significant part of the N taken up is lost to the soil in dead leaves during the growth cycle. An accurate description of N dynamics at the whole plant level in each compartment under field conditions should lead to a better understanding of N allocation in B. napus and improvements in the nitrogen harvest index. • Methods An experiment was conducted in field conditions using sequential weekly 15N labelling to follow N uptake, partitioning and mobilization. Nitrogen labelling (2·5 kg N ha−1; 10 % excess) was analysed weekly (from stem extension to harvest) to distinguish between uptake of new N (labelled) and mobilized N (unlabelled) in the different plant components. • Key Results and Conclusions N requirements for seed filling were satisfied mainly by N mobilized from vegetative parts (about 73 % of the total N in pods). Determination of the endogenous N flow showed that there was net transfer of N to the pods by leaves (36 %), stem (34 %), inflorescences (22 %) and taproot (8 %). Precise study of N flow from leaves at different nodes revealed the existence of two main groups of leaves in terms of their apparent capacity to mobilize N; 30–60 % and 70–80 % of peak N content occurring during flowering and pod filling, respectively. Moreover, the latter group was found to be the main source of endogenous N from leaves. The mobilization of endogenous N from these leaves was prolonged and concomitant with N accumulation in the pods. A complex pattern of N mobilization from the leaves, to vegetative or reproductive tissues, was revealed. These results will be used to model N partitioning during the growth cycle. PMID:15701662

  9. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq.

    PubMed

    Joshi, Raj Kumar; Megha, Swati; Rahman, Muhammad Hafizur; Basu, Urmila; Kav, Nat N V

    2016-09-15

    The necrotrophic phytopathogen, Sclerotinia sclerotiorum, causes Sclerotinia stem rot, which is a serious constraint to canola (Brassica napus L.) production worldwide. To understand the detailed molecular mechanisms underlying host response to Sclerotinia infection, we analyzed the transcript level changes in canola post-infection with S. sclerotiorum in a time course of a compatible interaction using strand specific whole transcriptome sequencing. Following infection, 161 and 52 genes (P≤0.001) were induced while 24 and 23 genes were repressed at 24h post-inoculation (hpi) and 48hpi, respectively. This suggests that, a gradual increase in host cell lyses and increase virulence of the pathogen led to the expression of only a fewer host specific genes at the later stage of infection. We observed rapid induction of key pathogen responsive genes, including glucanases, chitinases, peroxidases and WRKY Transcription factors (TFs) within 24hpi, indicating early detection of the pathogen by the host. Only 16 genes were significantly induced at both the time points suggesting a coordinated suppression of host responses by the pathogen. In addition to genes involved in plant-pathogen interactions, many novel disease responsive genes, including various TF sand those associated with jasmonate (JA) and ethylene (ET) signalling were identified. This suggests that canola adopts multiple strategies in mediating plant responses to the pathogen attack. Quantitative real time PCR (qRT-PCR) validation of a selected set of genes demonstrated a similar trend as observed by RNA-Seq analysis and highlighted the potential involvement of these genes by the host to defend itself from pathogen attack. Overall, this work presents an in-depth analysis of the interaction between host susceptibility and pathogen virulence in the agriculturally important B. napus-S. sclerotiorum pathosystem.

  10. iTRAQ-based quantitative proteomics analysis of Brassica napus leaves reveals pathways associated with chlorophyll deficiency.

    PubMed

    Chu, Pu; Yan, Gui Xia; Yang, Qing; Zhai, Li Na; Zhang, Cheng; Zhang, Feng Qi; Guan, Rong Zhan

    2015-01-15

    Photosynthesis, the primary source of plant biomass, is important for plant growth and crop yield. Chlorophyll is highly abundant in plant leaves and plays essential roles in photosynthesis. We recently isolated a chlorophyll-deficient mutant (cde1) from ethyl methanesulfonate (EMS) mutagenized Brassica napus. Herein, quantitative proteomics analysis using the iTRAQ approach was conducted to investigate cde1-induced changes in the proteome. We identified 5069 proteins from B. napus leaves, of which 443 showed differential accumulations between the cde1 mutant and its corresponding wild-type. The differentially accumulated proteins were found to be involved in photosynthesis, porphyrin and chlorophyll metabolism, biosynthesis of secondary metabolites, carbon fixation, spliceosome, mRNA surveillance and RNA degradation. Our results suggest that decreased abundance of chlorophyll biosynthetic enzymes and photosynthetic proteins, impaired carbon fixation efficiency and disturbed redox homeostasis might account for the reduced chlorophyll contents, impaired photosynthetic capacity and increased lipid peroxidation in this mutant. Epigenetics was implicated in the regulation of gene expression in cde1, as proteins involved in DNA/RNA/histone methylation and methylation-dependent chromatin silencing were up-accumulated in the mutant. Biological significance Photosynthesis produces more than 90% of plant biomass and is an important factor influencing potential crop yield. The pigment chlorophyll plays essential roles in light harvesting and energy transfer during photosynthesis. Mutants deficient in chlorophyll synthesis have been used extensively to investigate the chlorophyll metabolism, development and photosynthesis. However, limited information is available with regard to the changes of protein profiles upon chlorophyll deficiency. Here, a combined physiological, histological, proteomics and molecular analysis revealed several important pathways associated with

  11. The Impact of Open Pollination on the Structural Evolutionary Dynamics, Meiotic Behavior, and Fertility of Resynthesized Allotetraploid Brassica napus L.

    PubMed Central

    Rousseau-Gueutin, Mathieu; Morice, Jérôme; Coriton, Olivier; Huteau, Virginie; Trotoux, Gwenn; Nègre, Sylvie; Falentin, Cyril; Deniot, Gwennaëlle; Gilet, Marie; Eber, Frédérique; Pelé, Alexandre; Vautrin, Sonia; Fourment, Joëlle; Lodé, Maryse; Bergès, Hélène; Chèvre, Anne-Marie

    2016-01-01

    Allopolyploidy, which results from the merger and duplication of two divergent genomes, has played a major role in the evolution and diversification of flowering plants. The genomic changes that occur in resynthesized or natural neopolyploids have been extensively studied, but little is known about the effects of the reproductive mode in the initial generations that may precede its successful establishment. To truly reflect the early generations of a nascent polyploid, two resynthesized allotetraploid Brassica napus populations were obtained for the first time by open pollination. In these populations, we detected a much lower level of aneuploidy (third generation) compared with those previously published populations obtained by controlled successive selfing. We specifically studied 33 resynthesized B. napus individuals from our two open pollinated populations, and showed that meiosis was affected in both populations. Their genomes were deeply shuffled after allopolyploidization: up to 8.5 and 3.5% of the C and A subgenomes were deleted in only two generations. The identified deletions occurred mainly at the distal part of the chromosome, and to a significantly greater extent on the C rather than the A subgenome. Using Fluorescent In Situ Hybridization (BAC-FISH), we demonstrated that four of these deletions corresponded to fixed translocations (via homeologous exchanges). We were able to evaluate the size of the structural variations and their impact on the whole genome size, gene content, and allelic diversity. In addition, the evolution of fertility was assessed, to better understand the difficulty encountered by novel polyploid individuals before the putative formation of a novel stable species. PMID:28007837

  12. Assessing quantitative resistance against Leptosphaeria maculans (phoma stem canker) in Brassica napus (oilseed rape) in young plants.

    PubMed

    Huang, Yong-Ju; Qi, Aiming; King, Graham J; Fitt, Bruce D L

    2014-01-01

    Quantitative resistance against Leptosphaeria maculans in Brassica napus is difficult to assess in young plants due to the long period of symptomless growth of the pathogen from the appearance of leaf lesions to the appearance of canker symptoms on the stem. By using doubled haploid (DH) lines A30 (susceptible) and C119 (with quantitative resistance), quantitative resistance against L. maculans was assessed in young plants in controlled environments at two stages: stage 1, growth of the pathogen along leaf veins/petioles towards the stem by leaf lamina inoculation; stage 2, growth in stem tissues to produce stem canker symptoms by leaf petiole inoculation. Two types of inoculum (ascospores; conidia) and three assessment methods (extent of visible necrosis; symptomless pathogen growth visualised using the GFP reporter gene; amount of pathogen DNA quantified by PCR) were used. In stage 1 assessments, significant differences were observed between lines A30 and C119 in area of leaf lesions, distance grown along veins/petioles assessed by visible necrosis or by viewing GFP and amount of L. maculans DNA in leaf petioles. In stage 2 assessments, significant differences were observed between lines A30 and C119 in severity of stem canker and amount of L. maculans DNA in stem tissues. GFP-labelled L. maculans spread more quickly from the stem cortex to the stem pith in A30 than in C119. Stem canker symptoms were produced more rapidly by using ascospore inoculum than by using conidial inoculum. These results suggest that quantitative resistance against L. maculans in B. napus can be assessed in young plants in controlled conditions. Development of methods to phenotype quantitative resistance against plant pathogens in young plants in controlled environments will help identification of stable quantitative resistance for control of crop diseases.

  13. Nitrogen Use Efficiency Is Mediated by Vacuolar Nitrate Sequestration Capacity in Roots of Brassica napus[OPEN

    PubMed Central

    Han, Yong-Liang; Song, Hai-Xing; Liao, Qiong; Yu, Yin; Lepo, Joe Eugene; Liu, Qiang; Rong, Xiang-Min; Tian, Chang; Zeng, Jing; Guan, Chun-Yun; Zhang, Zhen-Hua

    2016-01-01

    Enhancing nitrogen use efficiency (NUE) in crop plants is an important breeding target to reduce excessive use of chemical fertilizers, with substantial benefits to farmers and the environment. In Arabidopsis (Arabidopsis thaliana), allocation of more NO3− to shoots was associated with higher NUE; however, the commonality of this process across plant species have not been sufficiently studied. Two Brassica napus genotypes were identified with high and low NUE. We found that activities of V-ATPase and V-PPase, the two tonoplast proton-pumps, were significantly lower in roots of the high-NUE genotype (Xiangyou15) than in the low-NUE genotype (814); and consequently, less vacuolar NO3− was retained in roots of Xiangyou15. Moreover, NO3− concentration in xylem sap, [15N] shoot:root (S:R) and [NO3−] S:R ratios were significantly higher in Xiangyou15. BnNRT1.5 expression was higher in roots of Xiangyou15 compared with 814, while BnNRT1.8 expression was lower. In both B. napus treated with proton pump inhibitors or Arabidopsis mutants impaired in proton pump activity, vacuolar sequestration capacity (VSC) of NO3− in roots substantially decreased. Expression of NRT1.5 was up-regulated, but NRT1.8 was down-regulated, driving greater NO3− long-distance transport from roots to shoots. NUE in Arabidopsis mutants impaired in proton pumps was also significantly higher than in the wild type col-0. Taken together, these data suggest that decrease in VSC of NO3− in roots will enhance transport to shoot and essentially contribute to higher NUE by promoting NO3− allocation to aerial parts, likely through coordinated regulation of NRT1.5 and NRT1.8. PMID:26757990

  14. Assessing Quantitative Resistance against Leptosphaeria maculans (Phoma Stem Canker) in Brassica napus (Oilseed Rape) in Young Plants

    PubMed Central

    Huang, Yong-Ju; Qi, Aiming; King, Graham J.; Fitt, Bruce D. L.

    2014-01-01

    Quantitative resistance against Leptosphaeria maculans in Brassica napus is difficult to assess in young plants due to the long period of symptomless growth of the pathogen from the appearance of leaf lesions to the appearance of canker symptoms on the stem. By using doubled haploid (DH) lines A30 (susceptible) and C119 (with quantitative resistance), quantitative resistance against L. maculans was assessed in young plants in controlled environments at two stages: stage 1, growth of the pathogen along leaf veins/petioles towards the stem by leaf lamina inoculation; stage 2, growth in stem tissues to produce stem canker symptoms by leaf petiole inoculation. Two types of inoculum (ascospores; conidia) and three assessment methods (extent of visible necrosis; symptomless pathogen growth visualised using the GFP reporter gene; amount of pathogen DNA quantified by PCR) were used. In stage 1 assessments, significant differences were observed between lines A30 and C119 in area of leaf lesions, distance grown along veins/petioles assessed by visible necrosis or by viewing GFP and amount of L. maculans DNA in leaf petioles. In stage 2 assessments, significant differences were observed between lines A30 and C119 in severity of stem canker and amount of L. maculans DNA in stem tissues. GFP-labelled L. maculans spread more quickly from the stem cortex to the stem pith in A30 than in C119. Stem canker symptoms were produced more rapidly by using ascospore inoculum than by using conidial inoculum. These results suggest that quantitative resistance against L. maculans in B. napus can be assessed in young plants in controlled conditions. Development of methods to phenotype quantitative resistance against plant pathogens in young plants in controlled environments will help identification of stable quantitative resistance for control of crop diseases. PMID:24454767

  15. Removing the mustard oil bomb from seeds: transgenic ablation of myrosin cells in oilseed rape (Brassica napus) produces MINELESS seeds.

    PubMed

    Borgen, Birgit Hafeld; Thangstad, Ole Petter; Ahuja, Ishita; Rossiter, John Trevor; Bones, Atle Magnar

    2010-06-01

    Many plant phytochemicals constitute binary enzyme-glucoside systems and function in plant defence. In brassicas, the enzyme myrosinase is confined to specific myrosin cells that separate the enzyme from its substrate; the glucosinolates. The myrosinase-catalysed release of toxic and bioactive compounds such as isothiocyanates, upon activation or tissue damage, has been termed 'the mustard oil bomb' and characterized as a 'toxic mine' in plant defence. The removal of myrosin cells and the enzyme that triggers the release of phytochemicals have been investigated by genetically modifying Brassica napus plants to remove myrosinase-storing idioblasts. A construct with the seed myrosin cell-specific Myr1.Bn1 promoter was used to express a ribonuclease, barnase. Transgenic plants ectopically expressing barnase were embryo lethal. Co-expressing barnase under the control of the Myr1.Bn1 promoter with the barnase inhibitor, barstar, under the control of the cauliflower mosaic virus 35S promoter enabled a selective and controlled death of myrosin cells without affecting plant viability. Ablation of myrosin cells was confirmed with light and electron microscopy, with immunohistological analysis and immunogold-electron microscopy analysis showing empty holes where myrosin cells normally are localized. Further evidence for a successful myrosin cell ablation comes from immunoblots showing absence of myrosinase and negligible myrosinase activity, and autolysis experiments showing negligible production of glucosinolate hydrolysis products. The plants where the myrosin defence cells have been ablated and named 'MINELESS plants'. The epithiospecifier protein profile and glucosinolate levels were changed in MINELESS plants, pointing to localization of myrosinases and a 35 kDa epithiospecifier protein in myrosin cells and a reduced turnover of glucosinolates in MINELESS plants.

  16. The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1.

    PubMed

    Larkan, N J; Lydiate, D J; Parkin, I A P; Nelson, M N; Epp, D J; Cowling, W A; Rimmer, S R; Borhan, M H

    2013-01-01

    LepR3, found in the Brassica napus cv 'Surpass 400', provides race-specific resistance to the fungal pathogen Leptosphaeria maculans, which was overcome after great devastation in Australia in 2004. We investigated the LepR3 locus to identify the genetic basis of this resistance interaction. We employed a map-based cloning strategy, exploiting collinearity with the Arabidopsis thaliana and Brassica rapa genomes to enrich the map and locate a candidate gene. We also investigated the interaction of LepR3 with the L. maculans avirulence gene AvrLm1 using transgenics. LepR3 was found to encode a receptor-like protein (RLP). We also demonstrated that avirulence towards LepR3 is conferred by AvrLm1, which is responsible for both the Rlm1 and LepR3-dependent resistance responses in B. napus. LepR3 is the first functional B. napus disease resistance gene to be cloned. AvrLm1's interaction with two independent resistance loci, Rlm1 and LepR3, highlights the need to consider redundant phenotypes in 'gene-for-gene' interactions and offers an explanation as to why LepR3 was overcome so rapidly in parts of Australia.

  17. Genome-wide identification and homeolog-specific expression analysis of the SnRK2 genes in Brassica napus guard cells.

    PubMed

    Yoo, Mi-Jeong; Ma, Tianyi; Zhu, Ning; Liu, Lihong; Harmon, Alice C; Wang, Qiaomei; Chen, Sixue

    2016-05-01

    Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) proteins constitute a small plant-specific serine/threonine kinase family involved in abscisic acid (ABA) signaling and plant responses to biotic and abiotic stresses. Although SnRK2s have been well-studied in Arabidopsis thaliana, little is known about SnRK2s in Brassica napus. Here we identified 30 putative sequences encoding 10 SnRK2 proteins in the B. napus genome and the expression profiles of a subset of 14 SnRK2 genes in guard cells of B. napus. In agreement with its polyploid origin, B. napus maintains both homeologs from its diploid parents. The results of quantitative real-time PCR (qRT-PCR) and reanalysis of RNA-Seq data showed that certain BnSnRK2 genes were commonly expressed in leaf tissues in different varieties of B. napus. In particular, qRT-PCR results showed that 12 of the 14 BnSnRK2s responded to drought stress in leaves and in ABA-treated guard cells. Among them, BnSnRK2.4 and BnSnRK2.6 were of interest because of their robust responsiveness to ABA treatment and drought stress. Notably, BnSnRK2 genes exhibited up-regulation of different homeologs, particularly in response to abiotic stress. The homeolog expression bias in BnSnRK2 genes suggests that parental origin of genes might be responsible for efficient regulation of stress responses in polyploids. This work has laid a foundation for future functional characterization of the different BnSnKR2 homeologs in B. napus and its parents, especially their functions in guard cell signaling and stress responses.

  18. Comparative Transcriptomic Analysis of Two Brassica napus Near-Isogenic Lines Reveals a Network of Genes That Influences Seed Oil Accumulation

    PubMed Central

    Wang, Jingxue; Singh, Sanjay K.; Du, Chunfang; Li, Chen; Fan, Jianchun; Pattanaik, Sitakanta; Yuan, Ling

    2016-01-01

    Rapeseed (Brassica napus) is an important oil seed crop, providing more than 13% of the world’s supply of edible oils. An in-depth knowledge of the gene network involved in biosynthesis and accumulation of seed oil is critical for the improvement of B. napus. Using available genomic and transcriptomic resources, we identified 1,750 acyl-lipid metabolism (ALM) genes that are distributed over 19 chromosomes in the B. napus genome. B. rapa and B. oleracea, two diploid progenitors of B. napus, contributed almost equally to the ALM genes. Genome collinearity analysis demonstrated that the majority of the ALM genes have arisen due to genome duplication or segmental duplication events. In addition, we profiled the expression patterns of the ALM genes in four different developmental stages. Furthermore, we developed two B. napus near isogenic lines (NILs). The high oil NIL, YC13-559, accumulates significantly higher (∼10%) seed oil compared to the other, YC13-554. Comparative gene expression analysis revealed upregulation of lipid biosynthesis-related regulatory genes in YC13-559, including SHOOTMERISTEMLESS, LEAFY COTYLEDON 1 (LEC1), LEC2, FUSCA3, ABSCISIC ACID INSENSITIVE 3 (ABI3), ABI4, ABI5, and WRINKLED1, as well as structural genes, such as ACETYL-CoA CARBOXYLASE, ACYL-CoA DIACYLGLYCEROL ACYLTRANSFERASE, and LONG-CHAIN ACYL-CoA SYNTHETASES. We observed that several genes related to the phytohormones, gibberellins, jasmonate, and indole acetic acid, were differentially expressed in the NILs. Our findings provide a broad account of the numbers, distribution, and expression profiles of acyl-lipid metabolism genes, as well as gene networks that potentially control oil accumulation in B. napus seeds. The upregulation of key regulatory and structural genes related to lipid biosynthesis likely plays a major role for the increased seed oil in YC13-559. PMID:27746810

  19. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea.

    PubMed

    Gonorazky, Gabriela; Guzzo, María Carla; Abd-El-Haliem, Ahmed M; Joosten, Matthieu H A J; Laxalt, Ana María

    2016-12-01

    The tomato [Solanum lycopersicum (Sl)] phosphatidylinositol-phospholipase C (PI-PLC) gene family is composed of six members, named SlPLC1 to SlPLC6, differentially regulated on pathogen attack. We have previously shown that the fungal elicitor xylanase induces a raise of SlPLC2 and SlPLC5 transcripts and that SlPLC2, but not SlPLC5, is required for xylanase-induced expression of defense-related genes. In this work we studied the role of SlPLC2 in the interaction between tomato and the necrotrophic fungus Botrytis cinerea. Inoculation of tomato leaves with B. cinerea increases SlPLC2 transcript levels. We knocked-down the expression of SlPLC2 by virus-induced gene silencing and plant defense responses were analyzed upon B. cinerea inoculation. SlPLC2 silenced plants developed smaller necrotic lesions concomitantly with less proliferation of the fungus. Silencing of SlPLC2 resulted as well in a reduced production of reactive oxygen species. Upon B. cinerea inoculation, transcript levels of the salicylic acid (SA)-defense pathway marker gene SlPR1a were diminished in SlPLC2 silenced plants compared to non-silenced infected plants, while transcripts of the jasmonic acid (JA)-defense gene markers Proteinase Inhibitor I and II (SlPI-I and SlPI-II) were increased. This implies that SlPLC2 participates in plant susceptibility to B. cinerea.

  20. Global DNA methylation variations after short-term heat shock treatment in cultured microspores of Brassica napus cv. Topas

    PubMed Central

    Li, Jun; Huang, Qian; Sun, Mengxiang; Zhang, Tianyao; Li, Hao; Chen, Biyun; Xu, Kun; Gao, Guizhen; Li, Feng; Yan, Guixin; Qiao, Jiangwei; Cai, Yongping; Wu, Xiaoming

    2016-01-01

    Heat stress can induce the cultured microspores into embryogenesis. In this study, whole genome bisulphite sequencing was employed to study global DNA methylation variations after short-term heat shock (STHS) treatments in cultured microspores of Brassica napus cv. Topas. Our results indicated that treatment on cultured Topas microspores at 32 °C for 6 h triggered DNA hypomethylation, particularly in the CG and CHG contexts. And the total number of T32 (Topas 32 °C for 6 h) vs. T0 (Topas 0 h) differentially methylated region-related genes (DRGs) was approximately two-fold higher than that of T18 (Topas 18 °C for 6 h) vs. T0 DRGs, which suggested that 32 °C might be a more intense external stimulus than 18 °C resulting in more changes in the DNA methylation status of cultured microspores. Additionally, 32 °C treatment for 6 h led to increased CHG differential methylations of transposons (DMTs), which were mainly constituted by overlaps between the hypomethylated differentially methylated regions (hypo-DMRs) and transposon elements (TEs). Further analysis demonstrated that the DRGs and their paralogs exhibited differential methylated/demethylated patterns. To summarize, the present study is the first methylome analysis of cultured microspores in response to STHS and may provide valuable information on the roles of DNA methylation in heat response. PMID:27917903

  1. Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus).

    PubMed

    Wu, Zhichao; Zhao, Xiaohu; Sun, Xuecheng; Tan, Qiling; Tang, Yafang; Nie, Zhaojun; Hu, Chengxiao

    2015-01-01

    Cadmium (Cd) is a toxic metal which harms human health through food chains. The mechanisms underlying Cd accumulation in oilseed rape are still poorly understood. Here, we investigated the physiological and genetic processes involved in Cd uptake and transport of two oilseed rape cultivars (Brassica napus). L351 accumulates more Cd in shoots but less in roots than L338. A scanning ion-selective electrode technique (SIET) and uptake kinetics of Cd showed that roots were not responsible for the different Cd accumulation in shoots since L351 showed a lower Cd uptake ability. However, concentration-dependent and time-dependent dynamics of Cd transport by xylem showed L351 exhibited a superordinate capacity of Cd translocation to shoots. Additionally, the Cd concentrations of shoots and xylem sap showed a great correlation in both cultivars. Furthermore, gene expression levels related to Cd uptake by roots (IRT1) and Cd transport by xylem (HMA2 and HMA4) were consistent with the tendencies of Cd absorption and transport at the physiological level respectively. In other words, L351 had stronger gene expression for Cd transport but lower for Cd uptake. Overall, results revealed that the process of Cd translocation to shoots is a determinative factor for Cd accumulation in shoots, both at physiological and genetic levels.

  2. Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus

    PubMed Central

    Chao, Hongbo; Wang, Hao; Wang, Xiaodong; Guo, Liangxing; Gu, Jianwei; Zhao, Weiguo; Li, Baojun; Chen, Dengyan; Raboanatahiry, Nadia; Li, Maoteng

    2017-01-01

    High-density linkage maps can improve the precision of QTL localization. A high-density SNP-based linkage map containing 3207 markers covering 3072.7 cM of the Brassica napus genome was constructed in the KenC-8 × N53-2 (KNDH) population. A total of 67 and 38 QTLs for seed oil and protein content were identified with an average confidence interval of 5.26 and 4.38 cM, which could explain up to 22.24% and 27.48% of the phenotypic variation, respectively. Thirty-eight associated genomic regions from BSA overlapped with and/or narrowed the SOC-QTLs, further confirming the QTL mapping results based on the high-density linkage map. Potential candidates related to acyl-lipid and seed storage underlying SOC and SPC, respectively, were identified and analyzed, among which six were checked and showed expression differences between the two parents during different embryonic developmental periods. A large primary carbohydrate pathway based on potential candidates underlying SOC- and SPC-QTLs, and interaction networks based on potential candidates underlying SOC-QTLs, was constructed to dissect the complex mechanism based on metabolic and gene regulatory features, respectively. Accurate QTL mapping and potential candidates identified based on high-density linkage map and BSA analyses provide new insights into the complex genetic mechanism of oil and protein accumulation in the seeds of rapeseed. PMID:28393910

  3. Differences on photosynthetic limitations between leaf margins and leaf centers under potassium deficiency for Brassica napus L.

