Science.gov

Sample records for brassica rapa flc1

  1. A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time.

    PubMed

    Yuan, Yu-Xiang; Wu, Jian; Sun, Ri-Fei; Zhang, Xiao-Wei; Xu, Dong-Hui; Bonnema, Guusje; Wang, Xiao-Wu

    2009-01-01

    FLOWERING LOCUS C (FLC), encoding a MADS-domain transcription factor in Arabidopsis, is a repressor of flowering involved in the vernalization pathway. This provides a good reference for Brassica species. Genomes of Brassica species contain several FLC homologues and several of these colocalize with flowering-time QTL. Here the analysis of sequence variation of BrFLC1 in Brassica rapa and its association with the flowering-time phenotype is reported. The analysis revealed that a G-->A polymorphism at the 5' splice site in intron 6 of BrFLC1 is associated with flowering phenotype. Three BrFLC1 alleles with alternative splicing patterns, including two with different parts of intron 6 retained and one with the entire exon 6 excluded from the transcript, were identified in addition to alleles with normal splicing. It was inferred that aberrant splicing of the pre-mRNA leads to loss-of-function of BrFLC1. A CAPS marker was developed for this locus to distinguish Pi6+1(G) and Pi6+1(A). The polymorphism detected with this marker was significantly associated with flowering time in a collection of 121 B. rapa accessions and in a segregating Chinese cabbage doubled-haploid population. These findings suggest that a naturally occurring splicing mutation in the BrFLC1 gene contributes greatly to flowering-time variation in B. rapa.

  2. Brassica rapa.

    PubMed

    Lawrenson, Tom; Goldsack, Cassandra; Ostergaard, Lars; née Sparrow, Penny A C Hundleby

    2015-01-01

    Within this chapter we outline an A. tumefaciens-mediated transformation method for B. rapa using 4-day-old cotyledonary explants and the genotype R-o-18. Transformation efficiencies are typically achieved in the region of 1% (based on 2 PCR-positive independent shoots from 200 inoculated explants). This system has been developed to work with gentamicin selection.

  3. A sequence-tagged linkage map of Brassica rapa.

    PubMed

    Kim, Jung Sun; Chung, Tae Young; King, Graham J; Jin, Mina; Yang, Tae-Jin; Jin, Yong-Moon; Kim, Ho-Il; Park, Beom-Seok

    2006-09-01

    A detailed genetic linkage map of Brassica rapa has been constructed containing 545 sequence-tagged loci covering 1287 cM, with an average mapping interval of 2.4 cM. The loci were identified using a combination of 520 RFLP and 25 PCR-based markers. RFLP probes were derived from 359 B. rapa EST clones and amplification products of 11 B. rapa and 26 Arabidopsis. Including 21 SSR markers provided anchors to previously published linkage maps for B. rapa and B. napus and is followed as the referenced mapping of R1-R10. The sequence-tagged markers allowed interpretation of the pattern of chromosome duplications within the B. rapa genome and comparison with Arabidopsis. A total of 62 EST markers showing a single RFLP band were mapped through 10 linkage groups, indicating that these can be valuable anchoring markers for chromosome-based genome sequencing of B. rapa. Other RFLP probes gave rise to 2-5 loci, inferring that B. rapa genome duplication is a general phenomenon through 10 chromosomes. The map includes five loci of FLC paralogues, which represent the previously reported BrFLC-1, -2, -3, and -5 and additionally identified BrFLC3 paralogues derived from local segmental duplication on R3.

  4. QTL architecture of reproductive fitness characters in Brassica rapa

    PubMed Central

    2014-01-01

    Background Reproductive output is critical to both agronomists seeking to increase seed yield and to evolutionary biologists interested in understanding natural selection. We examine the genetic architecture of diverse reproductive fitness traits in recombinant inbred lines (RILs) developed from a crop (seed oil) × wild-like (rapid cycling) genotype of Brassica rapa in field and greenhouse environments. Results Several fitness traits showed strong correlations and QTL-colocalization across environments (days to bolting, fruit length and seed color). Total fruit number was uncorrelated across environments and most QTL affecting this trait were correspondingly environment-specific. Most fitness components were positively correlated, consistent with life-history theory that genotypic variation in resource acquisition masks tradeoffs. Finally, we detected evidence of transgenerational pleiotropy, that is, maternal days to bolting was negatively correlated with days to offspring germination. A QTL for this transgenerational correlation was mapped to a genomic region harboring one copy of FLOWERING LOCUS C, a genetic locus known to affect both days to flowering as well as germination phenotypes. Conclusions This study characterizes the genetic structure of important fitness/yield traits within and between generations in B. rapa. Several identified QTL are suitable candidates for fine-mapping for the improvement of yield in crop Brassicas. Specifically, brFLC1, warrants further investigation as a potential regulator of phenology between generations. PMID:24641198

  5. Glucosinolate biosynthetic genes in Brassica rapa.

    PubMed

    Wang, Hui; Wu, Jian; Sun, Silong; Liu, Bo; Cheng, Feng; Sun, Rifei; Wang, Xiaowu

    2011-11-10

    Glucosinolates (GS) are a group of amino acid-derived secondary metabolites found throughout the Cruciferae family. Glucosinolates and their degradation products play important roles in pathogen and insect interactions, as well as in human health. In order to elucidate the glucosinolate biosynthetic pathway in Brassica rapa, we conducted comparative genomic analyses of Arabidopsis thaliana and B. rapa on a genome-wide level. We identified 102 putative genes in B. rapa as the orthologs of 52 GS genes in A. thaliana. All but one gene was successfully mapped on 10 chromosomes. Most GS genes exist in more than one copy in B. rapa. A high co-linearity in the glucosinolate biosynthetic pathway between A. thaliana and B. rapa was also established. The homologous GS genes in B. rapa and A. thaliana share 59-91% nucleotide sequence identity and 93% of the GS genes exhibit synteny between B. rapa and A. thaliana. Moreover, the structure and arrangement of the B. rapa GS (BrGS) genes correspond with the known evolutionary divergence of B. rapa, and may help explain the profiles and accumulation of GS in B. rapa.

  6. Unleashing the genome of brassica rapa.

    PubMed

    Tang, Haibao; Lyons, Eric

    2012-01-01

    The completion and release of the Brassica rapa genome is of great benefit to researchers of the Brassicas, Arabidopsis, and genome evolution. While its lineage is closely related to the model organism Arabidopsis thaliana, the Brassicas experienced a whole genome triplication subsequent to their divergence. This event contemporaneously created three copies of its ancestral genome, which had diploidized through the process of homeologous gene loss known as fractionation. By the fractionation of homeologous gene content and genetic regulatory binding sites, Brassica's genome is well placed to use comparative genomic techniques to identify syntenic regions, homeologous gene duplications, and putative regulatory sequences. Here, we use the comparative genomics platform CoGe to perform several different genomic analyses with which to study structural changes of its genome and dynamics of various genetic elements. Starting with whole genome comparisons, the Brassica paleohexaploidy is characterized, syntenic regions with A. thaliana are identified, and the TOC1 gene in the circadian rhythm pathway from A. thaliana is used to find duplicated orthologs in B. rapa. These TOC1 genes are further analyzed to identify conserved non-coding sequences that contain cis-acting regulatory elements and promoter sequences previously implicated in circadian rhythmicity. Each "cookbook style" analysis includes a step-by-step walk-through with links to CoGe to quickly reproduce each step of the analytical process.

  7. Genetic relationships among turnip (Brassica rapa var. rapa) genotypes.

    PubMed

    Yildirim, E; Yildirim, N; Ercisli, S; Agar, G; Karlidag, H

    2010-01-01

    Turnip (Brassica rapa var. rapa) is one of the main vegetables consumed by people living in Eastern Anatolia in Turkey. In this region, farmers obtain their own seeds for production, which results in considerable morphological variability. We examined the genetic variation and relationships among 11 turnip genotypes sampled from diverse environments of the Erzurum region located in Eastern Anatolia in Turkey. Thirty-two Operon RAPD primers were screened; among them, 20 gave reproducible and clear DNA fragments after amplification. The average polymorphism ratio was 90.4%. The genetic distance between turnip genotypes were found to range from 0.302 to 0.733, indicating high genetic variability. Eleven genotypes were divided into three main clusters in a dendrogram; ETS2 and ETS8 genotypes were the most distant. We conclude that RAPD analysis would be useful for genotyping turnip genotypes.

  8. Unleashing the Genome of Brassica Rapa

    PubMed Central

    Tang, Haibao; Lyons, Eric

    2012-01-01

    The completion and release of the Brassica rapa genome is of great benefit to researchers of the Brassicas, Arabidopsis, and genome evolution. While its lineage is closely related to the model organism Arabidopsis thaliana, the Brassicas experienced a whole genome triplication subsequent to their divergence. This event contemporaneously created three copies of its ancestral genome, which had diploidized through the process of homeologous gene loss known as fractionation. By the fractionation of homeologous gene content and genetic regulatory binding sites, Brassica’s genome is well placed to use comparative genomic techniques to identify syntenic regions, homeologous gene duplications, and putative regulatory sequences. Here, we use the comparative genomics platform CoGe to perform several different genomic analyses with which to study structural changes of its genome and dynamics of various genetic elements. Starting with whole genome comparisons, the Brassica paleohexaploidy is characterized, syntenic regions with A. thaliana are identified, and the TOC1 gene in the circadian rhythm pathway from A. thaliana is used to find duplicated orthologs in B. rapa. These TOC1 genes are further analyzed to identify conserved non-coding sequences that contain cis-acting regulatory elements and promoter sequences previously implicated in circadian rhythmicity. Each “cookbook style” analysis includes a step-by-step walk-through with links to CoGe to quickly reproduce each step of the analytical process. PMID:22866056

  9. Targeted metabolite analysis and biological activity of Pieris brassicae fed with Brassica rapa var. rapa.

    PubMed

    Pereira, David M; Noites, Alexandra; Valentão, Patricia; Ferreres, Federico; Pereira, José A; Vale-Silva, Luis; Pinto, Eugénia; Andrade, Paula B

    2009-01-28

    For the first time, an insect-plant system, Pieris brassicae fed with Brassica rapa var. rapa, was tested for its biological capacity, namely, antioxidant (DPPH*, *NO, and O(2)*- radicals) and antimicrobial (bacteria and fungi) activities. Samples from the insect's life cycle (larvae, excrements, exuviae, and butterfly) were always found to be more efficient than the host plant. Also, P. brassicae materials, as well as its host plant, were screened for phenolics and organic acids. The host plant revealed higher amounts of both compounds. Two phenolic acids, ferulic and sinapic, as well as kaempferol 3-Osophoroside, were common to insect (larvae and excrements) and plant materials, with excrements being considerably richer. Detection of sulfated compounds in excrements, absent in host plant, revealed that metabolic processes in this species involved sulfation. Additionally, deacylation and deglycosilation were observed. All matrices presented the same organic acids qualitative profile, with the exception of excrements.

  10. Characterization and effects of the replicated flowering time gene FLC in Brassica rapa.

    PubMed

    Schranz, M Eric; Quijada, Pablo; Sung, Si-Bum; Lukens, Lewis; Amasino, Richard; Osborn, Thomas C

    2002-11-01

    Functional genetic redundancy is widespread in plants and could have an important impact on phenotypic diversity if the multiple gene copies act in an additive or dosage-dependent manner. We have cloned four Brassica rapa homologs (BrFLC) of the MADS-box flowering-time regulator FLC, located at the top of chromosome 5 of Arabidopsis thaliana. Relative rate tests revealed no evidence for differential rates of evolution and the ratios of nonsynonymous-to-synonymous substitutions suggest BrFLC loci are not under strong purifying selection. BrFLC1, BrFLC2, and BrFLC3 map to genomic regions that are collinear with the top of At5, consistent with a polyploid origin. BrFLC5 maps near a junction of two collinear regions to Arabidopsis, one of which includes an FLC-like gene (AGL31). However, all BrFLC sequences are more closely related to FLC than to AGL31. BrFLC1, BrFLC2, and BrFLC5 cosegregate with flowering-time loci evaluated in populations derived by backcrossing late-flowering alleles from a biennial parent into an annual parent. Two loci segregating in a single backcross population affected flowering in a completely additive manner. Thus, replicated BrFLC genes appear to have a similar function and interact in an additive manner to modulate flowering time.

  11. Progress in understanding and sequencing the genome of Brassica rapa.

    PubMed

    Hong, Chang Pyo; Kwon, Soo-Jin; Kim, Jung Sun; Yang, Tae-Jin; Park, Beom-Seok; Lim, Yong Pyo

    2008-01-01

    Brassica rapa, which is closely related to Arabidopsis thaliana, is an important crop and a model plant for studying genome evolution via polyploidization. We report the current understanding of the genome structure of B. rapa and efforts for the whole-genome sequencing of the species. The tribe Brassicaceae, which comprises ca. 240 species, descended from a common hexaploid ancestor with a basic genome similar to that of Arabidopsis. Chromosome rearrangements, including fusions and/or fissions, resulted in the present-day "diploid" Brassica species with variation in chromosome number and phenotype. Triplicated genomic segments of B. rapa are collinear to those of A. thaliana with InDels. The genome triplication has led to an approximately 1.7-fold increase in the B. rapa gene number compared to that of A. thaliana. Repetitive DNA of B. rapa has also been extensively amplified and has diverged from that of A. thaliana. For its whole-genome sequencing, the Brassica rapa Genome Sequencing Project (BrGSP) consortium has developed suitable genomic resources and constructed genetic and physical maps. Ten chromosomes of B. rapa are being allocated to BrGSP consortium participants, and each chromosome will be sequenced by a BAC-by-BAC approach. Genome sequencing of B. rapa will offer a new perspective for plant biology and evolution in the context of polyploidization.

  12. Secondary Metabolism in Brassica Rapa Under Hypergravity

    NASA Astrophysics Data System (ADS)

    Levine, Lanfang; Darnell, Rebecca; Allen, Joan; Musgrave, Mary; Bisbee, Patricia

    Effect of altered gravity on secondary metabolism is of critical importance not only from the viewpoint of plant evolution, but also of productivity (carbon partition between edible and non-edible parts), plant fitness, as well as culinary and nutraceutical values to human diet. Previous work found that lignin content decreases in microgravity as the need for mechanical support decreases, while the response of other small molecular secondary metabolites to microgravity varies. Our recent ISS experiment showed that 3-butenyl glucosinolate (a predominant glucosinolate in Brassica rapa) increased in stems of B. rapa grown in the microgravity conditions. To further elucidate the role of gravity in plant secondary metabolism, a series of hypergravity (the other end of gravity spectrum) experiments were carried out using the 24-ft centrifuge at Ames Research Center. Thirteen-day-old B. rapa L. (cv. Astroplants) were transferred to the Plant Growth Facility attached to the centrifuge following previous experimental conditions, and subsequently grown for 16 days. Plants were harvested, immediately frozen in liquid nitrogen, and lyophilized prior to analysis for glucosinolates and lignin. In general, glucosinolate concentration was the highest in stems, followed by leaves, then roots. Glucosinolate concentration was significantly lower in stems of the 2-g and 4-g plants - averaging 4.6 and 2.5 ng/g DW, respectively - compared with the stationary control plants, which averaged 7.9 ng/g DW. Similarly, there was a 2.2-fold and 7.5-fold decrease in 3-butenyl glucosinolate in roots of the 2-g and 4-g plants, respectively, compared with the control (2.6 ng/g DW). There was a significant decrease in 3-butenyl glucosinolate concentration in leaves of the 4-g compared to leaves of the control plants (2.6 and 4.5 ng/g DW, respectively); however, there was no effect of 2-g on leaf glucosinolate concentration. Increasing gravity from 1-g to 2-g to 4-g generally resulted in further

  13. Metabolic characterization of Brassica rapa leaves by NMR spectroscopy.

    PubMed

    Abdel-Farid, Ibrahim Bayoumi; Kim, Hye Kyong; Choi, Young Hae; Verpoorte, Robert

    2007-09-19

    The Brassica has been intensively studied due to the nutritional and beneficial effects. However, many species, varieties, and cultivars of this genus and the resulting large metabolic variation have been obstacles for systematic research of the plant. In order to overcome the problems posed by the biological variation, the metabolomic analysis of various cultivars of Brassica rapa was performed by NMR spectroscopy combined with multivariate data analysis. Discriminating metabolites in different cultivars and development stages were elucidated by diverse 2D-NMR techniques after sorting out different significant signals using (1)H NMR measurements and principal component analysis. Among the elucidated metabolites, several organic and amino acids, carbohydrates, adenine, indole acetic acid (IAA), phenylpropanoids, flavonoids, and glucosinolates were found to be the metabolites contributing to the differentiation between cultivars and age of Brassica rapa. On the basis of these results, the distribution of plant metabolites among different cultivars and development stages of B. rapa is discussed.

  14. The genome of the mesopolyploid crop species Brassica rapa.

    PubMed

    Wang, Xiaowu; Wang, Hanzhong; Wang, Jun; Sun, Rifei; Wu, Jian; Liu, Shengyi; Bai, Yinqi; Mun, Jeong-Hwan; Bancroft, Ian; Cheng, Feng; Huang, Sanwen; Li, Xixiang; Hua, Wei; Wang, Junyi; Wang, Xiyin; Freeling, Michael; Pires, J Chris; Paterson, Andrew H; Chalhoub, Boulos; Wang, Bo; Hayward, Alice; Sharpe, Andrew G; Park, Beom-Seok; Weisshaar, Bernd; Liu, Binghang; Li, Bo; Liu, Bo; Tong, Chaobo; Song, Chi; Duran, Christopher; Peng, Chunfang; Geng, Chunyu; Koh, Chushin; Lin, Chuyu; Edwards, David; Mu, Desheng; Shen, Di; Soumpourou, Eleni; Li, Fei; Fraser, Fiona; Conant, Gavin; Lassalle, Gilles; King, Graham J; Bonnema, Guusje; Tang, Haibao; Wang, Haiping; Belcram, Harry; Zhou, Heling; Hirakawa, Hideki; Abe, Hiroshi; Guo, Hui; Wang, Hui; Jin, Huizhe; Parkin, Isobel A P; Batley, Jacqueline; Kim, Jeong-Sun; Just, Jérémy; Li, Jianwen; Xu, Jiaohui; Deng, Jie; Kim, Jin A; Li, Jingping; Yu, Jingyin; Meng, Jinling; Wang, Jinpeng; Min, Jiumeng; Poulain, Julie; Wang, Jun; Hatakeyama, Katsunori; Wu, Kui; Wang, Li; Fang, Lu; Trick, Martin; Links, Matthew G; Zhao, Meixia; Jin, Mina; Ramchiary, Nirala; Drou, Nizar; Berkman, Paul J; Cai, Qingle; Huang, Quanfei; Li, Ruiqiang; Tabata, Satoshi; Cheng, Shifeng; Zhang, Shu; Zhang, Shujiang; Huang, Shunmou; Sato, Shusei; Sun, Silong; Kwon, Soo-Jin; Choi, Su-Ryun; Lee, Tae-Ho; Fan, Wei; Zhao, Xiang; Tan, Xu; Xu, Xun; Wang, Yan; Qiu, Yang; Yin, Ye; Li, Yingrui; Du, Yongchen; Liao, Yongcui; Lim, Yongpyo; Narusaka, Yoshihiro; Wang, Yupeng; Wang, Zhenyi; Li, Zhenyu; Wang, Zhiwen; Xiong, Zhiyong; Zhang, Zhonghua

    2011-10-01

    We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution. The extent of gene loss (fractionation) among triplicated genome segments varies, with one of the three copies consistently retaining a disproportionately large fraction of the genes expected to have been present in its ancestor. Variation in the number of members of gene families present in the genome may contribute to the remarkable morphological plasticity of Brassica species. The B. rapa genome sequence provides an important resource for studying the evolution of polyploid genomes and underpins the genetic improvement of Brassica oil and vegetable crops.

  15. The genome of the mesopolyploid crop species Brassica rapa.

    PubMed

    Wang, Xiaowu; Wang, Hanzhong; Wang, Jun; Sun, Rifei; Wu, Jian; Liu, Shengyi; Bai, Yinqi; Mun, Jeong-Hwan; Bancroft, Ian; Cheng, Feng; Huang, Sanwen; Li, Xixiang; Hua, Wei; Wang, Junyi; Wang, Xiyin; Freeling, Michael; Pires, J Chris; Paterson, Andrew H; Chalhoub, Boulos; Wang, Bo; Hayward, Alice; Sharpe, Andrew G; Park, Beom-Seok; Weisshaar, Bernd; Liu, Binghang; Li, Bo; Liu, Bo; Tong, Chaobo; Song, Chi; Duran, Christopher; Peng, Chunfang; Geng, Chunyu; Koh, Chushin; Lin, Chuyu; Edwards, David; Mu, Desheng; Shen, Di; Soumpourou, Eleni; Li, Fei; Fraser, Fiona; Conant, Gavin; Lassalle, Gilles; King, Graham J; Bonnema, Guusje; Tang, Haibao; Wang, Haiping; Belcram, Harry; Zhou, Heling; Hirakawa, Hideki; Abe, Hiroshi; Guo, Hui; Wang, Hui; Jin, Huizhe; Parkin, Isobel A P; Batley, Jacqueline; Kim, Jeong-Sun; Just, Jérémy; Li, Jianwen; Xu, Jiaohui; Deng, Jie; Kim, Jin A; Li, Jingping; Yu, Jingyin; Meng, Jinling; Wang, Jinpeng; Min, Jiumeng; Poulain, Julie; Wang, Jun; Hatakeyama, Katsunori; Wu, Kui; Wang, Li; Fang, Lu; Trick, Martin; Links, Matthew G; Zhao, Meixia; Jin, Mina; Ramchiary, Nirala; Drou, Nizar; Berkman, Paul J; Cai, Qingle; Huang, Quanfei; Li, Ruiqiang; Tabata, Satoshi; Cheng, Shifeng; Zhang, Shu; Zhang, Shujiang; Huang, Shunmou; Sato, Shusei; Sun, Silong; Kwon, Soo-Jin; Choi, Su-Ryun; Lee, Tae-Ho; Fan, Wei; Zhao, Xiang; Tan, Xu; Xu, Xun; Wang, Yan; Qiu, Yang; Yin, Ye; Li, Yingrui; Du, Yongchen; Liao, Yongcui; Lim, Yongpyo; Narusaka, Yoshihiro; Wang, Yupeng; Wang, Zhenyi; Li, Zhenyu; Wang, Zhiwen; Xiong, Zhiyong; Zhang, Zhonghua

    2011-10-01

    We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution. The extent of gene loss (fractionation) among triplicated genome segments varies, with one of the three copies consistently retaining a disproportionately large fraction of the genes expected to have been present in its ancestor. Variation in the number of members of gene families present in the genome may contribute to the remarkable morphological plasticity of Brassica species. The B. rapa genome sequence provides an important resource for studying the evolution of polyploid genomes and underpins the genetic improvement of Brassica oil and vegetable crops. PMID:21873998

  16. Identification of Resistance to Peppery Leaf Spot among Brassica Juncea and Brassica Rapa Plant Introductions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassica leafy greens (Brassica juncea L. and B. rapa L.) represent one of the most economically important vegetable crop groups in the southeastern United States. In the last 10 years, numerous occurrences of a leaf spot disease on these leafy vegetables have been reported in several states. This...

  17. Phytotoxicity assay for seed production using Brassica rapa L.

    EPA Science Inventory

    Although pesticide drift can affect crop yield adversely, current plant testing protocols emphasize only the potential impacts on vegetative plant growth. The present study was conducted to determine whether a plant species with a short life cycle, such as Brassica rapa L. Wiscon...

  18. Could nitrile derivatives of turnip (Brassica rapa) glucosinolates be Hepato-and/or cholangiotoxic in cattle?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Turnip (Brassica rapa ssp. rapa) and rape (Brassica napus ssp. biennis) and other brassica forage crops are generally regarded as “safe” feed for cattle during late summer and fall in New Zealand. However, when Pithomyces chartarum spore counts are high there are epidemics of sporidesmin toxicity (...

  19. Could nitrile derivatives of turnip (Brassica rapa) glucosinolates be hepato- or cholangiotoxic in cattle?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Turnip (Brassica rapa ssp. rapa) and rape (Brassica napus ssp. biennis) and other brassica forage crops are regarded as “safe” feed for cattle during late summer and fall in the North Island of New Zealand when high Pithomyces chartarum spore counts in pastures frequently lead to sporidesmin toxicit...

  20. Deciphering the diploid ancestral genome of the Mesohexaploid Brassica rapa.

    PubMed

    Cheng, Feng; Mandáková, Terezie; Wu, Jian; Xie, Qi; Lysak, Martin A; Wang, Xiaowu

    2013-05-01

    The genus Brassica includes several important agricultural and horticultural crops. Their current genome structures were shaped by whole-genome triplication followed by extensive diploidization. The availability of several crucifer genome sequences, especially that of Chinese cabbage (Brassica rapa), enables study of the evolution of the mesohexaploid Brassica genomes from their diploid progenitors. We reconstructed three ancestral subgenomes of B. rapa (n = 10) by comparing its whole-genome sequence to ancestral and extant Brassicaceae genomes. All three B. rapa paleogenomes apparently consisted of seven chromosomes, similar to the ancestral translocation Proto-Calepineae Karyotype (tPCK; n = 7), which is the evolutionarily younger variant of the Proto-Calepineae Karyotype (n = 7). Based on comparative analysis of genome sequences or linkage maps of Brassica oleracea, Brassica nigra, radish (Raphanus sativus), and other closely related species, we propose a two-step merging of three tPCK-like genomes to form the hexaploid ancestor of the tribe Brassiceae with 42 chromosomes. Subsequent diversification of the Brassiceae was marked by extensive genome reshuffling and chromosome number reduction mediated by translocation events and followed by loss and/or inactivation of centromeres. Furthermore, via interspecies genome comparison, we refined intervals for seven of the genomic blocks of the Ancestral Crucifer Karyotype (n = 8), thus revising the key reference genome for evolutionary genomics of crucifers. PMID:23653472

  1. Deciphering the diploid ancestral genome of the Mesohexaploid Brassica rapa.

    PubMed

    Cheng, Feng; Mandáková, Terezie; Wu, Jian; Xie, Qi; Lysak, Martin A; Wang, Xiaowu

    2013-05-01

    The genus Brassica includes several important agricultural and horticultural crops. Their current genome structures were shaped by whole-genome triplication followed by extensive diploidization. The availability of several crucifer genome sequences, especially that of Chinese cabbage (Brassica rapa), enables study of the evolution of the mesohexaploid Brassica genomes from their diploid progenitors. We reconstructed three ancestral subgenomes of B. rapa (n = 10) by comparing its whole-genome sequence to ancestral and extant Brassicaceae genomes. All three B. rapa paleogenomes apparently consisted of seven chromosomes, similar to the ancestral translocation Proto-Calepineae Karyotype (tPCK; n = 7), which is the evolutionarily younger variant of the Proto-Calepineae Karyotype (n = 7). Based on comparative analysis of genome sequences or linkage maps of Brassica oleracea, Brassica nigra, radish (Raphanus sativus), and other closely related species, we propose a two-step merging of three tPCK-like genomes to form the hexaploid ancestor of the tribe Brassiceae with 42 chromosomes. Subsequent diversification of the Brassiceae was marked by extensive genome reshuffling and chromosome number reduction mediated by translocation events and followed by loss and/or inactivation of centromeres. Furthermore, via interspecies genome comparison, we refined intervals for seven of the genomic blocks of the Ancestral Crucifer Karyotype (n = 8), thus revising the key reference genome for evolutionary genomics of crucifers.

  2. Design of a Brassica rapa core collection for association mapping studies.

    PubMed

    Zhao, Jianjun; Artemyeva, Anna; Del Carpio, Dunia Pino; Basnet, Ram Kumar; Zhang, Ningwen; Gao, Jie; Li, Fei; Bucher, Johan; Wang, Xiaowu; Visser, Richard G F; Bonnema, Guusje

    2010-11-01

    A Brassica rapa collection of 239 accessions, based on two core collections representing different morphotypes from different geographical origins, is presented and its use for association mapping is illustrated for flowering time. We analyzed phenotypic variation of leaf and seed pod traits, plant architecture, and flowering time using data collected from three field experiments and evaluated the genetic diversity with a set of SSR markers. The Wageningen University and Research Centre (WUR) and the Vavilov Research Institute of Plant Industry (VIR) core collections had similar representations of most morphotypes, as illustrated by the phenotypic and genetic variation within these groups. The analysis of population structure revealed five subgroups in the collection, whereas previous studies of the WUR core collection indicated four subgroups; the fifth group identified consisted mainly of oil accessions from the VIR core collection, winter oils from Pakistan, and a number of other types. A very small group of summer oils is described, that is not related to other oil accessions. A candidate gene approach was chosen for association mapping of flowering time with a BrFLC1 biallelic CAPS marker and a BrFLC2 multiallelic SSR marker. The two markers were significantly associated with flowering time, but their effects were confined to certain morphotypes and (or) alleles. Based on these results, we discuss the optimal design for an association mapping population and the need to fix the heterogeneous accessions to facilitate phenotyping and genotyping.

  3. Design of a Brassica rapa core collection for association mapping studies.

    PubMed

    Zhao, Jianjun; Artemyeva, Anna; Del Carpio, Dunia Pino; Basnet, Ram Kumar; Zhang, Ningwen; Gao, Jie; Li, Fei; Bucher, Johan; Wang, Xiaowu; Visser, Richard G F; Bonnema, Guusje

    2010-11-01

    A Brassica rapa collection of 239 accessions, based on two core collections representing different morphotypes from different geographical origins, is presented and its use for association mapping is illustrated for flowering time. We analyzed phenotypic variation of leaf and seed pod traits, plant architecture, and flowering time using data collected from three field experiments and evaluated the genetic diversity with a set of SSR markers. The Wageningen University and Research Centre (WUR) and the Vavilov Research Institute of Plant Industry (VIR) core collections had similar representations of most morphotypes, as illustrated by the phenotypic and genetic variation within these groups. The analysis of population structure revealed five subgroups in the collection, whereas previous studies of the WUR core collection indicated four subgroups; the fifth group identified consisted mainly of oil accessions from the VIR core collection, winter oils from Pakistan, and a number of other types. A very small group of summer oils is described, that is not related to other oil accessions. A candidate gene approach was chosen for association mapping of flowering time with a BrFLC1 biallelic CAPS marker and a BrFLC2 multiallelic SSR marker. The two markers were significantly associated with flowering time, but their effects were confined to certain morphotypes and (or) alleles. Based on these results, we discuss the optimal design for an association mapping population and the need to fix the heterogeneous accessions to facilitate phenotyping and genotyping. PMID:21076504

  4. Genome-wide discovery of DNA polymorphism in Brassica rapa.

    PubMed

    Park, Soomin; Yu, Hee-Ju; Mun, Jeong-Hwan; Lee, Seung-Chan

    2010-02-01

    Single nucleotide polymorphisms (SNPs) and/or insertion/deletions (InDels) are frequent sequence variations in the plant genome, which can be developed as molecular markers for genetic studies on crop improvement. The ongoing Brassica rapa genome sequencing project has generated vast amounts of sequence data useful in genetic research. Here, we report a genome-wide survey of DNA polymorphisms in the B. rapa genome based on the 557 bacterial artificial clone sequences of B. rapa ssp. pekinensis cv. Chiifu. We identified and characterized 21,311 SNPs and 6,753 InDels in the gene space of the B. rapa genome by re-sequencing 1,398 sequence-tagged sites (STSs) in eight genotypes. Comparison of our findings with a B. rapa genetic linkage map confirmed that STS loci were distributed randomly over the B. rapa whole genome. In the 1.4 Mb of aligned sequences, mean nucleotide polymorphism and diversity were theta = 0.00890 and pi = 0.00917, respectively. Additionally, the nucleotide diversity in introns was almost three times greater than that in exons, and the frequency of observed InDel was almost 17 times higher in introns than in exons. Information regarding SNPs/InDels obtained here will provide an important resource for genetic studies and breeding programs of B. rapa.

  5. Embryogenesis of brassica rapa l. under clinorotation

    NASA Astrophysics Data System (ADS)

    Popova, A.; Ivanenko, G.

    Investigation of reproductive development of higher plants in spaceflight represents scientific interest first of all with the necessity to work out the plant space technologies for creation of controlled life-support systems. In such systems mainly the higher plants are considered to be an important component that makes it necessary to obtain the several generations of higher plants with their full ontogenesis. As a rule, seeds obtained in three species of the higher plants in a series of experiments differ from the control by some parameters (Merkis, Laurinavichius, 1983; Musgrave et al., 1998; 2000; Levinskikh et all. 1999; Stankovich et al., 2002). It was shown, that immature embryos generated in microgravity were at a range of developmental stage, while the ground control embryos had all reached the premature stage of development (Kuang et al., 2003). Besides, the distinctions in a degree of nutrient substances accumulation in them were revealed (Kuang et al., 2000). Therefore, the elucidation of the possible reasons for distortion of plant reproduction in microgravity demands the further research. In this study we examined embryogenesis of higher plant Brassica rapa L. with an application of slow horizontal clinostats, that allows to deprive the plants the opportunity to perceive the gravitational stimulus. Some plants were clinorotated from the moment sowing of seeds; in other series the experiment plants were placed on clinostats after formation of flower buds. Temporal fixation of the material was used in these experiments, which allow to obtain material for studying of consecutive stages of embryogenesis. The development of 2-21 day-old embryos was studied. Comparative embryological analysis has shown a similarity in the main of process of embryo differentiation produced under clinorotation and in the stationary control. At the early stages of embryogenesis, the distortion in suspensor formation was observed more frequently. Embryos generated in

  6. Structural and functional comparative mapping between the Brassica A genomes in allotetraploid Brassica napus and diploid Brassica rapa.

    PubMed

    Jiang, Congcong; Ramchiary, Nirala; Ma, Yongbiao; Jin, Mina; Feng, Ji; Li, Ruiyuan; Wang, Hao; Long, Yan; Choi, Su Ryun; Zhang, Chunyu; Cowling, Wallace A; Park, Beom Seok; Lim, Yong Pyo; Meng, Jinling

    2011-10-01

    Brassica napus (AACC genome) is an important oilseed crop that was formed by the fusion of the diploids B. rapa (AA) and B. oleracea (CC). The complete genomic sequence of the Brassica A genome will be available soon from the B. rapa genome sequencing project, but it is not clear how informative the A genome sequence in B. rapa (A(r)) will be for predicting the structure and function of the A subgenome in the allotetraploid Brassica species B. napus (A(n)). In this paper, we report the results of structural and functional comparative mapping between the A subgenomes of B. napus and B. rapa based on genetic maps that were anchored with bacterial artificial chromosomes (BACs)-sequence of B. rapa. We identified segmental conservation that represented by syntenic blocks in over one third of the A genome; meanwhile, comparative mapping of quantitative trait loci for seed quality traits identified a dozen homologous regions with conserved function in the A genome of the two species. However, several genomic rearrangement events, such as inversions, intra- and inter-chromosomal translocations, were also observed, covering totally at least 5% of the A genome, between allotetraploid B. napus and diploid B. rapa. Based on these results, the A genomes of B. rapa and B. napus are mostly functionally conserved, but caution will be necessary in applying the full sequence data from B. rapa to the B. napus as a result of genomic rearrangements in the A genome between the two species.

  7. Isolate Dependency of Brassica rapa Resistance QTLs to Botrytis cinerea

    PubMed Central

    Zhang, Wei; Kwon, Soon-Tae; Chen, Fang; Kliebenstein, Daniel J.

    2016-01-01

    Generalist necrotrophic pathogens including Botrytis cinerea cause significant yield and financial losses on Brassica crops. However, there is little knowledge about the mechanisms underlying the complex interactions encoded by both host and pathogen genomes in this interaction. This potentially includes multiple layers of plant defense and pathogen virulence mechanisms that could complicate in breeding broad spectrum resistance within Brassica species. Glucosinolates (GSLs) are a diverse group of defense metabolites that play a key role in interaction between Brassica and biotic attackers. In this study, we utilized a collection of diverse B. cinerea isolates to investigate resistance within the Brassica rapa R500 × IMB211 recombinant inbred line population. We tested variation on lesion development and glucosinolate accumulation in parental lines and all population lines. We then mapped quantitative trait loci (QTL) for both resistances to B. cinerea and defense metabolites in this population. Phenotypic analysis and QTL mapping demonstrate that the genetic basis of resistance to B. cinerea in B. rapa is isolate specific and polygenic with transgressive segregation that both parents contribute resistance alleles. QTLs controlling defensive GSLs are highly dependent on pathogen infection. An overlap of two QTLs identified between resistance to B. cinerea and defense metabolites also showed isolate specific effects. This work suggests that directly searching for resistance loci may not be the best approach at improving resistance in B. rapa to necrotrophic pathogen. PMID:26925079

  8. Isolate Dependency of Brassica rapa Resistance QTLs to Botrytis cinerea.

    PubMed

    Zhang, Wei; Kwon, Soon-Tae; Chen, Fang; Kliebenstein, Daniel J

    2016-01-01

    Generalist necrotrophic pathogens including Botrytis cinerea cause significant yield and financial losses on Brassica crops. However, there is little knowledge about the mechanisms underlying the complex interactions encoded by both host and pathogen genomes in this interaction. This potentially includes multiple layers of plant defense and pathogen virulence mechanisms that could complicate in breeding broad spectrum resistance within Brassica species. Glucosinolates (GSLs) are a diverse group of defense metabolites that play a key role in interaction between Brassica and biotic attackers. In this study, we utilized a collection of diverse B. cinerea isolates to investigate resistance within the Brassica rapa R500 × IMB211 recombinant inbred line population. We tested variation on lesion development and glucosinolate accumulation in parental lines and all population lines. We then mapped quantitative trait loci (QTL) for both resistances to B. cinerea and defense metabolites in this population. Phenotypic analysis and QTL mapping demonstrate that the genetic basis of resistance to B. cinerea in B. rapa is isolate specific and polygenic with transgressive segregation that both parents contribute resistance alleles. QTLs controlling defensive GSLs are highly dependent on pathogen infection. An overlap of two QTLs identified between resistance to B. cinerea and defense metabolites also showed isolate specific effects. This work suggests that directly searching for resistance loci may not be the best approach at improving resistance in B. rapa to necrotrophic pathogen.

  9. Isolate Dependency of Brassica rapa Resistance QTLs to Botrytis cinerea.

    PubMed

    Zhang, Wei; Kwon, Soon-Tae; Chen, Fang; Kliebenstein, Daniel J

    2016-01-01

    Generalist necrotrophic pathogens including Botrytis cinerea cause significant yield and financial losses on Brassica crops. However, there is little knowledge about the mechanisms underlying the complex interactions encoded by both host and pathogen genomes in this interaction. This potentially includes multiple layers of plant defense and pathogen virulence mechanisms that could complicate in breeding broad spectrum resistance within Brassica species. Glucosinolates (GSLs) are a diverse group of defense metabolites that play a key role in interaction between Brassica and biotic attackers. In this study, we utilized a collection of diverse B. cinerea isolates to investigate resistance within the Brassica rapa R500 × IMB211 recombinant inbred line population. We tested variation on lesion development and glucosinolate accumulation in parental lines and all population lines. We then mapped quantitative trait loci (QTL) for both resistances to B. cinerea and defense metabolites in this population. Phenotypic analysis and QTL mapping demonstrate that the genetic basis of resistance to B. cinerea in B. rapa is isolate specific and polygenic with transgressive segregation that both parents contribute resistance alleles. QTLs controlling defensive GSLs are highly dependent on pathogen infection. An overlap of two QTLs identified between resistance to B. cinerea and defense metabolites also showed isolate specific effects. This work suggests that directly searching for resistance loci may not be the best approach at improving resistance in B. rapa to necrotrophic pathogen. PMID:26925079

  10. Syntenic gene analysis between Brassica rapa and other Brassicaceae species.

    PubMed

    Cheng, Feng; Wu, Jian; Fang, Lu; Wang, Xiaowu

    2012-01-01

    Chromosomal synteny analysis is important in genome comparison to reveal genomic evolution of related species. Shared synteny describes genomic fragments from different species that originated from an identical ancestor. Syntenic genes are orthologs located in these syntenic fragments, so they often share similar functions. Syntenic gene analysis is very important in Brassicaceae species to share gene annotations and investigate genome evolution. Here we designed and developed a direct and efficient tool, SynOrths, to identify pairwise syntenic genes between genomes of Brassicaceae species. SynOrths determines whether two genes are a conserved syntenic pair based not only on their sequence similarity, but also by the support of homologous flanking genes. Syntenic genes between Arabidopsis thaliana and Brassica rapa, Arabidopsis lyrata and B. rapa, and Thellungiella parvula and B. rapa were then identified using SynOrths. The occurrence of genome triplication in B. rapa was clearly observed, many genes that were evenly distributed in the genomes of A. thaliana, A. lyrata, and T. parvula had three syntenic copies in B. rapa. Additionally, there were many B. rapa genes that had no syntenic orthologs in A. thaliana, but some of these had syntenic orthologs in A. lyrata or T. parvula. Only 5,851 genes in B. rapa had no syntenic counterparts in any of the other three species. These 5,851 genes could have originated after B. rapa diverged from these species. A tool for syntenic gene analysis between species of Brassicaceae was developed, SynOrths, which could be used to accurately identify syntenic genes in differentiated but closely-related genomes. With this tool, we identified syntenic gene sets between B. rapa and each of A. thaliana, A. lyrata, T. parvula. Syntenic gene analysis is important for not only the gene annotation of newly sequenced Brassicaceae genomes by bridging them to model plant A. thaliana, but also the study of genome evolution in these species.

  11. Commonality of self-recognition specificity of S haplotypes between Brassica oleracea and Brassica rapa.

    PubMed

    Sato, Yutaka; Fujimoto, Ryo; Toriyama, Kinya; Nishio, Takeshi

    2003-06-01

    We have identified several interspecific pairs of S haplotypes having highly similar SRK and SP11/SCR sequences between Brassica oleracea and Brassica rapa. The recognition specificities of S haplotypes in these pairs were examined with three different methods. Stigmas of interspecific hybrids between an S-32 homozygote in B. oleracea and an S-60 homozygote in B. rapa, which were produced to avoid the interspecific incompatibility between the two species, showed incompatibility to the pollen of an S-8 homozygote in B. rapa and to the pollen of an S-15 homozygote in B. oleracea, while it showed compatibility to the pollen of other S haplotypes, suggesting B. oleracea S-32 and B. rapa S-60 have the same recognition specificity as B. rapa S-8 and B. oleracea S-15. Pollen grains of transgenic S-60 homozygous plants in B. rapa carrying a transgene of SP11-24 from B. oleracea were incompatible to B. rapa S-36 stigma, indicating that B. oleracea S-24 and B. rapa S-36 have the same recognition specificity. Application of the SP11 protein of B. rapa S-41 and S-47 onto the surface of B. oleracea S-64 stigmas and S-12 stigmas, respectively, resulted in the incompatibility reaction to pollen grains of another S haplotype, but application onto the stigmas of other S haplotypes did not, suggesting that B. oleracea S-64 stigmas and S-12 stigmas recognized the B. rapa SP11-41 and SP11-47 proteins as self SP11 proteins, respectively. Besides having evolutionary implications, finding of many interspecific pairs of S haplotypes can provide insight into the molecular mechanism of self-recognition. Comparing deduced amino-acid sequences of SP11 proteins and SRK proteins in the pairs, regions of SP11 and SRK important for self-recognition are discussed.

  12. Transformation and regeneration of Brassica rapa using Agrobacterium tumefaciens.

    PubMed

    Radke, S E; Turner, J C; Facciotti, D

    1992-09-01

    Transformation and regeneration procedures for obtaining transgenic Brassica rapa ssp. oleifera plants are described. Regeneration frequencies were increasedby using silver nitrate and by adjusting the duration of exposure to 2,4-D. For transformation, Agrobacterium tumefaciens strain EHA101 containing a binary plasmid with the neomycin phosphotransferase gene (NPT II) and the b-glucuronidase gene (GUS) was cocultivated with hypocotyl explants from the oilseed B. rapa cvs. Tobin and Emma. Transformed plants were obtained within three months of cocultivation. Transformation frequencies for the cultivars Tobin and Emma were 1-9%. Evidence for transformation was shown by NPT II dot blot assay, the GUS fluorometric assay, Southern analysis, and segregation of the kanamycin-resistance trait in the progeny. The transformation and regeneration procedure described here has been used routinely to transform two cultivars of B. rapa and 18 cultivars of B. napus.

  13. Transformation and regeneration of Brassica rapa using Agrobacterium tumefaciens.

    PubMed

    Radke, S E; Turner, J C; Facciotti, D

    1992-09-01

    Transformation and regeneration procedures for obtaining transgenic Brassica rapa ssp. oleifera plants are described. Regeneration frequencies were increasedby using silver nitrate and by adjusting the duration of exposure to 2,4-D. For transformation, Agrobacterium tumefaciens strain EHA101 containing a binary plasmid with the neomycin phosphotransferase gene (NPT II) and the b-glucuronidase gene (GUS) was cocultivated with hypocotyl explants from the oilseed B. rapa cvs. Tobin and Emma. Transformed plants were obtained within three months of cocultivation. Transformation frequencies for the cultivars Tobin and Emma were 1-9%. Evidence for transformation was shown by NPT II dot blot assay, the GUS fluorometric assay, Southern analysis, and segregation of the kanamycin-resistance trait in the progeny. The transformation and regeneration procedure described here has been used routinely to transform two cultivars of B. rapa and 18 cultivars of B. napus. PMID:24213157

  14. Quantitative trait loci for glucosinolate accumulation in Brassica rapa leaves.

    PubMed

    Lou, Ping; Zhao, Jianjun; He, Hongju; Hanhart, Corrie; Del Carpio, Dunia Pino; Verkerk, Ruud; Custers, Jan; Koornneef, Maarten; Bonnema, Guusje

    2008-01-01

    Glucosinolates and their breakdown products have been recognized for their effects on plant defense, human health, flavor and taste of cruciferous vegetables. Despite this importance, little is known about the regulation of the biosynthesis and degradation in Brassica rapa. Here, the identification of quantitative trait loci (QTL) for glucosinolate accumulation in B. rapa leaves in two novel segregating double haploid (DH) populations is reported: DH38, derived from a cross between yellow sarson R500 and pak choi variety HK Naibaicai; and DH30, from a cross between yellow sarson R500 and Kairyou Hakata, a Japanese vegetable turnip variety. An integrated map of 1068 cM with 10 linkage groups, assigned to the international agreed nomenclature, is developed based on the two individual DH maps with the common parent using amplified fragment length polymorphism (AFLP) and single sequence repeat (SSR) markers. Eight different glucosinolate compounds were detected in parents and F(1)s of the DH populations and found to segregate quantitatively in the DH populations. QTL analysis identified 16 loci controlling aliphatic glucosinolate accumulation, three loci controlling total indolic glucosinolate concentration and three loci regulating aromatic glucosinolate concentrations. Both comparative genomic analyses based on Arabidopsis-Brassica rapa synteny and mapping of candidate orthologous genes in B. rapa allowed the selection of genes involved in the glucosinolate biosynthesis pathway that may account for the identified QTL.

  15. A microsatellite (SSR) based linkage map of Brassica rapa.

    PubMed

    Kapoor, Rahul; Banga, Surindar Singh; Banga, Shashi Kaur

    2009-11-30

    In the present study we describe the construction of a genetic linkage map for the Brassica rapa (AA) genome that will act as a key resource in undertaking future structural and functional genomic studies in B. rapa. A F(2) mapping population consisting of 48 F(2) individual plants developed following hybridization of 2 inbred lines Bathari mandi and IC 331817 was used to construct the map. The map comprises 53 SSR markers derived from 3 different public domain resources. Nine linkage groups along with a small subgroup were identified and designated as R(1)-R(9) through alignment and orientation using SSR markers in common with existing B. rapa reference linkage maps. The total length of the genetic linkage map was 354.6 cm with an average interval of 6.6 cm between adjacent loci. The length of linkage groups ranged from 28.0 cm to 44.2 cm for R(6) and R(1A), respectively. The number variability of markers in the 9 linkage groups ranged from 3 for R(6) to 10 for R(1). Of the 53 SSR markers assigned to the linkage groups, only 5 (9.4%) showed deviation from the expected segregation ratio. The development of this map is vital to the genome integration and genetic information and will enable the international research community to share resources and data for the improvement of B. rapa and other cultivated Brassica species.

  16. Pairing and recombination at meiosis of Brassica rapa (AA) x Brassica napus (AACC) hybrids.

    PubMed

    Leflon, M; Eber, F; Letanneur, J C; Chelysheva, L; Coriton, O; Huteau, V; Ryder, C D; Barker, G; Jenczewski, E; Chèvre, A M

    2006-11-01

    Interspecific crosses contribute significantly to plant evolution enabling gene exchanges between species. The efficiency of interspecific crosses depends on the similarity between the implicated genomes as high levels of genome similarity are required to ensure appropriate chromosome pairing and genetic recombination. Brassica napus (AACC) is an allopolyploid, resulting from natural hybridization between Brassica rapa (AA) and Brassica oleracea (CC), both being diploid species derived from a common ancestor. To study the relationships between genomes of these Brassica species, we have determined simultaneously the pairing and recombination pattern of A and C chromosomes during meiosis of AAC triploid hybrids, which result from the interspecific cross between natural B. napus and B. rapa. Different AAC triploid hybrids and their progenies have been analysed using cytogenetic, BAC-FISH, and molecular techniques. In 71% of the pollen mother cells, homologous A chromosomes paired regularly, and usually one chromosome of each pair was transmitted to the progeny. C chromosomes remained mainly univalent, but were involved in homoeologous pairing in 21.5% of the cells, and 13% of the transmitted C chromosomes were either recombined or broken. The rate of transmission of C chromosomes depended on the identity of the particular chromosome and on the way the hybrid was crossed, as the male or as the female parent, to B. napus or to B. rapa. Gene transfers in triploid hybrids are favoured between A genomes of B. rapa and B. napus, but also occur between A and C genomes though at lower rates.

  17. Identification of expressed genes during infection of Chinese cabbage (Brassica rapa subsp. pekinensis) by Plasmodiophora brassicae.

    PubMed

    Sundelin, Thomas; Jensen, Dan F; Lübeck, Mette

    2011-01-01

    Plasmodiophora brassicae is an obligate, biotrophic pathogen causing the club-root disease of crucifers. Despite its importance as a plant pathogen, little is known about P. brassicae at the molecular level as most of its life cycle takes place inside the plant host, and axenic culturing is impossible. Discovery of genes expressed during infection and gene organization are the first steps toward a better understanding of the pathogen-host interaction. Here, suppression subtractive hybridization was used to search for the P. brassicae genes expressed during plant infection. One-hundred and forty ESTs were found of which 49% proved to be P. brassicae genes. Ten novel P. brassicae genes were identified, and the genomic sequences surrounding four of the ESTs were acquired using genome walking. Alignment of the ESTs and the genomic DNA sequences confirmed that P. brassicae genes are intron rich and that the introns are small. These results show that it is possible to discover new P. brassicae genes from a mixed pool of both plant and pathogen cDNA. The results also revealed that some of the P. brassicae genes expressed in Chinese cabbage (Brassica rapa subsp. pekinensis) were identical to the genes expressed in the infection of Arabidopsis plants, indicating that these genes play an important role in P. brassicae infection.

  18. Characterization of DNA methyltransferase genes in Brassica rapa.

    PubMed

    Fujimoto, Ryo; Sasaki, Taku; Nishio, Takeshi

    2006-08-01

    DNA methylation is essential for normal development and plays important roles in regulating gene expression in plants. Analysis of the key enzymes catalyzing DNA methylation is important to understand epigenetic phenomena. In this study, three putative methyltransferase genes, BrMET1a, BrMET1b, and BrCMT, were isolated from a genome library of Brassica rapa. Structural conservation of the amino acid sequence between BrMET1a/BrMET1b and AtMET1 and that between BrCMT and AtCMT3 suggests that they may function as DNA methyltransferase. BrMET1a was expressed in vegetative and reproductive organs, while BrMET1b was expressed only in pistils, indicating that these two genes have different functions. BrCMT was expressed especially in stamens at the stage of 2-4 days before anthesis. We isolated three DNA methyltransferase genes in Brassica rapa and indicated differences of expression patterns of these DNA methyltransferase genes and expression levels in different tissues and developmental stages, suggesting that these genes might play important roles in epigenetic gene regulation in B. rapa.

  19. Genetic relationships within Brassica rapa as inferred from AFLP fingerprints.

    PubMed

    Zhao, Jianjun; Wang, Xiaowu; Deng, Bo; Lou, Ping; Wu, Jian; Sun, Rifei; Xu, Zeyong; Vromans, Jaap; Koornneef, Maarten; Bonnema, Guusje

    2005-05-01

    Amplified fragment length polymorphism (AFLP) markers were employed to assess the genetic diversity amongst two large collections of Brassica rapa accessions. Collection A consisted of 161 B. rapa accessions representing different morphotypes among the cultivated B. rapa, including traditional and modern cultivars and breeding materials from geographical locations from all over the world and two Brassica napus accessions. Collection B consisted of 96 accessions, representing mainly leafy vegetable types cultivated in China. On the basis of the AFLP data obtained, we constructed phenetic trees using MEGA 2.1: software. The level of polymorphism was very high, and it was evident that the amount of genetic variation present within the groups was often comparable to the variation between the different cultivar groups. Cluster analysis revealed groups, often with low bootstrap values, which coincided with cultivar groups. The most interesting information revealed by the phenetic trees was that different morphotypes are often more related to other morphotypes from the same region (East Asia vs. Europe) than to similar morphotypes from different regions, suggesting either an independent origin and or a long and separate domestication and breeding history in both regions.

  20. Mapping loci controlling vernalization requirement in Brassica rapa.

    PubMed

    Teutonico, R A; Osborn, T C

    1995-12-01

    Brassica cultivars are classified as biennial or annual based on their requirement for a period of cold treatment (vernalization) to induce flowering. Genes controlling the vernalization requirement were identified in a Brassica rapa F2 population derived from a cross between an annual and a biennial oilseed cultivar by using an RFLP linkage map and quantitative trait locus (QTL) analysis of flowering time in F3 lines. Two genomic regions were strongly associated with variation for flowering time of unvernalized plants and alleles from the biennial parent in these regions delayed flowering. These QTLs had no significant effect on flowering time after plants were vernalized for 6 weeks, suggesting that they control flowering time through the requirement for vernalization. The two B. rapa linkage groups containing these QTLs had RFLP loci in common with two B. napus linkage groups that were shown previously to contain QTLs for flowering time. An RFLP locus detected by the cold-induced gene COR6.6 cloned from Arabidopsis thaliana mapped very near to one of the B. rapa QTLs for flowering time.

  1. Genomic distribution of simple sequence repeats in Brassica rapa.

    PubMed

    Hong, Chang Pyo; Piao, Zhong Yun; Kang, Tae Wook; Batley, Jacqueline; Yang, Tae-Jin; Hur, Yoon-Kang; Bhak, Jong; Park, Beom-Seok; Edwards, David; Lim, Yong Pyo

    2007-06-30

    Simple Sequence Repeats (SSRs) represent short tandem duplications found within all eukaryotic organisms. To examine the distribution of SSRs in the genome of Brassica rapa ssp. pekinensis, SSRs from different genomic regions representing 17.7 Mb of genomic sequence were surveyed. SSRs appear more abundant in non-coding regions (86.6%) than in coding regions (13.4%). Comparison of SSR densities in different genomic regions demonstrated that SSR density was greatest within the 5'-flanking regions of the predicted genes. The proportion of different repeat motifs varied between genomic regions, with trinucleotide SSRs more prevalent in predicted coding regions, reflecting the codon structure in these regions. SSRs were also preferentially associated with gene-rich regions, with peri-centromeric heterochromatin SSRs mostly associated with retrotransposons. These results indicate that the distribution of SSRs in the genome is non-random. Comparison of SSR abundance between B. rapa and the closely related species Arabidopsis thaliana suggests a greater abundance of SSRs in B. rapa, which may be due to the proposed genome triplication. Our results provide a comprehensive view of SSR genomic distribution and evolution in Brassica for comparison with the sequenced genomes of A. thaliana and Oryza sativa.

  2. Phylogenetic Analysis of Brassica rapa MATH-Domain Proteins.

    PubMed

    Zhao, Liming; Huang, Yong; Hu, Yan; He, Xiaoli; Shen, Wenhui; Liu, Chunlin; Ruan, Ying

    2013-05-01

    The MATH (meprin and TRAF-C homology) domain is a fold of seven anti-parallel β-helices involved in protein-protein interaction. Here, we report the identification and characterization of 90 MATH-domain proteins from the Brassica rapa genome. By sequence analysis together with MATH-domain proteins from other species, the B. rapa MATH-domain proteins can be grouped into 6 classes. Class-I protein has one or several MATH domains without any other recognizable domain; Class-II protein contains a MATH domain together with a conserved BTB (Broad Complex, Tramtrack, and Bric-a-Brac ) domain; Class-III protein belongs to the MATH/Filament domain family; Class-IV protein contains a MATH domain frequently combined with some other domains; Class-V protein has a relative long sequence but contains only one MATH domain; Class-VI protein is characterized by the presence of Peptidase and UBQ (Ubiquitinylation) domains together with one MATH domain. As part of our study regarding seed development of B. rapa, six genes are screened by SSH (Suppression Subtractive Hybridization) and their expression levels are analyzed in combination with seed developmental stages, and expression patterns suggested that Bra001786, Bra03578 and Bra036572 may be seed development specific genes, while Bra001787, Bra020541 and Bra040904 may be involved in seed and flower organ development. This study provides the first characterization of the MATH domain proteins in B. rapa.

  3. Metabolic changes in Agrobacterium tumefaciens-infected Brassica rapa.

    PubMed

    Simoh, Sanimah; Quintana, Naira; Kim, Hye Kyong; Choi, Young Hae; Verpoorte, Robert

    2009-07-01

    Agrobacterium has the ability to transfer its genetic material, T-DNA, into the plant genome. The unique interaction between the bacterium and its host plant has been well studied at the transcriptome, but not at the metabolic level. For a better understanding of this interaction it is necessary to investigate the metabolic changes of the host plant upon infection with Agrobacterium tumefaciens. This study investigated the metabolic response of Brassica rapa to infection with disarmed and tumor-inducing strains of A. tumefaciens using (1)H nuclear magnetic resonance spectroscopy combined with multivariate data analysis. The partial least square-discriminant analysis (PLS-DA) of two varieties of B. rapa showed that there was a clear differentiation in the metabolite profiles of B. rapa leaves infected with the disarmed strain LBA4404 and with tumor-inducing octopine and nopaline strains, particularly in the flavonoid, phenylpropanoid, sugar and free amino/organic acid contents. However, individual PLS-DA of each type of infection suggests that, in general, some flavonoids and phenylpropanoids were suppressed as a consequence of these infections. The results obtained in this study indicate that the disarmed strain LBA4404 and tumor-inducing strains have different effects on the metabolite profile of B. rapa.

  4. Progressive introgression between Brassica napus (oilseed rape) and B. rapa.

    PubMed

    Hansen, L B; Siegismund, H R; Jørgensen, R B

    2003-09-01

    We have earlier shown extensive introgression between oilseed rape (Brassica napus) and B. rapa in a weedy population using AFLP markers specific for the nuclear genomes. In order to describe the progress of this introgression, we examined 117 offspring from 12 maternal plants from the introgressed population with the same AFLP-markers; AFLP data were supported by chromosome counting. We also analysed the offspring with a species-specific chloroplast marker and finally evaluated the reproductive system in selected maternal plants. Our results indicated a high outcrossing rate of the introgressed maternal plants. It seemed that B. rapa most often functioned as the maternal plant in the introgression process and that the amount of oilseed rape DNA was highly diminished in the offspring compared to their introgressed maternal plants. However, our analysis of plants from the weedy population indicated that introgression can lead to both (1) exchange of chloroplast DNA between species producing B. rapa-like plants with B. napus chloroplasts and (2) incorporation of B. napus C-genome DNA into the B. rapa genome. Therefore, we question whether it can be regarded as containment to position transgenes in the chloroplast or in specific parts of the nuclear genome of B. napus.

  5. Isolation and characterization of microsatellites in Brassica rapa L.

    PubMed

    Suwabe, K.; Iketani, H.; Nunome, T.; Kage, T.; Hirai, M.

    2002-05-01

    We report here the isolation and characterization of microsatellites, or simple sequence repeats (SSRs), in Brassica rapa. The size-fractionated genomic library was screened with (GA)(15) and (GT)(15) oligonucleotide probes. A total of 58 clones were identified as having the microsatellite repeats, and specific primer pairs were designed for 38 microsatellite loci. All primer pairs, except two, amplified fragments having the sizes expected from the sequences. Of the 36 primer pairs, 35 amplified polymorphic loci in 19 cultivars of B. rapa, while monomorphism was observed in only one primer pair. A total of 232 alleles was identified by the 36 primer pairs in 19 cultivars of B. rapa, and these primer pairs were examined also in nine Brassicaceae species. Most of the 36 primer pairs amplified the loci in the Brassicaceae species. Segregation of the microsatellites was studied in an F(2) population from a cross of doubled-haploid lines DH27 x G309. The microsatellites segregated in a co-dominant manner. These results indicate that the microsatellites isolated in this study were highly informative and could be useful tools for genetic analysis in B. rapa and other related species.

  6. Identification of novel QTLs for isolate-specific partial resistance to Plasmodiophora brassicae in Brassica rapa.

    PubMed

    Chen, Jingjing; Jing, Jing; Zhan, Zhongxiang; Zhang, Teng; Zhang, Chunyu; Piao, Zhongyun

    2013-01-01

    Plasmodiophora brassicae, the causal agent of clubroot disease of the Brassica crops, is widespread in the world. Quantitative trait loci (QTLs) for partial resistance to 4 different isolates of P. brassicae (Pb2, Pb4, Pb7, and Pb10) were investigated using a BC1F1 population from a cross between two subspecies of Brassica rapa, i.e. Chinese cabbage inbred line C59-1 as a susceptible recurrent parent and turnip inbred line ECD04 as a resistant donor parent. The BC1F2 families were assessed for resistance under controlled conditions. A linkage map constructed with simple sequence repeats (SSR), unigene-derived microsatellite (UGMS) markers, and specific markers linked to published clubroot resistance (CR) genes of B. rapa was used to perform QTL mapping. A total of 6 QTLs residing in 5 CR QTL regions of the B. rapa chromosomes A01, A03, and A08 were identified to account for 12.2 to 35.2% of the phenotypic variance. Two QTL regions were found to be novel except for 3 QTLs in the respective regions of previously identified Crr1, Crr2, and Crr3. QTL mapping results indicated that 1 QTL region was common for partial resistance to the 2 isolates of Pb2 and Pb7, whereas the others were specific for each isolate. Additionally, synteny analysis between B. rapa and Arabidopsis thaliana revealed that all CR QTL regions were aligned to a single conserved crucifer blocks (U, F, and R) on 3 Arabidopsis chromosomes where 2 CR QTLs were detected in A. thaliana. These results suggest that some common ancestral genomic regions were involved in the evolution of CR genes in B. rapa.

  7. Identification of Novel QTLs for Isolate-Specific Partial Resistance to Plasmodiophora brassicae in Brassica rapa

    PubMed Central

    Zhan, Zhongxiang; Zhang, Teng; Zhang, Chunyu; Piao, Zhongyun

    2013-01-01

    Plasmodiophora brassicae, the causal agent of clubroot disease of the Brassica crops, is widespread in the world. Quantitative trait loci (QTLs) for partial resistance to 4 different isolates of P. brassicae (Pb2, Pb4, Pb7, and Pb10) were investigated using a BC1F1 population from a cross between two subspecies of Brassica rapa, i.e. Chinese cabbage inbred line C59-1 as a susceptible recurrent parent and turnip inbred line ECD04 as a resistant donor parent. The BC1F2 families were assessed for resistance under controlled conditions. A linkage map constructed with simple sequence repeats (SSR), unigene-derived microsatellite (UGMS) markers, and specific markers linked to published clubroot resistance (CR) genes of B. rapa was used to perform QTL mapping. A total of 6 QTLs residing in 5 CR QTL regions of the B. rapa chromosomes A01, A03, and A08 were identified to account for 12.2 to 35.2% of the phenotypic variance. Two QTL regions were found to be novel except for 3 QTLs in the respective regions of previously identified Crr1, Crr2, and Crr3. QTL mapping results indicated that 1 QTL region was common for partial resistance to the 2 isolates of Pb2 and Pb7, whereas the others were specific for each isolate. Additionally, synteny analysis between B. rapa and Arabidopsis thaliana revealed that all CR QTL regions were aligned to a single conserved crucifer blocks (U, F, and R) on 3 Arabidopsis chromosomes where 2 CR QTLs were detected in A. thaliana. These results suggest that some common ancestral genomic regions were involved in the evolution of CR genes in B. rapa. PMID:24376876

  8. Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray.

    PubMed

    Lee, Sang-Choon; Lim, Myung-Ho; Kim, Jin A; Lee, Soo-In; Kim, Jung Sun; Jin, Mina; Kwon, Soo-Jin; Mun, Jeong-Hwan; Kim, Yeon-Ki; Kim, Hyun Uk; Hur, Yoonkang; Park, Beom-Seok

    2008-12-31

    Genome wide transcription analysis in response to stresses is essential to provide the basis of effective engineering strategies to improve stress tolerance in crop plants. In order to perform transcriptome analysis in Brassica rapa, we constructed a B. rapa oligo microarray, KBGP-24K, using sequence information from approximately 24,000 unigenes and analyzed cold (4 degrees C), salt (250 mM NaCl), and drought (air-dry) treated B. rapa plants. Among the B. rapa unigenes represented on the microarray, 417 (1.7%), 202 (0.8%), and 738 (3.1%) were identified as responsive genes that were differently expressed 5-fold or more at least once during a 48-h treatment with cold, salt, and drought, respectively. These results were confirmed by RT-PCR analysis. In the abiotic stress responsive genes identified, we found 56 transcription factor genes and 60 commonly responsive genes. It suggests that various transcriptional regulatory mechanisms and common signaling pathway are working together under the abiotic stresses in B. rapa. In conclusion, our new developed 24K oligo microarray will be a useful tool for transcriptome profiling and this work will provide valuable insight in the response to abiotic stress in B. rapa.

  9. Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L.

    PubMed

    Suwabe, K; Tsukazaki, H; Iketani, H; Hatakeyama, K; Fujimura, M; Nunome, T; Fukuoka, H; Matsumoto, S; Hirai, M

    2003-10-01

    In an analysis of 114 F(2) individuals from a cross between clubroot-resistant and susceptible lines of Brassica rapa L., 'G004' and 'Hakusai Chukanbohon Nou 7' (A9709), respectively, we identified two loci, Crr1 and Crr2, for clubroot (caused by Plasmodiophora brassicae Woronin) resistance. Each locus segregated independently among the F(2) population, indicating that the loci reside on a different region of chromosomes or on different chromosomes. Genetic analysis showed that each locus had little effect on clubroot resistance by itself, indicating that these two loci are complementary for clubroot resistance. The resistance to clubroot was much stronger when both loci were homozygous for resistant alleles than when they were heterozygous. These results indicate that clubroot resistance in B. rapa is under oligogenic control and at least two loci are necessary for resistance.

  10. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea.

    PubMed

    Cheng, Feng; Sun, Rifei; Hou, Xilin; Zheng, Hongkun; Zhang, Fenglan; Zhang, Yangyong; Liu, Bo; Liang, Jianli; Zhuang, Mu; Liu, Yunxia; Liu, Dongyuan; Wang, Xiaobo; Li, Pingxia; Liu, Yumei; Lin, Ke; Bucher, Johan; Zhang, Ningwen; Wang, Yan; Wang, Hui; Deng, Jie; Liao, Yongcui; Wei, Keyun; Zhang, Xueming; Fu, Lixia; Hu, Yunyan; Liu, Jisheng; Cai, Chengcheng; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Zhang, Jifang; Guo, Ning; Liu, Zhiyuan; Liu, Jin; Sun, Chao; Ma, Yuan; Zhang, Haijiao; Cui, Yang; Freeling, Micheal R; Borm, Theo; Bonnema, Guusje; Wu, Jian; Wang, Xiaowu

    2016-10-01

    Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea accessions representing various morphotypes and identified signals of selection at the mesohexaploid subgenome level. For cabbage morphotypes with their typical leaf-heading trait, we identified four subgenome loci that show signs of parallel selection among subgenomes within B. rapa, as well as four such loci within B. oleracea. Fifteen subgenome loci are under selection and are shared by these two species. We also detected strong subgenome parallel selection linked to the domestication of the tuberous morphotypes, turnip (B. rapa) and kohlrabi (B. oleracea). Overall, we demonstrated that the mesohexaploidization of the two Brassica genomes contributed to their diversification into heading and tuber-forming morphotypes through convergent subgenome parallel selection of paralogous genes.

  11. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea.

    PubMed

    Cheng, Feng; Sun, Rifei; Hou, Xilin; Zheng, Hongkun; Zhang, Fenglan; Zhang, Yangyong; Liu, Bo; Liang, Jianli; Zhuang, Mu; Liu, Yunxia; Liu, Dongyuan; Wang, Xiaobo; Li, Pingxia; Liu, Yumei; Lin, Ke; Bucher, Johan; Zhang, Ningwen; Wang, Yan; Wang, Hui; Deng, Jie; Liao, Yongcui; Wei, Keyun; Zhang, Xueming; Fu, Lixia; Hu, Yunyan; Liu, Jisheng; Cai, Chengcheng; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Zhang, Jifang; Guo, Ning; Liu, Zhiyuan; Liu, Jin; Sun, Chao; Ma, Yuan; Zhang, Haijiao; Cui, Yang; Freeling, Micheal R; Borm, Theo; Bonnema, Guusje; Wu, Jian; Wang, Xiaowu

    2016-10-01

    Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea accessions representing various morphotypes and identified signals of selection at the mesohexaploid subgenome level. For cabbage morphotypes with their typical leaf-heading trait, we identified four subgenome loci that show signs of parallel selection among subgenomes within B. rapa, as well as four such loci within B. oleracea. Fifteen subgenome loci are under selection and are shared by these two species. We also detected strong subgenome parallel selection linked to the domestication of the tuberous morphotypes, turnip (B. rapa) and kohlrabi (B. oleracea). Overall, we demonstrated that the mesohexaploidization of the two Brassica genomes contributed to their diversification into heading and tuber-forming morphotypes through convergent subgenome parallel selection of paralogous genes. PMID:27526322

  12. Fitness of hybrids between rapeseed (Brassica napus) and wild Brassica rapa in natural habitats.

    PubMed

    Allainguillaume, J; Alexander, M; Bullock, J M; Saunders, M; Allender, C J; King, G; Ford, C S; Wilkinson, M J

    2006-04-01

    Fitness of hybrids between genetically modified (GM) crops and wild relatives influences the likelihood of ecological harm. We measured fitness components in spontaneous (non-GM) rapeseed x Brassica rapa hybrids in natural populations. The F1 hybrids yielded 46.9% seed output of B. rapa, were 16.9% as effective as males on B. rapa and exhibited increased self-pollination. Assuming 100% GM rapeseed cultivation, we conservatively predict < 7000 second-generation transgenic hybrids annually in the United Kingdom (i.e. approximately 20% of F1 hybrids). Conversely, whilst reduced hybrid fitness improves feasibility of bio-containment, stage projection matrices suggests broad scope for some transgenes to offset this effect by enhancing fitness.

  13. Gene transferability from transgenic Brassica napus L. to various subspecies and varieties of Brassica rapa.

    PubMed

    Xiao, Ling; Lu, Changming; Zhang, Bing; Bo, Huijie; Wu, Yuhua; Wu, Gang; Cao, Yinglong; Yu, Deyue

    2009-10-01

    Gene transferability from transgenic rapeseed to various subspecies and varieties of Brassica rapa was assessed in this study. Artificial crossability was studied in 118 cultivars of 7 B. rapa subspecies and varieties with the transgenic rapeseed GT73 (Brassica napus) as the pollen donor. On average 5.7 seeds were obtained per pollination, with a range from 0.05 to 19.4. The heading type of B. rapa L. showed significantly higher crossability than non-heading types of B. rapa. The spontaneous outcrossing rate between B. rapa (female) and the transgenic rapeseed Ms8 x Rf3 (B. napus) (male) ranged from 0.039 to 0.406%, with an average of 0.19%. The fertilization process and the development of the hybrid seeds as shown by fluorescent staining techniques indicated that the number of adhered pollens on the stigma was reduced by 80%, the number of pollen tubes in the style was reduced by 2/3 and the fertilization time was delayed by over 20 h when pollinated with the transgenic rapeseed Ms8 x Rf3 in comparison with the bud self-pollination of B. rapa as control. About 10-70% of the interspecific hybrid embryos were aborted in the course of development. Some seeds looked cracked in mature pods, which showed germination abilities lower than 10%. The spontaneous outcrossing rates were much lower than the artificial crossability, and their survival fitness of the interspecific hybrid was very low, indicating that it should be possible to keep the adventitious presence of the off-plants under the allowed threshold, if proper measures are taken.

  14. Low probability of chloroplast movement from oilseed rape (Brassica napus) into wild Brassica rapa.

    PubMed

    Scott, S E; Wilkinson, M J

    1999-04-01

    Pollen-mediated movement of transgenes from transplastomic oilseed rape (Brassica napus) into wild relatives will be avoided if chloroplasts are maternally transmitted. We assess the probability of chloroplast exchange between conventional oilseed rape and wild Brassica rapa to model the future behavior of transplastomic cultivars. Primers specific to cpDNA were used to demonstrate maternal inheritance of chloroplasts in 47 natural hybrids between cultivated B. napus and wild B. rapa. We conclude that there will be no or negligible pollen-mediated chloroplast dispersal from oilseed rape. Transgene introgression could still occur in mixed populations, however, if B. napus acted as the recurrent female parent. Rate of transfer would then depend on the abundance of mixed populations, their persistence as mixtures, and hybridization frequency within stands. A low incidence of sympatry (0.6-0.7%) between wild B. rapa and cultivated B. napus along the river Thames, UK, in 1997 and 1998, suggests mixed stands will form only rarely. Eighteen feral populations of B. napus also showed a strong tendency toward rapid decline in plant number, seed return, and ultimately, extinction within 3 years. Conversely, hybrid production is significant in mixed stands, and the absence of control practices means that oilseed rape will have slightly greater persistence. We infer that some introgression from transplastomic B. napus into B. rapa is inevitable in mixed populations even though such populations will occur infrequently and will tend to lose B. napus plants relatively quickly. Chloroplast exchange will be extremely rare and scattered.

  15. Genetic analysis of interspecific incompatibility in Brassica rapa.

    PubMed

    Udagawa, H; Ishimaru, Y; Li, F; Sato, Y; Kitashiba, H; Nishio, T

    2010-08-01

    In interspecific pollination of Brassica rapa stigmas with Brassica oleracea pollen grains, pollen tubes cannot penetrate stigma tissues. This trait, called interspecific incompatibility, is similar to self-incompatibility in pollen tube behaviors of rejected pollen grains. Since some B. rapa lines have no interspecific incompatibility, genetic analysis of interspecific incompatibility was performed using two F(2) populations. Analysis with an F(2) population between an interspecific-incompatible line and a self-compatible cultivar 'Yellow sarson' having non-functional alleles of S-locus genes and MLPK, the stigmas of which are compatible with B. oleracea pollen grains, revealed no involvement of the S locus and MLPK in the difference of their interspecific incompatibility phenotypes. In QTL analysis of the strength of interspecific incompatibility, three peaks of LOD scores were found, but their LOD scores were as high as the threshold value, and the variance explained by each QTL was small. QTL analysis using another F(2) population derived from selected parents having the highest and lowest levels of interspecific incompatibility revealed five QTLs with high LOD scores, which did not correspond to those found in the former population. The QTL having the highest LOD score was found in linkage group A02. The effect of this QTL on interspecific incompatibility was confirmed by analyzing backcrossed progeny. Based on synteny of this QTL region with Arabidopsis thaliana chromosome 5, a possible candidate gene, which might be involved in interspecific incompatibility, is discussed.

  16. Genetic analysis of interspecific incompatibility in Brassica rapa.

    PubMed

    Udagawa, H; Ishimaru, Y; Li, F; Sato, Y; Kitashiba, H; Nishio, T

    2010-08-01

    In interspecific pollination of Brassica rapa stigmas with Brassica oleracea pollen grains, pollen tubes cannot penetrate stigma tissues. This trait, called interspecific incompatibility, is similar to self-incompatibility in pollen tube behaviors of rejected pollen grains. Since some B. rapa lines have no interspecific incompatibility, genetic analysis of interspecific incompatibility was performed using two F(2) populations. Analysis with an F(2) population between an interspecific-incompatible line and a self-compatible cultivar 'Yellow sarson' having non-functional alleles of S-locus genes and MLPK, the stigmas of which are compatible with B. oleracea pollen grains, revealed no involvement of the S locus and MLPK in the difference of their interspecific incompatibility phenotypes. In QTL analysis of the strength of interspecific incompatibility, three peaks of LOD scores were found, but their LOD scores were as high as the threshold value, and the variance explained by each QTL was small. QTL analysis using another F(2) population derived from selected parents having the highest and lowest levels of interspecific incompatibility revealed five QTLs with high LOD scores, which did not correspond to those found in the former population. The QTL having the highest LOD score was found in linkage group A02. The effect of this QTL on interspecific incompatibility was confirmed by analyzing backcrossed progeny. Based on synteny of this QTL region with Arabidopsis thaliana chromosome 5, a possible candidate gene, which might be involved in interspecific incompatibility, is discussed. PMID:20414635

  17. NMR metabolomics of ripened and developing oilseed rape (Brassica napus) and turnip rape (Brassica rapa).

    PubMed

    Kortesniemi, Maaria; Vuorinen, Anssi L; Sinkkonen, Jari; Yang, Baoru; Rajala, Ari; Kallio, Heikki

    2015-04-01

    The oilseeds of the commercially important oilseed rape (Brassica napus) and turnip rape (Brassica rapa) were investigated with (1)H NMR metabolomics. The compositions of ripened (cultivated in field trials) and developing seeds (cultivated in controlled conditions) were compared in multivariate models using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Differences in the major lipids and the minor metabolites between the two species were found. A higher content of polyunsaturated fatty acids and sucrose were observed in turnip rape, while the overall oil content and sinapine levels were higher in oilseed rape. The genotype traits were negligible compared to the effect of the growing site and concomitant conditions on the oilseed metabolome. This study demonstrates the applicability of NMR-based analysis in determining the species, geographical origin, developmental stage, and quality of oilseed Brassicas.

  18. Genetic diversity of allozymes in turnip (Brassica rapa L. var. rapa) from the Nordic area.

    PubMed

    Persson, K; Fält, A S; von Bothmer, R

    2001-01-01

    Genetic diversity and relationships based on isozymes were studied in 31 accessions of turnip (Brassica rapa L. var. rapa). The material included varieties, elite stocks, landraces and older turnip of slash-and-burn type from the Nordic area. A total of 9 isozyme loci and 26 alleles were studied. The isozyme systems were ACO, DIA, GPI, GOT, PGM, PGD and SKD. The level of heterozygosity was reduced in the landraces, but it was high for the variety group 'Ostersundom'. Turnip has a higher genetic variation than other crops within B. rapa and than in other species with the same breeding system. The genetic diversity showed that 18.7% of the genetic variation was within the accessions, and the total H tau value was 0.358. Gpi-I and Pgd-I showed the lowest variation compared with the other loci. The cluster analysis revealed five clusters, with one main cluster including 25 of the 31 accessions. The dendrogram indicated that the variety group 'Ostersundom' clustered together whereas the variety group 'Bortfelder' was associated with country of origin. The landraces were spread in different clusters. The 'slash-and-burn' type of turnip belonged to two groups.

  19. Genetic diversity of allozymes in turnip (Brassica rapa L. var. rapa) from the Nordic area.

    PubMed

    Persson, K; Fält, A S; von Bothmer, R

    2001-01-01

    Genetic diversity and relationships based on isozymes were studied in 31 accessions of turnip (Brassica rapa L. var. rapa). The material included varieties, elite stocks, landraces and older turnip of slash-and-burn type from the Nordic area. A total of 9 isozyme loci and 26 alleles were studied. The isozyme systems were ACO, DIA, GPI, GOT, PGM, PGD and SKD. The level of heterozygosity was reduced in the landraces, but it was high for the variety group 'Ostersundom'. Turnip has a higher genetic variation than other crops within B. rapa and than in other species with the same breeding system. The genetic diversity showed that 18.7% of the genetic variation was within the accessions, and the total H tau value was 0.358. Gpi-I and Pgd-I showed the lowest variation compared with the other loci. The cluster analysis revealed five clusters, with one main cluster including 25 of the 31 accessions. The dendrogram indicated that the variety group 'Ostersundom' clustered together whereas the variety group 'Bortfelder' was associated with country of origin. The landraces were spread in different clusters. The 'slash-and-burn' type of turnip belonged to two groups. PMID:11525064

  20. Characterization of directly transformed weedy Brassica rapa and introgressed B. rapa with Bt cry1Ac and gfp genes.

    PubMed

    Moon, Hong S; Halfhill, Matthew D; Good, Laura L; Raymer, Paul L; Neal Stewart, C

    2007-07-01

    Crop to weed transgene flow, which could result in more competitive weed populations, is an agricultural biosafety concern. Crop Brassica napus to weedy Brassica rapa hybridization has been extensively characterized to better understand the transgene flow and its consequences. In this study, weedy accessions of B. rapa were transformed with Bacillus thuringiensis (Bt) cry1Ac- and green fluorescence protein (gfp)-coding transgenes using Agrobacterium to assess ecological performance of the wild biotype relative to introgressed hybrids in which the transgenic parent was the crop. Regenerated transgenic B. rapa events were characterized by progeny analysis, Bt protein enzyme-linked immunosorbent assay (ELISA), Southern blot analysis, and GFP expression assay. GFP expression level and Bt protein concentration were significantly different between independent transgenic B. rapa events. Similar reproductive productivity was observed in comparison between transgenic B. rapa events and B. rapa x B. napus introgressed hybrids in greenhouse and field experiments. In the greenhouse, Bt transgenic plants experienced significantly less herbivory damage from the diamondback moth (Plutella xylostella). No differences were found in the field experiment under ambient, low, herbivore pressure. Directly transformed transgenic B. rapa plants should be a helpful experimental control to better understand crop genetic load in introgressed transgenic weeds.

  1. Characterization of directly transformed weedy Brassica rapa and introgressed B. rapa with Bt cry1Ac and gfp genes.

    PubMed

    Moon, Hong S; Halfhill, Matthew D; Good, Laura L; Raymer, Paul L; Neal Stewart, C

    2007-07-01

    Crop to weed transgene flow, which could result in more competitive weed populations, is an agricultural biosafety concern. Crop Brassica napus to weedy Brassica rapa hybridization has been extensively characterized to better understand the transgene flow and its consequences. In this study, weedy accessions of B. rapa were transformed with Bacillus thuringiensis (Bt) cry1Ac- and green fluorescence protein (gfp)-coding transgenes using Agrobacterium to assess ecological performance of the wild biotype relative to introgressed hybrids in which the transgenic parent was the crop. Regenerated transgenic B. rapa events were characterized by progeny analysis, Bt protein enzyme-linked immunosorbent assay (ELISA), Southern blot analysis, and GFP expression assay. GFP expression level and Bt protein concentration were significantly different between independent transgenic B. rapa events. Similar reproductive productivity was observed in comparison between transgenic B. rapa events and B. rapa x B. napus introgressed hybrids in greenhouse and field experiments. In the greenhouse, Bt transgenic plants experienced significantly less herbivory damage from the diamondback moth (Plutella xylostella). No differences were found in the field experiment under ambient, low, herbivore pressure. Directly transformed transgenic B. rapa plants should be a helpful experimental control to better understand crop genetic load in introgressed transgenic weeds. PMID:17333014

  2. Phytotoxicity assay for seed production using Brassica rapa L.

    PubMed

    Olszyk, David; Pfleeger, Thomas; Lee, E Henry; Plocher, Milton

    2010-10-01

    Although pesticide drift can affect crop yield adversely, current plant testing protocols emphasize only the potential impacts on vegetative plant growth. The present study was conducted to determine whether a plant species with a short life cycle, such as Brassica rapa L. Wisconsin Fast Plants®, can be used to indicate potential effects on seed production of herbicides applied at relatively low levels (e.g., low field application rates [FAR]). The effects of ≤0.1 × FAR of aminopyralid, cloransulam, glyphosate, primisulfuron, or sulfometuron applied 14 d after emergence (DAE), were evaluated for B. rapa grown in mineral soil in pots under greenhouse conditions. Effects were expressed as the effective concentration of the herbicide producing a 25% reduction in a response (EC25) based on nonlinear regression. Brassica rapa seed dry weight was reduced by sulfometuron at an EC25 of 0.00014 × a field application rate (FAR) of 53 g active ingredient (a.i.) ha(-1), primisulfuron at 0.008 (experiment 1) or 0.0050 (experiment 2) × FAR of 40 g a.i. ha(-1), cloransulam at 0.022 × FAR of 18 g a.i. ha(-1), glyphosate at 0.0399 × FAR of 834 g a.i. ha(-1), and by aminopyralid at 0.005 × FAR of 123 g a.i. ha(-1), but only for 1 of 2 experiments. Reduced seed production occurred at less than the FAR that reduced shoot dry weight with sulfometuron and primisulfuron, whereas neither aminopyralid, cloransulam, nor glyphosate affected shoot dry weight. A short life cycle form of B. rapa could be used to indicate reduced seed production with plants grown only 1 week longer (∼35 DAE) than as the current vegetative vigor test for nontarget herbicide effects on plants. PMID:20872651

  3. Phytotoxicity assay for seed production using Brassica rapa L.

    PubMed

    Olszyk, David; Pfleeger, Thomas; Lee, E Henry; Plocher, Milton

    2010-10-01

    Although pesticide drift can affect crop yield adversely, current plant testing protocols emphasize only the potential impacts on vegetative plant growth. The present study was conducted to determine whether a plant species with a short life cycle, such as Brassica rapa L. Wisconsin Fast Plants®, can be used to indicate potential effects on seed production of herbicides applied at relatively low levels (e.g., low field application rates [FAR]). The effects of ≤0.1 × FAR of aminopyralid, cloransulam, glyphosate, primisulfuron, or sulfometuron applied 14 d after emergence (DAE), were evaluated for B. rapa grown in mineral soil in pots under greenhouse conditions. Effects were expressed as the effective concentration of the herbicide producing a 25% reduction in a response (EC25) based on nonlinear regression. Brassica rapa seed dry weight was reduced by sulfometuron at an EC25 of 0.00014 × a field application rate (FAR) of 53 g active ingredient (a.i.) ha(-1), primisulfuron at 0.008 (experiment 1) or 0.0050 (experiment 2) × FAR of 40 g a.i. ha(-1), cloransulam at 0.022 × FAR of 18 g a.i. ha(-1), glyphosate at 0.0399 × FAR of 834 g a.i. ha(-1), and by aminopyralid at 0.005 × FAR of 123 g a.i. ha(-1), but only for 1 of 2 experiments. Reduced seed production occurred at less than the FAR that reduced shoot dry weight with sulfometuron and primisulfuron, whereas neither aminopyralid, cloransulam, nor glyphosate affected shoot dry weight. A short life cycle form of B. rapa could be used to indicate reduced seed production with plants grown only 1 week longer (∼35 DAE) than as the current vegetative vigor test for nontarget herbicide effects on plants.

  4. Integration of Brassica A genome genetic linkage map between Brassica napus and B. rapa.

    PubMed

    Suwabe, Keita; Morgan, Colin; Bancroft, Ian

    2008-03-01

    An integrated linkage map between B. napus and B. rapa was constructed based on a total of 44 common markers comprising 41 SSR (33 BRMS, 6 Saskatoon, and 2 BBSRC) and 3 SNP/indel markers. Between 3 and 7 common markers were mapped onto each of the linkage groups A1 to A10. The position and order of most common markers revealed a high level of colinearity between species, although two small regions on A4, A5, and A10 revealed apparent local inversions between them. These results indicate that the A genome of Brassica has retained a high degree of colinearity between species, despite each species having evolved independently after the integration of the A and C genomes in the amphidiploid state. Our results provide a genetic integration of the Brassica A genome between B. napus and B. rapa. As the analysis employed sequence-based molecular markers, the information will accelerate the exploitation of the B. rapa genome sequence for the improvement of oilseed rape.

  5. Pollination and embryo development in Brassica rapa L. in microgravity.

    PubMed

    Kuang, A; Popova, A; Xiao, Y; Musgrave, M E

    2000-03-01

    Plant reproduction under spaceflight conditions has been problematic in the past. In order to determine what aspect of reproductive development is affected by microgravity, we studied pollination and embryo development in Brassica rapa L. during 16 d in microgravity on the space shuttle (STS-87). Brassica is self-incompatible and requires mechanical transfer of pollen. Short-duration access to microgravity during parabolic flights on the KC-135A aircraft was used initially to confirm that equal numbers of pollen grains could be collected and transferred in the absence of gravity. Brassica was grown in the Plant Growth Facility flight hardware as follows. Three chambers each contained six plants that were 13 d old at launch. As these plants flowered, thin colored tape was used to indicate the date of hand pollination, resulting in silique populations aged 8-15 d postpollination at the end of the 16-d mission. The remaining three chambers contained dry seeds that germinated on orbit to produce 14-d-old plants just beginning to flower at the time of landing. Pollen produced by these plants had comparable viability (93%) with that produced in the 2-d-delayed ground control. Matched-age siliques yielded embryos of equivalent developmental stage in the spaceflight and ground control treatments. Carbohydrate and protein storage reserves in the embryos, assessed by cytochemical localization, were also comparable. In the spaceflight material, growth and development by embryos rescued from siliques 15 d after pollination lagged behind the ground controls by 12 d; however, in the subsequent generation, no differences between the two treatments were found. The results demonstrate that while no stage of reproductive development in Brassica is absolutely dependent upon gravity, lower embryo quality may result following development in microgravity.

  6. Pollination and embryo development in Brassica rapa L. in microgravity

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Popova, A.; Xiao, Y.; Musgrave, M. E.

    2000-01-01

    Plant reproduction under spaceflight conditions has been problematic in the past. In order to determine what aspect of reproductive development is affected by microgravity, we studied pollination and embryo development in Brassica rapa L. during 16 d in microgravity on the space shuttle (STS-87). Brassica is self-incompatible and requires mechanical transfer of pollen. Short-duration access to microgravity during parabolic flights on the KC-135A aircraft was used initially to confirm that equal numbers of pollen grains could be collected and transferred in the absence of gravity. Brassica was grown in the Plant Growth Facility flight hardware as follows. Three chambers each contained six plants that were 13 d old at launch. As these plants flowered, thin colored tape was used to indicate the date of hand pollination, resulting in silique populations aged 8-15 d postpollination at the end of the 16-d mission. The remaining three chambers contained dry seeds that germinated on orbit to produce 14-d-old plants just beginning to flower at the time of landing. Pollen produced by these plants had comparable viability (93%) with that produced in the 2-d-delayed ground control. Matched-age siliques yielded embryos of equivalent developmental stage in the spaceflight and ground control treatments. Carbohydrate and protein storage reserves in the embryos, assessed by cytochemical localization, were also comparable. In the spaceflight material, growth and development by embryos rescued from siliques 15 d after pollination lagged behind the ground controls by 12 d; however, in the subsequent generation, no differences between the two treatments were found. The results demonstrate that while no stage of reproductive development in Brassica is absolutely dependent upon gravity, lower embryo quality may result following development in microgravity.

  7. A novel detection system for the genetically modified canola (Brassica rapa) line RT73.

    PubMed

    Akiyama, Hiroshi; Makiyama, Daiki; Nakamura, Kosuke; Sasaki, Nobuhiro; Minegishi, Yasutaka; Mano, Junichi; Kitta, Kazumi; Ozeki, Yoshihiro; Teshima, Reiko

    2010-12-01

    The herbicide-tolerant genetically modified Roundup Ready canola (Brassica napus) line RT73 has been approved worldwide for use in animal feed and human food. However, RT73 Brassica rapa lines derived from interspecific crosses with RT73 B. napus have not been approved in Japan. Here, we report on a novel system using individual kernel analyses for the qualitative detection of RT73 B. rapa in canola grain samples. We developed a duplex real-time polymerase chain reaction (PCR) method to discriminate B. napus and B. rapa DNA using scatter plots of the end-point analyses; this method was able to discriminate a group comprising B. rapa and Brassica juncea from a group comprising B. napus, Brassica carinata, and Brassica oleracea. We also developed a duplex real-time PCR method for the simultaneous detection of an RT73-specific sequence and an endogenous FatA gene. Additionally, a DNA-extraction method using 96-well silica-membrane plates was developed and optimized for use with individual canola kernels. Our detection system could identify RT73 B. rapa kernels in canola grain samples enabling the accurate and reliable monitoring of RT73 B. rapa contamination in canola, thus playing a role in its governmental regulation in Japan.

  8. Genetic Dissection of Leaf Development in Brassica rapa Using a Genetical Genomics Approach1[W

    PubMed Central

    Xiao, Dong; Wang, Huange; Basnet, Ram Kumar; Zhao, Jianjun; Lin, Ke; Hou, Xilin; Bonnema, Guusje

    2014-01-01

    The paleohexaploid crop Brassica rapa harbors an enormous reservoir of morphological variation, encompassing leafy vegetables, vegetable and fodder turnips (Brassica rapa, ssp. campestris), and oil crops, with different crops having very different leaf morphologies. In the triplicated B. rapa genome, many genes have multiple paralogs that may be regulated differentially and contribute to phenotypic variation. Using a genetical genomics approach, phenotypic data from a segregating doubled haploid population derived from a cross between cultivar Yellow sarson (oil type) and cultivar Pak choi (vegetable type) were used to identify loci controlling leaf development. Twenty-five colocalized phenotypic quantitative trait loci (QTLs) contributing to natural variation for leaf morphological traits, leaf number, plant architecture, and flowering time were identified. Genetic analysis showed that four colocalized phenotypic QTLs colocalized with flowering time and leaf trait candidate genes, with their cis-expression QTLs and cis- or trans-expression QTLs for homologs of genes playing a role in leaf development in Arabidopsis (Arabidopsis thaliana). The leaf gene BRASSICA RAPA KIP-RELATED PROTEIN2_A03 colocalized with QTLs for leaf shape and plant height; BRASSICA RAPA ERECTA_A09 colocalized with QTLs for leaf color and leaf shape; BRASSICA RAPA LONGIFOLIA1_A10 colocalized with QTLs for leaf size, leaf color, plant branching, and flowering time; while the major flowering time gene, BRASSICA RAPA FLOWERING LOCUS C_A02, colocalized with QTLs explaining variation in flowering time, plant architectural traits, and leaf size. Colocalization of these QTLs points to pleiotropic regulation of leaf development and plant architectural traits in B. rapa. PMID:24394778

  9. Genetic dissection of leaf development in Brassica rapa using a genetical genomics approach.

    PubMed

    Xiao, Dong; Wang, Huange; Basnet, Ram Kumar; Zhao, Jianjun; Lin, Ke; Hou, Xilin; Bonnema, Guusje

    2014-03-01

    The paleohexaploid crop Brassica rapa harbors an enormous reservoir of morphological variation, encompassing leafy vegetables, vegetable and fodder turnips (Brassica rapa, ssp. campestris), and oil crops, with different crops having very different leaf morphologies. In the triplicated B. rapa genome, many genes have multiple paralogs that may be regulated differentially and contribute to phenotypic variation. Using a genetical genomics approach, phenotypic data from a segregating doubled haploid population derived from a cross between cultivar Yellow sarson (oil type) and cultivar Pak choi (vegetable type) were used to identify loci controlling leaf development. Twenty-five colocalized phenotypic quantitative trait loci (QTLs) contributing to natural variation for leaf morphological traits, leaf number, plant architecture, and flowering time were identified. Genetic analysis showed that four colocalized phenotypic QTLs colocalized with flowering time and leaf trait candidate genes, with their cis-expression QTLs and cis- or trans-expression QTLs for homologs of genes playing a role in leaf development in Arabidopsis (Arabidopsis thaliana). The leaf gene Brassica rapa KIP-related protein2_A03 colocalized with QTLs for leaf shape and plant height; Brassica rapa Erecta_A09 colocalized with QTLs for leaf color and leaf shape; Brassica rapa Longifolia1_A10 colocalized with QTLs for leaf size, leaf color, plant branching, and flowering time; while the major flowering time gene, Brassica rapa flowering locus C_A02, colocalized with QTLs explaining variation in flowering time, plant architectural traits, and leaf size. Colocalization of these QTLs points to pleiotropic regulation of leaf development and plant architectural traits in B. rapa.

  10. Metal ion-inducing metabolite accumulation in Brassica rapa.

    PubMed

    Jahangir, Muhammad; Abdel-Farid, Ibrahim Bayoumi; Choi, Young Hae; Verpoorte, Robert

    2008-09-29

    Plants face a number of biotic and abiotic environmental stress factors during growth. Among the abiotic factors, in particular, a great deal of attention has been paid to metals not only because of their increasing amounts in the environment due to rapid industrial development but also because of the variation of metal composition in soil. Cultivation of crops close to industrial areas or irrigation with contaminated water may result in both growth inhibition and tissue accumulation of metals. Brassica species are well known as metal accumulators and are being used for phytoremediation of contaminated soils. However, the metal tolerance mechanism in the plant still remains unclear. In order to investigate the metabolomic changes induced by metal ions in Brassica, plants were subjected to concentrations 50, 100, 250 and 500 mmol of copper (Cu), iron (Fe) and manganese (Mn) in separate treatments. (1)H NMR and two-dimensional NMR spectra coupled with principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were applied to investigate the metabolic change in Brassica rapa (var. Raapstelen). The (1)H-NMR analysis followed by the application of chemometric methods revealed a number of metabolic consequences. Among the metabolites that showed variation, glucosinolates and hydroxycinnamic acids conjugated with malates were found to be the discriminating metabolites as were primary metabolites like carbohydrates and amino acids. This study shows that the effects of Cu and Fe on plant metabolism were larger than those of Mn and that the metabolomic changes varied not only according to the type of metal but also according to its concentration.

  11. A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits.

    PubMed

    Li, Feng; Kitashiba, Hiroyasu; Inaba, Kiyofumi; Nishio, Takeshi

    2009-12-01

    For identification of genes responsible for varietal differences in flowering time and leaf morphological traits, we constructed a linkage map of Brassica rapa DNA markers including 170 EST-based markers, 12 SSR markers, and 59 BAC sequence-based markers, of which 151 are single nucleotide polymorphism (SNP) markers. By BLASTN, 223 markers were shown to have homologous regions in Arabidopsis thaliana, and these homologous loci covered nearly the whole genome of A. thaliana. Synteny analysis between B. rapa and A. thaliana revealed 33 large syntenic regions. Three quantitative trait loci (QTLs) for flowering time were detected. BrFLC1 and BrFLC2 were linked to the QTLs for bolting time, budding time, and flowering time. Three SNPs in the promoter, which may be the cause of low expression of BrFLC2 in the early-flowering parental line, were identified. For leaf lobe depth and leaf hairiness, one major QTL corresponding to a syntenic region containing GIBBERELLIN 20 OXIDASE 3 and one major QTL containing BrGL1, respectively, were detected. Analysis of nucleotide sequences and expression of these genes suggested possible involvement of these genes in leaf morphological traits.

  12. A Brassica rapa Linkage Map of EST-based SNP Markers for Identification of Candidate Genes Controlling Flowering Time and Leaf Morphological Traits

    PubMed Central

    Li, Feng; Kitashiba, Hiroyasu; Inaba, Kiyofumi; Nishio, Takeshi

    2009-01-01

    For identification of genes responsible for varietal differences in flowering time and leaf morphological traits, we constructed a linkage map of Brassica rapa DNA markers including 170 EST-based markers, 12 SSR markers, and 59 BAC sequence-based markers, of which 151 are single nucleotide polymorphism (SNP) markers. By BLASTN, 223 markers were shown to have homologous regions in Arabidopsis thaliana, and these homologous loci covered nearly the whole genome of A. thaliana. Synteny analysis between B. rapa and A. thaliana revealed 33 large syntenic regions. Three quantitative trait loci (QTLs) for flowering time were detected. BrFLC1 and BrFLC2 were linked to the QTLs for bolting time, budding time, and flowering time. Three SNPs in the promoter, which may be the cause of low expression of BrFLC2 in the early-flowering parental line, were identified. For leaf lobe depth and leaf hairiness, one major QTL corresponding to a syntenic region containing GIBBERELLIN 20 OXIDASE 3 and one major QTL containing BrGL1, respectively, were detected. Analysis of nucleotide sequences and expression of these genes suggested possible involvement of these genes in leaf morphological traits. PMID:19884167

  13. Transfer of auxinic herbicide resistance from Brassica kaber to Brassica juncea and Brassica rapa through embryo rescue.

    PubMed

    Mithila, J; Hall, J Christopher

    2013-01-01

    Auxinic herbicides are widely used in agriculture to selectively control broadleaf weeds. Prolonged use of auxinic herbicides has resulted in the evolution of resistance to these herbicides in some biotypes of Brassica kaber (wild mustard), a common weed in agricultural crops. In this study, auxinic herbicide resistance from B. kaber was transferred to Brassica juncea and Brassica rapa, two commercially important Brassica crops, by traditional breeding coupled with in vitro embryo rescue. A high frequency of embryo regeneration and hybrid plant establishment was achieved. Transfer of auxinic herbicide resistance from B. kaber to the hybrids was assessed by whole-plant screening of hybrids with dicamba, a widely used auxinic herbicide. Furthermore, the hybrids were tested for fertility (both pollen and pistil) and their ability to produce backcross progeny. The auxinic herbicide-resistant trait was introgressed into B. juncea by backcross breeding. DNA ploidy of the hybrids as well as of the backcross progeny was estimated by flow cytometry. Creation of auxinic herbicide-resistant Brassica crops by non-transgenic approaches should facilitate effective weed control, encourage less tillage, provide herbicide rotation options, minimize occurrence of herbicide resistance, and increase acceptance of these crops.

  14. Transfer of auxinic herbicide resistance from Brassica kaber to Brassica juncea and Brassica rapa through embryo rescue.

    PubMed

    Mithila, J; Hall, J Christopher

    2013-01-01

    Auxinic herbicides are widely used in agriculture to selectively control broadleaf weeds. Prolonged use of auxinic herbicides has resulted in the evolution of resistance to these herbicides in some biotypes of Brassica kaber (wild mustard), a common weed in agricultural crops. In this study, auxinic herbicide resistance from B. kaber was transferred to Brassica juncea and Brassica rapa, two commercially important Brassica crops, by traditional breeding coupled with in vitro embryo rescue. A high frequency of embryo regeneration and hybrid plant establishment was achieved. Transfer of auxinic herbicide resistance from B. kaber to the hybrids was assessed by whole-plant screening of hybrids with dicamba, a widely used auxinic herbicide. Furthermore, the hybrids were tested for fertility (both pollen and pistil) and their ability to produce backcross progeny. The auxinic herbicide-resistant trait was introgressed into B. juncea by backcross breeding. DNA ploidy of the hybrids as well as of the backcross progeny was estimated by flow cytometry. Creation of auxinic herbicide-resistant Brassica crops by non-transgenic approaches should facilitate effective weed control, encourage less tillage, provide herbicide rotation options, minimize occurrence of herbicide resistance, and increase acceptance of these crops. PMID:23990700

  15. Development of Public Immortal Mapping Populations, Molecular Markers and Linkage Maps for Rapid Cycling Brassica rapa and B. oleracea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study we describe public immortal mapping populations of self-compatible lines, molecular markers, and linkage maps for Brassica rapa and B. oleracea. We propose that these resources are valuable reference tools for the Brassica community. The B. rapa population consists of 150 recombinant...

  16. Development of Public Immortal Mapping Populations, Molecular Markers, and Linkage Maps for Rapid Cycling Brassica rapa and B. oleracea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Past research efforts on genetic mapping in Brassica oleracea and Brassica rapa have been disconnected, utilizing separate mapping populations and different sets of molecular markers. Here we present public immortal mapping populations, molecular markers and linkage maps for rapid cycling B. rapa a...

  17. Selection against hybrids in mixed populations of Brassica rapa and Brassica napus: model and synthesis.

    PubMed

    de Jong, Tom J; Hesse, Elze

    2012-06-01

    Pollen of the crop oilseed rape (Brassica napus, AACC) can cross-fertilize ovules of Brassica rapa (AA), which leads to an influx of unpaired C-chromosomes into wild B. rapa populations. The presence of such extra chromosomes is thought to be an indicator of introgression. Backcrosses and F(1) hybrids were found in Danish populations but, surprisingly, only F(1) hybrids were found in the UK and the Netherlands. Here, a model tests how the level of selection and biased vs unbiased transmission affect the population frequency of C-chromosomes. In the biased-transmission scenario the experimental results of the first backcross are extrapolated to estimate survival of gametes with different numbers of C-chromosomes from all crosses in the population. With biased transmission, the frequency of C-chromosomes always rapidly declines to zero. With unbiased transmission, the continued presence of plants with extra C-chromosomes depends on selection in the adult stage and we argue that this is the most realistic option for modeling populations. We suggest that selection in the field against plants with unpaired C-chromosomes is strong in Dutch and UK populations. The model highlights what we do not know and makes suggestions for further research on introgression.

  18. Glucosinolate variation in leaves of Brassica rapa crops.

    PubMed

    Cartea, María Elena; de Haro, Antonio; Obregón, Sara; Soengas, Pilar; Velasco, Pablo

    2012-09-01

    Total and individual glucosinolate (GSL) content of leaves of vegetable turnip rape (Brassica rapa L. var. rapa) was determined in a set of 45 varieties consisting in early, medium and late types grown at two locations in northwestern Spain. The objectives were to determine the diversity among varieties in GSL content and to relate that variation with earliness and plant habit. Eight GSL were identified, being two aliphatic GSL, gluconapin (84.4 % of the total GSL) and glucobrassicanapin (7.2 % of the total GSL) the most abundant. Indolic and aromatic GSL content were low but also showed significant differences among varieties. Differences in total and individual GSL content were found among varieties, plant habit groups, and earliness groups. Total GSL content ranged from 19 to 37.3 μmol g(-1) dw in early and extra-late groups, respectively, and from 19.5 to 36.3 μmol g(-1) dw for turnips and turnip greens groups, respectively. These differences were consistent to values found for gluconapin content where the turnip group had the highest values (31.8 μmol g(-1) dw) and the turnip top group had the lowest (15.7 μmol g(-1) dw). Two varieties, MBG-BRS0429 and MBG-BRS0550 (from turnip greens and extra-late groups) and MBG-BRS0438 (from turnips and late groups), stood out as they had the highest total GSL content and could be used as a good source of these beneficial bioactive compounds. Elucidation of genetic diversity among crops can provide useful information to assist plant breeders to design improved breeding strategies in order to obtain varieties rich on GSL.

  19. Destiny of a transgene escape from Brassica napus into Brassica rapa.

    PubMed

    Lu, M.; Kato, M.; Kakihara, F.

    2002-07-01

    Transgenic Brassica napus can be easily crossed with wild Brassica rapa. The spread of the transgene to wild species has aroused the general concern about its effect on ecological and agricultural systems. This paper was designated, by means of population genetics, to study the fate of a transgene escape from B. napus to B. rapa. Three models were proposed to survey the change in gene frequency during successive backcross processes by considering selection pressures against aneuploids, against herbicide-susceptible individuals, and by considering A-C intergenomic recombination and the effect of genetic drift. The transmission rate of an A-chromosome gene through an individual to the next generation was 50%, irrespective of the chromosome number; while that of a C-chromosome transgene varied from 8.7% to 39.9%, depending on the chromosome number of the individual used in the backcross. Without spraying herbicide, the frequency of an A-chromosome gene was 50% in the BC(1) generation, and decreased by 50% with the advance of each backcross generation; that of a C-chromosome gene was around 39.9% in BC(1), 7.7% in BC(2), 1.2% in BC(3) and 0.1% in the BC(4) generation. Under the selection pressure against herbicide-susceptible individuals, the frequency of a transgene reached a stable value of about 5.5% within six generations of successive backcrossings. The effect of genetic drift and intergenomic exchange on gene transmission rate was discussed. It is suggested that the transgene integrated on a C-chromosome (or better on a cytoplasm genome) is safer than that on an A-chromosome. The transgenic cultivars should be cultivated rotationally by year(s) with other non-transgenic varieties in order to reduce the transfer of the transgene to wild B. rapa species.

  20. Artificial selection on trichome number in Brassica rapa.

    PubMed

    Agren, J; Schemske, D W

    1992-04-01

    We examined genetic variation for trichome production in a rapid-cycling population of Brassica rapa by conducting a selection experiment and by growing progeny from maternal seed families. Data from the maternal families were also used to estimate the genetic correlations between trichome number and (1) number of days to first flower and (2) flower production. For seven generations, 10% of the plants were selected from low, high and control lines with 100 individuals per line per generation. The number of trichomes on the right edge of the first leaf was 20.8 ± 13.4 (mean + SD; n=100) in the base population, and had by the final generation reached 93.9 ± 28.7 (n=100) in the high line and 0.9 ±2.6 (n=100) in the low line. Control line plants of the seventh generation did not differ significantly from base population plants in number of trichomes on the edge. The realized heritability of trichome number on the edge was 0.38 (based on the regression of cumulative response on cumulative selection differential). The divergence between lines in trichome production on the edge of the first leaf was associated with a divergence in trichome number on the petiole and on the top of the same leaf, and on the edge, top and petiole of the third leaf. The increase in trichome production in the high line was further associated with a significant delay in flowering time relative to the control and low lines. The estimated heritabilities of trichome number on the edge and the petiole of the first leaf and of days to first flower were not significantly different from 1.0 (based on the among maternal family component of the total variance). Trichome number on the edge showed a significant genetic correlation with trichome number on the petiole of the first leaf (r=0.80), and with number of days to first flower (r=0.31), but not with total flower production (r=0.17; n=83). The substantial genetic variation for trichome production in B. rapa is of potential value for breeding

  1. Male fitness of oilseed rape (Brassica napus), weedy B. rapa and their F(1) hybrids when pollinating B. rapa seeds.

    PubMed

    Pertl, M; Hauser, T P; Damgaard, C; Jørgensen, R B

    2002-09-01

    The likelihood that two species hybridise and backcross may depend strongly on environmental conditions, and possibly on competitive interactions between parents and hybrids. We studied the paternity of seeds produced by weedy Brassica rapa growing in mixtures with oilseed rape (B. napus) and their F(1) hybrids at different frequencies and densities. Paternity was determined by the presence of a transgene, morphology, and AFLP markers. In addition, observations of flower and pollen production, and published data on pollen fertilisation success, zygote survival, and seed germination, allowed us to estimate an expected paternity. The frequency and density of B. napus, B. rapa, and F(1) plants had a strong influence on flower, pollen, and seed production, and on the paternity of B. rapa seeds. Hybridisation and backcrossing mostly occurred at low densities and at high frequencies of B. napus and F(1), respectively. F(1) and backcross offspring were produced mainly by a few B. rapa mother plants. The observed hybridisation and backcrossing frequencies were much lower than expected from our compilation of fitness components. Our results show that the male fitness of B. rapa, B. napus, and F(1) hybrids is strongly influenced by their local frequencies, and that male fitness of F(1)hybrids, when pollinating B. rapa seeds, is low even when their female fitness (seed set) is high.

  2. Polymorphism Identification and Improved Genome Annotation of Brassica rapa Through Deep RNA Sequencing

    PubMed Central

    Devisetty, Upendra Kumar; Covington, Michael F.; Tat, An V.; Lekkala, Saradadevi; Maloof, Julin N.

    2014-01-01

    The mapping and functional analysis of quantitative traits in Brassica rapa can be greatly improved with the availability of physically positioned, gene-based genetic markers and accurate genome annotation. In this study, deep transcriptome RNA sequencing (RNA-Seq) of Brassica rapa was undertaken with two objectives: SNP detection and improved transcriptome annotation. We performed SNP detection on two varieties that are parents of a mapping population to aid in development of a marker system for this population and subsequent development of high-resolution genetic map. An improved Brassica rapa transcriptome was constructed to detect novel transcripts and to improve the current genome annotation. This is useful for accurate mRNA abundance and detection of expression QTL (eQTLs) in mapping populations. Deep RNA-Seq of two Brassica rapa genotypes—R500 (var. trilocularis, Yellow Sarson) and IMB211 (a rapid cycling variety)—using eight different tissues (root, internode, leaf, petiole, apical meristem, floral meristem, silique, and seedling) grown across three different environments (growth chamber, greenhouse and field) and under two different treatments (simulated sun and simulated shade) generated 2.3 billion high-quality Illumina reads. A total of 330,995 SNPs were identified in transcribed regions between the two genotypes with an average frequency of one SNP in every 200 bases. The deep RNA-Seq reassembled Brassica rapa transcriptome identified 44,239 protein-coding genes. Compared with current gene models of B. rapa, we detected 3537 novel transcripts, 23,754 gene models had structural modifications, and 3655 annotated proteins changed. Gaps in the current genome assembly of B. rapa are highlighted by our identification of 780 unmapped transcripts. All the SNPs, annotations, and predicted transcripts can be viewed at http://phytonetworks.ucdavis.edu/. PMID:25122667

  3. Polymorphism identification and improved genome annotation of Brassica rapa through Deep RNA sequencing.

    PubMed

    Devisetty, Upendra Kumar; Covington, Michael F; Tat, An V; Lekkala, Saradadevi; Maloof, Julin N

    2014-08-12

    The mapping and functional analysis of quantitative traits in Brassica rapa can be greatly improved with the availability of physically positioned, gene-based genetic markers and accurate genome annotation. In this study, deep transcriptome RNA sequencing (RNA-Seq) of Brassica rapa was undertaken with two objectives: SNP detection and improved transcriptome annotation. We performed SNP detection on two varieties that are parents of a mapping population to aid in development of a marker system for this population and subsequent development of high-resolution genetic map. An improved Brassica rapa transcriptome was constructed to detect novel transcripts and to improve the current genome annotation. This is useful for accurate mRNA abundance and detection of expression QTL (eQTLs) in mapping populations. Deep RNA-Seq of two Brassica rapa genotypes-R500 (var. trilocularis, Yellow Sarson) and IMB211 (a rapid cycling variety)-using eight different tissues (root, internode, leaf, petiole, apical meristem, floral meristem, silique, and seedling) grown across three different environments (growth chamber, greenhouse and field) and under two different treatments (simulated sun and simulated shade) generated 2.3 billion high-quality Illumina reads. A total of 330,995 SNPs were identified in transcribed regions between the two genotypes with an average frequency of one SNP in every 200 bases. The deep RNA-Seq reassembled Brassica rapa transcriptome identified 44,239 protein-coding genes. Compared with current gene models of B. rapa, we detected 3537 novel transcripts, 23,754 gene models had structural modifications, and 3655 annotated proteins changed. Gaps in the current genome assembly of B. rapa are highlighted by our identification of 780 unmapped transcripts. All the SNPs, annotations, and predicted transcripts can be viewed at http://phytonetworks.ucdavis.edu/.

  4. High-throughput sequence analysis of small RNAs in skotomorphogenic seedlings of Brassica rapa ssp. rapa.

    PubMed

    Zhou, Bo; Fan, Pengzhen; Li, Yuhua

    2014-09-10

    Skotomorphogenic development is the process by which seedlings adapt to a stressful dark environment. Such metabolic responses to abiotic stresses in plants are known to be regulated in part by microRNAs (miRNAs); however, little is known about the involvement of miRNAs in the regulation of skotomorphogenesis. To identify miRNAs at the genome-wide level in skotomorphogenic seedlings of turnip (Brassica rapa subsp. rapa), an important worldwide root vegetable, we used Solexa sequencing to sequence a small RNA library from seedlings grown in the dark for 4 days. Deep sequencing showed that the small RNAs (sRNAs) were predominantly 21 to 24 nucleotides long. Specifically, 13,319,035 reads produced 359,531 unique sRNAs including rRNA, tRNA, miRNA, small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), and unannotated sRNAs. Sequence analysis identified 96 conserved miRNAs belonging to 36 miRNA families and 576 novel miRNAs. qRT-PCR confirmed that the miRNAs were expressed during skotomorphogenesis similar to the trends shown by the Solexa sequencing results. A total of 2013 potential targets were predicted, and the targets of BrmiR157, BrmiR159 and BrmiR160 were proved to be regulated by miRNA-guided cleavage. These results show that specific regulatory miRNAs are present in skotomorphogenic seedlings of turnip and may play important roles in growth, development, and response to dark environment.

  5. The elucidation of stress memory inheritance in Brassica rapa plants.

    PubMed

    Bilichak, Andriy; Ilnytskyy, Yaroslav; Wóycicki, Rafal; Kepeshchuk, Nina; Fogen, Dawson; Kovalchuk, Igor

    2015-01-01

    Plants are able to maintain the memory of stress exposure throughout their ontogenesis and faithfully propagate it into the next generation. Recent evidence argues for the epigenetic nature of this phenomenon. Small RNAs (smRNAs) are one of the vital epigenetic factors because they can both affect gene expression at the place of their generation and maintain non-cell-autonomous gene regulation. Here, we have made an attempt to decipher the contribution of smRNAs to the heat-shock-induced transgenerational inheritance in Brassica rapa plants using sequencing technology. To do this, we have generated comprehensive profiles of a transcriptome and a small RNAome (smRNAome) from somatic and reproductive tissues of stressed plants and their untreated progeny. We have demonstrated that the highest tissue-specific alterations in the transcriptome and smRNAome profile are detected in tissues that were not directly exposed to stress, namely, in the endosperm and pollen. Importantly, we have revealed that the progeny of stressed plants exhibit the highest fluctuations at the smRNAome level but not at the transcriptome level. Additionally, we have uncovered the existence of heat-inducible and transgenerationally transmitted tRNA-derived small RNA fragments in plants. Finally, we suggest that miR168 and braAGO1 are involved in the stress-induced transgenerational inheritance in plants.

  6. Enzymatic degradation of Congo Red by turnip (Brassica rapa) peroxidase.

    PubMed

    Ahmedi, Afaf; Abouseoud, Mahmoud; Couvert, Annabelle; Amrane, Abdeltif

    2012-01-01

    The enzyme peroxidase is known for its capacity to remove phenolic compounds and aromatic amines from aqueous solutions and also to decolourize textile effluents. This study aims at evaluating the potential of a turnip (Brassica rapa) peroxidase (TP) preparation in the discolouration of textile azo dyes and effluents. An azo dye, Congo Red (CR), was used as a model pollutant for treatment by the enzyme. The effects of various operating conditions like pH value, temperature, initial dye and hydrogen peroxide concentrations, contact time, and enzyme concentration were evaluated. The optimal conditions for maximal colour removal were at pH 2.0, 40 degrees C, 50 mM hydrogen peroxide, 50 mg/l CR dye, and TP activity of 0.45 U/ml within 10 min of incubation time. Analysis of the by-products from the enzymatic treatment by UV-Vis and IR spectroscopy showed no residual compounds in the aqueous phase and a precipitate of polymeric nature.

  7. The Brassica rapa elongated internode (EIN) gene encodes phytochrome B.

    PubMed

    Devlin, P F; Somers, D E; Quail, P H; Whitelam, G C

    1997-06-01

    The elongated internode (ein) mutation of Brassica rapa leads to a deficiency in immunochemically detectable phytochrome B. Molecular analysis of the PHYB gene from ein indicates a deletion in the flanking DNA 5' of the ATG start codon, which could interfere either with PHYB transcription or processing of the PHYB transcript. Restriction fragment length polymorphisms and inverse PCR fragments generated from the PHYB gene of wild-type and ein seedlings demonstrate the deletion to be 500 bp in length. Seedlings of heterozygote, EIN/ein, contain about 50% of the level of immunochemically detectable phytochrome B of equivalent wild-type EIN/EIN seedlings. Etiolated seedlings of EIN/ein show a responsiveness to red light almost intermediate between that of ein/ein and EIN/EIN homozygotes. Furthermore, whereas the ein/ein homozygote is poorly responsive to low red/far-red ratio light, the presence of one functional allele of EIN in the heterozygote confers an elongation response intermediate between that of the homozygotes EIN/EIN and ein/ein in these light conditions. The partial dominance of ein indicates a close relationship between phytochrome B level and phenotype.

  8. State of Brassica rapa photosynthetic membranes in microgravity.

    PubMed

    Adamchuk, N I; Guikema, J A; Jialo, S; Hilaire, E

    2002-07-01

    The structural characteristics of the photosynthetic apparatus of Brassica rapa plants grown on board the space shuttle Columbia (STS-87) for 15 days were examined using the methods of transmission electron microscopy and statistic programme STAT. Maintaining of the same growth conditions for control plants was realized with great accuracy using the Orbiter Environmental simulator in Kennedy Space Center. A grana number per a medial section 1.8 times decreased in microgravity. Considerable changes were also revealed in the grana structure in microgravity in comparison with th ground control, namely: 1/a greater diversity in the thylakoid length with granae and 2/ lateral shifting of the thylakoids lateral shifting of the thylakoids relative one to another. The previous mentioned pheomenon was found for 64% of the invested granae. Shifting of the thylakoids in the granae in microgravity led to increasing of the grana thylakoid surface exposed to a stroma. In addition, the volume of stromal thylakoids increased. The peculiarities in the photosynthetic apparatus structure in microgravity are supposed to be an evidence of decreasing in the light harvesting complex amount of photosystem II (PSII).

  9. The elucidation of stress memory inheritance in Brassica rapa plants

    PubMed Central

    Bilichak, Andriy; Ilnytskyy, Yaroslav; Wóycicki, Rafal; Kepeshchuk, Nina; Fogen, Dawson; Kovalchuk, Igor

    2015-01-01

    Plants are able to maintain the memory of stress exposure throughout their ontogenesis and faithfully propagate it into the next generation. Recent evidence argues for the epigenetic nature of this phenomenon. Small RNAs (smRNAs) are one of the vital epigenetic factors because they can both affect gene expression at the place of their generation and maintain non-cell-autonomous gene regulation. Here, we have made an attempt to decipher the contribution of smRNAs to the heat-shock-induced transgenerational inheritance in Brassica rapa plants using sequencing technology. To do this, we have generated comprehensive profiles of a transcriptome and a small RNAome (smRNAome) from somatic and reproductive tissues of stressed plants and their untreated progeny. We have demonstrated that the highest tissue-specific alterations in the transcriptome and smRNAome profile are detected in tissues that were not directly exposed to stress, namely, in the endosperm and pollen. Importantly, we have revealed that the progeny of stressed plants exhibit the highest fluctuations at the smRNAome level but not at the transcriptome level. Additionally, we have uncovered the existence of heat-inducible and transgenerationally transmitted tRNA-derived small RNA fragments in plants. Finally, we suggest that miR168 and braAGO1 are involved in the stress-induced transgenerational inheritance in plants. PMID:25653665

  10. Enzymatic degradation of Congo Red by turnip (Brassica rapa) peroxidase.

    PubMed

    Ahmedi, Afaf; Abouseoud, Mahmoud; Couvert, Annabelle; Amrane, Abdeltif

    2012-01-01

    The enzyme peroxidase is known for its capacity to remove phenolic compounds and aromatic amines from aqueous solutions and also to decolourize textile effluents. This study aims at evaluating the potential of a turnip (Brassica rapa) peroxidase (TP) preparation in the discolouration of textile azo dyes and effluents. An azo dye, Congo Red (CR), was used as a model pollutant for treatment by the enzyme. The effects of various operating conditions like pH value, temperature, initial dye and hydrogen peroxide concentrations, contact time, and enzyme concentration were evaluated. The optimal conditions for maximal colour removal were at pH 2.0, 40 degrees C, 50 mM hydrogen peroxide, 50 mg/l CR dye, and TP activity of 0.45 U/ml within 10 min of incubation time. Analysis of the by-products from the enzymatic treatment by UV-Vis and IR spectroscopy showed no residual compounds in the aqueous phase and a precipitate of polymeric nature. PMID:23016283

  11. Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome.

    PubMed

    Qian, W; Chen, X; Fu, D; Zou, J; Meng, J

    2005-05-01

    This paper reports the observation on the intersubgenomic heterosis for seed yield among hybrids between natural Brassica napus (A(n)A(n)C(n)C(n)) and a new type of B. napus with introgressions of genomic components of Brassica rapa (A(r)A(r)). This B. napus was selected from the progeny of B. napus x B. rapa and (B. napus x B. rapa) x B. rapa based on extensive phenotypic and cytological observation. Among the 129 studied partial intersubgenomic hybrids, which were obtained by randomly crossing 13 lines of the new type of B. napus in F(3) or BC(1)F(3) to 27 cultivars of B. napus from different regions as tester lines, about 90% of combinations exceeded the yield of their respective tester lines, whereas about 75% and 25% of combinations surpassed two elite Chinese cultivars, respectively. This strong heterosis was further confirmed by reevaluating 2 out of the 129 combinations in a successive year and by surveying hybrids between 20 lines of the new type of B. napus in BC(1)F(5) and its parental B. napus in two locations. Some DNA segments from B. rapa were identified with significant effects on seed yield and yield components of the new type of B. napus in BC(1)F(5) and intersubgenomic hybrids in positive or negative direction. It seems that the genomic components introgressed from B. rapa contributed to improvement of seed yield of rapeseed.

  12. Field evaluation of leaf blight-resistant plant introductions of Brassica Juncea and Brassica Rapa and elucidation of inheritance of resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassica leafy greens (Brassica juncea and Brassica rapa) represent one of the most economically important vegetable crop groups in the southeastern United States. In the last 10 years, numerous occurrences of a leaf blight disease on these leafy vegetables have been reported in several states. One ...