    PubMed Central

    Lu, Zhifeng; Ren, Tao; Pan, Yonghui; Li, Xiaokun; Cong, Rihuan; Lu, Jianwei

    2016-01-01

    Analyzing the proportions of stomatal (SL), mesophyll conductance (MCL) and biochemical limitations (BL) imposed by potassium (K) deficit, and evaluating their relationships to leaf K status will be helpful to understand the mechanism underlying the inhibition of K deficiency on photosynthesis (A). A quantitative limitation analysis of K deficiency on photosynthesis was performed on leaf margins and centers under K deficiency and sufficient K supply treatments of Brassica napus L. Potassium deficiency decreased A, stomatal (gs) and mesophyll conductance (gm) of margins, SL, MCL and BL accounted for 23.9%, 33.0% and 43.1% of the total limitations. While for leaf centers, relatively low limitations occurred. Nonlinear curve fitting analysis indicated that each limiting factor generated at same leaf K status (1.07%). Although MCL was the main component of limitations when A began to fall, BL replaced it at a leaf K concentration below 0.78%. Up-regulated MCL was related to lower surface area of chloroplasts exposed to intercellular airspaces (Sc/S) and larger cytosol diffusion resistance but not the cell wall thickness. Our results highlighted that photosynthetic limitations appear simultaneously under K deficiency and vary with increasing K deficiency intensity. PMID:26902263

  4. Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq

    PubMed Central

    Wang, Hui; Cheng, Hongtao; Wang, Wenxiang; Liu, Jia; Hao, Mengyu; Mei, Desheng; Zhou, Rijin; Fu, Li; Hu, Qiong

    2016-01-01

    Oilseed rape (Brassica napus L.) is one of the most important oil crops in China as well as worldwide. Branch angle as a plant architecture component trait plays an important role for high density planting and yield performance. In this study, bulked segregant analysis (BSA) combined with next generation sequencing technology was used to fine map QTL for branch angle. A major QTL, designated as branch angle 1 (ba1) was identified on A06 and further validated by Indel marker-based classical QTL mapping in an F2 population. Eighty-two genes were identified in the ba1 region. Among these genes, BnaA0639380D is a homolog of AtYUCCA6. Sequence comparison of BnaA0639380D from small- and big-branch angle oilseed rape lines identified six SNPs and four amino acid variation in the promoter and coding region, respectively. The expression level of BnaA0639380D is significantly higher in the small branch angle line Purler than in the big branch angle line Huyou19, suggesting that the genomic mutations may result in reduced activity of BnaA0639380D in Huyou19. Phytohormone determination showed that the IAA content in Purler was also obviously increased. Taken together, our results suggested BnaA0639380D is a possible candidate gene for branch angle in oilseed rape. PMID:27922076

  5. Species- and genome-wide dissection of the shoot ionome in Brassica napus and its relationship to seedling development

    PubMed Central

    Bus, Anja; Körber, Niklas; Parkin, Isobel A. P.; Samans, Birgit; Snowdon, Rod J.; Li, Jinquan; Stich, Benjamin

    2014-01-01

    Knowing the genetic basis of the plant ionome is essential for understanding the control of nutrient transport and accumulation. The aim of this research was to (i) study mineral nutrient concentrations in a large and diverse set of Brassica napus, (ii) describe the relationships between the shoot ionome and seedling development, and (iii) identify genetic regions associated with variation of the shoot ionome. The plant material under study was a germplasm set consisting of 509 inbred lines that was genotyped by a 6K single nucleotide polymorphism (SNP) array and phenotyped by analyzing the concentrations of eleven mineral nutrients in the shoots of 30 days old seedlings. Among mineral concentrations, positive correlations were found, whereas mineral concentrations were mainly negatively correlated with seedling development traits from earlier studies. In a genome-wide association mapping approach, altogether 29 significantly associated loci were identified across seven traits after correcting for multiple testing. The associations included a locus with effects on the concentrations of Cu, Mn, and Zn on chromosome C3, and a genetic region with multiple associations for Na concentration on chromosome A9. This region was situated within an association hotspot close to SOS1, a key gene for Na tolerance in plants. PMID:25324847

  6. A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus).

    PubMed

    Li, Feng; Chen, Biyun; Xu, Kun; Gao, Guizhen; Yan, Guixin; Qiao, Jiangwei; Li, Jun; Li, Hao; Li, Lixia; Xiao, Xin; Zhang, Tianyao; Nishio, Takeshi; Wu, Xiaoming

    2016-01-01

    Crop plant architecture plays a highly important role in its agronomic performance. Plant height (PH) and primary branch number (PB) are two major factors that affect the plant architecture of rapeseed (Brassica napus). Previous studies have shown that these two traits are controlled by multiple quantitative trait loci (QTL); however, QTLs have not been delimited to regions less than 10cM. Genome-wide association study (GWAS) is a highly efficient approach for identifying genetic loci controlling traits at relatively high resolution. In this study, variations in PH and PB of a panel of 472 rapeseed accessions that had previously been analyzed by a 60k SNP array were investigated for three consecutive years and studied by GWAS. Eight QTLs on chromosome A03, A05, A07 and C07 were identified for PH, and five QTLs on A01, A03, A07 and C07 were identified for PB. Although most QTLs have been detected in previous studies based on linkage analyses, the two QTLs of PH on A05 and the QTL of PB on C07 were novel. In the genomic regions close to the GWAS peaks, orthologs of the genes involved in flower development, phytohormone biosynthesis, metabolism and signaling in Arabidopsis were identified.

  7. Transgenic glyphosate-resistant oilseed rape (Brassica napus) as an invasive weed in Argentina: detection, characterization, and control alternatives.

    PubMed

    Pandolfo, Claudio E; Presotto, Alejandro; Carbonell, Francisco Torres; Ureta, Soledad; Poverene, Mónica; Cantamutto, Miguel

    2016-12-01

    The presence of glyphosate-resistant oilseed rape populations in Argentina was detected and characterized. The resistant plants were found as weeds in RR soybeans and other fields. The immunological and molecular analysis showed that the accessions presented the GT73 transgenic event. The origin of this event was uncertain, as the cultivation of transgenic oilseed rape cultivars is prohibited in Argentina. This finding might suggest that glyphosate resistance could come from unauthorized transgenic oilseed rape crops cultivated in the country or as seed contaminants in imported oilseed rape cultivars or other seed imports. Experimentation showed that there are alternative herbicides for controlling resistant Brassica napus populations in various situations and crops. AHAS-inhibiting herbicides (imazethapyr, chlorimuron and diclosulam), glufosinate, 2,4-D, fluroxypyr and saflufenacil proved to be very effective in controlling these plants. Herbicides evaluated in this research were employed by farmers in one of the fields invaded with this biotype and monitoring of this field showed no evidence of its presence in the following years.

  8. Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth.

    PubMed

    Jalili, Farzad; Khavazi, Kazem; Pazira, Ebrahim; Nejati, Alireza; Rahmani, Hadi Asadi; Sadaghiani, Hasan Rasuli; Miransari, Mohammad

    2009-04-01

    Salinity stress is of great importance in arid and semi-arid areas of the world due to its impact in reducing crop yield. Under salinity stress, the amount of 1-aminocyclopropane-1-carboxylate (ACC), a precursor for ethylene production in plants, increases. Here, we conducted research under the hypothesis that isolated ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida can alleviate the stressful effects of salinity on canola (Brassica napus L.) growth. The experiments were conducted in the Soil and Water Research Institute, Tehran, Iran. Seven experimental stages were conducted to isolate and characterize ACC deaminase-producing Pseudomonas fluorescens strains and to determine factors enhancing their growth and, consequently, their effects on the germination of canola seeds. Under salinity stress, in 14% of the isolates, ACC deaminase activity was observed, indicating that they were able to utilize ACC as the sole N-source. Bacterial strains differed in their ability to synthesize auxin and hydrogen cyanide compounds, as well as in their ACC deaminase activity. Under salinity stress, the rate of germinating seeds inoculated with the strains of ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida, and seedling growth was significantly higher. These results indicate the significance of soil biological activities, including the activities of plant growth-promoting bacteria, in the alleviation of soil stresses such as salinity on plant growth.

  9. In vitro distribution and characterization of membrane-associated PLD and PI-PLC in Brassica napus.

    PubMed

    Novotná, Zuzana; Martinec, Jan; Profotová, Bronislava; Zdárová, Stĕpánka; Kader, Jean-Claude; Valentová, Olga

    2003-02-01

    Two types of phospholipid degrading enzyme, phospholipase D (PLD; EC 3.1.4.4) and phosphatidyl- inositol-specific phospholipase C (PIP(2)-PLC; PI-PLC 3.1.4.11) were studied during the development of seeds and plants of Brassica napus. PLD exhibits two types of activity; polyphosphoinositide-requiring (PIP(2)-dependent PLD) and polyphosphoinositide-independent requiring millimolar concentrations of calcium (PLDalpha). Significantly different patterns of activity profiles were found for soluble and membrane-associated forms of all three enzymes within both processes. Membrane-associated PIP(2)-dependent PLD activity shows the opposite trend when compared to PLDalpha, while the highest PI-PLC activity appears in the same stages of development of seeds and plants as for PLDalpha. In subcellular fractions of hypocotyls of young plants, phospholipases were localized predominantly on plasma membranes. The biochemical characteristics (Ca(2+), pH) of all three enzymes associated with plasma membrane vesicles, isolated by partitioning in an aqueous dextran- polyethylene glycol two-phase system, are also described. Direct interaction of PLDalpha with G-proteins under in vitro conditions was not confirmed.

  10. Genome-wide gene expression perturbation induced by loss of C2 chromosome in allotetraploid Brassica napus L.

    PubMed Central

    Zhu, Bin; Shao, Yujiao; Pan, Qi; Ge, Xianhong; Li, Zaiyun

    2015-01-01

    Aneuploidy with loss of entire chromosomes from normal complement disrupts the balanced genome and is tolerable only by polyploidy plants. In this study, the monosomic and nullisomic plants losing one or two copies of C2 chromosome from allotetraploid Brassica napus L. (2n = 38, AACC) were produced and compared for their phenotype and transcriptome. The monosomics gave a plant phenotype very similar to the original donor, but the nullisomics had much smaller stature and also shorter growth period. By the comparative analyses on the global transcript profiles with the euploid donor, genome-wide alterations in gene expression were revealed in two aneuploids, and their majority of differentially expressed genes (DEGs) resulted from the trans-acting effects of the zero and one copy of C2 chromosome. The higher number of up-regulated genes than down-regulated genes on other chromosomes suggested that the genome responded to the C2 loss via enhancing the expression of certain genes. Particularly, more DEGs were detected in the monosomics than nullisomics, contrasting with their phenotypes. The gene expression of the other chromosomes was differently affected, and several dysregulated domains in which up- or downregulated genes obviously clustered were identifiable. But the mean gene expression (MGE) for homoeologous chromosome A2 reduced with the C2 loss. Some genes and their expressions on C2 were correlated with the phenotype deviations in the aneuploids. These results provided new insights into the transcriptomic perturbation of the allopolyploid genome elicited by the loss of individual chromosome. PMID:26442076

  11. Critical period of weed control in winter canola (Brassica napus L.) in a semi-arid region.

    PubMed

    Aghaalikhani, M; Yaghoobi, S R

    2008-03-01

    In order to determine the critical period of weed control in winter canola (Brassica napus L. cv. Okapi) an experiment was carried out at research field of Tarbiat Modarres University, Tehran, Iran on 2004-2005 growing season. Fourteen experimental treatments which divided into two sets were arranged in Randomized complete blocks design with four replications. In the first set, the crop was kept weed-free from emergence time to two-leaf stage (V2), four-leaf stage (V4), six-leaf stage (V6), eight-leaf stage (V8), early flowering (IF), 50% of silique set (50% SS) and final harvest (H). In the second set, weeds where permitted to grow with the crop until above mentioned stages. In this study critical period of weed control was determined according to evaluate seed bank emerged weed biomass effect on canola grain yield loss using Gompertz and logistic equations. Result showed a critical time of weed control about 25 days after emergence (between four to six-leaf stages) with 5% accepted yield loss. Therefore, weed control in this time could provide the best result and avoid yield loss and damage to agroecosystem.

  12. Genomic Prediction of Genotypic Effects with Epistasis and Environment Interactions for Yield-Related Traits of Rapeseed (Brassica napus L.)

    PubMed Central

    Luo, Xiang; Ding, Yi; Zhang, Linzhong; Yue, Yao; Snyder, John H.; Ma, Chaozhi; Zhu, Jun

    2017-01-01

    Oilseed rape (Brassica napus) is an economically important oil crop, yet the genetic architecture of its complex traits remain largely unknown. Here, genome-wide association study was conducted for eight yield-related traits to dissect the genetic architecture of additive, dominance, epistasis, and their environment interaction. Additionally, the optimal genotype combination and the breeding value of superior line, superior hybrid and existing best line in mapping population were predicted for each trait in two environments based on the predicted genotypic effects. As a result, 17 quantitative trait SNPs (QTSs) were identified significantly for target traits with total heritability varied from 58.47 to 87.98%, most of which were contributed by dominance, epistasis, and environment-specific effects. The results indicated that non-additive effects were large contributions to heritability and epistasis, and also noted that environment interactions were important variants for oilseed breeding. Our study facilitates the understanding of genetic basis of rapeseed yield trait, helps to accelerate rapeseed breading, and also offers a roadmap for precision plant breeding via marker-assisted selection. PMID:28270831

  13. Sulfur Use Efficiency Is a Significant Determinant of Drought Stress Tolerance in Relation to Photosynthetic Activity in Brassica napus Cultivars

    PubMed Central

    Lee, Bok-Rye; Zaman, Rashed; Avice, Jean-Christophe; Ourry, Alain; Kim, Tae-Hwan

    2016-01-01

    To investigate the varietal difference in sulfur use efficiency (SUE) and drought stress tolerance, Brassica napus ‘Mosa’ and ‘Saturnin’ were exposed to polyethylene glycol (PEG)-induced drought stress for 72 h. Direct quantification of S uptake, de novo synthesis of amino acids and proteins was performed by tracing 34S. The responses of photosynthetic activity in relation to SUE were also examined. The total amount of newly absorbed S decreased with drought stress in both cultivars but the decrease rate was significantly higher in Mosa (-64%) than in Saturnin (-41%). Drought stress also decreased the amount of S assimilated into amino acids (34S-amino acids) and proteins (34S-proteins). The total amount of S incorporated into amino acids and proteins was generally higher in Saturnin (663.7 μg S per plant) than in Mosa (337.3 μg S per plant). The estimation of SUE based on S uptake (SUpE) and S assimilation (SUaE) showed that SUE was much higher in Saturnin than in Mosa. The inhibition of photosynthetic activity including Rubisco protein degradation caused by drought stress was much lower in the cultivar with higher SUE (Saturnin). The present study clearly indicates that the genotype with higher SUE is more tolerant to PEG-induced drought stress. PMID:27092167

  14. Sulfur Use Efficiency Is a Significant Determinant of Drought Stress Tolerance in Relation to Photosynthetic Activity in Brassica napus Cultivars.

    PubMed

    Lee, Bok-Rye; Zaman, Rashed; Avice, Jean-Christophe; Ourry, Alain; Kim, Tae-Hwan

    2016-01-01

    To investigate the varietal difference in sulfur use efficiency (SUE) and drought stress tolerance, Brassica napus 'Mosa' and 'Saturnin' were exposed to polyethylene glycol (PEG)-induced drought stress for 72 h. Direct quantification of S uptake, de novo synthesis of amino acids and proteins was performed by tracing (34)S. The responses of photosynthetic activity in relation to SUE were also examined. The total amount of newly absorbed S decreased with drought stress in both cultivars but the decrease rate was significantly higher in Mosa (-64%) than in Saturnin (-41%). Drought stress also decreased the amount of S assimilated into amino acids ((34)S-amino acids) and proteins ((34)S-proteins). The total amount of S incorporated into amino acids and proteins was generally higher in Saturnin (663.7 μg S per plant) than in Mosa (337.3 μg S per plant). The estimation of SUE based on S uptake (SUpE) and S assimilation (SUaE) showed that SUE was much higher in Saturnin than in Mosa. The inhibition of photosynthetic activity including Rubisco protein degradation caused by drought stress was much lower in the cultivar with higher SUE (Saturnin). The present study clearly indicates that the genotype with higher SUE is more tolerant to PEG-induced drought stress.

  15. The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing

    PubMed Central

    Kuai, Jie; Sun, Yingying; Zuo, Qingsong; Huang, Haidong; Liao, Qingxi; Wu, Chongyou; Lu, Jianwei; Wu, Jiangsheng; Zhou, Guangsheng

    2015-01-01

    To determine the effects of plant density and row spacing on the mechanical harvesting of rapeseed (Brassica napus L.), field experiments were conducted. Higher plant density produced fewer pods and reduced the yield per plant. Wider row spacing at higher plant densities increased seeds per pod and the 1000-seed weight, resulting in a higher yield per plant. The highest yields were achieved at a density of 45 × 104 plants ha−1 (D45) in combination with 15 cm row spacing (R15) because mortality associated with competition increased as both the plant density and row spacing increased. The leaf area index (LAI) and pod area index (PAI) showed similar relations to the yield per hectare, and they were positively correlated with the percentage of intercepted light, whereas the radiation use efficiency (RUE) was positively correlated with population biomass. Reduced plant height and increased root/shoot ratios led to a decreased culm lodging index. Improved resistance to pod shattering was also observed as plant density and row spacing increased. The angle of the lowest 5 branches decreased as row spacing increased under D30 and D45. All of these structural changes influenced the mechanical harvesting operations, resulting in the highest yield of mechanically harvesting rapeseed under D45R15. PMID:26686007

  16. Parallel determination of enzyme activities and in vivo fluxes in Brassica napus embryos grown on organic or inorganic nitrogen source.

    PubMed

    Junker, Björn H; Lonien, Joachim; Heady, Lindsey E; Rogers, Alistair; Schwender, Jörg

    2007-01-01

    After the completion of the genomic sequencing of model organisms, numerous post-genomic studies, integrating transcriptome and metabolome data, are aimed at developing a more complete understanding of cell physiology. Here, we measure in vivo metabolic fluxes by steady state labeling, and in parallel, the activity of enzymes in central metabolism in cultured developing embryos of Brassica napus. Embryos were grown on either the amino acids glutamine and alanine as an organic nitrogen source, or on ammonium nitrate as an inorganic nitrogen source. The type of nitrogen made available to developing embryos caused substantial differences in fluxes associated with the tricarboxylic acid cycle, including flux reversion. The changes observed in enzyme activity were not consistent with our estimates of metabolic flux. Furthermore, most extractable enzyme activities are in large surplus relative to the requirements for the observed in vivo fluxes. The results demonstrate that in this model system the metabolic response of central metabolism to changes in environmental conditions can be achieved largely without regulatory reprogramming of the enzyme machinery.

  17. The Natural Variation of Seed Weight Is Mainly Controlled by Maternal Genotype in Rapeseed (Brassica napus L.)

    PubMed Central

    Shi, Jiaqin; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2015-01-01

    Seed weight is a very important and complex trait in rapeseed (Brassica napus L.). The seed weight of rapeseed shows great variation in its natural germplasm resources; however, the morphological, cytological and genetic causes of this variation have remained unclear. In the present study, nine highly pure inbred rapeseed lines with large seed weight variation and different genetic backgrounds were selected for morphological, cytological and genetic studies on seed weight. The results showed the following: (1) Seed weight showed an extremely significant correlation and coordinated variation with seed size (including seed diameter, seed surface area and seed volume), but it showed no significant correlation with bulk density, which suggests that seed weight is determined by size rather than bulk density. (2) Seed weight showed a higher correlation with the cell numbers of seed coats and cotyledons than the cell sizes of seed coats and cotyledons, which suggests that cell number is more tightly correlated with final seed weight. (3) Seed weight was mainly controlled by the maternal genotype, with little or no xenia and cytoplasmic effects. This is the first report on the morphological and cytological causes of seed weight natural variation in rapeseed. We concluded that the natural variation of seed weight is mainly controlled by maternal genotype. This finding lays a foundation for genetic and breeding studies of seed weight in rapeseed and opens a new field of research on the regulation of seed traits in plants. PMID:25915862

  18. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants

    NASA Technical Reports Server (NTRS)

    Cardoza, V.; Stewart, C. N.

    2003-01-01

    An efficient protocol for the production of transgenic Brassica napus cv. Westar plants was developed by optimizing two important parameters: preconditioning time and co-cultivation time. Agrobacterium tumefaciens-mediated transformation was performed using hypocotyls as explant tissue. Two variants of a green fluorescent protein (GFP)-encoding gene--mGFP5-ER and eGFP--both under the constitutive expression of the cauliflower mosaic virus 35S promoter, were used for the experiments. Optimizing the preconditioning time to 72 h and co-cultivation time with Agrobacterium to 48 h provided the increase in the transformation efficiency from a baseline of 4% to 25%. With mGFP5-ER, the transformation rate was 17% and with eGFP it was 25%. Transgenic shoots were selected on 200 mg/l kanamycin. Rooting efficiency was 100% on half-strength Murashige and Skoog medium with 10 g/l sucrose and 0.5 mg/l indole butyric acid in the presence of kanamycin.

  19. Fine mapping of the epistatic suppressor gene (esp) of a recessive genic male sterility in rapeseed (Brassica napus L.).

    PubMed

    Xu, Zhenghua; Xie, Yanzhou; Hong, Dengfeng; Liu, Pingwu; Yang, Guangsheng

    2009-09-01

    9012AB, a recessive genic male sterility (RGMS) line derived from spontaneous mutation in Brassica napus, has been playing an important role in rapeseed hybrid production in China. The male sterility of 9012AB is controlled by two recessive genes (ms3 and ms4) interacting with one recessive epistatic suppressor gene (esp). The objective of this study was to develop PCR-based markers tightly linked to the esp gene and construct a high-resolution map surrounding the esp gene. From the survey of 512 AFLP primer combinations, 3 tightly linked AFLP markers were obtained and successfully converted to codominant or dominant SCAR markers. Furthermore, a codominant SSR marker (Ra2G08) associated with the esp gene was identified through genetic map integration. For fine mapping of the esp gene, these PCR-based markers were analyzed in a large BC1 population of 2545 plants. The esp gene was then genetically restricted to a region of 1.03 cM, 0.35 cM from SSR marker Ra2G08 and 0.68 cM from SCAR marker WSC6. The SCAR marker WSC5 co-segregated with the target gene. These results lay a solid foundation for map-based cloning of esp and will facilitate the selection of RGMS lines and their temporary maintainers.

  20. Deciphering priming-induced improvement of rapeseed (Brassica napus L.) germination through an integrated transcriptomic and proteomic approach.

    PubMed

    Kubala, Szymon; Garnczarska, Małgorzata; Wojtyla, Łukasz; Clippe, André; Kosmala, Arkadiusz; Żmieńko, Agnieszka; Lutts, Stanley; Quinet, Muriel

    2015-02-01

    Rape seeds primed with -1.2 MPa polyethylene glycol 6000 showed improved germination performance. To better understand the beneficial effect of osmopriming on seed germination, a global expression profiling method was used to compare, for the first time, transcriptomic and proteomic data for osmoprimed seeds at the crucial phases of priming procedure (soaking, drying), whole priming process and subsequent germination. Brassica napus was used here as a model to dissect the process of osmopriming into its essential components. A total number of 952 genes and 75 proteins were affected during the main phases of priming and post-priming germination. Transcription was not coordinately associated with translation resulting in a limited correspondence between mRNAs level and protein abundance. Soaking, drying and final germination of primed seeds triggered distinct specific pathways since only a minority of genes and proteins were involved in all phases of osmopriming while a vast majority was involved in only one single phase. A particular attention was paid to genes and proteins involved in the transcription, translation, reserve mobilization, water uptake, cell cycle and oxidative stress processes.

  1. Proteomic and biochemical responses of canola (Brassica napus L.) exposed to salinity stress and exogenous lipoic acid.

    PubMed

    Yıldız, Mustafa; Akçalı, Nermin; Terzi, Hakan

    2015-05-01

    To evaluate the mitigating effects of exogenous lipoic acid (LA) on NaCl toxicity, proteomic, biochemical and physiological changes were investigated in the leaves of canola (Brassica napus L.) seedlings. Salinity stress decreased the growth parameters and contents of ascorbate (AsA) and glutathione (GSH), and increased the contents of malondialdehyde (MDA), proline, cysteine and the activities of antioxidant enzymes such as superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX). The foliar application of LA alleviated the toxic effects of salinity stress on canola seedlings and notably decreased MDA content and increased growth parameters, cysteine content, and activities of CAT and POD. In the proteomic analyses, total proteins from the leaves of control, LA, NaCl and NaCl+LA treated-seedlings were separated using two-dimensional gel electrophoresis (2-DE). A total of 28 proteins were differentially expressed. Of these, 21 proteins were successfully identified by MALDI-TOF/TOF MS. These proteins had functions related to photosynthesis, stress defense, energy metabolism, signal transduction, protein folding and stabilization indicating that LA might play important roles in salinity through the regulation of photosynthesis, stress defense and signal transduction related proteins. The proteomic findings have provided new insight to reveal the effect of LA on salinity stress for the first time.

  2. Tissue-specific laser microdissection of the Brassica napus funiculus improves gene discovery and spatial identification of biological processes

    PubMed Central

    Chan, Ainsley C.; Khan, Deirdre; Girard, Ian J.; Becker, Michael G.; Millar, Jenna L.; Sytnik, David; Belmonte, Mark F.

    2016-01-01

    The three primary tissue systems of the funiculus each undergo unique developmental programs to support the growth and development of the filial seed. To understand the underlying transcriptional mechanisms that orchestrate development of the funiculus at the globular embryonic stage of seed development, we used laser microdissection coupled with RNA-sequencing to produce a high-resolution dataset of the mRNAs present in the epidermis, cortex, and vasculature of the Brassica napus (canola) funiculus. We identified 7761 additional genes in these tissues compared with the whole funiculus organ alone using this technology. Differential expression and enrichment analyses were used to identify several biological processes associated with each tissue system. Our data show that cell wall modification and lipid metabolism are prominent in the epidermis, cell growth and modification occur in the cortex, and vascular tissue proliferation and differentiation occur in the central vascular strand. We provide further evidence that each of the three tissue systems of the globular stage funiculus are involved in specific biological processes that all co-ordinate to support seed development. The identification of genes and gene regulators responsible for tissue-specific developmental processes of the canola funiculus now serves as a valuable resource for seed improvement research. PMID:27194740

  3. Development and disintegration of tapetum-specific lipid-accumulating organelles, elaioplasts and tapetosomes, in Arabidopsis thaliana and Brassica napus.

    PubMed

    Suzuki, Toshiya; Tsunekawa, Sonomi; Koizuka, Chie; Yamamoto, Kanta; Imamura, Jun; Nakamura, Kenzo; Ishiguro, Sumie

    2013-06-01

    The pollen coat covering the surface of pollen grains has many important roles for pollination. In Brassicaceae plants, the pollen coat components are synthesized and temporarily accumulated in two tapetum-specific organelles, the elaioplast and the tapetosome. Although many biochemical and electron microscopic analyses have been attempted, the structure and biogenesis of these organelles have not been fully elucidated. To resolve this problem, we performed live imaging of these organelles using two markers, FIB1a-GFP and GRP17-GFP. FIB1a is an Arabidopsis fibrillin, a structural protein of elaioplast plastoglobules. In transgenic Arabidopsis, fluorescence of FIB1a-GFP appeared in young elaioplasts, in which small plastoglobules were developing. However, the fluorescence disappeared in later stages, while enlargement of plastoglobules continued. GRP17 is an Arabidopsis oleopollenin, an oleosin-like protein in tapetosomes. Fluorescence microscopy of GRP17-GFP expressed in Arabidopsis and Brassica napus revealed that tapetosomes do not contain oleopollenin-coated vesicles but have an outer envelope, indicating that the tapetosome structure is distinct from seed oil bodies. Visualization of GRP17-GFP also demonstrated that the tapetal cells become protoplasts and migrate into locules before pollen coat formation, and provided live imaging of the foot formation between pollen grains and stigmatic papilla cells.