  13. The Impact of Genome Triplication on Tandem Gene Evolution in Brassica rapa.

    PubMed

    Fang, Lu; Cheng, Feng; Wu, Jian; Wang, Xiaowu

    2012-01-01

    Whole genome duplication (WGD) and tandem duplication (TD) are both important modes of gene expansion. However, how WGD influences tandemly duplicated genes is not well studied. We used Brassica rapa, which has undergone an additional genome triplication (WGT) and shares a common ancestor with Arabidopsis thaliana, Arabidopsis lyrata, and Thellungiella parvula, to investigate the impact of genome triplication on tandem gene evolution. We identified 2,137, 1,569, 1,751, and 1,135 tandem gene arrays in B. rapa, A. thaliana, A. lyrata, and T. parvula respectively. Among them, 414 conserved tandem arrays are shared by the three species without WGT, which were also considered as existing in the diploid ancestor of B. rapa. Thus, after genome triplication, B. rapa should have 1,242 tandem arrays according to the 414 conserved tandems. Here, we found 400 out of the 414 tandems had at least one syntenic ortholog in the genome of B. rapa. Furthermore, 294 out of the 400 shared syntenic orthologs maintain tandem arrays (more than one gene for each syntenic hit) in B. rapa. For the 294 tandem arrays, we obtained 426 copies of syntenic paralogous tandems in the triplicated genome of B. rapa. In this study, we demonstrated that tandem arrays in B. rapa were dramatically fractionated after WGT when compared either to non-tandem genes in the B. rapa genome or to the tandem arrays in closely related species that have not experienced a recent whole genome polyploidization event.

  14. The Impact of Genome Triplication on Tandem Gene Evolution in Brassica rapa

    PubMed Central

    Fang, Lu; Cheng, Feng; Wu, Jian; Wang, Xiaowu

    2012-01-01

    Whole genome duplication (WGD) and tandem duplication (TD) are both important modes of gene expansion. However, how WGD influences tandemly duplicated genes is not well studied. We used Brassica rapa, which has undergone an additional genome triplication (WGT) and shares a common ancestor with Arabidopsis thaliana, Arabidopsis lyrata, and Thellungiella parvula, to investigate the impact of genome triplication on tandem gene evolution. We identified 2,137, 1,569, 1,751, and 1,135 tandem gene arrays in B. rapa, A. thaliana, A. lyrata, and T. parvula respectively. Among them, 414 conserved tandem arrays are shared by the three species without WGT, which were also considered as existing in the diploid ancestor of B. rapa. Thus, after genome triplication, B. rapa should have 1,242 tandem arrays according to the 414 conserved tandems. Here, we found 400 out of the 414 tandems had at least one syntenic ortholog in the genome of B. rapa. Furthermore, 294 out of the 400 shared syntenic orthologs maintain tandem arrays (more than one gene for each syntenic hit) in B. rapa. For the 294 tandem arrays, we obtained 426 copies of syntenic paralogous tandems in the triplicated genome of B. rapa. In this study, we demonstrated that tandem arrays in B. rapa were dramatically fractionated after WGT when compared either to non-tandem genes in the B. rapa genome or to the tandem arrays in closely related species that have not experienced a recent whole genome polyploidization event. PMID:23226149

  15. Variation of glucosinolates in vegetable crops of Brassica rapa.

    PubMed

    Padilla, Guillermo; Cartea, María Elena; Velasco, Pablo; de Haro, Antonio; Ordás, Amando

    2007-02-01

    Glucosinolate levels in leaves were determined in a collection of 113 varieties of turnip greens (Brassica rapa L.) from northwestern Spain grown at two sites. Sensorial attributes were also assessed by a consumer panel. The objectives were to determine the diversity among varieties in total glucosinolate content and glucosinolate profile and to evaluate their sensory attributes in relation to glucosinolate content for breeding purposes. Sixteen glucosinolates were identified, being the aliphatic glucosinolates, gluconapin and glucobrassicanapin the most abundant. Other aliphatic glucosinolates, such as progoitrin, glucoalyssin, and gluconapoleiferin were relatively abundant in varieties with a different glucosinolate profile. Indolic and aromatic glucosinolate concentrations were low and showed few differences among varieties. Differences in total glucosinolate content, glucosinolate profile and bitterness were found among varieties, with a total glucosinolate content ranging from 11.8 to 74.0micromolg(-1) dw at one site and from 7.5 to 56.9micromolg(-1) dw at the other site. Sensory analysis comparing bitterness with variation in glucosinolate, gluconapin and glucobrassicanapin concentrations suggested that these compounds and their breakdown products are not the only determinants of the characteristic flavour of this vegetable. Other phytochemicals are probably involved on the characteristic bitter flavour. The varieties MBG-BRS0132, MBG-BRS0082, MBG-BRS0173, and MBG-BRS0184 could be good candidates for future breeding programs since they had high total glucosinolate content and good agronomic performance. The presence of glucoraphanin in some varieties should be studied more extensively, because this aliphatic glucosinolate is the precursor of sulforaphane, a potent anti-cancer isothiocyanate.

  16. Comparative analysis of S haplotypes with very similar SLG alleles in Brassica rapa and Brassica oleracea.

    PubMed

    Kusaba, M; Nishio, T

    1999-01-01

    Self-incompatibility in Brassica is controlled by a single multi-allelic locus (the S locus) which harbors at least two highly polymorphic genes, SLG and SRK. SRK is a putative transmembrane receptor kinase and its amino acid sequence of the extracellular domain of SRK (the S domain) exhibits high homology to that of SLG. The amino acid sequences of the SLGs of S8 and S46 haplotypes of B. rapa are very similar and those of S23 and S29 haplotypes of B. oleracea were also found to be almost identical. In both cases, SLG and the S domain of SRK of the same haplotype were less similar. This seems to contradict the idea that SLG and SRK of the same haplotype have the same self-recognition specificity. In the transmembrane-kinase domain, the SRK alleles of the S8 and S46 haplotypes had almost identical nucleotide sequences in spite of their lower homology in the S domain. Such a cluster of nucleotide substitutions is probably due to recombination or related events, although recombination in the S locus is thought to be suppressed. Based on our observations, the recognition mechanism and the evolution of self-incompatibility in Brassica are discussed.

  17. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana.

    PubMed

    Osborn, T C; Kole, C; Parkin, I A; Sharpe, A G; Kuiper, M; Lydiate, D J; Trick, M

    1997-07-01

    The major difference between annual and biennial cultivars of oilseed Brassica napus and B. rapa is conferred by genes controlling vernalization-responsive flowering time. These genes were compared between the species by aligning the map positions of flowering time quantitative trait loci (QTLs) detected in a segregating population of each species. The results suggest that two major QTLs identified in B. rapa correspond to two major QTLs identified in B. napus. Since B. rapa is one of the hypothesized diploid parents of the amphidiploid B. napus, the vernalization requirement of B. napus probably originated from B. rapa. Brassica genes also were compared to flowering time genes in Arabidopsis thaliana by mapping RFLP loci with the same probes in both B. napus and Arabidopsis. The region containing one pair of Brassica QTLs was collinear with the top of chromosome 5 in A. thaliana where flowering time genes FLC, FY and CO are located. The region containing the second pair of QTLs showed fractured collinearity with several regions of the Arabidopsis genome, including the top of chromosome 4 where FRI is located. Thus, these Brassica genes may correspond to two genes (FLC and FRI) that regulate flowering time in the latest flowering ecotypes of Arabidopsis.

  18. Genome-wide identification of NBS-encoding resistance genes in Brassica rapa.

    PubMed

    Mun, Jeong-Hwan; Yu, Hee-Ju; Park, Soomin; Park, Beom-Seok

    2009-12-01

    Nucleotide-binding site (NBS)-encoding resistance genes are key plant disease-resistance genes and are abundant in plant genomes, comprising up to 2% of all genes. The availability of genome sequences from several plant models enables the identification and cloning of NBS-encoding genes from closely related species based on a comparative genomics approach. In this study, we used the genome sequence of Brassica rapa to identify NBS-encoding genes in the Brassica genome. We identified 92 non-redundant NBS-encoding genes [30 CC-NBS-LRR (CNL) and 62 TIR-NBS-LRR (TNL) genes] in approximately 100 Mbp of B. rapa euchromatic genome sequence. Despite the fact that B. rapa has a significantly larger genome than Arabidopsis thaliana due to a recent whole genome triplication event after speciation, B. rapa contains relatively small number of NBS-encoding genes compared to A. thaliana, presumably because of deletion of redundant genes related to genome diploidization. Phylogenetic and evolutionary analyses suggest that relatively higher relaxation of selective constraints on the TNL group after the old duplication event resulted in greater accumulation of TNLs than CNLs in both Arabidopsis and Brassica genomes. Recent tandem duplication and ectopic deletion are likely to have played a role in the generation of novel Brassica lineage-specific resistance genes.

  19. Comparative Analysis of Disease-Linked Single Nucleotide Polymorphic Markers from Brassica rapa for Their Applicability to Brassica oleracea

    PubMed Central

    Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun

    2015-01-01

    Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH—developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP—based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS—derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species. PMID:25790283

  20. Comparative analysis of disease-linked single nucleotide polymorphic markers from Brassica rapa for their applicability to Brassica oleracea.

    PubMed

    Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun

    2015-01-01

    Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH--developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP--based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS--derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species.

  1. Morphology, carbohydrate composition and vernalization response in a genetically diverse collection of Asian and European turnips (Brassica rapa subsp. rapa).

    PubMed

    Zhang, Ningwen; Zhao, Jianjun; Lens, Frederic; de Visser, Joan; Menamo, Temesgen; Fang, Wen; Xiao, Dong; Bucher, Johan; Basnet, Ram Kumar; Lin, Ke; Cheng, Feng; Wang, Xiaowu; Bonnema, Guusje

    2014-01-01

    Brassica rapa displays enormous morphological diversity, with leafy vegetables, turnips and oil crops. Turnips (Brassica rapa subsp. rapa) represent one of the morphotypes, which form tubers and can be used to study the genetics underlying storage organ formation. In the present study we investigated several characteristics of an extensive turnip collection comprising 56 accessions from both Asia (mainly Japanese origin) and Europe. Population structure was calculated using data from 280 evenly distributed SNP markers over 56 turnip accessions. We studied the anatomy of turnip tubers and measured carbohydrate composition of the mature turnip tubers of a subset of the collection. The variation in 16 leaf traits, 12 tuber traits and flowering time was evaluated in five independent experiments for the entire collection. The effect of vernalization on flowering and tuber formation was also investigated. SNP marker profiling basically divided the turnip accessions into two subpopulations, with admixture, generally corresponding with geographical origin (Europe or Asia). The enlarged turnip tuber consists of both hypocotyl and root tissue, but the proportion of the two tissues differs between accessions. The ratio of sucrose to fructose and glucose differed among accessions, while generally starch content was low. The evaluated traits segregated in both subpopulations, with leaf shape, tuber colour and number of shoots per tuber explaining most variation between the two subpopulations. Vernalization resulted in reduced flowering time and smaller tubers for the Asian turnips whereas the European turnips were less affected by vernalization. PMID:25474111

  2. Morphology, Carbohydrate Composition and Vernalization Response in a Genetically Diverse Collection of Asian and European Turnips (Brassica rapa subsp. rapa)

    PubMed Central

    Zhang, Ningwen; Zhao, Jianjun; Lens, Frederic; de Visser, Joan; Menamo, Temesgen; Fang, Wen; Xiao, Dong; Bucher, Johan; Basnet, Ram Kumar; Lin, Ke; Cheng, Feng; Wang, Xiaowu; Bonnema, Guusje

    2014-01-01

    Brassica rapa displays enormous morphological diversity, with leafy vegetables, turnips and oil crops. Turnips (Brassica rapa subsp. rapa) represent one of the morphotypes, which form tubers and can be used to study the genetics underlying storage organ formation. In the present study we investigated several characteristics of an extensive turnip collection comprising 56 accessions from both Asia (mainly Japanese origin) and Europe. Population structure was calculated using data from 280 evenly distributed SNP markers over 56 turnip accessions. We studied the anatomy of turnip tubers and measured carbohydrate composition of the mature turnip tubers of a subset of the collection. The variation in 16 leaf traits, 12 tuber traits and flowering time was evaluated in five independent experiments for the entire collection. The effect of vernalization on flowering and tuber formation was also investigated. SNP marker profiling basically divided the turnip accessions into two subpopulations, with admixture, generally corresponding with geographical origin (Europe or Asia). The enlarged turnip tuber consists of both hypocotyl and root tissue, but the proportion of the two tissues differs between accessions. The ratio of sucrose to fructose and glucose differed among accessions, while generally starch content was low. The evaluated traits segregated in both subpopulations, with leaf shape, tuber colour and number of shoots per tuber explaining most variation between the two subpopulations. Vernalization resulted in reduced flowering time and smaller tubers for the Asian turnips whereas the European turnips were less affected by vernalization. PMID:25474111

  3. Morphology, carbohydrate composition and vernalization response in a genetically diverse collection of Asian and European turnips (Brassica rapa subsp. rapa).

    PubMed

    Zhang, Ningwen; Zhao, Jianjun; Lens, Frederic; de Visser, Joan; Menamo, Temesgen; Fang, Wen; Xiao, Dong; Bucher, Johan; Basnet, Ram Kumar; Lin, Ke; Cheng, Feng; Wang, Xiaowu; Bonnema, Guusje

    2014-01-01

    Brassica rapa displays enormous morphological diversity, with leafy vegetables, turnips and oil crops. Turnips (Brassica rapa subsp. rapa) represent one of the morphotypes, which form tubers and can be used to study the genetics underlying storage organ formation. In the present study we investigated several characteristics of an extensive turnip collection comprising 56 accessions from both Asia (mainly Japanese origin) and Europe. Population structure was calculated using data from 280 evenly distributed SNP markers over 56 turnip accessions. We studied the anatomy of turnip tubers and measured carbohydrate composition of the mature turnip tubers of a subset of the collection. The variation in 16 leaf traits, 12 tuber traits and flowering time was evaluated in five independent experiments for the entire collection. The effect of vernalization on flowering and tuber formation was also investigated. SNP marker profiling basically divided the turnip accessions into two subpopulations, with admixture, generally corresponding with geographical origin (Europe or Asia). The enlarged turnip tuber consists of both hypocotyl and root tissue, but the proportion of the two tissues differs between accessions. The ratio of sucrose to fructose and glucose differed among accessions, while generally starch content was low. The evaluated traits segregated in both subpopulations, with leaf shape, tuber colour and number of shoots per tuber explaining most variation between the two subpopulations. Vernalization resulted in reduced flowering time and smaller tubers for the Asian turnips whereas the European turnips were less affected by vernalization.

  4. HPLC-DAD-MS/MS-ESI screening of phenolic compounds in Pieris brassicae L. Reared on Brassica rapa var. rapa L.

    PubMed

    Ferreres, Federico; Valentão, Patrícia; Pereira, José A; Bento, Albino; Noites, Alexandra; Seabra, Rosa M; Andrade, Paula B

    2008-02-13

    The phenolic profiles of cabbage white butterfly ( Pieris brassicae L.; Lepidoptera: Pieridae) at different development stages (larvae, exuviae, and butterfly), its excrements, and its host plant Brassica rapa var. rapa L. were determined by high performance liquid chromatography- diode-array detector-mass spectrometry/mass spectrometry-electrospray ionization (HPLC-DAD-MS/MS-ESI). Twenty-five acylated and nonacylated flavonoid glycosides and ferulic and sinapic acids were identified in host plant, from which only 12 compounds were found in the excrements. In addition, the excrements showed the presence of sulfate flavonoids and other flavonoid glycosides that were not detected in the leaves. In the larvae kept without food for 12 h, only 3 compounds common to the plant material and 2 others, also present in the excrements, were characterized. The results indicate that deacylation, deglycosylation, and sulfating steps are involved in the metabolic process of P. brassicae and that its excrements may constitute a promising source of bioactive compounds, which could be used to take profit of this common pest of Brassica cultures.

  5. Genome-wide identification of glucosinolate synthesis genes in Brassica rapa.

    PubMed

    Zang, Yun-Xiang; Kim, Hyun Uk; Kim, Jin A; Lim, Myung-Ho; Jin, Mina; Lee, Sang Choon; Kwon, Soo-Jin; Lee, Soo-In; Hong, Joon Ki; Park, Tae-Ho; Mun, Jeong-Hwan; Seol, Young-Joo; Hong, Seung-Beom; Park, Beom-Seok

    2009-07-01

    Glucosinolates play important roles in plant defense against herbivores and microbes, as well as in human nutrition. Some glucosinolate-derived isothiocyanate and nitrile compounds have been clinically proven for their anticarcinogenic activity. To better understand glucosinolate biosynthesis in Brassica rapa, we conducted a comparative genomics study with Arabidopsis thaliana and identified total 56 putative biosynthetic and regulator genes. This established a high colinearity in the glucosinolate biosynthesis pathway between Arabidopsis and B. rapa. Glucosinolate genes in B. rapa share 72-94% nucleotide sequence identity with the Arabidopsis orthologs and exist in different copy numbers. The exon/intron split pattern of B. rapa is almost identical to that of Arabidopsis, although inversion, insertion, deletion and intron size variations commonly occur. Four genes appear to be nonfunctional as a result of the presence of a frame shift mutation and retrotransposon insertion. At least 12 paralogs of desulfoglucosinolate sulfotransferase were found in B. rapa, whereas only three were found in Arabidopsis. The expression of those paralogs was not tissue-specific but varied greatly depending on B. rapa tissue types. Expression was also developmentally regulated in some paralogs but not in other paralogs. Most of the regulator genes are present as triple copies. Accordingly, glucosinolate synthesis and regulation in B. rapa appears to be more complex than that of Arabidopsis. With the isolation and further characterization of the endogenous genes, health-beneficial vegetables or desirable animal feed crops could be developed by metabolically engineering the glucosinolate pathway.

  6. Enhanced glucosinolates in root exudates of Brassica rapa ssp. rapa mediated by salicylic acid and methyl jasmonate.

    PubMed

    Schreiner, Monika; Krumbein, Angelika; Knorr, Dietrich; Smetanska, Iryna

    2011-02-23

    Elicitation studies with salicylic acid (SA) and methyl jasmonate (MJ) inducing a targeted rhizosecretion of high levels of anticarcinogenic glucosinolates in Brassica rapa ssp. rapa plants were conducted. Elicitor applications not only led to an accumulation of individual indole glucosinolates and the aromatic 2-phenylethyl glucosinolate in the turnip organs but also in turnip root exudates. This indicates an extended systemic response, which comprises the phyllosphere with all aboveground plant organs and the rhizosphere including the belowground root system and also root exudates. Both elicitor applications induced a doubling in 2-phenylethyl glucosinolate in root exudates, whereas application of MJ enhanced rhizosecreted indole glucosinolates up to 4-fold. In addition, the time course study revealed that maximal elicitation was observed on the 10th day of SA and MJ treatment. This study may provide an essential contribution using these glucosinolates as bioactive additives in functional foods and nutraceuticals.

  7. Molecular cytogenetic analysis of Brassica rapa-Brassica oleracea var. alboglabra monosomic addition lines.

    PubMed

    Hasterok, Robert; Wolny, Elzbieta; Kulak, Sylwia; Zdziechiewicz, Aleksandra; Maluszynska, Jolanta; Heneen, Waheeb K

    2005-07-01

    Interspecific alien chromosome addition lines can be very useful for gene mapping and studying chromosome homoeology between closely related species. In this study we demonstrate a simple but robust manner of identifying individual C-genome chromosomes (C5, C8 and C9) in the A-genome background through the simultaneous use of 5S and 25S ribosomal probes on mitotic and meiotic chromosomes of three different Brassica rapa-B. oleracea var. alboglabra monosomic addition lines. Sequential silver staining and fluorescence in situ hybridisation indicated that 18S-5.8S-25S rRNA genes on the additional chromosome C9 are expressed in the A-genome background. Meiotic behaviour of the additional chromosomes was studied in pollen mother cells at diakinesis and metaphase I. In all of the addition lines the alien chromosome was most frequently observed as a univalent. The alien chromosome C5, which carries an intercalary 5S rDNA locus, occasionally formed trivalents that involved either rDNA- or non rDNA-carrying chromosomes from the A genome. In the case of chromosomes C8 and C9, the most frequently observed intergenomic associations involved the regions occupied by 18S-5.8S-25S ribosomal RNA genes. It is possible that not all such associations represent true pairing but are remnants of nucleolar associations from the preceding interphase. Variations in the numbers and distribution of 5S and 25S rDNA sites between cultivars of B. oleracea, B. oleracea var. alboglabra and B. rapa are discussed.

  8. The reference genetic linkage map for the multinational Brassica rapa genome sequencing project.

    PubMed

    Choi, Su Ryun; Teakle, Graham R; Plaha, Prikshit; Kim, Jeong Hee; Allender, Charlotte J; Beynon, Elena; Piao, Zhong Yun; Soengas, Pilar; Han, Tae Ho; King, Graham J; Barker, Guy C; Hand, Paul; Lydiate, Derek J; Batley, Jacqueline; Edwards, David; Koo, Dal Hoe; Bang, Jae Wook; Park, Beom-Seok; Lim, Yong Pyo

    2007-10-01

    We describe the construction of a reference genetic linkage map for the Brassica A genome, which will form the backbone for anchoring sequence contigs for the Multinational Brassica rapa Genome Sequencing Project. Seventy-eight doubled haploid lines derived from anther culture of the F(1) of a cross between two diverse Chinese cabbage (B. rapa ssp. pekinensis) inbred lines, 'Chiifu-401-42' (C) and 'Kenshin-402-43' (K) were used to construct the map. The map comprises a total of 556 markers, including 278 AFLP, 235 SSR, 25 RAPD and 18 ESTP, STS and CAPS markers. Ten linkage groups were identified and designated as R1-R10 through alignment and orientation using SSR markers in common with existing B. napus reference linkage maps. The total length of the linkage map was 1,182 cM with an average interval of 2.83 cM between adjacent loci. The length of linkage groups ranged from 81 to 161 cM for R04 and R06, respectively. The use of 235 SSR markers allowed us to align the A-genome chromosomes of B. napus with those of B. rapa ssp. pekinensis. The development of this map is vital to the integration of genome sequence and genetic information and will enable the international research community to share resources and data for the improvement of B. rapa and other cultivated Brassica species.

  9. Integration of genetic, physical, and cytogenetic maps for Brassica rapa chromosome A7.

    PubMed

    Xiong, Z; Kim, J S; Pires, J C

    2010-07-01

    Bacterial artificial chromosome (BAC) contigs have been genetically mapped to the 10 linkage groups of Brassica rapa by BAC end sequences (BES). To integrate the genetic, physical, and cytogenetic maps, fluorescence in situ hybridization (FISH) was used to anchor the assembly of BAC contigs onto Brassica chromosomes using representative BACs. This BAC-FISH approach can be used to identify chromosome arms on separate mitotic metaphase chromosomes or to map multiple BACs to single long pachytene chromosomes. As part of an international consortium that is sequencing the B. rapa genome, we integrated the linkage and physical maps with the B. rapa cytogenetic map for chromosome A7 by hybridizing BACs to mitotic chromosomes and along the length of pachytene chromosome spreads. A total of 31 BACs that were putatively located on A7 were used as probes for FISH analyses; however, only 19 BACs mapped unambiguously to A7 while the remaining BACs either mapped to other chromosomes or hybridized to multiple locations. We then created a multicolor FISH cocktail of 16 BAC probes to simultaneously hybridize the entire length of the A7 chromosome. We successfully applied the 16 A7 BAC probe mix to B. rapa, B. oleracea, and domesticated and resynthesized genotypes of B. napus to demonstrate that this approach can facilitate studies of genome evolution by integrating the genetic, physical, and cytogenetic maps among closely related species of Brassica.

  10. Frequency-dependent fitness of hybrids between oilseed rape (Brassica napus) and weedy B. rapa (Brassicaceae).

    PubMed

    Hauser, Thure P; Damgaard, Christian; Jørgensen, Rikke B

    2003-04-01

    Fitness of interspecific hybrids is sometimes high relative to their parents, despite the conventional belief that they are mostly unfit. F(1) hybrids between oilseed rape (Brassica napus) and weedy B. rapa can be significantly more fit than their weedy parents under some conditions; however, under other conditions they are less fit. To understand the reasons, we measured the seed production of B. napus, B. rapa, and different generations of hybrid plants at three different densities and in mixtures of different frequencies (including pure stands). Brassica napus, B. rapa, and backcross plants (F(1) ♀ × B. rapa) produced many more seeds per plant in pure plots than in mixtures and more seeds in plots when each was present at high frequency. The opposite was true for F(1) plants that produced many more seeds than B. rapa in mixtures, but fewer in pure stands. Both vegetative and reproductive interactions may be responsible for these effects. Our results show that the fitness of both parents and hybrids is strongly frequency-dependent and that the likelihood of introgression of genes between the species thus may depend on the numbers and densities of parents and their various hybrid offspring in the population.

  11. Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa.

    PubMed

    Soengas, P; Hand, P; Vicente, J G; Pole, J M; Pink, D A C

    2007-02-01

    Resistance to six known races of black rot in crucifers caused by Xanthomonas campestris pv. campestris (Pammel) Dowson is absent or very rare in Brassica oleracea (C genome). However, race specific and broad-spectrum resistance (to type strains of all six races) does appear to occur frequently in other brassica genomes including B. rapa (A genome). Here, we report the genetics of broad spectrum resistance in the B. rapa Chinese cabbage accession B162, using QTL analysis of resistance to races 1 and 4 of the pathogen. A B. rapa linkage map comprising ten linkage groups (A01-A10) with a total map distance of 664 cM was produced, based on 223 AFLP bands and 23 microsatellites from a F(2) population of 114 plants derived from a cross between the B. rapa susceptible inbred line R-o-18 and B162. Interaction phenotypes of 125 F(2) plants were assessed using two criteria: the percentage of inoculation sites in which symptoms developed, and the severity of symptoms per plant. Resistance to both races was correlated and a cluster of highly significant QTL that explained 24-64% of the phenotypic variance was located on A06. Two additional QTLs for resistance to race 4 were found on A02 and A09. Markers closely linked to these QTL could assist in the transference of the resistance into different B. rapa cultivars or into B. oleracea.

  12. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa.

    PubMed

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Hur, Yoonkang; Nou, Ill-Sup

    2015-07-01

    Flavonoids are divided into several structural classes, including anthocyanins, which provide flower and leaf colors and other derivatives that play diverse roles in plant development and interactions with the environment. This study characterized four anthocyanidin synthase (ANS) genes of Brassica rapa, a structural gene of the anthocyanin biosynthetic pathway, and investigated their association with pigment formation, cold and freezing tolerance in B. rapa. Sequences of these genes were analyzed and compared with similar gene sequences from other species, and a high degree of homology with their respective functions was found. Organ-specific expression analysis revealed that these genes were only expressed in the colored portion of leaves of different lines of B. rapa. Conversely, B. rapa anthocyanidin synthase (BrANS) genes also showed responses to cold and freezing stress treatment in B. rapa. BrANSs were also shown to be regulated by two transcription factors, BrMYB2-2 and BrTT8, contrasting with anthocyanin accumulation and cold stress. Thus, the above results suggest the association of these genes with anthocyanin biosynthesis and cold and freezing stress tolerance and might be useful resources for development of cold-resistant Brassica crops with desirable colors as well.

  13. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa.

    PubMed

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Hur, Yoonkang; Nou, Ill-Sup

    2015-07-01

    Flavonoids are divided into several structural classes, including anthocyanins, which provide flower and leaf colors and other derivatives that play diverse roles in plant development and interactions with the environment. This study characterized four anthocyanidin synthase (ANS) genes of Brassica rapa, a structural gene of the anthocyanin biosynthetic pathway, and investigated their association with pigment formation, cold and freezing tolerance in B. rapa. Sequences of these genes were analyzed and compared with similar gene sequences from other species, and a high degree of homology with their respective functions was found. Organ-specific expression analysis revealed that these genes were only expressed in the colored portion of leaves of different lines of B. rapa. Conversely, B. rapa anthocyanidin synthase (BrANS) genes also showed responses to cold and freezing stress treatment in B. rapa. BrANSs were also shown to be regulated by two transcription factors, BrMYB2-2 and BrTT8, contrasting with anthocyanin accumulation and cold stress. Thus, the above results suggest the association of these genes with anthocyanin biosynthesis and cold and freezing stress tolerance and might be useful resources for development of cold-resistant Brassica crops with desirable colors as well. PMID:25504198

  14. Transposon variation by order during allopolyploidisation between Brassica oleracea and Brassica rapa.

    PubMed

    An, Z; Tang, Z; Ma, B; Mason, A S; Guo, Y; Yin, J; Gao, C; Wei, L; Li, J; Fu, D

    2014-07-01

    Although many studies have shown that transposable element (TE) activation is induced by hybridisation and polyploidisation in plants, much less is known on how different types of TE respond to hybridisation, and the impact of TE-associated sequences on gene function. We investigated the frequency and regularity of putative transposon activation for different types of TE, and determined the impact of TE-associated sequence variation on the genome during allopolyploidisation. We designed different types of TE primers and adopted the Inter-Retrotransposon Amplified Polymorphism (IRAP) method to detect variation in TE-associated sequences during the process of allopolyploidisation between Brassica rapa (AA) and Brassica oleracea (CC), and in successive generations of self-pollinated progeny. In addition, fragments with TE insertions were used to perform Blast2GO analysis to characterise the putative functions of the fragments with TE insertions. Ninety-two primers amplifying 548 loci were used to detect variation in sequences associated with four different orders of TE sequences. TEs could be classed in ascending frequency into LTR-REs, TIRs, LINEs, SINEs and unknown TEs. The frequency of novel variation (putative activation) detected for the four orders of TEs was highest from the F1 to F2 generations, and lowest from the F2 to F3 generations. Functional annotation of sequences with TE insertions showed that genes with TE insertions were mainly involved in metabolic processes and binding, and preferentially functioned in organelles. TE variation in our study severely disturbed the genetic compositions of the different generations, resulting in inconsistencies in genetic clustering. Different types of TE showed different patterns of variation during the process of allopolyploidisation.

  15. Regulatory network of secondary metabolism in Brassica rapa: insight into the glucosinolate pathway.

    PubMed

    Pino Del Carpio, Dunia; Basnet, Ram Kumar; Arends, Danny; Lin, Ke; De Vos, Ric C H; Muth, Dorota; Kodde, Jan; Boutilier, Kim; Bucher, Johan; Wang, Xiaowu; Jansen, Ritsert; Bonnema, Guusje

    2014-01-01

    Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92 genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs) and transcript QTLs (eQTLs). Co-localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new insights into the genetic regulation of metabolite composition of Brassica vegetables.

  16. [Transposon expression and potential effects on gene regulation of Brassica rapa and B. oleracea genomes].

    PubMed

    Zhao, Mei-Xia; Zhang, Biao; Liu, Sheng-Yi; Ma, Jian-Xin

    2013-08-01

    Transposons or transposable elements (TEs) are ubiquitous and most abundant DNA components in higher eukaryotes. Recent sequencing of the Brassica rapa and B. oleracea genomes revealed that the amplification of TEs is one of the main factors inducing the difference in genome size. However, the expressions of TEs and the TE effects on gene regulation and functions of these two Brassica diploid species were unclear. Here, we analyzed the RNA sequencing data of leaves, roots, and stems from B. rapa and B. oleracea. Our data showed that overall TEs in either genome expressed at very low levels, and the expression levels of different TE categories and families varied among different organs. Moreover, even for the same TE category or family, the expression activities were distinct between the two Brassica diploids. Forty-one and nine LTR retrotransposons with the transcripts that read into their adjacent sequences have the distances shorter than 2 kb and 100 bp compared to the downstream genes. These LTR retrotransposon readout transcriptions may produce sense or antisense transcripts of nearby genes, with the effects on activating or silencing corresponding genes. Meanwhile, intact LTRs were detected at stronger readout activities than solo LTRs. Of the TEs inserted into genes, the frequencies were ob-served at a higher level in B. rapa than in B. oleracea. In addition, DNA transposons were prone to insert or retain in the intronic regions of genes in either Brassica genomes. These results revealed that the TEs may have potential effects on regulating protein coding genes.

  17. Regulatory Network of Secondary Metabolism in Brassica rapa: Insight into the Glucosinolate Pathway

    PubMed Central

    Pino Del Carpio, Dunia; Basnet, Ram Kumar; Arends, Danny; Lin, Ke; De Vos, Ric C. H.; Muth, Dorota; Kodde, Jan; Boutilier, Kim; Bucher, Johan; Wang, Xiaowu; Jansen, Ritsert; Bonnema, Guusje

    2014-01-01

    Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92 genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs) and transcript QTLs (eQTLs). Co-localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new insights into the genetic regulation of metabolite composition of Brassica vegetables. PMID:25222144

  18. The first generation of a BAC-based physical map of Brassica rapa

    PubMed Central

    Mun, Jeong-Hwan; Kwon, Soo-Jin; Yang, Tae-Jin; Kim, Hye-Sun; Choi, Beom-Soon; Baek, Seunghoon; Kim, Jung Sun; Jin, Mina; Kim, Jin A; Lim, Myung-Ho; Lee, Soo In; Kim, Ho-Il; Kim, Hyungtae; Lim, Yong Pyo; Park, Beom-Seok

    2008-01-01

    Background The genus Brassica includes the most extensively cultivated vegetable crops worldwide. Investigation of the Brassica genome presents excellent challenges to study plant genome evolution and divergence of gene function associated with polyploidy and genome hybridization. A physical map of the B. rapa genome is a fundamental tool for analysis of Brassica "A" genome structure. Integration of a physical map with an existing genetic map by linking genetic markers and BAC clones in the sequencing pipeline provides a crucial resource for the ongoing genome sequencing effort and assembly of whole genome sequences. Results A genome-wide physical map of the B. rapa genome was constructed by the capillary electrophoresis-based fingerprinting of 67,468 Bacterial Artificial Chromosome (BAC) clones using the five restriction enzyme SNaPshot technique. The clones were assembled into contigs by means of FPC v8.5.3. After contig validation and manual editing, the resulting contig assembly consists of 1,428 contigs and is estimated to span 717 Mb in physical length. This map provides 242 anchored contigs on 10 linkage groups to be served as seed points from which to continue bidirectional chromosome extension for genome sequencing. Conclusion The map reported here is the first physical map for Brassica "A" genome based on the High Information Content Fingerprinting (HICF) technique. This physical map will serve as a fundamental genomic resource for accelerating genome sequencing, assembly of BAC sequences, and comparative genomics between Brassica genomes. The current build of the B. rapa physical map is available at the B. rapa Genome Project website for the user community. PMID:18549474

  19. [RAPD analysis for the genetic diversity of Brassica rapa in Tibet].

    PubMed

    Wang, Jian-Lin; Dan, Ba; Hu, Shu-Yin; Tu, Jin-Xing; Luan, Yun-Fang; Meng, Xia; Zhuo, Ga; Nimazhuoma; Tang, Lin

    2002-01-01

    Tibet, a most beautiful place, locating in southwestern China. She has been called as the third pole of the earth. Unique geological history, complex land surface and climatic zones, various soil types, all different wild vegetations etc., all of these make Tibet a very typical area of vertical agricultural ecosystem. The ecosystem in Tibet may be the most complex in the world, which varies from place to place. Genetic differentiation of 107 accessions of Brassica rapa from Tibet plateau was studied by DNA PAPD analysis using 2210 bp random primers, the genetical distribution in 107 accession of Brassica rapa from Tibet plateau was found. The results are as follows: (1) Total 236 bands were produced from 107 Tibet oilseed accession of B. rapa germaplasm resource in Tibet, of 210 bands amplified from B. rapa germaplasm resource showed polymorphism, with the ratio 88.98%. The result showed that oilseed accession of B. rapa in Tibet has richer genetic diversity; (2) Dendrogram constructed from DNA RAPDs showed that 107 accessions of B. rapa from Tibet plateau were divided into 11 cluster by calculating genetic distance, the cluster analysis showed that the genetic variation among oilseed accessions of B. rapa was closely related with their eco-geographic distribution; extensive variation existed among the accessions from Tibet Province. Based on the analysis of unique geological history, complex land surface and climatic zones, various soil types, complex growing environments, long agricultural history, different cropping systems, and natural and artificial selection as well as plant geography, plant evolution theory, it concludes that Tibet is one of the oil seed gene centers in the word.

  20. Cytogenetic Diversity of Simple Sequences Repeats in Morphotypes of Brassica rapa ssp. chinensis

    PubMed Central

    Zheng, Jin-shuang; Sun, Cheng-zhen; Zhang, Shu-ning; Hou, Xi-lin; Bonnema, Guusje

    2016-01-01

    A significant fraction of the nuclear DNA of all eukaryotes is comprised of simple sequence repeats (SSRs). Although these sequences are widely used for studying genetic variation, linkage mapping and evolution, little attention had been paid to the chromosomal distribution and cytogenetic diversity of these sequences. In this paper, we report the distribution characterization of mono-, di-, and tri-nucleotide SSRs in Brassica rapa ssp. chinensis. Fluorescence in situ hybridization was used to characterize the cytogenetic diversity of SSRs among morphotypes of B. rapa ssp. chinensis. The proportion of different SSR motifs varied among morphotypes of B. rapa ssp. chinensis, with tri-nucleotide SSRs being more prevalent in the genome of B. rapa ssp. chinensis. We determined the chromosomal locations of mono-, di-, and tri-nucleotide repeat loci. The results showed that the chromosomal distribution of SSRs in the different morphotypes is non-random and motif-dependent, and allowed us to characterize the relative variability in terms of SSR numbers and similar chromosomal distributions in centromeric/peri-centromeric heterochromatin. The differences between SSR repeats with respect to abundance and distribution indicate that SSRs are a driving force in the genomic evolution of B. rapa species. Our results provide a comprehensive view of the SSR sequence distribution and evolution for comparison among morphotypes B. rapa ssp. chinensis. PMID:27507974

  1. Cytogenetic Diversity of Simple Sequences Repeats in Morphotypes of Brassica rapa ssp. chinensis.

    PubMed

    Zheng, Jin-Shuang; Sun, Cheng-Zhen; Zhang, Shu-Ning; Hou, Xi-Lin; Bonnema, Guusje

    2016-01-01

    A significant fraction of the nuclear DNA of all eukaryotes is comprised of simple sequence repeats (SSRs). Although these sequences are widely used for studying genetic variation, linkage mapping and evolution, little attention had been paid to the chromosomal distribution and cytogenetic diversity of these sequences. In this paper, we report the distribution characterization of mono-, di-, and tri-nucleotide SSRs in Brassica rapa ssp. chinensis. Fluorescence in situ hybridization was used to characterize the cytogenetic diversity of SSRs among morphotypes of B. rapa ssp. chinensis. The proportion of different SSR motifs varied among morphotypes of B. rapa ssp. chinensis, with tri-nucleotide SSRs being more prevalent in the genome of B. rapa ssp. chinensis. We determined the chromosomal locations of mono-, di-, and tri-nucleotide repeat loci. The results showed that the chromosomal distribution of SSRs in the different morphotypes is non-random and motif-dependent, and allowed us to characterize the relative variability in terms of SSR numbers and similar chromosomal distributions in centromeric/peri-centromeric heterochromatin. The differences between SSR repeats with respect to abundance and distribution indicate that SSRs are a driving force in the genomic evolution of B. rapa species. Our results provide a comprehensive view of the SSR sequence distribution and evolution for comparison among morphotypes B. rapa ssp. chinensis.

  2. Impacts of Whole-Genome Triplication on MIRNA Evolution in Brassica rapa.

    PubMed

    Sun, Chao; Wu, Jian; Liang, Jianli; Schnable, James C; Yang, Wencai; Cheng, Feng; Wang, Xiaowu

    2015-11-01

    MicroRNAs (miRNAs) are a class of short non-coding, endogenous RNAs that play essential roles in eukaryotes. Although the influence of whole-genome triplication (WGT) on protein-coding genes has been well documented in Brassica rapa, little is known about its impacts on MIRNAs. In this study, through generating a comprehensive annotation of 680 MIRNAs for B. rapa, we analyzed the evolutionary characteristics of these MIRNAs from different aspects in B. rapa. First, while MIRNAs and genes show similar patterns of biased distribution among subgenomes of B. rapa, we found that MIRNAs are much more overretained than genes following fractionation after WGT. Second, multiple-copy MIRNAs show significant sequence conservation than that of single-copy MIRNAs, which is opposite to that of genes. This indicates that increased purifying selection is acting upon these highly retained multiple-copy MIRNAs and their functional importance over singleton MIRNAs. Furthermore, we found the extensive divergence between pairs of miRNAs and their target genes following the WGT in B. rapa. In summary, our study provides a valuable resource for exploring MIRNA in B. rapa and highlights the impacts of WGT on the evolution of MIRNA.

  3. Cytogenetic Diversity of Simple Sequences Repeats in Morphotypes of Brassica rapa ssp. chinensis.

    PubMed

    Zheng, Jin-Shuang; Sun, Cheng-Zhen; Zhang, Shu-Ning; Hou, Xi-Lin; Bonnema, Guusje

    2016-01-01

    A significant fraction of the nuclear DNA of all eukaryotes is comprised of simple sequence repeats (SSRs). Although these sequences are widely used for studying genetic variation, linkage mapping and evolution, little attention had been paid to the chromosomal distribution and cytogenetic diversity of these sequences. In this paper, we report the distribution characterization of mono-, di-, and tri-nucleotide SSRs in Brassica rapa ssp. chinensis. Fluorescence in situ hybridization was used to characterize the cytogenetic diversity of SSRs among morphotypes of B. rapa ssp. chinensis. The proportion of different SSR motifs varied among morphotypes of B. rapa ssp. chinensis, with tri-nucleotide SSRs being more prevalent in the genome of B. rapa ssp. chinensis. We determined the chromosomal locations of mono-, di-, and tri-nucleotide repeat loci. The results showed that the chromosomal distribution of SSRs in the different morphotypes is non-random and motif-dependent, and allowed us to characterize the relative variability in terms of SSR numbers and similar chromosomal distributions in centromeric/peri-centromeric heterochromatin. The differences between SSR repeats with respect to abundance and distribution indicate that SSRs are a driving force in the genomic evolution of B. rapa species. Our results provide a comprehensive view of the SSR sequence distribution and evolution for comparison among morphotypes B. rapa ssp. chinensis. PMID:27507974

  4. Impacts of Whole-Genome Triplication on MIRNA Evolution in Brassica rapa.

    PubMed

    Sun, Chao; Wu, Jian; Liang, Jianli; Schnable, James C; Yang, Wencai; Cheng, Feng; Wang, Xiaowu

    2015-11-01

    MicroRNAs (miRNAs) are a class of short non-coding, endogenous RNAs that play essential roles in eukaryotes. Although the influence of whole-genome triplication (WGT) on protein-coding genes has been well documented in Brassica rapa, little is known about its impacts on MIRNAs. In this study, through generating a comprehensive annotation of 680 MIRNAs for B. rapa, we analyzed the evolutionary characteristics of these MIRNAs from different aspects in B. rapa. First, while MIRNAs and genes show similar patterns of biased distribution among subgenomes of B. rapa, we found that MIRNAs are much more overretained than genes following fractionation after WGT. Second, multiple-copy MIRNAs show significant sequence conservation than that of single-copy MIRNAs, which is opposite to that of genes. This indicates that increased purifying selection is acting upon these highly retained multiple-copy MIRNAs and their functional importance over singleton MIRNAs. Furthermore, we found the extensive divergence between pairs of miRNAs and their target genes following the WGT in B. rapa. In summary, our study provides a valuable resource for exploring MIRNA in B. rapa and highlights the impacts of WGT on the evolution of MIRNA. PMID:26527651

  5. Genetic control of broad-spectrum resistance to turnip mosaic virus in Brassica rapa (Chinese cabbage).

    PubMed

    Rusholme, Rachel L; Higgins, Erin E; Walsh, John A; Lydiate, Derek J

    2007-11-01

    The Brassica rapa line RLR22 was resistant to eight diverse turnip mosaic virus (TuMV) isolates. A B. rapa genetic map based on 213 marker loci segregating in 120 first back-cross (B(1)) individuals was established and aligned with the B. rapa genome reference map using some of the RFLP probes. B(1) individuals were self-pollinated to produce B(1)S(1) families. The existence of two loci controlling resistance to TuMV isolate CDN 1 was established from contrasting patterns of segregation for resistance and susceptibility in the B(1)S(1) families. The first gene, recessive TuMV resistance 01 (retr01), had a recessive allele for resistance, was located on the upper portion of chromosome R4 and was epistatic to the second gene. The second gene, Conditional TuMV resistance 01 (ConTR01), possessed a dominant allele for resistance and was located on the upper portion of chromosome R8. These genes also controlled resistance to TuMV isolate CZE 1 and might be sufficient to explain the broad-spectrum resistance of RLR22. The dominant resistance gene, ConTR01, was coincident with one of the three eukaryotic initiation factor 4E (eIF4E) loci of B. rapa and possibly one of the loci of eIF(iso)4E. The recessive resistance gene retr01 was apparently coincident with one of the three loci of eIF(iso)4E in the A genome of Brassica napus and therefore, by inference, in the B. rapa genome. This suggested a mode of action for the resistance that is based on denying the viral RNA access to the translation initiation complex of the plant host. The gene retr01 is the first reported example of a recessive resistance gene mapped in a Brassica species.

  6. Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa

    PubMed Central

    2013-01-01

    Background The species Brassica rapa (2n=20, AA) is an important vegetable and oilseed crop, and serves as an excellent model for genomic and evolutionary research in Brassica species. With the availability of whole genome sequence of B. rapa, it is essential to further determine the activity of all functional elements of the B. rapa genome and explore the transcriptome on a genome-wide scale. Here, RNA-seq data was employed to provide a genome-wide transcriptional landscape and characterization of the annotated and novel transcripts and alternative splicing events across tissues. Results RNA-seq reads were generated using the Illumina platform from six different tissues (root, stem, leaf, flower, silique and callus) of the B. rapa accession Chiifu-401-42, the same line used for whole genome sequencing. First, these data detected the widespread transcription of the B. rapa genome, leading to the identification of numerous novel transcripts and definition of 5'/3' UTRs of known genes. Second, 78.8% of the total annotated genes were detected as expressed and 45.8% were constitutively expressed across all tissues. We further defined several groups of genes: housekeeping genes, tissue-specific expressed genes and co-expressed genes across tissues, which will serve as a valuable repository for future crop functional genomics research. Third, alternative splicing (AS) is estimated to occur in more than 29.4% of intron-containing B. rapa genes, and 65% of them were commonly detected in more than two tissues. Interestingly, genes with high rate of AS were over-represented in GO categories relating to transcriptional regulation and signal transduction, suggesting potential importance of AS for playing regulatory role in these genes. Further, we observed that intron retention (IR) is predominant in the AS events and seems to preferentially occurred in genes with short introns. Conclusions The high-resolution RNA-seq analysis provides a global transcriptional landscape as a

  7. Interspecific pairs of class II S haplotypes having different recognition specificities between Brassica oleracea and Brassica rapa.

    PubMed

    Sato, Yutaka; Sato, Keiichi; Nishio, Takeshi

    2006-03-01

    There are several pairs of similar class I S haplotypes between Brassica oleracea and Brassica rapa. The similar S halotypes in these interspecific pairs have been reported to have the same recognition specificities. In the present study, three interspecific pairs showing a high sequence similarity were found in class II S haplotypes, i.e. between BoS-2b (B. oleracea S-2b) and BrS-44 (B. rapa S-44), between BoS-5 and BrS-40, and between BoS-15 and BrS-60. By pollination tests using interspecific hybrids between B. oleracea and B. rapa, BoS-5 and BoS-2b were revealed to have slightly and completely different recognition specificities from those of BrS-40 and BrS-44, respectively. The recognition reaction between SP11 and SRK of BoS-15 was suggested to be incomplete. The regions of class II SP11 and SRK important for self-recognition specificity and the diversification of class II S haplotypes are discussed herein.

  8. Identification of potential microRNAs and their targets in Brassica rapa L.

    PubMed

    Dhandapani, Vignesh; Ramchiary, Nirala; Paul, Parameswari; Kim, Joonki; Choi, Sun Hee; Lee, Jeongyeo; Hur, Yoonkang; Lim, Yong Pyo

    2011-07-01

    MicroRNAs (miRNAs) are recently discovered, noncoding, small regulatory RNA molecules that negatively regulate gene expression. Although many miRNAs are identified and validated in many plant species, they remain largely unknown in Brassica rapa (AA 2n =, 20). B. rapa is an important Brassica crop with wide genetic and morphological diversity resulting in several subspecies that are largely grown for vegetables, oilseeds, and fodder crop production. In this study, we identified 186 miRNAs belonging to 55 families in B. rapa by using comparative genomics. The lengths of identified mature and pre-miRNAs ranged from 18 to 22 and 66 to 305 nucleotides, respectively. Comparison of 4 nucleotides revealed that uracil is the predominant base in the first position of B. rapa miRNA, suggesting that it plays an important role in miRNA-mediated gene regulation. Overall, adenine and guanine were predominant in mature miRNAs, while adenine and uracil were predominant in pre-miRNA sequences. One DNA sequence producing both sense and antisense mature miRNAs belonging to the BrMiR 399 family, which differs by 1 nucleotide at the, 20(th) position, was identified. In silico analyses, using previously established methods, predicted 66 miRNA target mRNAs for 33 miRNA families. The majority of the target genes were transcription factors that regulate plant growth and development, followed by a few target genes that are involved in fatty acid metabolism, glycolysis, biotic and abiotic stresses, and other cellular processes. Northern blot and qRT-PCR analyses of RNA samples prepared from different B. rapa tissues for 17 miRNA families revealed that miRNAs are differentially expressed both quantitatively and qualitatively in different tissues of B. rapa.

  9. Identification of Potential microRNAs and Their Targets in Brassica rapa L.

    PubMed Central

    Dhandapani, Vignesh; Ramchiary, Nirala; Paul, Parameswari; Kim, Joonki; Choi, Sun Hee; Lee, Jeongyeo; Hur, Yoonkang; Lim, Yong Pyo

    2011-01-01

    MicroRNAs (miRNAs) are recently discovered, noncoding, small regulatory RNA molecules that negatively regulate gene expression. Although many miRNAs are identified and validated in many plant species, they remain largely unknown in Brassica rapa (AA 2n =, 20). B. rapa is an important Brassica crop with wide genetic and morphological diversity resulting in several subspecies that are largely grown for vegetables, oilseeds, and fodder crop production. In this study, we identified 186 miRNAs belonging to 55 families in B. rapa by using comparative genomics. The lengths of identified mature and pre-miRNAs ranged from 18 to 22 and 66 to 305 nucleotides, respectively. Comparison of 4 nucleotides revealed that uracil is the predominant base in the first position of B. rapa miRNA, suggesting that it plays an important role in miRNA- mediated gene regulation. Overall, adenine and guanine were predominant in mature miRNAs, while adenine and uracil were predominant in pre-miRNA sequences. One DNA sequence producing both sense and antisense mature miRNAs belonging to the BrMiR 399 family, which differs by 1 nucleotide at the, 20th position, was identified. In silico analyses, using previously established methods, predicted 66 miRNA target mRNAs for 33 miRNA families. The majority of the target genes were transcription factors that regulate plant growth and development, followed by a few target genes that are involved in fatty acid metabolism, glycolysis, biotic and abiotic stresses, and other cellular processes. Northern blot and qRT-PCR analyses of RNA samples prepared from different B. rapa tissues for 17 miRNA families revealed that miRNAs are differentially expressed both quantitatively and qualitatively in different tissues of B. rapa. PMID:21647586

  10. Center of Origin and Centers of Diversity in an Ancient Crop, Brassica rapa (Turnip Rape).

    PubMed

    Guo, Yiming; Chen, Sheng; Li, Zaiyun; Cowling, Wallace A

    2014-04-01

    Brassica rapa is the most widely distributed and has the longest history of domestication of the agricultural Brassica species. Molecular genetic diversity, based on 51 simple sequence repeat primer pairs and 715 alleles at polymorphic loci, was used to predict the center of origin and centers of diversity in a global collection of 173 B. rapa accessions. The accessions were separated into 3 molecular genetic groups based on STRUCTURE analysis-group 1 from the classical Old World (Europe and west Asia-north Africa), group 2 from east Asia, and group 3 from east, central, south, and southeast Asia. Accessions classified as "wild" (B. rapa var. sylvestris) were found only in group 1 and this group had the highest number and richness of private alleles. Each group included a diverse range of agricultural morphotypes (oilseed, root, or leafy vegetable types), flowering habit (winter, semi-winter, or spring type), self-compatibility or incompatibility, and seed color. The Old World and east, south, and central Asia were distinct subpopulations based on analysis of shared unique alleles. This study supports the theory that the classical Old World is the center of origin of B. rapa, with centers of diversity in east Asia and along ancient trade routes in Asia, with recent migration to the New World.

  11. Auxin response factor gene family in Brassica rapa: genomic organization, divergence, expression, and evolution.

    PubMed

    Mun, Jeong-Hwan; Yu, Hee-Ju; Shin, Ja Young; Oh, Mijin; Hwang, Hyun-Ju; Chung, Hee

    2012-10-01

    Completion of the sequencing of the Brassica rapa genome enabled us to undertake a genome-wide identification and functional study of the gene families related to the morphological diversity and agronomic traits of Brassica crops. In this study, we identified the auxin response factor (ARF) gene family, which is one of the key regulators of auxin-mediated plant growth and development in the B. rapa genome. A total of 31 ARF genes were identified in the genome. Phylogenetic and evolutionary analyses suggest that ARF genes fell into four major classes and were amplified in the B. rapa genome as a result of a recent whole genome triplication after speciation from Arabidopsis thaliana. Despite its recent hexaploid ancestry, B. rapa includes a relatively small number of ARF genes compared with the 23 members in A. thaliana, presumably due to a paralog reduction related to repetitive sequence insertion into promoter and non-coding transcribed region of the genes. Comparative genomic and mRNA sequencing analyses demonstrated that 27 of the 31 BrARF genes were transcriptionally active, and their expression was affected by either auxin treatment or floral development stage, although 4 genes were inactive, suggesting that the generation and pseudogenization of ARF members are likely to be an ongoing process. This study will provide a fundamental basis for the modification and evolution of the gene family after a polyploidy event, as well as a functional study of ARF genes in a polyploidy crop species.

  12. Inferring the Brassica rapa Interactome Using Protein-Protein Interaction Data from Arabidopsis thaliana.

    PubMed

    Yang, Jianhua; Osman, Kim; Iqbal, Mudassar; Stekel, Dov J; Luo, Zewei; Armstrong, Susan J; Franklin, F Chris H

    2012-01-01

    Following successful completion of the Brassica rapa sequencing project, the next step is to investigate functions of individual genes/proteins. For Arabidopsis thaliana, large amounts of protein-protein interaction (PPI) data are available from the major PPI databases (DBs). It is known that Brassica crop species are closely related to A. thaliana. This provides an opportunity to infer the B. rapa interactome using PPI data available from A. thaliana. In this paper, we present an inferred B. rapa interactome that is based on the A. thaliana PPI data from two resources: (i) A. thaliana PPI data from three major DBs, BioGRID, IntAct, and TAIR. (ii) ortholog-based A. thaliana PPI predictions. Linking between B. rapa and A. thaliana was accomplished in three complementary ways: (i) ortholog predictions, (ii) identification of gene duplication based on synteny and collinearity, and (iii) BLAST sequence similarity search. A complementary approach was also applied, which used known/predicted domain-domain interaction data. Specifically, since the two species are closely related, we used PPI data from A. thaliana to predict interacting domains that might be conserved between the two species. The predicted interactome was investigated for the component that contains known A. thaliana meiotic proteins to demonstrate its usability.

  13. Comparative sequence analysis for Brassica oleracea with similar sequences in B. rapa and Arabidopsis thaliana.

    PubMed

    Qiu, Dan; Gao, Muqiang; Li, Genyi; Quiros, Carlos

    2009-04-01

    We sequenced five BAC clones of Brassica oleracea doubled haploid 'Early Big' broccoli containing major genes in the aliphatic glucosinolate pathway, and comparatively analyzed them with similar sequences in A. thaliana and B. rapa. Additionally, we included in the analysis published sequences from three other B. oleracea BAC clones and a contig of this species corresponding to segments in A. thaliana chromosomes IV and V. A total of 2,946 kb of B. oleracea, 1,069 kb of B. rapa sequence and 2,607 kb of A. thaliana sequence were compared and analyzed. We found conserved collinearity for gene order and content restricted to specific chromosomal segments, but breaks in collinearity were frequent resulting in gene absence likely not due to gene loss but rearrangements. B. oleracea has the lowest gene density of the three species, followed by B. rapa. The genome expansion of the Brassica species, B. oleracea in particular, is due to larger introns and gene spacers resulting from frequent insertion of DNA transposons and retrotransposons. These findings are discussed in relation to the possible origin and evolution of the Brassica genomes.

  14. Mapping QTLs for root morphological traits in Brassica rapa L. based on AFLP and RAPD markers.

    PubMed

    Lu, Gang; Cao, Jiashu; Yu, Xiaolin; Xiang, Xun; Chen, Hang

    2008-01-01

    Root growth and thickening plays a key role in the final productivity and even the quality of storage roots in root crops. This study was conducted to identify and map quantitative trait loci (QTLs) affecting root morphological traits in Brassica rapa by using molecular markers. An F2 population was developed from a cross between Chinese cabbage (Brassica rapa ssp. chinensis) and turnip (B. rapa ssp. rapifera), which differed greatly in root characters. A genetic map covering 1837.1 cM, with 192 marker loci and 11 linkage groups, was constructed by using this F2 population. The F3 families derived from F2 plants were grown in the field and evaluated for taproot traits (thickness, length, and weight). QTL analysis via simple interval mapping detected 18 QTLs for the 3 root traits, including 7 QTLs for taproot thickness, 5 QTLs for taproot length, and 6 QTLs for taproot weight. Individually, the QTLs accounted for 8.4-27.4% of the phenotypic variation. The 2 major QTLs, qTRT4b for taproot thickness and qTRW4 for taproot weight, explained 27.4% and 24.8% of the total phenotypic variance, respectively. The QTLs for root traits, firstly detected in Brassica crops, may provide a basis for marker-assisted selection to improve productivity in root-crop breeding.

  15. Reproduction and cytogenetic characterization of interspecific hybrids derived from crosses between Brassica carinata and B. rapa.

    PubMed

    Li, M T; Li, Z Y; Zhang, C Y; Qian, W; Meng, J L

    2005-05-01

    The tri-genomic hybrid (ABC, 2n=27) between Brassica carinata (BBCC, 2n=34) and B. rapa (AA, 2n=20) is a unique material for studying genome relationships among Brassica species and a valuable bridge for transferring desirable characteristics from one species to the other within the genus Brassica. The crossability between B. carinata and B. rapa was varied with the cultivar of B. rapa. Hybrid pollen mother cells (PMCs), confirmed by morphological observation and molecular marker assay, could be grouped into 20 classes on the basis of chromosome pairing configurations. More than 30% of the PMCs had nine or more bivalents. Genomic in situ hybridization confirmed that two of the bivalents most likely belonged to the B genome. Nearly one-half of the PMCs had trivalents (0-2) and quadrivalents (0-2), which revealed partial homology among the A, B, and C genomes and suggested that there is a good possibility to transfer genes by means of recombination among the three genomes. The advantages of using the tri-genomic hybrids as bridge material for breeding new types of B. napus are discussed.

  16. Genic Microsatellite Markers in Brassica rapa: Development, Characterization, Mapping, and Their Utility in Other Cultivated and Wild Brassica Relatives

    PubMed Central

    Ramchiary, Nirala; Nguyen, Van Dan; Li, Xiaonan; Hong, Chang Pyo; Dhandapani, Vignesh; Choi, Su Ryun; Yu, Ge; Piao, Zhong Yun; Lim, Yong Pyo

    2011-01-01

    Genic microsatellite markers, also known as functional markers, are preferred over anonymous markers as they reveal the variation in transcribed genes among individuals. In this study, we developed a total of 707 expressed sequence tag-derived simple sequence repeat markers (EST-SSRs) and used for development of a high-density integrated map using four individual mapping populations of B. rapa. This map contains a total of 1426 markers, consisting of 306 EST-SSRs, 153 intron polymorphic markers, 395 bacterial artificial chromosome-derived SSRs (BAC-SSRs), and 572 public SSRs and other markers covering a total distance of 1245.9 cM of the B. rapa genome. Analysis of allelic diversity in 24 B. rapa germplasm using 234 mapped EST-SSR markers showed amplification of 2 alleles by majority of EST-SSRs, although amplification of alleles ranging from 2 to 8 was found. Transferability analysis of 167 EST-SSRs in 35 species belonging to cultivated and wild brassica relatives showed 42.51% (Sysimprium leteum) to 100% (B. carinata, B. juncea, and B. napus) amplification. Our newly developed EST-SSRs and high-density linkage map based on highly transferable genic markers would facilitate the molecular mapping of quantitative trait loci and the positional cloning of specific genes, in addition to marker-assisted selection and comparative genomic studies of B. rapa with other related species. PMID:21768136

  17. Genic microsatellite markers in Brassica rapa: development, characterization, mapping, and their utility in other cultivated and wild Brassica relatives.

    PubMed

    Ramchiary, Nirala; Nguyen, Van Dan; Li, Xiaonan; Hong, Chang Pyo; Dhandapani, Vignesh; Choi, Su Ryun; Yu, Ge; Piao, Zhong Yun; Lim, Yong Pyo

    2011-10-01

    Genic microsatellite markers, also known as functional markers, are preferred over anonymous markers as they reveal the variation in transcribed genes among individuals. In this study, we developed a total of 707 expressed sequence tag-derived simple sequence repeat markers (EST-SSRs) and used for development of a high-density integrated map using four individual mapping populations of B. rapa. This map contains a total of 1426 markers, consisting of 306 EST-SSRs, 153 intron polymorphic markers, 395 bacterial artificial chromosome-derived SSRs (BAC-SSRs), and 572 public SSRs and other markers covering a total distance of 1245.9 cM of the B. rapa genome. Analysis of allelic diversity in 24 B. rapa germplasm using 234 mapped EST-SSR markers showed amplification of 2 alleles by majority of EST-SSRs, although amplification of alleles ranging from 2 to 8 was found. Transferability analysis of 167 EST-SSRs in 35 species belonging to cultivated and wild brassica relatives showed 42.51% (Sysimprium leteum) to 100% (B. carinata, B. juncea, and B. napus) amplification. Our newly developed EST-SSRs and high-density linkage map based on highly transferable genic markers would facilitate the molecular mapping of quantitative trait loci and the positional cloning of specific genes, in addition to marker-assisted selection and comparative genomic studies of B. rapa with other related species.

  18. Recognition specificity of self-incompatibility maintained after the divergence of Brassica oleracea and Brassica rapa.

    PubMed

    Kimura, Ryo; Sato, Keiichi; Fujimoto, Ryo; Nishio, Takeshi

    2002-01-01

    The determinants of recognition specificity of self-incompatibility in Brassica are SRK in the stigma and SP11/SCR in the pollen, respectively. In the pair of S haplotypes BrS46 (S46 in B. rapa) and BoS7 (S7 in B. oleracea), which have highly similar SRK alleles, the SP11 alleles were found to be similar, with 96.1% identity in the deduced amino acid sequence. Two other pairs of S haplotypes, BrS47 and BoS12, and BrS8 and BoS32, having highly similar SRK and SP11 alleles between the two species were also found. The haplotypes in each pair are considered to have been derived from a single S haplotype in the ancestral species. The allotetraploid produced by interspecific hybridization between homozygotes of BrS46 and BoS15 showed incompatibility with a BoS7 homozygote and compatibility with other B. oleracea S haplotypes in reciprocal crossings. This result indicates that BrS46 and BoS7 have maintained the same recognition specificity after the divergence of the two species and that amino acid substitutions found in such cases in both SRK alleles and SP11 alleles do not alter the recognition specificity. DNA blot analysis of SRK, SP11, SLG and other S-locus genes showed different DNA fragment sizes between the interspecific pairs of S haplotypes. A much lower level of sequence similarity was observed outside the genes of SRK and SP11 between BrS46 and BoS7. These results suggest that the DNA sequences of the regions intervening between the S-locus genes were diversified after or at the time of speciation. This is the first report demonstrating the presence of common S haplotypes in different plant species and presenting definite evidence of the trans-specific evolution of self-incompatibility genes.