  4. Composition and role of tapetal lipid bodies in the biogenesis of the pollen coat of Brassica napus.

    PubMed

    Hernández-Pinzón, I; Ross, J H; Barnes, K A; Damant, A P; Murphy, D J

    1999-06-01

    The composition of the two major lipidic organelles of the tapetum of Brassica napus L. has been determined. Elaioplasts contained numerous small (0.2-0.6 micron) lipid bodies that were largely made up of sterol esters and triacylglycerols, with monogalactosyldiacylglycerol as the major polar lipid. This is the first report in any species of the presence of non-cytosolic, sterol ester-rich, lipid bodies. The elaioplast lipid bodies also contained 34- and 36-kDa proteins which were shown by N-terminal sequencing to be homologous to fibrillin and other plastid lipid-associated proteins. Tapetosomes contained mainly polyunsaturated triacylglycerols and associated phospholipids plus a diverse class of oleosin-like proteins. The pollen coat, which is derived from tapetosomes and elaioplasts, was largely made up of sterol esters and the C-terminal domains of the oleosin-like proteins, but contained virtually no galactolipids, triacylglycerols or plastid lipid-associated proteins. The sterol compositions of the elaioplast and pollen coat were almost identical, consisting of stigmasterol > campestdienol > campesterol > sitosterol > cholesterol, which is consistent with the majority of the pollen coat lipids being derived from elaioplasts. These data demonstrate that there is substantial remodelling of both the lipid and protein components of elaioplasts and tapetosomes following their release into the anther locule from lysed tapetal cells, and that components of both organelles contribute to the formation of the lipidic coating of mature pollen grains.

  5. Differences on photosynthetic limitations between leaf margins and leaf centers under potassium deficiency for Brassica napus L.

    PubMed

    Lu, Zhifeng; Ren, Tao; Pan, Yonghui; Li, Xiaokun; Cong, Rihuan; Lu, Jianwei

    2016-02-23

    Analyzing the proportions of stomatal (SL), mesophyll conductance (MCL) and biochemical limitations (BL) imposed by potassium (K) deficit, and evaluating their relationships to leaf K status will be helpful to understand the mechanism underlying the inhibition of K deficiency on photosynthesis (A). A quantitative limitation analysis of K deficiency on photosynthesis was performed on leaf margins and centers under K deficiency and sufficient K supply treatments of Brassica napus L. Potassium deficiency decreased A, stomatal (gs) and mesophyll conductance (gm) of margins, SL, MCL and BL accounted for 23.9%, 33.0% and 43.1% of the total limitations. While for leaf centers, relatively low limitations occurred. Nonlinear curve fitting analysis indicated that each limiting factor generated at same leaf K status (1.07%). Although MCL was the main component of limitations when A began to fall, BL replaced it at a leaf K concentration below 0.78%. Up-regulated MCL was related to lower surface area of chloroplasts exposed to intercellular airspaces (Sc/S) and larger cytosol diffusion resistance but not the cell wall thickness. Our results highlighted that photosynthetic limitations appear simultaneously under K deficiency and vary with increasing K deficiency intensity.

  6. Aberrant Meiotic Prophase I Leads to Genic Male Sterility in the Novel TE5A Mutant of Brassica napus

    PubMed Central

    Yan, Xiaohong; Zeng, Xinhua; Wang, Shasha; Li, Keqi; Yuan, Rong; Gao, Hongfei; Luo, Junling; Liu, Fang; Wu, Yuhua; Li, Yunjing; Zhu, Li; Wu, Gang

    2016-01-01

    Genic male sterility (GMS) has already been extensively utilized for hybrid rapeseed production. TE5A is a novel thermo-sensitive dominant GMS line in Brassica napus, however, its mechanisms of GMS remain largely unclear. Histological and Transmission electron microscopy (TEM) analyses of anthers showed that the male gamete development of TE5A was arrested at meiosis prophase I. EdU uptake of S-phase meiocytes revealed that the TE5A mutant could accomplish DNA replication, however, chromosomal and fluorescence in situ hybridization (FISH) analyses of TE5A showed that homologous chromosomes could not pair, synapse, condense and form bivalents. We then analyzed the transcriptome differences between young floral buds of sterile plants and its near-isogenic fertile plants through RNA-Seq. A total of 3,841 differentially expressed genes (DEGs) were obtained, some of which were associated with homologous chromosome behavior and cell cycle control during meiosis. Dynamic expression changes of selected candidate DEGs were then analyzed at different anther developmental stages. The present study not only demonstrated that the TE5A mutant had defects in meiotic prophase I via detailed cytological analysis, but also provided a global insight into GMS-associated DEGs and elucidated the mechanisms of GMS in TE5A through RNA-Seq. PMID:27670217

  7. Characterization of bacterial communities associated with Brassica napus L. growing on a Zn-contaminated soil and their effects on root growth.

    PubMed

    Montalbán, Blanca; Croes, Sarah; Weyens, Nele; Lobo, M Carmen; Pérez-Sanz, Araceli; Vangronsveld, Jaco

    2016-10-02

    The interaction between plant growth-promoting bacteria (PGPB) and plants can enhance biomass production and metal tolerance of the host plants. This work aimed at isolating and characterizing the cultivable bacterial community associated with Brassica napus growing on a Zn-contaminated site, for selecting cultivable PGPB that might enhance biomass production and metal tolerance of energy crops. The effects of some of these bacterial strains on root growth of B. napus exposed to increasing Zn and Cd concentrations were assessed. A total of 426 morphologically different bacterial strains were isolated from the soil, the rhizosphere, and the roots and stems of B. napus. The diversity of the isolated bacterial populations was similar in rhizosphere and roots, but lower in soil and stem compartments. Burkoholderia, Alcaligenes, Agrococcus, Polaromonas, Stenotrophomonas, Serratia, Microbacterium, and Caulobacter were found as root endophytes exclusively. The inoculation of seeds with Pseudomonas sp. strains 228 and 256, and Serratia sp. strain 246 facilitated the root development of B. napus at 1,000 µM Zn. Arthrobacter sp. strain 222, Serratia sp. strain 246, and Pseudomonas sp. 228 and 262 increased the root length at 300 µM Cd.

  8. A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits in Brassica napus

    PubMed Central

    Lu, Kun; Xiao, Zhongchun; Jian, Hongju; Peng, Liu; Qu, Cunmin; Fu, Minglian; He, Bin; Tie, Linmei; Liang, Ying; Xu, Xingfu; Li, Jiana

    2016-01-01

    Harvest index (HI), the ratio of seed mass to total biomass of the aboveground plant parts, is an important trait for harvestable yield of crops. Unfortunately, HI of Brassica napus is lower than that of other economically important crops. To identify candidate genes associated with high HI, a genome-wide association study of HI and four HI-related traits was conducted with 520 B. napus accessions cultivated in both Yunnan and Chongqing. We detected 294 single nucleotide polymorphisms significantly associated with the abovementioned traits, including 79 SNPs that affected two or more traits. Differentially expressed genes between extremely high- and low-HI accessions were identified in 8 tissues at two cultivated regions. Combination of linkage disequilibrium and transcriptome analyses revealed 33 functional candidate genes located within the confidence intervals of significant SNPs associated with more than one trait, such as SHOOT GRAVITROPISM 5 (Bna.SGR5), ATP-CITRATE LYASE A-3 (Bna.ACLA-3) and CAROTENOID CLEAVAGE DIOXYGENASE 1 (Bna.CCD1), their orthologs in the Arabidopsis thaliana have been shown to play key roles in photosynthesis, inflorescence, and silique development. Our results provide insight into the molecular mechanisms underlying establishment of high-HI B. napus and lay a foundation for characterization of candidate genes aimed at developing high-HI B. napus varieties. PMID:27811979

  9. Identification and mapping of a novel blackleg resistance locus LepR4 in the progenies from Brassica napus × B. rapa subsp. sylvestris.

    PubMed

    Yu, Fengqun; Gugel, Richard K; Kutcher, H Randy; Peng, Gary; Rimmer, S Roger

    2013-02-01

    Blackleg, caused by Leptosphaeria maculans, is one of the most economically important diseases of Brassica napus worldwide. Two blackleg-resistant lines, 16S and 61446, were developed through interspecific hybridization between B. napus and B. rapa subsp. sylvestris and backcrossing to B. napus. Classical genetic analysis demonstrated that a single recessive gene in both lines conferred resistance to L. maculans and that the resistance alleles were allelic. Using BC(1) progeny derived from each resistant plant, this locus was mapped to B. napus linkage group N6 and was flanked by microsatellite markers sN2189b and sORH72a in an interval of about 10 cM, in a region equivalent to about 6 Mb of B. rapa DNA sequence. This new resistance gene locus was designated as LepR4. The two lines were evaluated for resistance to a wide range of L. maculans isolates using cotyledon inoculation tests under controlled environment conditions, and for stem canker resistance in blackleg field nurseries. Results indicated that line 16S, carrying LepR4a, was highly resistant to all isolates tested on cotyledons and had a high level of stem canker resistance under field conditions. Line 61446, carrying LepR4b, was only resistant to some of the isolates tested on cotyledons and was weakly resistant to stem canker under field conditions.

  10. EDTA ameliorates phytoextraction of lead and plant growth by reducing morphological and biochemical injuries in Brassica napus L. under lead stress.

    PubMed

    Kanwal, Urooj; Ali, Shafaqat; Shakoor, Muhammad Bilal; Farid, Mujahid; Hussain, Sabir; Yasmeen, Tahira; Adrees, Muhammad; Bharwana, Saima Aslam; Abbas, Farhat

    2014-01-01

    Brassica species are very effective in remediation of heavy metal contaminated sites. Lead (Pb) as a toxic pollutant causes number of morphological and biochemical variations in the plants. Synthetic chelator such as ethylenediaminetetraacetic acid (EDTA) improves the capability of plants to uptake heavy metals from polluted soil. In this regard, the role of EDTA in phytoextraction of lead, the seedlings of Brassica napus L. were grown hydroponically. Lead levels (50 and 100 μM) were supplied alone or together with 2.5 mM EDTA in the nutrient culture. After 7 weeks of stress, plants indicated that toxicity of Pb caused negative effects on plants and significantly reduced growth, biomass, chlorophyll content, gas exchange characteristics, and antioxidant enzymes activities such as superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT). Exposure to Pb induced the malondialdehyde (MDA), and hydrogen peroxide (H2O2) generation in both shoots and roots. The addition of EDTA alone or in combination with Pb significantly improved the plant growth, biomass, gas exchange characteristics, chlorophyll content, and antioxidant enzymes activities. EDTA also caused substantial improvement in Pb accumulation in Brassica plants. It can be deduced that application of EDTA significantly lessened the adverse effects of lead toxicity. Additionally, B. napus L. exhibited greater degree of tolerance against Pb toxicity and it also accumulated significant concentration of Pb from media.

  11. The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus.

    PubMed

    Larkan, Nicholas J; Ma, Lisong; Borhan, Mohammad Hossein

    2015-09-01

    Leucine-rich repeat receptor-like proteins (LRR-RLPs) are highly adaptable parts of the signalling apparatus for extracellular detection of plant pathogens. Resistance to blackleg disease of Brassica spp. caused by Leptosphaeria maculans is largely governed by host race-specific R-genes, including the LRR-RLP gene LepR3. The blackleg resistance gene Rlm2 was previously mapped to the same genetic interval as LepR3. In this study, the LepR3 locus of the Rlm2 Brassica napus line 'Glacier DH24287' was cloned, and B. napus transformants were analysed for recovery of the Rlm2 phenotype. Multiple B. napus, B. rapa and B. juncea lines were assessed for sequence variation at the locus. Rlm2 was found to be an allelic variant of the LepR3 LRR-RLP locus, conveying race-specific resistance to L. maculans isolates harbouring AvrLm2. Several defence-related LRR-RLPs have previously been shown to associate with the RLK SOBIR1 to facilitate defence signalling. Bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation of RLM2-SOBIR1 studies revealed that RLM2 interacts with SOBIR1 of Arabidopsis thaliana when co-expressed in Nicotiana benthamiana. The interaction of RLM2 with AtSOBIR1 is suggestive of a conserved defence signalling pathway between B. napus and its close relative A. thaliana.

  12. Fine mapping and candidate gene analysis of an anthocyanin-rich gene, BnaA.PL1, conferring purple leaves in Brassica napus L.

    PubMed

    Li, Haibo; Zhu, Lixia; Yuan, Gaigai; Heng, Shuangping; Yi, Bin; Ma, Chaozhi; Shen, Jinxiong; Tu, Jinxing; Fu, Tingdong; Wen, Jing

    2016-08-01

    Because of the advantages of anthocyanins, the genetics and breeding of crops rich in anthocyanins has become a hot research topic. However, due to the lack of anthocyanin-related mutants, no regulatory genes have been mapped in Brassica napus. In this study, we first report the characterization of a B. napus line with purple leaves and the fine mapping and candidate screening of the BnaA.PL1 gene. The amount of anthocyanins in the purple leaf line was six times higher than that in a green leaf line. A genetic analysis indicated that the purple character was controlled by an incomplete dominant gene. Through map-based cloning, we localized the BnaA.PL1 gene to a 99-kb region at the end of B. napus chromosome A03. Transcriptional analysis of 11 genes located in the target region revealed that the expression level of only the BnAPR2 gene in seedling leaves decreased from purple to reddish green to green individuals, a finding that was consistent with the measured anthocyanin accumulation levels. Molecular cloning and sequence analysis of BnAPR2 showed that the purple individual-derived allele contained 17 variants. Markers co-segregating with BnaA.PL1 were developed from the sequence of BnAPR2 and were validated in the BC4P2 population. These results suggested that BnAPR2, which encodes adenosine 5'-phosphosulfate reductase, is likely to be a valuable candidate gene. This work may lay the foundation for the marker-assisted selection of B. napus vegetables that are rich in anthocyanins and for an improved understanding of the molecular mechanisms controlling anthocyanin accumulation in Brassica.

  13. Expression patterns of Brassica napus genes implicate IPT, CKX, sucrose transporter, cell wall invertase, and amino acid permease gene family members in leaf, flower, silique, and seed development.

    PubMed

    Song, Jiancheng; Jiang, Lijun; Jameson, Paula Elizabeth

    2015-08-01

    Forage brassica (Brassica napus cv. Greenland) is bred for vegetative growth and biomass production, while its seed yield remains to be improved for seed producers without affecting forage yield and quality. Cytokinins affect seed yield by influencing flower, silique and seed number, and seed size. To identify specific cytokinin gene family members as targets for breeding, as well as genes associated with yield and/or quality, a B. napus transcriptome was obtained from a mixed sample including leaves, flower buds and siliques of various stages. Gene families for cytokinin biosynthesis (BnIPT1, 2, 3, 5, 7, 8 and 9), cytokinin degradation (BnCKX1 to BnCKX7), cell wall invertase (BnCWINV1 to BnCWINV6), sugar transporter (BnSUT1 to BnSUT6) and amino acid permease (BnAAP1 to BnAAP8) were identified. As B. napus is tetraploid, homoeologues of each gene family member were sought. Using multiple alignments and phylogenetic analysis, the parental genomes of the two B. napus homoeologues could be differentiated. RT-qPCR was then used to determine the expression of gene family members and their homoeologues in leaves, flowers, siliques and seeds of different developmental stages. The expression analysis showed both temporal and organ-specific expression profiles among members of these multi-gene families. Several pairs of homoeologues showed differential expression, both in terms of level of expression and differences in temporal or organ-specificity. BnCKX2 and 4 were identified as targets for TILLING, EcoTILLING and MAS.

  14. Spontaneous capture of oilseed rape (Brassica napus) chloroplasts by wild B. rapa: implications for the use of chloroplast transformation for biocontainment.

    PubMed

    Haider, Nadia; Allainguillaume, Joel; Wilkinson, Mike J

    2009-04-01

    Environmental concerns over the cultivation of Genetically Modified (GM) crops largely centre on the ecological consequences following gene flow to wild relatives. One attractive solution is to deploy biocontainment measures that prevent hybridization. Chloroplast transformation is the most advanced biocontainment method but is compromised by chloroplast capture (hybridization through the maternal lineage). To date, however, there is a paucity of information on the frequency of chloroplast capture in the wild. Oilseed rape (Brassica napus, AACC) frequently hybridises with wild Brassica rapa (AA, as paternal parent) and yields B. rapa-like introgressed individuals after only two generations. In this study we used chloroplast CAPS markers that differentiate between the two species to survey wild and weedy populations of B. rapa for the capture of B. napus chloroplasts. A total of 464 B. rapa plants belonging to 14 populations growing either in close proximity to B. napus (i.e. sympatric <5 m) or else were allopatric from the crop (>1 km) were assessed for chloroplast capture using PCR (trnL-F) and CAPS (trnT-L-Xba I) markers. The screen revealed that two sympatric B. rapa populations included 53 plants that possessed the chloroplast of B. napus. In order to discount these B. rapa plants as F(1) crop-wild hybrids, we used a C-genome-specific marker and found that 45 out of 53 plants lacked the C-genome and so were at least second generation introgressants. The most plausible explanation is that these individuals represent multiple cases of chloroplast capture following introgressive hybridisation through the female germ line from the crop. The abundance of such plants in sympatric sites thereby questions whether the use of chloroplast transformation would provide a sufficient biocontainment for GM oilseed rape in the United Kingdom.

  15. Expression patterns of Brassica napus genes implicate IPT, CKX, sucrose transporter, cell wall invertase, and amino acid permease gene family members in leaf, flower, silique, and seed development

    PubMed Central

    Song, Jiancheng; Jiang, Lijun; Jameson, Paula Elizabeth

    2015-01-01

    Forage brassica (Brassica napus cv. Greenland) is bred for vegetative growth and biomass production, while its seed yield remains to be improved for seed producers without affecting forage yield and quality. Cytokinins affect seed yield by influencing flower, silique and seed number, and seed size. To identify specific cytokinin gene family members as targets for breeding, as well as genes associated with yield and/or quality, a B. napus transcriptome was obtained from a mixed sample including leaves, flower buds and siliques of various stages. Gene families for cytokinin biosynthesis (BnIPT1, 2, 3, 5, 7, 8 and 9), cytokinin degradation (BnCKX1 to BnCKX7), cell wall invertase (BnCWINV1 to BnCWINV6), sugar transporter (BnSUT1 to BnSUT6) and amino acid permease (BnAAP1 to BnAAP8) were identified. As B. napus is tetraploid, homoeologues of each gene family member were sought. Using multiple alignments and phylogenetic analysis, the parental genomes of the two B. napus homoeologues could be differentiated. RT-qPCR was then used to determine the expression of gene family members and their homoeologues in leaves, flowers, siliques and seeds of different developmental stages. The expression analysis showed both temporal and organ-specific expression profiles among members of these multi-gene families. Several pairs of homoeologues showed differential expression, both in terms of level of expression and differences in temporal or organ-specificity. BnCKX2 and 4 were identified as targets for TILLING, EcoTILLING and MAS. PMID:25873685

  16. Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L. genome are differentially regulated depending on nitrogen regimes and leaf senescence.

    PubMed

    Orsel, Mathilde; Moison, Michaël; Clouet, Vanessa; Thomas, Justine; Leprince, Françoise; Canoy, Anne-Sophie; Just, Jérémy; Chalhoub, Boulos; Masclaux-Daubresse, Céline

    2014-07-01

    A total of 16 BnaGLN1 genes coding for cytosolic glutamine synthetase isoforms (EC 6.3.1.2.) were found in the Brassica napus genome. The total number of BnaGLN1 genes, their phylogenetic relationships, and genetic locations are in agreement with the evolutionary history of Brassica species. Two BnaGLN1.1, two BnaGLN1.2, six BnaGLN1.3, four BnaGLN1.4, and two BnaGLN1.5 genes were found and named according to the standardized nomenclature for the Brassica genus. Gene expression showed conserved responses to nitrogen availability and leaf senescence among the Brassiceae tribe. The BnaGLN1.1 and BnaGLN1.4 families are overexpressed during leaf senescence and in response to nitrogen limitation. The BnaGLN1.2 family is up-regulated under high nitrogen regimes. The members of the BnaGLN1.3 family are not affected by nitrogen availability and are more expressed in stems than in leaves. Expression of the two BnaGLN1.5 genes is almost undetectable in vegetative tissues. Regulations arising from plant interactions with their environment (such as nitrogen resources), final architecture, and therefore sink-source relations in planta, seem to be globally conserved between Arabidopsis and B. napus. Similarities of the coding sequence (CDS) and protein sequences, expression profiles, response to nitrogen availability, and ageing suggest that the roles of the different GLN1 families have been conserved among the Brassiceae tribe. These findings are encouraging the transfer of knowledge from the Arabidopsis model plant to the B. napus crop plant. They are of special interest when considering the role of glutamine synthetase in crop yield and grain quality in maize and wheat.

  17. The fusion of genomes leads to more options: A comparative investigation on the desulfo-glucosinolate sulfotransferases of Brassica napus and homologous proteins of Arabidopsis thaliana.

    PubMed

    Hirschmann, Felix; Papenbrock, Jutta

    2015-06-01

    Sulfotransferases (SOTs) (EC 2.8.2.-) play a crucial role in the glucosinolate (Gl) biosynthesis, by catalyzing the final step of the core glucosinolate formation. In Arabidopsis thaliana the three desulfo (ds)-Gl SOTs AtSOT16, AtSOT17 and AtSOT18 were previously characterized, showing different affinities to ds-Gls. But can the knowledge about these SOTs be generally transferred to other Gl-synthesizing plants? It was investigated how many SOTs are present in the economically relevant crop plant Brassica napus L., and if it is possible to predict their characteristics by sequence analysis. The recently sequenced B. napus is a hybrid of Brassica rapa and Brassica oleracea. By database research, 71 putative functional BnSOT family members were identified and at least eleven of those are putative ds-Gl SOTs. Besides the homologs of AtSOT16 - 18, phylogenetic analyses revealed new subfamilies of ds-Gl SOTs, which are not present in A. thaliana. Three of the B. napus ds-Gl SOT proteins were expressed and purified, and characterized by determining the substrate affinities to different ds-Gls. Two of them, BnSOT16-a and BnSOT16-b, showed a significantly higher affinity to an indolic ds-Gl, similarly to AtSOT16. Additionally, BnSOT17-a was characterized and showed a higher affinity to long chained aliphatic Gls, similarly to AtSOT17. Identification of homologs to AtSOT18 was less reliable, because putative SOT18 sequences are more heterogeneous and confirmation of similar characteristics was not possible.

  18. Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L. genome are differentially regulated depending on nitrogen regimes and leaf senescence

    PubMed Central

    Orsel, Mathilde; Moison, Michaël; Clouet, Vanessa; Thomas, Justine; Leprince, Françoise; Canoy, Anne-Sophie; Just, Jérémy; Chalhoub, Boulos; Masclaux-Daubresse, Céline

    2014-01-01

    A total of 16 BnaGLN1 genes coding for cytosolic glutamine synthetase isoforms (EC 6.3.1.2.) were found in the Brassica napus genome. The total number of BnaGLN1 genes, their phylogenetic relationships, and genetic locations are in agreement with the evolutionary history of Brassica species. Two BnaGLN1.1, two BnaGLN1.2, six BnaGLN1.3, four BnaGLN1.4, and two BnaGLN1.5 genes were found and named according to the standardized nomenclature for the Brassica genus. Gene expression showed conserved responses to nitrogen availability and leaf senescence among the Brassiceae tribe. The BnaGLN1.1 and BnaGLN1.4 families are overexpressed during leaf senescence and in response to nitrogen limitation. The BnaGLN1.2 family is up-regulated under high nitrogen regimes. The members of the BnaGLN1.3 family are not affected by nitrogen availability and are more expressed in stems than in leaves. Expression of the two BnaGLN1.5 genes is almost undetectable in vegetative tissues. Regulations arising from plant interactions with their environment (such as nitrogen resources), final architecture, and therefore sink–source relations in planta, seem to be globally conserved between Arabidopsis and B. napus. Similarities of the coding sequence (CDS) and protein sequences, expression profiles, response to nitrogen availability, and ageing suggest that the roles of the different GLN1 families have been conserved among the Brassiceae tribe. These findings are encouraging the transfer of knowledge from the Arabidopsis model plant to the B. napus crop plant. They are of special interest when considering the role of glutamine synthetase in crop yield and grain quality in maize and wheat. PMID:24567494

  19. True and standardized total tract phosphorus digestibility in canola meals from Brassica napus black and Brassica juncea yellow fed to growing pigs.

    PubMed

    Adhikari, P A; Heo, J M; Nyachoti, C M

    2015-01-01

    The aim was to determine the true total tract digestibility (TTTD) and standardized total tract digestibility (STTD) of P in canola meals from Brassica napus black (BNB) and Brassica juncea yellow (BJY) fed to growing pigs. Fifty-four barrows with an initial BW of 19.9 ± 0.22 kg (mean ± SEM) were allocated in 3 consecutive blocks to 1 of 9 dietary treatments in a randomized complete block design to give 6 replicate pigs per diet. Dietary treatments were cornstarch based with increasing concentrations of P, that is, 0.8, 1.6, 2.4, and 3.3 g/kg (as-fed basis) from either BNB or BJY as the sole source of P and a gelatin-based P-free diet. Limestone was added to maintain a Ca:total P ratio of 1.2:1 in all diets. All diets contained titanium dioxide (3 g/kg) as an indigestible marker. Daily feed allowance was calculated to supply 2.6 times the maintenance energy requirement based on the BW at the beginning of each period and offered in 2 equal portions at 0800 and 1600 h as a dry mash. Pigs were individually housed in metabolism crates and fed experimental diets for 16 d, including 9 d for adaptation to feed and 5 d for total but separate collection of feces and urine. The apparent total tract digestibility values of P increased from 19.0 to 30.0% for BNB and from 17.3 to 28.3% for BJY as the dietary P content increased from 0.8 to 3.3 g/kg DM. The TTTD of P was determined using the regression analysis as dietary P content increased from 0.8 to 3.3 g/kg whereas the STTD of P was calculated for the diet with the highest P content (i.e., 3.3 g/kg, as-fed basis) using the P-free diet to estimate endogenous P losses (EPL). The total and basal EPL estimates obtained with regression analysis and the P-free diet were 665 ± 0.03 and 209 ± 96 mg/kg DMI, respectively. The TTTD of P was 33.3 and 32.0% in BNB and BJY, respectively. Respective STTD values were 31.0 and 28.3%. The results indicated that the TTTD and STTD of P were comparable in the 2 canola meals from BNB and BJY

  20. The Arabidopsis thaliana CLAVATA3/EMBRYO-SURROUNDING REGION 26 (CLE26) peptide is able to alter root architecture of Solanum lycopersicum and Brassica napus

    PubMed Central

    Czyzewicz, Nathan; De Smet, Ive

    2016-01-01

    ABSTRACT Optimal development of root architecture is vital to the structure and nutrient absorption capabilities of any plant. We recently demonstrated that AtCLE26 regulates A. thaliana root architecture development, possibly by altering auxin distribution to the root apical meristem via inhibition of protophloem development. In addition, we showed that AtCLE26 application is able to induce a root architectural change in the monocots Brachypodium distachyon and Triticum aestivum. Here, we showed that application of the synthetic AtCLE26 peptide similarly affects other important agricultural species, such as Brassica napus and Solanum lycopersicum. PMID:26669515

  1. BnSIP1-1, a Trihelix Family Gene, Mediates Abiotic Stress Tolerance and ABA Signaling in Brassica napus

    PubMed Central

    Luo, Junling; Tang, Shaohua; Mei, Fengling; Peng, Xiaojue; Li, Jun; Li, Xiaofei; Yan, Xiaohong; Zeng, Xinhua; Liu, Fang; Wu, Yuhua; Wu, Gang

    2017-01-01

    The trihelix family genes have important functions in light-relevant and other developmental processes, but their roles in response to adverse environment are largely unclear. In this study, we identified a new gene, BnSIP1-1, which fell in the SIP1 (6b INTERACTING PROTEIN1) clade of the trihelix family with two trihelix DNA binding domains and a fourth amphipathic α-helix. BnSIP1-1 protein specifically targeted to the nucleus, and its expression can be induced by abscisic acid (ABA) and different stresses. Overexpression of BnSIP1-1 improved seed germination under osmotic pressure, salt, and ABA treatments. Moreover, BnSIP1-1 decreased the susceptibility of transgenic seedlings to osmotic pressure and ABA treatments, whereas there was no difference under salt stress between the transgenic and wild-type seedlings. ABA level in the transgenic seedlings leaves was higher than those in the control plants under normal condition. Under exogenous ABA treatment and mannitol stress, the accumulation of ABA in the transgenic plants was higher than that in the control plants; while under salt stress, the difference of ABA content before treatment was gradually smaller with the prolongation of salt treatment time, then after 24 h of treatment the ABA level was similar in transgenic and wild-type plants. The transcription levels of several general stress marker genes (BnRD29A, BnERD15, and BnLEA1) were higher in the transgenic plants than the wild-type plants, whereas salt-responsive genes (BnSOS1, BnNHX1, and BnHKT) were not significantly different or even reduced compared with the wild-type plants, which indicated that BnSIP1-1 specifically exerted different regulatory mechanisms on the osmotic- and salt-response pathways in seedling period. Overall, these findings suggested that BnSIP1-1 played roles in ABA synthesis and signaling, salt and osmotic stress response. To date, information about the involvement of the Brassica napus trihelix gene in abiotic response is scarce

  2. The receptor-like kinase SOBIR1 interacts with Brassica napus LepR3 and is required for Leptosphaeria maculans AvrLm1-triggered immunity

    PubMed Central

    Ma, Lisong; Borhan, M. Hossein

    2015-01-01

    The fungus Leptosphaeria maculans (L. maculans) is the causal agent of blackleg disease of canola/oilseed rape (Brassica napus) worldwide. We previously reported cloning of the B. napus blackleg resistance gene, LepR3, which encodes a receptor-like protein. LepR3 triggers localized cell death upon recognition of its cognate Avr protein, AvrLm1. Here, we exploited the Nicotiana benthamiana model plant to investigate the recognition mechanism of AvrLm1 by LepR3. Co-expression of the LepR3/AvrLm1 gene pair in N. benthamiana resulted in development of a hypersensitive response (HR). However, a truncated AvrLm1 lacking its indigenous signal peptide was compromised in its ability to induce LepR3-mediated HR, indicating that AvrLm1 is perceived by LepR3 extracellularly. Structure-function analysis of the AvrLm1 protein revealed that the C-terminal region of AvrLm1 was required for LepR3-mediated HR in N. benthamiana and for resistance to L. maculans in B. napus. LepR3 was shown to be physically interacting with the B. napus receptor like kinase, SOBIR1 (BnSOBIR1). Silencing of NbSOBIR1 or NbSERK3 (BAK1) compromised LepR3-AvrLm1-dependent HR in N. benthamiana, suggesting that LepR3-mediated resistance to L. maculans in B. napus requires SOBIR1 and BAK1/SERK3. Using this model system, we determined that BnSOBIR1 and SERK3/BAK1 are essential partners in the LepR3 signaling complex and were able to define the AvrLm1 effector domain. PMID:26579176

  3. Differentially expressed proteins and associated histological and disease progression changes in cotyledon tissue of a resistant and susceptible genotype of brassica napus infected with Sclerotinia sclerotiorum.