  19. Robust circadian rhythms of gene expression in Brassica rapa tissue culture.

    PubMed

    Xu, Xiaodong; Xie, Qiguang; McClung, C Robertson

    2010-06-01

    Circadian clocks provide temporal coordination by synchronizing internal biological processes with daily environmental cycles. To date, study of the plant circadian clock has emphasized Arabidopsis (Arabidopsis thaliana) as a model, but it is important to determine the extent to which this model applies in other species. Accordingly, we have investigated circadian clock function in Brassica rapa. In Arabidopsis, analysis of gene expression in transgenic plants in which luciferase activity is expressed from clock-regulated promoters has proven a useful tool, although technical challenges associated with the regeneration of transgenic plants has hindered the implementation of this powerful tool in B. rapa. The circadian clock is cell autonomous, and rhythmicity has been shown to persist in tissue culture from a number of species. We have established a transgenic B. rapa tissue culture system to allow the facile measurement and manipulation of clock function. We demonstrate circadian rhythms in the expression of several promoter:LUC reporters in explant-induced tissue culture of B. rapa. These rhythms are temperature compensated and are reset by light and temperature pulses. We observe a strong positive correlation in period length between the tissue culture rhythm in gene expression and the seedling rhythm in cotyledon movement, indicating that the circadian clock in B. rapa tissue culture provides a good model for the clock in planta.

  20. Characteristics Analysis of F1 Hybrids between Genetically Modified Brassica napus and B. rapa

    PubMed Central

    Sohn, Soo-In; Oh, Young-Ju; Lee, Kyeong-Ryeol; Ko, Ho-Cheol; Cho, Hyun-Suk; Lee, Yeon-Hee; Chang, Ancheol

    2016-01-01

    A number of studies have been conducted on hybridization between transgenic Brassica napus and B. rapa or backcross of F1 hybrid to their parents. However, trait changes must be analyzed to evaluate hybrid sustainability in nature. In the present study, B. rapa and transgenic (BrAGL20) B. napus were hybridized to verify the early flowering phenomenon of F1 hybrids, and F1 hybrid traits were analyzed to predict their impact on sustainability. Flowering of F1 hybrid has been induced slightly later than that of the transgenic B. napus, but flowering was available in the greenhouse without low temperature treatment to young plant, similar to the transgenic B. napus. It is because the BrAGL20 gene has been transferred from transgenic B. napus to F1 hybrid. The size of F1 hybrid seeds was intermediate between those of B. rapa and transgenic B. napus, and ~40% of F1 pollen exhibited abnormal size and morphology. The form of the F1 stomata was also intermediate between that of B. rapa and transgenic B. napus, and the number of stomata was close to the parental mean. Among various fatty acids, the content of erucic acid exhibited the greatest change, owing to the polymorphism of parental FATTY ACID ELONGASE 1 alleles. Furthermore, F2 hybrids could not be obtained. However, BC1 progeny were obtained by hand pollination of B. rapa with F1 hybrid pollen, with an outcrossing rate of 50%. PMID:27632286

  1. Characteristics Analysis of F1 Hybrids between Genetically Modified Brassica napus and B. rapa.

    PubMed

    Sohn, Soo-In; Oh, Young-Ju; Lee, Kyeong-Ryeol; Ko, Ho-Cheol; Cho, Hyun-Suk; Lee, Yeon-Hee; Chang, Ancheol

    2016-01-01

    A number of studies have been conducted on hybridization between transgenic Brassica napus and B. rapa or backcross of F1 hybrid to their parents. However, trait changes must be analyzed to evaluate hybrid sustainability in nature. In the present study, B. rapa and transgenic (BrAGL20) B. napus were hybridized to verify the early flowering phenomenon of F1 hybrids, and F1 hybrid traits were analyzed to predict their impact on sustainability. Flowering of F1 hybrid has been induced slightly later than that of the transgenic B. napus, but flowering was available in the greenhouse without low temperature treatment to young plant, similar to the transgenic B. napus. It is because the BrAGL20 gene has been transferred from transgenic B. napus to F1 hybrid. The size of F1 hybrid seeds was intermediate between those of B. rapa and transgenic B. napus, and ~40% of F1 pollen exhibited abnormal size and morphology. The form of the F1 stomata was also intermediate between that of B. rapa and transgenic B. napus, and the number of stomata was close to the parental mean. Among various fatty acids, the content of erucic acid exhibited the greatest change, owing to the polymorphism of parental FATTY ACID ELONGASE 1 alleles. Furthermore, F2 hybrids could not be obtained. However, BC1 progeny were obtained by hand pollination of B. rapa with F1 hybrid pollen, with an outcrossing rate of 50%.

  2. Robust Circadian Rhythms of Gene Expression in Brassica rapa Tissue Culture1[W][OA

    PubMed Central

    Xu, Xiaodong; Xie, Qiguang; McClung, C. Robertson

    2010-01-01

    Circadian clocks provide temporal coordination by synchronizing internal biological processes with daily environmental cycles. To date, study of the plant circadian clock has emphasized Arabidopsis (Arabidopsis thaliana) as a model, but it is important to determine the extent to which this model applies in other species. Accordingly, we have investigated circadian clock function in Brassica rapa. In Arabidopsis, analysis of gene expression in transgenic plants in which luciferase activity is expressed from clock-regulated promoters has proven a useful tool, although technical challenges associated with the regeneration of transgenic plants has hindered the implementation of this powerful tool in B. rapa. The circadian clock is cell autonomous, and rhythmicity has been shown to persist in tissue culture from a number of species. We have established a transgenic B. rapa tissue culture system to allow the facile measurement and manipulation of clock function. We demonstrate circadian rhythms in the expression of several promoter:LUC reporters in explant-induced tissue culture of B. rapa. These rhythms are temperature compensated and are reset by light and temperature pulses. We observe a strong positive correlation in period length between the tissue culture rhythm in gene expression and the seedling rhythm in cotyledon movement, indicating that the circadian clock in B. rapa tissue culture provides a good model for the clock in planta. PMID:20406912

  3. Characteristics Analysis of F1 Hybrids between Genetically Modified Brassica napus and B. rapa.

    PubMed

    Sohn, Soo-In; Oh, Young-Ju; Lee, Kyeong-Ryeol; Ko, Ho-Cheol; Cho, Hyun-Suk; Lee, Yeon-Hee; Chang, Ancheol

    2016-01-01

    A number of studies have been conducted on hybridization between transgenic Brassica napus and B. rapa or backcross of F1 hybrid to their parents. However, trait changes must be analyzed to evaluate hybrid sustainability in nature. In the present study, B. rapa and transgenic (BrAGL20) B. napus were hybridized to verify the early flowering phenomenon of F1 hybrids, and F1 hybrid traits were analyzed to predict their impact on sustainability. Flowering of F1 hybrid has been induced slightly later than that of the transgenic B. napus, but flowering was available in the greenhouse without low temperature treatment to young plant, similar to the transgenic B. napus. It is because the BrAGL20 gene has been transferred from transgenic B. napus to F1 hybrid. The size of F1 hybrid seeds was intermediate between those of B. rapa and transgenic B. napus, and ~40% of F1 pollen exhibited abnormal size and morphology. The form of the F1 stomata was also intermediate between that of B. rapa and transgenic B. napus, and the number of stomata was close to the parental mean. Among various fatty acids, the content of erucic acid exhibited the greatest change, owing to the polymorphism of parental FATTY ACID ELONGASE 1 alleles. Furthermore, F2 hybrids could not be obtained. However, BC1 progeny were obtained by hand pollination of B. rapa with F1 hybrid pollen, with an outcrossing rate of 50%. PMID:27632286

  4. Mitigation using a tandem construct containing a selectively unfit gene precludes establishment of Brassica napus transgenes in hybrids and backcrosses with weedy Brassica rapa.

    PubMed

    Al-Ahmad, Hani; Gressel, Jonathan

    2006-01-01

    Transgenic oilseed rape (Brassica napus) plants can interbreed with nearby weedy Brassica rapa, potentially enhancing the weediness and/or invasiveness of subsequent hybrid offspring. We have previously demonstrated that transgenic mitigation effectively reduces the fitness of the transgenic dwarf and herbicide-resistant B. napus volunteers. We now report the efficacy of such a tandem construct, including a primary herbicide-resistant gene and a dwarfing mitigator gene, to preclude the risks of gene establishment in the related weed B. rapa and its backcross progeny. The transgenically mitigated and non-transgenic B. rapa x B. napus interspecific hybrids and the backcrosses (BC(1)) with B. rapa were grown alone and in competition with B. rapa weed. The reproductive fitness of hybrid offspring progressively decreased with increased B. rapa genes in the offspring, illustrating the efficacy of the concept. The fitness of F(2) interspecific non-transgenic hybrids was between 50% and 80% of the competing weedy B. rapa, whereas the fitness of the comparable T(2) interspecific transgenic hybrids was never more than 2%. The reproductive fitness of the transgenic T(2) BC(1) mixed with B. rapa was further severely suppressed to 0.9% of that of the competing weed due to dwarfism. Clearly, the mitigation technology works efficiently in a rapeseed crop-weed system under biocontainment-controlled environments, but field studies should further validate its utility for minimizing the risks of gene flow.

  5. Mitigation using a tandem construct containing a selectively unfit gene precludes establishment of Brassica napus transgenes in hybrids and backcrosses with weedy Brassica rapa.

    PubMed

    Al-Ahmad, Hani; Gressel, Jonathan

    2006-01-01

    Transgenic oilseed rape (Brassica napus) plants can interbreed with nearby weedy Brassica rapa, potentially enhancing the weediness and/or invasiveness of subsequent hybrid offspring. We have previously demonstrated that transgenic mitigation effectively reduces the fitness of the transgenic dwarf and herbicide-resistant B. napus volunteers. We now report the efficacy of such a tandem construct, including a primary herbicide-resistant gene and a dwarfing mitigator gene, to preclude the risks of gene establishment in the related weed B. rapa and its backcross progeny. The transgenically mitigated and non-transgenic B. rapa x B. napus interspecific hybrids and the backcrosses (BC(1)) with B. rapa were grown alone and in competition with B. rapa weed. The reproductive fitness of hybrid offspring progressively decreased with increased B. rapa genes in the offspring, illustrating the efficacy of the concept. The fitness of F(2) interspecific non-transgenic hybrids was between 50% and 80% of the competing weedy B. rapa, whereas the fitness of the comparable T(2) interspecific transgenic hybrids was never more than 2%. The reproductive fitness of the transgenic T(2) BC(1) mixed with B. rapa was further severely suppressed to 0.9% of that of the competing weed due to dwarfism. Clearly, the mitigation technology works efficiently in a rapeseed crop-weed system under biocontainment-controlled environments, but field studies should further validate its utility for minimizing the risks of gene flow. PMID:17177782

  6. Identification and characterization of stress resistance related genes of Brassica rapa.

    PubMed

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Seo, Mi-Suk; Kumar, Thamilarasan Senthil; Lee, In-Ho; Nou, Ill-Sup

    2012-05-01

    Two biotic stress resistance related genes from the full-length cDNA library of Brassica rapa cv. Osome were identified from EST analysis and determined to be pathogenesis-related (PR) 12 Brassica defensin-like family protein (BrDLFP) and PR-10 Brassica Betv1 allergen family protein (BrBetv1AFP) after sequence analysis and homology study with other stress resistance related same family genes. In the expression analysis, both genes expressed in different organs and during all developmental growth stages in healthy plants. Expression of BrDLFP significantly increased and BrBetv1AFP gradually decreased after infection with Pectobacterium carotovorum subsp. carotovorum in Chinese cabbage. Expression of these two genes significantly changed after cold, salt, drought and ABA stress treatments. These two PR genes may therefore be involved in the plant resistance against biotic and abiotic stresses.

  7. Identification and characterization of stress resistance related genes of Brassica rapa.

    PubMed

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Seo, Mi-Suk; Kumar, Thamilarasan Senthil; Lee, In-Ho; Nou, Ill-Sup

    2012-05-01

    Two biotic stress resistance related genes from the full-length cDNA library of Brassica rapa cv. Osome were identified from EST analysis and determined to be pathogenesis-related (PR) 12 Brassica defensin-like family protein (BrDLFP) and PR-10 Brassica Betv1 allergen family protein (BrBetv1AFP) after sequence analysis and homology study with other stress resistance related same family genes. In the expression analysis, both genes expressed in different organs and during all developmental growth stages in healthy plants. Expression of BrDLFP significantly increased and BrBetv1AFP gradually decreased after infection with Pectobacterium carotovorum subsp. carotovorum in Chinese cabbage. Expression of these two genes significantly changed after cold, salt, drought and ABA stress treatments. These two PR genes may therefore be involved in the plant resistance against biotic and abiotic stresses. PMID:22286206

  8. The high-throughput sequencing of small RNAs profiling in wide hybridisation and allopolyploidisation between Brassica rapa and Brassica nigra.

    PubMed

    Ghani, Muhammad Awais; Li, Junxing; Rao, Linli; Raza, Muhammad Ammar; Cao, Liwen; Yu, Ningning; Zou, Xiaoxia; Chen, Liping

    2015-03-01

    Small RNAs play an important role in maintaining the genome reconstruction and stability in the plant. However, little is known regarding the role of small RNAs during the process of wide hybridisation and chromosome doubling. Therefore, the changes in the small RNAs were assessed during the formation of an allodiploid (genome: AB) and its allotetraploid (genome: AABB) between Brassica rapa (♀) and Brassica nigra (♂) in the present study. Here, the experimental methods described in details, RNA-seq data (available at Gene Expression Omnibus database under GSE61872) and analysis published by Ghani et al. [1]. The study showed that small RNAs play an important role in maintaining the genome stability, and regulate gene expression which induces the phenotype variation in the formation of an allotetraploid. This may play an important role in the occurrence of heterosis in the allotetraploid.

  9. The high-throughput sequencing of small RNAs profiling in wide hybridisation and allopolyploidisation between Brassica rapa and Brassica nigra

    PubMed Central

    Ghani, Muhammad Awais; Li, Junxing; Rao, Linli; Raza, Muhammad Ammar; Cao, Liwen; Yu, Ningning; Zou, Xiaoxia; Chen, Liping

    2014-01-01

    Small RNAs play an important role in maintaining the genome reconstruction and stability in the plant. However, little is known regarding the role of small RNAs during the process of wide hybridisation and chromosome doubling. Therefore, the changes in the small RNAs were assessed during the formation of an allodiploid (genome: AB) and its allotetraploid (genome: AABB) between Brassica rapa (♀) and Brassica nigra (♂) in the present study. Here, the experimental methods described in details, RNA-seq data (available at Gene Expression Omnibus database under GSE61872) and analysis published by Ghani et al. [1]. The study showed that small RNAs play an important role in maintaining the genome stability, and regulate gene expression which induces the phenotype variation in the formation of an allotetraploid. This may play an important role in the occurrence of heterosis in the allotetraploid. PMID:26484138

  10. The high-throughput sequencing of small RNAs profiling in wide hybridisation and allopolyploidisation between Brassica rapa and Brassica nigra.

    PubMed

    Ghani, Muhammad Awais; Li, Junxing; Rao, Linli; Raza, Muhammad Ammar; Cao, Liwen; Yu, Ningning; Zou, Xiaoxia; Chen, Liping

    2015-03-01

    Small RNAs play an important role in maintaining the genome reconstruction and stability in the plant. However, little is known regarding the role of small RNAs during the process of wide hybridisation and chromosome doubling. Therefore, the changes in the small RNAs were assessed during the formation of an allodiploid (genome: AB) and its allotetraploid (genome: AABB) between Brassica rapa (♀) and Brassica nigra (♂) in the present study. Here, the experimental methods described in details, RNA-seq data (available at Gene Expression Omnibus database under GSE61872) and analysis published by Ghani et al. [1]. The study showed that small RNAs play an important role in maintaining the genome stability, and regulate gene expression which induces the phenotype variation in the formation of an allotetraploid. This may play an important role in the occurrence of heterosis in the allotetraploid. PMID:26484138

  11. Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa.

    PubMed

    Kayum, Md Abdul; Jung, Hee-Jeong; Park, Jong-In; Ahmed, Nasar Uddin; Saha, Gopal; Yang, Tae-Jin; Nou, Ill-Sup

    2015-02-01

    WRKY proteins constitute one of the largest transcription factor families in higher plants, and they are involved in multiple biological processes such as plant development, metabolism, and responses to biotic and abiotic stresses. Genes of this family have been well documented in response to many abiotic and biotic stresses in many plant species, but not yet against Pectobacterium carotovorum subsp. carotovorum and Fusarium oxysporum f.sp. conglutinans in any of the plants. Moreover, potentiality of a specific gene may vary depending on stress conditions and genotypes. To identify stress resistance-related potential WRKY genes of Brassica rapa, we analyzed their expressions against above-mentioned pathogens and cold, salt, and drought stresses in B. rapa. Stress resistance-related functions of all Brassica rapa WRKY (BrWRKY) genes were firstly analyzed through homology study with existing biotic and abiotic stress resistance-related WRKY genes of other plant species and found a high degree of homology. We then identified all BrWRKY genes in a Br135K microarray dataset, which was created by applying low-temperature stresses to two contrasting Chinese cabbage doubled haploid (DH) lines, Chiifu and Kenshin, and selected 41 BrWRKY genes with high and differential transcript abundance levels. These selected genes were further investigated under cold, salt, and drought stresses as well as after infection with P. carotovorum subsp. carotovorum and F. oxysporum f.sp. conglutinans in B. rapa. The selected genes showed an organ-specific expression, and 22 BrWRKY genes were differentially expressed in Chiifu compared to Kenshin under cold and drought stresses. Six BrWRKY genes were more responsive in Kenshin compared to Chiffu under salt stress. In addition, eight BrWRKY genes showed differential expression after P. carotovorum subsp. carotovorum infection and five genes after F. oxysporum f.sp. conglutinans infection in B. rapa. Thus, the differentially expressed Br

  12. Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa.

    PubMed

    Kayum, Md Abdul; Jung, Hee-Jeong; Park, Jong-In; Ahmed, Nasar Uddin; Saha, Gopal; Yang, Tae-Jin; Nou, Ill-Sup

    2015-02-01

    WRKY proteins constitute one of the largest transcription factor families in higher plants, and they are involved in multiple biological processes such as plant development, metabolism, and responses to biotic and abiotic stresses. Genes of this family have been well documented in response to many abiotic and biotic stresses in many plant species, but not yet against Pectobacterium carotovorum subsp. carotovorum and Fusarium oxysporum f.sp. conglutinans in any of the plants. Moreover, potentiality of a specific gene may vary depending on stress conditions and genotypes. To identify stress resistance-related potential WRKY genes of Brassica rapa, we analyzed their expressions against above-mentioned pathogens and cold, salt, and drought stresses in B. rapa. Stress resistance-related functions of all Brassica rapa WRKY (BrWRKY) genes were firstly analyzed through homology study with existing biotic and abiotic stress resistance-related WRKY genes of other plant species and found a high degree of homology. We then identified all BrWRKY genes in a Br135K microarray dataset, which was created by applying low-temperature stresses to two contrasting Chinese cabbage doubled haploid (DH) lines, Chiifu and Kenshin, and selected 41 BrWRKY genes with high and differential transcript abundance levels. These selected genes were further investigated under cold, salt, and drought stresses as well as after infection with P. carotovorum subsp. carotovorum and F. oxysporum f.sp. conglutinans in B. rapa. The selected genes showed an organ-specific expression, and 22 BrWRKY genes were differentially expressed in Chiifu compared to Kenshin under cold and drought stresses. Six BrWRKY genes were more responsive in Kenshin compared to Chiffu under salt stress. In addition, eight BrWRKY genes showed differential expression after P. carotovorum subsp. carotovorum infection and five genes after F. oxysporum f.sp. conglutinans infection in B. rapa. Thus, the differentially expressed Br

  13. Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa.

    PubMed

    Cheng, Feng; Wu, Jian; Fang, Lu; Sun, Silong; Liu, Bo; Lin, Ke; Bonnema, Guusje; Wang, Xiaowu

    2012-01-01

    Polyploidization, both ancient and recent, is frequent among plants. A "two-step theory" was proposed to explain the meso-triplication of the Brassica "A" genome: Brassica rapa. By accurately partitioning of this genome, we observed that genes in the less fractioned subgenome (LF) were dominantly expressed over the genes in more fractioned subgenomes (MFs: MF1 and MF2), while the genes in MF1 were slightly dominantly expressed over the genes in MF2. The results indicated that the dominantly expressed genes tended to be resistant against gene fractionation. By re-sequencing two B. rapa accessions: a vegetable turnip (VT117) and a Rapid Cycling line (L144), we found that genes in LF had less non-synonymous or frameshift mutations than genes in MFs; however mutation rates were not significantly different between MF1 and MF2. The differences in gene expression patterns and on-going gene death among the three subgenomes suggest that "two-step" genome triplication and differential subgenome methylation played important roles in the genome evolution of B. rapa.

  14. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa.

    PubMed

    Ueno, Hiroki; Matsumoto, Etsuo; Aruga, Daisuke; Kitagawa, Satoshi; Matsumura, Hideo; Hayashida, Nobuaki

    2012-12-01

    Clubroot disease is one of the major diseases affecting Brassicaceae crops, and a number of these crops grown commercially, such as Chinese cabbage (Brassica rapa L. ssp. pekinensis), are known to be highly susceptible to clubroot disease. To provide protection from this disease, plant breeders have introduced genes for resistance to clubroot from the European turnip into susceptible lines. The CRa gene confers specific resistance to the clubroot pathogen Plasmodiophora brassicae isolate M85. Fine mapping of the CRa locus using synteny to the Arabidopsis thaliana genome and partial genome sequences of B. rapa revealed a candidate gene encoding a TIR-NBS-LRR protein. Several structural differences in this candidate gene were found between susceptible and resistant lines, and CRa expression was observed only in the resistant line. Four mutant lines lacking clubroot resistance were obtained by the UV irradiation of pollen from a resistant line, and all of these mutant lines carried independent mutations in the candidate TIR-NBS-LRR gene. This genetic and molecular evidence strongly suggests that the identified gene is CRa. This is the first report on the molecular characterization of a clubroot Resistance gene in Brassicaceae and of the disease resistance gene in B. rapa.

  15. Characterization of FAE1 in the zero erucic acid germplasm of Brassica rapa L.

    PubMed

    Yan, Guixin; Li, Dan; Cai, Mengxian; Gao, Guizhen; Chen, Biyun; Xu, Kun; Li, Jun; Li, Feng; Wang, Nian; Qiao, Jiangwei; Li, Hao; Zhang, Tianyao; Wu, Xiaoming

    2015-06-01

    The modification of erucic acid content in seeds is one of the major goals for quality breeding in oil-yielding Brassica species. However, few low erucic acid (LEA) resources are available, and novel LEA genetic resources are being sought. Fatty acid elongase 1 (FAE1) is the key gene that controls erucic acid synthesis. However, the mechanism for erucic acid synthesis in B. rapa lacks systematic study. Here, we isolated zero erucic acid lines from 1981 Chinese landraces of B. rapa and found that the formation of LEA is not attributable to variations in FAE1 coding sequences, as reported for B. napus, but may be attributable to the decrease in FAE1 expression. Moreover, the FAE1 promoter sequences of LEA and high erucic acid materials shared 95% similarity. Twenty-eight bases deletions (containing a 24-base AT-rich region) were identified approximately 1300 bp upstream from the FAE1 start codon in the LEA accessions. The genotype with the deletions co-segregated with the LEA trait in the segregating population. This study isolated an LEA B. rapa resource that can be exploited in Brassica cultivation. The promoter variations might modify the expression level of FAE1, and the results shed light on novel regulation mechanisms for erucic acid synthesis.

  16. Characterization of FAE1 in the zero erucic acid germplasm of Brassica rapa L.

    PubMed Central

    Yan, Guixin; Li, Dan; Cai, Mengxian; Gao, Guizhen; Chen, Biyun; Xu, Kun; Li, Jun; Li, Feng; Wang, Nian; Qiao, Jiangwei; Li, Hao; Zhang, Tianyao; Wu, Xiaoming

    2015-01-01

    The modification of erucic acid content in seeds is one of the major goals for quality breeding in oil-yielding Brassica species. However, few low erucic acid (LEA) resources are available, and novel LEA genetic resources are being sought. Fatty acid elongase 1 (FAE1) is the key gene that controls erucic acid synthesis. However, the mechanism for erucic acid synthesis in B. rapa lacks systematic study. Here, we isolated zero erucic acid lines from 1981 Chinese landraces of B. rapa and found that the formation of LEA is not attributable to variations in FAE1 coding sequences, as reported for B. napus, but may be attributable to the decrease in FAE1 expression. Moreover, the FAE1 promoter sequences of LEA and high erucic acid materials shared 95% similarity. Twenty-eight bases deletions (containing a 24-base AT-rich region) were identified approximately 1300 bp upstream from the FAE1 start codon in the LEA accessions. The genotype with the deletions co-segregated with the LEA trait in the segregating population. This study isolated an LEA B. rapa resource that can be exploited in Brassica cultivation. The promoter variations might modify the expression level of FAE1, and the results shed light on novel regulation mechanisms for erucic acid synthesis. PMID:26175623

  17. Characterization and stress-induced expression analysis of Alfin-like transcription factors in Brassica rapa.

    PubMed

    Kayum, Md Abdul; Park, Jong-In; Ahmed, Nasar Uddin; Jung, Hee-Jeong; Saha, Gopal; Kang, Jong-Goo; Nou, Ill-Sup

    2015-08-01

    The Alfin-like (AL) transcription factors (TFs) family is involved in many developmental processes, including the growth and development of roots, root hair elongation, meristem development, etc. However, stress resistance-related function and the regulatory mechanism of these TFs have yet to be elucidated. This study identified 15 Brassica rapa AL (BrAL) TFs from BRAD database, analyzed the sequences and profiled their expression first time in response to Fusarium oxysporum f. sp. conglutinans and Pectobacterium carotovorum subsp. carotovorum in fection, cold, salt and drought stresses in B. rapa. Structural and phylogenetic analyses of 15 BrAL TFs revealed four distinct groups (groups I-IV) with AL TFs of Arabidopsis thaliana. In the expression analyses, ten BrAL TFs showed responsive expression after F. oxysporum f. sp. conglutinans infection, while all BrAL TFs showed responses under cold, salt and drought stresses in B. rapa. Interestingly, ten BrAL TFs showed responses to both biotic and abiotic stress factors tested here. The differentially expressed BrAL TFs thus represent potential resources for molecular breeding of Brassica crops resistant against abiotic and biotic stresses. Our findings will also help to elucidate the complex regulatory mechanism of AL TFs in stress resistance and provide a foundation for further functional genomics studies and applications.

  18. Gene ontology based characterization of expressed sequence tags (ESTs) of Brassica rapa cv. Osome.

    PubMed

    Arasan, Senthil Kumar Thamil; Park, Jong-In; Ahmed, Nasar Uddin; Jung, Hee-Jeong; Lee, In-Ho; Cho, Yong-Gu; Lim, Yong-Pyo; Kang, Kwon-Kyoo; Nou, Ill-Sup

    2013-07-01

    Chinese cabbage (Brassica rapa) is widely recognized for its economic importance and contribution to human nutrition but abiotic and biotic stresses are main obstacle for its quality, nutritional status and production. In this study, 3,429 Express Sequence Tag (EST) sequences were generated from B. rapa cv. Osome cDNA library and the unique transcripts were classified functionally using a gene ontology (GO) hierarchy, Kyoto encyclopedia of genes and genomes (KEGG). KEGG orthology and the structural domain data were obtained from the biological database for stress related genes (SRG). EST datasets provided a wide outlook of functional characterization of B. rapa cv. Osome. In silico analysis revealed % 83 of ESTs to be well annotated towards reeds one dimensional concept. Clustering of ESTs returned 333 contigs and 2,446 singlets, giving a total of 3,284 putative unigene sequences. This dataset contained 1,017 EST sequences functionally annotated to stress responses and from which expression of randomly selected SRGs were analyzed against cold, salt, drought, ABA, water and PEG stresses. Most of the SRGs showed differentially expression against these stresses. Thus, the EST dataset is very important for discovering the potential genes related to stress resistance in Chinese cabbage, and can be of useful resources for genetic engineering of Brassica sp.

  19. Biased Gene Fractionation and Dominant Gene Expression among the Subgenomes of Brassica rapa

    PubMed Central

    Cheng, Feng; Wu, Jian; Fang, Lu; Sun, Silong; Liu, Bo; Lin, Ke; Bonnema, Guusje; Wang, Xiaowu

    2012-01-01

    Polyploidization, both ancient and recent, is frequent among plants. A “two-step theory" was proposed to explain the meso-triplication of the Brassica “A" genome: Brassica rapa. By accurately partitioning of this genome, we observed that genes in the less fractioned subgenome (LF) were dominantly expressed over the genes in more fractioned subgenomes (MFs: MF1 and MF2), while the genes in MF1 were slightly dominantly expressed over the genes in MF2. The results indicated that the dominantly expressed genes tended to be resistant against gene fractionation. By re-sequencing two B. rapa accessions: a vegetable turnip (VT117) and a Rapid Cycling line (L144), we found that genes in LF had less non-synonymous or frameshift mutations than genes in MFs; however mutation rates were not significantly different between MF1 and MF2. The differences in gene expression patterns and on-going gene death among the three subgenomes suggest that “two-step" genome triplication and differential subgenome methylation played important roles in the genome evolution of B. rapa. PMID:22567157

  20. Gene ontology based characterization of expressed sequence tags (ESTs) of Brassica rapa cv. Osome.

    PubMed

    Arasan, Senthil Kumar Thamil; Park, Jong-In; Ahmed, Nasar Uddin; Jung, Hee-Jeong; Lee, In-Ho; Cho, Yong-Gu; Lim, Yong-Pyo; Kang, Kwon-Kyoo; Nou, Ill-Sup

    2013-07-01

    Chinese cabbage (Brassica rapa) is widely recognized for its economic importance and contribution to human nutrition but abiotic and biotic stresses are main obstacle for its quality, nutritional status and production. In this study, 3,429 Express Sequence Tag (EST) sequences were generated from B. rapa cv. Osome cDNA library and the unique transcripts were classified functionally using a gene ontology (GO) hierarchy, Kyoto encyclopedia of genes and genomes (KEGG). KEGG orthology and the structural domain data were obtained from the biological database for stress related genes (SRG). EST datasets provided a wide outlook of functional characterization of B. rapa cv. Osome. In silico analysis revealed % 83 of ESTs to be well annotated towards reeds one dimensional concept. Clustering of ESTs returned 333 contigs and 2,446 singlets, giving a total of 3,284 putative unigene sequences. This dataset contained 1,017 EST sequences functionally annotated to stress responses and from which expression of randomly selected SRGs were analyzed against cold, salt, drought, ABA, water and PEG stresses. Most of the SRGs showed differentially expression against these stresses. Thus, the EST dataset is very important for discovering the potential genes related to stress resistance in Chinese cabbage, and can be of useful resources for genetic engineering of Brassica sp. PMID:23898551

  1. Characterization and stress-induced expression analysis of Alfin-like transcription factors in Brassica rapa.

    PubMed

    Kayum, Md Abdul; Park, Jong-In; Ahmed, Nasar Uddin; Jung, Hee-Jeong; Saha, Gopal; Kang, Jong-Goo; Nou, Ill-Sup

    2015-08-01

    The Alfin-like (AL) transcription factors (TFs) family is involved in many developmental processes, including the growth and development of roots, root hair elongation, meristem development, etc. However, stress resistance-related function and the regulatory mechanism of these TFs have yet to be elucidated. This study identified 15 Brassica rapa AL (BrAL) TFs from BRAD database, analyzed the sequences and profiled their expression first time in response to Fusarium oxysporum f. sp. conglutinans and Pectobacterium carotovorum subsp. carotovorum in fection, cold, salt and drought stresses in B. rapa. Structural and phylogenetic analyses of 15 BrAL TFs revealed four distinct groups (groups I-IV) with AL TFs of Arabidopsis thaliana. In the expression analyses, ten BrAL TFs showed responsive expression after F. oxysporum f. sp. conglutinans infection, while all BrAL TFs showed responses under cold, salt and drought stresses in B. rapa. Interestingly, ten BrAL TFs showed responses to both biotic and abiotic stress factors tested here. The differentially expressed BrAL TFs thus represent potential resources for molecular breeding of Brassica crops resistant against abiotic and biotic stresses. Our findings will also help to elucidate the complex regulatory mechanism of AL TFs in stress resistance and provide a foundation for further functional genomics studies and applications. PMID:25618423

  2. RFLP and AFLP analysis of inter- and intraspecific variation of Brassica rapa and B. napus shows that B. rapa is an important genetic resource for B. napus improvement.

    PubMed

    Liu, Ren-Hu; Meng, Jin-Ling

    2006-09-01

    Fingerprinting of 29 accessions of oilseed rape, including seven accessions of Brassica napus, and 22 accessions of B. rapa (B. campestris) from Europe, North America, and China was analyzed using RFLP and AFLP markers. In total, 1,477 polymorphic RFLP bands and 183 polymorphic AFLP bands from 166 enzyme-probe combinations and two pairs of AFLP primers, respectively, were scored for the 29 accessions. On average, RFLP analysis showed that the Arabidopsis EST probe detected more polymorphic bands in Brassica than the random genomic probe performed. More polymorphic RFLP markers were detected with the digestion of EcoR I or BamH I than HindIII. According to the number of bands amplified from each accession, the copy numbers of each gene in the genomes of B. rapa and B. napus were estimated. The average copy numbers in B. rapa of China, B. rapa of Europe, and B. napus, were 3.2, 3.1, and 2.9, respectively. Genetic distance based on the AFLP data was well correlated with that based on the RFLP data (r = 0.72, P<0.001), but 0.39 smaller on average. Genetic diversity analysis showed that Chinese B. rapa was more polymorphic than Chinese B. napus and European materials. Some European B. napus accessions were clustered into European B. rapa, which were distinctly different from Chinese B. napus. The larger variations of Chinese accessions of B. rapa suggest that they are valuable in oilseed rape breeding. Novel strategies to use intersubgenomic heterosis between genome of B. rapa (A(r)A(r)) and genome of B. napus (A(n)A(n)C(n)C(n)) were elucidated.

  3. Hybridisation and introgression between Brassica napus and B. rapa in the Netherlands.

    PubMed

    Luijten, S H; Schidlo, N S; Meirmans, P G; de Jong, T J

    2015-01-01

    We used flow cytometry, chromosome counting and AFLP markers to investigate gene flow from the crop plant oilseed rape, Brassica napus (AACC) to wild B. rapa (AA) in the Netherlands. From 89 B. napus source populations investigated, all near cropping fields or at transhipment sites, only 19 contained a B. rapa population within a 2.5-km radius. During our survey we found only three populations with F1 hybrids (AAC), as recognized by their nine extra chromosomes and by flow cytometry. These hybrids were all collected in mixed populations where the two species grew in close proximity. Populations with F1 hybrids were not close to crops, but instead were located on road verges with highly disturbed soils, in which both species were probably recruited from the soil seed bank. Many plants in the F2, BC1 or higher backcrosses are expected to carry one to eight C chromosomes. However, these plants were not observed among the hybrids. We further investigated introgression with molecular markers (AFLP) and compared sympatric B. rapa populations (near populations of B. napus) with control populations of B. rapa (no B. napus within at least 7 km). We found no difference between sympatric and control populations in the number of C markers in B. rapa, nor did we find that these sympatric populations closely resembled B. napus. Our data show that hybrids occur but also suggest no recent introgression of alleles from the crop plant B. napus into wild B. rapa in the Dutch populations studied.

  4. Hybridisation and introgression between Brassica napus and B. rapa in the Netherlands.

    PubMed

    Luijten, S H; Schidlo, N S; Meirmans, P G; de Jong, T J

    2015-01-01

    We used flow cytometry, chromosome counting and AFLP markers to investigate gene flow from the crop plant oilseed rape, Brassica napus (AACC) to wild B. rapa (AA) in the Netherlands. From 89 B. napus source populations investigated, all near cropping fields or at transhipment sites, only 19 contained a B. rapa population within a 2.5-km radius. During our survey we found only three populations with F1 hybrids (AAC), as recognized by their nine extra chromosomes and by flow cytometry. These hybrids were all collected in mixed populations where the two species grew in close proximity. Populations with F1 hybrids were not close to crops, but instead were located on road verges with highly disturbed soils, in which both species were probably recruited from the soil seed bank. Many plants in the F2, BC1 or higher backcrosses are expected to carry one to eight C chromosomes. However, these plants were not observed among the hybrids. We further investigated introgression with molecular markers (AFLP) and compared sympatric B. rapa populations (near populations of B. napus) with control populations of B. rapa (no B. napus within at least 7 km). We found no difference between sympatric and control populations in the number of C markers in B. rapa, nor did we find that these sympatric populations closely resembled B. napus. Our data show that hybrids occur but also suggest no recent introgression of alleles from the crop plant B. napus into wild B. rapa in the Dutch populations studied. PMID:24889091

  5. Genome-Wide Analysis and Characterization of Aux/IAA Family Genes in Brassica rapa

    PubMed Central

    Rameneni, Jana Jeevan; Li, Xiaonan; Sivanandhan, Ganesan; Choi, Su Ryun; Pang, Wenxing; Im, Subin; Lim, Yong Pyo

    2016-01-01

    Auxins are the key players in plant growth development involving leaf formation, phototropism, root, fruit and embryo development. Auxin/Indole-3-Acetic Acid (Aux/IAA) are early auxin response genes noted as transcriptional repressors in plant auxin signaling. However, many studies focus on Aux/ARF gene families and much less is known about the Aux/IAA gene family in Brassica rapa (B. rapa). Here we performed a comprehensive genome-wide analysis and identified 55 Aux/IAA genes in B. rapa using four conserved motifs of Aux/IAA family (PF02309). Chromosomal mapping of the B. rapa Aux/IAA (BrIAA) genes facilitated understanding cluster rearrangement of the crucifer building blocks in the genome. Phylogenetic analysis of BrIAA with Arabidopsis thaliana, Oryza sativa and Zea mays identified 51 sister pairs including 15 same species (BrIAA—BrIAA) and 36 cross species (BrIAA—AtIAA) IAA genes. Among the 55 BrIAA genes, expression of 43 and 45 genes were verified using Genebank B. rapa ESTs and in home developed microarray data from mature leaves of Chiifu and RcBr lines. Despite their huge morphological difference, tissue specific expression analysis of BrIAA genes between the parental lines Chiifu and RcBr showed that the genes followed a similar pattern of expression during leaf development and a different pattern during bud, flower and siliqua development stages. The response of the BrIAA genes to abiotic and auxin stress at different time intervals revealed their involvement in stress response. Single Nucleotide Polymorphisms between IAA genes of reference genome Chiifu and RcBr were focused and identified. Our study examines the scope of conservation and divergence of Aux/IAA genes and their structures in B. rapa. Analyzing the expression and structural variation between two parental lines will significantly contribute to functional genomics of Brassica crops and we belive our study would provide a foundation in understanding the Aux/IAA genes in B. rapa. PMID

  6. Genome-Wide Analysis and Characterization of Aux/IAA Family Genes in Brassica rapa.

    PubMed

    Paul, Parameswari; Dhandapani, Vignesh; Rameneni, Jana Jeevan; Li, Xiaonan; Sivanandhan, Ganesan; Choi, Su Ryun; Pang, Wenxing; Im, Subin; Lim, Yong Pyo

    2016-01-01

    Auxins are the key players in plant growth development involving leaf formation, phototropism, root, fruit and embryo development. Auxin/Indole-3-Acetic Acid (Aux/IAA) are early auxin response genes noted as transcriptional repressors in plant auxin signaling. However, many studies focus on Aux/ARF gene families and much less is known about the Aux/IAA gene family in Brassica rapa (B. rapa). Here we performed a comprehensive genome-wide analysis and identified 55 Aux/IAA genes in B. rapa using four conserved motifs of Aux/IAA family (PF02309). Chromosomal mapping of the B. rapa Aux/IAA (BrIAA) genes facilitated understanding cluster rearrangement of the crucifer building blocks in the genome. Phylogenetic analysis of BrIAA with Arabidopsis thaliana, Oryza sativa and Zea mays identified 51 sister pairs including 15 same species (BrIAA-BrIAA) and 36 cross species (BrIAA-AtIAA) IAA genes. Among the 55 BrIAA genes, expression of 43 and 45 genes were verified using Genebank B. rapa ESTs and in home developed microarray data from mature leaves of Chiifu and RcBr lines. Despite their huge morphological difference, tissue specific expression analysis of BrIAA genes between the parental lines Chiifu and RcBr showed that the genes followed a similar pattern of expression during leaf development and a different pattern during bud, flower and siliqua development stages. The response of the BrIAA genes to abiotic and auxin stress at different time intervals revealed their involvement in stress response. Single Nucleotide Polymorphisms between IAA genes of reference genome Chiifu and RcBr were focused and identified. Our study examines the scope of conservation and divergence of Aux/IAA genes and their structures in B. rapa. Analyzing the expression and structural variation between two parental lines will significantly contribute to functional genomics of Brassica crops and we belive our study would provide a foundation in understanding the Aux/IAA genes in B. rapa.

  7. Genome-Wide Analysis and Characterization of Aux/IAA Family Genes in Brassica rapa.

    PubMed

    Paul, Parameswari; Dhandapani, Vignesh; Rameneni, Jana Jeevan; Li, Xiaonan; Sivanandhan, Ganesan; Choi, Su Ryun; Pang, Wenxing; Im, Subin; Lim, Yong Pyo

    2016-01-01

    Auxins are the key players in plant growth development involving leaf formation, phototropism, root, fruit and embryo development. Auxin/Indole-3-Acetic Acid (Aux/IAA) are early auxin response genes noted as transcriptional repressors in plant auxin signaling. However, many studies focus on Aux/ARF gene families and much less is known about the Aux/IAA gene family in Brassica rapa (B. rapa). Here we performed a comprehensive genome-wide analysis and identified 55 Aux/IAA genes in B. rapa using four conserved motifs of Aux/IAA family (PF02309). Chromosomal mapping of the B. rapa Aux/IAA (BrIAA) genes facilitated understanding cluster rearrangement of the crucifer building blocks in the genome. Phylogenetic analysis of BrIAA with Arabidopsis thaliana, Oryza sativa and Zea mays identified 51 sister pairs including 15 same species (BrIAA-BrIAA) and 36 cross species (BrIAA-AtIAA) IAA genes. Among the 55 BrIAA genes, expression of 43 and 45 genes were verified using Genebank B. rapa ESTs and in home developed microarray data from mature leaves of Chiifu and RcBr lines. Despite their huge morphological difference, tissue specific expression analysis of BrIAA genes between the parental lines Chiifu and RcBr showed that the genes followed a similar pattern of expression during leaf development and a different pattern during bud, flower and siliqua development stages. The response of the BrIAA genes to abiotic and auxin stress at different time intervals revealed their involvement in stress response. Single Nucleotide Polymorphisms between IAA genes of reference genome Chiifu and RcBr were focused and identified. Our study examines the scope of conservation and divergence of Aux/IAA genes and their structures in B. rapa. Analyzing the expression and structural variation between two parental lines will significantly contribute to functional genomics of Brassica crops and we belive our study would provide a foundation in understanding the Aux/IAA genes in B. rapa. PMID

  8. Could nitrile derivatives of turnip (Brassica rapa) glucosinolates be hepato- or cholangiotoxic in cattle?

    PubMed

    Collett, Mark G; Stegelmeier, Bryan L; Tapper, Brian A

    2014-07-30

    Turnip (Brassica rapa ssp. rapa) and rape (Brassica napus ssp. biennis) and other brassica forage crops are regarded as "safe" feed for cattle during late summer and fall in the North Island of New Zealand when high Pithomyces chartarum spore counts in pastures frequently lead to sporidesmin toxicity (facial eczema). Sporadic acute severe cases of turnip photosensitization in dairy cows characteristically exhibit high γ-glutamyl transferase and glutamate dehydrogenase serum enzyme activities that mimic those seen in facial eczema. The two diseases can, however, be distinguished by histopathology of the liver, where lesions, in particular those affecting small bile ducts, differ. To date, the hepato-/cholangiotoxic phytochemical causing liver damage in turnip photosensitization in cattle is unknown. Of the hydrolysis products of the various glucosinolate secondary compounds found in high concentrations in turnip and rape, work has shown that nitriles and epithionitriles can be hepatotoxic (and nephro- or pancreatotoxic) in rats. These derivatives include β-hydroxy-thiiranepropanenitrile and 3-hydroxy-4-pentenenitrile from progoitrin; thiiranepropanenitrile and 4-pentenenitrile from gluconapin; thiiranebutanenitrile and 5-hexenenitrile from glucobrassicanapin; phenyl-3-propanenitrile from gluconasturtiin; and indole-3-acetonitrile from glucobrassicin. This perspective explores the possibility of the preferential formation of such derivatives, especially the epithionitriles, in acidic conditions in the bovine rumen, followed by absorption, hepatotoxicity, and secondary photosensitization.

  9. Genetic architecture of the circadian clock and flowering time in Brassica rapa.

    PubMed

    Lou, P; Xie, Q; Xu, X; Edwards, C E; Brock, M T; Weinig, C; McClung, C R

    2011-08-01

    The circadian clock serves to coordinate physiology and behavior with the diurnal cycles derived from the daily rotation of the earth. In plants, circadian rhythms contribute to growth and yield and, hence, to both agricultural productivity and evolutionary fitness. Arabidopsis thaliana has served as a tractable model species in which to dissect clock mechanism and function, but it now becomes important to define the extent to which the Arabidopsis model can be extrapolated to other species, including crops. Accordingly, we have extended our studies to the close Arabidopsis relative and crop species, Brassica rapa. We have investigated natural variation in circadian function and flowering time among multiple B. rapa collections. There is wide variation in clock function, based on a robust rhythm in cotyledon movement, within a collection of B. rapa accessions, wild populations and recombinant inbred lines (RILs) derived from a cross between parents from two distinct subspecies, a rapid cycling Chinese cabbage (ssp. pekinensis) and a Yellow Sarson oilseed (ssp. trilocularis). We further analyzed the RILs to identify the quantitative trait loci (QTL) responsible for this natural variation in clock period and temperature compensation, as well as for flowering time under different temperature and day length settings. Most clock and flowering-time QTL mapped to overlapping chromosomal loci. We have exploited micro-synteny between the Arabidopsis and B. rapa genomes to identify candidate genes for these QTL.

  10. Isolation of circadian-associated genes in Brassica rapa by comparative genomics with Arabidopsis thaliana.

    PubMed

    Kim, Jin A; Yang, Tae-Jin; Kim, Jung Sun; Park, Jee Young; Kwon, Soo-Jin; Lim, Myung-Ho; Jin, Mina; Lee, Sang Choon; Lee, Soo In; Choi, Beom-Soon; Um, Sang-Hee; Kim, Ho-Il; Chun, Changhoo; Park, Beom-Seok

    2007-04-30

    Elucidation of the roles of circadian associated factors requires a better understanding of the molecular mechanisms of circadian rhythms, control of flowering time through photoperiodic pathways, and photosensory signal transduction. In Arabidopsis, the APRR1 quintet, APRRs 1, 3, 5, 7, and 9, are known as central oscillator genes. Other plants may share the molecular mechanism underlying the circadian rhythm. To identify and characterize these circadian response genes in Brassica crops whose genome was triplicated after divergence from Arabidopsis, we identified B. rapa BAC clones containing these genes by BLAST analysis of B. rapa BAC end sequences against the five corresponding Arabidopsis regions. Subsequent fingerprinting, Southern hybridization, and PCR allowed identification of five BAC clones, one for each of the five circadian-related genes. By draft shotgun sequencing of the BAC clones, we identified the complete gene sequences and cloned the five expressed B. rapa circadian-associated gene members, BrPRRs 1, 3, 5, 7, and 9. Phylogenetic analysis revealed that each BrPRR was orthologous to the corresponding APRR at the sequence level. Northern hybridization revealed that the five genes were transcribed at distinct points in the 24 hour period, and Southern hybridization revealed that they are present in 2, 1, 2, 2, and 1 copies, respectively in the B. rapa genome, which was triplicated and then diploidized during the last 15 million years.

  11. Pol IV-Dependent siRNA Production is Reduced in Brassica rapa.

    PubMed

    Huang, Yi; Kendall, Timmy; Mosher, Rebecca A

    2013-01-01

    Plants produce a diverse array of small RNA molecules capable of gene regulation, including Pol IV-dependent short interfering (p4-si)RNAs that trigger transcriptional gene silencing. Small RNA transcriptomes are available for many plant species, but mutations affecting the synthesis of Pol IV-dependent siRNAs are characterized only in Arabidopsis and maize, leading to assumptions regarding nature of p4-siRNAs in all other species. We have identified a mutation in the largest subunit of Pol IV, NRPD1, that impacts Pol IV activity in Brassica rapa, an agriculturally important relative of the reference plant Arabidopsis. Using this mutation we characterized the Pol IV-dependent and Pol IV-independent small RNA populations in B. rapa. In addition, our analysis demonstrates reduced production of p4-siRNAs in B. rapa relative to Arabidopsis. B. rapa genomic regions are less likely to generate p4-siRNAs than Arabidopsis but more likely to generate Pol IV-independent siRNAs, including 24 nt RNAs mapping to transposable elements. These observations underscore the diversity of small RNAs produced by plants and highlight the importance of genetic studies during small RNA analysis.

  12. A transposon insertion in FLOWERING LOCUS T is associated with delayed flowering in Brassica rapa.

    PubMed

    Zhang, Xueming; Meng, Lin; Liu, Bo; Hu, Yunyan; Cheng, Feng; Liang, Jianli; Aarts, Mark G M; Wang, Xiaowu; Wu, Jian

    2015-12-01

    Long days and vernalization accelerate the transition from vegetative growth to reproductive growth in Brassica rapa. Bolting before plants reach the harvesting stage is a serious problem in B. rapa vegetable crop cultivation. The genetic dissection of flowering time is important for breeding of premature bolting-resistant B. rapa crops. Using a recombinant inbred line (RIL) population, we twice detected two major quantitative trait loci (QTLs) for flowering time in two different growing seasons that were located on chromosomes A02 and A07, respectively. We hypothesized that an orthologue of the Arabidopsis thaliana FLOWERING LOCUS T (FT) gene, named as BrFT2, was the candidate gene underlying the QTL localized to A07. A transposon insertion in the second intron of BrFT2 was detected in one of the parental lines, which was predicted to generate a loss-of-function allele. Transcription analysis revealed that the BrFT2 transcript was not present in the parental line that harbored the mutated allele. RILs carrying only the mutated BrFT2 allele showed delayed flowering regardless of growing seasons when compared to RILs carrying the wild-type BrFT2 allele. These data suggest that BrFT2 is involved in flowering time regulation in controlling flowering time in B. rapa. PMID:26706072

  13. Pol IV-Dependent siRNA Production is Reduced in Brassica rapa

    PubMed Central

    Huang, Yi; Kendall, Timmy; Mosher, Rebecca A.

    2013-01-01

    Plants produce a diverse array of small RNA molecules capable of gene regulation, including Pol IV-dependent short interfering (p4-si)RNAs that trigger transcriptional gene silencing. Small RNA transcriptomes are available for many plant species, but mutations affecting the synthesis of Pol IV-dependent siRNAs are characterized only in Arabidopsis and maize, leading to assumptions regarding nature of p4-siRNAs in all other species. We have identified a mutation in the largest subunit of Pol IV, NRPD1, that impacts Pol IV activity in Brassica rapa, an agriculturally important relative of the reference plant Arabidopsis. Using this mutation we characterized the Pol IV-dependent and Pol IV-independent small RNA populations in B. rapa. In addition, our analysis demonstrates reduced production of p4-siRNAs in B. rapa relative to Arabidopsis. B. rapa genomic regions are less likely to generate p4-siRNAs than Arabidopsis but more likely to generate Pol IV-independent siRNAs, including 24 nt RNAs mapping to transposable elements. These observations underscore the diversity of small RNAs produced by plants and highlight the importance of genetic studies during small RNA analysis. PMID:24833221

  14. A transposon insertion in FLOWERING LOCUS T is associated with delayed flowering in Brassica rapa.

    PubMed

    Zhang, Xueming; Meng, Lin; Liu, Bo; Hu, Yunyan; Cheng, Feng; Liang, Jianli; Aarts, Mark G M; Wang, Xiaowu; Wu, Jian

    2015-12-01

    Long days and vernalization accelerate the transition from vegetative growth to reproductive growth in Brassica rapa. Bolting before plants reach the harvesting stage is a serious problem in B. rapa vegetable crop cultivation. The genetic dissection of flowering time is important for breeding of premature bolting-resistant B. rapa crops. Using a recombinant inbred line (RIL) population, we twice detected two major quantitative trait loci (QTLs) for flowering time in two different growing seasons that were located on chromosomes A02 and A07, respectively. We hypothesized that an orthologue of the Arabidopsis thaliana FLOWERING LOCUS T (FT) gene, named as BrFT2, was the candidate gene underlying the QTL localized to A07. A transposon insertion in the second intron of BrFT2 was detected in one of the parental lines, which was predicted to generate a loss-of-function allele. Transcription analysis revealed that the BrFT2 transcript was not present in the parental line that harbored the mutated allele. RILs carrying only the mutated BrFT2 allele showed delayed flowering regardless of growing seasons when compared to RILs carrying the wild-type BrFT2 allele. These data suggest that BrFT2 is involved in flowering time regulation in controlling flowering time in B. rapa.

  15. Competition affects gene flow from oilseed rape (female symbol) to Brassica rapa (male symbol).

    PubMed

    Johannessen, M M; Andersen, B A; Jørgensen, R B

    2006-05-01

    Unlike most studies on hybridisation between oilseed rape and Brassica rapa, this study focused on hybridisation with oilseed rape as the maternal parent. This is a key cross because, assuming that plastids are inherited maternally, F(1)-hybrid production with maternal oilseed rape (B. napus) is the only transgene escape route from transplastomic oilseed rape. We investigated such F(1)-hybrid production in winter oilseed rape co-cultivated with weedy B. rapa at three plant densities each with two proportions of the different species. The paternity of the progeny produced on oilseed rape was assessed, and several fitness parameters were determined in oilseed rape mother plants in order to correlate hybridisation and plant competition. At higher density, the vegetative fitness per mother plant decreased significantly, but the density only affected the frequency of F(1)-hybrids significantly (a decrease) in the treatment with equal proportions of each species. As to the proportions, at higher B. napus frequencies, there were fewer F(1)-hybrids per mother plant and a significant increase in most biomass components. Thus, B. rapa was the stronger competitor in its effect on both the vegetative and reproductive fitness in B. napus, and the hybridisation frequency. In conclusion, the relative frequency of the two species was a more influential parameter than the density. Hybridisation with B. napus as the female will be most likely at current field densities of B. napus and when B. rapa is an abundant weed.

  16. Competition affects gene flow from oilseed rape (female symbol) to Brassica rapa (male symbol).

    PubMed

    Johannessen, M M; Andersen, B A; Jørgensen, R B

    2006-05-01

    Unlike most studies on hybridisation between oilseed rape and Brassica rapa, this study focused on hybridisation with oilseed rape as the maternal parent. This is a key cross because, assuming that plastids are inherited maternally, F(1)-hybrid production with maternal oilseed rape (B. napus) is the only transgene escape route from transplastomic oilseed rape. We investigated such F(1)-hybrid production in winter oilseed rape co-cultivated with weedy B. rapa at three plant densities each with two proportions of the different species. The paternity of the progeny produced on oilseed rape was assessed, and several fitness parameters were determined in oilseed rape mother plants in order to correlate hybridisation and plant competition. At higher density, the vegetative fitness per mother plant decreased significantly, but the density only affected the frequency of F(1)-hybrids significantly (a decrease) in the treatment with equal proportions of each species. As to the proportions, at higher B. napus frequencies, there were fewer F(1)-hybrids per mother plant and a significant increase in most biomass components. Thus, B. rapa was the stronger competitor in its effect on both the vegetative and reproductive fitness in B. napus, and the hybridisation frequency. In conclusion, the relative frequency of the two species was a more influential parameter than the density. Hybridisation with B. napus as the female will be most likely at current field densities of B. napus and when B. rapa is an abundant weed. PMID:16508664

  17. Analysis of expressed sequence tags from Brassica rapa L. ssp. pekinensis.

    PubMed

    Lim, J Y; Shin, C S; Chung, E J; Kim, J S; Kim, H U; Oh, S J; Choi, W B; Ryou, C S; Kim, J B; Kwon, M S; Chung, T Y; Song, S I; Kim, J K; Nahm, B H; Hwang, Y S; Eun, M Y; Lee, J S; Cheong, J J; Choi, Y D

    2000-08-31

    Non-redundant expressed sequence tags (ESTs) were generated from six different organs at various developmental stages of Chinese cabbage, Brassica rapa L. ssp. pekinensis. Of the 1,295 ESTs, 915 (71%) showed significantly high homology in nucleotide or deduced amino acid sequences with other sequences deposited in databases, while 380 did not show similarity to any sequences. Briefly, 598 ESTs matched with proteins of identified biological function, 177 with hypothetical proteins or non-annotated Arabidopsis genome sequences, and 140 with other ESTs. About 82% of the top-scored matching sequences were from Arabidopsis or Brassica, but overall 558 (43%) ESTs matched with Arabidopsis ESTs at the nucleotide sequence level. This observation strongly supports the idea that gene-expression profiles of Chinese cabbage differ from that of Arabidopsis, despite their genome structures being similar to each other. Moreover, sequence analyses of 21 Brassica ESTs revealed that their primary structure is different from those of corresponding annotated sequences of Arabidopsis genes. Our data suggest that direct prediction of Brassica gene expression pattern based on the information from Arabidopsis genome research has some limitations. Thus, information obtained from the Brassica EST study is useful not only for understanding of unique developmental processes of the plant, but also for the study of Arabidopsis genome structure.

  18. Powdery mildew suppresses herbivore-induced plant volatiles and interferes with parasitoid attraction in Brassica rapa.

    PubMed

    Desurmont, Gaylord A; Xu, Hao; Turlings, Ted C J

    2016-09-01

    The co-occurrence of different antagonists on a plant can greatly affect infochemicals with ecological consequences for higher trophic levels. Here we investigated how the presence of a plant pathogen, the powdery mildew Erysiphe cruciferarum, on Brassica rapa affects (1) plant volatiles emitted in response to damage by a specialist herbivore, Pieris brassicae; (2) the attraction of the parasitic wasp Cotesia glomerata and (3) the performance of P. brassicae and C. glomerata. Plant volatiles were significantly induced by herbivory in both healthy and mildew-infected plants, but were quantitatively 41% lower for mildew-infected plants compared to healthy plants. Parasitoids strongly preferred Pieris-infested plants to dually-infested (Pieris + mildew) plants, and preferred dually infested plants over only mildew-infected plants. The performance of P. brassicae was unaffected by powdery mildew, but C. glomerata cocoon mass was reduced when parasitized caterpillars developed on mildew-infected plants. Thus, avoidance of mildew-infested plants may be adaptive for C. glomerata parasitoids, whereas P. brassicae caterpillars may suffer less parasitism on mildew-infected plants in nature. From a pest management standpoint, the concurrent presence of multiple plant antagonists can affect the efficiency of specific natural enemies, which may in turn have a negative impact on the regulation of pest populations.

  19. Powdery mildew suppresses herbivore-induced plant volatiles and interferes with parasitoid attraction in Brassica rapa.

    PubMed

    Desurmont, Gaylord A; Xu, Hao; Turlings, Ted C J

    2016-09-01

    The co-occurrence of different antagonists on a plant can greatly affect infochemicals with ecological consequences for higher trophic levels. Here we investigated how the presence of a plant pathogen, the powdery mildew Erysiphe cruciferarum, on Brassica rapa affects (1) plant volatiles emitted in response to damage by a specialist herbivore, Pieris brassicae; (2) the attraction of the parasitic wasp Cotesia glomerata and (3) the performance of P. brassicae and C. glomerata. Plant volatiles were significantly induced by herbivory in both healthy and mildew-infected plants, but were quantitatively 41% lower for mildew-infected plants compared to healthy plants. Parasitoids strongly preferred Pieris-infested plants to dually-infested (Pieris + mildew) plants, and preferred dually infested plants over only mildew-infected plants. The performance of P. brassicae was unaffected by powdery mildew, but C. glomerata cocoon mass was reduced when parasitized caterpillars developed on mildew-infected plants. Thus, avoidance of mildew-infested plants may be adaptive for C. glomerata parasitoids, whereas P. brassicae caterpillars may suffer less parasitism on mildew-infected plants in nature. From a pest management standpoint, the concurrent presence of multiple plant antagonists can affect the efficiency of specific natural enemies, which may in turn have a negative impact on the regulation of pest populations. PMID:27043839

  20. Association mapping of leaf traits, flowering time, and phytate content in Brassica rapa.

    PubMed

    Zhao, Jianjun; Paulo, Maria-João; Jamar, Diaan; Lou, Ping; van Eeuwijk, Fred; Bonnema, Guusje; Vreugdenhil, Dick; Koornneef, Maarten

    2007-10-01

    Association mapping was used to investigate the genetic basis of variation within Brassica rapa, which is an important vegetable and oil crop. We analyzed the variation of phytate and phosphate levels in seeds and leaves and additional developmental and morphological traits in a set of diverse B. rapa accessions and tested association of these traits with AFLP markers. The analysis of population structure revealed four subgroups in the population. Trait values differed between these subgroups, thus defining associations between population structure and trait values, even for traits such as phytate and phosphate levels. Marker-trait associations were investigated both with and without taking population structure into account. One hundred and seventy markers were found to be associated with the observed traits without correction for population structure. Association analysis with correction for population structure led to the identification of 27 markers, 6 of which had known map positions; 3 of these were confirmed in additional QTL mapping studies.

  1. A flavonoid from Brassica rapa flower as the UV-absorbing nectar guide.

    PubMed

    Sasaki, Katsunori; Takahashi, Takashi

    2002-10-01

    The corolla of Brassica rapa has an UV-absorbing zone in its center, known as the nectar guide for attracting pollinating insects. The pigment which plays the role of the nectar guide was isolated from the petals and identified to be isorhamnetin 3,7-O-di-beta-D-glucopyranoside on the basis of MS and NMR spectroscopic data. The D-, L-configurations of the sugar moieties were determined by the fluorometric HPLC method. In plants raised in open field, there was a 13-fold higher content of the compound in the basal parts of the petals compared with the apical parts. This difference in flavonoid content is presumed to contribute to the visual attractiveness of B. rapa flowers to insect pollinators.

  2. Hybridization between Brassica napus and B. rapa on a national scale in the United Kingdom.

    PubMed

    Wilkinson, Mike J; Elliott, Luisa J; Allainguillaume, Joël; Shaw, Michael W; Norris, Carol; Welters, Ruth; Alexander, Matthew; Sweet, Jeremy; Mason, David C

    2003-10-17

    Measures blocking hybridization would prevent or reduce biotic or environmental change caused by gene flow from genetically modified (GM) crops to wild relatives. The efficacy of any such measure depends on hybrid numbers within the legislative region over the life-span of the GM cultivar. We present a national assessment of hybridization between rapeseed (Brassica napus) and B. rapa from a combination of sources, including population surveys, remote sensing, pollen dispersal profiles, herbarium data, local Floras, and other floristic databases. Across the United Kingdom, we estimate that 32,000 hybrids form annually in waterside B. rapa populations, whereas the less abundant weedy populations contain 17,000 hybrids. These findings set targets for strategies to eliminate hybridization and represent the first step toward quantitative risk assessment on a national scale.

  3. Genetic transformation of Brassica campestris var. rapa protoplasts with an engineered cauliflower mosaic virus genome.

    PubMed

    Paszkowski, J; Pisan, B; Shillito, R D; Hohn, T; Hohn, B; Potrykus, I

    1986-09-01

    A hybrid Cauliflower Mosaic Virus (CaMV) genome containing a selectable marker gene was constructed by replacing the gene VI coding region with the aminoglycoside (neomycin) phosphotransferase type II [APH(3')II] gene from Tn5. This modified viral genome was tested for its infectivity both in planta and in a protoplast transformation system of Brassica campestris var. rapa. Stable, genetically transformed cell lines of B. campestris var. rapa were obtained after transformation. DNA of the hybrid CaMV genome was found to be integrated into high molecular weight plant genomic DNA. Transformation was achieved only when the hybrid genome was supplied together with wild type viral DNA. A possible complementation of the modified CaMV genome with the wild type viral DNA as a helper molecule in planta and in the protoplast system is discussed.

  4. Bt-transgenic oilseed rape hybridization with its weedy relative, Brassica rapa.

    PubMed

    Halfhill, Matthew D; Millwood, Reginald J; Raymer, Paul L; Stewart, C Neal

    2002-10-01

    The movement of transgenes from crops to weeds and the resulting consequences are concerns of modern agriculture. The possible generation of "superweeds" from the escape of fitness-enhancing transgenes into wild populations is a risk that is often discussed, but rarely studied. Oilseed rape, Brassica napus (L.), is a crop with sexually compatible weedy relatives, such as birdseed rape (Brassica rapa (L.)). Hybridization of this crop with weedy relatives is an extant risk and an excellent interspecific gene flow model system. In laboratory crosses, T3 lines of seven independent transformation events of Bacillus thuringiensis (Bt) oilseed rape were hybridized with two weedy accessions of B. rapa. Transgenic hybrids were generated from six of these oilseed rape lines, and the hybrids exhibited an intermediate morphology between the parental species. The Bt transgene was present in the hybrids, and the protein was synthesized at similar levels to the corresponding independent oilseed rape lines. Insect bioassays were performed and confirmed that the hybrid material was insecticidal. The hybrids were backcrossed with the weedy parent, and only half the oilseed rape lines were able to produce transgenic backcrosses. After two backcrosses, the ploidy level and morphology of the resultant plants were indistinguishable from B. rapa. Hybridization was monitored under field conditions (Tifton, GA, USA) with four independent lines of Bt oilseed rape with a crop to wild relative ratio of 1200:1. When B. rapa was used as the female parent, hybridization frequency varied among oilseed rape lines and ranged from 16.9% to 0.7%.

  5. Global analysis of cis-natural antisense transcripts and their heat-responsive nat-siRNAs in Brassica rapa

    PubMed Central

    2013-01-01

    Background Brassica rapa includes several important leaf vegetable crops whose production is often damaged by high temperature. Cis-natural antisense transcripts (cis-NATs) and cis-NATs-derived small interfering RNAs (nat-siRNAs) play important roles in plant development and stress responses. However, genome-wide cis-NATs in B. rapa are not known. The NATs and nat-siRNAs that respond to heat stress have never been well studied in B. rapa. Here, we took advantage of RNA-seq and small RNA (sRNA) deep sequencing technology to identify cis-NATs and heat responsive nat-siRNAs in B. rapa. Results Analyses of four RNA sequencing datasets revealed 1031 cis-NATs B. rapa ssp. chinensis cv Wut and B. rapa ssp. pekinensis cv. Bre. Based on sequence homology between Arabidopsis thaliana and B. rapa, 303 conserved cis-NATs in B. rapa were found to correspond to 280 cis-NATs in Arabidopsis; the remaining 728 novel cis-NATs were identified as Brassica-specific ones. Using six sRNA libraries, 4846 nat-siRNAs derived from 150 cis-NATs were detected. Differential expression analysis revealed that nat-siRNAs derived from 12 cis-NATs were responsive to heat stress, and most of them showed strand bias. Real-time PCR indicated that most of the transcripts generating heat-responsive nat-siRNAs were upregulated under heat stress, while the transcripts from the opposite strands of the same loci were downregulated. Conclusions Our results provide the first subsets of genome-wide cis-NATs and heat-responsive nat-siRNAs in B. rapa; these sRNAs are potentially useful for the genetic improvement of heat tolerance in B. rapa and other crops. PMID:24320882

  6. Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species.

    PubMed

    Lim, Ki-Byung; Yang, Tae-Jin; Hwang, Yoon-Jung; Kim, Jung Sun; Park, Jee-Young; Kwon, Soo-Jin; Kim, Jina; Choi, Beom-Soon; Lim, Myung-Ho; Jin, Mina; Kim, Ho-Il; de Jong, Hans; Bancroft, Ian; Lim, Yongpyo; Park, Beom-Seok

    2007-01-01

    We report the identification and characterization of the major repeats in the centromeric and peri-centromeric heterochromatin of Brassica rapa. The analysis involved the characterization of 88 629 bacterial artificial chromosomes (BAC) end sequences and the complete sequences of two BAC clones. We identified centromere-specific retrotransposons of Brassica (CRB) and various peri-centromere-specific retrotransposons (PCRBr). Three copies of the CRB were identified in one BAC clone as nested insertions within a tandem array of 24 copies of a 176 bp centromeric repeat, CentBr. A complex mosaic structure consisting of nine PCRBr elements and large blocks of 238 bp degenerate tandem repeats (TR238) were found in or near a derivative of 5S-25S rDNA sequences. The chromosomal positions of selected repeats were determined using in situ hybridization. These revealed that CRB is a major component of all centromeres in three diploid Brassica species and their allotetraploid relatives. However, CentBr was not detected in the most distantly related of the diploid species analyzed, B. nigra. PCRBr and TR238 were found to be major components in the peri-centromeric heterochromatin blocks of four chromosomes of B. rapa. These repetitive elements were not identified in B. oleracea or B. nigra, indicating that they are A-genome-specific. GenBank accession numbers: KBrH001P13 (AC 166739); KBrH015B20 (AC 166740); end sequences of KBrH BAC library (CW 978640 - CW 988843); end sequences of KBrS BAC library (DU 826965 - DU 835595); end sequences of KBrB BAC library (DX 010661 - DX 083363).

  7. Shotgun Label-free Proteomic Analysis of Clubroot (Plasmodiophora brassicae) Resistance Conferred by the Gene Rcr1 in Brassica rapa.

    PubMed

    Song, Tao; Chu, Mingguang; Lahlali, Rachid; Yu, Fengqun; Peng, Gary

    2016-01-01

    Clubroot, caused by the plasmodiophorid pathogen Plasmodiophora brassicae, is one of the most serious diseases on Brassica crops worldwide and a major threat to canola production in western Canada. Host resistance is the key strategy for clubroot management on canola. Several clubroot resistance (CR) genes have been identified, but the mechanisms associated with these CR genes are poorly understood. In the current study, a label-free shotgun proteomic approach was used to profile and compare the proteomes of Brassica rapa carrying and not carrying the CR gene Rcr1 in response to P. brassicae infection. A total of 527 differentially accumulated proteins (DAPs) were identified between the resistant (with Rcr1) and susceptible (without Rcr1) samples, and functional annotation of these DAPs indicates that the perception of P. brassicae and activation of defense responses are triggered via an unique signaling pathway distinct from common modes of recognition receptors reported with many other plant-pathogen interactions; this pathway appears to act in a calcium-independent manner through a not-well-defined cascade of mitogen-activated protein kinases and may require the ubiquitin-26S proteasome found to be related to abiotic stresses, especially the cold-stress tolerance in other studies. Both up-regulation of defense-related and down-regulation of pathogenicity-related metabolism was observed in plants carrying Rcr1, and these functions may all contribute to the CR mediated by Rcr1. These results, combined with those of transcriptomic analysis reported earlier, improved our understanding of molecular mechanisms associated with Rcr1 and CR at large, and identified candidate metabolites or pathways related to specific resistance mechanisms. Deploying CR genes with different modes of action may help improve the durability of CR.

  8. Genomic and transcriptomic alterations following hybridisation and genome doubling in trigenomic allohexaploid Brassica carinata × Brassica rapa.

    PubMed

    Xu, Y; Zhao, Q; Mei, S; Wang, J

    2012-09-01

    Allopolyploidisation is a prominent evolutionary force that involves two major events: interspecific hybridisation and genome doubling. Both events have important functional consequences in shaping the genomic architecture of the neo-allopolyploids. The respective effects of hybridisation and genome doubling upon genomic and transcriptomic changes in Brassica allopolyploids are unresolved. In this study, amplified fragment length polymorphism (AFLP), methylation-sensitive amplification polymorphism (MSAP) and cDNA-AFLP approaches were used to track genetic, epigenetic and transcriptional changes in both allohexaploid Brassica (ArArBcBcCcCc genome) and triploid hybrids (ArBcCc genome). Results from these groups were compared with each other and also to their parents Brassica carinata (BBCC genome) and Brassica rapa (AA genome). Rapid and dramatic genetic, DNA methylation and gene expression changes were detected in the triploid hybrids. During the shift from triploidy to allohexaploidy, some of the hybridisation-induced alterations underwent reversion. Additionally, novel genetic, epigenetic and transcriptional alterations were also detected. The proportions of A-genome-specific DNA methylation and gene expression alterations were significantly greater than those of BC-genome-specific alterations in the triploid hybrids. However, the two parental genomes were equally affected during the ploidy shift. Hemi-CCG methylation changes induced by hybridisation were recovered after genome doubling. Full-CG methylation changes were a more general process initiated in the hybrid and continued after genome doubling. These results indicate that genome doubling could ameliorate genomic and transcriptomic alterations induced by hybridisation and instigate additional alterations in trigenomic Brassica allohexaploids. Moreover, genome doubling also modified hybridisation-induced progenitor genome-biased alterations and epigenetic alteration characteristics.

  9. Shotgun Label-free Proteomic Analysis of Clubroot (Plasmodiophora brassicae) Resistance Conferred by the Gene Rcr1 in Brassica rapa

    PubMed Central

    Song, Tao; Chu, Mingguang; Lahlali, Rachid; Yu, Fengqun; Peng, Gary

    2016-01-01

    Clubroot, caused by the plasmodiophorid pathogen Plasmodiophora brassicae, is one of the most serious diseases on Brassica crops worldwide and a major threat to canola production in western Canada. Host resistance is the key strategy for clubroot management on canola. Several clubroot resistance (CR) genes have been identified, but the mechanisms associated with these CR genes are poorly understood. In the current study, a label-free shotgun proteomic approach was used to profile and compare the proteomes of Brassica rapa carrying and not carrying the CR gene Rcr1 in response to P. brassicae infection. A total of 527 differentially accumulated proteins (DAPs) were identified between the resistant (with Rcr1) and susceptible (without Rcr1) samples, and functional annotation of these DAPs indicates that the perception of P. brassicae and activation of defense responses are triggered via an unique signaling pathway distinct from common modes of recognition receptors reported with many other plant–pathogen interactions; this pathway appears to act in a calcium-independent manner through a not-well-defined cascade of mitogen-activated protein kinases and may require the ubiquitin-26S proteasome found to be related to abiotic stresses, especially the cold-stress tolerance in other studies. Both up-regulation of defense-related and down-regulation of pathogenicity-related metabolism was observed in plants carrying Rcr1, and these functions may all contribute to the CR mediated by Rcr1. These results, combined with those of transcriptomic analysis reported earlier, improved our understanding of molecular mechanisms associated with Rcr1 and CR at large, and identified candidate metabolites or pathways related to specific resistance mechanisms. Deploying CR genes with different modes of action may help improve the durability of CR. PMID:27462338

  10. Shotgun Label-free Proteomic Analysis of Clubroot (Plasmodiophora brassicae) Resistance Conferred by the Gene Rcr1 in Brassica rapa.

    PubMed

    Song, Tao; Chu, Mingguang; Lahlali, Rachid; Yu, Fengqun; Peng, Gary

    2016-01-01

    Clubroot, caused by the plasmodiophorid pathogen Plasmodiophora brassicae, is one of the most serious diseases on Brassica crops worldwide and a major threat to canola production in western Canada. Host resistance is the key strategy for clubroot management on canola. Several clubroot resistance (CR) genes have been identified, but the mechanisms associated with these CR genes are poorly understood. In the current study, a label-free shotgun proteomic approach was used to profile and compare the proteomes of Brassica rapa carrying and not carrying the CR gene Rcr1 in response to P. brassicae infection. A total of 527 differentially accumulated proteins (DAPs) were identified between the resistant (with Rcr1) and susceptible (without Rcr1) samples, and functional annotation of these DAPs indicates that the perception of P. brassicae and activation of defense responses are triggered via an unique signaling pathway distinct from common modes of recognition receptors reported with many other plant-pathogen interactions; this pathway appears to act in a calcium-independent manner through a not-well-defined cascade of mitogen-activated protein kinases and may require the ubiquitin-26S proteasome found to be related to abiotic stresses, especially the cold-stress tolerance in other studies. Both up-regulation of defense-related and down-regulation of pathogenicity-related metabolism was observed in plants carrying Rcr1, and these functions may all contribute to the CR mediated by Rcr1. These results, combined with those of transcriptomic analysis reported earlier, improved our understanding of molecular mechanisms associated with Rcr1 and CR at large, and identified candidate metabolites or pathways related to specific resistance mechanisms. Deploying CR genes with different modes of action may help improve the durability of CR. PMID:27462338

  11. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea.

    PubMed

    Lee, Kyeong-Ryeol; In Sohn, Soo; Jung, Jin Hee; Kim, Sun Hee; Roh, Kyung Hee; Kim, Jong-Bum; Suh, Mi Chung; Kim, Hyun Uk

    2013-12-01

    Fatty acid desaturase 2 (FAD2), which resides in the endoplasmic reticulum (ER), plays a crucial role in producing linoleic acid (18:2) through catalyzing the desaturation of oleic acid (18:1) by double bond formation at the delta 12 position. FAD2 catalyzes the first step needed for the production of polyunsaturated fatty acids found in the glycerolipids of cell membranes and the triacylglycerols in seeds. In this study, four FAD2 genes from amphidiploid Brassica napus genome were isolated by PCR amplification, with their enzymatic functions predicted by sequence analysis of the cDNAs. Fatty acid analysis of budding yeast transformed with each of the FAD2 genes showed that whereas BnFAD2-1, BnFAD2-2, and BnFAD2-4 are functional enzymes, and BnFAD2-3 is nonfunctional. The four FAD2 genes of B. napus originated from synthetic hybridization of its diploid progenitors Brassica rapa and Brassica oleracea, each of which has two FAD2 genes identical to those of B. napus. The BnFAD2-3 gene of B. napus, a nonfunctional pseudogene mutated by multiple nucleotide deletions and insertions, was inherited from B. rapa. All BnFAD2 isozymes except BnFAD2-3 localized to the ER. Nonfunctional BnFAD2-3 localized to the nucleus and chloroplasts. Four BnFAD2 genes can be classified on the basis of their expression patterns. PMID:24029080

  12. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea.

    PubMed

    Lee, Kyeong-Ryeol; In Sohn, Soo; Jung, Jin Hee; Kim, Sun Hee; Roh, Kyung Hee; Kim, Jong-Bum; Suh, Mi Chung; Kim, Hyun Uk

    2013-12-01

    Fatty acid desaturase 2 (FAD2), which resides in the endoplasmic reticulum (ER), plays a crucial role in producing linoleic acid (18:2) through catalyzing the desaturation of oleic acid (18:1) by double bond formation at the delta 12 position. FAD2 catalyzes the first step needed for the production of polyunsaturated fatty acids found in the glycerolipids of cell membranes and the triacylglycerols in seeds. In this study, four FAD2 genes from amphidiploid Brassica napus genome were isolated by PCR amplification, with their enzymatic functions predicted by sequence analysis of the cDNAs. Fatty acid analysis of budding yeast transformed with each of the FAD2 genes showed that whereas BnFAD2-1, BnFAD2-2, and BnFAD2-4 are functional enzymes, and BnFAD2-3 is nonfunctional. The four FAD2 genes of B. napus originated from synthetic hybridization of its diploid progenitors Brassica rapa and Brassica oleracea, each of which has two FAD2 genes identical to those of B. napus. The BnFAD2-3 gene of B. napus, a nonfunctional pseudogene mutated by multiple nucleotide deletions and insertions, was inherited from B. rapa. All BnFAD2 isozymes except BnFAD2-3 localized to the ER. Nonfunctional BnFAD2-3 localized to the nucleus and chloroplasts. Four BnFAD2 genes can be classified on the basis of their expression patterns.

  13. Microtubules spatial alterations in root cells of Brassica rapa under clinorotation.

    PubMed

    Kalinina, Ia

    2008-05-01

    Organization of tubulin cytoskeleton in epidermis and cortex cells in different root growth zones in Brassica rapa L. 6-day-old seedlings under clinorotation has been investigated. It was shown that changes in cortical microtubules orientation occur only in the distal elongation zone. In control, cortical microtubule arrays oriented transversely to the root long axis. Whereas under clinorotation an appearance of shorter randomly organized cortical microtubules was observed. Simultaneously, a significant decrease in a cell length in the central elongation zone under clinorotation was revealed. It is suggested that the decline of anisotropic growth, typical for central elongation zone cells, is connected with cortical microtubules disorientation under clinorotation.

  14. 5 alpha-reductase and aromatase inhibitory constituents from Brassica rapa L. pollen.

    PubMed

    Li, Yong-Hui; Yang, Yi-Fang; Li, Kun; Jin, Li-Li; Yang, Nian-Yun; Kong, De-Yun

    2009-04-01

    In the screening of biologically active constituents from Brassica rapa pollen, the supercritical CO(2) fluid extract (SFE-CO(2)) showed potent 5 alpha-reductase and aromatase inhibiting activity. The SFE-CO(2) extract was separated by various chromatographic methods to give two new phytosterol derivatives, 24-methylenecholesterol linolenate (1) and cycloeucalenol linolenate (2), as well as eight known compounds, 24-methylenecholesterol palmitate (3), cycloeucalenol (4), pollinastanol (5), 24-methylenecholesterol (6), linolenic acid (7), palmitic acid (8), monolinolein (9) and monopalmitin (10), compounds 7 and 9 showed potent 5 alpha-reductase inhibitory activity; compounds 1-6 and 10 showed potent aromatase inhibitory activity.

  15. Effects of D-methionine or L-methionine on root hair of Brassica rapa.

    PubMed

    Hasegawa, Nobuharu; Yamaji, Yohei; Minoda, Masashi; Kubo, Motoki

    2003-01-01

    We examined the effects of D- or L-amino acids on the stimulation of Brassica rapa roots. When 6.7 microM of D-methionine (D-Met) or L-methionine (L-Met) was applied, root hair numbers increased. L-Met (above concentration of 67.0 microM) caused the tip of roots to spiral. When CoCl2 (ethylene synthesis inhibitor) was added into the medium, L-Met lost its activity but COCl2 did not inhibit the bioactivity of D-Met.

  16. The S haplotypes lacking SLG in the genome of Brassica rapa.

    PubMed

    Suzuki, G; Kakizaki, T; Takada, Y; Shiba, H; Takayama, S; Isogai, A; Watanabe, M

    2003-06-01

    Self-incompatibility (SI) discriminating self- and non-self pollen is regulated by S-locus genes in Brassica. In most of the S haplotypes, a highly polymorphic S-locus glycoprotein ( SLG) gene is tightly linked to genes for the SI determinants, S-receptor kinase ( SRK) and SP11, although the precise function of SLG in SI has not been clarified. In the present study, we performed DNA gel blot analysis for S(32), S(33), and S(36) haplotypes of Brassica rapa showing normal SI phenotypes and concluded that there might be no SLG in their genome. RNA gel blot analysis of the SLG-less S haplotypes indicated the possible existence of eSRK transcripts in the stigma. These three S haplotypes are useful resources to discern the molecular mechanism of the SI reaction without SLG.

  17. The δ-cyclin expression at early stages of embryogenesis of Brassica rapa L. under clinorotation

    NASA Astrophysics Data System (ADS)

    Artemenko, O. A.; Popova, A. F.

    We present some results of comparison studying of Brassica embryo development and the δ-cyclin genes expression under slow horizontal clinorotation and in the laboratory control. Some backlog of the δ1-cyclin genes expression at early stages of embryogenesis under clinorotation was revealed in comparison with the laboratory control. The similar level of the δ3-cyclin expression at all stages of embryo formation (from one to nine days) in both variants is shown. Some delays in the rate of Brassica rapa embryo development under clinorotation in comparison with the laboratory control can be a result of decrease of a level and some backlog of the δ1-cyclin expression at early stages of embryogenesis.

  18. Allelic polymorphism of GIGANTEA is responsible for naturally occurring variation in circadian period in Brassica rapa

    PubMed Central

    Xie, Qiguang; Lou, Ping; Hermand, Victor; Aman, Rashid; Park, Hee Jin; Yun, Dae-Jin; Kim, Woe Yeon; Salmela, Matti Juhani; Ewers, Brent E.; Weinig, Cynthia; Khan, Sarah L.; Schaible, D. Loring P.; McClung, C. Robertson

    2015-01-01

    GIGANTEA (GI) was originally identified by a late-flowering mutant in Arabidopsis, but subsequently has been shown to act in circadian period determination, light inhibition of hypocotyl elongation, and responses to multiple abiotic stresses, including tolerance to high salt and cold (freezing) temperature. Genetic mapping and analysis of families of heterogeneous inbred lines showed that natural variation in GI is responsible for a major quantitative trait locus in circadian period in Brassica rapa. We confirmed this conclusion by transgenic rescue of an Arabidopsis gi-201 loss of function mutant. The two B. rapa GI alleles each fully rescued the delayed flowering of Arabidopsis gi-201 but showed differential rescue of perturbations in red light inhibition of hypocotyl elongation and altered cold and salt tolerance. The B. rapa R500 GI allele, which failed to rescue the hypocotyl and abiotic stress phenotypes, disrupted circadian period determination in Arabidopsis. Analysis of chimeric B. rapa GI alleles identified the causal nucleotide polymorphism, which results in an amino acid substitution (S264A) between the two GI proteins. This polymorphism underlies variation in circadian period, cold and salt tolerance, and red light inhibition of hypocotyl elongation. Loss-of-function mutations of B. rapa GI confer delayed flowering, perturbed circadian rhythms in leaf movement, and increased freezing and increased salt tolerance, consistent with effects of similar mutations in Arabidopsis. Collectively, these data suggest that allelic variation of GI—and possibly of clock genes in general—offers an attractive target for molecular breeding for enhanced stress tolerance and potentially for improved crop yield. PMID:25775524

  19. Allelic polymorphism of GIGANTEA is responsible for naturally occurring variation in circadian period in Brassica rapa.

    PubMed

    Xie, Qiguang; Lou, Ping; Hermand, Victor; Aman, Rashid; Park, Hee Jin; Yun, Dae-Jin; Kim, Woe Yeon; Salmela, Matti Juhani; Ewers, Brent E; Weinig, Cynthia; Khan, Sarah L; Schaible, D Loring P; McClung, C Robertson

    2015-03-24

    GIGANTEA (GI) was originally identified by a late-flowering mutant in Arabidopsis, but subsequently has been shown to act in circadian period determination, light inhibition of hypocotyl elongation, and responses to multiple abiotic stresses, including tolerance to high salt and cold (freezing) temperature. Genetic mapping and analysis of families of heterogeneous inbred lines showed that natural variation in GI is responsible for a major quantitative trait locus in circadian period in Brassica rapa. We confirmed this conclusion by transgenic rescue of an Arabidopsis gi-201 loss of function mutant. The two B. rapa GI alleles each fully rescued the delayed flowering of Arabidopsis gi-201 but showed differential rescue of perturbations in red light inhibition of hypocotyl elongation and altered cold and salt tolerance. The B. rapa R500 GI allele, which failed to rescue the hypocotyl and abiotic stress phenotypes, disrupted circadian period determination in Arabidopsis. Analysis of chimeric B. rapa GI alleles identified the causal nucleotide polymorphism, which results in an amino acid substitution (S264A) between the two GI proteins. This polymorphism underlies variation in circadian period, cold and salt tolerance, and red light inhibition of hypocotyl elongation. Loss-of-function mutations of B. rapa GI confer delayed flowering, perturbed circadian rhythms in leaf movement, and increased freezing and increased salt tolerance, consistent with effects of similar mutations in Arabidopsis. Collectively, these data suggest that allelic variation of GI-and possibly of clock genes in general-offers an attractive target for molecular breeding for enhanced stress tolerance and potentially for improved crop yield.

  20. Comparative genomic in situ hybridization (cGISH) analysis of the genomic relationships among Sinapis arvensis, Brassica rapa and Brassica nigra.

    PubMed

    Mao, Shufang; Han, Yonghua; Wu, Xiaoming; An, Tingting; Tang, Jiali; Shen, Junjun; Li, Zongyun

    2012-06-01

    To further understand the relationships between the SS genome of Sinapis arvensis and the AA, BB genomes in Brassica, genomic DNA of Sinapis arvensis was hybridized to the metaphase chromosomes of Brassica nigra (BB genome), and the metaphase chromosomes and interphase nucleus of Brassica rapa (AA genome) by comparative genomic in situ hybridization (cGISH). As a result, every chromosome of B. nigra had signals along the whole chromosomal length. However, only half of the condensed heterochromatic areas in the interphase nucleus and the chromosomes showed rich signals in Brassica rapa. Interphase nucleus and the metaphase chromosomes of S. arvensis were simultaneously hybridized with digoxigenin-labeled genomic DNA of B. nigra and biotin-labeled genomic DNA of B. rapa. Signals of genomic DNA of B. nigra hybridized throughout the length of all chromosomes and all the condensed heterochromatic areas in the interphase nucleus, except chromosome 4, of which signals were weak in centromeric regions. Signals of the genomic DNA of B. rapa patterned the most areas of ten chromosomes and ten condensed heterochromatic areas, others had less signals. The results showed that the SS genome had homology with AA and BB genomes, but the homology between SS genome and AA genome was clearly lower than that between the SS genome and BB genome.

  1. Comparative genomic in situ hybridization (cGISH) analysis of the genomic relationships among Sinapis arvensis, Brassica rapa and Brassica nigra.

    PubMed

    Mao, Shufang; Han, Yonghua; Wu, Xiaoming; An, Tingting; Tang, Jiali; Shen, Junjun; Li, Zongyun

    2012-06-01

    To further understand the relationships between the SS genome of Sinapis arvensis and the AA, BB genomes in Brassica, genomic DNA of Sinapis arvensis was hybridized to the metaphase chromosomes of Brassica nigra (BB genome), and the metaphase chromosomes and interphase nucleus of Brassica rapa (AA genome) by comparative genomic in situ hybridization (cGISH). As a result, every chromosome of B. nigra had signals along the whole chromosomal length. However, only half of the condensed heterochromatic areas in the interphase nucleus and the chromosomes showed rich signals in Brassica rapa. Interphase nucleus and the metaphase chromosomes of S. arvensis were simultaneously hybridized with digoxigenin-labeled genomic DNA of B. nigra and biotin-labeled genomic DNA of B. rapa. Signals of genomic DNA of B. nigra hybridized throughout the length of all chromosomes and all the condensed heterochromatic areas in the interphase nucleus, except chromosome 4, of which signals were weak in centromeric regions. Signals of the genomic DNA of B. rapa patterned the most areas of ten chromosomes and ten condensed heterochromatic areas, others had less signals. The results showed that the SS genome had homology with AA and BB genomes, but the homology between SS genome and AA genome was clearly lower than that between the SS genome and BB genome. PMID:22804340

  2. The fate of Arabidopsis thaliana homeologous CNSs and their motifs in the Paleohexaploid Brassica rapa.

    PubMed

    Subramaniam, Sabarinath; Wang, Xiaowu; Freeling, Michael; Pires, J Chris

    2013-01-01

    Following polyploidy, duplicate genes are often deleted, and if they are not, then duplicate regulatory regions are sometimes lost. By what mechanism is this loss and what is the chance that such a loss removes function? To explore these questions, we followed individual Arabidopsis thaliana-A. thaliana conserved noncoding sequences (CNSs) into the Brassica ancestor, through a paleohexaploidy and into Brassica rapa. Thus, a single Brassicaceae CNS has six potential orthologous positions in B. rapa; a single Arabidopsis CNS has three potential homeologous positions. We reasoned that a CNS, if present on a singlet Brassica gene, would be unlikely to lose function compared with a more redundant CNS, and this is the case. Redundant CNSs go nondetectable often. Using this logic, each mechanism of CNS loss was assigned a metric of functionality. By definition, proved deletions do not function as sequence. Our results indicated that CNSs that go nondetectable by base substitution or large insertion are almost certainly still functional (redundancy does not matter much to their detectability frequency), whereas those lost by inferred deletion or indels are approximately 75% likely to be nonfunctional. Overall, an average nondetectable, once-redundant CNS more than 30 bp in length has a 72% chance of being nonfunctional, and that makes sense because 97% of them sort to a molecular mechanism with "deletion" in its description, but base substitutions do cause loss. Similarly, proved-functional G-boxes go undetectable by deletion 82% of the time. Fractionation mutagenesis is a procedure that uses polyploidy as a mutagenic agent to genetically alter RNA expression profiles, and then to construct testable hypotheses as to the function of the lost regulatory site. We show fractionation mutagenesis to be a "deletion machine" in the Brassica lineage.

  3. Influence of microgravity on ultrastructure and storage reserves in seeds of Brassica rapa L.

    PubMed

    Kuang, A; Xiao, Y; McClure, G; Musgrave, M E

    2000-06-01

    Successful plant reproduction under spaceflight conditions has been problematic in the past. During a 122 d opportunity on the Mir space station, full life cycles of Brassica rapa L. were completed in microgravity in a series of three experiments in the Svet greenhouse. Ultrastructural and cytochemical analyses of storage reserves in mature dry seeds produced in these experiments were compared with those of seeds produced during a high-fidelity ground control. Additional analyses were performed on developing Brassica embryos, 15 d post pollination, which were produced during a separate experiment on the Shuttle (STS-87). Seeds produced on Mir had less than 20% of the cotyledon cell number found in seeds harvested from the ground control. Cytochemical localization of storage reserves in mature cotyledons showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in ground control seeds. Protein bodies in mature cotyledons produced in space were 44% smaller than those in the ground control seeds. Fifteen days after pollination, cotyledon cells from mature embryos formed in space had large numbers of starch grains, and protein bodies were absent, while in developing ground control seeds at the same stage, protein bodies had already formed and fewer starch grains were evident. These data suggest that both the late stage of seed development and maturation are changed in Brassica by growth in a microgravity environment. While gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity.

  4. Molecular characterization of stress resistance-related chitinase genes of Brassica rapa.

    PubMed

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Kang, Kwon-Kyoo; Hur, Yoonkang; Lim, Yong-Pyo; Nou, Ill-Sup

    2012-09-01

    Brassica is an important vegetable group worldwide that is impacted by biotic and abiotic stresses. Molecular biology techniques offer the most efficient approach to address these concerns. Inducible plant defense responses include the production of pathogenesis-related (PR) proteins, and chitinases are very important PR proteins. We collected 30 chitinase like genes, three from our full-length cDNA library of Brassica rapa cv. Osome and 27 from Brassica databases. Sequence analysis and comparison study confirmed that they were all class I-V and VII chitinase genes. These genes also showed a high degree of homology with other biotic stress resistance-related plant chitinases. An organ-specific expression of these genes was observed and among these, seven genes showed significant responses after infection with Fusarium oxysporum f.sp. conglutinans in cabbage and sixteen genes showed responsive expression after abiotic stress treatments in Chinese cabbage. BrCLP1, 8, 10, 17 and 18 responded commonly after biotic and abiotic stress treatments indicating their higher potentials. Taken together, the results presented herein suggest that these chitinase genes may be useful resources in the development of stress resistant Brassica.

  5. Influence of microgravity on ultrastructure and storage reserves in seeds of Brassica rapa L

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Xiao, Y.; McClure, G.; Musgrave, M. E.

    2000-01-01

    Successful plant reproduction under spaceflight conditions has been problematic in the past. During a 122 d opportunity on the Mir space station, full life cycles of Brassica rapa L. were completed in microgravity in a series of three experiments in the Svet greenhouse. Ultrastructural and cytochemical analyses of storage reserves in mature dry seeds produced in these experiments were compared with those of seeds produced during a high-fidelity ground control. Additional analyses were performed on developing Brassica embryos, 15 d post pollination, which were produced during a separate experiment on the Shuttle (STS-87). Seeds produced on Mir had less than 20% of the cotyledon cell number found in seeds harvested from the ground control. Cytochemical localization of storage reserves in mature cotyledons showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in ground control seeds. Protein bodies in mature cotyledons produced in space were 44% smaller than those in the ground control seeds. Fifteen days after pollination, cotyledon cells from mature embryos formed in space had large numbers of starch grains, and protein bodies were absent, while in developing ground control seeds at the same stage, protein bodies had already formed and fewer starch grains were evident. These data suggest that both the late stage of seed development and maturation are changed in Brassica by growth in a microgravity environment. While gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity.

  6. Reduction of EPSP synthase in transgenic wild turnip (Brassica rapa) weed via suppression of aroA.

    PubMed

    Kahrizi, Danial

    2014-12-01

    EPSPS is coded with the aroA gene, a key enzyme that catalyzes the penultimate step of shikimate pathway. The current study focuses on the suppression of aroA gene in weedy Brassica rapa. For this purpose B. rapa was transformed with double-stranded RNA interference construct designed to silence aroA gene. This developed in a significant decline in EPSPS (about 72 %) in T0 and T1 plants. In order to study the gene flow, the B. rapa control and B. napus plants were pollinated with T0 B. rapa. Results showed that in the next generation of challenging plants, the pollinated normal B. rapa showed the T1 symptoms and performance. Statistical analysis of data showed that knocking down of aroA will lead to a weakness and decreasing in investigated morphological, physiological and phonological characteristics. Meanwhile pollinated B. napus plant species have been not fertilized by T0 B. rapa. To conclude current result is the first evidence of aroA gene inhibition induces a high decrease in EPSPS protein in B. rapa. Also this result provides a basis for the future investigation in order to controlling B. rapa via molecular approach along with agronomical, biological and chemical methods regarding environmental considerations.

  7. Reduction of EPSP synthase in transgenic wild turnip (Brassica rapa) weed via suppression of aroA.

    PubMed

    Kahrizi, Danial

    2014-12-01

    EPSPS is coded with the aroA gene, a key enzyme that catalyzes the penultimate step of shikimate pathway. The current study focuses on the suppression of aroA gene in weedy Brassica rapa. For this purpose B. rapa was transformed with double-stranded RNA interference construct designed to silence aroA gene. This developed in a significant decline in EPSPS (about 72 %) in T0 and T1 plants. In order to study the gene flow, the B. rapa control and B. napus plants were pollinated with T0 B. rapa. Results showed that in the next generation of challenging plants, the pollinated normal B. rapa showed the T1 symptoms and performance. Statistical analysis of data showed that knocking down of aroA will lead to a weakness and decreasing in investigated morphological, physiological and phonological characteristics. Meanwhile pollinated B. napus plant species have been not fertilized by T0 B. rapa. To conclude current result is the first evidence of aroA gene inhibition induces a high decrease in EPSPS protein in B. rapa. Also this result provides a basis for the future investigation in order to controlling B. rapa via molecular approach along with agronomical, biological and chemical methods regarding environmental considerations. PMID:25189653

  8. Chromosome elimination, addition and introgression in intertribal partial hybrids between Brassica rapa and Isatis indigotica

    PubMed Central

    Tu, Yuqin; Sun, Jian; Ge, Xianhong; Li, Zaiyun

    2009-01-01

    Background and Aims Partial hybrids with female-parent-type phenotypes and chromosome numbers but altered genomic compositions have been reported in wide crosses of several plants. In order to introgress desirable genes from a wild relative, Isatis indigotica (a dye and medicinal plant; 2n = 14), into Brassica crops, intertribal sexual hybridizations were carried out with B. rapa (2n = 20), and the resulting hybrids and their progenies were characterized. Methods Using genomic in situ hybridization (GISH) and amplified fragment length polymorphism (AFLP), chromosomal/genomic components of the hybrids and their progenies were analysed. Key Results Many hybrid plants were obtained from the mature seeds harvested from the B. rapa × I. indigotica cross, and these exhibited different morphological traits. However, the majority of them did not survive and only three plants grew to maturity. These three hybrids showed poor growth and much smaller stature than the two parents, but had some morphological traits and chemical composition of I. indigotica. One plant had 2n = 10, the haploid chromosome number of B. rapa, and was absolutely sterile. The other two plants had 20 and 22 somatic chromosomes and were male sterile but produced seeds following pollinations with B. rapa. All back-cross progenies over several generations maintained a B. rapa-type phenotype and also displayed some variations in morphological characters and fatty acid compositions. They were all 2n = 20 and showed good seed-set. The hybrid with 2n = 22 produced some progeny plants with 2n = 21 and 2n = 22. GISH detected two chromosomes of I. indigotica in the hybrid with 2n = 22 but none in the one with 2n = 20. AFLP bands specific for I. indigotica, novel for two parents or absent in B. rapa, were detected in the two hybrids and their progenies. These progeny plants were novel B. rapa types with an altered genomic constitution or alien additions. Conclusions Complete or partial chromosome elimination and

  9. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa.

    PubMed

    Yang, Tae-Jin; Kim, Jung Sun; Kwon, Soo-Jin; Lim, Ki-Byung; Choi, Beom-Soon; Kim, Jin-A; Jin, Mina; Park, Jee Young; Lim, Myung-Ho; Kim, Ho-Il; Lim, Yong Pyo; Kang, Jason Jongho; Hong, Jin-Han; Kim, Chang-Bae; Bhak, Jong; Bancroft, Ian; Park, Beom-Seok

    2006-06-01

    Strong evidence exists for polyploidy having occurred during the evolution of the tribe Brassiceae. We show evidence for the dynamic and ongoing diploidization process by comparative analysis of the sequences of four paralogous Brassica rapa BAC clones and the homologous 124-kb segment of Arabidopsis thaliana chromosome 5. We estimated the times since divergence of the paralogous and homologous lineages. The three paralogous subgenomes of B. rapa triplicated 13 to 17 million years ago (MYA), very soon after the Arabidopsis and Brassica divergence occurred at 17 to 18 MYA. In addition, a pair of BACs represents a more recent segmental duplication, which occurred approximately 0.8 MYA, and provides an exception to the general expectation of three paralogous segments within the B. rapa genome. The Brassica genome segments show extensive interspersed gene loss relative to the inferred structure of the ancestral genome, whereas the Arabidopsis genome segment appears little changed. Representatives of all 32 genes in the Arabidopsis genome segment are represented in Brassica, but the hexaploid complement of 96 has been reduced to 54 in the three subgenomes, with compression of the genomic region lengths they occupy to between 52 and 110 kb. The gene content of the recently duplicated B. rapa genome segments is identical, but intergenic sequences differ.

  10. Plant Growth and Development: An Outline for a Unit Structured Around the Life Cycle of Rapid-Cycling Brassica Rapa.

    ERIC Educational Resources Information Center

    Becker, Wayne M.

    This outline is intended for use in a unit of 10-12 lectures on plant growth and development at the introductory undergraduate level as part of a course on organismal biology. The series of lecture outlines is structured around the life cycle of rapid-cycling Brassica rapa (RCBr). The unit begins with three introductory lectures on general plant…

  11. A Method to Teach Age-Specific Demography with Field Grown Rapid Cycling "Brassica rapa" (Wisconsin Fast Plants)

    ERIC Educational Resources Information Center

    Kelly, Martin G.; Terrana, Sebastian

    2004-01-01

    In this paper, we demonstrate that rapid cycling "Brassica rapa" (Wisconsin Fast Plants) can be used in inquiry-based, student ecological fieldwork. We are the first to describe age-specific survival for field-grown Fast Plants and identify life history traits associated with individual survival. This experiment can be adapted by educators as a…

  12. The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa.

    PubMed

    Balesdent, Marie-Hélène; Fudal, Isabelle; Ollivier, Bénédicte; Bally, Pascal; Grandaubert, Jonathan; Eber, Frédérique; Chèvre, Anne-Marie; Leflon, Martine; Rouxel, Thierry

    2013-05-01

    Phytopathogenic fungi frequently contain dispensable chromosomes, some of which contribute to host range or pathogenicity. In Leptosphaeria maculans, the stem canker agent of oilseed rape (Brassica napus), the minichromosome was previously suggested to be dispensable, without evidence for any role in pathogenicity. Using genetic and genomic approaches, we investigated the inheritance and molecular determinant of an L. maculans-Brassica rapa incompatible interaction. Single gene control of the resistance was found, while all markers located on the L. maculans minichromosome, absent in the virulent parental isolate, co-segregated with the avirulent phenotype. Only one candidate avirulence gene was identified on the minichromosome, validated by complementation experiments and termed AvrLm11. The minichromosome was frequently lost following meiosis, but the frequency of isolates lacking it remained stable in field populations sampled at a 10-yr time interval, despite a yearly sexual stage in the L. maculans life cycle. This work led to the cloning of a new 'lost in the middle of nowhere' avirulence gene of L. maculans, interacting with a B. rapa resistance gene termed Rlm11 and introgressed into B. napus. It demonstrated the dispensability of the L. maculans minichromosome and suggested that its loss generates a fitness deficit.

  13. The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa.

    PubMed

    Balesdent, Marie-Hélène; Fudal, Isabelle; Ollivier, Bénédicte; Bally, Pascal; Grandaubert, Jonathan; Eber, Frédérique; Chèvre, Anne-Marie; Leflon, Martine; Rouxel, Thierry

    2013-05-01

    Phytopathogenic fungi frequently contain dispensable chromosomes, some of which contribute to host range or pathogenicity. In Leptosphaeria maculans, the stem canker agent of oilseed rape (Brassica napus), the minichromosome was previously suggested to be dispensable, without evidence for any role in pathogenicity. Using genetic and genomic approaches, we investigated the inheritance and molecular determinant of an L. maculans-Brassica rapa incompatible interaction. Single gene control of the resistance was found, while all markers located on the L. maculans minichromosome, absent in the virulent parental isolate, co-segregated with the avirulent phenotype. Only one candidate avirulence gene was identified on the minichromosome, validated by complementation experiments and termed AvrLm11. The minichromosome was frequently lost following meiosis, but the frequency of isolates lacking it remained stable in field populations sampled at a 10-yr time interval, despite a yearly sexual stage in the L. maculans life cycle. This work led to the cloning of a new 'lost in the middle of nowhere' avirulence gene of L. maculans, interacting with a B. rapa resistance gene termed Rlm11 and introgressed into B. napus. It demonstrated the dispensability of the L. maculans minichromosome and suggested that its loss generates a fitness deficit. PMID:23406519

  14. Instability in mitochondrial membranes in Polima cytoplasmic male sterility of Brassica rapa ssp. chinensis.

    PubMed

    Li, Ying; Liu, Tongkun; Duan, Weike; Song, Xiaoming; Shi, Gongjun; Zhang, Jingyi; Deng, Xiaohui; Zhang, Shuning; Hou, Xilin

    2014-06-01

    Cytoplasmic male sterility (CMS) is an important factor to observe heterosis in Brassica rapa. Although several studies have documented the rearrangements of mitochondrial DNA and dysfunction in the mitochondria have been observed in most types of CMS, the basis of the molecular mechanisms involved in these processes and other effects on CMS remain unclear. In this study, suppression subtractive hybridization was performed in the flowers of an alloplasmic Polima CMS system from B. rapa ssp. chinensis to identify genes that are differentially expressed between fertile and sterile plants. A total of 443 clones were isolated (156 were upregulated in fertile buds, and 287 were upregulated in sterile ones). Real-time RT-PCR further demonstrated the credibility of SSH. Among these genes, many membrane protein genes (LTP12, PIP2A, and GRP14) were inhibited in the sterile male line. Mitochondrial membrane potential (MMP) assay was then performed. Results showed that the sterile MMP was unstable and failed to create a potential difference; thus, mitochondrial dysfunction occurred. Moreover, abnormal microtubules and photosynthetic pathways were found in sterile male cells. Unstable MMP, nutritional deficiency, and abnormal microtubules were the causes of Polima CMS in Brassica campestris. H2O2, MDA, and O(2-), accumulated as byproducts of energy metabolism disorder in sterile male cells.

  15. Detection, introgression and localization of genes conferring specific resistance to Leptosphaeria maculans from Brassica rapa into B. napus.

    PubMed

    Leflon, M; Brun, H; Eber, F; Delourme, R; Lucas, M O; Vallée, P; Ermel, M; Balesdent, M H; Chèvre, A M

    2007-11-01

    Blackleg (stem canker) caused by the fungus Leptosphaeria maculans is one of the most damaging diseases of oilseed rape (Brassica napus). Crop relatives represent a valuable source of "new" resistance genes that could be used to diversify cultivar resistance. B. rapa, one of the progenitors of B. napus, is a potential source of new resistance genes. However, most of the accessions are heterozygous so it is impossible to directly detect the plant genes conferring specific resistance due to the complex patterns of avirulence genes in L. maculans isolates. We developed a strategy to simultaneously characterize and introgress resistance genes from B. rapa, by homologous recombination, into B. napus. One B. rapa plant resistant to one L. maculans isolate was used to produce B. rapa backcross progeny and a resynthesized B. napus plant from which a population of doubled haploid lines was derived after crossing with natural B. napus. We then used molecular analyses and resistance tests on these populations to identify and map the resistance genes and to characterize their introgression from B. rapa into B. napus. Three specific genes conferring resistance to L. maculans (Rlm1, Rlm2 and Rlm7) were identified in B. rapa. Comparisons of genetic maps showed that two of these genes were located on the R7 linkage group, in a region homologous to the region on linkage group N7 in B. napus, where these genes have been reported previously. The results of our study offer new perspectives for gene introgression and cloning in Brassicas.

  16. Analysis of target sequences of DDM1s in Brassica rapa by MSAP.

    PubMed

    Sasaki, Taku; Fujimoto, Ryo; Kishitani, Sachie; Nishio, Takeshi

    2011-01-01

    DNA methylation is an important epigenetic modification regulating gene expression and transposon silencing. Although epigenetic regulation is involved in some agricultural traits, there has been relatively little research on epigenetic modifications of genes in Brassica rapa, which includes many important vegetables. In B. rapa, orthologs of DDM1, a chromatin remodeling factor required for maintenance of DNA methylation, have been characterized and DNA hypomethylated knock-down plants by RNAi (ddm1-RNAi plants) have been generated. In this study, we investigated differences of DNA methylation status at the genome-wide level between a wild-type (WT) plant and a ddm1-RNAi plant by methylation-sensitive amplification polymorphism (MSAP) analysis. MSAP analysis detected changes of DNA methylation of many repetitive sequences in the ddm1-RNAi plant. Search for body methylated regions in the WT plant revealed no difference in gene body methylation levels between the WT plant and the ddm1-RNAi plant. These results indicate that repetitive sequences are preferentially methylated by DDM1 genes in B. rapa.

  17. Analysis of Brassica rapa ESTs: gene discovery and expression patterns of AP2/ERF family genes.

    PubMed

    Zhuang, Jing; Xiong, Ai-Sheng; Peng, Ri-He; Gao, Feng; Zhu, Bo; Zhang, Jian; Fu, Xiao-Yan; Jin, Xiao-Feng; Chen, Jian-Min; Zhang, Zhen; Qiao, Yu-Shan; Yao, Quan-Hong

    2010-06-01

    Chinese cabbage (Brassica rapa subsp. pekinensis) is among the most important vegetables and is widely cultivated in world. Genes in the AP2/ERF family encode transcriptional regulators that serve a variety of functions in the plants. Expressed sequence tags (ESTs) are created by partially sequencing randomly isolated gene transcripts and have proved valuable in molecular biology. Starting from the database with 142 947 ESTs of B. rapa, 62 putative AP2/ERF family genes were identified by in silico cloning using the conserved AP2/ERF domain amino acid sequence of Arabidopsis thaliana as a probe. Based on the number of AP2/ERF domains and functions of the genes, the AP2/ERF transcription factors from B. rapa were classified into four subfamilies (DREB, ERF, AP2 and RAV). Using large-scale available EST information as a source of expression data for digital expression profiling, differentially detected genes were identified among diverse plant tissues. Roots contained the largest number of transcripts of the AP2/ERF family genes, followed by leaves and seeds. Only a few of the 62 AP2/ERF family genes were detected in all tissues: most were detected only in some tissues but not in others. The maximum detected was that of BraERF-B2-5, and it was recorded from seed tissue.

  18. SNP diversity within and among Brassica rapa accessions reveals no geographic differentiation.

    PubMed

    Tanhuanpää, P; Erkkilä, M; Tenhola-Roininen, T; Tanskanen, J; Manninen, O

    2016-01-01

    Genetic diversity was studied in a collection of 61 accessions of Brassica rapa, which were mostly oil-type turnip rapes but also included two oil-type subsp. dichotoma and five subsp. trilocularis accessions, as well as three leaf-type subspecies (subsp. japonica, pekinensis, and chinensis) and five turnip cultivars (subsp. rapa). Two-hundred and nine SNP markers, which had been discovered by amplicon resequencing, were used to genotype 893 plants from the B. rapa collection using Illumina BeadXpress. There was great variation in the diversity indices between accessions. With STRUCTURE analysis, the plant collection could be divided into three groups that seemed to correspond to morphotype and flowering habit but not to geography. According to AMOVA analysis, 65% of the variation was due to variation within accessions, 25% among accessions, and 10% among groups. A smaller subset of the plant collection, 12 accessions, was also studied with 5727 GBS-SNPs. Diversity indices obtained with GBS-SNPs correlated well with those obtained with Illumina BeadXpress SNPs. The developed SNP markers have already been used and will be used in future plant breeding programs as well as in mapping and diversity studies.

  19. Development of a high density integrated reference genetic linkage map for the multinational Brassica rapa Genome Sequencing Project.

    PubMed

    Li, Xiaonan; Ramchiary, Nirala; Choi, Su Ryun; Van Nguyen, Dan; Hossain, Md Jamil; Yang, Hyeon Kook; Lim, Yong Pyo

    2010-11-01

    We constructed a high-density Brassica rapa integrated linkage map by combining a reference genetic map of 78 doubled haploid lines derived from Chiifu-401-42 × Kenshin (CKDH) and a new map of 190 F2 lines derived from Chiifu-401-42 × rapid cycling B. rapa (CRF2). The integrated map contains 1017 markers and covers 1262.0 cM of the B. rapa genome, with an average interlocus distance of 1.24 cM. High similarity of marker order and position was observed among the linkage groups of the maps with few short-distance inversions. In total, 155 simple sequence repeat (SSR) markers, anchored to 102 new bacterial artificial chromosomes (BACs) and 146 intron polymorphic (IP) markers were mapped in the integrated map, which would be helpful to align the sequenced BACs in the ongoing multinational Brassica rapa Genome Sequencing Project (BrGSP). Further, comparison of the B. rapa consensus map with the 10 B. juncea A-genome linkage groups by using 98 common IP markers showed high-degree colinearity between the A-genome linkage groups, except for few markers showing inversion or translocation. Suggesting that chromosomes are highly conserved between these Brassica species, although they evolved independently after divergence. The sequence information coming out of BrGSP would be useful for B. juncea breeding. and the identified Arabidopsis chromosomal blocks and known quantitative trait loci (QTL) information of B. juncea could be applied to improve other Brassica crops including B. rapa.

  20. GDSL esterase/lipase genes in Brassica rapa L.: genome-wide identification and expression analysis.

    PubMed

    Dong, Xiangshu; Yi, Hankuil; Han, Ching-Tack; Nou, Ill-Sup; Hur, Yoonkang

    2016-04-01

    GDSL esterase/lipase proteins (GELPs), a very large subfamily of lipolytic enzymes, have been identified in microbes and many plants, but only a few have been characterized with respect to their roles in growth, development, and stress responses. In Brassica crops, as in many other species, genome-wide systematic analysis and functional studies of these genes are still lacking. As a first step to study their function in B. rapa ssp. pekinensis (Chinese cabbage), we comprehensively identified all GELP genes in the genome. We found a total of 121 Brassica rapa GDSL esterase/lipase protein genes (BrGELPs), forming three clades in the phylogenetic analysis (two major and one minor), with an asymmetrical chromosomal distribution. Most BrGELPs possess four strictly conserved residues (Ser-Gly-Asn-His) in four separate conserved regions, along with short conserved and clade-specific blocks, suggesting functional diversification of these proteins. Detailed expression profiling revealed that BrGELPs were expressed in various tissues, including floral organs, implying that BrGELPs play diverse roles in various tissues and during development. Ten percent of BrGELPs were specifically expressed in fertile buds, rather than male-sterile buds, implying their involvement in pollen development. Analyses of EXL6 (extracellular lipase 6) expression and its co-expressed genes in both B. rapa and Arabidopsis, as well as knockdown of this gene in Arabidopsis, revealed that this gene plays an important role in pollen development in both species. The data described in this study will facilitate future investigations of other BrGELP functions.

  1. GDSL esterase/lipase genes in Brassica rapa L.: genome-wide identification and expression analysis.

    PubMed

    Dong, Xiangshu; Yi, Hankuil; Han, Ching-Tack; Nou, Ill-Sup; Hur, Yoonkang

    2016-04-01

    GDSL esterase/lipase proteins (GELPs), a very large subfamily of lipolytic enzymes, have been identified in microbes and many plants, but only a few have been characterized with respect to their roles in growth, development, and stress responses. In Brassica crops, as in many other species, genome-wide systematic analysis and functional studies of these genes are still lacking. As a first step to study their function in B. rapa ssp. pekinensis (Chinese cabbage), we comprehensively identified all GELP genes in the genome. We found a total of 121 Brassica rapa GDSL esterase/lipase protein genes (BrGELPs), forming three clades in the phylogenetic analysis (two major and one minor), with an asymmetrical chromosomal distribution. Most BrGELPs possess four strictly conserved residues (Ser-Gly-Asn-His) in four separate conserved regions, along with short conserved and clade-specific blocks, suggesting functional diversification of these proteins. Detailed expression profiling revealed that BrGELPs were expressed in various tissues, including floral organs, implying that BrGELPs play diverse roles in various tissues and during development. Ten percent of BrGELPs were specifically expressed in fertile buds, rather than male-sterile buds, implying their involvement in pollen development. Analyses of EXL6 (extracellular lipase 6) expression and its co-expressed genes in both B. rapa and Arabidopsis, as well as knockdown of this gene in Arabidopsis, revealed that this gene plays an important role in pollen development in both species. The data described in this study will facilitate future investigations of other BrGELP functions. PMID:26423069

  2. Comparative mapping, genomic structure, and expression analysis of eight pseudo-response regulator genes in Brassica rapa.

    PubMed

    Kim, Jin A; Kim, Jung Sun; Hong, Joon Ki; Lee, Yeon-Hee; Choi, Beom-Soon; Seol, Young-Joo; Jeon, Chang Hoo

    2012-05-01

    Circadian clocks regulate plant growth and development in response to environmental factors. In this function, clocks influence the adaptation of species to changes in location or climate. Circadian-clock genes have been subject of intense study in models such as Arabidopsis thaliana but the results may not necessarily reflect clock functions in species with polyploid genomes, such as Brassica species, that include multiple copies of clock-related genes. The triplicate genome of Brassica rapa retains high sequence-level co-linearity with Arabidopsis genomes. In B. rapa we had previously identified five orthologs of the five known Arabidopsis pseudo-response regulator (PRR) genes that are key regulators of the circadian clock in this species. Three of these B. rapa genes, BrPRR1, BrPPR5, and BrPPR7, are present in two copies each in the B. rapa genome, for a total of eight B. rapa PRR (BrPRR) orthologs. We have now determined sequences and expression characteristics of the eight BrPRR genes and mapped their positions in the B. rapa genome. Although both members of each paralogous pair exhibited the same expression pattern, some variation in their gene structures was apparent. The BrPRR genes are tightly linked to several flowering genes. The knowledge about genome location, copy number variation and structural diversity of these B. rapa clock genes will improve our understanding of clock-related functions in this important crop. This will facilitate the development of Brassica crops for optimal growth in new environments and under changing conditions.

  3. Genetic analysis of hybrid seed formation ability of Brassica rapa in intergeneric crossings with Raphanus sativus.

    PubMed

    Tonosaki, K; Michiba, K; Bang, S W; Kitashiba, H; Kaneko, Y; Nishio, T

    2013-03-01

    A hybridization barrier leads to the inability of seed formation after intergeneric crossings between Brassica rapa and Raphanus sativus. Most B. rapa lines cannot set intergeneric hybrid seeds because of embryo breakdown, but a B. rapa line obtained from turnip cultivar 'Shogoin-kabu' is able to produce a large number of hybrid seeds as a maternal parent by crossings with R. sativus. In 'Shogoin-kabu' crossed with R. sativus, developments of embryos and endosperms were slower than those in intraspecific crossings, but some of them grew to mature seeds without embryo breakdown. Intergeneric hybrid seeds were obtained in a 'Shogoin-kabu' line at a rate of 0.13 per pollinated flower, while no hybrid seeds were obtained in a line developed from Chinese cabbage cultivar 'Chiifu'. F(1) hybrid plants between the lines of 'Shogoin-kabu' and 'Chiifu' set a larger number of hybrid seeds per flower, 0.68, than both the parental lines. Quantitative trait loci (QTLs) for hybrid seed formation were analyzed after intergeneric crossings using two different F(2) populations derived from the F(1) hybrids, and three QTLs with significant logarithm of odds scores were detected. Among them, two QTLs, i.e., one in linkage group A10 and the other in linkage group A01, were detected in both the F(2) populations. These two QTLs had contrary effects on the number of hybrid seeds. Epistatic interaction between these two QTLs was revealed. Possible candidate genes controlling hybrid seed formation ability in QTL regions were inferred using the published B. rapa genome sequences.

  4. Identification of Differential Gene Expression in Brassica rapa Nectaries through Expressed Sequence Tag Analysis

    PubMed Central

    Hampton, Marshall; Xu, Wayne W.; Kram, Brian W.; Chambers, Emily M.; Ehrnriter, Jerad S.; Gralewski, Jonathan H.; Joyal, Teresa; Carter, Clay J.

    2010-01-01

    Background Nectaries are the floral organs responsible for the synthesis and secretion of nectar. Despite their central roles in pollination biology, very little is understood about the molecular mechanisms underlying nectar production. This project was undertaken to identify genes potentially involved in mediating nectary form and function in Brassica rapa. Methodology and Principal Findings Four cDNA libraries were created using RNA isolated from the median and lateral nectaries of B. rapa flowers, with one normalized and one non-normalized library being generated from each tissue. Approximately 3,000 clones from each library were randomly sequenced from the 5′ end to generate a total of 11,101 high quality expressed sequence tags (ESTs). Sequence assembly of all ESTs together allowed the identification of 1,453 contigs and 4,403 singleton sequences, with the Basic Localized Alignment Search Tool (BLAST) being used to identify 4,138 presumptive orthologs to Arabidopsis thaliana genes. Several genes differentially expressed between median and lateral nectaries were initially identified based upon the number of BLAST hits represented by independent ESTs, and later confirmed via reverse transcription polymerase chain reaction (RT PCR). RT PCR was also used to verify the expression patterns of eight putative orthologs to known Arabidopsis nectary-enriched genes. Conclusions/Significance This work provided a snapshot of gene expression in actively secreting B. rapa nectaries, and also allowed the identification of differential gene expression between median and lateral nectaries. Moreover, 207 orthologs to known nectary-enriched genes from Arabidopsis were identified through this analysis. The results suggest that genes involved in nectar production are conserved amongst the Brassicaceae, and also supply clones and sequence information that can be used to probe nectary function in B. rapa. PMID:20098697

  5. High-throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus, Brassica rapa and Brassica oleracea.

    PubMed

    Qiao, Jiangwei; Cai, Mengxian; Yan, Guixin; Wang, Nian; Li, Feng; Chen, Binyun; Gao, Guizhen; Xu, Kun; Li, Jun; Wu, Xiaoming

    2016-01-01

    Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole-genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C-genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts.

  6. High-throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus, Brassica rapa and Brassica oleracea.

    PubMed

    Qiao, Jiangwei; Cai, Mengxian; Yan, Guixin; Wang, Nian; Li, Feng; Chen, Binyun; Gao, Guizhen; Xu, Kun; Li, Jun; Wu, Xiaoming

    2016-01-01

    Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole-genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C-genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts. PMID:26031705

  7. Simultaneous identification of glucosinolates and phenolic compounds in a representative collection of vegetable Brassica rapa.

    PubMed

    Francisco, Marta; Moreno, Diego A; Cartea, María Elena; Ferreres, Federico; García-Viguera, Cristina; Velasco, Pablo

    2009-09-18

    Brassica raparapa group is widely distributed and consumed in northwestern Spain. The consumption of Brassica vegetables has been related to human health due to their phytochemicals, such as glucosinolates and phenolic compounds that induce a variety of physiological functions including antioxidant activity, enzymes regulation and apoptosis control and the cell cycle. For first time in Brassica crops, intact glucosinolates and phenolic compounds were simultaneously identified and characterized. Twelve intact glucosinolates, belonging to the three chemical classes, and more than 30 phenolic compounds were found in B. rapa leaves and young shoots (turnip greens and turnip tops) by LC-UV photodiode array detection (PAD)-electrospray ionization (ESI). The main naturally occurring phenolic compounds identified were flavonoids and derivatives of hydroxycinnamic acids. The majority of the flavonoids were kaempferol, quercetin and isorhamnetin glycosylated and acylated with different hydroxycinnamic acids. Quantification of the main compounds by HPLC-PAD showed significant differences for most of compounds between plant organs. Total glucosinolate content value was 26.84 micromol g(-1) dw for turnip greens and 29.11 micromol g(-1) dw for turnip tops; gluconapin being the predominant glucosinolate (23.2 micromol g(-1) dw). Phenolic compounds were higher in turnip greens 51.71 micromol g(-1) dw than in turnip tops 38.99 micromol g(-1) dw, in which flavonols were always the major compounds.

  8. Mapping of quantitative trait loci for high level of self-incompatibility in Brassica rapa L.

    PubMed

    Hatakeyama, Katsunori; Horisaki, Atsushi; Niikura, Satoshi; Narusaka, Yoshihiro; Abe, Hiroshi; Yoshiaki, Hitoshi; Ishida, Masahiko; Fukuoka, Hiroyuki; Matsumoto, Satoru

    2010-04-01

    The level of self-incompatibility (SI) is important to the purity of F1 seeds produced using the SI system of Brassica vegetables. To analyze the genetic basis of the level of SI, we generated an F2 population derived from a cross between a turnip inbred line showing a high level of SI and a Chinese cabbage inbred line showing a low level, and evaluated the level of SI under insect pollination in two years. We constructed a detailed linkage map of Brassica rapa from the F2 progeny, consisting of SSR, SNP, indel, and CAPS loci segregating into 10 linkage groups covering approximately 700 cM. Five quantitative trait loci (QTL) for high-level SI were identified. The phenotypic variation explained by the QTL ranged between 7.2% and 23.8%. Two QTL were detected in both years. Mapping of SI-related genes revealed that these QTL were co-localized with SLG on R07 and MLPK on R03. This is the first report of QTL for high-level SI evaluated under insect pollination in a Brassica vegetable. Our results could be useful for the marker-assisted selection of parental lines with a stable SI.