    PubMed

    Garg, Harsh; Li, Hua; Sivasithamparam, Krishnapillai; Barbetti, Martin J

    2013-01-01

    Sclerotinia rot caused by Sclerotinia sclerotiorum is one of the most serious diseases of oilseed rape. To understand the resistance mechanisms in the Brassica napus to S. sclerotiorum, comparative disease progression, histological and proteomic studies were conducted of two B. napus genotypes (resistant cv. Charlton, susceptible cv. RQ001-02M2). At 72 and 96 h post inoculation (hpi), lesion size on cotyledons was significantly (P≤0.001) smaller in the resistant Charlton. Anatomical investigations revealed impeded fungal growth (at 24 hpi and onwards) and hyphal disintegration only on resistant Charlton. Temporal changes (12, 24, 48 and 72 hpi) in protein profile showed certain enzymes up-regulated only in resistant Charlton, such as those related to primary metabolic pathways, antioxidant defence, ethylene biosynthesis, pathogenesis related proteins, protein synthesis and protein folding, play a role in mediating defence responses against S. sclerotiorum. Similarly a eukaryotic translation initiation factor 5A enzyme with increased abundance in susceptible RQ001-02M2 and decreased levels in resistant Charlton has a role in increased susceptibility to this pathogen. This is the first time that the expression of these enzymes has been shown to be associated with mediating the defence response against S. sclerotinia in cotyledon tissue of a resistant cultivar of B. napus at a proteomics level. This study not only provides important new insights into the resistance mechanisms within B. napus against S. sclerotiorum, but opens the way for novel engineering of new B. napus varieties that over-express these key enzymes as a strategy to enhance resistance and better manage this devastating pathogen.

  4. Genome-Wide Identification and Characterization of SPX Domain-Containing Members and Their Responses to Phosphate Deficiency in Brassica napus

    PubMed Central

    Du, Hongyuan; Yang, Chang; Ding, Guangda; Shi, Lei; Xu, Fangsen

    2017-01-01

    The importance of SPX domain-encoding proteins to phosphate (Pi) homeostasis and signaling pathways has been well-documented in rice and Arabidopsis. However, global information and responses of SPX members to P stress in allotetraploid Brassica napus, one of the world’s major oil crops that is sensitive to P deficiency, remain undefined. We identified a total of 69 SPX domain-containing genes in the B. napus genome. Based on the domain organizations, these genes were classified into four distinct subfamilies—SPX (11), SPX-EXS (43), SPX-MFS (8), and SPX-RING (7)—that represented clear orthologous relationships to their family members in Arabidopsis. A cis-element analysis indicated that 2 ∼ 4 P1BS elements were enriched in the promoter of SPX subfamily genes except BnaSPX4s. RNA-Seq analysis showed that BnaSPX genes were differentially expressed in response to Pi deficiency. Furthermore, quantitative real-time reverse transcription PCR revealed that nine SPX subfamily genes were significantly induced by Pi starvation and recovered rapidly after Pi refeeding. A functional analysis of two paralogous BnaSPX1 genes in transgenic Arabidopsis indicated their functional divergence during long-term evolution. This comprehensive study on the abundance, molecular characterization and responses to Pi deficiency of BnaSPX genes provides insights into the structural and functional diversities of these family members in B. napus and provides a solid foundation for future functional studies of BnaSPX genes. Highlight: The genome-wide identification and characterization of SPX genes in B. napus and their responses to Pi deficiency provide comprehensive insights into the structural and functional diversities of the family members in B. napus and their potential in Pi homeostasis and signaling responsiveness to Pi stress. PMID:28179909

  5. Differentially Expressed Proteins and Associated Histological and Disease Progression Changes in Cotyledon Tissue of a Resistant and Susceptible Genotype of Brassica napus Infected with Sclerotinia sclerotiorum

    PubMed Central

    Garg, Harsh; Li, Hua; Sivasithamparam, Krishnapillai; Barbetti, Martin J.

    2013-01-01

    Sclerotinia rot caused by Sclerotinia sclerotiorum is one of the most serious diseases of oilseed rape. To understand the resistance mechanisms in the Brassica napus to S. sclerotiorum, comparative disease progression, histological and proteomic studies were conducted of two B. napus genotypes (resistant cv. Charlton, susceptible cv. RQ001-02M2). At 72 and 96 h post inoculation (hpi), lesion size on cotyledons was significantly (P≤0.001) smaller in the resistant Charlton. Anatomical investigations revealed impeded fungal growth (at 24 hpi and onwards) and hyphal disintegration only on resistant Charlton. Temporal changes (12, 24, 48 and 72 hpi) in protein profile showed certain enzymes up-regulated only in resistant Charlton, such as those related to primary metabolic pathways, antioxidant defence, ethylene biosynthesis, pathogenesis related proteins, protein synthesis and protein folding, play a role in mediating defence responses against S. sclerotiorum. Similarly a eukaryotic translation initiation factor 5A enzyme with increased abundance in susceptible RQ001-02M2 and decreased levels in resistant Charlton has a role in increased susceptibility to this pathogen. This is the first time that the expression of these enzymes has been shown to be associated with mediating the defence response against S. sclerotinia in cotyledon tissue of a resistant cultivar of B. napus at a proteomics level. This study not only provides important new insights into the resistance mechanisms within B. napus against S. sclerotiorum, but opens the way for novel engineering of new B. napus varieties that over-express these key enzymes as a strategy to enhance resistance and better manage this devastating pathogen. PMID:23776450

  6. Population genomic analysis reveals differential evolutionary histories and patterns of diversity across subgenomes and subpopulations of Brassica napus L.

    SciTech Connect

    Gazave, Elodie; Tassone, Erica E.; Ilut, Daniel C.; Wingerson, Megan; Datema, Erwin; Witsenboer, Hanneke M. A.; Davis, James B.; Grant, David; Dyer, John M.; Jenks, Matthew A.; Brown, Jack; Gore, Michael A.

    2016-04-21

    Here, the allotetraploid species Brassica napus L. is a global crop of major economic importance, providing canola oil (seed) and vegetables for human consumption and fodder and meal for livestock feed. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this species. We used sequence-based genotyping to identify and genotype 30,881 SNPs in a diversity panel of 782 B. napus accessions, representing samples of winter and spring growth habits originating from 33 countries across Europe, Asia, and America. We detected strong population structure broadly concordant with growth habit and geography, and identified three major genetic groups: spring (SP), winter Europe (WE), and winter Asia (WA). Subpopulation-specific polymorphism patterns suggest enriched genetic diversity within the WA group and a smaller effective breeding population for the SP group compared to WE. Interestingly, the two subgenomes of B. napus appear to have different geographic origins, with phylogenetic analysis placing WE and WA as basal clades for the other subpopulations in the C and A subgenomes, respectively. Finally, we identified 16 genomic regions where the patterns of diversity differed markedly from the genome-wide average, several of which are suggestive of genomic inversions. The results obtained in this study constitute a valuable resource for worldwide breeding efforts and the genetic dissection and prediction of complex B. napus traits.

  7. Genes encoding the alpha-carboxyltransferase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution.

    PubMed

    Li, Zhi-Guo; Yin, Wei-Bo; Guo, Huan; Song, Li-Ying; Chen, Yu-Hong; Guan, Rong-Zhan; Wang, Jing-Qiao; Wang, Richard R-C; Hu, Zan-Min

    2010-05-01

    Heteromeric acetyl coenzyme A carboxylase (ACCase), a rate-limiting enzyme in fatty acid biosynthesis in dicots, is a multi-enzyme complex consisting of biotin carboxylase, biotin carboxyl carrier protein, and carboxyltransferase (alpha-CT and beta-CT). In the present study, four genes encoding alpha-CT were cloned from Brassica napus, and two were cloned from each of the two parental species, B. rapa and B. oleracea. Comparative and cluster analyses indicated that these genes were divided into two major groups. The major divergence between group-1 and group-2 occurred in the second intron. Group-2 alpha-CT genes represented the ancestral form in the genus Brassica. The divergence of group-1 and group-2 genes occurred in their common ancestor 12.96-17.78 million years ago (MYA), soon after the divergence of Arabidopsis thaliana and Brassica (15-20 MYA). This time of divergence is identical to that reported for the paralogous subgenomes of diploid Brassica species (13-17 MYA). Real-time reverse transcription PCR revealed that the expression patterns of the two groups of genes were similar in different organs, except in leaves. To better understand the regulation and evolution of alpha-CT genes, promoter regions from two sets of orthologous gene copies from B. napus, B. rapa, and B. oleracea were cloned and compared. The function of the promoter of gene Bnalpha-CT-1-1 in group-1 and gene Bnalpha-CT-2-1 in group-2 was examined by assaying beta-glucuronidase activity in transgenic A. thaliana. Our results will be helpful in elucidating the evolution and regulation of ACCase in oilseed rape.

  8. Effects of abscisic acid and high osmoticum on storage protein gene expression in microspore embryos of Brassica napus

    SciTech Connect

    Wilen, R.W.; Mandel, R.M.; Pharis, R.P.; Moloney, M.M. ); Holbrook, L.A. )

    1990-11-01

    Storage protein gene expression, characteristic of mid- to late embryogenesis, was investigated in microspore embryos of rapeseed (Brassica napus). These embryos, derived from the immature male gametophyte, accumulate little or no detectable napin or cruciferin mRNA when cultured on hormone-free medium containing 13% sucrose. The addition of abscisic acid (ABA) to the medium results in an increase in detectable transcripts encoding both these polypeptides. Storage protein mRNA is induced at 1 micromolar ABA with maximum stimulation occurring between 5 and 50 micromolar. This hormone induction results in a level of storage protein mRNA that is comparable to that observed in zygotic embryos of an equivalent morphological stage. Effects similar to that of ABA are noted when 12.5% sorbitol is added to the microspore embryo medium (osmotic potential = 25.5 bars). Time course experiments, to study the induction of napin and cruciferin gene expression demonstrated that the ABA effect occurred much more rapidly than the high osmoticum effect, although after 48 hours, the levels of napin or cruciferin mRNA detected were similar in both treatments. This difference in the rates of induction is consistent with the idea that the osmotic effect may be mediated by ABA which is synthesized in response to the reduced water potential. Measurements of ABA (by gas chromatography-mass spectrometry using ({sup 2}H{sub 6})ABA as an internal standard) present in microspore embryos during sorbitol treatment and in embryos treated with 10 micromolar ABA were performed to investigate this possibility. Within 2 hours of culture on high osmoticum the level of ABA increased substantially and significantly above control and reached a maximum concentration within 24 hours. This elevated concentration was maintained for 48 hours after culturing and represents a sixfold increase over control embryos.

  9. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus

    PubMed Central

    Li, Jianqiao; Zheng, Suning; Xu, Xinying; Guo, Haolun; Ye, Wenxue

    2015-01-01

    Canola (Brassica napus) is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS). The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld), phloem-peeling (Pe), and selective silique darkening (Sd). Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA), organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms of the oil

  10. Enhanced resistance to Sclerotinia sclerotiorum in Brassica napus by co-expression of defensin and chimeric chitinase genes.

    PubMed

    Zarinpanjeh, Nasim; Motallebi, Mostafa; Zamani, Mohammad Reza; Ziaei, Mahboobeh

    2016-11-01

    Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the major fungal diseases of Brassica napus L. To develop resistance against this fungal disease, the defensin gene from Raphanus sativus and chimeric chit42 from Trichoderma atroviride with a C-terminal fused chitin-binding domain from Serratia marcescens were co-expressed in canola via Agrobacterium-mediated transformation. Twenty transformants were confirmed to carry the two transgenes as detected by polymerase chain reaction (PCR), with 4.8 % transformation efficiency. The chitinase activity of PCR-positive transgenic plants were measured in the presence of colloidal chitin, and five transgenic lines showing the highest chitinase activity were selected for checking the copy number of the transgenes through Southern blot hybridisation. Two plants carried a single copy of the transgenes, while the remainder carried either two or three copies of the transgenes. The antifungal activity of two transgenic lines that carried a single copy of the transgenes (T4 and T10) was studied by a radial diffusion assay. It was observed that the constitutive expression of these transgenes in the T4 and T10 transgenic lines suppressed the growth of S. sclerotiorum by 49 % and 47 %, respectively. The two transgenic lines were then let to self-pollinate to produce the T2 generation. Greenhouse bioassays were performed on the transgenic T2 young leaves by challenging with S. sclerotiorum and the results revealed that the expression of defensin and chimeric chitinase from a heterologous source in canola demonstrated enhanced resistance against sclerotinia stem rot disease.

  11. QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with the two erucic acid genes.

    PubMed

    Amar, Samija; Ecke, Wolfgang; Becker, Heiko C; Möllers, Christian

    2008-05-01

    Improving oil and protein quality for food and feed purposes is an important goal in rapeseed (Brassica napus L.) breeding programs. Rapeseed contains phytosterols, used to enrich food products, and sinapate esters, which are limiting the utilization of rapeseed proteins in the feed industry. Increasing the phytosterol content of oil and lowering sinapate ester content of meal could increase the value of the oilseed rape crop. The objective of the present study was to identify quantitative trait loci (QTL) for phytosterol and sinapate ester content in a winter rapeseed population of 148 doubled haploid lines, previously found to have a large variation for these two traits. This population also segregated for the two erucic acid genes. A close negative correlation was found between erucic acid and phytosterol content (Spearman's rank correlation, r(s) = -0.80**). For total phytosterol content, three QTL were detected, explaining 60% of the genetic variance. The two QTL with the strongest additive effects were mapped on linkage groups N8 and N13 within the confidence intervals of the two erucic acid genes. For sinapate ester content four QTL were detected, explaining 53% of the genetic variance. Again, a close negative correlation was found between erucic acid and sinapate ester content (r(s) = -0.66**) and the QTL with the strongest additive effects mapped on linkage groups N8 and N13 within the confidence intervals of the two erucic acid genes. The results suggests, that there is a pleiotropic effect of the two erucic acid genes on phytosterol and sinapate ester content; the effect of the alleles for low erucic acid content is to increase phytosterol and sinapate ester content. Possible reasons for this are discussed based on known biosynthetic pathways.

  12. Unexpected diversity of feral genetically modified oilseed rape (Brassica napus L.) despite a cultivation and import ban in Switzerland.

    PubMed

    Schulze, Juerg; Frauenknecht, Tina; Brodmann, Peter; Bagutti, Claudia

    2014-01-01

    Despite cultivation and seed import bans of genetically modified (GM) oilseed rape (Brassica napus L.), feral GM plants were found growing along railway lines and in port areas at four sites in Switzerland in 2011 and 2012. All GM plants were identified as glyphosate-resistant GM event GT73 (Roundup Ready, Monsanto). The most affected sites were the Rhine port of Basel and the St. Johann freight railway station in Basel. To assess the distribution and intra- and interspecific outcrossing of GM oilseed rape in more detail, we monitored these two sites in 2013. Leaves and seed pods of feral oilseed rape plants, their possible hybridization partners and putative hybrid plants were sampled in monthly intervals and analysed for the presence of transgenes by real-time PCR. Using flow cytometry, we measured DNA contents of cell nuclei to confirm putative hybrids. In total, 2787 plants were sampled. The presence of GT73 oilseed rape could be confirmed at all previously documented sampling locations and was additionally detected at one new sampling location within the Rhine port. Furthermore, we found the glufosinate-resistant GM events MS8xRF3, MS8 and RF3 (all traded as InVigor, Bayer) at five sampling locations in the Rhine port. To our knowledge, this is the first time that feral MS8xRF3, MS8 or RF3 plants were detected in Europe. Real-time PCR analyses of seeds showed outcrossing of GT73 into two non-GM oilseed rape plants, but no outcrossing of transgenes into related wild species was observed. We found no hybrids between oilseed rape and related species. GM plants most frequently occurred at unloading sites for ships, indicating that ship cargo traffic is the main entry pathway for GM oilseed rape. In the future, it will be of major interest to determine the source of GM oilseed rape seeds.

  13. Unexpected Diversity of Feral Genetically Modified Oilseed Rape (Brassica napus L.) Despite a Cultivation and Import Ban in Switzerland

    PubMed Central

    Schulze, Juerg; Frauenknecht, Tina; Brodmann, Peter; Bagutti, Claudia

    2014-01-01

    Despite cultivation and seed import bans of genetically modified (GM) oilseed rape (Brassica napus L.), feral GM plants were found growing along railway lines and in port areas at four sites in Switzerland in 2011 and 2012. All GM plants were identified as glyphosate-resistant GM event GT73 (Roundup Ready, Monsanto). The most affected sites were the Rhine port of Basel and the St. Johann freight railway station in Basel. To assess the distribution and intra- and interspecific outcrossing of GM oilseed rape in more detail, we monitored these two sites in 2013. Leaves and seed pods of feral oilseed rape plants, their possible hybridization partners and putative hybrid plants were sampled in monthly intervals and analysed for the presence of transgenes by real-time PCR. Using flow cytometry, we measured DNA contents of cell nuclei to confirm putative hybrids. In total, 2787 plants were sampled. The presence of GT73 oilseed rape could be confirmed at all previously documented sampling locations and was additionally detected at one new sampling location within the Rhine port. Furthermore, we found the glufosinate-resistant GM events MS8xRF3, MS8 and RF3 (all traded as InVigor, Bayer) at five sampling locations in the Rhine port. To our knowledge, this is the first time that feral MS8xRF3, MS8 or RF3 plants were detected in Europe. Real-time PCR analyses of seeds showed outcrossing of GT73 into two non-GM oilseed rape plants, but no outcrossing of transgenes into related wild species was observed. We found no hybrids between oilseed rape and related species. GM plants most frequently occurred at unloading sites for ships, indicating that ship cargo traffic is the main entry pathway for GM oilseed rape. In the future, it will be of major interest to determine the source of GM oilseed rape seeds. PMID:25464509

  14. Low level impurities in imported wheat are a likely source of feral transgenic oilseed rape (Brassica napus L.) in Switzerland.

    PubMed

    Schulze, Juerg; Brodmann, Peter; Oehen, Bernadette; Bagutti, Claudia

    2015-11-01

    In Switzerland, the cultivation of genetically modified (GM) oilseed rape (Brassica napus L.) and the use of its seeds for food and feed are not permitted. Nevertheless, the GM oilseed rape events GT73, MS8×RF3, MS8 and RF3 have recently been found in the Rhine port of Basel, Switzerland. The sources of GM oilseed rape seeds have been unknown. The main agricultural good being imported at the Rhine port of Basel is wheat and from 2010 to 2013, 19% of all Swiss wheat imports originated from Canada. As over 90% of all oilseed rape grown in Canada is GM, we hypothesised that imports of Canadian wheat may contain low level impurities of GM oilseed rape. Therefore, waste fraction samples gathered during the mechanical cleaning of Canadian wheat from two Swiss grain mills were analysed by separating oilseed rape seeds from waste fraction samples and testing DNA of pooled seeds for the presence of transgenes by real-time PCR. Furthermore, oilseed rape seeds from each grain mill were sown in a germination experiment, and seedling DNA was tested for the presence of transgenes by real-time PCR. GT73, MS8×RF3, MS8 and RF3 oilseed rape was detected among seed samples and seedlings of both grain mills. Based on this data, we projected a mean proportion of 0.005% of oilseed rape in wheat imported from Canada. Besides Canadian wheat, the Rhine port of Basel does not import any other significant amounts of agricultural products from GM oilseed rape producing countries. We therefore conclude that Canadian wheat is the major source of unintended introduction of GM oilseed rape seeds into Switzerland.

  15. Copper-Deficiency in Brassica napus Induces Copper Remobilization, Molybdenum Accumulation and Modification of the Expression of Chloroplastic Proteins

    PubMed Central

    Billard, Vincent; Ourry, Alain; Maillard, Anne; Garnica, Maria; Coquet, Laurent; Jouenne, Thierry; Cruz, Florence; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Etienne, Philippe

    2014-01-01

    During the last 40 years, crop breeding has strongly increased yields but has had adverse effects on the content of micronutrients, such as Fe, Mg, Zn and Cu, in edible products despite their sufficient supply in most soils. This suggests that micronutrient remobilization to edible tissues has been negatively selected. As a consequence, the aim of this work was to quantify the remobilization of Cu in leaves of Brassica napus L. during Cu deficiency and to identify the main metabolic processes that were affected so that improvements can be achieved in the future. While Cu deficiency reduced oilseed rape growth by less than 19% compared to control plants, Cu content in old leaves decreased by 61.4%, thus demonstrating a remobilization process between leaves. Cu deficiency also triggered an increase in Cu transporter expression in roots (COPT2) and leaves (HMA1), and more surprisingly, the induction of the MOT1 gene encoding a molybdenum transporter associated with a strong increase in molybdenum (Mo) uptake. Proteomic analysis of leaves revealed 33 proteins differentially regulated by Cu deficiency, among which more than half were located in chloroplasts. Eleven differentially expressed proteins are known to require Cu for their synthesis and/or activity. Enzymes that were located directly upstream or downstream of Cu-dependent enzymes were also differentially expressed. The overall results are then discussed in relation to remobilization of Cu, the interaction between Mo and Cu that occurs through the synthesis pathway of Mo cofactor, and finally their putative regulation within the Calvin cycle and the chloroplastic electron transport chain. PMID:25333918

  16. Copper-deficiency in Brassica napus induces copper remobilization, molybdenum accumulation and modification of the expression of chloroplastic proteins.

    PubMed

    Billard, Vincent; Ourry, Alain; Maillard, Anne; Garnica, Maria; Coquet, Laurent; Jouenne, Thierry; Cruz, Florence; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Etienne, Philippe

    2014-01-01

    During the last 40 years, crop breeding has strongly increased yields but has had adverse effects on the content of micronutrients, such as Fe, Mg, Zn and Cu, in edible products despite their sufficient supply in most soils. This suggests that micronutrient remobilization to edible tissues has been negatively selected. As a consequence, the aim of this work was to quantify the remobilization of Cu in leaves of Brassica napus L. during Cu deficiency and to identify the main metabolic processes that were affected so that improvements can be achieved in the future. While Cu deficiency reduced oilseed rape growth by less than 19% compared to control plants, Cu content in old leaves decreased by 61.4%, thus demonstrating a remobilization process between leaves. Cu deficiency also triggered an increase in Cu transporter expression in roots (COPT2) and leaves (HMA1), and more surprisingly, the induction of the MOT1 gene encoding a molybdenum transporter associated with a strong increase in molybdenum (Mo) uptake. Proteomic analysis of leaves revealed 33 proteins differentially regulated by Cu deficiency, among which more than half were located in chloroplasts. Eleven differentially expressed proteins are known to require Cu for their synthesis and/or activity. Enzymes that were located directly upstream or downstream of Cu-dependent enzymes were also differentially expressed. The overall results are then discussed in relation to remobilization of Cu, the interaction between Mo and Cu that occurs through the synthesis pathway of Mo cofactor, and finally their putative regulation within the Calvin cycle and the chloroplastic electron transport chain.

  17. A novel dominant glossy mutation causes suppression of wax biosynthesis pathway and deficiency of cuticular wax in Brassica napus

    PubMed Central

    2013-01-01

    Background The aerial parts of land plants are covered with cuticular waxes that limit non-stomatal water loss and gaseous exchange, and protect plants from ultraviolet radiation and pathogen attack. This is the first report on the characterization and genetic mapping of a novel dominant glossy mutant (BnaA.GL) in Brassica napus. Results Transmission electron microscopy revealed that the cuticle ultrastructure of GL mutant leaf and stem were altered dramatically compared with that of wide type (WT). Scanning electron microscopy corroborated the reduction of wax on the leaf and stem surface. A cuticular wax analysis of the GL mutant leaves further confirmed the drastic decrease in the total wax content, and a wax compositional analysis revealed an increase in aldehydes but a severe decrease in alkanes, ketones and secondary alcohols. These results suggested a likely blockage of the decarbonylation step in the wax biosynthesis pathway. Genetic mapping narrowed the location of the BnaA.GL gene to the end of A9 chromosome. A single-nucleotide polymorphism (SNP) chip assay in combination with bulk segregant analysis (BSA) also located SNPs in the same region. Two SNPs, two single sequence repeat (SSR) markers and one IP marker were located on the flanking region of the BnaA.GL gene at a distance of 0.6 cM. A gene homologous to ECERIFERUM1 (CER1) was located in the mapped region. A cDNA microarray chip assay revealed coordinated down regulation of genes encoding enzymes of the cuticular wax biosynthetic pathway in the glossy mutant, with BnCER1 being one of the most severely suppressed genes. Conclusions Our results indicated that surface wax biosynthesis is broadly affected in the glossy mutant due to the suppression of the BnCER1 and other wax-related genes. These findings offer novel clues for elucidating the molecular basis of the glossy phenotype. PMID:24330756

  18. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus.

    PubMed

    Tan, Helin; Xie, Qingjun; Xiang, Xiaoe; Li, Jianqiao; Zheng, Suning; Xu, Xinying; Guo, Haolun; Ye, Wenxue

    2015-01-01

    Canola (Brassica napus) is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS). The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld), phloem-peeling (Pe), and selective silique darkening (Sd). Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA), organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms of the oil

  19. Auxin Biosynthesis, Accumulation, Action and Transport are Involved in Stress-Induced Microspore Embryogenesis Initiation and Progression in Brassica napus.

    PubMed

    Rodríguez-Sanz, Héctor; Solís, María-Teresa; López, María-Fernanda; Gómez-Cadenas, Aurelio; Risueño, María C; Testillano, Pilar S

    2015-07-01

    Isolated microspores are reprogrammed in vitro by stress, becoming totipotent cells and producing embryos and plants via a process known as microspore embryogenesis. Despite the abundance of data on auxin involvement in plant development and embryogenesis, no data are available regarding the dynamics of auxin concentration, cellular localization and the expression of biosynthesis genes during microspore embryogenesis. This work involved the analysis of auxin concentration and cellular accumulation; expression of TAA1 and NIT2 encoding enzymes of two auxin biosynthetic pathways; expression of the PIN1-like efflux carrier; and the effects of inhibition of auxin transport and action by N-1-naphthylphthalamic acid (NPA) and α-(p-chlorophenoxy) isobutyric acid (PCIB) during Brassica napus microspore embryogenesis. The results indicated de novo auxin synthesis after stress-induced microspore reprogramming and embryogenesis initiation, accompanying the first cell divisions. The progressive increase of auxin concentration during progression of embryogenesis correlated with the expression patterns of TAA1 and NIT2 genes of auxin biosynthetic pathways. Auxin was evenly distributed in early embryos, whereas in heart/torpedo embryos auxin was accumulated in apical and basal embryo regions. Auxin efflux carrier PIN1-like gene expression was induced in early multicellular embryos and increased at the globular/torpedo embryo stages. Inhibition of polar auxin transport (PAT) and action, by NPA and PCIB, impaired embryo development, indicating that PAT and auxin action are required for microspore embryo progression. NPA also modified auxin embryo accumulation patterns. These findings indicate that endogenous auxin biosynthesis, action and polar transport are required in stress-induced microspore reprogramming, embryogenesis initiation and progression.

  20. The Impact of Region, Nitrogen Use Efficiency, and Grower Incentives on Greenhouse Gas Mitigation in Canola (Brassica napus) Production

    NASA Astrophysics Data System (ADS)

    Hammac, W. A.; Pan, W.; Koenig, R. T.; McCracken, V.

    2012-12-01

    The Environmental Protection Agency (EPA) has mandated through the second renewable fuel standard (RFS2) that biodiesel meet a minimum threshold requirement (50% reduction) for greenhouse gas (GHG) emission reduction compared to fossil diesel. This designation is determined by life cycle assessment (LCA) and carries with it potential for monetary incentives for biodiesel feedstock growers (Biomass Crop Assistance Program) and biodiesel processors (Renewable Identification Numbers). A national LCA was carried out for canola (Brassica napus) biodiesel feedstock by the EPA and it did meet the minimum threshold requirement. However, EPA's national LCA does not provide insight into regional variation in GHG mitigation. The authors propose for full GHG reduction potential of biofuels to be realized, LCA results must have regional specificity and should inform incentives for growers and processors on a regional basis. The objectives of this work were to determine (1) variation in biofuel feedstock production related GHG emissions between three agroecological zones (AEZs) in eastern Washington State (2) the impact of nitrogen use efficiency (NUE) on GHG mitigation potential for each AEZ and (3) the impact of incentives on adoption of oilseed production. Results from objective (1) revealed there is wide variability in range for GHG estimates both across and within AEZs based on variation in farming practices and environment. It is expected that results for objective (2) will show further GHG mitigation potential due to minimizing N use and therefore fertilizer transport and soil related GHG emission while potentially increasing biodiesel production per hectare. Regional based incentives may allow more timely achievement of goals for bio-based fuels production. Additionally, incentives may further increase GHG offsetting by promoting nitrogen conserving best management practices implementation. This research highlights the need for regional assessment/incentive based

  1. Isolation and characterization of three duplicated PISTILLATA genes in Brassica napus.

    PubMed

    Deng, Wei; Zhou, Lin; Zhou, Yuntao; Wang, Yujia; Wang, Maolin; Zhao, Yun

    2011-06-01

    Three coding region cDNAs of duplicated PISTILLATA-like (PI-like) MADS-box genes, BnPI-1, BnPI-2 and BnPI-3, were isolated from B. napus by RT-PCR. The sequence analysis showed that the three PI cDNAs possessed 627, 627 and 625 nucleotides, respectively, and their nucleotide sequences had 96.49-98.72% similarity. Due to a deletion of two nucleotides, the protein sequence in the downstream of the frameshift site was altered in BnPI-3. Therefore, there were only 171 amino acids coded by BnPI-3, while there were 208 ones coded by BnPI-1 or BnPI-2. The deduced amino acid identity between BnPI-1 and BnPI-2 was 97.6% and the amino acid sequence of BnPI-1 and BnPI-2 shared 72.6% identity with BnPI-3. The deduced amino acid sequences of the coded proteins indicated high homology with the members of the PI family of MADS-box proteins. RT-PCR analysis showed that BnPI transcription was only detectable in petals and stamens. The yeast two-hybrid assays results showed that the three BnPI proteins exhibited different dimerization affinities with three BnAP3. BnPI-1 and BnPI-2 could form strong heterodimers with BnAP3. The dimerization affinity of BnPI-1 with BnAP3-4 is the strongest in all the combinations, while the affinity of BnPI-3 with BnAP3-4 is the weakest. The dimerization affinity to BnAP3-4 of BnPI-1 is 3.5 times of that of BnPI-3. The distinguished weak interaction to AP3 of BnPI-3 is probably due to the loss of the PI motif. The divergences of sequence and affinity of protein interaction might reflect some functional divergence of the three PI genes in B. napus.

  2. Identification and Analysis of MS5(d): A Gene That Affects Double-Strand Break (DSB) Repair during Meiosis I in Brassica napus Microsporocytes.

    PubMed

    Zeng, Xinhua; Yan, Xiaohong; Yuan, Rong; Li, Keqi; Wu, Yuhua; Liu, Fang; Luo, Junling; Li, Jun; Wu, Gang

    2016-01-01

    Here, we report the identification of the Brassica-specific gene MS5(d), which is responsible for male sterility in Brassica napus. The MS5(d) gene is highly expressed in the microsporocyte and encodes a protein that localizes to the nucleus. Light microscopy analyses have demonstrated that the MS5(d) gene affects microsporocyte meiosis in the thermosensitive genic male sterility line TE5A. Sequence comparisons and genetic complementation revealed a C-to-T transition in MS5(d), encoding a Leu-to-Phe (L281F) substitution and causing abnormal male meiosis in TE5A. These findings suggest arrested meiotic chromosome dynamics at pachytene. Furthermore, immunofluorescence analyses showed that double-strand break (DSB) formation and axial elements were normal but that DSB repair and spindle behavior were aberrant in TE5A meiocytes. Collectively, our results indicate that MS5(d) likely encodes a protein required for chromosomal DSB repair at early stages of meiosis in B. napus.

  3. Transcriptomic basis of functional difference and coordination between seeds and the silique wall of Brassica napus during the seed-filling stage.

    PubMed

    Liu, Han; Yang, Qingyong; Fan, Chuchuan; Zhao, Xiaoqin; Wang, Xuemin; Zhou, Yongming

    2015-04-01

    The silique of oilseed rape (Brassica napus) is a composite organ including seeds and the silique wall (SW) that possesses distinctly physiological, biochemical and functional differentiations. Yet, the molecular events controlling such differences between the SW and seeds, as well as their coordination during silique development at transcriptional level are largely unknown. Here, we identified large sets of differentially expressed genes in the SW and seeds of siliques at 21-22 days after flowering with a Brassica 95K EST microarray. At this particular stage, there were 3278 SW preferentially expressed genes and 2425 seed preferentially expressed genes. Using the MapMan visualization software, genes differentially regulated in various metabolic pathways and sub-pathways between the SW and seeds were revealed. Photosynthesis and transport-related genes were more actively transcripted in the SW, while those involved in lipid metabolism were more active in seeds during the seed filling stage. On the other hand, genes involved in secondary metabolisms were selectively regulated in the SW and seeds. Large numbers of transcription factors were identified to be differentially expressed between the SW and seeds, suggesting a complex pattern of transcriptional control in these two organs. Furthermore, most genes discussed in categories or pathways showed a similar expression pattern through 21 DAF to 42 DAF. Our results thus provide insights into the coordination of seeds and the SW in the developing silique at the transcriptional levels, which will facilitate the functional studies of important genes for improving B. napus seed productivity and quality.

  4. Identification and Analysis of MS5d: A Gene That Affects Double-Strand Break (DSB) Repair during Meiosis I in Brassica napus Microsporocytes

    PubMed Central

    Zeng, Xinhua; Yan, Xiaohong; Yuan, Rong; Li, Keqi; Wu, Yuhua; Liu, Fang; Luo, Junling; Li, Jun; Wu, Gang

    2017-01-01

    Here, we report the identification of the Brassica-specific gene MS5d, which is responsible for male sterility in Brassica napus. The MS5d gene is highly expressed in the microsporocyte and encodes a protein that localizes to the nucleus. Light microscopy analyses have demonstrated that the MS5d gene affects microsporocyte meiosis in the thermosensitive genic male sterility line TE5A. Sequence comparisons and genetic complementation revealed a C-to-T transition in MS5d, encoding a Leu-to-Phe (L281F) substitution and causing abnormal male meiosis in TE5A. These findings suggest arrested meiotic chromosome dynamics at pachytene. Furthermore, immunofluorescence analyses showed that double-strand break (DSB) formation and axial elements were normal but that DSB repair and spindle behavior were aberrant in TE5A meiocytes. Collectively, our results indicate that MS5d likely encodes a protein required for chromosomal DSB repair at early stages of meiosis in B. napus. PMID:28101089

  5. Rising CO2 from historical concentrations enhances the physiological performance of Brassica napus seedlings under optimal water supply but not under reduced water availability.

    PubMed

    Faralli, Michele; Grove, Ivan G; Hare, Martin C; Kettlewell, Peter S; Fiorani, Fabio

    2017-02-01

    The productivity of many important crops is significantly threatened by water shortage, and the elevated atmospheric CO2 can significantly interact with physiological processes and crop responses to drought. We examined the effects of three different CO2 concentrations (historical ~300 ppm, ambient ~400 ppm and elevated ~700 ppm) on physiological traits of oilseed rape (Brassica napus L.) seedlings subjected to well-watered and reduced water availability. Our data show (1) that, as expected, increasing CO2 level positively modulates leaf photosynthetic traits, leaf water-use efficiency and growth under non-stressed conditions, although a pronounced acclimation of photosynthesis to elevated CO2 occurred; (2) that the predicted elevated CO2 concentration does not reduce total evapotranspiration under drought when compared with present (400 ppm) and historical (300 ppm) concentrations because of a larger leaf area that does not buffer transpiration; and (3) that accordingly, the physiological traits analysed decreased similarly under stress for all CO2 concentrations. Our data support the hypothesis that increasing CO2 concentrations may not significantly counteract the negative effect of increasing drought intensity on Brassica napus performance.

  6. BraLTP1, a Lipid Transfer Protein Gene Involved in Epicuticular Wax Deposition, Cell Proliferation and Flower Development in Brassica napus

    PubMed Central

    Liu, Fang; Xiong, Xiaojuan; Wu, Lei; Fu, Donghui; Hayward, Alice; Zeng, Xinhua; Cao, Yinglong; Wu, Yuhua; Li, Yunjing; Wu, Gang

    2014-01-01

    Plant non-specific lipid transfer proteins (nsLTPs) constitute large multigene families that possess complex physiological functions, many of which remain unclear. This study isolated and characterized the function of a lipid transfer protein gene, BraLTP1 from Brassica rapa, in the important oilseed crops Brassica napus. BraLTP1 encodes a predicted secretory protein, in the little known VI Class of nsLTP families. Overexpression of BnaLTP1 in B. napus caused abnormal green coloration and reduced wax deposition on leaves and detailed wax analysis revealed 17–80% reduction in various major wax components, which resulted in significant water-loss relative to wild type. BnaLTP1 overexpressing leaves exhibited morphological disfiguration and abaxially curled leaf edges, and leaf cross-sections revealed cell overproliferation that was correlated to increased cytokinin levels (tZ, tZR, iP, and iPR) in leaves and high expression of the cytokinin biosynthsis gene IPT3. BnaLTP1-overexpressing plants also displayed morphological disfiguration of flowers, with early-onset and elongated carpel development and outwardly curled stamen. This was consistent with altered expression of a a number of ABC model genes related to flower development. Together, these results suggest that BraLTP1 is a new nsLTP gene involved in wax production or deposition, with additional direct or indirect effects on cell division and flower development. PMID:25314222

  7. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance.

    PubMed

    Pan, Fengshan; Meng, Qian; Luo, Sha; Shen, Jing; Chen, Bao; Khan, Kiran Yasmin; Japenga, Jan; Ma, Xiaoxiao; Yang, Xiaoe; Feng, Ying

    2017-03-04

    Four plant growth-promoting bacteria (PGPB) were used as study materials, among them two heavy metal-tolerant rhizosphere strains SrN1 (Arthrobacter sp.) and SrN9 (Bacillus altitudinis) were isolated from rhizosphere soil, while two endophytic strains SaN1 (Bacillus megaterium) and SaMR12 (Sphingomonas) were identified from roots of the cadmium (Cd)/zinc (Zn) hyperaccumulator Sedum alfredii Hance. A pot experiment was carried out to investigate the effects of these PGPB on plant growth and Cd accumulation of oilseed rape (Brassica napus) plants grown on aged Cd-spiked soil. The results showed that the four PGPB significantly boosted oilseed rape shoot biomass production, improved soil and plant analyzer development (SPAD) value, enhanced Cd uptake of plant and Cd translocation to the leaves. By fluorescent in situ hybridization (FISH) and green fluorescent protein (GFP), we demonstrated the studied S. alfredii endophytic bacterium SaMR12 were able to colonize successfully in the B. napus roots. However, all four PGPB could increase seed Cd accumulation. Due to its potential to enhance Cd uptake by the plant and to restrict Cd accumulation in the seeds, SaMR12 was selected as the most promising microbial partner of B. napus when setting up a plant-microbe fortified remediation system.

  8. Production and genetic analysis of resynthesized Brassica napus from a B. rapa landrace from the Qinghai-Tibet Plateau and B. alboglabra.

    PubMed

    Liu, H D; Zhao, Z G; Du, D Z; Deng, C R; Fu, G

    2016-01-08

    This study aimed to reveal the genetic and epigenetic variations involved in a resynthesized Brassica napus (AACC) generated from a hybridization between a B. rapa (AA) landrace and B. alboglabra (CC). Amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism, and the cDNA-AFLP technique were performed to detect changes between different generations at the genome, methylation, and transcription levels. We obtained 30 lines of resynthesized B. napus with a mean 1000-seed weight of over 7.50 g. All of the lines were self-compatible, probably because both parents were self-compatible. At the genome level, the S0 generation had the lowest frequency of variations (0.18%) and the S3 generation had the highest (6.07%). The main variation pattern was the elimination of amplified restriction fragments on the CC genome from the S0 to the S4 generations. At the methylation level, we found three loci that exhibited altered methylation patterns on the parental A genome; the variance rate was 1.35%. At the transcription level, we detected 43.77% reverse mutations and 37.56% deletion mutations that mainly occurred on the A and C genomes, respectively, in the S3 generation. Our results highlight the genetic variations that occur during the diploidization of resynthesized B. napus.

  9. [Identification and expression analysis of a full-length cDNA encoding Brassica napus small nuclear ribonucleoprotein BnSmD1].

    PubMed

    Yuan, Xiao-Meng; Zhou, Yun-Tao; Zhang, Hong-Yan; Xue, Hua; Zhou, Lin; Zhao, Yun

    2007-12-01

    By using substractive hybridization (SSH) and rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR), a full-length cDNA encoding Brassica napus small nuclear ribonucleoprotein, named BnSmD1, was obtained. It had 484 base pairs in length containing an open reading frame (ORF) of 354 bp and encoding a predicted protein of 118 amino acids with a molecular weight of 13 kDa. The BnSmD1 protein shares two highly conserved Sm folds (Sm-1 and Sm-2) and a C-terminal RG dipeptide repeat. Northern blot analysis revealed that BnSmD1 was expressed in all tested organs in B. napus, but its transcript level in early floral buds was much higher than that in leaf and stem tissues. No obvious expression difference was observed in leaf and stem tissues between the apetalous line Apet33-10 petalled near-isogenic line Pet33-10. Compared with wild type, the expression of BnSmD1 in the early floral buds of apetalous mutant Apet33-10 was significantly reduced. Taken together, our results suggest that BnSmD1 may play an important role in early floral petal development in B. napus.

  10. Origination, Expansion, Evolutionary Trajectory, and Expression Bias of AP2/ERF Superfamily in Brassica napus

    PubMed Central

    Song, Xiaoming; Wang, Jinpeng; Ma, Xiao; Li, Yuxian; Lei, Tianyu; Wang, Li; Ge, Weina; Guo, Di; Wang, Zhenyi; Li, Chunjin; Zhao, Jianjun; Wang, Xiyin

    2016-01-01

    The AP2/ERF superfamily, one of the most important transcription factor families, plays crucial roles in response to biotic and abiotic stresses. So far, a comprehensive evolutionary inference of its origination and expansion has not been available. Here, we identified 515 AP2/ERF genes in B. napus, a neo-tetraploid forming ~7500 years ago, and found that 82.14% of them were duplicated in the tetraploidization. A prominent subgenome bias was revealed in gene expression, tissue-specific, and gene conversion. Moreover, a large-scale analysis across plants and alga suggested that this superfamily could have been originated from AP2 family, expanding to form other families (ERF, and RAV). This process was accompanied by duplicating and/or alternative deleting AP2 domain, intragenic domain sequence conversion, and/or by acquiring other domains, resulting in copy number variations, alternatively contributing to functional innovation. We found that significant positive selection occurred at certain critical nodes during the evolution of land plants, possibly responding to changing environment. In conclusion, the present research revealed origination, functional innovation, and evolutionary trajectory of the AP2/ERF superfamily, contributing to understanding their roles in plant stress tolerance. PMID:27570529

  11. Genes encoding the biotin carboxylase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution.

    PubMed

    Li, Zhi-Guo; Yin, Wei-Bo; Song, Li-Ying; Chen, Yu-Hong; Guan, Rong-Zhan; Wang, Jing-Qiao; Wang, Richard R-C; Hu, Zan-Min

    2011-03-01

    Comparative genomics is a useful tool to investigate gene and genome evolution. Biotin carboxylase (BC), an important subunit of heteromeric acetyl-CoA carboxylase (ACCase) that is a rate-limiting enzyme in fatty acid biosynthesis in dicots, catalyzes ATP, biotin carboxyl carrier protein, and CO2 to form carboxybiotin carboxyl carrier protein. In this study, we cloned four genes encoding BC from Brassica napus L. (namely BnaC.BC.a, BnaC.BC.b, BnaA.BC.a, and BnaA.BC.b), and two were cloned from each of the two parental species Brassica rapa L. (BraA.BC.a and BraA.BC.b) and Brassica oleracea L. (BolC.BC.a and BolC.BC.b). Sequence analyses revealed that in B. napus the genes BnaC.BC.a and BnaC.BC.b were from the C genome of B. oleracea, whereas BnaA.BC.a and BnaA.BC.b were from the A genome of B. rapa. Comparative and cluster analysis indicated that these genes were divided into two major groups, BnaC.BC.a, BnaA.BC.a, BraA.BC.a, and BolC.BC.a in group-1 and BnaC.BC.b, BnaA.BC.b, BraA.BC.b, and BolC.BC.b in group-2. The divergence of group-1 and group-2 genes occurred in their common ancestor 13-17 million years ago (MYA), soon after the divergence of Arabidopsis and Brassica (15-20 MYA). This time of divergence is identical to the previously reported triplicated time of paralogous subgenomes of diploid Brassica species and the divergence date of group-1 and group-2 genes of α-carboxyltransferase, another subunit of heteromeric ACCase, in Brassica. Reverse transcription PCR revealed that the expression level of group-1 and group-2 genes varied in different organs, and the expression patterns of the two groups of genes were similar in different organs, except in flower. However, two paralogs of group-2 BC genes from B. napus could express differently in mature plants tested by generating BnaA.BC.b and BnaC.BC.b promoter-β-glucuronidase (GUS) fusions. The amino acid sequences of proteins encoded by these genes were highly conserved, except the sequence encoding

  12. Comparative Transcriptome Analysis of Recessive Male Sterility (RGMS) in Sterile and Fertile Brassica napus Lines

    PubMed Central

    Zhao, Huiyan; Liu, Chuan; Li, Jiana; Tang, Zhanglin; Xu, Xinfu; Qiu, Xiao; Wang, Rui; Lu, Kun

    2015-01-01

    The recessive genetic male sterility (RGMS) system plays a key role in the production of hybrid varieties in self-pollinating B. napus plants, and prevents negative cytoplasmic effects. However, the complete molecular mechanism of the male sterility during male-gametogenesis in RGMS remains to be determined. To identify transcriptomic changes that occur during the transition to male sterility in RGMS, we examined the male sterile line WSLA and male fertile line WSLB, which are near-isogenic lines (NILs) differing only in the fertility trait. We evaluated the phenotypic features and sterility stage using anatomical analysis. Comparative RNA sequencing analysis revealed that 3,199 genes were differentially expressed between WSLA and WSLB. Many of these genes are mainly involved in biological processes related to flowering, including pollen tube development and growth, pollen wall assembly and modification, and pollen exine formation and pollination. The transcript profiles of 93 genes associated with pollen wall and anther development were determined by quantitative RT-PCR in different flower parts, and classified into the following three major clades: 1) up-regulated in WSLA plants; 2) down-regulated in WSLA plants; and 3) down-regulated in buds, but have a higher expression in stigmas of WSLA than in WSLB. A subset of genes associated with sporopollenin accumulation were all up-regulated in WSLA. An excess of sporopollenin results in defective pollen wall formation, which leads to male sterility in WSLA. Some of the genes identified in this study are candidates for future research, as they could provide important insight into the molecular mechanisms underlying RGMS in WSLA. PMID:26656530

  13. Formation and excretion of autophagic plastids (plastolysomes) in Brassica napus embryogenic microspores

    PubMed Central

    Parra-Vega, Verónica; Corral-Martínez, Patricia; Rivas-Sendra, Alba; Seguí-Simarro, Jose M.

    2015-01-01

    The change in developmental fate of microspores reprogrammed toward embryogenesis is a complex but fascinating experimental system where microspores undergo dramatic changes derived from the developmental switch. After 40 years of study of the ultrastructural changes undergone by the induced microspores, many questions are still open. In this work, we analyzed the architecture of DNA-containing organelles such as plastids and mitochondria in samples of B. napus isolated microspore cultures covering the different stages before, during, and after the developmental switch. Mitochondria presented a conventional oval or sausage-like morphology for all cell types studied, similar to that found in vivo in other cell types from vegetative parts. Similarly, plastids of microspores before induction and of non-induced cells showed conventional architectures. However, approximately 40% of the plastids of embryogenic microspores presented atypical features such as curved profiles, protrusions, and internal compartments filled with cytoplasm. Three-dimensional reconstructions confirmed that these plastids actually engulf cytoplasm regions, isolating them from the rest of the cell. Acid phosphatase activity was found in them, confirming the lytic activity of these organelles. In addition, digested plastid-like structures were found excreted to the apoplast. All these phenomena seemed transient, since microspore-derived embryos (MDEs) showed conventional plastids. Together, these results strongly suggested that under special circumstances, such as those of the androgenic switch, plastids of embryogenic microspores behave as autophagic plastids (plastolysomes), engulfing cytoplasm for digestion, and then are excreted out of the cytoplasm as part of a cleaning program necessary for microspores to become embryos. PMID:25745429

  14. Nutrient digestibility and growth performance of pigs fed diets with different levels of canola meal from Brassica napus black and Brassica juncea yellow.

    PubMed

    Sanjayan, N; Heo, J M; Nyachoti, C M

    2014-09-01

    Nutrient digestibility and the effect of high dietary inclusion of canola meals from Brassica napus black (BNB) and Brassica juncea yellow (BJY) on growing and weaned pigs performance were determined. In Exp.1, 6 ileal cannulated barrows (initial BW = 20.7 ± 1.5 kg) were used to determine the apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of AA in BNB and BJY. Pigs were allotted to diets containing either BNB or BJY as the sole source of protein in a crossover design to give 6 replicates per diet. The SID of all AA in BNB and BJY were similar. In Exp. 2, 168 weaned pigs (initial BW = 7.61 ± 0.76 kg) were assigned in a randomized complete block design to 7 diets (n = 24) consisting of a wheat-soybean meal-based control diet and 6 diets containing 5, 10 or 15% of canola meal derived from either BNB or BJY to determine the effect of different dietary inclusion on growth performance over a 28-d period postweaning. Diets were formulated to contain similar NE and SID of Lys. There were no differences in growth performance among treatments. In Exp. 3, 162 weaned pigs (initial BW = 7.26 ± 0.70 kg) were used to determine the effect of high BNB and BJY inclusion level without or with multicarbohydrase supplementation on growth performance and apparent total tract digestibility (ATTD) of CP, DM, and GE. A wheat-soybean meal-based control diet and 8 diets containing 20 and 25% of either BNB or BJY without or with added multi-carbohydrase were formulated (n = 18) to contain comparable NE and similar SID of Lys contents. Feeding the diets containing 25% of BNB or BJY supported similar growth performance as those containing 20%. The multi-carbohydrase had no effect on growth performance but improved (P < 0.05) the ATTD of DM, CP, and GE compared with those fed nonsupplemented diets irrespective of canola meal type. Diets containing 25% canola meal had lower (P < 0.05) ATTD of DM, CP, and GE regardless of canola meal type compared with the 20

  15. Ileal amino acid digestibility in canola meals from yellow- and black-seeded Brassica napus and Brassica juncea fed to growing pigs.