  9. Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene.

    PubMed

    Muangprom, A; Osborn, T C

    2004-05-01

    Dwarf genes have been valuable for improving harvestable yield of several crop plants and may be useful in oilseed Brassica. We evaluated a dwarf gene, dwf2, from Brassica rapa in order to determine its phenotypic effects and genetic characteristics. The dwf2 mutant was insensitive to exogenous GA(3) for both plant height and flowering time, suggesting that it is not a mutation in the gibberellin biosynthesis pathway. The dwarf phenotype was controlled by a semidominant allele at a single locus. Near-isogenic lines that were homozygous or heterozygous for dwf2 had 47.4% or 30.0% reduction in plant height, respectively, compared to the tall wild-type line, and the reduction was due to reduced internode length and number of nodes. The dwf2 homozygous and heterozygous lines had the same or significantly higher numbers of primary branches than the wild-type line, but did not differ in flowering time. The DWF2 gene was mapped to the bottom of linkage group R6, in a region having homology to the top of Arabidopsis thaliana chromosome 2. The map position of DWF2 in comparison to markers in A. thaliana suggests it is a homolog of RGA ( repressor of ga1-3), which is a homolog of the wheat "Green Revolution" gene. This dwarf gene could be used to gain more insight on the gibberellin pathway and to reduce lodging problems in hybrid oilseed Brassica cultivars.

  10. Mapping of quantitative trait loci for high level of self-incompatibility in Brassica rapa L.

    PubMed

    Hatakeyama, Katsunori; Horisaki, Atsushi; Niikura, Satoshi; Narusaka, Yoshihiro; Abe, Hiroshi; Yoshiaki, Hitoshi; Ishida, Masahiko; Fukuoka, Hiroyuki; Matsumoto, Satoru

    2010-04-01

    The level of self-incompatibility (SI) is important to the purity of F1 seeds produced using the SI system of Brassica vegetables. To analyze the genetic basis of the level of SI, we generated an F2 population derived from a cross between a turnip inbred line showing a high level of SI and a Chinese cabbage inbred line showing a low level, and evaluated the level of SI under insect pollination in two years. We constructed a detailed linkage map of Brassica rapa from the F2 progeny, consisting of SSR, SNP, indel, and CAPS loci segregating into 10 linkage groups covering approximately 700 cM. Five quantitative trait loci (QTL) for high-level SI were identified. The phenotypic variation explained by the QTL ranged between 7.2% and 23.8%. Two QTL were detected in both years. Mapping of SI-related genes revealed that these QTL were co-localized with SLG on R07 and MLPK on R03. This is the first report of QTL for high-level SI evaluated under insect pollination in a Brassica vegetable. Our results could be useful for the marker-assisted selection of parental lines with a stable SI. PMID:20616857

  11. Gravity control of growth form in Brassica rapa and Arabidopsis thaliana (Brassicaceae): Consequences for secondary metabolism.

    PubMed

    Allen, Joan; Bisbee, Patricia A; Darnell, Rebecca L; Kuang, Anxiu; Levine, Lanfang H; Musgrave, Mary E; van Loon, Jack J W A

    2009-03-01

    How gravity influences the growth form and flavor components of plants is of interest to the space program because plants could be used for food and life support during prolonged missions away from the planet, where that constant feature of Earth's environment does not prevail. We used plant growth hardware from prior experiments on the space shuttle to grow Brassica rapa and Arabidopsis thaliana plants during 16-d or 11-d hypergravity treatments on large-diameter centrifuge rotors. Both species showed radical changes in growth form, becoming more prostrate with increasing g-loads (2-g and 4-g). In Brassica, height decreased and stems thickened in a linear relationship with increasing g-load. Glucosinolates, secondary compounds that contribute flavor to Brassica, decreased by 140% over the range of micro to 4-g, while the structural secondary compound, lignin, remained constant at ∼15% (w/w) cell wall dry mass. Stem thickening at 4-g was associated with substantial increases in cell size (47%, 226%, and 33% for pith, cortex, and vascular tissue), rather than any change in cell number. The results, which demonstrate the profound effect of gravity on plant growth form and secondary metabolism, are discussed in the context of similar thigmostresses such as touch and wind. PMID:21628221

  12. Gravity control of growth form in Brassica rapa and Arabidopsis thaliana (Brassicaceae): Consequences for secondary metabolism.

    PubMed

    Allen, Joan; Bisbee, Patricia A; Darnell, Rebecca L; Kuang, Anxiu; Levine, Lanfang H; Musgrave, Mary E; van Loon, Jack J W A

    2009-03-01

    How gravity influences the growth form and flavor components of plants is of interest to the space program because plants could be used for food and life support during prolonged missions away from the planet, where that constant feature of Earth's environment does not prevail. We used plant growth hardware from prior experiments on the space shuttle to grow Brassica rapa and Arabidopsis thaliana plants during 16-d or 11-d hypergravity treatments on large-diameter centrifuge rotors. Both species showed radical changes in growth form, becoming more prostrate with increasing g-loads (2-g and 4-g). In Brassica, height decreased and stems thickened in a linear relationship with increasing g-load. Glucosinolates, secondary compounds that contribute flavor to Brassica, decreased by 140% over the range of micro to 4-g, while the structural secondary compound, lignin, remained constant at ∼15% (w/w) cell wall dry mass. Stem thickening at 4-g was associated with substantial increases in cell size (47%, 226%, and 33% for pith, cortex, and vascular tissue), rather than any change in cell number. The results, which demonstrate the profound effect of gravity on plant growth form and secondary metabolism, are discussed in the context of similar thigmostresses such as touch and wind.

  13. Teaching Human Genetics with Mustard: Rapid Cycling "Brassica rapa" (Fast Plants Type) as a Model for Human Genetics in the Classroom Laboratory

    ERIC Educational Resources Information Center

    Wendell, Douglas L.; Pickard, Dawn

    2007-01-01

    We have developed experiments and materials to model human genetics using rapid cycling "Brassica rapa", also known as Fast Plants. Because of their self-incompatibility for pollination and the genetic diversity within strains, "B. rapa" can serve as a relevant model for human genetics in teaching laboratory experiments. The experiment presented…

  14. Cytology, RAPD, and seed colour of progeny plants from Brassica rapa-alboglabra aneuploids and development of monosomic addition lines.

    PubMed

    Heneen, W K; Jørgensen, R B

    2001-12-01

    Progeny plants from Brassica rapa-alboglabra aneuploids were characterized genetically by scoring random amplified polymorphic DNA (RAPD) markers and seed colour and cytologically as to chromosome number and pairing. Sets of RAPD markers specific for each of the encountered eight alien Brassica alboglabra chromosomes were defined. The finding of subsets of markers associated with the presence or absence of alien chromosomes inferred the frequent occurrence of intergenomic genetic recombination and introgression. The chromosome numbers were in the range 2n = 20-28, with a maximum of seven alien B. alboglabra chromosomes and one trisomic B. rapa chromosome. Five types of monosomic addition lines were obtained, two of which have not been developed before. Differences in chromatin condensation patterns made it possible to differentiate between the B. rapa and B. alboglabra chromosomes at diakinesis, and to detect intergenomic homoeological pairing. In addition to the frequent formation of trivalents by homoeologous pairing of an alien B. alboglabra chromosome and a background B. rapa pair, occasional heteromorphic intergenomic bivalents and B. rapa univalents were encountered. Homoeological intergenomic pairing occurred between chromosomes with similar centromeric and karyotypic positions. Plants with structurally changed alien chromosomes were found. The RAPD and cytological data substantiated each other. Observations of the colour of sown and harvested seeds indicated that B. alboglabra chromosome 4 carries a gene for brown seed colour. It exerts its control embryonically, and thus it differs from chromosome 1 which controls seed colour maternally.

  15. Patterns of Evolutionary Conservation of Ascorbic Acid-Related Genes Following Whole-Genome Triplication in Brassica rapa

    PubMed Central

    Duan, Weike; Song, Xiaoming; Liu, Tongkun; Huang, Zhinan; Ren, Jun; Hou, Xilin; Du, Jianchang; Li, Ying

    2015-01-01

    Ascorbic acid (AsA) is an important antioxidant in plants and an essential vitamin for humans. Extending the study of AsA-related genes from Arabidopsis thaliana to Brassica rapa could shed light on the evolution of AsA in plants and inform crop breeding. In this study, we conducted whole-genome annotation, molecular-evolution and gene-expression analyses of all known AsA-related genes in B. rapa. The nucleobase–ascorbate transporter (NAT) gene family and AsA l-galactose pathway genes were also compared among plant species. Four important insights gained are that: 1) 102 AsA-related gene were identified in B. rapa and they mainly diverged 12–18 Ma accompanied by the Brassica-specific genome triplication event; 2) during their evolution, these AsA-related genes were preferentially retained, consistent with the gene dosage hypothesis; 3) the putative proteins were highly conserved, but their expression patterns varied; and 4) although the number of AsA-related genes is higher in B. rapa than in A. thaliana, the AsA contents and the numbers of expressed genes in leaves of both species are similar, the genes that are not generally expressed may serve as substitutes during emergencies. In summary, this study provides genome-wide insights into evolutionary history and mechanisms of AsA-related genes following whole-genome triplication in B. rapa. PMID:25552535

  16. Patterns of evolutionary conservation of ascorbic acid-related genes following whole-genome triplication in Brassica rapa.

    PubMed

    Duan, Weike; Song, Xiaoming; Liu, Tongkun; Huang, Zhinan; Ren, Jun; Hou, Xilin; Du, Jianchang; Li, Ying

    2014-12-31

    Ascorbic acid (AsA) is an important antioxidant in plants and an essential vitamin for humans. Extending the study of AsA-related genes from Arabidopsis thaliana to Brassica rapa could shed light on the evolution of AsA in plants and inform crop breeding. In this study, we conducted whole-genome annotation, molecular-evolution and gene-expression analyses of all known AsA-related genes in B. rapa. The nucleobase-ascorbate transporter (NAT) gene family and AsA l-galactose pathway genes were also compared among plant species. Four important insights gained are that: 1) 102 AsA-related gene were identified in B. rapa and they mainly diverged 12-18 Ma accompanied by the Brassica-specific genome triplication event; 2) during their evolution, these AsA-related genes were preferentially retained, consistent with the gene dosage hypothesis; 3) the putative proteins were highly conserved, but their expression patterns varied; and 4) although the number of AsA-related genes is higher in B. rapa than in A. thaliana, the AsA contents and the numbers of expressed genes in leaves of both species are similar, the genes that are not generally expressed may serve as substitutes during emergencies. In summary, this study provides genome-wide insights into evolutionary history and mechanisms of AsA-related genes following whole-genome triplication in B. rapa.

  17. Patterns of evolutionary conservation of ascorbic acid-related genes following whole-genome triplication in Brassica rapa.

    PubMed

    Duan, Weike; Song, Xiaoming; Liu, Tongkun; Huang, Zhinan; Ren, Jun; Hou, Xilin; Du, Jianchang; Li, Ying

    2015-01-01

    Ascorbic acid (AsA) is an important antioxidant in plants and an essential vitamin for humans. Extending the study of AsA-related genes from Arabidopsis thaliana to Brassica rapa could shed light on the evolution of AsA in plants and inform crop breeding. In this study, we conducted whole-genome annotation, molecular-evolution and gene-expression analyses of all known AsA-related genes in B. rapa. The nucleobase-ascorbate transporter (NAT) gene family and AsA l-galactose pathway genes were also compared among plant species. Four important insights gained are that: 1) 102 AsA-related gene were identified in B. rapa and they mainly diverged 12-18 Ma accompanied by the Brassica-specific genome triplication event; 2) during their evolution, these AsA-related genes were preferentially retained, consistent with the gene dosage hypothesis; 3) the putative proteins were highly conserved, but their expression patterns varied; and 4) although the number of AsA-related genes is higher in B. rapa than in A. thaliana, the AsA contents and the numbers of expressed genes in leaves of both species are similar, the genes that are not generally expressed may serve as substitutes during emergencies. In summary, this study provides genome-wide insights into evolutionary history and mechanisms of AsA-related genes following whole-genome triplication in B. rapa. PMID:25552535

  18. Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa.

    PubMed

    Zhang, Jiefu; Lu, Ying; Yuan, Yuxiang; Zhang, Xiaowei; Geng, Jianfeng; Chen, Yu; Cloutier, Sylvie; McVetty, Peter B E; Li, Genyi

    2009-03-01

    A glabrous, yellow-seeded doubled haploid (DH) line and a hairy, black-seeded DH line in Chinese cabbage (B. rapa) were used as parents to develop a DH line population that segregated for both hairiness and seed coat color traits. The data showed that both traits completely co-segregated each other, suggesting that one Mendelian locus controlled both hairiness and seed coat color in this population. A fine genetic map was constructed and a SNP marker that was located inside a Brassica ortholog of TRANSPARENT TESTA GLABRA 1 (TTG1) in Arabidopsis showed complete linkage to both the hairiness and seed coat color gene, suggesting that the Brassica TTG1 ortholog shared the same gene function as its Arabidopsis counterpart. Further sequence analysis of the alleles from hairless, yellow-seeded and hairy, black-seeded DH lines in B. rapa showed that a 94-base deletion was found in the hairless, yellow-seeded DH lines. A nonfunctional truncated protein in the hairless, yellow-seeded DH lines in B. rapa was suggested by the coding sequence of the TTG1 ortholog. Both of the TTG1 homologs from the black and yellow seeded B. rapa lines were used to transform an Arabidopsis ttg1 mutant and the results showed that the TTG1 homolog from the black seeded B. rapa recovered the Arabidopsis ttg1 mutant, while the yellow seeded homolog did not, suggesting that the deletion in the Brassica TTG1 homolog had led to the yellow seeded natural mutant. This was the first identified gene in Brassica species that simultaneously controlled both hairiness and seed coat color traits.

  19. Genetic control of immunity to Turnip mosaic virus (TuMV) pathotype 1 in Brassica rapa (Chinese cabbage).

    PubMed

    Lydiate, Derek J; Pilcher, Rachel L Rusholme; Higgins, Erin E; Walsh, John A

    2014-08-01

    Turnip mosaic virus (TuMV) is the major virus infecting crops of the genus Brassica worldwide. A dominant resistance gene, TuRB01b, that confers immunity to the virus isolate UK 1 (a representative pathotype 1 isolate of TuMV) on Brassica rapa was identified in the Chinese cabbage cultivar Tropical Delight. The TuRB01b locus was mapped to a 2.9-cM interval on B. rapa chromosome 6 (A6) that was flanked by RFLP markers pN101e1 and pW137e1. This mapping used a first backcross (B(1)) population segregating for the resistance gene at TuRB01b and sets of RFLP markers employed in previous mapping experiments in Brassica. Virus-plant interaction phenotypes were assayed in inbred progeny derived from B(1) individuals to allow different virus isolates to be tested. Comparative mapping confirmed that A6 of B. rapa was equivalent to chromosome 6 of Brassica napus (A6) and that the map position of TuRB01b in B. rapa could be identical to that of TuRB01 in B. napus. Detailed evaluation of plant-virus interactions showed that TuRB01 and TuRB01b had indistinguishable specificities to a range of TuMV isolates. The possibility that TuRB01 and TuRB01b represent similar or identical alleles at the same A genome resistance locus suggests that B. napus acquired TuRB01 from the B. rapa gene pool. PMID:25275757

  20. Genetic control of immunity to Turnip mosaic virus (TuMV) pathotype 1 in Brassica rapa (Chinese cabbage).

    PubMed

    Lydiate, Derek J; Pilcher, Rachel L Rusholme; Higgins, Erin E; Walsh, John A

    2014-08-01

    Turnip mosaic virus (TuMV) is the major virus infecting crops of the genus Brassica worldwide. A dominant resistance gene, TuRB01b, that confers immunity to the virus isolate UK 1 (a representative pathotype 1 isolate of TuMV) on Brassica rapa was identified in the Chinese cabbage cultivar Tropical Delight. The TuRB01b locus was mapped to a 2.9-cM interval on B. rapa chromosome 6 (A6) that was flanked by RFLP markers pN101e1 and pW137e1. This mapping used a first backcross (B(1)) population segregating for the resistance gene at TuRB01b and sets of RFLP markers employed in previous mapping experiments in Brassica. Virus-plant interaction phenotypes were assayed in inbred progeny derived from B(1) individuals to allow different virus isolates to be tested. Comparative mapping confirmed that A6 of B. rapa was equivalent to chromosome 6 of Brassica napus (A6) and that the map position of TuRB01b in B. rapa could be identical to that of TuRB01 in B. napus. Detailed evaluation of plant-virus interactions showed that TuRB01 and TuRB01b had indistinguishable specificities to a range of TuMV isolates. The possibility that TuRB01 and TuRB01b represent similar or identical alleles at the same A genome resistance locus suggests that B. napus acquired TuRB01 from the B. rapa gene pool.

  1. Genome-Wide Comparative Analysis of 20 Miniature Inverted-Repeat Transposable Element Families in Brassica rapa and B. oleracea

    PubMed Central

    Sampath, Perumal; Murukarthick, Jayakodi; Izzah, Nur Kholilatul; Lee, Jonghoon; Choi, Hong-Il; Shirasawa, Kenta; Choi, Beom-Soon; Liu, Shengyi; Nou, Ill-Sup; Yang, Tae-Jin

    2014-01-01

    Miniature inverted-repeat transposable elements (MITEs) are ubiquitous, non-autonomous class II transposable elements. Here, we conducted genome-wide comparative analysis of 20 MITE families in B. rapa, B. oleracea, and Arabidopsis thaliana. A total of 5894 and 6026 MITE members belonging to the 20 families were found in the whole genome pseudo-chromosome sequences of B. rapa and B. oleracea, respectively. Meanwhile, only four of the 20 families, comprising 573 members, were identified in the Arabidopsis genome, indicating that most of the families were activated in the Brassica genus after divergence from Arabidopsis. Copy numbers varied from 4 to 1459 for each MITE family, and there was up to 6-fold variation between B. rapa and B. oleracea. In particular, analysis of intact members showed that whereas eleven families were present in similar copy numbers in B. rapa and B. oleracea, nine families showed copy number variation ranging from 2- to 16-fold. Four of those families (BraSto-3, BraTo-3, 4, 5) were more abundant in B. rapa, and the other five (BraSto-1, BraSto-4, BraTo-1, 7 and BraHAT-1) were more abundant in B. oleracea. Overall, 54% and 51% of the MITEs resided in or within 2 kb of a gene in the B. rapa and B. oleracea genomes, respectively. Notably, 92 MITEs were found within the CDS of annotated genes, suggesting that MITEs might play roles in diversification of genes in the recently triplicated Brassica genome. MITE insertion polymorphism (MIP) analysis of 289 MITE members showed that 52% and 23% were polymorphic at the inter- and intra-species levels, respectively, indicating that there has been recent MITE activity in the Brassica genome. These recently activated MITE families with abundant MIP will provide useful resources for molecular breeding and identification of novel functional genes arising from MITE insertion. PMID:24747717

  2. Genome-wide comparative analysis of 20 miniature inverted-repeat transposable element families in Brassica rapa and B. oleracea.

    PubMed

    Sampath, Perumal; Murukarthick, Jayakodi; Izzah, Nur Kholilatul; Lee, Jonghoon; Choi, Hong-Il; Shirasawa, Kenta; Choi, Beom-Soon; Liu, Shengyi; Nou, Ill-Sup; Yang, Tae-Jin

    2014-01-01

    Miniature inverted-repeat transposable elements (MITEs) are ubiquitous, non-autonomous class II transposable elements. Here, we conducted genome-wide comparative analysis of 20 MITE families in B. rapa, B. oleracea, and Arabidopsis thaliana. A total of 5894 and 6026 MITE members belonging to the 20 families were found in the whole genome pseudo-chromosome sequences of B. rapa and B. oleracea, respectively. Meanwhile, only four of the 20 families, comprising 573 members, were identified in the Arabidopsis genome, indicating that most of the families were activated in the Brassica genus after divergence from Arabidopsis. Copy numbers varied from 4 to 1459 for each MITE family, and there was up to 6-fold variation between B. rapa and B. oleracea. In particular, analysis of intact members showed that whereas eleven families were present in similar copy numbers in B. rapa and B. oleracea, nine families showed copy number variation ranging from 2- to 16-fold. Four of those families (BraSto-3, BraTo-3, 4, 5) were more abundant in B. rapa, and the other five (BraSto-1, BraSto-4, BraTo-1, 7 and BraHAT-1) were more abundant in B. oleracea. Overall, 54% and 51% of the MITEs resided in or within 2 kb of a gene in the B. rapa and B. oleracea genomes, respectively. Notably, 92 MITEs were found within the CDS of annotated genes, suggesting that MITEs might play roles in diversification of genes in the recently triplicated Brassica genome. MITE insertion polymorphism (MIP) analysis of 289 MITE members showed that 52% and 23% were polymorphic at the inter- and intra-species levels, respectively, indicating that there has been recent MITE activity in the Brassica genome. These recently activated MITE families with abundant MIP will provide useful resources for molecular breeding and identification of novel functional genes arising from MITE insertion.

  3. Genome-wide comparative analysis of 20 miniature inverted-repeat transposable element families in Brassica rapa and B. oleracea.

    PubMed

    Sampath, Perumal; Murukarthick, Jayakodi; Izzah, Nur Kholilatul; Lee, Jonghoon; Choi, Hong-Il; Shirasawa, Kenta; Choi, Beom-Soon; Liu, Shengyi; Nou, Ill-Sup; Yang, Tae-Jin

    2014-01-01

    Miniature inverted-repeat transposable elements (MITEs) are ubiquitous, non-autonomous class II transposable elements. Here, we conducted genome-wide comparative analysis of 20 MITE families in B. rapa, B. oleracea, and Arabidopsis thaliana. A total of 5894 and 6026 MITE members belonging to the 20 families were found in the whole genome pseudo-chromosome sequences of B. rapa and B. oleracea, respectively. Meanwhile, only four of the 20 families, comprising 573 members, were identified in the Arabidopsis genome, indicating that most of the families were activated in the Brassica genus after divergence from Arabidopsis. Copy numbers varied from 4 to 1459 for each MITE family, and there was up to 6-fold variation between B. rapa and B. oleracea. In particular, analysis of intact members showed that whereas eleven families were present in similar copy numbers in B. rapa and B. oleracea, nine families showed copy number variation ranging from 2- to 16-fold. Four of those families (BraSto-3, BraTo-3, 4, 5) were more abundant in B. rapa, and the other five (BraSto-1, BraSto-4, BraTo-1, 7 and BraHAT-1) were more abundant in B. oleracea. Overall, 54% and 51% of the MITEs resided in or within 2 kb of a gene in the B. rapa and B. oleracea genomes, respectively. Notably, 92 MITEs were found within the CDS of annotated genes, suggesting that MITEs might play roles in diversification of genes in the recently triplicated Brassica genome. MITE insertion polymorphism (MIP) analysis of 289 MITE members showed that 52% and 23% were polymorphic at the inter- and intra-species levels, respectively, indicating that there has been recent MITE activity in the Brassica genome. These recently activated MITE families with abundant MIP will provide useful resources for molecular breeding and identification of novel functional genes arising from MITE insertion. PMID:24747717

  4. Transcriptome Analysis of Brassica rapa Near-Isogenic Lines Carrying Clubroot-Resistant and -Susceptible Alleles in Response to Plasmodiophora brassicae during Early Infection.

    PubMed

    Chen, Jingjing; Pang, Wenxing; Chen, Bing; Zhang, Chunyu; Piao, Zhongyun

    2015-01-01

    Although Plasmodiophora brassicae is one of the most common pathogens worldwide, the causal agent of clubroot disease in Brassica crops, resistance mechanisms to it are still only poorly understood. To study the early defense response induced by P. brassicae infection, a global transcriptome profiling of the roots of two near-isogenic lines (NILs) of clubroot-resistant (CR BJN3-2) and clubroot-susceptible (BJN3-2) Chinese cabbage (Brassica rapa) was performed by RNA-seq. Among the 42,730 unique genes mapped to the reference genome of B. rapa, 1875, and 2103 genes were found to be up- and down-regulated between CR BJN3-2 and BJN3-2, respectively, at 0, 12, 72, and 96 h after inoculation (hai). Functional annotation showed that most of the differently expressed genes are involved in metabolism, transport, signal transduction, and defense. Of the genes assigned to plant-pathogen interactions, 151 showed different expression patterns between two NILs, including genes associated with pathogen-associated molecular patterns (PAMPs) and effectors recognition, calcium ion influx, hormone signaling, pathogenesis-related (PR) genes, transcription factors, and cell wall modification. In particular, the expression level of effector receptors (resistance proteins), PR genes involved in salicylic acid (SA) signaling pathway, were higher in clubroot-resistant NIL, while half of the PAMP receptors were suppressed in CR BJN3-2. This suggests that there was a more robust effector-triggered immunity (ETI) response in CR BJN3-2 and that SA signaling was important to clubroot resistance. The dataset generated by our transcriptome profiling may prove invaluable for further exploration of the different responses to P. brassicae between clubroot-resistant and clubroot-susceptible genotypes, and it will strongly contribute to a better understanding of the molecular mechanisms of resistance genes of B. rapa against P. brassicae infection.

  5. Transcriptome Analysis of Brassica rapa Near-Isogenic Lines Carrying Clubroot-Resistant and –Susceptible Alleles in Response to Plasmodiophora brassicae during Early Infection

    PubMed Central

    Chen, Jingjing; Pang, Wenxing; Chen, Bing; Zhang, Chunyu; Piao, Zhongyun

    2016-01-01

    Although Plasmodiophora brassicae is one of the most common pathogens worldwide, the causal agent of clubroot disease in Brassica crops, resistance mechanisms to it are still only poorly understood. To study the early defense response induced by P. brassicae infection, a global transcriptome profiling of the roots of two near-isogenic lines (NILs) of clubroot-resistant (CR BJN3-2) and clubroot-susceptible (BJN3-2) Chinese cabbage (Brassica rapa) was performed by RNA-seq. Among the 42,730 unique genes mapped to the reference genome of B. rapa, 1875, and 2103 genes were found to be up- and down-regulated between CR BJN3-2 and BJN3-2, respectively, at 0, 12, 72, and 96 h after inoculation (hai). Functional annotation showed that most of the differently expressed genes are involved in metabolism, transport, signal transduction, and defense. Of the genes assigned to plant-pathogen interactions, 151 showed different expression patterns between two NILs, including genes associated with pathogen-associated molecular patterns (PAMPs) and effectors recognition, calcium ion influx, hormone signaling, pathogenesis-related (PR) genes, transcription factors, and cell wall modification. In particular, the expression level of effector receptors (resistance proteins), PR genes involved in salicylic acid (SA) signaling pathway, were higher in clubroot-resistant NIL, while half of the PAMP receptors were suppressed in CR BJN3-2. This suggests that there was a more robust effector-triggered immunity (ETI) response in CR BJN3-2 and that SA signaling was important to clubroot resistance. The dataset generated by our transcriptome profiling may prove invaluable for further exploration of the different responses to P. brassicae between clubroot-resistant and clubroot-susceptible genotypes, and it will strongly contribute to a better understanding of the molecular mechanisms of resistance genes of B. rapa against P. brassicae infection. PMID:26779217

  6. Transcriptome Analysis of Brassica rapa Near-Isogenic Lines Carrying Clubroot-Resistant and -Susceptible Alleles in Response to Plasmodiophora brassicae during Early Infection.

    PubMed

    Chen, Jingjing; Pang, Wenxing; Chen, Bing; Zhang, Chunyu; Piao, Zhongyun

    2015-01-01

    Although Plasmodiophora brassicae is one of the most common pathogens worldwide, the causal agent of clubroot disease in Brassica crops, resistance mechanisms to it are still only poorly understood. To study the early defense response induced by P. brassicae infection, a global transcriptome profiling of the roots of two near-isogenic lines (NILs) of clubroot-resistant (CR BJN3-2) and clubroot-susceptible (BJN3-2) Chinese cabbage (Brassica rapa) was performed by RNA-seq. Among the 42,730 unique genes mapped to the reference genome of B. rapa, 1875, and 2103 genes were found to be up- and down-regulated between CR BJN3-2 and BJN3-2, respectively, at 0, 12, 72, and 96 h after inoculation (hai). Functional annotation showed that most of the differently expressed genes are involved in metabolism, transport, signal transduction, and defense. Of the genes assigned to plant-pathogen interactions, 151 showed different expression patterns between two NILs, including genes associated with pathogen-associated molecular patterns (PAMPs) and effectors recognition, calcium ion influx, hormone signaling, pathogenesis-related (PR) genes, transcription factors, and cell wall modification. In particular, the expression level of effector receptors (resistance proteins), PR genes involved in salicylic acid (SA) signaling pathway, were higher in clubroot-resistant NIL, while half of the PAMP receptors were suppressed in CR BJN3-2. This suggests that there was a more robust effector-triggered immunity (ETI) response in CR BJN3-2 and that SA signaling was important to clubroot resistance. The dataset generated by our transcriptome profiling may prove invaluable for further exploration of the different responses to P. brassicae between clubroot-resistant and clubroot-susceptible genotypes, and it will strongly contribute to a better understanding of the molecular mechanisms of resistance genes of B. rapa against P. brassicae infection. PMID:26779217

  7. Metabolomic analysis of methyl jasmonate treated Brassica rapa leaves by 2-dimensional NMR spectroscopy.

    PubMed

    Liang, Yun-Sa; Choi, Young Hae; Kim, Hye Kyong; Linthorst, Huub J M; Verpoorte, Robert

    2006-11-01

    The metabolomic analysis of Brassica rapa leaves treated with methyl jasmonate was performed using 2-dimensional J-resolved NMR spectroscopy combined with multivariate data analysis. The principal component analysis of the J-resolved NMR spectra showed discrimination between control and methyl jasmonate treated plants by principal components 1 and 2. While the level of glucose, sucrose and amino acids showed a decrease after methyl jasmonate treatment, hydroxycinnamates and glucosinolate were highly increased. Methyl jasmonate treatment resulted in a long-term accumulation of indole glucosinolate and indole-3-acetic acid, lasting up to 14 days after treatment. Malate conjugated hydroxycinnamates also exhibited an increase until 14 days after methyl jasmonate treatment, these compounds might play an important role in plant defence responses mediated by methyl jasmonate.

  8. Spaceflight effects on structural and some biochemical parameters of Brassica rapa photosynthetic apparatus.

    PubMed

    Adamchuk, N I; Mikhaylenko, N F; Zolotareva, E K; Hilaire, E; Guikema, J A

    1999-07-01

    Chloroplasts play a crucial role in sustaining life on Earth by their dual property in performing the primary fixation of carbon and also in releasing oxygen for use in respiration. Collection of light and its transformation into chemical energy occurs in a thylakoid membrane which is one of the most remarkable transducing systems in the biological world. In order for the light-dependent reactions could take place, a high degree of molecular organization of its constituents is needed. Some results obtained in the framework of the Collaborative Ukrainian Experiment mission (STS-87) which was performed on board of the space shuttle "Columbia" are presented in the given paper. A goal of the study was to obtain data on some parameters of photosynthetic apparatus, namely the chloroplast structure, pigment content and lipid composition of Brassica rapa plants grown in microgravity.

  9. [Microtubules in epidermal and cortical root cells of Brassica rapa during clinorotation].

    PubMed

    Kalinina, Ia M

    2006-01-01

    Using confocal microscopy the organization of tubulin cytoskeleton including endoplasmic and cortical microtubules (CMTs) has been studied in epidermal and cortical cells of the different growth zones of main root of Brassica rapa L. 6-days-old seedlings in control conditions and under clinorotation. It was shown that changes in CMTs orientation occured only in the distal elongation zone (DEZ). In the control, CMT arrays oriented transversely to the root long axis. Under clinorotation appearance of the shorter randomly organized CMTs was observed. Simultaneously, a significant decrease in the cell length in the central elongation zone (CEZ) under clinorotation was detected. It is suggested that the decline of anisotropic growth typical for CEZ cells is connected with CMTs disorientation under clinorotation.

  10. Environmental and genetic effects on yield and secondary metabolite production in Brassica rapa crops.

    PubMed

    Francisco, Marta; Cartea, María Elena; Butrón, Ana María; Sotelo, Tamara; Velasco, Pablo

    2012-06-01

    Twelve Brassica rapa varieties grown, such as turnip green and turnip top, were evaluated in seven environments to determine the environmental and genotypic variables that have an influence on crop production and on the content of glucosinolates and phenolic compounds. Factorial regression analysis showed that, in general, crop production was favored by high temperatures all along the crop cycle. However, the lack of a period of intense cold could be a limiting factor. The metabolite content seems to be regulated by extreme temperatures (daily maximum and minimum temperatures) rather than by average daily temperatures. With regard to genotypic covariables, turnip top production was significantly affected by traits related to the vegetative development and time to flowering. Meanwhile, turnip green production was largely affected by a sinapoyl derivative compound, which is a precursor of cell wall components. Cross-talk between glucosinolate biosynthesis and phenylpropanoid signaling pathways is suggested.

  11. Embryogenesis and plant regeneration from isolated microspores of Brassica rapa L. ssp. Oleifera.

    PubMed

    Burnett, L; Yarrow, S; Huang, B

    1992-05-01

    Conditions favourable to embryogenesis from isolated microspores of Brassica rapa L. ssp. oleifera (canola quality) were identified. A population with enhanced responsiveness for microspore embryogenesis (C200) was synthesized by crossing individual plants showing microspore embryogenic potential. For optimal microspore embryogenesis, buds (2-3mm in length, containing mid-late uninucieate microspores) were collected from older plants (2 months old) and microspores isolated and washed in iron-free B5 medium. NLN medium with its iron content reduced to half was beneficial for initial microspore culture. An elevated temperature(33-35°C) during the first day of culture, followed by maintenance at 25°C resulted in dozens of embryos from each isolation (about 100 buds). Seeds were obtained from plants regenerated from microsporederived embryos after colchicine treatment.

  12. Herbaspirillum sp. strain GW103 alleviates salt stress in Brassica rapa L. ssp. pekinensis.

    PubMed

    Lee, Gun Woong; Lee, Kui-Jae; Chae, Jong-Chan

    2016-05-01

    Mutual interactions between plant and rhizosphere bacteria facilitate plant growth and reduce risks of biotic and abiotic stresses. The present study demonstrates alleviation of salt stress in Brassica rapa L. ssp. perkinensis (Chinese cabbage) by Herbaspirillum sp. strain GW103 isolated from rhizosphere soil of Phragmites australis. The strain was capable of producing plant beneficial factors, such as auxin, siderophore, and 1-aminocylopropane-1-carboxylic acid deaminase. Treatment of strain GW103 on Chinese cabbage under salt stress increased K(+)/Na(+) ratio in roots generating balance in the ratio of ion homeostasis and consequently contributed to the increase of biomass. In addition, root colonization potential of the strain was observed by green fluorescent protein (GFP)-tagging approach. These results strongly suggest the beneficial impact of strain GW103 by inducing the alleviation of salt stress and development of stress tolerance in Chinese cabbage via plant-microbe interaction.

  13. Antioxidant capacities and polyphenolics of Chinese cabbage (Brassica rapa L. ssp. Pekinensis) leaves.

    PubMed

    Seong, Gi-Un; Hwang, In-Wook; Chung, Shin-Kyo

    2016-05-15

    Chinese cabbage (Brassica rapa L. ssp. Pekinensis) is a green leafy vegetable used mainly in kimchi, salted and fermented dishes. Consumer preference for the leaf portion differs according to the type of dishes. In this study, Chinese cabbage was divided into three parts, and their antioxidant activities were investigated through in vitro assays. The total phenolic contents (TPC), total flavonoid contents (TFC), and vitamin C contents were also determined as indicators of antioxidant contents. The phenolic acids and flavonoids were separated and identified using high performance liquid chromatography (HPLC) and liquid chromatography/mass spectrometry (LC/MS). The outer leaf had the strongest antioxidant activity with the maximum antioxidant contents, followed by the mid- and inner leaves. Principal component analysis (PCA) revealed that outer leaf is positively related to caffeic acid, p-coumaric acid, ferulic acid, and myricetin contents, whereas the mid- and inner leaves are negatively related to sinapic acid contents.

  14. Antioxidant capacities and polyphenolics of Chinese cabbage (Brassica rapa L. ssp. Pekinensis) leaves.

    PubMed

    Seong, Gi-Un; Hwang, In-Wook; Chung, Shin-Kyo

    2016-05-15

    Chinese cabbage (Brassica rapa L. ssp. Pekinensis) is a green leafy vegetable used mainly in kimchi, salted and fermented dishes. Consumer preference for the leaf portion differs according to the type of dishes. In this study, Chinese cabbage was divided into three parts, and their antioxidant activities were investigated through in vitro assays. The total phenolic contents (TPC), total flavonoid contents (TFC), and vitamin C contents were also determined as indicators of antioxidant contents. The phenolic acids and flavonoids were separated and identified using high performance liquid chromatography (HPLC) and liquid chromatography/mass spectrometry (LC/MS). The outer leaf had the strongest antioxidant activity with the maximum antioxidant contents, followed by the mid- and inner leaves. Principal component analysis (PCA) revealed that outer leaf is positively related to caffeic acid, p-coumaric acid, ferulic acid, and myricetin contents, whereas the mid- and inner leaves are negatively related to sinapic acid contents. PMID:26776015

  15. Herbaspirillum sp. strain GW103 alleviates salt stress in Brassica rapa L. ssp. pekinensis.

    PubMed

    Lee, Gun Woong; Lee, Kui-Jae; Chae, Jong-Chan

    2016-05-01

    Mutual interactions between plant and rhizosphere bacteria facilitate plant growth and reduce risks of biotic and abiotic stresses. The present study demonstrates alleviation of salt stress in Brassica rapa L. ssp. perkinensis (Chinese cabbage) by Herbaspirillum sp. strain GW103 isolated from rhizosphere soil of Phragmites australis. The strain was capable of producing plant beneficial factors, such as auxin, siderophore, and 1-aminocylopropane-1-carboxylic acid deaminase. Treatment of strain GW103 on Chinese cabbage under salt stress increased K(+)/Na(+) ratio in roots generating balance in the ratio of ion homeostasis and consequently contributed to the increase of biomass. In addition, root colonization potential of the strain was observed by green fluorescent protein (GFP)-tagging approach. These results strongly suggest the beneficial impact of strain GW103 by inducing the alleviation of salt stress and development of stress tolerance in Chinese cabbage via plant-microbe interaction. PMID:26358119

  16. Isolation and functional characterisation of the genes encoding Δ(8)-sphingolipid desaturase from Brassica rapa.

    PubMed

    Li, Shu-Fen; Song, Li-Ying; Yin, Wei-Bo; Chen, Yu-Hong; Chen, Liang; Li, Ji-Lin; Wang, Richard R-C; Hu, Zan-Min

    2012-01-01

    Δ(8)-Sphingolipid desaturase is the key enzyme that catalyses desaturation at the C8 position of the long-chain base of sphingolipids in higher plants. There have been no previous studies on the genes encoding Δ(8)-sphingolipid desaturases in Brassica rapa. In this study, four genes encoding Δ(8)-sphingolipid desaturases from B. rapa were isolated and characterised. Phylogenetic analyses indicated that these genes could be divided into two groups: BrD8A, BrD8C and BrD8D in group I, and BrD8B in group II. The two groups of genes diverged before the separation of Arabidopsis and Brassica. Though the four genes shared a high sequence similarity, and their coding desaturases all located in endoplasmic reticulum, they exhibited distinct expression patterns. Heterologous expression in Saccharomyces cerevisiae revealed that BrD8A/B/C/D were functionally diverse Δ(8)-sphingolipid desaturases that catalyse different ratios of the two products 8(Z)- and 8(E)-C18-phytosphingenine. The aluminium tolerance of transgenic yeasts expressing BrD8A/B/C/D was enhanced compared with that of control cells. Expression of BrD8A in Arabidopsis changed the ratio of 8(Z):8(E)-C18-phytosphingenine in transgenic plants. The information reported here provides new insights into the biochemical functional diversity and evolutionary relationship of Δ(8)-sphingolipid desaturase in plants and lays a foundation for further investigation of the mechanism of 8(Z)- and 8(E)-C18-phytosphingenine biosynthesis.

  17. Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in Brassica rapa.

    PubMed

    Saha, Gopal; Park, Jong-In; Jung, Hee-Jeong; Ahmed, Nasar Uddin; Kayum, Md Abdul; Kang, Jong-Goo; Nou, Ill-Sup

    2015-07-01

    BRASSINAZOLE-RESISTANT (BZR) transcription factors (TFs) are primarily well known as positive regulators of Brassinosteroid (BR) signal transduction in different plants. BR is a plant specific steroid hormone, which has multiple stress resistance functions besides various growth regulatory roles. Being an important regulator of the BR synthesis, BZR TFs might have stress resistance related activities. However, no stress resistance related functional study of BZR TFs has been reported in any crop plants so far. Therefore, this study identified 15 BZR TFs of Brassica rapa (BrBZR) from a genome-wide survey and characterized them through sequence analysis and expression profiling against several abiotic stresses. Various systematic in silico analysis of these TFs validated the fundamental properties of BZRs, where a high degree of similarity also observed with recognized BZRs of other plant species from the comparison studies. In the organ specific expression analyses, 6 BrBZR TFs constitutively expressed in flower developmental stages indicating their flower specific functions. Subsequently, from the stress resistance related expression profiles differential transcript abundance levels were observed by 6 and 11 BrBZRs against salt and drought stresses, respectively. All BrBZRs showed several folds up-regulation against exogenous ABA treatment. All BrBZRs also showed differential expression against low temperature stress treatments and these TFs were proposed as transcriptional activators of CBF cold response pathway of B. rapa. Notably, three BrBZRs gave co-responsive expression against all the stresses tested here, suggesting their multiple stress resistance related functions. Thus, the findings would be helpful in resolving the complex regulatory mechanism of BZRs in stress resistance and further functional genomics study of these potential TFs in different Brassica crops. PMID:25931321

  18. Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in Brassica rapa.

    PubMed

    Saha, Gopal; Park, Jong-In; Jung, Hee-Jeong; Ahmed, Nasar Uddin; Kayum, Md Abdul; Kang, Jong-Goo; Nou, Ill-Sup

    2015-07-01

    BRASSINAZOLE-RESISTANT (BZR) transcription factors (TFs) are primarily well known as positive regulators of Brassinosteroid (BR) signal transduction in different plants. BR is a plant specific steroid hormone, which has multiple stress resistance functions besides various growth regulatory roles. Being an important regulator of the BR synthesis, BZR TFs might have stress resistance related activities. However, no stress resistance related functional study of BZR TFs has been reported in any crop plants so far. Therefore, this study identified 15 BZR TFs of Brassica rapa (BrBZR) from a genome-wide survey and characterized them through sequence analysis and expression profiling against several abiotic stresses. Various systematic in silico analysis of these TFs validated the fundamental properties of BZRs, where a high degree of similarity also observed with recognized BZRs of other plant species from the comparison studies. In the organ specific expression analyses, 6 BrBZR TFs constitutively expressed in flower developmental stages indicating their flower specific functions. Subsequently, from the stress resistance related expression profiles differential transcript abundance levels were observed by 6 and 11 BrBZRs against salt and drought stresses, respectively. All BrBZRs showed several folds up-regulation against exogenous ABA treatment. All BrBZRs also showed differential expression against low temperature stress treatments and these TFs were proposed as transcriptional activators of CBF cold response pathway of B. rapa. Notably, three BrBZRs gave co-responsive expression against all the stresses tested here, suggesting their multiple stress resistance related functions. Thus, the findings would be helpful in resolving the complex regulatory mechanism of BZRs in stress resistance and further functional genomics study of these potential TFs in different Brassica crops.

  19. Coding sequence divergence between two closely related plant species: Arabidopsis thaliana and Brassica rapa ssp. pekinensis.

    PubMed

    Tiffin, Peter; Hahn, Matthew W

    2002-06-01

    To characterize the coding-sequence divergence of closely related genomes, we compared DNA sequence divergence between sequences from a Brassica rapa ssp. pekinensis EST library isolated from flower buds and genomic sequences from Arabidopsis thaliana. The specific objectives were (i) to determine the distribution of and relationship between K(a) and K(s), (ii) to identify genes with the lowest and highest K(a): K(s) values, and (iii) to evaluate how codon usage has diverged between two closely related species. We found that the distribution of K(a): K(s) was unimodal, and that substitution rates were more variable at nonsynonymous than synonymous sites, and detected no evidence that K(a) and K(s) were positively correlated. Several genes had K(a): K(s) values equal to or near zero, as expected for genes that have evolved under strong selective constraint. In contrast, there were no genes with K(a): K(s) >1 and thus we found no strong evidence that any of the 218 sequences we analyzed have evolved in response to positive selection. We detected a stronger codon bias but a lower frequency of GC at synonymous sites in A. thaliana than B. rapa. Moreover, there has been a shift in the profile of most commonly used synonymous codons since these two species diverged from one another. This shift in codon usage may have been caused by stronger selection acting on codon usage or by a shift in the direction of mutational bias in the B. rapa phylogenetic lineage.

  20. The patterns of population differentiation in a Brassica rapa core collection.

    PubMed

    Pino Del Carpio, Dunia; Basnet, Ram Kumar; De Vos, Ric C H; Maliepaard, Chris; Visser, Richard; Bonnema, Guusje

    2011-04-01

    With the recent advances in high throughput profiling techniques the amount of genetic and phenotypic data available has increased dramatically. Although many genetic diversity studies combine morphological and genetic data, metabolite profiling has yet to be integrated into these studies. For our study we selected 168 accessions representing the different morphotypes and geographic origins of Brassica rapa. Metabolite profiling was performed on all plants of this collection in the youngest expanded leaves, 5 weeks after transplanting and the same material was used for molecular marker profiling. During the same season a year later, 26 morphological characteristics were measured on plants that had been vernalized in the seedling stage. The number of groups and composition following a hierarchical clustering with molecular markers was highly correlated to the groups based on morphological traits (r = 0.420) and metabolic profiles (r = 0.476). To reveal the admixture levels in B. rapa, comparison with the results of the programme STRUCTURE was needed to obtain information on population substructure. To analyze 5546 metabolite (LC-MS) signals the groups identified with STRUCTURE were used for random forests classification. When comparing the random forests and STRUCTURE membership probabilities 86% of the accessions were allocated into the same subgroup. Our findings indicate that if extensive phenotypic data (metabolites) are available, classification based on this type of data is very comparable to genetic classification. These multivariate types of data and methodological approaches are valuable for the selection of accessions to study the genetics of selected traits and for genetic improvement programs, and additionally provide information on the evolution of the different morphotypes in B. rapa.

  1. Genome-wide characterization of the CBF/DREB1 gene family in Brassica rapa.

    PubMed

    Lee, Sang-Choon; Lim, Myung-Ho; Yu, Jae-Gyeong; Park, Beom-Seok; Yang, Tae-Jin

    2012-12-01

    The C-repeat/dehydration-responsive element binding transcription factors (CBF/DREBs) are important proteins in involved in responses to abiotic stress in plants. We identified ten BrDREB1 genes belonging to the CBF/DREB1 gene family in the Brassica rapa whole genome sequence, whereas six genes are found in the Arabidopsis thaliana genome. The deduced amino acid sequences of the B. rapa genes showed conserved motifs shared with other known plant CBF/DREB1s. Comparative analysis revealed that nine of the BrDREB1 genes were derived from the recent genome triplication in the tribe Brassiceae and the other one was translocated. The nine genes were located in seven of the 12 macrosyntenic blocks that are triplicated counterparts of four Arabidopsis macrosyntenic blocks harboring six CBF/DREB1 genes: one gene on each of three blocks and three tandemly arrayed genes on another block. We inspected the expression patterns of eight BrDREB1 genes by RT-PCR and microarray database searches. All eight genes were highly up-regulated during cold (4 °C) treatment, and some of them were also responsive to salt (250 mM NaCl), drought (air drying), and ABA (100 μM) treatment. Microarray data for plant developmental stages revealed that BrDREB1C2 was highly expressed during a period of cold treatment for vernalization, similar to abiotic stress-inducible genes homologous to Bn28a, Bn47, Bn115, and BoRS1, but almost opposite of BrFLC genes. Taken together, the number of BrDREB1 genes increased to 10 by genome triplication and reorganization, providing additional functions in B. rapa abiotic stress responses and development, as distinct from their Arabidopsis homologs.

  2. Ascorbic acid accumulates as a defense response to Turnip mosaic virus in resistant Brassica rapa cultivars.

    PubMed

    Fujiwara, Ayaka; Togawa, Satoko; Hikawa, Takahiro; Matsuura, Hideyuki; Masuta, Chikara; Inukai, Tsuyoshi

    2016-07-01

    We initially observed that Brassica rapa cultivars containing the Turnip mosaic virus (TuMV) resistance gene, Rnt1-1, accumulated a high level of endogenous ascorbic acid (AS) and dehydroascobic acid (DHA) when infected with TuMV. We here hypothesized a possible contribution of an elevated level of AS+DHA (TAA) to the Rnt1-1-mediated resistance, and conducted a series of experiments using B. rapa and Arabidopsis plants. The application of l-galactose (the key substrate in AS synthesis) to a susceptible cultivar could increase the TAA level ~2-fold, and simultaneously lead to some degree of enhanced viral resistance. To confirm some positive correlation between TAA levels and viral resistance, we analyzed two Arabidopsis knockout mutants (ao and vtc1) in the AS pathways; the TAA levels were significantly increased and decreased in ao and vtc1 plants, respectively. While the ao plants showed enhanced resistance to TuMV, vtc1 plants were more susceptible than the control, supporting our hypothesis. When we analyzed the expression profiles of the genes involved in the AS pathways upon TuMV infection, we found that the observed TAA increase was mainly brought about by the reduction of AS oxidation and activation of AS recycling. We then investigated the secondary signals that regulate endogenous TAA levels in response to viral infection, and found that jasmonic acid (JA) might play an important role in TAA accumulation. In conclusion, we reason that the elevated TAA accumulation in B. rapa plants would be at least partly mediated by the JA-dependent signaling pathway and may significantly contribute to viral resistance. PMID:27255930

  3. Ascorbic acid accumulates as a defense response to Turnip mosaic virus in resistant Brassica rapa cultivars.

    PubMed

    Fujiwara, Ayaka; Togawa, Satoko; Hikawa, Takahiro; Matsuura, Hideyuki; Masuta, Chikara; Inukai, Tsuyoshi

    2016-07-01

    We initially observed that Brassica rapa cultivars containing the Turnip mosaic virus (TuMV) resistance gene, Rnt1-1, accumulated a high level of endogenous ascorbic acid (AS) and dehydroascobic acid (DHA) when infected with TuMV. We here hypothesized a possible contribution of an elevated level of AS+DHA (TAA) to the Rnt1-1-mediated resistance, and conducted a series of experiments using B. rapa and Arabidopsis plants. The application of l-galactose (the key substrate in AS synthesis) to a susceptible cultivar could increase the TAA level ~2-fold, and simultaneously lead to some degree of enhanced viral resistance. To confirm some positive correlation between TAA levels and viral resistance, we analyzed two Arabidopsis knockout mutants (ao and vtc1) in the AS pathways; the TAA levels were significantly increased and decreased in ao and vtc1 plants, respectively. While the ao plants showed enhanced resistance to TuMV, vtc1 plants were more susceptible than the control, supporting our hypothesis. When we analyzed the expression profiles of the genes involved in the AS pathways upon TuMV infection, we found that the observed TAA increase was mainly brought about by the reduction of AS oxidation and activation of AS recycling. We then investigated the secondary signals that regulate endogenous TAA levels in response to viral infection, and found that jasmonic acid (JA) might play an important role in TAA accumulation. In conclusion, we reason that the elevated TAA accumulation in B. rapa plants would be at least partly mediated by the JA-dependent signaling pathway and may significantly contribute to viral resistance.

  4. Genome-wide characterization of the CBF/DREB1 gene family in Brassica rapa.

    PubMed

    Lee, Sang-Choon; Lim, Myung-Ho; Yu, Jae-Gyeong; Park, Beom-Seok; Yang, Tae-Jin

    2012-12-01

    The C-repeat/dehydration-responsive element binding transcription factors (CBF/DREBs) are important proteins in involved in responses to abiotic stress in plants. We identified ten BrDREB1 genes belonging to the CBF/DREB1 gene family in the Brassica rapa whole genome sequence, whereas six genes are found in the Arabidopsis thaliana genome. The deduced amino acid sequences of the B. rapa genes showed conserved motifs shared with other known plant CBF/DREB1s. Comparative analysis revealed that nine of the BrDREB1 genes were derived from the recent genome triplication in the tribe Brassiceae and the other one was translocated. The nine genes were located in seven of the 12 macrosyntenic blocks that are triplicated counterparts of four Arabidopsis macrosyntenic blocks harboring six CBF/DREB1 genes: one gene on each of three blocks and three tandemly arrayed genes on another block. We inspected the expression patterns of eight BrDREB1 genes by RT-PCR and microarray database searches. All eight genes were highly up-regulated during cold (4 °C) treatment, and some of them were also responsive to salt (250 mM NaCl), drought (air drying), and ABA (100 μM) treatment. Microarray data for plant developmental stages revealed that BrDREB1C2 was highly expressed during a period of cold treatment for vernalization, similar to abiotic stress-inducible genes homologous to Bn28a, Bn47, Bn115, and BoRS1, but almost opposite of BrFLC genes. Taken together, the number of BrDREB1 genes increased to 10 by genome triplication and reorganization, providing additional functions in B. rapa abiotic stress responses and development, as distinct from their Arabidopsis homologs. PMID:23148914

  5. New insights into helitron transposable elements in the mesopolyploid species Brassica rapa.

    PubMed

    Fu, Donghui; Wei, Lijuan; Xiao, Meili; Hayward, Alice

    2013-12-15

    Helitrons are DNA transposable elements that are widely present in the genomes of diverse eukaryotic taxa. Helitrons are distinct from other transposons in their ability to capture gene fragments and their rolling-replication mechanism. Brassica rapa is a mesopolyploid species and one of the most important vegetable and oil crops globally. A total of 787 helitrons were identified in the B. rapa genome and were assigned to 662 families and 700 subfamilies. More than 21,806 repetitive sequences were found within the helitrons, whose G+C content correlated negatively to that of the host helitron. Each helitron contained an average of 2.9 gene fragments and 1.9 intact genes, of which the majority were annotated with binding functions in metabolic processes. In addition, a set of 114 nonredundant microRNAs were detected within 174 helitrons and predicted to regulate a set of 787 nonredundant target genes. These results suggest that helitrons contribute to genomic structural and transcriptional variation by capturing gene fragments and generating microRNAs.

  6. Preferential retention of circadian clock genes during diploidization following whole genome triplication in Brassica rapa.

    PubMed

    Lou, Ping; Wu, Jian; Cheng, Feng; Cressman, Laura G; Wang, Xiaowu; McClung, C Robertson

    2012-06-01

    Much has been learned about the architecture and function of the circadian clock of Arabidopsis thaliana, a model for plant circadian rhythms. Circadian rhythms contribute to evolutionary fitness, suggesting that circadian rhythmicity may also contribute to agricultural productivity. Therefore, we extend our study of the plant circadian clock to Brassica rapa, an agricultural crop. Since its separation from Arabidopsis, B. rapa has undergone whole genome triplication and subsequent diploidization that has involved considerable gene loss. We find that circadian clock genes are preferentially retained relative to comparison groups of their neighboring genes, a set of randomly chosen genes, and a set of housekeeping genes broadly conserved in eukaryotes. The preferential retention of clock genes is consistent with the gene dosage hypothesis, which predicts preferential retention of highly networked or dose-sensitive genes. Two gene families encoding transcription factors that play important roles in the plant core oscillator--the PSEUDO-RESPONSE REGULATORS, including TIMING OF CAB EXPRESSION1, and the REVEILLE family, including CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL--exhibit preferential retention consistent with the gene dosage hypothesis, but a third gene family, including ZEITLUPE, that encodes F-Box proteins that regulate posttranslational protein stability offers an exception.

  7. Mapping of quantitative trait loci for the bolting trait in Brassica rapa under vernalizing conditions.

    PubMed

    Wang, Y G; Zhang, L; Ji, X H; Yan, J F; Liu, Y T; Lv, X X; Feng, H

    2014-01-01

    Premature bolting can occur occasionally during spring cultivation of heading Chinese cabbage in East Asia when the plants encounter low temperatures (vernalization), leading to economic loss. Breeding bolting-resistant cultivars is the best choice for solving this problem. We looked for QTLs responsible for varietal differences in the bolting trait in Brassica rapa under environmental conditions that promote vernalization. To achieve this goal, we constructed a linkage map with 107 simple sequence repeats and 54 insertion/deletion markers based on a segregating population of 186 F2 individuals. The resulting map consisted of 10 linkage groups and covered a total length of 947.1 cM, with an average genetic distance of 5.84 cM between adjacent markers. QTL analysis of the bolting trait was performed by two phenotypic evaluations (bolting index and flowering time) based on the scores in an F2 population in the spring of 2010, and scores in F2:3 families in autumn 2010 and spring 2011, respectively. Twenty-six QTLs that controlled bolting were detected, accounting for 2.6 to 31.2% of the phenotypic variance. The detected QTLs with large effects co-localized mainly on linkage groups A02, A06, and A07. These QTLs may provide useful information for marker-assisted selection in a breeding program for late bolting or bolting-resistant cultivars in B. rapa crops.

  8. The endogenous nitric oxide mediates selenium-induced phytotoxicity by promoting ROS generation in Brassica rapa.

    PubMed

    Chen, Yi; Mo, Hai-Zhen; Hu, Liang-Bin; Li, You-Qin; Chen, Jian; Yang, Li-Fei

    2014-01-01

    Selenium (Se) is suggested as an emerging pollutant in agricultural environment because of the increasing anthropogenic release of Se, which in turn results in phytotoxicity. The most common consequence of Se-induced toxicity in plants is oxidative injury, but how Se induces reactive oxygen species (ROS) burst remains unclear. In this work, histofluorescent staining was applied to monitor the dynamics of ROS and nitric oxide (NO) in the root of Brassica rapa under Se(IV) stress. Se(IV)-induced faster accumulation of NO than ROS. Both NO and ROS accumulation were positively correlated with Se(IV)-induced inhibition of root growth. The NO accumulation was nitrate reductase (NR)- and nitric oxide synthase (NOS)-dependent while ROS accumulation was NADPH oxidase-dependent. The removal of NO by NR inhibitor, NOS inhibitor, and NO scavenger could alleviate Se(IV)-induced expression of Br_Rbohs coding for NADPH oxidase and the following ROS accumulation in roots, which further resulted in the amelioration of Se(IV)-induced oxidative injury and growth inhibition. Thus, we proposed that the endogenous NO played a toxic role in B. rapa under Se(IV) stress by triggering ROS burst. Such findings can be used to evaluate the toxic effects of Se contamination on crop plants.

  9. Genetic analysis of health-related secondary metabolites in a Brassica rapa recombinant inbred line population.

    PubMed

    Bagheri, Hedayat; El-Soda, Mohamed; Kim, Hye Kyong; Fritsche, Steffi; Jung, Christian; Aarts, Mark G M

    2013-01-01

    The genetic basis of the wide variation for nutritional traits in Brassica rapa is largely unknown. A new Recombinant Inbred Line (RIL) population was profiled using High Performance Liquid Chromatography (HPLC) and Nuclear Magnetic Resonance (NMR) analysis to detect quantitative trait loci (QTLs) controlling seed tocopherol and seedling metabolite concentrations. RIL population parent L58 had a higher level of glucosinolates and phenylpropanoids, whereas levels of sucrose, glucose and glutamate were higher in the other RIL population parent, R-o-18. QTL related to seed tocopherol (α-, β-, γ-, δ-, α-⁄γ- and total tocopherol) concentrations were detected on chromosomes A3, A6, A9 and A10, explaining 11%-35% of the respective variation. The locus on A3 co-locates with the BrVTE1gene, encoding tocopherol cyclase. NMR spectroscopy identified the presence of organic/amino acid, sugar/glucosinolate and aromatic compounds in seedlings. QTL positions were obtained for most of the identified compounds. Compared to previous studies, novel loci were found for glucosinolate concentrations. This work can be used to design markers for marker-assisted selection of nutritional compounds in B. rapa.

  10. Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa.

    PubMed

    Lou, Ping; Zhao, Jianjun; Kim, Jung Sun; Shen, Shuxing; Del Carpio, Dunia Pino; Song, Xiaofei; Jin, Mina; Vreugdenhil, Dick; Wang, Xiaowu; Koornneef, Maarten; Bonnema, Guusje

    2007-01-01

    Wide variation for morphological traits exists in Brassica rapa and the genetic basis of this morphological variation is largely unknown. Here is a report on quantitative trait loci (QTL) analysis of flowering time, seed and pod traits, growth-related traits, leaf morphology, and turnip formation in B. rapa using multiple populations. The populations resulted from crosses between the following accessions: Rapid cycling, Chinese cabbage, Yellow sarson, Pak choi, and a Japanese vegetable turnip variety. A total of 27 QTL affecting 20 morphological traits were detected, including eight QTL for flowering time, six for seed traits, three for growth-related traits and 10 for leaf traits. One major QTL was found for turnip formation. Principal component analysis and co-localization of QTL indicated that some loci controlling leaf and seed-related traits and those for flowering time and turnip formation might be the same. The major flowering time QTL detected in all populations on linkage group R02 co-localized with BrFLC2. One major QTL, controlling turnip formation, was also mapped at this locus. The genes that may underly this QTL and comparative analyses between the four populations and with Arabidopsis thaliana are discussed.

  11. Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa.

    PubMed

    Procko, Carl; Crenshaw, Charisse Michelle; Ljung, Karin; Noel, Joseph Patrick; Chory, Joanne

    2014-06-01

    Plant architecture is optimized for the local light environment. In response to foliar shade or neighbor proximity (low red to far-red light), some plant species exhibit shade-avoiding phenotypes, including increased stem and hypocotyl growth, which increases the likelihood of outgrowing competitor plants. If shade persists, early flowering and the reallocation of growth resources to stem elongation ultimately affect the yield of harvestable tissues in crop species. Previous studies have shown that hypocotyl growth in low red to far-red shade is largely dependent on the photoreceptor phytochrome B and the phytohormone auxin. However, where shade is perceived in the plant and how auxin regulates growth spatially are less well understood. Using the oilseed and vegetable crop species Brassica rapa, we show that the perception of low red to far-red shade by the cotyledons triggers hypocotyl cell elongation and auxin target gene expression. Furthermore, we find that following shade perception, elevated auxin levels occur in a basipetal gradient away from the cotyledons and that this is coincident with a gradient of auxin target gene induction. These results show that cotyledon-generated auxin regulates hypocotyl elongation. In addition, we find in mature B. rapa plants that simulated shade does not affect seed oil composition but may affect seed yield. This suggests that in field settings where mutual shading between plants may occur, a balance between plant density and seed yield per plant needs to be achieved for maximum oil yield, while oil composition might remain constant.