    PubMed

    Trindade Neto, M A; Opepaju, F O; Slominski, B A; Nyachoti, C M

    2012-10-01

    Twelve ileal cannulated pigs (30.9 ± 2.7 kg) were used to determine the apparent (AID) and standardized (SID) ileal digestibility of protein and AA in canola meals (CM) derived from black- (BNB) and yellow-seeded (BNY) Brassica napus canola and yellow-seeded Brassica juncea (BJY). The meals were produced using either the conventional pre-press solvent extraction process (regular meal) or a new, vacuum-assisted cold process of meal de-solventization (white flakes) to provide 6 different meals. Six cornstarch-based diets containing 35% canola meal as the sole source of protein in a 3 (variety) × 2 (processing) factorial arrangement were randomly allotted to pigs in a 6 × 7 incomplete Latin square design to have 6 replicates per diet. A 5% casein diet was fed to estimate endogenous AA losses. Canola variety and processing method interacted for the AID of DM (P = 0.048), N (P = 0.010), and all AA (P < 0.05), except for Arg, Lys, Phe, Asp, Glu, and Pro. Canola variety affected or tended to affect the AID of most AA but had no effect on the AID of Lys, Met, Val, Cys, and Pro, whereas processing method had an effect on only Lys and Asp and tended to affect the AID of Thr, Gly and Ser. The effects of canola variety, processing method, and their interaction on the SID values for N and AA followed a similar pattern as for AID values. For the white flakes, SID of N in BJY (74.2%) was lower than in BNY and BNB, whose values averaged 78.5%; however, among the regular meals, BJY had a greater SID value for N than BNY and BNB (variety × processing, P = 0.015). For the white flakes, the SID of Ile (86.4%), Leu (87.6%), Lys (88.9%), Thr (87.6%) and Val (84.2%) in BNB were greater than BNY and BJY. Opposite results were observed for the regular processing, with SID of Lys (84.1%), Met (89.5%), Thr (84.1%), and Val (83.6%) being greater in BJY, followed by BNB and BNY(variety × processing, P < 0.057). The SID of Met was greatest for the white flakes (90.2%) but least for the

  16. Characterizing Variation of Branch Angle and Genome-Wide Association Mapping in Rapeseed (Brassica napus L.)

    PubMed Central

    Liu, Jia; Wang, Wenxiang; Mei, Desheng; Wang, Hui; Fu, Li; Liu, Daoming; Li, Yunchang; Hu, Qiong

    2016-01-01

    Changes in the rapeseed branch angle alter plant architecture, allowing more efficient light capture as planting density increases. In this study, a natural population of rapeseed was grown in three environments and evaluated for branch angle trait to characterize their phenotypic patterns and genotype with a 60K Brassica Infinium SNP array. Significant phenotypic variation was observed from 20 to 70°. As a result, 25 significant quantitative trait loci (QTL) associated with branch angle were identified on chromosomes A2, A3, A7, C3, C5, and C7 by the MLM model in TASSEL 4.0. Orthologs of the functional candidate genes involved in branch angle were identified. Among the key QTL, the peak SNPs were close to the key orthologous genes BnaA.Lazy1 and BnaC.Lazy1 on A3 and C3 homologous genome blocks. With the exception of Lazy (LA) orthologous genes, SQUMOSA PROMOTER BINDING PROTEIN LIKE 14 (SPL14) and an auxin-responsive GRETCHEN HAGEN 3 (GH3) genes from Arabidopsis thaliana were identified close to two clusters of SNPs on the A7 and C7 chromosomes. These findings on multiple novel loci and candidate genes of branch angle will be useful for further understanding and genetic improvement of plant architecture in rapeseed. PMID:26870051

  17. Breeding response of transcript profiling in developing seeds of Brassica napus

    PubMed Central

    Hu, Yaping; Wu, Gang; Cao, Yinglong; Wu, Yuhua; Xiao, Ling; Li, Xiaodan; Lu, Changming

    2009-01-01

    Background The upgrading of rapeseed cultivars has resulted in a substantial improvement in yield and quality in China over the past 30 years. With the selective pressure against fatty acid composition and oil content, high erucic acid- and low oil-content cultivars have been replaced by low erucic acid- and high oil-content cultivars. The high erucic acid cultivar Zhongyou 821 and its descendent, low erucic acid cultivar Zhongshuang 9, are representatives of two generations of the most outstanding Chinese rapeseed cultivars (B. napus) developed the past 2 decades. This paper compares the transcriptional profiles of Zhongshuang 9 and Zhongyou 821 for 32 genes that are principally involved in lipid biosynthesis during seed development in order to elucidate how the transcriptional profiles of these genes responded to quality improvement over the past 20 years. Results Comparison of the cultivar Zhongyou 821 with its descendent, Zhongshuang 9, shows that the transcriptional levels of seven of the 32 genes were upregulated by 30% to 109%, including FAD3, ACCase, FAE1, GKTP, Caleosin, GAPDH, and PEPC. Of the 32 genes, 10 (KAS3, β-CT, BcRK6, P450, FatA, Oleosin, FAD6, FatB, α-CT and SUC1) were downregulated by at least 20% and most by 50%. The Napin gene alone accounted for over 75% of total transcription from all 32 genes assessed in both cultivars. Most of the genes showed significant correlation with fatty acid accumulation, but the correlation in ZS9 was significantly different from that in ZY821. Higher KCR2 activity is associated with higher C16:0, C18:0, and C18:2 in both cultivars, lower C22:1 and total fatty acid content in ZY821, and lower 18:1 in ZS9. Conclusion This paper illustrates the response of the transcription levels of 32 genes to breeding in developing rapeseed seeds. Both cultivars showed similar transcription profiles, with the Napin gene predominantly transcribed. Selective pressure for zero erucic acid, low glucosinolate, high oleic acid and

  18. Nitrogen transfer from Lupinus albus L., Trifolium incarnatum L. and Vicia sativa L. contribute differently to rapeseed (Brassica napus L.) nitrogen nutrition.

    PubMed

    Génard, Thaïs; Etienne, Philippe; Laîné, Philippe; Yvin, Jean-Claude; Diquélou, Sylvain

    2016-09-01

    Nitrogen (N) transfer is well documented in legume-cereal intercropping but this is less often reported for legume-Brassica intercrops even though Brassica crops require higher levels of N fertilizers. The present study was carried out to quantify N transfer from legumes (Lupinus albus L., Trifolium incarnatum L. or Vicia sativa L.) to rapeseed (Brassica napus L.) using the split-root (15)N-labelling method. After three months we observed that legumes did not alter the growth of rapeseed. Vetch showed the lowest growth and demonstrated low (15)N shoot to root translocation and no significant N transfer to rapeseed. In contrast, significant (15)N enrichment was found in lupine and clover and (15)N was transferred to the associated rapeseed plants (around 6 and 4 mg N plant(-1), respectively), which contributed 2 to 3% of the rapeseed total N. Additionally, the data revealed that N2 fixation dominated the N nutrition in lupine despite the high N level provided in the donor compartment, suggesting a greater niche segregation between companion plants. Based on the results of this study we suggest that intercropping can be a relevant contributor to rapeseed N nutrition. Among the three legumes tested, clover and lupine seemed to be the best intercropping candidates.

  19. Ideotype population exploration: growth, photosynthesis, and yield components at different planting densities in winter oilseed rape (Brassica napus L.).

    PubMed

    Ma, Ni; Yuan, Jinzhan; Li, Ming; Li, Jun; Zhang, Liyan; Liu, Lixin; Naeem, Muhammad Shahbaz; Zhang, Chunlei

    2014-01-01

    Rapeseed is one of the most important edible oil crops in the world and the seed yield has lagged behind the increasing demand driven by population growth. Winter oilseed rape (Brassica napus L.) is widely cultivated with relatively low yield in China, so it is necessary to find the strategies to improve the expression of yield potential. Planting density has great effects on seed yield of crops. Hence, field experiments were conducted in Wuhan in the Yangtze River basin with one conventional variety (Zhongshuang 11, ZS11) and one hybrid variety (Huayouza 9, HYZ9) at five planting densities (27.0×10(4), 37.5×10(4), 48.0×10(4), 58.5×10(4), 69.0×10(4) plants ha(-1)) during 2010-2012 to investigate the yield components. The physiological traits for high-yield and normal-yield populations were measured during 2011-2013. Our results indicated that planting densities of 58.5×10(4) plants ha(-1) in ZS11 and 48.0×10(4) plants ha(-1) in HYZ9 have significantly higher yield compared with the density of 27.0×10(4) plants ha(-1) for both varieties. The ideal silique numbers for ZS11 and HYZ9 were ∼0.9×10(4) (n m(-2)) and ∼1×10(4) (n m(-2)), respectively, and ideal primary branches for ZS11 and HYZ9 were ∼250 (n m(-2)) and ∼300 (n m(-2)), respectively. The highest leaf area index (LAI) and silique wall area index (SAI) was ∼5.0 and 7.0, respectively. Moreover, higher leaf net photosynthetic rate (Pn) and water use efficiency (WUE) were observed in the high-yield populations. A significantly higher level of silique wall photosynthesis and rapid dry matter accumulation were supposed to result in the maximum seed yield. Our results suggest that increasing the planting density within certain range is a feasible approach for higher seed yield in winter rapeseed in China.

  20. Transpiration flow controls Zn transport in Brassica napus and Lolium multiflorum under toxic levels as evidenced from isotopic fractionation

    NASA Astrophysics Data System (ADS)

    Couder, Eléonore; Mattielli, Nadine; Drouet, Thomas; Smolders, Erik; Delvaux, Bruno; Iserentant, Anne; Meeus, Coralie; Maerschalk, Claude; Opfergelt, Sophie; Houben, David

    2015-11-01

    Stable zinc (Zn) isotope fractionation between soil and plant has been used to suggest the mechanisms affecting Zn uptake under toxic conditions. Here, changes in Zn isotope composition in soil, soil solution, root and shoot were studied for ryegrass (Lolium multiflorum L.) and rape (Brassica napus L.) grown on three distinct metal-contaminated soils collected near Zn smelters (total Zn 0.7-7.5%, pH 4.8-7.3). The Zn concentrations in plants reflected a toxic Zn supply. The Zn isotopic fingerprint of total soil Zn varied from -0.05‰ to +0.26 ± 0.02‰ (δ66Zn values relative to the JMC 3-0749L standard) among soils, but the soil solution Zn was depleted in 66Zn, with a constant Zn isotope fractionation of about -0.1‰ δ66Zn unit compared to the bulk soil. Roots were enriched with 66Zn relative to soil solution (δ66Znroot - δ66Znsoil solution = Δ66Znroot-soil solution = +0.05 to +0.2 ‰) and shoots were strongly depleted in 66Zn relative to roots (Δ66Znshoot-root = -0.40 to -0.04 ‰). The overall δ66Zn values in shoots reflected that of the bulk soil, but were lowered by 0.1-0.3 ‰ units as compared to the latter. The isotope fractionation between root and shoot exhibited a markedly strong negative correlation (R2 = 0.83) with transpiration per unit of plant weight. Thus, the enrichment with light Zn isotopes in shoot progressed with increasing water flux per unit plant biomass dry weight, showing a passive mode of Zn transport by transpiration. Besides, the light isotope enrichment in shoots compared to roots was larger for rape than for rye grass, which may be related to the higher Zn retention in rape roots. This in turn may be related to the higher cation exchange capacity of rape roots. Our finding can be of use to trace the biogeochemical cycles of Zn and evidence the tolerance strategies developed by plants in Zn-excess conditions.

  1. Enhancement of growth and nutrient uptake of rapeseed (Brassica napus L.) by applying mineral nutrients and biofertilizers.

    PubMed

    Yasari, Esmaeil; Azadgoleh, M A Esmaeili; Mozafari, Saedeh; Alashti, Mahsa Rafati

    2009-01-15

    For investigating the effect of chemical fertilizer as well as biofertilizers on seed yield and quality i.e. oil, protein and nutrients concentration of rapeseed (Brassica napus L.), a split-plot fertilizers application experimental design in 4 replications was carried out during the 2005-2006 growing season, at the Gharakheil Agricultural Research Station in the Mazandaran province of Iran. Rapeseed was grown as a second crop in rotation after rice. Biofertilizers treatments were two different levels: control (no seed inoculation) and seeds inoculation with a combination of Azotobacter chroococcum and Azosprillum brasilense and Azosprillum lipoferum, as main plot and chemical fertilizers comprised N, P, K and their combinations, NPKS and NPK Zn as sub plots. The maximum value of seed yield obtained at (BF+NPK Zn) 3421.2 kg h(-1) corresponding to 244.5 pods per plant and maximum concentration of Zn in leaves as well as seeds. The highest weight of 1000 seeds (4.45 g) happened to obtain at (BF+NPK S) which coinciding with the maximum K levels in leaves. The highest number of branches was obtained at (BF+NPK Zn) with 4.43 branches per plant i.e., 46.2% increase over the control. The maximum value of rapeseed oil content 47.73% obtained at T16 (BF+NK) but maximum protein concentration of seed obtained at T12 (BF+N). Overall the results indicated that inoculation resulted in increase in seeds yield (21.17%), number of pods per plant (16.05%), number of branches (11.78%), weight of 1000 grain (2.92%), oil content of seeds (1.73%) and protein (3.91%) but decrease (-0.24%) in number of seeds per pods comparing to non-Biofertilizers treatments. Irrespective to the treatments, results showed that application of Biofertilizers coincided with 3.86, 0.82, 2.25, 0.75 and 0.91% increase in concentrations of N, P, K, S and Zn in the seeds over the non-Biofertilizers treatments.

  2. Timing of gene expression from different genetic systems in shaping leucine and isoleucine contents of rapeseed (Brassica napus L.) meal.

    PubMed

    Chen, Guolin; Wu, Jianguo; Variath, Murali-Tottekkaad; Shi, Chunhai

    2011-12-01

    Experiments were conducted on rapeseed (Brassica napus L.) using a diallel design with nine parents: Youcai 601, Double 20-4, Huashuang 3, Gaoyou 605, Zhongyou 821, Eyouchangjia, Zhong R-888, Tower and Zheshuang 72. The seed developmental process was divided into five stages, namely initial (days 1-15 after flowering), early (days 16-22 after flowering), middle (days 23-29), late (days 30-36), and maturing (days 37-43) developmental stages. The variation of dynamic genetic effects for leucine and isoleucine contents of rapeseed meal was analysed at five developmental stages, across different environments using the genetic models with time-dependent measures. The results from unconditional and conditional analyses indicated that the expression of diploid embryo, cytoplasmic and diploid maternal plant genes were important for leucine and isoleucine contents at different developmental stages of rapeseed, particularly at the initial and early developmental stages. Among different genetic systems, nutrition quality traits were mainly controlled by the accumulative or net maternal main effects and their GE interaction effects, except at maturity when the net diploid embryo effects were larger. The expression of genes was affected by the environmental conditions on 15, 22, 29 or 36 days after flowering, but was more stable at mature stage. For the isoleucine content the narrow-sense heritabilities on 15, 22, 29, 36, and 43 days after flowering were 43.0, 65.7, 60.1, 65.5 and 78.2%, respectively, while for the leucine content the corresponding narrow-sense heritabilities were relatively smaller. The interaction heritabilities were more important than the general heritabilities at the first three developmental times. The improvement for isoleucine content could be achieved by selection based on the higher narrow-sense heritabilities. Various genetic systems exhibited genetic correlations among the developmental times or leucine and isoleucine contents. A simultaneous

  3. Biosynthesis, targeting and processing of oleosin-like proteins, which are major pollen coat components in Brassica napus.

    PubMed

    Murphy, D J; Ross, J H

    1998-01-01

    The purpose of this study is to characterise the biosynthesis, targeting and processing of some of the major protein components of the pollen coat, or tryphine, of Brassica napus. The authors have N-terminally sequenced 11 of the most abundant pollen coat polypeptides, and nine of these sequences correspond to proteolytically cleaved products of seven oleosin-like genes, i.e. Oln B;1 to Oln B;6 and Oln B;11. The Oln B;11 gene product is co- or post-translationally targeted in vitro to canine microsomal membranes. This implies that the oleosin-like protein is targeted to the endoplasmic reticulum in tapetal cells in vivo. Affinity-purified antibodies raised against a 20-residue domain of Oln B;3 and B;4 gene products cross-reacted with full-length proteins of 45-48 kDa in early developing (< 2 mm to 5 mm) buds and anthers, but recognised truncated proteins of 32-38 kDa at later (4 mm to 7 mm) stages of development. The 45-48 kDa immunoreactive proteins were associated with a floating lipid body fraction obtained from a tapetal/locular fluid extract from maturing anthers and a major 48 kDa polypeptide from this fraction was confirmed by N-terminal sequencing to be a full length product of the Oln B;3 gene. Quantitative immunocytochemical studies showed that the full length 45-48 kDa oleosin-like proteins were specifically localised in the interior of tapetal cytoplasmic lipid bodies where they were associated with a regular hexagonal-like fibrous reticulum. No significant labelling of elaioplasts was observed. The same antibodies specifically labelled 32-38 kDa oleosin-like proteins on the extracellular pollen coat of maturing pollen grains. These results demonstrate for the first time that many of the major pollen coat proteins are derived from an endoproteolytic cleavage of precursor oleosin-like proteins that originally accumulate within the large cytoplasmic lipid bodies of tapetal cells.

  4. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus

    PubMed Central

    Wang, Fulin; He, Jiewang; Shi, Jianghua; Zheng, Tao; Xu, Fei; Wu, Guanting; Liu, Renhu; Liu, Shengyi

    2016-01-01

    Seed coat color is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds such as seed dormancy, longevity, oil content, protein content and fiber content. In Brassica napus, inheritance of seed coat color is related to maternal effects and pollen effects (xenia effects). In this research we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus, which is named Embryonal Control of Yellow seed coat 1 (Ecy1). Microscopy of transverse sections of the mature seed show that pigment is deposited only in the outer layer of the seed coat. Using Illumina Hisequation 2000 sequencing technology, a total of 12 GB clean data, 116× coverage of coding sequences of B. napus, was achieved from seeds 26 d after pollination (DAP). It was assembled into 172,238 independent transcripts, and 55,637 unigenes. A total of 139 orthologous genes of Arabidopsis transparent testa (TT) genes were mapped in silico to 19 chromosomes of B. napus. Only 49 of the TT orthologous genes are transcribed in seeds. However transcription of all orthologs was independent of embryonal control of seed coat color. Only 55 genes were found to be differentially expressed between brown seeds and the yellow mutant. Of these 55, 50 were upregulated and five were downregulated in yellow seeds as compared to their brown counterparts. By KEGG classification, 14 metabolic pathways were significantly enriched. Of these, five pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways, and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were present at higher levels in the embryos of yellow seeds as compared to those of brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the embryo. The pigment

  5. Purification and characterisation of epithiospecifier protein from Brassica napus: enzymic intramolecular sulphur addition within alkenyl thiohydroximates derived from alkenyl glucosinolate hydrolysis.

    PubMed

    Foo, H L; Gronning, L M; Goodenough, L; Bones, A M; Danielsen, B; Whiting, D A; Rossiter, J T

    2000-02-25

    Epithiospecifier protein (ESP), a ferrous ion dependent protein, has a potential role in regulating the release of elemental sulphur, nitriles, isothiocyanates and cyanoepithioalkanes from glucosinolates. Two classes of ESP polypeptides were purified with molecular masses of 39 and 35 kDa, and we show that the previously reported instability was conditionally dependent. The 39 kDa polypeptide was made up of two distinct isozymes (5.00, 5.14) whilst several were present for the 35 kDa form of ESP (5.40-5.66). An anti-ESP antibody reacted with both the 39 and 35 kDa ESP forms in Brassica napus and strongly with a polypeptide corresponding to the 35 kDa ESP form in Crambe abyssinica, but did not detect any ESP in Sinapis alba or Raphanus sativus. A cytochrome P-450 mediated iron dependent epoxidation type mechanism is suggested for ESP.

  6. The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase.

    PubMed Central

    Goring, D R; Rothstein, S J

    1992-01-01

    An S-receptor kinase (SRK) cDNA, SRK-910, from the active S-locus in a self-incompatible Brassica napus W1 line has been isolated and characterized. The SRK-910 gene is predominantly expressed in pistils and segregates with the W1 self-incompatibility phenotype in an F2 population derived from a cross between the self-incompatible W1 line and a self-compatible Westar line. Analysis of the predicted amino acid sequence demonstrated that the extracellular receptor domain is highly homologous to S-locus glycoproteins, whereas the cytoplasmic kinase domain contains conserved amino acids present in serine/threonine kinases. An SRK-910 kinase protein fusion was produced in Escherichia coli and found to contain kinase activity. Phosphoamino acid analysis confirmed that only serine and threonine residues were phosphorylated. Thus, the SRK-910 gene encodes a functional serine/threonine receptor kinase. PMID:1332796

  7. Transfer of Dicamba Tolerance from Sinapis arvensis to Brassica napus via Embryo Rescue and Recurrent Backcross Breeding.

    PubMed

    Jugulam, M; Ziauddin, Asma; So, Kenny K Y; Chen, Shu; Hall, J Christopher

    2015-01-01

    Auxinic herbicides (e.g. dicamba) are extensively used in agriculture to selectively control broadleaf weeds. Although cultivated species of Brassicaceae (e.g. Canola) are susceptible to auxinic herbicides, some biotypes of Sinapis arvensis (wild mustard) were found dicamba resistant in Canada. In this research, dicamba tolerance from wild mustard was introgressed into canola through embryo rescue followed by conventional breeding. Intergeneric hybrids between S. arvensis (2n = 18) and B. napus (2n = 38) were produced through embryo rescue. Embryo formation and hybrid plant regeneration was achieved. Transfer of dicamba tolerance from S. arvensis into the hybrid plants was determined by molecular analysis and at the whole plant level. Dicamba tolerance was introgressed into B. napus by backcrossing for seven generations. Homozygous dicamba-tolerant B. napus lines were identified. The ploidy of the hybrid progeny was assessed by flow cytometry. Finally, introgression of the piece of DNA possibly containing the dicamba tolerance gene into B. napus was confirmed using florescence in situ hybridization (FISH). This research demonstrates for the first time stable introgression of dicamba tolerance from S. arvensis into B. napus via in vitro embryo rescue followed by repeated backcross breeding. Creation of dicamba-tolerant B. napus varieties by this approach may have potential to provide options to growers to choose a desirable herbicide-tolerant technology. Furthermore, adoption of such technology facilitates effective weed control, less tillage, and possibly minimize evolution of herbicide resistant weeds.

  8. Metabolomic shifts in Brassica napus lines with enhanced BnPLC2 expression impact their response to low temperature stress and plant pathogens

    PubMed Central

    Nokhrina, Kateryna; Ray, Heather; Bock, Cheryl; Georges, Fawzy

    2014-01-01

    Phosphatidylinositol-specific phospholipase C2 (PLC2) is a signaling enzyme with hydrolytic activity against membrane-bound phosphoinositides. It catalyzes the cleavage of phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P2) into two initial second messengers, myo-inositol-1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). The former, as well as its fully phosphorylated derivative, myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6), play a major role in calcium signaling events within the cell, while DAG may be used in the regeneration of phospholipids or as a precursor for phosphatidic acid (PA) biosynthesis, an important signaling molecule involved in both biotic and abiotic types of stress tolerance. Overexpression of the gene for Brassica napus phospholipase C2 (BnPLC2) in Brassica napus has been shown to enhance drought tolerance, modulate multiple genes involved in different processes and favorably affect hormonal levels in different tissues. We, therefore, undertook the current study with a view to examining, at the metabolome level, its effect on both abiotic (low temperature) and biotic (stem white rot disease) types of stress in canola. Thus, while transgenic plants exhibited a significant rise in maltose levels and a concomitant elevation in some unsaturated free fatty acids (FFAs), glycerol, and glycerol 3-phosphate under subzero temperatures, they accumulated high levels of raffinose, stachyose and other sugars as well as some flavonoids under acclimatization conditions. Collectively, overexpression of BnPLC2 appears to have triggered different metabolite patterns consistent with its abiotic and, to a limited extent, biotic stress tolerance phenotypes. PMID:24787279

  9. Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus.

    PubMed

    Wang, Yi; Ye, Xiangsheng; Ding, Guangda; Xu, Fangsen

    2013-01-01

    Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P) in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT) controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg(-1) seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals.

  10. Integration of a constraint-based metabolic model of Brassica napus developing seeds with 13C-metabolic flux analysis

    SciTech Connect

    Hay, Jordan O.; Shi, Hai; Heinzel, Nicolas; Hebbelmann, Inga; Rolletschek, Hardy; Schwender, Jorg

    2014-12-19

    The use of large-scale or genome-scale metabolic reconstructions for modeling and simulation of plant metabolism and integration of those models with large-scale omics and experimental flux data is becoming increasingly important in plant metabolic research. Here we report an updated version of bna572, a bottom-up reconstruction of oilseed rape (Brassica napus L.; Brassicaceae) developing seeds with emphasis on representation of biomass-component biosynthesis. New features include additional seed-relevant pathways for isoprenoid, sterol, phenylpropanoid, flavonoid, and choline biosynthesis. Being now based on standardized data formats and procedures for model reconstruction, bna572+ is available as a COBRA-compliant Systems Biology Markup Language (SBML) model and conforms to the Minimum Information Requested in the Annotation of Biochemical Models (MIRIAM) standards for annotation of external data resources. Bna572+ contains 966 genes, 671 reactions, and 666 metabolites distributed among 11 subcellular compartments. It is referenced to the Arabidopsis thaliana genome, with gene-protein-reaction (GPR) associations resolving subcellular localization. Detailed mass and charge balancing and confidence scoring were applied to all reactions. Using B. napus seed specific transcriptome data, expression was verified for 78% of bna572+ genes and 97% of reactions. Alongside bna572+ we also present a revised carbon centric model for 13C-Metabolic Flux Analysis (13C-MFA) with all its reactions being referenced to bna572+ based on linear projections. By integration of flux ratio constraints obtained from 13C-MFA and by elimination of infinite flux bounds around thermodynamically infeasible loops based on COBRA loopless methods, we demonstrate improvements in predictive power of Flux Variability Analysis (FVA). In conclusion, using this combined approach we characterize the difference in metabolic flux of developing seeds of two B. napus

  11. Chloroplastic NADPH oxidase-like activity-mediated perpetual hydrogen peroxide generation in the chloroplast induces apoptotic-like death of Brassica napus leaf protoplasts.

    PubMed

    Tewari, Rajesh Kumar; Watanabe, Daisuke; Watanabe, Masami

    2012-01-01

    Despite extensive research over the past years, regeneration from protoplasts has been observed in only a limited number of plant species. Protoplasts undergo complex metabolic modification during their isolation. The isolation of protoplasts induces reactive oxygen species (ROS) generation in Brassica napus leaf protoplasts. The present study was conducted to provide new insight into the mechanism of ROS generation in B. napus leaf protoplasts. In vivo localization of H(2)O(2) and enzymes involved in H(2)O(2) generation and detoxification, molecular antioxidant-ascorbate and its redox state and lipid peroxidation were investigated in the leaf and isolated protoplasts. Incubating leaf strips in the macerating enzyme (ME) for different duration (3, 6, and 12 h) induced accumulation of H(2)O(2) and malondialdehyde (lipid peroxidation, an index of membrane damage) in protoplasts. The level of H(2)O(2) was highest just after protoplast isolation and subsequently decreased during culture. Superoxide generating NADPH oxidase (NOX)-like activity was enhanced, whereas superoxide dismutase (SOD) and ascorbate peroxidase (APX) decreased in the protoplasts compared to leaves. Diaminobenzidine peroxidase (DAB-POD) activity was also lower in the protoplasts compared to leaves. Total ascorbate content, ascorbate to dehydroascorbate ratio (redox state), were enhanced in the protoplasts compared to leaves. Higher activity of NOX-like enzyme and weakening in the activity of antioxidant enzymes (SOD, APX, and DAB-POD) in protoplasts resulted in excessive accumulation of H(2)O(2) in chloroplasts of protoplasts. Chloroplastic NADPH oxidase-like activity mediated perpetual H(2)O(2) generation probably induced apoptotic-like cell death of B. napus leaf protoplasts as indicated by parallel DNA laddering and decreased mitochondrial membrane potential.

  12. Brassica napus L. cultivars show a broad variability in their morphology, physiology and metabolite levels in response to sulfur limitations and to pathogen attack

    PubMed Central

    Weese, Annekathrin; Pallmann, Philip; Papenbrock, Jutta; Riemenschneider, Anja

    2015-01-01

    Under adequate sulfur supply, plants accumulate sulfate in the vacuoles and use sulfur-containing metabolites as storage compounds. Under sulfur-limiting conditions, these pools of stored sulfur-compounds are depleted in order to balance the nitrogen to sulfur ratio for protein synthesis. Stress conditions like sulfur limitation and/or pathogen attack induce changes in the sulfate pool and the levels of sulfur-containing metabolites, which often depend on the ecotypes or cultivars. We are interested in investigating the influence of the genetic background of canola (Brassica napus) cultivars in sulfur-limiting conditions on the resistance against Verticillium longisporum. Therefore, four commercially available B. napus cultivars were analyzed. These high-performing cultivars differ in some characteristics described in their cultivar pass, such as several agronomic traits, differences in the size of the root system, and resistance to certain pathogens, such as Phoma and Verticillium. The objectives of the study were to examine and explore the patterns of morphological, physiological and metabolic diversity in these B. napus cultivars at different sulfur concentrations and in the context of plant defense. Results indicate that the root systems are influenced differently by sulfur deficiency in the cultivars. Total root dry mass and length of root hairs differ not only among the cultivars but also vary in their reaction to sulfur limitation and pathogen attack. As a sensitive indicator of stress, several parameters of photosynthetic activity determined by PAM imaging showed a broad variability among the treatments. These results were supported by thermographic analysis. Levels of sulfur-containing metabolites also showed large variations. The data were interrelated to predict the specific behavior during sulfur limitation and/or pathogen attack. Advice for farming are discussed. PMID:25699060

  13. Microsatellite markers used for genome-wide association mapping of partial resistance to Sclerotinia sclerotiorum in a world collection of Brassica napus.

    PubMed

    Gyawali, Sanjaya; Harrington, Myrtle; Durkin, Jonathan; Horner, Kyla; Parkin, Isobel A P; Hegedus, Dwayne D; Bekkaoui, Diana; Buchwaldt, Lone

    The fungal pathogen Sclerotinia sclerotiorum causes stem rot of oilseed rape (Brassica napus) worldwide. In preparation for genome-wide association mapping (GWAM) of sclerotinia resistance in B. napus, 152 accessions from diverse geographical regions were screened with a single Canadian isolate, #321. Plants were inoculated by attaching mycelium plugs to the main stem at full flower. Lesion lengths measured 7, 14 and 21 days after inoculation were used to calculate the area under the disease progress curve (AUDPC). Depth of penetration was noted and used to calculate percent soft and collapsed lesions (% s + c). The two disease traits were highly correlated (r = 0.93). Partially resistant accessions (AUDPC <7 and % s + c <2) were identified primarily from South Korea and Japan with a few from Pakistan, China and Europe. Genotyping of accessions with 84 simple sequence repeat markers provided 690 polymorphic loci for GWAM. The general linear model in TASSEL best fitted the data when adjusted for population structure (STRUCTURE), GLM + Q. After correction for positive false discovery rate, 34 loci were significantly associated with both disease traits of which 21 alleles contributed to resistance, while the remaining enhanced susceptibility. The phenotypic variation explained by the loci ranged from 6 to 25 %. Five loci mapped to published quantitative trait loci conferring sclerotinia resistance in Chinese lines.

  14. Comparative Proteomics Reveals that Phosphorylation of β Carbonic Anhydrase 1 Might be Important for Adaptation to Drought Stress in Brassica napus

    PubMed Central

    Wang, Limin; Jin, Xiang; Li, Qingbin; Wang, Xuchu; Li, Zaiyun; Wu, Xiaoming

    2016-01-01

    Little is known about the mechanism of drought tolerance in rapeseed (Brassica napus L.). In this study, different morphological and physiological responses to drought stress were studied in three rapeseed cultivars. For the cultivar 2AF009 with high drought tolerance, comparative proteomic analyses were conducted to determine the molecular mechanism behind. Approximately 138 differentially abundant proteins (DAPs) and 1232 phosphoproteins containing 4469 phosphopeptides were identified. Furthermore, 337 phosphoproteins containing 547 phosphorylation sites demonstrated significant changes. These drought-responsive DAPs and phosphoproteins were mainly involved in signal transduction, photosynthesis, and glutathione-ascorbate metabolism. Notably, 9 DAPs were also identified as drought-responsive phosphoproteins, especially beta carbonic anhydrase 1 (βCA1), which was represented by eight distinct protein spots with different abundant levels during drought stress. Tyr207 phosphorylated site of βCA1 was down-regulated at the phosphorylation level during drought stress, which was also located in the substrate-binding active region of three-dimensional (3D) structure. Moreover, drought stress inhibited CA activity. We concluded that Tyr207 was the most likely phosphorylation target affecting the enzyme activity, and phosphorylation of βCA1 might be important for the response to drought stress in rapeseed. The study provided a new clue for the drought tolerance mechanism in B.napus. PMID:27966654

  15. Detection of feral GT73 transgenic oilseed rape (Brassica napus) along railway lines on entry routes to oilseed factories in Switzerland.

    PubMed

    Hecht, Mirco; Oehen, Bernadette; Schulze, Jürg; Brodmann, Peter; Bagutti, Claudia

    2014-01-01

    To obtain a reference status prior to cultivation of genetically modified oilseed rape (OSR, Brassica napus L.) in Switzerland, the occurrence of feral OSR was monitored along transportation routes and at processing sites. The focus was set on the detection of (transgenic) OSR along railway lines from the Swiss borders with Italy and France to the respective oilseed processing factories in Southern and Northern Switzerland (Ticino and region of Basel). A monitoring concept was developed to identify sites of largest risk of escape of genetically modified plants into the environment in Switzerland. Transport spillage of OSR seeds from railway goods cars particularly at risk hot spots such as switch yards and (un)loading points but also incidental and continuous spillage were considered. All OSR plants, including their hybridization partners which were collected at the respective monitoring sites were analyzed for the presence of transgenes by real-time PCR. On sampling lengths each of 4.2 and 5.7 km, respectively, 461 and 1,574 plants were sampled in Ticino and the region of Basel. OSR plants were found most frequently along the routes to the oilseed facilities, and in larger amounts on risk hot spots compared to sites of random sampling. At three locations in both monitored regions, transgenic B. napus line GT73 carrying the glyphosate resistance transgenes gox and CP4 epsps were detected (Ticino, 22 plants; in the region of Basel, 159).

  16. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm.

    PubMed

    Quijada, Pablo A; Udall, Joshua A; Lambert, Bart; Osborn, Thomas C

    2006-08-01

    The introgression of winter germplasm into spring canola (Brassica napus L.) represents a novel approach to improve seed yield of hybrid spring canola. In this study, quantitative trait loci (QTL) for seed yield and other traits were genetically mapped to determine the effects of genomic regions introgressed from winter germplasm into spring canola. Plant materials used comprised of two populations of doubled haploid (DH) lines having winter germplasm introgression from two related French winter cultivars and their testcrosses with a spring line used in commercial hybrids. These populations were evaluated for 2 years at two locations (Wisconsin, USA and Saskatchewan, Canada). Genetic linkage maps based on RFLP loci were constructed for each DH population. Six QTL were detected in the testcross populations for which the winter alleles increased seed yield. One of these QTL explained 11 and 19% of the phenotypic variation in the two Canadian environments. The winter allele for another QTL that increased seed yield was linked in coupling to a QTL allele for high glucosinolate content, suggesting that the transition of rapeseed into canola could have resulted in the loss of favorable seed yield alleles. Most QTL for which the introgressed allele decreased seed yield of hybrids mapped to genomic regions having homoeologous non-reciprocal transpositions. This suggests that allelic configurations created by these rearrangements might make an important contribution to genetic variation for complex traits in oilseed B. napus and could account for a portion of the heterotic effects in hybrids.

  17. Structural Properties of Cruciferin and Napin of Brassica napus (Canola) Show Distinct Responses to Changes in pH and Temperature

    PubMed Central

    Perera, Suneru P.; McIntosh, Tara C.; Wanasundara, Janitha P. D.

    2016-01-01

    The two major storage proteins identified in Brassica napus (canola) were isolated and studied for their molecular composition, structural characteristics and the responses of structural features to the changes in pH and temperature. Cruciferin, a complex of six monomers, has a predominantly β-sheet-containing secondary structure. This protein showed low pH unstable tertiary structure, and distinctly different solubility behaviour with pH when intact in the seed cellular matrix. Cruciferin structure unfolds at pH 3 even at ambient temperature. Temperature-induced structure unfolding was observed above the maximum denaturation temperature of cruciferin. Napin was soluble in a wider pH range than cruciferin and has α-helices dominating secondary structure. Structural features of napin showed less sensitivity to the changes in medium pH and temperature. The surface hydrophobicity (S0) and intrinsic fluorescence of tryptophan residue appear to be good indicators of cruciferin unfolding, however they were not the best to demonstrate structural changes of napin. These two storage proteins of B. napus have distinct molecular characteristics, therefore properties and functionalities they provide are contrasting rather than complementary. PMID:27618118

  18. Joint genome-wide association and transcriptome sequencing reveals a complex polygenic network underlying hypocotyl elongation in rapeseed (Brassica napus L.)

    PubMed Central

    Luo, Xiang; Xue, Zhifei; Ma, Chaozhi; Hu, Kaining; Zeng, Ziru; Dou, Shengwei; Tu, Jinxing; Shen, Jinxiong; Yi, Bin; Fu, Tingdong

    2017-01-01

    Hypocotyl elongation is considered an important typical seedling trait contributing directly to an increase in and stabilization of the yield in Brassica napus, but its molecular genetic mechanism is poorly understood. In the present study, hypocotyl lengths of 210 lines were measured in an illuminated culture room. A genome-wide association study (GWAS) was performed with 23,435 single nucleotide polymorphisms (SNPs) for hypocotyl length. Three lines with long hypocotyl length and three lines with short hypocotyl length from one doubled haploid line (DH) population were used for transcriptome sequencing. A GWAS followed by transcriptome analysis identified 29 differentially expressed genes associated with significant SNPs in B. napus. These genes regulate hypocotyl elongation by mediating flowering morphogenesis, circadian clock, hormone biosynthesis, or important metabolic signaling pathways. Among these genes, BnaC07g46770D negatively regulates hypocotyl elongation directly, as well as flowering time. Our results indicate that a joint GWAS and transcriptome analysis has significant potential for identifying the genes responsible for hypocotyl elongation; The extension of hypocotyl is a complex biological process regulated by a polygenic network. PMID:28139730

  19. Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds.

    PubMed

    Stålberg, K; Ellerstöm, M; Ezcurra, I; Ablov, S; Rask, L

    1996-01-01

    The storage protein napin is one of the major protein components of Brassica napus L. (oilseed rape) seeds. To investigate the transcriptional regulation of the napin promoter, different constructs of the napin gene napA promoter were fused to the Escherichia coli uidA gene and transformed into B. napus. A-152-bp promoter construct directed a strong expression of the marker gene in mature seeds. The 5' deletion of an additional 8 completely abolished this activity. This deletion disrupted sequence motifs that are similar to an E-box, (CA decreases NNTG) and an ABRE (CGCCA decreases CGTGTCC) element (identify is indicated by bold face). Further, internal deletion of a segment corresponding to -133 to -121 caused an eightfold reduction in the activity of the -152 construct. This region contains an element, CAAACAC, conserved in many storage-protein gene promoters. These results imply that the E-box/ABRE-like sequence is a major motif of the napA promoter and suggest that the CAAACAC sequence is important for high activity of the napA promoter. Similar results have been obtained by analysing some of the constructs in transgenic tobacco, suggesting that many of the cis-elements in the napA promoter are conserved, at least in dicotyledonous species.

  20. Identification of the Relationship between Oil Body Morphology and Oil Content by Microstructure Comparison Combining with QTL Analysis in Brassica napus.

    PubMed

    Gu, Jianwei; Chao, Hongbo; Wang, Hao; Li, Yonghong; Li, Dianrong; Xiang, Jun; Gan, Jianping; Lu, Guangyuan; Zhang, Xuekun; Long, Yan; Li, Maoteng

    2016-01-01

    Oil bodies (OBs) are relatively simple but very important organelles comprising a matrix of triacylglycerol (TAG) surrounded by a phospholipid monolayer embedded and covered with unique proteins. The OB structure in Brassica napus with different oil content and the relationship between the oil content and the OB structure needs to be better understood. In this paper, the characteristics of OBs in the embryo of a series of B. napus materials with different oil content ranging from 34% to over 60% were studied. The results indicated that the OB size was significantly positively correlated with the oil content but was significantly negatively correlated with the glucosinolates and the protein content. Many genes associated with TAG synthesis, OB-membrane proteins, and the cell progress regulatory pathway were identified in the confidence interval of co-located QTLs for oil content, fatty acid (FA) compositions, and protein content. Our results suggested that the morphology of OBs might be directly controlled by the genes associated with OB-membrane proteins and indirectly controlled by the genes associated with TAG synthesis and cell progress regulatory pathway.

  1. Identification of the Relationship between Oil Body Morphology and Oil Content by Microstructure Comparison Combining with QTL Analysis in Brassica napus

    PubMed Central

    Gu, Jianwei; Chao, Hongbo; Wang, Hao; Li, Yonghong; Li, Dianrong; Xiang, Jun; Gan, Jianping; Lu, Guangyuan; Zhang, Xuekun; Long, Yan; Li, Maoteng

    2017-01-01

    Oil bodies (OBs) are relatively simple but very important organelles comprising a matrix of triacylglycerol (TAG) surrounded by a phospholipid monolayer embedded and covered with unique proteins. The OB structure in Brassica napus with different oil content and the relationship between the oil content and the OB structure needs to be better understood. In this paper, the characteristics of OBs in the embryo of a series of B. napus materials with different oil content ranging from 34% to over 60% were studied. The results indicated that the OB size was significantly positively correlated with the oil content but was significantly negatively correlated with the glucosinolates and the protein content. Many genes associated with TAG synthesis, OB-membrane proteins, and the cell progress regulatory pathway were identified in the confidence interval of co-located QTLs for oil content, fatty acid (FA) compositions, and protein content. Our results suggested that the morphology of OBs might be directly controlled by the genes associated with OB-membrane proteins and indirectly controlled by the genes associated with TAG synthesis and cell progress regulatory pathway. PMID:28111582

  2. Comparative Transcriptome Analysis of Leaves and Roots in Response to Sudden Increase in Salinity in Brassica napus by RNA-seq

    PubMed Central

    Zou, Zhongwei; Chow, Kingsley; Nanzyo, Masami; Kitashiba, Hiroyasu; Nishio, Takeshi

    2014-01-01

    Amphidiploid species in the Brassicaceae family, such as Brassica napus, are more tolerant to environmental stress than their diploid ancestors.A relatively salt tolerant B. napus line, N119, identified in our previous study, was used. N119 maintained lower Na+ content, and Na+/K+ and Na+/Ca2+ ratios in the leaves than a susceptible line. The transcriptome profiles of both the leaves and the roots 1 h and 12 h after stress were investigated. De novo assembly of individual transcriptome followed by sequence clustering yielded 161,537 nonredundant sequences. A total of 14,719 transcripts were differentially expressed in either organs at either time points. GO and KO enrichment analyses indicated that the same 49 GO terms and seven KO terms were, respectively, overrepresented in upregulated transcripts in both organs at 1 h after stress. Certain overrepresented GO term of genes upregulated at 1 h after stress in the leaves became overrepresented in genes downregulated at 12 h. A total of 582 transcription factors and 438 transporter genes were differentially regulated in both organs in response to salt shock. The transcriptome depicting gene network in the leaves and the roots regulated by salt shock provides valuable information on salt resistance genes for future application to crop improvement. PMID:25177691

  3. Characterization of Brassica napus L. genotypes utilizing sequence-related amplified polymorphism and genotyping by sequencing in association with cluster analysis.

    PubMed

    Lees, Corey J; Li, Genyi; Duncan, Robert W

    2016-01-01

    Identifying parental combinations that exhibit high heterosis is a constant target for commercial Brassica napus L. hybrid development programs. Finding high heterotic parental combinations can require hundreds of test crosses and years of yield evaluation. Heterotic pool development could be used to divide breeding material into specific breeding pools and focus the number of parental combinations created. Here, we report the genotypic characterization of 79 B. napus genotypes by calculating genetic distance based on sequence-related amplified polymorphism (SRAP) and genotyping by sequencing (GBS) in association with a neighbour-joining clustering algorithm. Despite the different genotypic analyses, neighbour-joining cluster analysis based on genetic distance of SRAP and GBS produced similar clusters. Homology between SRAP and GBS clusters was approximately 77 % when manually comparing clusters and 68 % when comparing clusters using Compare2Trees. This research demonstrates that SRAP can have similar efficacy when compared to next-generation sequencing technology for heterotic pool classification. This information may provide an important breeding scaffold for the development of hybrid cultivars based upon genetic distance and cluster analysis.

  4. [Production of Brassica olereceae (+Arabidopsis thaliana) and Brassica napus cell lines resistant to spectinomycin/streptomycin as a result of plastome genetic transformation].

    PubMed

    Nitovs'ka, I O; Shakhovs'kyĭ, A M; Komarnyts'kyĭ, I K; Kuchuk, M V

    2006-01-01

    Plastid genetic transformation has been performed using both the PEG-treatment of protoplasts of somatic hybrids of B. oleracea carrying A. thaliana chloroplasts and the particle bombardment of regenerable calluses of B. napus sv. Westar. The chloroplast transformation vector pCB040 carried resistance (aadA) gene flanked by rapeseed plastid DNA sequences to target its insertion between the trnV-rps7 fragments. Selection of transplastomic cell lines has been performed according to their ability to grow on the medium supplied with spectinomycin and streptomycin in high concentrations. Antibiotic resistant cell lines have been obtained using the both transformation methods. The presence of the aadA gene in the A. thaliana and B. napus plastomes was confirmed by PCR analysis for two cell lines of B. oleracea (+ A. thaliana) and three lines of B. napus.

  5. Mutations in single FT- and TFL1-paralogs of rapeseed (Brassica napus L.) and their impact on flowering time and yield components

    PubMed Central

    Guo, Yuan; Hans, Harloff; Christian, Jung; Molina, Carlos

    2014-01-01

    Rapeseed (Brassica napus L.) is grown in different geographical regions of the world. It is adapted to different environments by modification of flowering time and requirement for cold. A broad variation exists from very early-flowering spring-type to late-flowering winter cultivars which only flower after exposure to an extended cold period. B. napus is an allopolyploid species which resulted from the hybridization between B. rapa and B. oleracea. In Arabidopsis thaliana, the PEBP-domain genes FLOWERING LOCUS-T (FT) and TERMINAL FLOWER-1 (TFL1) are important integrators of different flowering pathways. Six FT and four TFL1 paralogs have been identified in B. napus. However, their role in flowering time control is unknown. We identified EMS mutants of the B. napus winter-type inbreed line Express 617. In total, 103 mutant alleles have been determined for BnC6FTb, BnC6FTa, and BnTFL1-2 paralogs. We chose three non-sense and 15 missense mutant lines (M3) which were grown in the greenhouse. Although only two out of 6 FT paralogs were mutated, 6 out of 8 BnC6FTb mutant lines flowered later as the control, whereas all five BnC6FTa mutant lines started flowering as the non-mutated parent. Mutations within the BnTFL1-2 paralog had no large effects on flowering time but on yield components. F1 hybrids between BnTFL1-2 mutants and non-mutated parents had increased seed number per pod and total seeds per plant suggesting that heterozygous mutations in a TFL1 paralog may impact heterosis in rapeseed. We demonstrate that single point-mutations in BnFT and BnTFL1 paralogs have effects on flowering time despite the redundancy of the rapeseed genome. Moreover, our results suggest pleiotropic effects of BnTFL1 paralogs beyond the regulation of flowering time. PMID:24987398

  6. Genome wide identification of microRNAs involved in fatty acid and lipid metabolism of Brassica napus by small RNA and degradome sequencing.

    PubMed

    Wang, Zhiwei; Qiao, Yan; Zhang, Jingjing; Shi, Wenhui; Zhang, Jinwen

    2017-04-01

    Rapeseed (Brassica napus) is an important cash crop considered as the third largest oil crop worldwide. Rapeseed oil contains various saturation or unsaturation fatty acids, these fatty acids, whose could incorporation with TAG form into lipids stored in seeds play various roles in the metabolic activity. The different fatty acids in B. napus seeds determine oil quality, define if the oil is edible or must be used as industrial material. miRNAs are kind of non-coding sRNAs that could regulate gene expressions through post-transcriptional modification to their target transcripts playing important roles in plant metabolic activities. We employed high-throughput sequencing to identify the miRNAs and their target transcripts involved in fatty acids and lipids metabolism in different development of B. napus seeds. As a result, we identified 826 miRNA sequences, including 523 conserved and 303 newly miRNAs. From the degradome sequencing, we found 589 mRNA could be targeted by 236 miRNAs, it includes 49 novel miRNAs and 187 conserved miRNAs. The miRNA-target couple suggests that bna-5p-163957_18, bna-5p-396192_7, miR9563a-p3, miR9563b-p5, miR838-p3, miR156e-p3, miR159c and miR1134 could target PDP, LACS9, MFPA, ADSL1, ACO32, C0401, GDL73, PlCD6, OLEO3 and WSD1. These target transcripts are involving in acetyl-CoA generate and carbon chain desaturase, regulating the levels of very long chain fatty acids, β-oxidation and lipids transport and metabolism process. At the same, we employed the q-PCR to valid the expression of miRNAs and their target transcripts that involve in fatty acid and lipid metabolism, the result suggested that the miRNA and their transcript expression are negative correlation, which in accord with the expression of miRNA and its target transcript. The study findings suggest that the identified miRNA may play important role in the fatty acids and lipids metabolism in seeds of B. napus.

  7. Nitrous oxide emission factors for urine and dung from sheep fed either fresh forage rape (Brassica napus L.) or fresh perennial ryegrass (Lolium perenne L.).

    PubMed

    Luo, J; Sun, X Z; Pacheco, D; Ledgard, S F; Lindsey, S B; Hoogendoorn, C J; Wise, B; Watkins, N L

    2015-03-01

    In New Zealand, agriculture is predominantly based on pastoral grazing systems and animal excreta deposited on soil during grazing have been identified as a major source of nitrous oxide (N2O) emissions. Forage brassicas (Brassica spp.) have been increasingly used to improve lamb performance. Compared with conventional forage perennial ryegrass (Lolium perenne L.), a common forage in New Zealand, forage brassicas have faster growth rates, higher dry matter production and higher nutritive value. The aim of this study was to determine the partitioning of dietary nitrogen (N) between urine and dung in the excreta from sheep fed forage brassica rape (B. napus subsp. oleifera L.) or ryegrass, and then to measure N2O emissions when the excreta from the two different feed sources were applied to a pasture soil. A sheep metabolism study was conducted to determine urine and dung-N outputs from sheep fed forage rape or ryegrass, and N partitioning between urine and dung. Urine and dung were collected and then used in a field plot experiment for measuring N2O emissions. The experimental site contained a perennial ryegrass/white clover pasture on a poorly drained silt-loam soil. The treatments included urine from sheep fed forage rape or ryegrass, dung from sheep fed forage rape or ryegrass, and a control without dung or urine applied. N2O emission measurements were carried out using a static chamber technique. For each excreta type, the total N2O emissions and emission factor (EF3; N2O-N emitted during the 3- or 8-month measurement period as a per cent of animal urine or dung-N applied, respectively) were calculated. Our results indicate that, in terms of per unit of N intake, a similar amount of N was excreted in urine from sheep fed either forage rape or ryegrass, but less dung N was excreted from sheep fed forage rape than ryegrass. The EF3 for urine from sheep fed forage rape was lower compared with urine from sheep fed ryegrass. This may have been because of plant

  8. Brassica napus Genome Possesses Extraordinary High Number of CAMTA Genes and CAMTA3 Contributes to PAMP Triggered Immunity and Resistance to Sclerotinia sclerotiorum.

    PubMed

    Rahman, Hafizur; Xu, You-Ping; Zhang, Xuan-Rui; Cai, Xin-Zhong

    2016-01-01

    Calmodulin-binding transcription activators (CAMTAs) play important roles in various plant biological processes including disease resistance and abiotic stress tolerance. Oilseed rape (Brassica napus L.) is one of the most important oil-producing crops worldwide. To date, compositon of CAMTAs in genomes of Brassica species and role of CAMTAs in resistance to the devastating necrotrophic fungal pathogen Sclerotinia sclerotiorum are still unknown. In this study, 18 CAMTA genes were identified in oilseed rape genome through bioinformatics analyses, which were inherited from the nine copies each in its progenitors Brassica rapa and Brassica oleracea and represented the highest number of CAMTAs in a given plant species identified so far. Gene structure, protein domain organization and phylogentic analyses showed that the oilseed rape CAMTAs were structurally similar and clustered into three major groups as other plant CAMTAs, but had expanded subgroups CAMTA3 and CAMTA4 genes uniquely in rosids species occurring before formation of oilseed rape. A large number of stress response-related cis-elements existed in the 1.5 kb promoter regions of the BnCAMTA genes. BnCAMTA genes were expressed differentially in various organs and in response to treatments with plant hormones and the toxin oxalic acid (OA) secreted by S. sclerotiorum as well as the pathogen inoculation. Remarkably, the expression of BnCAMTA3A1 and BnCAMTA3C1 was drastically induced in early phase of S. sclerotiorum infection, indicating their potential role in the interactions between oilseed rape and S. sclerotiorum. Furthermore, inoculation analyses using Arabidopsis camta mutants demonstrated that Atcamta3 mutant plants exhibited significantly smaller disease lesions than wild-type and other Atcamta mutant plants. In addition, compared with wild-type plants, Atcamta3 plants accumulated obviously more hydrogen peroxide in response to the PAMP chitin and exhibited much higher expression of the CGCG

  9. Genome wide identification of the immunophilin gene family in Leptosphaeria maculans: a causal agent of Blackleg disease in Oilseed Rape (Brassica napus).