  12. Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa.

    PubMed

    Lim, Ki-Byung; de Jong, Hans; Yang, Tae-Jin; Park, Jee-Young; Kwon, Soo-Jin; Kim, Jung Sun; Lim, Myung-Ho; Kim, Jin A; Jin, Mina; Jin, Yong-Moon; Kim, Seog Hyung; Lim, Yong Pyo; Bang, Jae-Wook; Kim, Ho-Il; Park, Beom-Seok

    2005-06-30

    We describe the morphology and molecular organization of heterochromatin domains in the interphase nuclei, and mitotic and meiotic chromosomes, of Brassica rapa, using DAPI staining and fluorescence in situ hybridization (FISH) of rDNA and pericentromere tandem repeats. We have developed a simple method to distinguish the centromeric regions of mitotic metaphase chromosomes by prolonged irradiation with UV light at the DAPI excitation wavelength. Application of this bleached DAPI band (BDB) karyotyping method to the 45S and 5S rDNAs and 176 bp centromere satellite repeats distinguished the 10 B. rapa chromosomes. We further characterized the centromeric repeat sequences in BAC end sequences. These fell into two classes, CentBr1 and CentBr2, occupying the centromeres of eight and two chromosomes, respectively. The centromere satellites encompassed about 30% of the total chromosomes, particularly in the core centromere blocks of all the chromosomes. Interestingly, centromere length was inversely correlated with chromosome length. The morphology and molecular organization of heterochromatin domains in interphase nuclei, and in mitotic and meiotic chromosomes, were further characterized by DAPI staining and FISH of rDNA and CentBr. The DAPI fluorescence of interphase nuclei revealed ten to twenty conspicuous chromocenters, each composed of the heterochromatin of up to four chromosomes and/or nucleolar organizing regions.

  13. QTL mapping of leafy heads by genome resequencing in the RIL population of Brassica rapa.

    PubMed

    Yu, Xiang; Wang, Han; Zhong, Weili; Bai, Jinjuan; Liu, Pinglin; He, Yuke

    2013-01-01

    Leaf heads of cabbage (Brassica oleracea), Chinese cabbage (B. rapa), and lettuce (Lactuca sativa) are important vegetables that supply mineral nutrients, crude fiber and vitamins in the human diet. Head size, head shape, head weight, and heading time contribute to yield and quality. In an attempt to investigate genetic basis of leafy head in Chinese cabbage (B. rapa), we took advantage of recent technical advances of genome resequencing to perform quantitative trait locus (QTL) mapping using 150 recombinant inbred lines (RILs) derived from the cross between heading and non-heading Chinese cabbage. The resequenced genomes of the parents uncovered more than 1 million SNPs. Genotyping of RILs using the high-quality SNPs assisted by Hidden Markov Model (HMM) generated a recombination map. The raw genetic map revealed some physical assembly error and missing fragments in the reference genome that reduced the quality of SNP genotyping. By deletion of the genetic markers in which recombination rates higher than 20%, we have obtained a high-quality genetic map with 2209 markers and detected 18 QTLs for 6 head traits, from which 3 candidate genes were selected. These QTLs provide the foundation for study of genetic basis of leafy heads and the other complex traits.

  14. Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa.

    PubMed

    Franks, Steven J

    2011-04-01

    A key question in ecological genetics is to what extent do plants adapt to changes in climatic conditions, such as drought, through plasticity or evolution. To address this question, seeds of 140 maternal families of Brassica rapa were generated from collections made before (1997) and after (2004) a natural drought. These seeds were planted in the glasshouse and grown under low-water and high-water conditions. Post-drought lines flowered earlier than pre-drought lines, showing an evolutionary shift to earlier flowering. There was significant genetic variation and genotype by environment (G × E) interactions in flowering time, indicating genetic variation in plasticity in this trait. Plants that flowered earlier had fewer leaf nodes and lower instantaneous (A/g) and integrated (δ(13)C) water use efficiency than late-flowering plants. These results suggest that B. rapa plants escape drought through early flowering rather than avoid drought through increased water use efficiency. The mechanism of this response appears to be high transpiration and inefficient water use, leading to rapid development. These findings demonstrate a trade-off between drought avoidance and escape, and indicate that, in this system, where drought acts to shorten the growing season, selection for drought escape through earlier flowering is more important than phenotypic plasticity.

  15. Transgene expression and fitness of hybrids between GM oilseed rape and Brassica rapa.

    PubMed

    Ammitzbøll, Henriette; Mikkelsen, Teis Nørgaard; Jørgensen, Rikke Bagger

    2005-01-01

    Oilseed rape (Brassica napus) is sexually compatible with its wild and weedy relative B. rapa, and introgression of genes from B. napus has been found to occur over a few generations. We simulated the early stages of transgene escape by producing F1 hybrids and the first backcross generation between two lines of transgenic B. napus and two populations of weedy B. rapa. Transgene expression and the fitness of the hybrids were examined under different environmental conditions. Expression of the transgenes was analyzed at the mRNA level by quantitative PCR and found to be stable in the hybrids, regardless of the genetic background and the environment, and equal to the level of transcription in the parental B. napus lines. Vigor of the hybrids was measured as the photosynthetic capability; pollen viability and seed set per silique. Photosynthetic capability of first generation hybrids was found to be at the same level, or higher, than that of the parental species, whereas the reproductive fitness was significantly lower. The first backcross generation had a significantly lower photosynthetic capability and reproductive fitness compared to the parental species. This is the first study that examines transgene expression at the mRNA level in transgenic hybrids of B. napus of different genetic background exposed to different environmental conditions. The data presented clarify important details of the overall risk assessment of growing transgenic oilseed rape.

  16. Protein patterns of the Brassica rapa ovules and seeds under altered gravity.

    PubMed

    Sozinov, Igor; Kozub, Natalia; Popova, Antonina

    2004-07-01

    Electrophoretic investigation of protein patterns of Brassica rapa L. ovules and seeds from plants grown under clinorotation and in the laboratory control was carried out. Ovules at different stages (7 and 18 days after pollination) and mature seeds were analyzed. Polymorphism of seed storage proteins of B. rapa was taken into consideration in analysis of changes in ovule protein patterns under clinorotation. The appearance of a protein component in the region of about 43 kDa was detected in protein patterns of 7-day-old and 18-day-old ovules in the clinostat variants. Under altered gravity, in 18-day-old ovules, the appearance of a protein in the region of about 70 kDa was also revealed. The appearance of the protein component with the similar mobility (about 43 kDa) in ovules of different age from plants grown at clinorotation suggests that synthesis of this protein may be associated with the plant response to altered gravity. However, the investigation of the nature of this protein and its role requires further research to rule out its appearance because of genotypic differences between ovules of the control and experimental variants.

  17. Genome-wide characterization of the Pectate Lyase-like (PLL) genes in Brassica rapa.

    PubMed

    Jiang, Jingjing; Yao, Lina; Miao, Ying; Cao, Jiashu

    2013-11-01

    Pectate lyases (PL) depolymerize demethylated pectin (pectate, EC 4.2.2.2) by catalyzing the eliminative cleavage of α-1,4-glycosidic linked galacturonan. Pectate Lyase-like (PLL) genes are one of the largest and most complex families in plants. However, studies on the phylogeny, gene structure, and expression of PLL genes are limited. To understand the potential functions of PLL genes in plants, we characterized their intron-exon structure, phylogenetic relationships, and protein structures, and measured their expression patterns in various tissues, specifically the reproductive tissues in Brassica rapa. Sequence alignments revealed two characteristic motifs in PLL genes. The chromosome location analysis indicated that 18 of the 46 PLL genes were located in the least fractionated sub-genome (LF) of B. rapa, while 16 were located in the medium fractionated sub-genome (MF1) and 12 in the more fractionated sub-genome (MF2). Quantitative RT-PCR analysis showed that BrPLL genes were expressed in various tissues, with most of them being expressed in flowers. Detailed qRT-PCR analysis identified 11 pollen specific PLL genes and several other genes with unique spatial expression patterns. In addition, some duplicated genes showed similar expression patterns. The phylogenetic analysis identified three PLL gene subfamilies in plants, among which subfamily II might have evolved from gene neofunctionalization or subfunctionalization. Therefore, this study opens the possibility for exploring the roles of PLL genes during plant development.

  18. New insights into helitron transposable elements in the mesopolyploid species Brassica rapa.

    PubMed

    Fu, Donghui; Wei, Lijuan; Xiao, Meili; Hayward, Alice

    2013-12-15

    Helitrons are DNA transposable elements that are widely present in the genomes of diverse eukaryotic taxa. Helitrons are distinct from other transposons in their ability to capture gene fragments and their rolling-replication mechanism. Brassica rapa is a mesopolyploid species and one of the most important vegetable and oil crops globally. A total of 787 helitrons were identified in the B. rapa genome and were assigned to 662 families and 700 subfamilies. More than 21,806 repetitive sequences were found within the helitrons, whose G+C content correlated negatively to that of the host helitron. Each helitron contained an average of 2.9 gene fragments and 1.9 intact genes, of which the majority were annotated with binding functions in metabolic processes. In addition, a set of 114 nonredundant microRNAs were detected within 174 helitrons and predicted to regulate a set of 787 nonredundant target genes. These results suggest that helitrons contribute to genomic structural and transcriptional variation by capturing gene fragments and generating microRNAs. PMID:24055723

  19. The Endogenous Nitric Oxide Mediates Selenium-Induced Phytotoxicity by Promoting ROS Generation in Brassica rapa

    PubMed Central

    Hu, Liang-Bin; Li, You-Qin; Chen, Jian; Yang, Li-Fei

    2014-01-01

    Selenium (Se) is suggested as an emerging pollutant in agricultural environment because of the increasing anthropogenic release of Se, which in turn results in phytotoxicity. The most common consequence of Se-induced toxicity in plants is oxidative injury, but how Se induces reactive oxygen species (ROS) burst remains unclear. In this work, histofluorescent staining was applied to monitor the dynamics of ROS and nitric oxide (NO) in the root of Brassica rapa under Se(IV) stress. Se(IV)-induced faster accumulation of NO than ROS. Both NO and ROS accumulation were positively correlated with Se(IV)-induced inhibition of root growth. The NO accumulation was nitrate reductase (NR)- and nitric oxide synthase (NOS)-dependent while ROS accumulation was NADPH oxidase-dependent. The removal of NO by NR inhibitor, NOS inhibitor, and NO scavenger could alleviate Se(IV)-induced expression of Br_Rbohs coding for NADPH oxidase and the following ROS accumulation in roots, which further resulted in the amelioration of Se(IV)-induced oxidative injury and growth inhibition. Thus, we proposed that the endogenous NO played a toxic role in B. rapa under Se(IV) stress by triggering ROS burst. Such findings can be used to evaluate the toxic effects of Se contamination on crop plants. PMID:25333984

  20. Diversification and evolution of the SDG gene family in Brassica rapa after the whole genome triplication

    PubMed Central

    Dong, Heng; Liu, Dandan; Han, Tianyu; Zhao, Yuxue; Sun, Ji; Lin, Sue; Cao, Jiashu; Chen, Zhong-Hua; Huang, Li

    2015-01-01

    Histone lysine methylation, controlled by the SET Domain Group (SDG) gene family, is part of the histone code that regulates chromatin function and epigenetic control of gene expression. Analyzing the SDG gene family in Brassica rapa for their gene structure, domain architecture, subcellular localization, rate of molecular evolution and gene expression pattern revealed common occurrences of subfunctionalization and neofunctionalization in BrSDGs. In comparison with Arabidopsis thaliana, the BrSDG gene family was found to be more divergent than AtSDGs, which might partly explain the rich variety of morphotypes in B. rapa. In addition, a new evolutionary pattern of the four main groups of SDGs was presented, in which the Trx group and the SUVR subgroup evolved faster than the E(z), Ash groups and the SUVH subgroup. These differences in evolutionary rate among the four main groups of SDGs are perhaps due to the complexity and variability of the regions that bind with biomacromolecules, which guide SDGs to their target loci. PMID:26596461

  1. Genetic Analysis of Health-Related Secondary Metabolites in a Brassica rapa Recombinant Inbred Line Population

    PubMed Central

    Bagheri, Hedayat; El-Soda, Mohamed; Kim, Hye Kyong; Fritsche, Steffi; Jung, Christian; Aarts, Mark G. M.

    2013-01-01

    The genetic basis of the wide variation for nutritional traits in Brassica rapa is largely unknown. A new Recombinant Inbred Line (RIL) population was profiled using High Performance Liquid Chromatography (HPLC) and Nuclear Magnetic Resonance (NMR) analysis to detect quantitative trait loci (QTLs) controlling seed tocopherol and seedling metabolite concentrations. RIL population parent L58 had a higher level of glucosinolates and phenylpropanoids, whereas levels of sucrose, glucose and glutamate were higher in the other RIL population parent, R-o-18. QTL related to seed tocopherol (α-, β-, γ-, δ-, α-/γ- and total tocopherol) concentrations were detected on chromosomes A3, A6, A9 and A10, explaining 11%–35% of the respective variation. The locus on A3 co-locates with the BrVTE1gene, encoding tocopherol cyclase. NMR spectroscopy identified the presence of organic/amino acid, sugar/glucosinolate and aromatic compounds in seedlings. QTL positions were obtained for most of the identified compounds. Compared to previous studies, novel loci were found for glucosinolate concentrations. This work can be used to design markers for marker-assisted selection of nutritional compounds in B. rapa. PMID:23892600

  2. QTL Mapping of Leafy Heads by Genome Resequencing in the RIL Population of Brassica rapa

    PubMed Central

    Yu, Xiang; Wang, Han; Zhong, Weili; Bai, Jinjuan; Liu, Pinglin; He, Yuke

    2013-01-01

    Leaf heads of cabbage (Brassica oleracea), Chinese cabbage (B. rapa), and lettuce (Lactuca sativa) are important vegetables that supply mineral nutrients, crude fiber and vitamins in the human diet. Head size, head shape, head weight, and heading time contribute to yield and quality. In an attempt to investigate genetic basis of leafy head in Chinese cabbage (B. rapa), we took advantage of recent technical advances of genome resequencing to perform quantitative trait locus (QTL) mapping using 150 recombinant inbred lines (RILs) derived from the cross between heading and non-heading Chinese cabbage. The resequenced genomes of the parents uncovered more than 1 million SNPs. Genotyping of RILs using the high-quality SNPs assisted by Hidden Markov Model (HMM) generated a recombination map. The raw genetic map revealed some physical assembly error and missing fragments in the reference genome that reduced the quality of SNP genotyping. By deletion of the genetic markers in which recombination rates higher than 20%, we have obtained a high-quality genetic map with 2209 markers and detected 18 QTLs for 6 head traits, from which 3 candidate genes were selected. These QTLs provide the foundation for study of genetic basis of leafy heads and the other complex traits. PMID:24204591

  3. Dissecting the complex molecular evolution and expression of polygalacturonase gene family in Brassica rapa ssp. chinensis.

    PubMed

    Liang, Ying; Yu, Youjian; Shen, Xiuping; Dong, Heng; Lyu, Meiling; Xu, Liai; Ma, Zhiming; Liu, Tingting; Cao, Jiashu

    2015-12-01

    Polygalacturonases (PGs) participate in pectin disassembly of cell wall and belong to one of the largest hydrolase families in plants. In this study, we identified 99 PG genes in Brassica rapa. Comprehensive analysis of phylogeny, gene structures, physico-chemical properties and coding sequence evolution demonstrated that plant PGs should be classified into seven divergent clades and each clade's members had specific sequence and structure characteristics, and/or were under specific selection pressures. Genomic distribution and retention rate analysis implied duplication events and biased retention contributed to PG family's expansion. Promoter divergence analysis using "shared motif method" revealed a significant correlation between regulatory and coding sequence evolution of PGs, and proved Clades A and E were of ancient origin. Quantitative real-time PCR analysis showed that expression patterns of PGs displayed group specificities in B. rapa. Particularly, nearly half of PG family members, especially those of Clades C, D and F, closely relates to reproductive development. Most duplicates showed similar expression profiles, suggesting dosage constraints accounted for preservation after duplication. Promoter-GUS assay further indicated PGs' extensive roles and possible redundancy during reproductive development. This work can provide a scientific classification of plant PGs, dissect the internal relationships between their evolution and expressions, and promote functional researches.

  4. Optimization of extraction, characterization and antioxidant activity of polysaccharides from Brassica rapa L.

    PubMed

    Wang, Wei; Wang, Xiaoqing; Ye, Hong; Hu, Bing; Zhou, Li; Jabbar, Saqib; Zeng, Xiaoxiong; Shen, Wenbiao

    2016-01-01

    The root of Brassica rapa L. has been traditionally used as a Uyghur folk medicine to cure cough and asthma by Uyghur nationality in Xinjiang Uygur Autonomous Region of China. In the present study, therefore, extraction optimization, characterization and antioxidant activity in vitro of polysaccharides from the root of B. rapa L. (BRP) were investigated. The optimal extraction conditions with an extraction yield of 21.48 ± 0.41% for crude BRP were obtained as follows: extraction temperature 93°C, extraction time 4.3h and ratio of extraction solvent (water) to raw material 75 mL/g. The crude BRP was purified by chromatographic columns of DEAE-52 cellulose and Sephadex G-100, affording three purified fractions of BRP-1-1, BRP-2-1 and BRP-2-2 with average molecular weight of 1510, 1110 and 838 kDa, respectively. Monosaccharide composition analysis indicated that BRP-1-1 was composed of mannose, rhamnose, glucose, galactose and arabinose, BRP-2-1 was composed of rhamnose, galacturonic acid, galactose and arabinose, and BRP-2-2 was composed of rhamnose and galacturonic acid in a molar ratio of 1.27: 54.92. Furthermore, the crude BRP exhibited relatively higher antioxidant activity in vitro than purified fractions; hence, it could be used as a natural antioxidant in functional foods or medicines.

  5. Metabolic changes of Brassica rapa transformed with a bacterial isochorismate synthase gene.

    PubMed

    Simoh, Sanimah; Linthorst, Huub J M; Lefeber, Alfons W M; Erkelens, Cornelis; Kim, Hye Kyong; Choi, Young Hae; Verpoorte, Robert

    2010-12-15

    Metabolome analysis by 1-dimensional proton nuclear magnetic resonance (¹H NMR) coupled with multivariate data analysis was carried out in Brassica rapa plants transformed with a gene encoding bacterial isochorismate synthase (ICS). Partial least square-discrimination analysis (PLS-DA) on selected signals suggested that the resonances that were dominant in the transgenic plants corresponded to a glucosinolate (neoglucobrassicin), phenylpropanoids (sinapoyl malate, feruloyl malate, caffeoyl malate), organic acids (succinic acid and fumaric acid) and sugars (α- and β-glucose). In contrast, amino acids alanine threonine, valine, leucine were dominant in the untransformed controls. In addition, HPLC data showed that the transgenic plant accumulated salicylic acid (SA) at significantly higher levels than the control plants, whereas the phylloquinone levels were not affected. The results suggest that the expression of the bacterial isochorismate synthase gene in B. rapa does not affect fluxes into pathways to other groups of secondary metabolites through competition for the same precursor. On the contrary, the biosynthesis of isochorismate-derived products (SA) seems to induce the competitive pathways via phenylalanine (phenylpropanoids) and tryptophan (IAA and indole glucosinolates).

  6. Epigenetic regulation of subgenome dominance following whole genome triplication in Brassica rapa.

    PubMed

    Cheng, Feng; Sun, Chao; Wu, Jian; Schnable, James; Woodhouse, Margaret R; Liang, Jianli; Cai, Chengcheng; Freeling, Michael; Wang, Xiaowu

    2016-07-01

    Subgenome dominance is an important phenomenon observed in allopolyploids after whole genome duplication, in which one subgenome retains more genes as well as contributes more to the higher expressing gene copy of paralogous genes. To dissect the mechanism of subgenome dominance, we systematically investigated the relationships of gene expression, transposable element (TE) distribution and small RNA targeting, relating to the multicopy paralogous genes generated from whole genome triplication in Brassica rapa. The subgenome dominance was found to be regulated by a relatively stable factor established previously, then inherited by and shared among B. rapa varieties. In addition, we found a biased distribution of TEs between flanking regions of paralogous genes. Furthermore, the 24-nt small RNAs target TEs and are negatively correlated to the dominant expression of individual paralogous gene pairs. The biased distribution of TEs among subgenomes and the targeting of 24-nt small RNAs together produce the dominant expression phenomenon at a subgenome scale. Based on these findings, we propose a bucket hypothesis to illustrate subgenome dominance and hybrid vigor. Our findings and hypothesis are valuable for the evolutionary study of polyploids, and may shed light on studies of hybrid vigor, which is common to most species. PMID:26871271

  7. Epigenetic regulation of subgenome dominance following whole genome triplication in Brassica rapa.

    PubMed

    Cheng, Feng; Sun, Chao; Wu, Jian; Schnable, James; Woodhouse, Margaret R; Liang, Jianli; Cai, Chengcheng; Freeling, Michael; Wang, Xiaowu

    2016-07-01

    Subgenome dominance is an important phenomenon observed in allopolyploids after whole genome duplication, in which one subgenome retains more genes as well as contributes more to the higher expressing gene copy of paralogous genes. To dissect the mechanism of subgenome dominance, we systematically investigated the relationships of gene expression, transposable element (TE) distribution and small RNA targeting, relating to the multicopy paralogous genes generated from whole genome triplication in Brassica rapa. The subgenome dominance was found to be regulated by a relatively stable factor established previously, then inherited by and shared among B. rapa varieties. In addition, we found a biased distribution of TEs between flanking regions of paralogous genes. Furthermore, the 24-nt small RNAs target TEs and are negatively correlated to the dominant expression of individual paralogous gene pairs. The biased distribution of TEs among subgenomes and the targeting of 24-nt small RNAs together produce the dominant expression phenomenon at a subgenome scale. Based on these findings, we propose a bucket hypothesis to illustrate subgenome dominance and hybrid vigor. Our findings and hypothesis are valuable for the evolutionary study of polyploids, and may shed light on studies of hybrid vigor, which is common to most species.

  8. Diversification and evolution of the SDG gene family in Brassica rapa after the whole genome triplication.

    PubMed

    Dong, Heng; Liu, Dandan; Han, Tianyu; Zhao, Yuxue; Sun, Ji; Lin, Sue; Cao, Jiashu; Chen, Zhong-Hua; Huang, Li

    2015-11-24

    Histone lysine methylation, controlled by the SET Domain Group (SDG) gene family, is part of the histone code that regulates chromatin function and epigenetic control of gene expression. Analyzing the SDG gene family in Brassica rapa for their gene structure, domain architecture, subcellular localization, rate of molecular evolution and gene expression pattern revealed common occurrences of subfunctionalization and neofunctionalization in BrSDGs. In comparison with Arabidopsis thaliana, the BrSDG gene family was found to be more divergent than AtSDGs, which might partly explain the rich variety of morphotypes in B. rapa. In addition, a new evolutionary pattern of the four main groups of SDGs was presented, in which the Trx group and the SUVR subgroup evolved faster than the E(z), Ash groups and the SUVH subgroup. These differences in evolutionary rate among the four main groups of SDGs are perhaps due to the complexity and variability of the regions that bind with biomacromolecules, which guide SDGs to their target loci.

  9. Diversification and evolution of the SDG gene family in Brassica rapa after the whole genome triplication.

    PubMed

    Dong, Heng; Liu, Dandan; Han, Tianyu; Zhao, Yuxue; Sun, Ji; Lin, Sue; Cao, Jiashu; Chen, Zhong-Hua; Huang, Li

    2015-01-01

    Histone lysine methylation, controlled by the SET Domain Group (SDG) gene family, is part of the histone code that regulates chromatin function and epigenetic control of gene expression. Analyzing the SDG gene family in Brassica rapa for their gene structure, domain architecture, subcellular localization, rate of molecular evolution and gene expression pattern revealed common occurrences of subfunctionalization and neofunctionalization in BrSDGs. In comparison with Arabidopsis thaliana, the BrSDG gene family was found to be more divergent than AtSDGs, which might partly explain the rich variety of morphotypes in B. rapa. In addition, a new evolutionary pattern of the four main groups of SDGs was presented, in which the Trx group and the SUVR subgroup evolved faster than the E(z), Ash groups and the SUVH subgroup. These differences in evolutionary rate among the four main groups of SDGs are perhaps due to the complexity and variability of the regions that bind with biomacromolecules, which guide SDGs to their target loci. PMID:26596461

  10. Dissecting the complex molecular evolution and expression of polygalacturonase gene family in Brassica rapa ssp. chinensis.

    PubMed

    Liang, Ying; Yu, Youjian; Shen, Xiuping; Dong, Heng; Lyu, Meiling; Xu, Liai; Ma, Zhiming; Liu, Tingting; Cao, Jiashu

    2015-12-01

    Polygalacturonases (PGs) participate in pectin disassembly of cell wall and belong to one of the largest hydrolase families in plants. In this study, we identified 99 PG genes in Brassica rapa. Comprehensive analysis of phylogeny, gene structures, physico-chemical properties and coding sequence evolution demonstrated that plant PGs should be classified into seven divergent clades and each clade's members had specific sequence and structure characteristics, and/or were under specific selection pressures. Genomic distribution and retention rate analysis implied duplication events and biased retention contributed to PG family's expansion. Promoter divergence analysis using "shared motif method" revealed a significant correlation between regulatory and coding sequence evolution of PGs, and proved Clades A and E were of ancient origin. Quantitative real-time PCR analysis showed that expression patterns of PGs displayed group specificities in B. rapa. Particularly, nearly half of PG family members, especially those of Clades C, D and F, closely relates to reproductive development. Most duplicates showed similar expression profiles, suggesting dosage constraints accounted for preservation after duplication. Promoter-GUS assay further indicated PGs' extensive roles and possible redundancy during reproductive development. This work can provide a scientific classification of plant PGs, dissect the internal relationships between their evolution and expressions, and promote functional researches. PMID:26506823

  11. Effects of phytohormones and jasmonic acid on glucosinolate content in hairy root cultures of Sinapis alba and Brassica rapa.

    PubMed

    Kastell, Anja; Smetanska, Iryna; Ulrichs, Christian; Cai, Zhenzhen; Mewis, Inga

    2013-01-01

    Although some study have established hairy root cultures from brassicaceous plants with glucosinolates (GS) as characteristic secondary metabolite, studies are missing which compare hairy roots with the corresponding mother plants. Therefore, two different plant species-Sinapis alba and Brassica rapa subsp. rapa pygmeae teltoviensis-were transformed with the Agrobacterium rhizogenes strain A4. Aliphatic and indolyl GS were present in B. rapa, exhibiting larger quantities in leaves than in roots. Aromatic p-hydroxybenzyl GS were found particularly in the leaves of S. alba. However, the proportion of indolyl GS increased suddenly in transformed hairy roots of S. alba and B. rapa. Cultivation with the phytohormone kinetin (0.5 mg L(-1)) enhanced GS accumulation in B. rapa hairy roots, however not in S. alba, but 2,4-D (0.4 mg L(-1)) induced de-differentiation of roots in both species and reduced GS levels. GS levels especially of 1-methoxyindol-3ylmethyl GS increased in hairy roots in response to JA, but root growth was inhibited. While 2 weeks of cultivation in 100 to 200 μM JA were determined at optimum for maximum GS yield in S. alba hairy root cultures, 4 weeks of cultivation in 50 to 100 μM JA was the optimum for B. rapa.

  12. Genetic load and transgenic mitigating genes in transgenic Brassica rapa (field mustard) × Brassica napus (oilseed rape) hybrid populations

    PubMed Central

    2009-01-01

    Background One theoretical explanation for the relatively poor performance of Brassica rapa (weed) × Brassica napus (crop) transgenic hybrids suggests that hybridization imparts a negative genetic load. Consequently, in hybrids genetic load could overshadow any benefits of fitness enhancing transgenes and become the limiting factor in transgenic hybrid persistence. Two types of genetic load were analyzed in this study: random/linkage-derived genetic load, and directly incorporated genetic load using a transgenic mitigation (TM) strategy. In order to measure the effects of random genetic load, hybrid productivity (seed yield and biomass) was correlated with crop- and weed-specific AFLP genomic markers. This portion of the study was designed to answer whether or not weed × transgenic crop hybrids possessing more crop genes were less competitive than hybrids containing fewer crop genes. The effects of directly incorporated genetic load (TM) were analyzed through transgene persistence data. TM strategies are proposed to decrease transgene persistence if gene flow and subsequent transgene introgression to a wild host were to occur. Results In the absence of interspecific competition, transgenic weed × crop hybrids benefited from having more crop-specific alleles. There was a positive correlation between performance and number of B. napus crop-specific AFLP markers [seed yield vs. marker number (r = 0.54, P = 0.0003) and vegetative dry biomass vs. marker number (r = 0.44, P = 0.005)]. However under interspecific competition with wheat or more weed-like conditions (i.e. representing a situation where hybrid plants emerge as volunteer weeds in subsequent cropping systems), there was a positive correlation between the number of B. rapa weed-specific AFLP markers and seed yield (r = 0.70, P = 0.0001), although no such correlation was detected for vegetative biomass. When genetic load was directly incorporated into the hybrid genome, by inserting a fitness

  13. HPLC-DAD/MS characterization of flavonoids and hydroxycinnamic derivatives in turnip tops (Brassica rapa L. Subsp. sylvestris L.).

    PubMed

    Romani, Annalisa; Vignolini, Pamela; Isolani, Laura; Ieri, Francesca; Heimler, Daniela

    2006-02-22

    Flavonoids and hydroxycinnamic derivatives of turnip tops (Brassica rapa L. subsp. sylvestris L.) were characterized for the first time in four samples from different origins. Turnip tops exhibit a high polyphenols content (ranging from 107 to 191 mg/100 g, fresh weight) and a good antiradical activity, determined with the DPPH* test. After a liquid-liquid extraction and fractionation procedures, most flavonoids (isorhamnetin, kaempferol, and quercetin glycosides) and hydroxycinnamic derivatives were identified by means of HPLC-DAD/MS techniques. Isorhamnetin glycosides were the main flavonoid derivatives, differing from that found in the vegetables belonging to the Brassica oleracea group.

  14. Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L.: ssp. pekinensis).

    PubMed

    Kim, Soo-Yun; Park, Beom-Seok; Kwon, Soo-Jin; Kim, Jungsun; Lim, Myung-Ho; Park, Young-Doo; Kim, Dool Yi; Suh, Seok-Chul; Jin, Yong-Moon; Ahn, Ji Hoon; Lee, Yeon-Hee

    2007-03-01

    Chinese cabbage plants remain in the vegetative growth phase until they have experienced prolonged exposure to cold temperature, known as vernalization. This inhibition of flowering is caused by the high levels of FLOWERING LOCUS C (FLC) expression. To increase the product value of Chinese cabbage by inhibiting the floral transition, three genes (BrFLC1, BrFLC2, and BrFLC3) homologous to the AtFLC gene, which encodes a floral repressor, were isolated from the Chinese cabbage 'Chiifu'. These genes showed high similarity to AtFLC, although the putative BrFLC1 protein contained ten more residues than AtFLC. The BrFLC genes were expressed ubiquitously, except that BrFLC3 was not expressed in roots. BrFLC1 and BrFLC2 showed stronger expression than BrFLC3 in unvernalized and vernalized Chinese cabbage. The expression levels of the three BrFLC genes were lower in an early-flowering Chinese cabbage, suggesting that the BrFLC transcript level was associated with flowering time. Constitutive expression of the BrFLC genes in Arabidopsis significantly delayed flowering, which was also observed in transgenic Chinese cabbage overexpressing BrFLC3. These results suggest that the BrFLC genes act similarly to AtFLC. Our results provide a technique for controlling flowering time in Chinese cabbage and other crops to produce high yields of vegetative tissues.

  15. Increased susceptibility to fungal disease accompanies adaptation to drought in Brassica rapa.

    PubMed

    O'Hara, Niamh B; Rest, Joshua S; Franks, Steven J

    2016-01-01

    Recent studies have demonstrated adaptive evolutionary responses to climate change, but little is known about how these responses may influence ecological interactions with other organisms, including natural enemies. We used a resurrection experiment in the greenhouse to examine the effect of evolutionary responses to drought on the susceptibility of Brassica rapa plants to a fungal pathogen, Alternaria brassicae. In agreement with previous studies in this population, we found an evolutionary shift to earlier flowering postdrought, which was previously shown to be adaptive. Here, we report the novel finding that postdrought descendant plants were also more susceptible to disease, indicating a rapid evolutionary shift to increased susceptibility. This was accompanied by an evolutionary shift to increased specific leaf area (thinner leaves) following drought. We found that flowering time and disease susceptibility displayed plastic responses to experimental drought treatments, but that this plasticity did not match the direction of evolution, indicating that plastic and evolutionary responses to changes in climate can be opposed. The observed evolutionary shift to increased disease susceptibility accompanying adaptation to drought provides evidence that even if populations can rapidly adapt in response to climate change, evolution in other traits may have ecological effects that could make species more vulnerable.

  16. Gravity independence of seed-to-seed cycling in Brassica rapa.

    PubMed

    Musgrave, M E; Kuang, A; Xiao, Y; Stout, S C; Bingham, G E; Briarty, L G; Levenskikh, M A; Sychev, V N; Podolski, I G

    2000-02-01

    Growth of higher plants in the microgravity environment of orbital platforms has been problematic. Plants typically developed more slowly in space and often failed at the reproductive phase. Short-duration experiments on the Space Shuttle showed that early stages in the reproductive process could occur normally in microgravity, so we sought a long-duration opportunity to test gravity's role throughout the complete life cycle. During a 122-d opportunity on the Mir space station, full life cycles were completed in microgravity with Brassica rapa L. in a series of three experiments in the Svet greenhouse. Plant material was preserved in space by chemical fixation, freezing, and drying, and then compared to material preserved in the same way during a high-fidelity ground control. At sampling times 13 d after planting, plants on Mir were the same size and had the same number of flower buds as ground control plants. Following hand-pollination of the flowers by the astronaut, siliques formed. In microgravity, siliques ripened basipetally and contained smaller seeds with less than 20% of the cotyledon cells found in the seeds harvested from the ground control. Cytochemical localization of storage reserves in the mature embryos showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in the ground control seeds. While these successful seed-to-seed cycles show that gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity.

  17. Identification and preliminary analysis of a new PCP promoter from Brassica rapa ssp. chinensis.

    PubMed

    Zhang, Qiang; Liu, Huizhi; Cao, Jiashu

    2008-12-01

    The promoter of Brassica campestris Male Fertile 5 (BcMF5), a pollen coat protein member, class A (PCP-A) gene family, was isolated from Brassica rapa L. ssp. chinensis Makino (Chinese cabbage-pak-choi) by Thermal Asymmetric Interlaced Polymerase Chain Reaction (TAIL-PCR). Sequence analysis suggested that the 605-bp promoter of BcMF5 appears to be a pollen promoter. In an attempt to confirm the promoter activity of BcMF5 promoter, -609 to +3 bp and -377 to +3 bp fragments of the upstream sequence of BcMF5 were inserted at the site upstream of the coding region of the uidA gene in the sense orientation to construct two deletion expression vectors. Transient expression analysis in onion epidermal cells by particle bombardment showed that both -609 to +3 bp and -377 to +3 bp fragments of BcMF5 promoter were capable of driving beta-glucuronidase gene expression. Furthermore, by Agrobacterium-mediated genetic transformation method, Arabidopsis transgenic Kan(R) plants were obtained. GUS assay analysis revealed that the promoter of BcMF5 induced gene expression at the early stage of anther development and drove high levels of GUS expression in anther walls, upper regions of petals, pollen, and pollen tubes in the middle and late stage of anther development, but did not drive any expression in sepals and pistils.

  18. A novel dwarfing mutation in a green revolution gene from Brassica rapa.

    PubMed

    Muangprom, Amorntip; Thomas, Stephen G; Sun, Tai-Ping; Osborn, Thomas C

    2005-03-01

    Mutations in the biosynthesis or signaling pathways of gibberellin (GA) can cause dwarfing phenotypes in plants, and the use of such mutations in plant breeding was a major factor in the success of the Green Revolution. DELLA proteins are GA signaling repressors whose functions are conserved in different plant species. Recent studies show that GA promotes stem growth by causing degradation of DELLA proteins via the ubiquitin-proteasome pathway. The most widely utilized dwarfing alleles in wheat (Triticum aestivum; e.g. Rht-B1b and Rht-D1b) encode GA-resistant forms of a DELLA protein that function as dominant and constitutively active repressors of stem growth. All of the previously identified dominant DELLA repressors from several plant species contain N-terminal mutations. Here we report on a novel dwarf mutant from Brassica rapa (Brrga1-d) that is caused by substitution of a conserved amino acid in the C-terminal domain of a DELLA protein. Brrga1-d, like N-terminal DELLA mutants, retains its repressor function and accumulates to high levels, even in the presence of GA. However, unlike wild-type and N-terminal DELLA mutants, Brrga1-d does not interact with a protein component required for degradation, suggesting that the mutated amino acid causes dwarfism by preventing an interaction needed for its degradation. This novel mutation confers nondeleterious dwarf phenotypes when transferred to Arabidopsis (Arabidopsis thaliana) and oilseed rape (Brassica napus), indicating its potential usefulness in other crop species.

  19. A family of auxin conjugate hydrolases from Brassica rapa: characterization and expression during clubroot disease.

    PubMed

    Schuller, A; Ludwig-Müller, J

    2006-01-01

    During the obligate biotrophic interaction of Plasmodiophora brassicae with members of the Brassicaceae, the host roots show hypertrophy and galls are established. An increased auxin pool appears to correlate with cell expansion and cell division, but the origin of the free auxin is not yet clear. As previous results point to increased IAA-hydrolytic activity in infected roots of Brassica rapa at later time points of infection, we isolated IAA-amidohydrolase-like genes from various tissues. We cloned full-length cDNAs of two genes with high homology to the Arabidopsis IAR3 (Br-IAR3) as well as full-length clones corresponding to the Arabidopsis ILL2/ILL1 (Br-ILL2) and ILL6 (Br-ILL6) hydrolase genes. Using heterologous expression in Escherichia coli, we showed that Br-IAR3 24 and Br-ILL2 possess hydrolytic activity in vitro. Real-time reverse transcription (RT)-PCR revealed that only Br-IAR3 25 and Br-ILL6 are expressed differentially during clubroot disease, but showed a decreased expression at later time point of infection. These findings are discussed with regard to a negative regulation in IAA homeostasis during clubroot disease.

  20. Gravity independence of seed-to-seed cycling in Brassica rapa

    NASA Technical Reports Server (NTRS)

    Musgrave, M. E.; Kuang, A.; Xiao, Y.; Stout, S. C.; Bingham, G. E.; Briarty, L. G.; Levenskikh, M. A.; Sychev, V. N.; Podolski, I. G.

    2000-01-01

    Growth of higher plants in the microgravity environment of orbital platforms has been problematic. Plants typically developed more slowly in space and often failed at the reproductive phase. Short-duration experiments on the Space Shuttle showed that early stages in the reproductive process could occur normally in microgravity, so we sought a long-duration opportunity to test gravity's role throughout the complete life cycle. During a 122-d opportunity on the Mir space station, full life cycles were completed in microgravity with Brassica rapa L. in a series of three experiments in the Svet greenhouse. Plant material was preserved in space by chemical fixation, freezing, and drying, and then compared to material preserved in the same way during a high-fidelity ground control. At sampling times 13 d after planting, plants on Mir were the same size and had the same number of flower buds as ground control plants. Following hand-pollination of the flowers by the astronaut, siliques formed. In microgravity, siliques ripened basipetally and contained smaller seeds with less than 20% of the cotyledon cells found in the seeds harvested from the ground control. Cytochemical localization of storage reserves in the mature embryos showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in the ground control seeds. While these successful seed-to-seed cycles show that gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity.

  1. Increased susceptibility to fungal disease accompanies adaptation to drought in Brassica rapa.

    PubMed

    O'Hara, Niamh B; Rest, Joshua S; Franks, Steven J

    2016-01-01

    Recent studies have demonstrated adaptive evolutionary responses to climate change, but little is known about how these responses may influence ecological interactions with other organisms, including natural enemies. We used a resurrection experiment in the greenhouse to examine the effect of evolutionary responses to drought on the susceptibility of Brassica rapa plants to a fungal pathogen, Alternaria brassicae. In agreement with previous studies in this population, we found an evolutionary shift to earlier flowering postdrought, which was previously shown to be adaptive. Here, we report the novel finding that postdrought descendant plants were also more susceptible to disease, indicating a rapid evolutionary shift to increased susceptibility. This was accompanied by an evolutionary shift to increased specific leaf area (thinner leaves) following drought. We found that flowering time and disease susceptibility displayed plastic responses to experimental drought treatments, but that this plasticity did not match the direction of evolution, indicating that plastic and evolutionary responses to changes in climate can be opposed. The observed evolutionary shift to increased disease susceptibility accompanying adaptation to drought provides evidence that even if populations can rapidly adapt in response to climate change, evolution in other traits may have ecological effects that could make species more vulnerable. PMID:26648585

  2. Molecular cloning of a cDNA encoding a pollen extracellular protein as a potential source of a pollen allergen in Brassica rapa.

    PubMed

    Toriyama, K; Hanaoka, K; Okada, T; Watanabe, M

    1998-03-13

    A polyclonal antiserum was raised against the extracellular pollen proteins of Brassica rapa and used for screening the expression cDNA libraries made from immature anthers. We obtained five groups of cDNA clones, including cDNAs similar to PCP1, thioredoxin, and lipid transfer protein (LTP). Recombinant protein of the cDNA clone showing sequence similarity to LTP was demonstrated to bind IgE of a patient allergic to Brassica pollen. The cDNA clone reported here, therefore, represents a novel pollen allergen of Brassica rapa.

  3. Formation of green-blue compounds in Brassica rapa root by high pressure processing and subsequent storage.

    PubMed

    Ueno, Shigeaki; Hayashi, Mayumi; Shigematsu, Toru; Fujii, Tomoyuki

    2009-04-23

    The effect of high pressure treatment on biochemical changes during storage was investigated using Brassica rapa root. High pressure treated samples with 400 and 600 MPa formed unique green-blue color during 7-d storage at 4 degrees C. The mechanism of green-blue compound formation would be based on biochemical pathway for a unique green-blue pigment synthesis, containing O2-dependent steps and possibly enzymatic reactions.

  4. Embryogenesis and plant regeneration of pakchoi (Brassica rapa L. ssp. chinensis) via in vitro isolated microspore culture.

    PubMed

    Cao, M Q; Li, Y; Liu, F; Doré, C

    1994-05-01

    Isolated microspores of various populations of three varieties of the Chinese cabbage pakchoi (Brassica rapa ssp. chinensis) were cultivated in vitro on NLN82 medium (Lichter 1982) and embryos and plantlets obtained with nine cultivars. The best embryo yield per bud was 57.4. A 33°C one day heat treatment was generally necessary to induce embryogenesis. Analysis of ploidy level through flow cytometry for two cultivars indicated that haploids were present.

  5. Non-essential repeats in the promoter region of a Brassica rapa acyl carrier protein gene expressed in developing embryos.

    PubMed

    Scherer, D; Sato, A; McCarter, D W; Radke, S E; Kridl, J C; Knauf, V C

    1992-02-01

    A genomic clone of an acyl carrier protein gene (Bcg4-4) which is highly expressed in developing embryos of Brassica rapa was isolated and sequenced. The promoter and transcription terminator regions of Bcg4-4 were used to express a beta-glucuronidase reporter gene in transgenic rapeseed. Deletion of repeated domains in the promoter region did not lower beta-glucuronidase expression in seeds.

  6. Influence of stress hormones on the auxin homeostasis in Brassica rapa seedlings.

    PubMed

    Salopek-Sondi, Branka; Šamec, Dunja; Mihaljević, Snježana; Smolko, Ana; Pavlović, Iva; Janković, Iva; Ludwig-Müller, Jutta

    2013-07-01

    KEY MESSAGE : Stress hormones, particularly jasmonic acid, influenced root growth, auxin levels, and transcription of auxin amidohydrolase BrIAR3 in Brassica rapa seedlings, while auxin conjugate synthetases BrGH3.1 and BrGH3.9 were down-regulated by all treatments. The influence of stress hormones: jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA) on 1-day-old seedlings of Chinese cabbage (Brassica rapa L. ssp. pekinensis) was investigated with particular focus on auxin levels and the regulation of reversible auxin conjugation as a mechanism of auxin homeostasis. At the physiological level, stress hormones inhibited root growth, where JA was the most prominent inhibitor with an IC50 value 3.1 μM, which is one and two orders of magnitude lower than that found for ABA and SA, respectively. JA treatment significantly increased the total auxin content, by induction of free and conjugated forms. Also, the stress hormones affected the transcription of genes involved in the process of the reversible auxin conjugation: auxin amidohydrolases BrIAR3 and BrILL2, and auxin conjugate synthetases BrGH3.1 and BrGH3.9. JA treatment increased the transcript level of BrIAR3 two-fold, while it did not affect the transcription of BrILL2. SA and ABA down-regulated the transcription of both auxin amidohydrolase genes by 30 %. Transcription of both auxin conjugate synthetases was significantly down-regulated by all treatments by 30-70 %. Among the investigated biochemical stress markers, glutathione along with protein carbonylation appeared the most affected upon treatments. The redox status of the seedlings was shifted to the more oxidized state upon JA and ABA treatments, whereas SA caused more reduced redox state in comparison to the control. The principal component analysis visualized relationship among auxin and stress parameters upon treatments. Accordingly, the role of auxin in stress response of Brassica seedlings was discussed.

  7. Quantitative Trait Locus Analysis of Seed Germination and Seedling Vigor in Brassica rapa Reveals QTL Hotspots and Epistatic Interactions.

    PubMed

    Basnet, Ram K; Duwal, Anita; Tiwari, Dev N; Xiao, Dong; Monakhos, Sokrat; Bucher, Johan; Visser, Richard G F; Groot, Steven P C; Bonnema, Guusje; Maliepaard, Chris

    2015-01-01

    The genetic basis of seed germination and seedling vigor is largely unknown in Brassica species. We performed a study to evaluate the genetic basis of these important traits in a B. rapa doubled haploid population from a cross of a yellow-seeded oil-type yellow sarson and a black-seeded vegetable-type pak choi. We identified 26 QTL regions across all 10 linkage groups for traits related to seed weight, seed germination and seedling vigor under non-stress and salt stress conditions illustrating the polygenic nature of these traits. QTLs for multiple traits co-localized and we identified eight hotspots for quantitative trait loci (QTL) of seed weight, seed germination, and root and shoot lengths. A QTL hotspot for seed germination on A02 mapped at the B. rapa Flowering Locus C (BrFLC2). Another hotspot on A05 with salt stress specific QTLs co-located with the B. rapa Fatty acid desaturase 2 (BrFAD2) locus. Epistatic interactions were observed between QTL hotspots for seed germination on A02 and A10 and with a salt tolerance QTL on A05. These results contribute to the understanding of the genetics of seed quality and seeding vigor in B. rapa and can offer tools for Brassica breeding. PMID:26648948

  8. Quantitative Trait Locus Analysis of Seed Germination and Seedling Vigor in Brassica rapa Reveals QTL Hotspots and Epistatic Interactions.

    PubMed

    Basnet, Ram K; Duwal, Anita; Tiwari, Dev N; Xiao, Dong; Monakhos, Sokrat; Bucher, Johan; Visser, Richard G F; Groot, Steven P C; Bonnema, Guusje; Maliepaard, Chris

    2015-01-01

    The genetic basis of seed germination and seedling vigor is largely unknown in Brassica species. We performed a study to evaluate the genetic basis of these important traits in a B. rapa doubled haploid population from a cross of a yellow-seeded oil-type yellow sarson and a black-seeded vegetable-type pak choi. We identified 26 QTL regions across all 10 linkage groups for traits related to seed weight, seed germination and seedling vigor under non-stress and salt stress conditions illustrating the polygenic nature of these traits. QTLs for multiple traits co-localized and we identified eight hotspots for quantitative trait loci (QTL) of seed weight, seed germination, and root and shoot lengths. A QTL hotspot for seed germination on A02 mapped at the B. rapa Flowering Locus C (BrFLC2). Another hotspot on A05 with salt stress specific QTLs co-located with the B. rapa Fatty acid desaturase 2 (BrFAD2) locus. Epistatic interactions were observed between QTL hotspots for seed germination on A02 and A10 and with a salt tolerance QTL on A05. These results contribute to the understanding of the genetics of seed quality and seeding vigor in B. rapa and can offer tools for Brassica breeding.

  9. Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea.

    PubMed

    Iniguez-Luy, Federico Luis; Lukens, Lewis; Farnham, Mark W; Amasino, Richard M; Osborn, Thomas C

    2009-12-01

    Publicly available genomic tools help researchers integrate information and make new discoveries. In this paper, we describe the development of immortal mapping populations of rapid cycling, self-compatible lines, molecular markers, and linkage maps for Brassica rapa and B. oleracea and make the data and germplasm available to the Brassica research community. The B. rapa population consists of 160 recombinant inbred (RI) lines derived from the cross of highly inbred lines of rapid cycling and yellow sarson B. rapa. The B. oleracea population consists of 155 double haploid (DH) lines derived from an F1 cross between two DH lines, rapid cycling and broccoli. A total of 120 RFLP probes, 146 SSR markers, and one phenotypic trait (flower color) were used to construct genetic linkage maps for both species. The B. rapa map consists of 224 molecular markers distributed along 10 linkage groups (A1-A10) with a total distance of 1125.3 cM and a marker density of 5.7 cM/marker. The B. oleracea genetic map consists of 279 molecular markers and one phenotypic marker distributed along nine linkage groups (C1-C9) with a total distance of 891.4 cM and a marker density of 3.2 cM/marker. A syntenic analysis with Arabidopsis thaliana identified collinear genomic blocks that are in agreement with previous studies, reinforcing the idea of conserved chromosomal regions across the Brassicaceae.

  10. Quantitative Trait Locus Analysis of Seed Germination and Seedling Vigor in Brassica rapa Reveals QTL Hotspots and Epistatic Interactions

    PubMed Central

    Basnet, Ram K.; Duwal, Anita; Tiwari, Dev N.; Xiao, Dong; Monakhos, Sokrat; Bucher, Johan; Visser, Richard G. F.; Groot, Steven P. C.; Bonnema, Guusje; Maliepaard, Chris

    2015-01-01

    The genetic basis of seed germination and seedling vigor is largely unknown in Brassica species. We performed a study to evaluate the genetic basis of these important traits in a B. rapa doubled haploid population from a cross of a yellow-seeded oil-type yellow sarson and a black-seeded vegetable-type pak choi. We identified 26 QTL regions across all 10 linkage groups for traits related to seed weight, seed germination and seedling vigor under non-stress and salt stress conditions illustrating the polygenic nature of these traits. QTLs for multiple traits co-localized and we identified eight hotspots for quantitative trait loci (QTL) of seed weight, seed germination, and root and shoot lengths. A QTL hotspot for seed germination on A02 mapped at the B. rapa Flowering Locus C (BrFLC2). Another hotspot on A05 with salt stress specific QTLs co-located with the B. rapa Fatty acid desaturase 2 (BrFAD2) locus. Epistatic interactions were observed between QTL hotspots for seed germination on A02 and A10 and with a salt tolerance QTL on A05. These results contribute to the understanding of the genetics of seed quality and seeding vigor in B. rapa and can offer tools for Brassica breeding. PMID:26648948

  11. Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa.

    PubMed

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Yang, Tae-Jin; Hur, Yoonkang; Nou, Ill-Sup

    2014-10-15

    Flavonoids including anthocyanins provide flower and leaf colors, as well as other derivatives that play diverse roles in plant development and interactions with the environment. Dihydroflavonol 4-reductase (DFR) is part of an important step in the flavonoid biosynthetic pathway of anthocyanins. This study characterized 12 DFR genes of Brassica rapa and investigated their association with anthocyanin coloration, as well as cold and freezing stress in several genotypes of B. rapa. Comparison of sequences of these genes with DFR gene sequences from other species revealed a high degree of homology. Constitutive expression of the genes in several pigmented and non-pigmented lines of B. rapa demonstrated correlation with anthocyanin accumulation for BrDFR8 and 9. Conversely, BrDFR2, 4, 8 and 9 only showed very high responses to cold stress in pigmented B. rapa samples. BrDFR1, 3, 5, 6 and 10 responded to cold and freezing stress treatments, regardless of pigmentation. BrDFRs were also shown to be regulated by two transcription factors, BrMYB2-2 and BrTT8, contrasting with anthocyanin accumulation and cold and freezing stress. Thus, the above results suggest that these genes are associated with anthocyanin biosynthesis and cold and freezing stress tolerance and might be useful resources for development of cold and/or freezing stress resistant Brassica crops with desirable colors as well. These findings may also facilitate exploration of the molecular mechanism that regulates anthocyanin biosynthesis and its response to abiotic stresses.

  12. Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa.

    PubMed

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Yang, Tae-Jin; Hur, Yoonkang; Nou, Ill-Sup

    2014-10-15

    Flavonoids including anthocyanins provide flower and leaf colors, as well as other derivatives that play diverse roles in plant development and interactions with the environment. Dihydroflavonol 4-reductase (DFR) is part of an important step in the flavonoid biosynthetic pathway of anthocyanins. This study characterized 12 DFR genes of Brassica rapa and investigated their association with anthocyanin coloration, as well as cold and freezing stress in several genotypes of B. rapa. Comparison of sequences of these genes with DFR gene sequences from other species revealed a high degree of homology. Constitutive expression of the genes in several pigmented and non-pigmented lines of B. rapa demonstrated correlation with anthocyanin accumulation for BrDFR8 and 9. Conversely, BrDFR2, 4, 8 and 9 only showed very high responses to cold stress in pigmented B. rapa samples. BrDFR1, 3, 5, 6 and 10 responded to cold and freezing stress treatments, regardless of pigmentation. BrDFRs were also shown to be regulated by two transcription factors, BrMYB2-2 and BrTT8, contrasting with anthocyanin accumulation and cold and freezing stress. Thus, the above results suggest that these genes are associated with anthocyanin biosynthesis and cold and freezing stress tolerance and might be useful resources for development of cold and/or freezing stress resistant Brassica crops with desirable colors as well. These findings may also facilitate exploration of the molecular mechanism that regulates anthocyanin biosynthesis and its response to abiotic stresses. PMID:25108127

  13. Brassica rapa plants adapted to microgravity with reduced photosystem I and its photochemical activity.

    PubMed

    Jiao, Shunxing; Hilaire, Emmanuel; Paulsen, Avelina Q; Guikema, James A

    2004-10-01

    The photosynthetic apparatus contains several protein complexes, many of which are regulated by environmental conditions. In this study, the influences of microgravity on PSI and PSII in Brassica rapa plants grown aboard the space shuttle were examined. We found that Brassica plants grown in space had a normal level of growth relative to controls under similar conditions on Earth. Upon return to Earth, cotyledons were harvested and thylakoid membranes were isolated. Analysis of chlorophyll contents showed that the Chl a/b ratio (3.5) in flight cotyledons was much higher than a ratio of 2.42 in the ground controls. The flight samples also had a reduction of PSI complexes and a corresponding 30% decrease of PSI photochemical activity. Immunoblotting showed that the reaction centre polypeptides of PSI were more apparently decreased (e.g. by 24-33% for PsaA and PsaB, and 57% for PsaC) than the light-harvesting complexes. In comparison, the accumulation of PSII complex was less affected in microgravity, thus only a slight reduction in D1, D2 and LHCII was observed in protein blots. However, there was a 32% decrease of OEC1 in the flight samples, indicating a defective OEC subcomplex. In addition, an average 54% increase of the 54 kDa CF1-beta isoform was found in the flight samples, suggesting that space-grown plants suffered from certain stresses, consistent with implications of the increased Chl a/b ratio. Taken together, the results demonstrated that Brassica plants can adapt to spaceflight microgravity, but with significant alterations in chloroplast structures and photosynthetic complexes, and especially reduction of PSI and its activity.

  14. Brassica rapa plants adapted to microgravity with reduced photosystem I and its photochemical activity

    NASA Technical Reports Server (NTRS)

    Jiao, Shunxing; Hilaire, Emmanuel; Paulsen, Avelina Q.; Guikema, James A.

    2004-01-01

    The photosynthetic apparatus contains several protein complexes, many of which are regulated by environmental conditions. In this study, the influences of microgravity on PSI and PSII in Brassica rapa plants grown aboard the space shuttle were examined. We found that Brassica plants grown in space had a normal level of growth relative to controls under similar conditions on Earth. Upon return to Earth, cotyledons were harvested and thylakoid membranes were isolated. Analysis of chlorophyll contents showed that the Chl a/b ratio (3.5) in flight cotyledons was much higher than a ratio of 2.42 in the ground controls. The flight samples also had a reduction of PSI complexes and a corresponding 30% decrease of PSI photochemical activity. Immunoblotting showed that the reaction centre polypeptides of PSI were more apparently decreased (e.g. by 24-33% for PsaA and PsaB, and 57% for PsaC) than the light-harvesting complexes. In comparison, the accumulation of PSII complex was less affected in microgravity, thus only a slight reduction in D1, D2 and LHCII was observed in protein blots. However, there was a 32% decrease of OEC1 in the flight samples, indicating a defective OEC subcomplex. In addition, an average 54% increase of the 54 kDa CF1-beta isoform was found in the flight samples, suggesting that space-grown plants suffered from certain stresses, consistent with implications of the increased Chl a/b ratio. Taken together, the results demonstrated that Brassica plants can adapt to spaceflight microgravity, but with significant alterations in chloroplast structures and photosynthetic complexes, and especially reduction of PSI and its activity.

  15. DNA Methylation Alterations at 5'-CCGG Sites in the Interspecific and Intraspecific Hybridizations Derived from Brassica rapa and B. napus.

    PubMed

    Xiong, Wanshan; Li, Xiaorong; Fu, Donghui; Mei, Jiaqin; Li, Qinfei; Lu, Guanyuan; Qian, Lunwen; Fu, Yin; Disi, Joseph Onwusemu; Li, Jiana; Qian, Wei

    2013-01-01

    DNA methylation is an important regulatory mechanism for gene expression that involved in the biological processes of development and differentiation in plants. To investigate the association of DNA methylation with heterosis in Brassica, a set of intraspecific hybrids in Brassica rapa and B. napus and interspecific hybrids between B. rapa and B. napus, together with parental lines, were used to monitor alterations in cytosine methylation at 5'-CCGG sites in seedlings and buds by methylation-sensitive amplification polymorphism analysis. The methylation status of approximately a quarter of the methylation sites changed between seedlings and buds. These alterations were related closely to the genomic structure and heterozygous status among accessions. The methylation status in the majority of DNA methylation sites detected in hybrids was the same as that in at least one of the parental lines in both seedlings and buds. However, the association between patterns of cytosine methylation and heterosis varied among different traits and between tissues in hybrids of Brassica, although a few methylation loci were associated with heterosis. Our data suggest that changes in DNA methylation at 5'-CCGG sites are not associated simply with heterosis in the interspecific and intraspecific hybridizations derived from B. rapa and B. napus.

  16. Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy.

    PubMed

    Tang, Haibao; Woodhouse, Margaret R; Cheng, Feng; Schnable, James C; Pedersen, Brent S; Conant, Gavin; Wang, Xiaowu; Freeling, Michael; Pires, J Chris

    2012-04-01

    The genome sequence of the paleohexaploid Brassica rapa shows that fractionation is biased among the three subgenomes and that the least fractionated subgenome has approximately twice as many orthologs as its close (and relatively unduplicated) relative Arabidopsis than had either of the other two subgenomes. One evolutionary scenario is that the two subgenomes with heavy gene losses (I and II) were in the same nucleus for a longer period of time than the third subgenome (III) with the fewest gene losses. This "two-step" hypothesis is essentially the same as that proposed previously for the eudicot paleohexaploidy; however, the more recent nature of the B. rapa paleohexaploidy makes this model more testable. We found that subgenome II suffered recent small deletions within exons more frequently than subgenome I, as would be expected if the genes in subgenome I had already been near maximally fractionated before subgenome III was introduced. We observed that some sequences, before these deletions, were flanked by short direct repeats, a unique signature of intrachromosomal illegitimate recombination. We also found, through simulations, that short--single or two-gene--deletions appear to dominate the fractionation patterns in B. rapa. We conclude that the observed patterns of the triplicated regions in the Brassica genome are best explained by a two-step fractionation model. The triplication and subsequent mode of fractionation could influence the potential to generate morphological diversity--a hallmark of the Brassica genus.

  17. Application of in vitro pollination of opened ovaries to obtain Brassica oleracea L. × B. rapa L. hybrids.

    PubMed

    Sosnowska, Katarzyna; Cegielska-Taras, Teresa

    2014-01-01

    This study presents the results of experiments concerning: (1) interspecific hybridization of Brassica oleracea × Brassica rapa via application of in vitro placental pollination and (2) embryological analysis of the process of resynthesis of Brassica napus. In order to overcome certain stigma/style barriers, B. rapa pollen was placed in vitro on an opened B. oleracea ovary (with style removed). Pollinated ovaries were cultured on Murashige and Skoog (MS) medium. After 24-d culture, the developing embryos were isolated from immature seeds and transferred onto MS medium supplemented with 0.47 μM kinetin, 0.49 μM 1-naphthaleneacetic acid, and 10% (v/v) coconut water. When the embryos had turned green, they were immediately placed onto MS medium with 100 μM kinetin. After development of the seedling, plantlets were transferred to soil. Chromosome doubling was achieved after another week. Cytometric analysis of nuclear DNA confirmed the hybrid nature of the plants. Resynthesis of B. napus can be performed through interspecific hybridization of B. oleracea × B. rapa followed by embryo rescue and genome doubling.