    PubMed

    Singh, Khushwant; Zouhar, Miloslav; Mazakova, Jana; Rysanek, Pavel

    2014-10-01

    Abstract Phoma stem canker (blackleg) is a disease of world-wide importance on oilseed rape (Brassica napus) and can cause serious losses for crops globally. The disease is caused by dothideomycetous fungus, Leptosphaeria maculans, which is highly virulent/aggressive. Cyclophilins (CYPs) and FK506-binding proteins (FKBPs) are ubiquitous proteins belonging to the peptidyl-prolyl cis/trans isomerase (PPIase) family. They are collectively referred to as immunophilins (IMMs). In the present study, IMM genes, CYP and FKBP in haploid strain v23.1.3 of L. maculans genome, were identified and classified. Twelve CYPs and five FKBPs were determined in total. Domain architecture analysis revealed the presence of a conserved cyclophilin-like domain (CLD) in the case of CYPs and FKBP_C in the case of FKBPs. Interestingly, IMMs in L. maculans also subgrouped into single domain (SD) and multidomain (MD) proteins. They were primarily found to be localized in cytoplasm, nuclei, and mitochondria. Homologous and orthologous gene pairs were also determined by comparison with the model organism Saccharomyces cerevisiae. Remarkably, IMMs of L. maculans contain shorter introns in comparison to exons. Moreover, CYPs, in contrast with FKBPs, contain few exons. However, two CYPs were determined as being intronless. The expression profile of IMMs in both mycelium and infected primary leaves of B. napus demonstrated their potential role during infection. Secondary structure analysis revealed the presence of atypical eight β strands and two α helices fold architecture. Gene ontology analysis of IMMs predicted their significant role in protein folding and PPIase activity. Taken together, our findings for the first time present new prospects of this highly conserved gene family in phytopathogenic fungus.

  10. Expression of Brassica napus TTG2, a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes.

    PubMed

    Li, Qingyuan; Yin, Mei; Li, Yongpeng; Fan, Chuchuan; Yang, Qingyong; Wu, Jian; Zhang, Chunyu; Wang, Hong; Zhou, Yongming

    2015-09-01

    WRKY transcription factors (TFs) are plant specific and play important roles in regulating diverse biological processes. To identify TFs with broad-spectrum effects on various stress responses in Brassica napus, an important oil crop grown across diverse ecological regions worldwide, we functionally characterized Bna.TTG2 genes, which are homologous to the Arabidopsis AtTTG2 (WRKY44) gene. Four Bna.TTG2 genes were capable of rescuing the trichome phenotypes of Arabidopsis ttg2 mutants. Overexpressing one Bna.TTG2 family member, BnaA.TTG2.a.1, remarkably increased trichome numbers in Arabidopsis and B. napus plants. Interestingly, the BnaA.TTG2.a.1-overexpressing plants of both species exhibited increased sensitivity to salt stress. In BnaA.TTG2.a.1-overexpressing Arabidopsis under salt stress, the endogenous indole-3-acetic acid (IAA) content was reduced, and the expression of two auxin biosynthesis genes, TRYPTOPHAN BIOSYNTHESIS 5 (TRP5) and YUCCA2 (YUC2), was downregulated. The results from yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase reporter assays revealed that BnaA.TTG2.a.1 is able to bind to the promoters of TRP5 and YUC2. These data indicated that BnaA.TTG2.a.1 confers salt sensitivity to overexpressing plants by suppressing the expression of IAA synthesis genes and thus lowering IAA levels. Transgenic Arabidopsis plants with an N-terminus-deleted BnaA.TTG2.a.1 no longer showed hypersensitivity to salt stress, suggesting that the N terminus of BnaA.TTG2.a.1 plays a critical role in salt stress responses. Therefore, in addition to its classical function in trichome development, our study reveals a novel role for Bna.TTG2 genes in salt stress responses.

  11. Genome Wide Identification of the Immunophilin Gene Family in Leptosphaeria maculans: A Causal Agent of Blackleg Disease in Oilseed Rape (Brassica napus)

    PubMed Central

    Zouhar, Miloslav; Mazakova, Jana; Rysanek, Pavel

    2014-01-01

    Abstract Phoma stem canker (blackleg) is a disease of world-wide importance on oilseed rape (Brassica napus) and can cause serious losses for crops globally. The disease is caused by dothideomycetous fungus, Leptosphaeria maculans, which is highly virulent/aggressive. Cyclophilins (CYPs) and FK506-binding proteins (FKBPs) are ubiquitous proteins belonging to the peptidyl-prolyl cis/trans isomerase (PPIase) family. They are collectively referred to as immunophilins (IMMs). In the present study, IMM genes, CYP and FKBP in haploid strain v23.1.3 of L. maculans genome, were identified and classified. Twelve CYPs and five FKBPs were determined in total. Domain architecture analysis revealed the presence of a conserved cyclophilin-like domain (CLD) in the case of CYPs and FKBP_C in the case of FKBPs. Interestingly, IMMs in L. maculans also subgrouped into single domain (SD) and multidomain (MD) proteins. They were primarily found to be localized in cytoplasm, nuclei, and mitochondria. Homologous and orthologous gene pairs were also determined by comparison with the model organism Saccharomyces cerevisiae. Remarkably, IMMs of L. maculans contain shorter introns in comparison to exons. Moreover, CYPs, in contrast with FKBPs, contain few exons. However, two CYPs were determined as being intronless. The expression profile of IMMs in both mycelium and infected primary leaves of B. napus demonstrated their potential role during infection. Secondary structure analysis revealed the presence of atypical eight β strands and two α helices fold architecture. Gene ontology analysis of IMMs predicted their significant role in protein folding and PPIase activity. Taken together, our findings for the first time present new prospects of this highly conserved gene family in phytopathogenic fungus. PMID:25259854

  12. Computational analysis of storage synthesis in developing Brassica napus L. (oilseed rape) embryos: Flux variability analysis in relation to 13C-metabolic flux analysis

    SciTech Connect

    Hay, J.; Schwender, J.

    2011-08-01

    Plant oils are an important renewable resource, and seed oil content is a key agronomical trait that is in part controlled by the metabolic processes within developing seeds. A large-scale model of cellular metabolism in developing embryos of Brassica napus (bna572) was used to predict biomass formation and to analyze metabolic steady states by flux variability analysis under different physiological conditions. Predicted flux patterns are highly correlated with results from prior 13C metabolic flux analysis of B. napus developing embryos. Minor differences from the experimental results arose because bna572 always selected only one sugar and one nitrogen source from the available alternatives, and failed to predict the use of the oxidative pentose phosphate pathway. Flux variability, indicative of alternative optimal solutions, revealed alternative pathways that can provide pyruvate and NADPH to plastidic fatty acid synthesis. The nutritional values of different medium substrates were compared based on the overall carbon conversion efficiency (CCE) for the biosynthesis of biomass. Although bna572 has a functional nitrogen assimilation pathway via glutamate synthase, the simulations predict an unexpected role of glycine decarboxylase operating in the direction of NH4+ assimilation. Analysis of the light-dependent improvement of carbon economy predicted two metabolic phases. At very low light levels small reductions in CO2 efflux can be attributed to enzymes of the tricarboxylic acid cycle (oxoglutarate dehydrogenase, isocitrate dehydrogenase) and glycine decarboxylase. At higher light levels relevant to the 13C flux studies, ribulose-1,5-bisphosphate carboxylase activity is predicted to account fully for the light-dependent changes in carbon balance.

  13. A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled-haploid plants in Brassica napus

    PubMed Central

    2012-01-01

    Background Microspore embryogenesis represents a unique system of single cell reprogramming in plants wherein a highly specialized cell, the microspore, by specific stress treatment, switches its fate towards an embryogenesis pathway. In Brassica napus, a model species for this phenomenon, incubation of isolated microspores at 32°C is considered to be a pre-requisite for embryogenesis induction. Results We have developed a new in vitro system at lower temperature (18°C) to efficiently induce microspore embryogenesis throughout two different developmental pathways: one involving the formation of suspensor-like structures (52.4%) and another producing multicellular embryos without suspensor (13.1%); additionally, a small proportion of non-responsive microspores followed a gametophytic-like development (34.4%) leading to mature pollen. The suspensor-like pathway followed at 18°C involved the establishment of asymmetric identities from the first microspore division and an early polarity leading to different cell fates, suspensor and embryo development, which were formed by cells with different organizations and endogenous auxin distribution, similar to zygotic embryogenesis. In addition, a new strategy for germination of microspore derived embryos was developed for achieving more than 90% conversion of embryos to plantlets, with a predominance of spontaneous doubled haploids plants. Conclusion The present work reveals a novel mechanism for efficient microspore embryogenesis induction in B. napus using continuous low temperature treatment. Results indicated that low temperature applied for longer periods favours an embryogenesis pathway whose first division originates asymmetric cell identities, early polarity establishment and the formation of suspensor-like structures, mimicking zygotic embryogenesis. This new in vitro system provides a convenient tool to analyze in situ the mechanisms underlying different developmental pathways during the microspore reprogramming

  14. Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed (B. napus L.), with emphasis on the evolution of Chinese rapeseed.

    PubMed

    Qian, W; Meng, J; Li, M; Frauen, M; Sass, O; Noack, J; Jung, C

    2006-06-01

    In spite of its short history of being an oil crop in China, the Chinese semi-winter rapeseed (Brassica napus L., 2n = 38, AACC) has been improved rapidly by intentional introgression of genomic components from Chinese B. rapa (2n = 20, AA). As a result, the Chinese semi-winter rapeseed has diversified genetically from the spring and winter rapeseed grown in the other regions such as Europe and North America. The objectives of this study were to investigate the roles of the introgression of the genomic components from the Chinese B. rapa in widening the genetic diversity of rapeseed and to verify the role of this introgression in the evolution of the Chinese rapeseed. Ten lines of the new type of rapeseed, which were produced by introgression of Chinese B. rapa to Chinese normal rapeseed, were compared for genetic diversity using amplified fragment length polymorphism (AFLP) with three groups of 35 lines of the normal rapeseed, including 9 semi-winter rapeseed lines from China, 9 winter rapeseed lines from Europe and 17 spring rapeseed lines from Northern Europe, Canada and Australia. Analysis of 799 polymorphic fragments revealed that within the groups, the new type rapeseed had the highest genetic diversity, followed by the semi-winter normal rapeseed from China. Spring and winter rapeseed had the lowest genetic diversity. Among the groups, the new type rapeseed group had the largest average genetic distance to the other three groups. Principal component analysis and cluster analysis, however, could not separate the new type rapeseed group from Chinese normal rapeseed group. Our data suggested that the introgression of Chinese B. rapa could significantly diversify the genetic basis of the rapeseed and play an important role in the evolution of Chinese rapeseed. The use of new genetic variation for the exploitation of heterosis in Brassica hybrid breeding is discussed.

  15. BnaC9.SMG7b Functions as a Positive Regulator of the Number of Seeds per Silique in Brassica napus by Regulating the Formation of Functional Female Gametophytes.

    PubMed

    Li, Shipeng; Chen, Lei; Zhang, Liwu; Li, Xi; Liu, Ying; Wu, Zhikun; Dong, Faming; Wan, Lili; Liu, Kede; Hong, Dengfeng; Yang, Guangsheng

    2015-12-01

    Number of seeds per silique (NSS) is an important determinant of seed yield potential in Brassicaceae crops, and it is controlled by naturally occurring quantitative trait loci. We previously mapped a major quantitative trait locus, qSS.C9, on the C9 chromosome that controls NSS in Brassica napus. To gain a better understanding of how qSS.C9 controls NSS in B. napus, we isolated this locus through a map-based cloning strategy. qSS.C9 encodes a predicted small protein with 119 amino acids, designated as BnaC9.SMG7b, that shows homology with the Ever ShorterTelomere1 tertratricopeptide repeats and Ever Shorter Telomere central domains of Arabidopsis (Arabidopsis thaliana) SUPPRESSOR WITH MORPHOGENETIC EFFECTS ON GENITALIA7 (SMG7). BnaC9.SMG7b plays a role in regulating the formation of functional female gametophyte, thus determining the formation of functional megaspores and then mature ovules. Natural loss or artificial knockdown of BnaC9.SMG7b significantly reduces the number of functional ovules per silique and thus, results in decreased seed number, indicating that qSS.C9 is a positive regulator of NSS in B. napus. Sequence and function analyses show that BnaC9.SMG7b experiences a subfunctionalization process that causes loss of function in nonsense-mediated mRNA decay, such as in Arabidopsis SMG7. Haplotype analysis in 84 accessions showed that the favorable BnaC9.SMG7b alleles are prevalent in modern B. napus germplasms, suggesting that this locus has been a major selection target of B. napus improvement. Our results represent the first step toward unraveling the molecular mechanism that controls the natural variation of NSS in B. napus.

  16. BnaC9.SMG7b Functions as a Positive Regulator of the Number of Seeds per Silique in Brassica napus by Regulating the Formation of Functional Female Gametophytes1

    PubMed Central

    Li, Shipeng; Chen, Lei; Zhang, Liwu; Li, Xi; Liu, Ying; Wu, Zhikun; Dong, Faming; Wan, Lili; Liu, Kede; Yang, Guangsheng

    2015-01-01

    Number of seeds per silique (NSS) is an important determinant of seed yield potential in Brassicaceae crops, and it is controlled by naturally occurring quantitative trait loci. We previously mapped a major quantitative trait locus, qSS.C9, on the C9 chromosome that controls NSS in Brassica napus. To gain a better understanding of how qSS.C9 controls NSS in B. napus, we isolated this locus through a map-based cloning strategy. qSS.C9 encodes a predicted small protein with 119 amino acids, designated as BnaC9.SMG7b, that shows homology with the Ever ShorterTelomere1 tertratricopeptide repeats and Ever Shorter Telomere central domains of Arabidopsis (Arabidopsis thaliana) SUPPRESSOR WITH MORPHOGENETIC EFFECTS ON GENITALIA7 (SMG7). BnaC9.SMG7b plays a role in regulating the formation of functional female gametophyte, thus determining the formation of functional megaspores and then mature ovules. Natural loss or artificial knockdown of BnaC9.SMG7b significantly reduces the number of functional ovules per silique and thus, results in decreased seed number, indicating that qSS.C9 is a positive regulator of NSS in B. napus. Sequence and function analyses show that BnaC9.SMG7b experiences a subfunctionalization process that causes loss of function in nonsense-mediated mRNA decay, such as in Arabidopsis SMG7. Haplotype analysis in 84 accessions showed that the favorable BnaC9.SMG7b alleles are prevalent in modern B. napus germplasms, suggesting that this locus has been a major selection target of B. napus improvement. Our results represent the first step toward unraveling the molecular mechanism that controls the natural variation of NSS in B. napus. PMID:26494121

  17. Enhanced Salt Tolerance under Nitrate Nutrition is Associated with Apoplast Na+ Content in Canola (Brassica. napus L.) and Rice (Oryza sativa L.) Plants.

    PubMed

    Gao, Limin; Liu, Mei; Wang, Min; Shen, Qirong; Guo, Shiwei

    2016-11-01

    To analyze the effect of nitrogen form on salt stress, we studied the response of two different plant species, canola (Brassica napus L.), a dicotyledon which prefers NO3(-) nutrition, and rice (Oryza sativa L.), a monocotyledon which prefers NH4(+) nutrition, to salt stress under NO3(-) (NN) and NH4(+) (AN) nutrition. Salt stress was simulated by the addition of 150 and 100 mM NaCl to NN (NNS) and AN (ANS) in canola and rice seedlings, respectively. Salt stress induced reductions of shoot and root biomass that were more drastic under ANS. A higher Na(+) content was obtained in NNS than in ANS. The impact of Na(+) on the reduction of biomass (Δbiomass/Na(+)) was 162, 181, 230 and 245% higher in canola root, canola shoot, rice root and rice shoot in ANS than in NNS, respectively. In both canola and rice seedlings, the ratio of leaf Na(+) content in apoplasts to symplasts ([Na(+)]apo/[Na(+)]sym) was higher in NNS than in ANS. Also, in canola seedlings, the ratio of apoplast Na(+) in the leaf edge to the leaf center ([Na(+)]LE/[Na(+)]LC) was 18 times higher in NNS than in ANS. Our results illustrate that the confinement of Na(+) in the canola leaf edge, as well as the restriction of Na(+) in leaf apoplasts of canola and rice seedlings, protect cells from suffering Na(+) stress and contribute to the higher tolerance of NO3(-)-fed plants.

  18. Over-expression of the AtGA2ox8 gene decreases the biomass accumulation and lignification in rapeseed (Brassica napus L.)*

    PubMed Central

    Zhao, Xiao-ying; Zhu, Deng-feng; Zhou, Bo; Peng, Wu-sheng; Lin, Jian-zhong; Huang, Xing-qun; He, Re-qing; Zhuo, Yu-hong; Peng, Dan; Tang, Dong-ying; Li, Ming-fang; Liu, Xuan-ming

    2010-01-01

    Gibberellin 2-oxidase (GA 2-oxidase) plays very important roles in plant growth and development. In this study, the AtGA2ox8 gene, derived from Arabidopsis (Arabidopsis thaliana), was transformed and over-expressed in rapeseed (Brassica napus L.) to assess the role of AtGA2ox8 in biomass accumulation and lignification in plants. The transgenic plants, identified by resistant selection, polymerase chain reaction (PCR) and reverse-transcription PCR (RT-PCR) analyses, and green fluorescence examination, showed growth retardation, flowering delay, and dwarf stature. The fresh weight and dry weight in transgenic lines were about 21% and 29% lower than those in wild type (WT), respectively, and the fresh to dry weight ratios were higher than that of WT. Quantitative measurements demonstrated that the lignin content in transgenic lines decreased by 10%–20%, and histochemical staining results also showed reduced lignification in transgenic lines. Quantitative real-time PCR analysis indicated that the transcript levels of lignin biosynthetic genes in transgenic lines were markedly decreased and were consistent with the reduced lignification. These results suggest that the reduced biomass accumulation and lignification in the AtGA2ox8 over-expression rapeseed might be due to altered lignin biosynthetic gene expression. PMID:20593511

  19. Enhanced Seed Oil Production in Canola by Conditional Expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in Developing Seeds1[W][OA

    PubMed Central

    Tan, Helin; Yang, Xiaohui; Zhang, Fengxia; Zheng, Xiu; Qu, Cunmin; Mu, Jinye; Fu, Fuyou; Li, Jiana; Guan, Rongzhan; Zhang, Hongsheng; Wang, Guodong; Zuo, Jianru

    2011-01-01

    The seed oil content in oilseed crops is a major selection trait to breeders. In Arabidopsis (Arabidopsis thaliana), LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) are key regulators of fatty acid biosynthesis. Overexpression of AtLEC1 and its orthologs in canola (Brassica napus), BnLEC1 and BnL1L, causes an increased fatty acid level in transgenic Arabidopsis plants, which, however, also show severe developmental abnormalities. Here, we use truncated napin A promoters, which retain the seed-specific expression pattern but with a reduced expression level, to drive the expression of BnLEC1 and BnL1L in transgenic canola. Conditional expression of BnLEC1 and BnL1L increases the seed oil content by 2% to 20% and has no detrimental effects on major agronomic traits. In the transgenic canola, expression of a subset of genes involved in fatty acid biosynthesis and glycolysis is up-regulated in developing seeds. Moreover, the BnLEC1 transgene enhances the expression of several genes involved in Suc synthesis and transport in developing seeds and the silique wall. Consistently, the accumulation of Suc and Fru is increased in developing seeds of the transgenic rapeseed, suggesting the increased carbon flux to fatty acid biosynthesis. These results demonstrate that BnLEC1 and BnL1L are reliable targets for genetic improvement of rapeseed in seed oil production. PMID:21562329

  20. Assays of the production of harmful substances by genetically modified oilseed rape (Brassica napus L.) plants in accordance with regulations for evaluating the impact on biodiversity in Japan.

    PubMed

    Asanuma, Yoko; Jinkawa, Tomoe; Tanaka, Hidenori; Gondo, Takahiro; Zaita, Norihiro; Akashi, Ryo

    2011-02-01

    Environmental risk assessment of transgenic crops is implemented under the Cartagena Protocol domestic law in accordance with guidelines for implementing the assessment established by the Ministry of Agriculture, Forestry and Fisheries (MAFF) and the Ministry of Environment (MOE) in Japan. Environmental risk assessments of transgenic crops are implemented based on the concept of 'substantial equivalence' to conventional crops. A unique requirement in Japan to monitor the production of harmful substances, or allelochemicals, is unparalleled in other countries. The potential for allelochemicals to be secreted from the roots of transgenic crops to affect other plants or soil microflora or for substances in the plant body to affect other plants after dying out must be evaluated. We evaluated the allelopathic potential of seven transgenic oilseed rape (Brassica napus L.) lines that express glufosinate tolerance in terms of substantial equivalence to conventional oilseed rape lines, and established evaluation methods. Our results indicate no potential production of allelochemicals for any of the seven transgenic oilseed rape lines compared with conventional oilseed rape lines.

  1. Dynamic metabolic changes in seeds and seedlings of Brassica napus (oilseed rape) suppressing UGT84A9 reveal plasticity and molecular regulation of the phenylpropanoid pathway.

    PubMed

    Hettwer, Karina; Böttcher, Christoph; Frolov, Andrej; Mittasch, Juliane; Albert, Andreas; von Roepenack-Lahaye, Edda; Strack, Dieter; Milkowski, Carsten

    2016-04-01

    In Brassica napus, suppression of the key biosynthetic enzyme UDP-glucose:sinapic acid glucosyltransferase (UGT84A9) inhibits the biosynthesis of sinapine (sinapoylcholine), the major phenolic component of seeds. Based on the accumulation kinetics of a total of 158 compounds (110 secondary and 48 primary metabolites), we investigated how suppression of the major sink pathway of sinapic acid impacts the metabolome of developing seeds and seedlings. In UGT84A9-suppressing (UGT84A9i) lines massive alterations became evident in late stages of seed development affecting the accumulation levels of 58 secondary and 7 primary metabolites. UGT84A9i seeds were characterized by decreased amounts of various hydroxycinnamic acid (HCA) esters, and increased formation of sinapic and syringic acid glycosides. This indicates glycosylation and β-oxidation as metabolic detoxification strategies to bypass intracellular accumulation of sinapic acid. In addition, a net loss of sinapic acid upon UGT84A9 suppression may point to a feedback regulation of HCA biosynthesis. Surprisingly, suppression of UGT84A9 under control of the seed-specific NAPINC promoter was maintained in cotyledons during the first two weeks of seedling development and associated with a reduced and delayed transformation of sinapine into sinapoylmalate. The lack of sinapoylmalate did not interfere with plant fitness under UV-B stress. Increased UV-B radiation triggered the accumulation of quercetin conjugates whereas the sinapoylmalate level was not affected.

  2. Functional characterization of NAC55 transcription factor from oilseed rape (Brassica napus L.) as a novel transcriptional activator modulating reactive oxygen species accumulation and cell death.

    PubMed

    Niu, Fangfang; Wang, Chen; Yan, Jingli; Guo, Xiaohua; Wu, Feifei; Yang, Bo; Deyholos, Michael K; Jiang, Yuan-Qing

    2016-09-01

    NAC transcription factors (TFs) are plant-specific and play important roles in development, responses to biotic and abiotic cues and hormone signaling. So far, only a few NAC genes have been reported to regulate cell death. In this study, we identified and characterized a NAC55 gene isolated from oilseed rape (Brassica napus L.). BnaNAC55 responds to multiple stresses, including cold, heat, abscisic acid (ABA), jasmonic acid (JA) and a necrotrophic fungal pathogen Sclerotinia sclerotiorum. BnaNAC55 has transactivation activity and is located in the nucleus. BnaNAC55 is able to form homodimers in planta. Unlike ANAC055, full-length BnaNAC55, but not either the N-terminal NAC domain or C-terminal regulatory domain, induces ROS accumulation and hypersensitive response (HR)-like cell death when expressed both in oilseed rape protoplasts and Nicotiana benthamiana. Furthermore, BnaNAC55 expression causes obvious nuclear DNA fragmentation. Moreover, quantitative reverse transcription PCR (qRT-PCR) analysis identified that the expression levels of multiple genes regulating ROS production and scavenging, defense response as well as senescence are significantly induced. Using a dual luciferase reporter assay, we further confirm that BnaNAC55 could activate the expression of a few ROS and defense-related gene expression. Taken together, our work has identified a novel NAC TF from oilseed rape that modulates ROS accumulation and cell death.

  3. Canola (Brassica napus L.) NAC103 transcription factor gene is a novel player inducing reactive oxygen species accumulation and cell death in plants.

    PubMed

    Niu, Fangfang; Wang, Boya; Wu, Feifei; Yan, Jingli; Li, Liang; Wang, Chen; Wang, Yiqiao; Yang, Bo; Jiang, Yuan-Qing

    2014-11-07

    NAC transcription factors are plant-specific and play important roles in many processes including plant development, response to biotic and abiotic stresses and hormone signaling. So far, only a few NAC genes have been identified to mediate cell death. In this study, we identified a novel NAC gene from canola (Brassica napus L.), BnaNAC103 which induces reactive oxygen species (ROS) accumulation and cell death in Nicotianabenthamiana leaves. We found that BnaNAC103 responded to multiple signalings, including cold, salicylic acid (SA) and a fungal pathogen Sclerotinia sclerotiorum. BnaNAC103 is located in the nucleus. Expression of full-length BnaNAC103, but not either the N-terminal NAC domain or C-terminal regulatory domain, was identified to induce hypersensitive response (HR)-like cell death when expressed in N. benthamiana. The cell death triggered by BnaNAC103 is preceded by accumulation of ROS, with diaminobenzidine (DAB) staining supporting this. Moreover, quantification of ion leakage and malondialdehyde (MDA) of leaf discs indicates significant cell membrane breakage and lipid peroxidation induced by BnaNAC103 expression. Taken together, our work has identified a novel NAC transcription factor gene modulating ROS level and cell death in plants.

  4. Expression of green fluorescent protein in pollen of oilseed rape (Brassica napus L.) and its utility for assessing pollen movement in the field.

    PubMed

    Moon, Hong S; Halfhill, Matthew D; Hudson, Laura C; Millwood, Reginald J; Stewart, C Neal

    2006-10-01

    Transgene movement via pollen is an important component of gene flow from transgenic plants. Here, we present proof-of-concept studies that demonstrate the monitoring of short distant movement of pollen expressing a genetically encoded fluorescent tag in oilseed rape (Brassica napus L. cv. Westar). Transgenic oilseed rape plants were produced using Agrobacterium-mediated transformation method with the pBINDC1 construct containing a green fluorescent protein (GFP) variant, mGFP5-ER, under the control of the pollen-specific LAT59 promoter from tomato. Transgenic pollen was differentiated from non-transgenic pollen in vivo by a unique spectral signature, and was shown to be an effective tool to monitor pollen movement in the greenhouse and field. GFP-tagged pollen also served as a practical marker to determine the zygosity of plants. In a greenhouse pollen flow study, more pollen was captured at closer distances from the source plant plot with consistent wind generated by a fan. Under field conditions, GFP transgenic pollen grains were detected up to a distance of 15 m, the farthest distance from source plants assayed. GFP-tagged pollen was easily distinguishable from non-transgenic pollen using an epifluorescence microscope.

  5. A strategy for targeting recombinant proteins to protein storage vacuoles by fusion to Brassica napus napin in napin-depleted seeds.

    PubMed

    Hegedus, Dwayne D; Baron, Marcus; Labbe, Natalie; Coutu, Cathy; Lydiate, Derek; Lui, Helen; Rozwadowski, Kevin

    2014-03-01

    Seeds are capable of accumulating high levels of seed storage proteins (SSP), as well as heterologous