  18. Application of in vitro pollination of opened ovaries to obtain Brassica oleracea L. × B. rapa L. hybrids.

    PubMed

    Sosnowska, Katarzyna; Cegielska-Taras, Teresa

    2014-01-01

    This study presents the results of experiments concerning: (1) interspecific hybridization of Brassica oleracea × Brassica rapa via application of in vitro placental pollination and (2) embryological analysis of the process of resynthesis of Brassica napus. In order to overcome certain stigma/style barriers, B. rapa pollen was placed in vitro on an opened B. oleracea ovary (with style removed). Pollinated ovaries were cultured on Murashige and Skoog (MS) medium. After 24-d culture, the developing embryos were isolated from immature seeds and transferred onto MS medium supplemented with 0.47 μM kinetin, 0.49 μM 1-naphthaleneacetic acid, and 10% (v/v) coconut water. When the embryos had turned green, they were immediately placed onto MS medium with 100 μM kinetin. After development of the seedling, plantlets were transferred to soil. Chromosome doubling was achieved after another week. Cytometric analysis of nuclear DNA confirmed the hybrid nature of the plants. Resynthesis of B. napus can be performed through interspecific hybridization of B. oleracea × B. rapa followed by embryo rescue and genome doubling. PMID:24719550

  19. Genetic characterization and fine mapping of a yellow-seeded gene in Dahuang (a Brassica rapa landrace).

    PubMed

    Xiao, Lu; Zhao, Zhi; Du, Dezhi; Yao, Yanmei; Xu, Liang; Tang, Guoyong

    2012-03-01

    The development of yellow-seeded cultivars in Brassica rapa (B. rapa) would improve the quality and quantity of available oil. The identification and mapping of the seed coat color gene may aid in the development of yellow-seeded cultivars and facilitate introgression of the yellow-seeded gene into desirable Brassica napus (B. napus) lines through marker-assisted selection. In the current study, we investigated the inheritance of a yellow-seeded landrace in B. rapa, "Dahuang", originating from the Qinghai-Tibetan plateau. Genetic analysis revealed that the phenotype of the yellow-seeded trait in Dahuang is controlled by one recessive gene, termed Brsc1. Mapping of the Brsc1 gene was subsequently conducted in a BC(1) population comprised 456 individuals, derived from (Dahuang × 09A-126) × Dahuang. From a survey of 256 amplified fragment length polymorphism (AFLP) primer combinations, 10 tightly linked AFLP markers were obtained. The closest AFLP markers flanking Brsc1, Y10 and Y06, were 0.2 and 0.4 cM away, respectively. Subsequently, using simple sequence repeat (SSR) markers in the reference map, the Brsc1 gene was mapped on A09 in B. rapa. Blast analysis revealed that seven AFLP markers showed sequence homology to A09 of B. rapa, wherein six AFLP markers in our map were in the same order as those in A09 of B. rapa. The two closest markers, Y10 and Y06, delimited the Brsc1 gene within a 2.8 Mb interval. Furthermore, Y05 and Y06, the two closest AFLP markers on one side linked to Brsc1, were located in scaffold000059 on A09 of B. rapa, whereas the closet AFLP marker on the opposite side of Brsc1, Y10, was located in scaffold000081 on A09 of B. rapa. Molecular markers developed from these studies may facilitate marker-assisted selection (MAS) of yellow-seeded lines in B. rapa and B. napus and expedite the process of map-based cloning of Brsc1.

  20. Identification and characterization of Crr1a, a gene for resistance to clubroot disease (Plasmodiophora brassicae Woronin) in Brassica rapa L.

    PubMed

    Hatakeyama, Katsunori; Suwabe, Keita; Tomita, Rubens Norio; Kato, Takeyuki; Nunome, Tsukasa; Fukuoka, Hiroyuki; Matsumoto, Satoru

    2013-01-01

    Clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae Woronin, is one of the most economically important diseases of Brassica crops in the world. Although many clubroot resistance (CR) loci have been identified through genetic analysis and QTL mapping, the molecular mechanisms of defense responses against P. brassicae remain unknown. Fine mapping of the Crr1 locus, which was originally identified as a single locus, revealed that it comprises two gene loci, Crr1a and Crr1b. Here we report the map-based cloning and characterization of Crr1a, which confers resistance to clubroot in Brassica rapa. Crr1a(G004), cloned from the resistant line G004, encodes a Toll-Interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NB-LRR) protein expressed in the stele and cortex of hypocotyl and roots, where secondary infection of the pathogen occurs, but not in root hairs, where primary infection occurs. Gain-of-function analysis proved that Crr1a(G004) alone conferred resistance to isolate Ano-01 in susceptible Arabidopsis and B. rapa. In comparison, the susceptible allele Crr1a(A9709) encodes a truncated NB-LRR protein, which lacked more than half of the TIR domain on account of the insertion of a solo-long terminal repeat (LTR) in exon 1 and included several substitutions and insertion-deletions in the LRR domain. This study provides a basis for further molecular analysis of defense mechanisms against P. brassicae and will contribute to the breeding of resistant cultivars of Brassica vegetables by marker-assisted selection.Data deposition The sequence reported in this paper has been deposited in the GenBank database (accession no. AB605024).

  1. A Survey of the Brassica rapa genome by BAC-end sequence analysis and comparison with Arabidopsis thaliana.

    PubMed

    Hong, Chang Pyo; Plaha, Prikshit; Koo, Dal-Hoe; Yang, Tae-Jin; Choi, Su Ryun; Lee, Young Ki; Uhm, Taesik; Bang, Jae-Wook; Edwards, David; Bancroft, Ian; Park, Beom-Seok; Lee, Jungho; Lim, Yong Pyo

    2006-12-31

    Brassica rapa ssp. pekinensis (Chinese cabbage) is an economically important crop and a model plant for studies on polyploidization and phenotypic evolution. To gain an insight into the structure of the B. rapa genome we analyzed 12,017 BAC-end sequences for the presence of transposable elements (TEs), SSRs, centromeric satellite repeats and genes, and similarity to the closely related genome of Arabidopsis thaliana. TEs were estimated to occupy 14% of the genome, with 12.3% of the genome represented by retrotransposons. It was estimated that the B. rapa genome contains 43,000 genes, 1.6 times greater than the genome of A. thaliana. A number of centromeric satellite sequences, representing variations of a 176-bp consensus sequence, were identified. This sequence has undergone rapid evolution within the B. rapa genome and has diverged among the related species of Brassicaceae. A study of SSRs demonstrated a non-random distribution with a greater abundance within predicted intergenic regions. Our results provide an initial characterization of the genome of B. rapa and provide the basis for detailed analysis through whole-genome sequencing.

  2. Effect of crop improvement on genetic diversity in oilseed Brassica rapa (turnip-rape) cultivars, detected by SSR markers.

    PubMed

    Ofori, Atta; Becker, Heiko C; Kopisch-Obuch, Friedrich J

    2008-01-01

    With the improvement of seed quality, Brassica rapa oilseed germplasm went through 2 major breeding bottlenecks during the introgression of genes for zero erucic acid content and low glucosinolate content, respectively. This study investigates the impact of these bottlenecks on the genetic diversity in European winter B. rapa by comparing 3 open-pollinated cultivars, each representing a different breeding period. Diversity was estimated on 32 plants per cultivar, with 16 simple sequence repeat (SSR) markers covering each of the B. rapa linkage groups. There was no significant loss of genetic diversity over the 3 cultivars as indicated by allele number (ranging from 59 to 55), mean allele number (from 3.68 to 3.50), Shannon information index (from 0.94 to 0.87) and expected heterozygosity (from 0.53 to 0.48). About 83% of the total variation was attributed to within-cultivar variation, and the remaining 17% to between-cultivar variation by analysis of molecular variance (AMOVA). Individual plants were separated into the 3 cultivars by principal coordinate analysis (PCoA). In conclusion, genetic diversity within cultivars was high and quality breeding in B. rapa did not significantly reduce the genetic diversity of B. rapa winter cultivars, so there is no risk of decline in performance due to quality improvement.

  3. Expression profiling reveals functionally redundant multiple-copy genes related to zinc, iron and cadmium responses in Brassica rapa.

    PubMed

    Li, Jimeng; Liu, Bo; Cheng, Feng; Wang, Xiaowu; Aarts, Mark G M; Wu, Jian

    2014-07-01

    Genes underlying environmental adaptability tend to be over-retained in polyploid plant species. Zinc deficiency (ZnD) and iron deficiency (FeD), excess Zn (ZnE) and cadmium exposure (CdE) are major environmental problems for crop cultivation, but little is known about the differential expression of duplicated genes upon these stress conditions. Applying Tag-Seq technology to leaves of Brassica rapa grown under FeD, ZnD, ZnE or CdE conditions, with normal conditions as a control, we examined global gene expression changes and compared the expression patterns of multiple paralogs. We identified 812, 543, 331 and 447 differentially expressed genes under FeD, ZnD, ZnE and CdE conditions, respectively, in B. rapa leaves. Genes involved in regulatory networks centered on the transcription factors bHLH038 or bHLH100 were differentially expressed under (ZnE-induced) FeD. Further analysis revealed that genes associated with Zn, Fe and Cd responses tended to be over-retained in the B. rapa genome. Most of these multiple-copy genes showed the same direction of expression change under stress conditions. We conclude that the duplicated genes involved in trace element responses in B. rapa are functionally redundant, making the regulatory network more complex in B. rapa than in Arabidopsis thaliana.

  4. Effects of the veterinary pharmaceutical salinomycin and its formulation on the plant Brassica rapa.

    PubMed

    Furtula, V; Stephenson, G L; Olaveson, K M; Chambers, P A

    2012-11-01

    Veterinary pharmaceuticals are emerging contaminants found throughout the environment, and their presence and effects are a matter of concern. The purpose of this study was to compare the phytotoxicity of salinomycin (pure compound = 96 %) and Sacox 120 (formulated product = 120 g salinomycin/kg) to the plant species Brassica rapa as well as to investigate salinomycin persistence in soil. Calculated EC/IC(50) values for salinomycin and Sacox 120 were 1.10 and 2.88 and 2.19 and 18.03 mg/kg, respectively, based on salinomycin concentration. For exposure of B. rapa to salinomycin, significant adverse effects were observed for growth end points at the greater concentrations. For the reproduction end point (i.e., number of buds), as well as root length and wet mass, significant differences were observed at the lower concentrations (stimulating growth) and adverse effects at the greater concentrations. This study confirmed that the toxic effects of Sacox 120 are attributable to the active ingredient salinomycin. Liquid chromatography-electrospray ionization-mass spectrometry analyses confirmed that exposure concentrations of salinomycin were 90 and 83 % of the nominal concentrations, respectively, in the soils amended with either pure or formulated product. At the end of the experiment, after 14 days, salinomycin concentrations for both tests (salinomycin and Sacox 120) decreased to 6.2 and 5.8 % of the nominal exposure concentrations, respectively. Detected salinomycin concentrations in plant shoots ranged from 3.47 to 41.0 ng/g dry shoot. This study shows the importance of using plants as tools to evaluate environmental risk and as a bridge to relate environment and human health risks.

  5. Construction of genetic linkage map and mapping of QTL for seed color in Brassica rapa.

    PubMed

    Kebede, Berisso; Cheema, Kuljit; Greenshields, David L; Li, Changxi; Selvaraj, Gopalan; Rahman, Habibur

    2012-12-01

    A genetic linkage map of Brassica rapa L. was constructed using recombinant inbred lines (RILs) derived from a cross between yellow-seeded cultivar Sampad and a yellowish brown seeded inbred line 3-0026.027. The RILs were evaluated for seed color under three conditions: field plot, greenhouse, and controlled growth chambers. Variation for seed color in the RILs ranged from yellow, like yellow sarson, to dark brown/black even though neither parent had shown brown/black colored seeds. One major QTL (SCA9-2) and one minor QTL (SCA9-1) on linkage group (LG) A9 and two minor QTL (SCA3-1, SCA5-1) on LG A3 and LG A5, respectively, were detected. These collectively explained about 67% of the total phenotypic variance. SCA9-2 mapped in the middle of LG A9, explained about 55% phenotypic variance, and consistently expressed in all environments. The second QTL on LG A9 was ~70 cM away from SCA9-2, suggesting that independent assortment of these QTLs is possible. A digenic epistatic interaction was found between the two main effect QTL on LG A9; and the epistasis × environment interaction was nonsignificant, suggesting stability of the interaction across the environments. The QTL effect on LG A9 was validated using simple sequence repeat (SSR) markers from the two QTL regions of this LG on a B(1)S(1) population (F(1) backcrossed to Sampad followed by self-pollination) segregating for brown and yellow seed color, and on their self-pollinated progenies (B(1)S(2)). The SSR markers from the QTL region SCA9-2 showed a stronger linkage association with seed color as compared with the marker from SCA9-1. This suggests that the QTL SCA9-2 is the major determinant of seed color in the A genome of B. rapa.

  6. A novel locus for clubroot resistance in Brassica rapa and its linkage markers.

    PubMed

    Hirai, M; Harada, T; Kubo, N; Tsukada, M; Suwabe, K; Matsumoto, S

    2004-02-01

    An inbred turnip ( Brassica rapa syn. campestris) line, N-WMR-3, which carries the trait of clubroot resistance (CR) from a European turnip, Milan White, was crossed with a clubroot-susceptible doubled haploid line, A9709. A segregating F(3) population was obtained by single-seed descent of F(2) plants and used for a genetic analysis. Segregation of CR in the F(3) population suggested that CR is controlled by a major gene. Two RAPD markers, OPC11-1 and OPC11-2, were obtained as candidates of linkage markers by bulked segregant analysis. These were converted to sequence-tagged site markers, by cloning and sequencing of the polymorphic bands, and named OPC11-1S and OPC11-2S, respectively. The specific primer pairs for OPC11-1S amplified a clear dominant band, while the primer pairs for OPC11-2S resulted in co-dominant bands. Frequency distributions and statistical analyses indicate the presence of a major dominant CR gene linked to these two markers. The present marker for CR was independent of the previously found CR loci, Crr1 and Crr2. Genotypic distribution and statistical analyses did not show any evidence of CR alleles on Crr1 and Crr2 loci in N-WMR-3. The present study clearly demonstrates that B. rapa has at least three CR loci. Therefore, the new CR locus was named Crr3. The present locus may be useful in breeding CR Chinese cabbage cultivars to overcome the decay of present CR cultivars.

  7. Selenium inhibits root elongation by repressing the generation of endogenous hydrogen sulfide in Brassica rapa.

    PubMed

    Chen, Yi; Mo, Hai-Zhen; Zheng, Mei-Yu; Xian, Ming; Qi, Zhong-Qiang; Li, You-Qin; Hu, Liang-Bin; Chen, Jian; Yang, Li-Fei

    2014-01-01

    Selenium (Se) has been becoming an emerging pollutant causing severe phytotoxicity, which the biochemical mechanism is rarely known. Although hydrogen sulfide (H2S) has been suggested as an important exogenous regulator modulating plant physiological adaptions in response to heavy metal stress, whether and how the endogenous H2S regulates Se-induce phytotoxicity remains unclear. In this work, a self-developed specific fluorescent probe (WSP-1) was applied to track endogenous H2S in situ in the roots of Brassica rapa under Se(IV) stress. Se(IV)-induced root growth stunt was closely correlated with the inhibition of endogenous H2S generation in root tips. Se(IV) stress dampened the expression of most LCD and DCD homologues in the roots of B. rapa. By using various specific fluorescent probes for bio-imaging root tips in situ, we found that the increase in endogenous H2S by the application of H2S donor NaHS could significantly alleviate Se(IV)-induced reactive oxygen species (ROS) over-accumulation, oxidative impairment, and cell death in root tips, which further resulted in the recovery of root growth under Se(IV) stress. However, dampening the endogenous H2S could block the alleviated effect of NaHS on Se(IV)-induced phytotoxicity. Finally, the increase in endogenous H2S resulted in the enhancement of glutathione (GSH) in Se(IV)-treated roots, which may share the similar molecular mechanism for the dominant role of H2S in removing ROS by activating GSH biosynthesis in mammals. Altogether, these data provide the first direct evidences confirming the pivotal role of endogenous H2S in modulating Se(IV)-induced phytotoxicity in roots.

  8. Selenium Inhibits Root Elongation by Repressing the Generation of Endogenous Hydrogen Sulfide in Brassica rapa

    PubMed Central

    Zheng, Mei-Yu; Xian, Ming; Qi, Zhong-Qiang; Li, You-Qin; Hu, Liang-Bin; Chen, Jian; Yang, Li-Fei

    2014-01-01

    Selenium (Se) has been becoming an emerging pollutant causing severe phytotoxicity, which the biochemical mechanism is rarely known. Although hydrogen sulfide (H2S) has been suggested as an important exogenous regulator modulating plant physiological adaptions in response to heavy metal stress, whether and how the endogenous H2S regulates Se-induce phytotoxicity remains unclear. In this work, a self-developed specific fluorescent probe (WSP-1) was applied to track endogenous H2S in situ in the roots of Brassica rapa under Se(IV) stress. Se(IV)-induced root growth stunt was closely correlated with the inhibition of endogenous H2S generation in root tips. Se(IV) stress dampened the expression of most LCD and DCD homologues in the roots of B. rapa. By using various specific fluorescent probes for bio-imaging root tips in situ, we found that the increase in endogenous H2S by the application of H2S donor NaHS could significantly alleviate Se(IV)-induced reactive oxygen species (ROS) over-accumulation, oxidative impairment, and cell death in root tips, which further resulted in the recovery of root growth under Se(IV) stress. However, dampening the endogenous H2S could block the alleviated effect of NaHS on Se(IV)-induced phytotoxicity. Finally, the increase in endogenous H2S resulted in the enhancement of glutathione (GSH) in Se(IV)-treated roots, which may share the similar molecular mechanism for the dominant role of H2S in removing ROS by activating GSH biosynthesis in mammals. Altogether, these data provide the first direct evidences confirming the pivotal role of endogenous H2S in modulating Se(IV)-induced phytotoxicity in roots. PMID:25333279

  9. Construction of genetic linkage map and mapping of QTL for seed color in Brassica rapa.

    PubMed

    Kebede, Berisso; Cheema, Kuljit; Greenshields, David L; Li, Changxi; Selvaraj, Gopalan; Rahman, Habibur

    2012-12-01

    A genetic linkage map of Brassica rapa L. was constructed using recombinant inbred lines (RILs) derived from a cross between yellow-seeded cultivar Sampad and a yellowish brown seeded inbred line 3-0026.027. The RILs were evaluated for seed color under three conditions: field plot, greenhouse, and controlled growth chambers. Variation for seed color in the RILs ranged from yellow, like yellow sarson, to dark brown/black even though neither parent had shown brown/black colored seeds. One major QTL (SCA9-2) and one minor QTL (SCA9-1) on linkage group (LG) A9 and two minor QTL (SCA3-1, SCA5-1) on LG A3 and LG A5, respectively, were detected. These collectively explained about 67% of the total phenotypic variance. SCA9-2 mapped in the middle of LG A9, explained about 55% phenotypic variance, and consistently expressed in all environments. The second QTL on LG A9 was ~70 cM away from SCA9-2, suggesting that independent assortment of these QTLs is possible. A digenic epistatic interaction was found between the two main effect QTL on LG A9; and the epistasis × environment interaction was nonsignificant, suggesting stability of the interaction across the environments. The QTL effect on LG A9 was validated using simple sequence repeat (SSR) markers from the two QTL regions of this LG on a B(1)S(1) population (F(1) backcrossed to Sampad followed by self-pollination) segregating for brown and yellow seed color, and on their self-pollinated progenies (B(1)S(2)). The SSR markers from the QTL region SCA9-2 showed a stronger linkage association with seed color as compared with the marker from SCA9-1. This suggests that the QTL SCA9-2 is the major determinant of seed color in the A genome of B. rapa. PMID:23231600

  10. Functional divergence of BAK1 genes from Brassica rapa in regulating plant architecture.

    PubMed

    Zhang, S; Li, C; Li, Q; Wang, Q N; Huang, S H; Zhang, Y F; Wang, X F

    2015-11-19

    BAK1 is a co-receptor of BRI1 in early signaling pathways mediated by brassinosteroids (BRs) and is thought to play a major role in plant growth and development. As the role of BAK1 has not yet been fully elucidated then further research is required to explore its potential for use in genetic modification to improve crops. In this study, three BAK1 genes from the amphidiploid species Brassica rapa were isolated and their kinase functions were predicted following DNA sequence analysis. A bioinformatic analysis revealed that two genes, BrBAK1-1 and BrBAK1-8, shared a conserved kinase domain and 5 tandem leucine-rich repeats (LRRs) that are characteristic of a BAK1 receptor for BR perception, whereas the third gene, BrBAK1-3, was deficient for a signal peptide, but had 4 leucine zippers and 3 leucine-rich repeats (LRRs) in an extracellular domain. All three BrBAK1 kinases localized on the cellular membrane. Ectopic expression of each BrBAK1 gene in BR-insensitive (bri1-5 mutant) Arabidopsis plants indicated that BrBAK1-1 and BrBAK1-8 were functional homologues of AtBAK1 based on the rescue of growth in the bri1-5 mutant. Overexpression of BrBAK1-3 caused a severe dwarf phenotype resembling the phenotype of null BRI1 alleles. The results here suggest there are significant differences among the three BrBAK1 kinases for their effects on plant architecture. This conclusion has important implications for genetic modification of B. rapa.

  11. Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage).

    PubMed

    Duan, Weike; Song, Xiaoming; Liu, Tongkun; Huang, Zhinan; Ren, Jun; Hou, Xilin; Li, Ying

    2015-02-01

    The MADS-box gene family is an ancient and well-studied transcription factor family that functions in almost every developmental process in plants. There are a number of reports about the MADS-box family in different plant species, but systematic analysis of the MADS-box transcription factor family in Brassica rapa (Chinese cabbage) is still lacking. In this study, 160 MADS-box transcription factors were identified from the entire Chinese cabbage genome and compared with the MADS-box factors from 21 other representative plant species. A detailed list of MADS proteins from these 22 species was sorted. Phylogenetic analysis of the BrMADS genes, together with their Arabidopsis and rice counterparts, showed that the BrMADS genes were categorised into type I (Mα, Mβ, Mγ) and type II (MIKC(C), MIKC*) groups, and the MIKC(C) proteins were further divided into 13 subfamilies. The Chinese cabbage type II group has 95 members, which is twice as much as the Arabidopsis type II group, indicating that the Chinese cabbage type II genes have been retained more frequently than the type I genes. Finally, RNA-seq transcriptome data and quantitative real-time PCR analysis revealed that BrMADS genes are expressed in a tissue-specific manner similar to Arabidopsis. Interestingly, a number of BrMIKC genes showed responses to different abiotic stress treatments, suggesting a function for some of the genes in these processes as well. Taken together, the characterization of the B. rapa MADS-box family presented here, will certainly help in the selection of appropriate candidate genes and further facilitate functional studies in Chinese cabbage.

  12. Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage).

    PubMed

    Duan, Weike; Song, Xiaoming; Liu, Tongkun; Huang, Zhinan; Ren, Jun; Hou, Xilin; Li, Ying

    2015-02-01

    The MADS-box gene family is an ancient and well-studied transcription factor family that functions in almost every developmental process in plants. There are a number of reports about the MADS-box family in different plant species, but systematic analysis of the MADS-box transcription factor family in Brassica rapa (Chinese cabbage) is still lacking. In this study, 160 MADS-box transcription factors were identified from the entire Chinese cabbage genome and compared with the MADS-box factors from 21 other representative plant species. A detailed list of MADS proteins from these 22 species was sorted. Phylogenetic analysis of the BrMADS genes, together with their Arabidopsis and rice counterparts, showed that the BrMADS genes were categorised into type I (Mα, Mβ, Mγ) and type II (MIKC(C), MIKC*) groups, and the MIKC(C) proteins were further divided into 13 subfamilies. The Chinese cabbage type II group has 95 members, which is twice as much as the Arabidopsis type II group, indicating that the Chinese cabbage type II genes have been retained more frequently than the type I genes. Finally, RNA-seq transcriptome data and quantitative real-time PCR analysis revealed that BrMADS genes are expressed in a tissue-specific manner similar to Arabidopsis. Interestingly, a number of BrMIKC genes showed responses to different abiotic stress treatments, suggesting a function for some of the genes in these processes as well. Taken together, the characterization of the B. rapa MADS-box family presented here, will certainly help in the selection of appropriate candidate genes and further facilitate functional studies in Chinese cabbage. PMID:25216934

  13. Effects of the veterinary pharmaceutical salinomycin and its formulation on the plant Brassica rapa.

    PubMed

    Furtula, V; Stephenson, G L; Olaveson, K M; Chambers, P A

    2012-11-01

    Veterinary pharmaceuticals are emerging contaminants found throughout the environment, and their presence and effects are a matter of concern. The purpose of this study was to compare the phytotoxicity of salinomycin (pure compound = 96 %) and Sacox 120 (formulated product = 120 g salinomycin/kg) to the plant species Brassica rapa as well as to investigate salinomycin persistence in soil. Calculated EC/IC(50) values for salinomycin and Sacox 120 were 1.10 and 2.88 and 2.19 and 18.03 mg/kg, respectively, based on salinomycin concentration. For exposure of B. rapa to salinomycin, significant adverse effects were observed for growth end points at the greater concentrations. For the reproduction end point (i.e., number of buds), as well as root length and wet mass, significant differences were observed at the lower concentrations (stimulating growth) and adverse effects at the greater concentrations. This study confirmed that the toxic effects of Sacox 120 are attributable to the active ingredient salinomycin. Liquid chromatography-electrospray ionization-mass spectrometry analyses confirmed that exposure concentrations of salinomycin were 90 and 83 % of the nominal concentrations, respectively, in the soils amended with either pure or formulated product. At the end of the experiment, after 14 days, salinomycin concentrations for both tests (salinomycin and Sacox 120) decreased to 6.2 and 5.8 % of the nominal exposure concentrations, respectively. Detected salinomycin concentrations in plant shoots ranged from 3.47 to 41.0 ng/g dry shoot. This study shows the importance of using plants as tools to evaluate environmental risk and as a bridge to relate environment and human health risks. PMID:22961218

  14. Class-Specific Evolution and Transcriptional Differentiation of 14-3-3 Family Members in Mesohexaploid Brassica rapa

    PubMed Central

    Chandna, Ruby; Augustine, Rehna; Kanchupati, Praveena; Kumar, Roshan; Kumar, Pawan; Arya, Gulab C.; Bisht, Naveen C.

    2016-01-01

    14-3-3s are highly conserved, multigene family proteins that have been implicated in modulating various biological processes. The presence of inherent polyploidy and genome complexity has limited the identification and characterization of 14-3-3 proteins from globally important Brassica crops. Through data mining of Brassica rapa, the model Brassica genome, we identified 21 members encoding 14-3-3 proteins namely, BraA.GRF14.a to BraA.GRF14.u. Phylogenetic analysis indicated that B. rapa contains both ε (epsilon) and non-ε 14-3-3 isoforms, having distinct intron-exon structural organization patterns. The non-ε isoforms showed lower divergence rate (Ks < 0.45) compared to ε protein isoforms (Ks > 0.48), suggesting class-specific divergence pattern. Synteny analysis revealed that mesohexaploid B. rapa genome has retained 1–5 orthologs of each Arabidopsis 14-3-3 gene, interspersed across its three fragmented sub-genomes. qRT-PCR analysis showed that 14 of the 21 BraA.GRF14 were expressed, wherein a higher abundance of non-ε transcripts was observed compared to the ε genes, indicating class-specific transcriptional bias. The BraA.GRF14 genes showed distinct expression pattern during plant developmental stages and in response to abiotic stress, phytohormone treatments, and nutrient deprivation conditions. Together, the distinct expression pattern and differential regulation of BraA.GRF14 genes indicated the occurrence of functional divergence of B. rapa 14-3-3 proteins during plant development and stress responses. PMID:26858736

  15. Class-Specific Evolution and Transcriptional Differentiation of 14-3-3 Family Members in Mesohexaploid Brassica rapa.

    PubMed

    Chandna, Ruby; Augustine, Rehna; Kanchupati, Praveena; Kumar, Roshan; Kumar, Pawan; Arya, Gulab C; Bisht, Naveen C

    2016-01-01

    14-3-3s are highly conserved, multigene family proteins that have been implicated in modulating various biological processes. The presence of inherent polyploidy and genome complexity has limited the identification and characterization of 14-3-3 proteins from globally important Brassica crops. Through data mining of Brassica rapa, the model Brassica genome, we identified 21 members encoding 14-3-3 proteins namely, BraA.GRF14.a to BraA.GRF14.u. Phylogenetic analysis indicated that B. rapa contains both ε (epsilon) and non-ε 14-3-3 isoforms, having distinct intron-exon structural organization patterns. The non-ε isoforms showed lower divergence rate (Ks < 0.45) compared to ε protein isoforms (Ks > 0.48), suggesting class-specific divergence pattern. Synteny analysis revealed that mesohexaploid B. rapa genome has retained 1-5 orthologs of each Arabidopsis 14-3-3 gene, interspersed across its three fragmented sub-genomes. qRT-PCR analysis showed that 14 of the 21 BraA.GRF14 were expressed, wherein a higher abundance of non-ε transcripts was observed compared to the ε genes, indicating class-specific transcriptional bias. The BraA.GRF14 genes showed distinct expression pattern during plant developmental stages and in response to abiotic stress, phytohormone treatments, and nutrient deprivation conditions. Together, the distinct expression pattern and differential regulation of BraA.GRF14 genes indicated the occurrence of functional divergence of B. rapa 14-3-3 proteins during plant development and stress responses.

  16. Class-Specific Evolution and Transcriptional Differentiation of 14-3-3 Family Members in Mesohexaploid Brassica rapa.

    PubMed

    Chandna, Ruby; Augustine, Rehna; Kanchupati, Praveena; Kumar, Roshan; Kumar, Pawan; Arya, Gulab C; Bisht, Naveen C

    2016-01-01

    14-3-3s are highly conserved, multigene family proteins that have been implicated in modulating various biological processes. The presence of inherent polyploidy and genome complexity has limited the identification and characterization of 14-3-3 proteins from globally important Brassica crops. Through data mining of Brassica rapa, the model Brassica genome, we identified 21 members encoding 14-3-3 proteins namely, BraA.GRF14.a to BraA.GRF14.u. Phylogenetic analysis indicated that B. rapa contains both ε (epsilon) and non-ε 14-3-3 isoforms, having distinct intron-exon structural organization patterns. The non-ε isoforms showed lower divergence rate (Ks < 0.45) compared to ε protein isoforms (Ks > 0.48), suggesting class-specific divergence pattern. Synteny analysis revealed that mesohexaploid B. rapa genome has retained 1-5 orthologs of each Arabidopsis 14-3-3 gene, interspersed across its three fragmented sub-genomes. qRT-PCR analysis showed that 14 of the 21 BraA.GRF14 were expressed, wherein a higher abundance of non-ε transcripts was observed compared to the ε genes, indicating class-specific transcriptional bias. The BraA.GRF14 genes showed distinct expression pattern during plant developmental stages and in response to abiotic stress, phytohormone treatments, and nutrient deprivation conditions. Together, the distinct expression pattern and differential regulation of BraA.GRF14 genes indicated the occurrence of functional divergence of B. rapa 14-3-3 proteins during plant development and stress responses. PMID:26858736

  17. Production and characterization of an alloplasmic and monosomic addition line of Brassica rapa carrying the cytoplasm and one chromosome of Moricandia arvensis.

    PubMed

    Tsutsui, Kota; Jeong, Bum Hee; Ito, Yukiko; Bang, Sang Woo; Kaneko, Yukio

    2011-12-01

    Intergeneric hybridization was performed between Moricandia arvensis and four inbred lines of Brassica rapa following embryo rescue. Three F(1) hybrid plants were developed from three cross combinations of M. arvensis × B. rapa, and amphidiploids were synthesized by colchicine treatment. Six BC(1) plants were generated from a single cross combination of amphidipolid × B. rapa 'Ko1-303' through embryo rescue. One BC(2) and three BC(3) plants were obtained from successive backcrossing with B. rapa 'Ko1-303' employing embryo rescue. Alloplasmic and monosomic addition lines of B. rapa (Allo-MALs, 2n = 21) were obtained from backcrossed progeny of three BC(3) plants (2n = 21, 22 and 23) without embryo rescue. An alloplasmic line of B. rapa (2n = 20) degenerated before floliation on 1/2 MS medium due to severe chlorosis. Allo-MALs of B. rapa (2n = 21) showed stable male sterility without any abnormal traits in vegetative growth and female fertility. Molecular analyses revealed that the same chromosome and cytoplasm of M. arvensis had been added to each Allo-MAL of B. rapa. This Allo-MAL of B. rapa may be useful material for producing cytoplasmic male sterile lines of B. rapa.

  18. Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E. Schulz.

    PubMed

    Warwick, S I; Simard, M-J; Légère, A; Beckie, H J; Braun, L; Zhu, B; Mason, P; Séguin-Swartz, G; Stewart, C N

    2003-08-01

    The frequency of gene flow from Brassica napus L. (canola) to four wild relatives, Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L. and Erucastrum gallicum (Willd.) O.E. Schulz, was assessed in greenhouse and/or field experiments, and actual rates measured in commercial fields in Canada. Various marker systems were used to detect hybrid individuals: herbicide resistance traits (HR), green fluorescent protein marker (GFP), species-specific amplified fragment length polymorphisms (AFLPs) and ploidy level. Hybridization between B. rapa and B. napus occurred in two field experiments (frequency approximately 7%) and in wild populations in commercial fields (approximately 13.6%). The higher frequency in commercial fields was most likely due to greater distance between B. rapa plants. All F(1) hybrids were morphologically similar to B. rapa, had B. napus- and B. rapa-specific AFLP markers and were triploid (AAC, 2n=29 chromosomes). They had reduced pollen viability (about 55%) and segregated for both self-incompatible and self-compatible individuals (the latter being a B. napus trait). In contrast, gene flow between R. raphanistrum and B. napus was very rare. A single R. raphanistrum x B. napus F1 hybrid was detected in 32,821 seedlings from the HR B. napus field experiment. The hybrid was morphologically similar to R. raphanistrum except for the presence of valves, a B. napus trait, in the distorted seed pods. It had a genomic structure consistent with the fusion of an unreduced gamete of R. raphanistrum and a reduced gamete of B. napus (RrRrAC, 2n=37), both B. napus- and R. raphanistrum-specific AFLP markers, and had <1% pollen viability. No hybrids were detected in the greenhouse experiments (1,534 seedlings), the GFP field experiment (4,059 seedlings) or in commercial fields in Québec and Alberta (22,114 seedlings). No S. arvensis or E. gallicum x B. napus hybrids were detected (42,828 and 21,841 seedlings, respectively) from commercial fields in

  19. Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E. Schulz.

    PubMed

    Warwick, S I; Simard, M-J; Légère, A; Beckie, H J; Braun, L; Zhu, B; Mason, P; Séguin-Swartz, G; Stewart, C N

    2003-08-01

    The frequency of gene flow from Brassica napus L. (canola) to four wild relatives, Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L. and Erucastrum gallicum (Willd.) O.E. Schulz, was assessed in greenhouse and/or field experiments, and actual rates measured in commercial fields in Canada. Various marker systems were used to detect hybrid individuals: herbicide resistance traits (HR), green fluorescent protein marker (GFP), species-specific amplified fragment length polymorphisms (AFLPs) and ploidy level. Hybridization between B. rapa and B. napus occurred in two field experiments (frequency approximately 7%) and in wild populations in commercial fields (approximately 13.6%). The higher frequency in commercial fields was most likely due to greater distance between B. rapa plants. All F(1) hybrids were morphologically similar to B. rapa, had B. napus- and B. rapa-specific AFLP markers and were triploid (AAC, 2n=29 chromosomes). They had reduced pollen viability (about 55%) and segregated for both self-incompatible and self-compatible individuals (the latter being a B. napus trait). In contrast, gene flow between R. raphanistrum and B. napus was very rare. A single R. raphanistrum x B. napus F1 hybrid was detected in 32,821 seedlings from the HR B. napus field experiment. The hybrid was morphologically similar to R. raphanistrum except for the presence of valves, a B. napus trait, in the distorted seed pods. It had a genomic structure consistent with the fusion of an unreduced gamete of R. raphanistrum and a reduced gamete of B. napus (RrRrAC, 2n=37), both B. napus- and R. raphanistrum-specific AFLP markers, and had <1% pollen viability. No hybrids were detected in the greenhouse experiments (1,534 seedlings), the GFP field experiment (4,059 seedlings) or in commercial fields in Québec and Alberta (22,114 seedlings). No S. arvensis or E. gallicum x B. napus hybrids were detected (42,828 and 21,841 seedlings, respectively) from commercial fields in

  20. A Comparison of Semiochemically Mediated Interactions Involving Specialist and Generalist Brassica-feeding Aphids and the Braconid Parasitoid Diaeretiella rapae.

    PubMed

    Blande, J D; Pickett, J A; Poppy, G M

    2007-04-01

    Diaeretiella rapae, a parasitoid that predominately specializes in the parasitism of Brassica-feeding aphids, attacks Lipaphis erysimi, a specialist feeding aphid of the Brassicaceae and other families in the Capparales, at a greater rate than the generalist-feeding aphid, Myzus persicae. In this study, we investigated the orientation behavior of D. rapae to the volatile chemicals produced when these two aphid species feed on turnip (Brassica rapa var rapifera). We showed no significant preference orientation behavior to either aphid/turnip complex over the other. Isothiocyanates are among the compounds emitted by plants of the Brassicaceae in response to insect feeding damage, including by aphids. We assessed parasitoid orientation behavior in response to laboratory-formulated isothiocyanates. We tested two formulations and discovered significant orientation toward 3-butenyl isothiocyanate. We also assessed plant and aphid glucosinolate content, and showed large levels of glucosinolate concentration in L. erysimi, whereas there was little change in plant content in response to aphid feeding. Our results suggest that during the process of host location, similar cues may be utilized for locating L. erysimi and M. persicae, whereas the acceptance of hosts and their suitability may involve aspects of nonvolatile aphid chemistry.

  1. Transcriptome Analysis of Interspecific Hybrid between Brassica napus and B. rapa Reveals Heterosis for Oil Rape Improvement.

    PubMed

    Zhang, Jinfang; Li, Guangrong; Li, Haojie; Pu, Xiaobin; Jiang, Jun; Chai, Liang; Zheng, Benchuan; Cui, Cheng; Yang, Zujun; Zhu, Yongqing; Jiang, Liangcai

    2015-01-01

    The hybrid between Brassica napus and B. rapa displays obvious heterosis in both growth performance and stress tolerances. A comparative transcriptome analysis for B. napus (A(n)A(n)CC genome), B. rapa (A(r)A(r) genome), and its hybrid F1 (A(n)A(r)C genome) was carried out to reveal the possible molecular mechanisms of heterosis at the gene expression level. A total of 40,320 nonredundant unigenes were identified using B. rapa (AA genome) and B. oleracea (CC genome) as reference genomes. A total of 6,816 differentially expressed genes (DEGs) were mapped in the A and C genomes with 4,946 DEGs displayed nonadditively by comparing the gene expression patterns among the three samples. The coexistence of nonadditive DEGs including high-parent dominance, low-parent dominance, overdominance, and underdominance was observed in the gene action modes of F1 hybrid, which were potentially related to the heterosis. The coexistence of multiple gene actions in the hybrid was observed and provided a list of candidate genes and pathways for heterosis. The expression bias of transposable element-associated genes was also observed in the hybrid compared to their parents. The present study could be helpful for the better understanding of the determination and regulation of mechanisms of heterosis to aid Brassica improvement.

  2. Transcriptome Analysis of Interspecific Hybrid between Brassica napus and B. rapa Reveals Heterosis for Oil Rape Improvement

    PubMed Central

    Zhang, Jinfang; Li, Guangrong; Li, Haojie; Pu, Xiaobin; Jiang, Jun; Chai, Liang; Zheng, Benchuan; Cui, Cheng; Yang, Zujun; Zhu, Yongqing; Jiang, Liangcai

    2015-01-01

    The hybrid between Brassica napus and B. rapa displays obvious heterosis in both growth performance and stress tolerances. A comparative transcriptome analysis for B. napus (AnAnCC genome), B. rapa (ArAr genome), and its hybrid F1 (AnArC genome) was carried out to reveal the possible molecular mechanisms of heterosis at the gene expression level. A total of 40,320 nonredundant unigenes were identified using B. rapa (AA genome) and B. oleracea (CC genome) as reference genomes. A total of 6,816 differentially expressed genes (DEGs) were mapped in the A and C genomes with 4,946 DEGs displayed nonadditively by comparing the gene expression patterns among the three samples. The coexistence of nonadditive DEGs including high-parent dominance, low-parent dominance, overdominance, and underdominance was observed in the gene action modes of F1 hybrid, which were potentially related to the heterosis. The coexistence of multiple gene actions in the hybrid was observed and provided a list of candidate genes and pathways for heterosis. The expression bias of transposable element-associated genes was also observed in the hybrid compared to their parents. The present study could be helpful for the better understanding of the determination and regulation of mechanisms of heterosis to aid Brassica improvement. PMID:26448924

  3. Transcriptome Analysis of Interspecific Hybrid between Brassica napus and B. rapa Reveals Heterosis for Oil Rape Improvement.

    PubMed

    Zhang, Jinfang; Li, Guangrong; Li, Haojie; Pu, Xiaobin; Jiang, Jun; Chai, Liang; Zheng, Benchuan; Cui, Cheng; Yang, Zujun; Zhu, Yongqing; Jiang, Liangcai

    2015-01-01

    The hybrid between Brassica napus and B. rapa displays obvious heterosis in both growth performance and stress tolerances. A comparative transcriptome analysis for B. napus (A(n)A(n)CC genome), B. rapa (A(r)A(r) genome), and its hybrid F1 (A(n)A(r)C genome) was carried out to reveal the possible molecular mechanisms of heterosis at the gene expression level. A total of 40,320 nonredundant unigenes were identified using B. rapa (AA genome) and B. oleracea (CC genome) as reference genomes. A total of 6,816 differentially expressed genes (DEGs) were mapped in the A and C genomes with 4,946 DEGs displayed nonadditively by comparing the gene expression patterns among the three samples. The coexistence of nonadditive DEGs including high-parent dominance, low-parent dominance, overdominance, and underdominance was observed in the gene action modes of F1 hybrid, which were potentially related to the heterosis. The coexistence of multiple gene actions in the hybrid was observed and provided a list of candidate genes and pathways for heterosis. The expression bias of transposable element-associated genes was also observed in the hybrid compared to their parents. The present study could be helpful for the better understanding of the determination and regulation of mechanisms of heterosis to aid Brassica improvement. PMID:26448924

  4. Inheritance of GFP-Bt transgenes from Brassica napus in backcrosses with three wild B. rapa accessions.

    PubMed

    Zhu, Bin; Lawrence, John R; Warwick, Suzanne I; Mason, Peter; Braun, Lorraine; Halfhill, Matthew D; Stewart, C Neal

    2004-01-01

    Transgenes from transgenic oilseed rape, Brassica napus (AACC genome), can introgress into populations of wild B. rapa (AA genome), but little is known about the long-term persistence of transgenes from different transformation events. For example, transgenes that are located on the crop's C chromosomes may be lost during the process of introgression. We investigated the genetic behavior of transgenes in backcross generations of wild B. rapa after nine GFP (green fluorescent protein)-Bt (Bacillus thuringiensis) B. napus lines, named GT lines, were hybridized with three wild B. rapa accessions, respectively. Each backcross generation involved crosses between hemizygous GT plants and non-GT B. rapa pollen recipients. In some cases, sample sizes were too small to allow the detection of major deviations from Mendelian segregation ratios, but the segregation of GT:non-GT was consistent with an expected ratio of 1:1 in all crosses in the BC1 generation. Starting with the BC2 generation, significantly different genetic behavior of the transgenes was observed among the nine GT B. napus lines. In some lines, the segregation of GT:non-GT showed a ratio of 1:1 in the BC2, BC3, and BC4 generations. However, in other GT B. napus lines the segregation ratio of GT:non-GT significantly deviated from 1:1 in the BC2 and BC3 generations, which had fewer transgenic progeny than expected, but not in the BC4 generation. Most importantly, in two GT B. napus lines the segregation of GT:non-GT did not fit into a ratio of 1:1 in the BC2, BC3 or BC4 generations due to a deficiency of transgenic progeny. For these lines, a strong reduction of transgene introgression was observed in all three B. rapa accessions. These findings imply that the genomic location of transgenes in B. napus may affect the long-term persistence of transgenes in B. rapa after hybridization has occurred.

  5. Composition analysis and anti-hypoxia activity of polysaccharide from Brassica rapa L.

    PubMed

    Xie, Yue; Jiang, Siping; Su, Donghai; Pi, Ningning; Ma, Chao; Gao, Ping

    2010-11-01

    Crude water-soluble polysaccharides (BRP) were extracted from the root of Brassica rapa L. using boiling-water. The polysaccharides were successively purified by chromatography on DEAE-cellulose and Sephadex G-100 column, giving three major polysaccharide fractions termed BRP1-1, BRP2-1, BRP3-1. The gel permeation chromatography (GPC) analysis showed that the average molecular weight (Mw) of polysaccharides (BRP1-1, BRP2-1, BRP3-1) were approximately 5.53×10(3) Da, 3.35×10(4) Da and 3.37×10(4) Da, respectively. Monosaccharide components analysis indicated that BRP1-1 was composed of arabinose and glucose in a molar ratio of 1.66:98.34. BRP2-1 was composed of arabinose, galactose and glucose in a molar ratio of 9.3:14.63:76.07. BRP3-1 was composed of arabinose, rhamnose, galactose and glucose in a molar ratio of 24.98:24.10:44.09:6.83. The evaluation of anti-hypoxia activity in vivo revealed that BRP is a novel potential anti-hypoxia agent.

  6. Effect of Diffusion on Discoloration of Congo Red by Alginate Entrapped Turnip (Brassica rapa) Peroxidase.

    PubMed

    Ahmedi, Afaf; Abouseoud, Mahmoud; Abdeltif, Amrane; Annabelle, Couvert

    2015-01-01

    Enzymatic discoloration of the diazo dye, Congo red (CR), by immobilized plant peroxidase from turnip "Brassica rapa" is investigated. Partially purified turnip peroxidase (TP) was immobilized by entrapment in spherical particles of calcium alginate and was assayed for the discoloration of aqueous CR solution. Experimental data revealed that pH, reaction time, temperature, colorant, and H2O2 concentration play a significant role in dye degradation. Maximum CR removal was found at pH 2.0, constant temperature of 40°C in the presence of 10 mM H2O2, and 180 mg/L of CR. More than 94% of CR was removed by alginate immobilized TP after 1 h of incubation in a batch process under optimal conditions. About 74% removal efficiency was retained after four recycles. Diffusional limitations in alginate beads such as effectiveness factor η, Thiele modulus Φ, and effective diffusion coefficients (D e ) of Congo red were predicted assuming a first-order biodegradation kinetic. Results showed that intraparticle diffusion resistance has a significant effect on the CR biodegradation rate.

  7. DNA content and differentiation of root apical cells of Brassica rapa plants grown in microgravity.

    PubMed

    Kordyum, E L; Martin, G I; Zaslavsky, V A; Jiao, S; Hilaire, E; Guikema, J A

    1999-07-01

    Root cap is proposed to be a graviperceptive tissue in the plant root, and it is composed of several cell types. One such cell type, the columella cells, are thought to initiate the gravity-induced signal transduction cascade, and these cells arise from the activity of the meristematic zone of the root cap. There is, in fact, a continuum of cells in the central column of the root cap representing the meristematic cells, developing columella cells, mature cells, and those that will soon be sloughed off into the soil. In order to study the functional roles of the root cap cells in gravity-sensing, we compared the ultrastructural organization, differentiation, and DNA content in the meristematic, elongating, and differentiating cells of root tips in Brassica rapa plants grown in space microgravity and at 1g. The experiments were also designed to determine the reactions of root cap cells in both main roots (in which the original root cap was present in an embryonic form within the seed) and lateral roots (in which the root cap formed completely in space after seed germination on orbit) to the space microgravity. This study (ROOTS) was performed in collaboration with the B-PAC experiment on the Space shuttle "Columbia" mission STS-87 (Collaborative US/Ukrainian Experiment (CUE) during November 19-December 5, 1997.

  8. Three Brassica rapa metallothionein genes are differentially regulated under various stress conditions.

    PubMed

    Ahn, Young Ock; Kim, Sun Ha; Lee, Jeongyeo; Kim, Hyeran; Lee, Haeng-Soon; Kwak, Sang-Soo

    2012-03-01

    The expression profiles of three Brassica rapa metallothionein genes (BrMT 1-3) were determined in 7-day-old seedlings exposed to various exogenous factors including plant hormones, heavy metals and abiotic stresses. BrMT1, BrMT2, and BrMT3 were representatives of MT gene type 1, type 2, and type 3, respectively, according to their cysteine alignment. BrMT2 showed a relatively higher basal expression level compared to BrMT1 and BrMT3 under normal conditions. The BrMT1 transcript was markedly increased by various factors including ethephon, polyethylene glycol and hydrogen peroxide, with no down-regulation evident. On the contrary, BrMT2 expression was down-regulated by abscisic acid, salicylic acid, and methyl jasmonate. Heavy metals did not increase BrMT2 expression. BrMT3 expression was only marginally and non-significantly up- and down-regulated by the stress conditions tested. Promoter regions of BrMT1 and BrMT2 display different cis-acting elements supporting the different responses of both genes against various stresses. The results demonstrate the differential regulation of BrMT1-3 by various plant exogenous factors, and indicate the utility of the BrMT1 promoter as a multiple stress inducible promoter.

  9. Heritability of floral volatiles and pleiotropic responses to artificial selection in Brassica rapa.

    PubMed

    Zu, Pengjuan; Blanckenhorn, Wolf U; Schiestl, Florian P

    2016-02-01

    The evolution of the vast diversity of floral volatiles is little understood, although they serve fundamental functions, such as pollinator attraction and herbivore deterrence. Floral volatiles are often species specific, yet highly variable and sensitive to environmental factors. To date, nothing is known about the heritability of floral volatiles, and whether individual compounds can evolve independently or solely in concert with the whole volatile bouquet. We conducted bi-directional artificial selection on four target floral volatiles to estimate heritability and correlated pleiotropic responses in the wild turnip (Brassica rapa). The realized heritability of the four target volatiles ranged from 20% to 45%. The average narrow-sense heritability of all 13 analyzed floral volatiles was 18% based on parent-offspring regressions. There were pleiotropic effects of the selected floral volatile compounds on other constituents of the floral scent bouquet, on flowering time and on some morphological traits. We found that the whole floral scent bouquet changed, even when there was selection only on single compounds, with the overall phenotypic covariance being unaffected. Our study demonstrates that floral scent can evolve rapidly under phenotypic selection, but with additional correlated responses in traits that are not direct targets of selection.

  10. Quantitative trait loci analysis of phytate and phosphate concentrations in seeds and leaves of Brassica rapa.

    PubMed

    Zhao, Jianjun; Jamar, Diaan C L; Lou, Ping; Wang, Yanhua; Wu, Jian; Wang, Xiaowu; Bonnema, Guusje; Koornneef, Maarten; Vreugdenhil, Dick

    2008-07-01

    Phytate, being the major storage form of phosphorus in plants, is considered to be an anti-nutritional substance for human, because of its ability to complex essential micronutrients. In the present study, we describe the genetic analysis of phytate and phosphate concentrations in Brassica rapa using five segregating populations, involving eight parental accessions representing different cultivar groups. A total of 25 quantitative trait loci (QTL) affecting phytate and phosphate concentrations in seeds and leaves were detected, most of them located in linkage groups R01, R03, R06 and R07. Two QTL affecting seed phytate (SPHY), two QTL affecting seed phosphate (SPHO), one QTL affecting leaf phosphate and one major QTL affecting leaf phytate (LPHY) were detected in at least two populations. Co-localization of QTL suggested single or linked loci to be involved in the accumulation of phytate or phosphate in seeds or leaves. Some co-localizing QTL for SPHY and SPHO had parental alleles with effects in the same direction suggesting that they control the total phosphorus concentration. For other QTL, the allelic effect was opposite for phosphate and phytate, suggesting that these QTL are specific for the phytate pathway.

  11. Genotypic variation of the glucosinolate profile in pak choi (Brassica rapa ssp. chinensis).

    PubMed

    Wiesner, Melanie; Zrenner, Rita; Krumbein, Angelika; Glatt, Hansruedi; Schreiner, Monika

    2013-02-27

    Thirteen different pak choi (Brassica rapa ssp. chinensis) cultivars were characterized regarding their glucosinolate profile analyzed by HPLC-DAD-MS. The identified glucosinolates were subjected to principal component analysis, and three distinct groups of pak choi sprouts were identified. Group differences were marked mainly by variations in the aliphatic glucosinolate profile such as differing levels of 3-butenyl glucosinolate and 2-hydroxy-3-butenyl glucosinolate as well as by their varying proportional ratios. In addition, the three groups of pak choi sprouts varied by the presence or absence of 2-hydroxy-4-pentenyl glucosinolate and in level and composition of butyl glucosinolates. This classification is reflected by relative mRNA expression level of 2-oxoacid-dependent dioxygenase. As in sprouts, the major glucosinolates in mature leaves were found to be the aliphatic glucosinolates. However, unlike in sprouts, an additional aliphatic glucosinolate, 5-methylsulfinylpentyl glucosinolate, was detected as characteristic ontogenetic variation in mature leaves in 12 of the 13 pak choi cultivars analyzed.

  12. Impact of mating design on selection response in Brassica rapa L.

    PubMed

    Lascoux, M; Kang, H; Svärd, H

    1994-11-01

    The impact of four mating designs on selection response for leaf area was assessed at four different population sizes, using fast-cycling Brassica rapa L. Mating designs were either balanced (partial diallel or pair mating) or unbalanced (factorial mating designs with either one or two testers). When balanced, the mating designs required different numbers of crossings for the same number of parents: the partial diallel design, in the configuration retained here, required three times as many crossings as pair mating. Population sizes were 4, 8, 16, and 32. The percentage of selected individuals was kept constant at 25%. Despite an average estimated heritability around 0.4, the overall response to selection after five generations was fairly weak in all three replicates. For a given population size, selection response was larger under balanced mating designs than under unbalanced ones. There was no difference among balanced mating designs. Both results indicate that effective population size is more important than population size or the number of crossings in maintaining genetic gain.

  13. Identification of conserved microRNAs and their targets in Chinese cabbage (Brassica rapa subsp. pekinensis).

    PubMed

    Wang, Jinyan; Hou, Xilin; Yang, Xuedong

    2011-12-01

    The microRNAs (miRNAs) are a new class of small nonprotein-coding RNAs that have been identified to regulate gene expression at the post-transcriptional level by targeting mRNAs for degradation or by inhibiting protein translation. Until now, thousands of miRNAs have been identified in many plants species. However, only 23 miRNAs have been reported from the microRNA database in Chinese cabbage (Brassica rapa subsp. pekinensis), one of the most widely cultivated vegetables in China and East Asia. In the present study, 168 potential miRNAs, derived from 22 EST and 119 GSS sequences in Chinese cabbage were identified and classified into 38 miRNA families by well-defined computational analysis, in which most belonged to the miRNA1533, miRNA156, and miRNA2911 families. Totally, there are 129 identified miRNAs potentially targeting 1386 Chinese cabbage EST genes, which play roles in multiple biological and metabolic processes including metabolism, cell growth, signal transduction, stress response, and plant development. Gene ontology analysis, based on these target proteins, showed that 688, 532, and 287 genes were involved in molecular functions, biological processes, and cellular components, respectively. KEGG pathway analysis demonstrated that these miRNAs participated in 214 metabolism pathways, including, amongst others, plant-pathogen interaction, fatty acid metabolism, amino acid metabolism, nitrogen metabolism, plant hormone signal transduction.

  14. The genetic architecture of ecophysiological and circadian traits in Brassica rapa.

    PubMed

    Edwards, Christine E; Ewers, Brent E; Williams, David G; Xie, Qiguang; Lou, Ping; Xu, Xiaodong; McClung, C Robertson; Weinig, Cynthia

    2011-09-01

    Developmental mechanisms that enable perception of and response to the environment may enhance fitness. Ecophysiological traits typically vary depending on local conditions and contribute to resource acquisition and allocation, yet correlations may limit adaptive trait expression. Notably, photosynthesis and stomatal conductance vary diurnally, and the circadian clock, which is an internal estimate of time that anticipates diurnal light/dark cycles, may synchronize physiological behaviors with environmental conditions. Using recombinant inbred lines of Brassica rapa, we examined the quantitative-genetic architecture of ecophysiological and phenological traits and tested their association with the circadian clock. We also investigated how trait expression differed across treatments that simulated seasonal settings encountered by crops and naturalized populations. Many ecophysiological traits were correlated, and some correlations were consistent with expected biophysical constraints; for example, stomata jointly regulate photosynthesis and transpiration by affecting carbon dioxide and water vapor diffusion across leaf surfaces, and these traits were correlated. Interestingly, some genotypes had unusual combinations of ecophysiological traits, such as high photosynthesis in combination with low stomatal conductance or leaf nitrogen, and selection on these genotypes could provide a mechanism for crop improvement. At the genotypic and QTL level, circadian period was correlated with leaf nitrogen, instantaneous measures of photosynthesis, and stomatal conductance as well as with a long-term proxy (carbon isotope discrimination) for gas exchange, suggesting that gas exchange is partly regulated by the clock and thus synchronized with daily light cycles. The association between circadian rhythms and ecophysiological traits is relevant to crop improvement and adaptive evolution.

  15. Effects of stress and phenotypic variation on inbreeding depression in Brassica rapa.

    PubMed

    Waller, Donald M; Dole, Jefferey; Bersch, Andrew J

    2008-04-01

    Stressful environments are often said to increase the expression of inbreeding depression. Alternatively, Crow's "opportunity for selection" (the squared phenotypic coefficient of variation) sets a limit to how much selection can occur, constraining the magnitude of inbreeding depression. To test these hypotheses, we planted self- and cross-fertilized seeds of Brassica rapa into a factorial experiment that varied plant density and saline watering stresses. We then repeated the experiment, reducing the salt concentration. We observed considerable inbreeding depression, particularly for survival in the first experiment and growth in the second. Both stresses independently depressed plant performance. Families differed in their amounts of inbreeding depression and reaction norms across environments. Outcrossed progeny were sometimes more variable. Stresses had small and inconsistent effects on inbreeding depression and, when significant, tended to diminish it. Levels of phenotypic variability often predicted whether inbreeding depression would increase or decrease across environments and were particularly effective in predicting which traits display the most inbreeding depression. Thus, we find little support for the stress hypothesis and mixed support for the phenotypic variability hypothesis. Variable levels of phenotypic variation provide a parsimonious explanation for shifts in inbreeding depression that should be tested before invoking more complex hypotheses.

  16. The uptake and speciation of various Al species in the Brassica rapa pekinensis.

    PubMed

    Polak, T B; Milacic, R; Pihlar, B; Mitrović, B

    2001-05-01

    An investigation was carried out on the uptake and speciation of Al species in Al tolerant Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plants were exposed to 10 microg cm(-3) of Al in the chemical forms of Al3+, Al-citrate and Al-malate in a time span from 1 up to 24 h. In each experiment the nutrient solution and stem sap were analysed by a combination of FPLC ICP AES and ES MS MS techniques. Speciation analysis enabled determination of particular chemical forms of Al present in the nutrient solution or in stem sap. The results indicate that Al3+ added to the nutrient solution remained as Al3+ in the solution during the experiments, but in the roots transformation to Al-malate occurred. Al was transported from roots to the upper parts of the plant as Al-malate (70%) and Al3+ (30%). Al-citrate or Al-malate added to the nutrient solution were transferred to the upper parts of the plant without transformation of their chemical forms.

  17. [Identification and nucleotide polymorphisms in Brassica rapa genes coding cold shock domain proteins (CSDP)].

    PubMed

    Ryzhova, N N; Filiushin, M A; Artemeva, A M; Berdnikova, M V; Taranov, V V; Babakov, A V; Kochieva, E Z

    2013-01-01

    Full-length BrCSDP2 and BrCSDP4 cold shock gene sequences of Brassica rapa are obtained. It is shown that the isolated genes belong to a group AtCSP2/AtCSP4 of Arabidopsis thaliana and TsCSDP2/TsCSDP4 of Thellungiella salsuginea genes encoding proteins with a cold shock domain (CSD) and two zinc finger motives. The structure and the allelic variants of these genes are described and characterized. It is shown that the identified allelic polymorphism is due to both of point substitutions and small indels. Coefficients of total genetic similarity ranged from 1.0 to 0.53. In tern the genetic similarity coefficient for BrCSDP2 and AtCSDP2 was 0.89, and for BrCSDP4 and AtCSDP4 was 0.85.Translation in silico of gene sequences has revealed amino acid substitutions in the protein sequence, but no significant correlation between the detected polymorphism and signs of resistance to cold stress were found.

  18. Genetic variation and selection response in model breeding populations of Brassica rapa following a diversity bottleneck.

    PubMed

    Briggs, William H; Goldman, Irwin L

    2006-01-01

    Domestication and breeding share a common feature of population bottlenecks followed by significant genetic gain. To date, no crop models for investigating the evolution of genetic variance, selection response, and population diversity following bottlenecks have been developed. We developed a model artificial selection system in the laboratory using rapid-cycling Brassica rapa. Responses to 10 cycles of recurrent selection for cotyledon size were compared across a broad population founded with 200 individuals, three bottleneck populations initiated with two individuals each, and unselected controls. Additive genetic variance and heritability were significantly larger in the bottleneck populations prior to selection and this corresponded to a heightened response of bottleneck populations during the first three cycles. However, the overall response was ultimately greater and more sustained in the broad population. AFLP marker analyses revealed the pattern and extent of population subdivision were unaffected by a bottleneck even though the diversity retained in a selection population was significantly limited. Rapid gain in genetically more uniform bottlenecked populations, particularly in the short term, may offer an explanation for why domesticators and breeders have realized significant selection progress over relatively short time periods.

  19. Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa.

    PubMed

    Saito, M; Kubo, N; Matsumoto, S; Suwabe, K; Tsukada, M; Hirai, M

    2006-12-01

    A linkage map of Chinese cabbage (Brassica rapa) was constructed to localize the clubroot resistance (CR) gene, Crr3. Quantitative trait loci analysis using an F(3) population revealed a sharp peak in the logarithm of odds score around the sequence-tagged site (STS) marker, OPC11-2S. Therefore, this region contained Crr3. Nucleotide sequences of OPC11-2S and its proximal markers showed homology to sequences in the top arm of Arabidopsis chromosome 3, suggesting a synteny between the two species. For fine mapping of Crr3, a number of STS markers were developed based on genomic information from Arabidopsis. We obtained polymorphisms in 23 Arabidopsis-derived STS markers, 11 of which were closely linked to Crr3. The precise position of Crr3 was determined using a population of 888 F(2) plants. Eighty plants showing recombination around Crr3 locus were selected and used for the mapping. A fine map of 4.74 cM was obtained, in which two markers (BrSTS-41 and BrSTS-44) and three markers (OPC11-2S, BrSTS-54 and BrSTS-61) were cosegregated. Marker genotypes of the 21 selected F(2) families and CR tests of their progenies strongly suggested that the Crr3 gene is located in a 0.35 cM segment between the two markers, BrSTS-33 and BrSTS-78.

  20. Regulatory hotspots are associated with plant gene expression under varying soil phosphorus supply in Brassica rapa.

    PubMed

    Hammond, John P; Mayes, Sean; Bowen, Helen C; Graham, Neil S; Hayden, Rory M; Love, Christopher G; Spracklen, William P; Wang, Jun; Welham, Sue J; White, Philip J; King, Graham J; Broadley, Martin R

    2011-07-01

    Gene expression is a quantitative trait that can be mapped genetically in structured populations to identify expression quantitative trait loci (eQTL). Genes and regulatory networks underlying complex traits can subsequently be inferred. Using a recently released genome sequence, we have defined cis- and trans-eQTL and their environmental response to low phosphorus (P) availability within a complex plant genome and found hotspots of trans-eQTL within the genome. Interval mapping, using P supply as a covariate, revealed 18,876 eQTL. trans-eQTL hotspots occurred on chromosomes A06 and A01 within Brassica rapa; these were enriched with P metabolism-related Gene Ontology terms (A06) as well as chloroplast- and photosynthesis-related terms (A01). We have also attributed heritability components to measures of gene expression across environments, allowing the identification of novel gene expression markers and gene expression changes associated with low P availability. Informative gene expression markers were used to map eQTL and P use efficiency-related QTL. Genes responsive to P supply had large environmental and heritable variance components. Regulatory loci and genes associated with P use efficiency identified through eQTL analysis are potential targets for further characterization and may have potential for crop improvement.

  1. An intensive understanding of vacuum infiltration transformation of pakchoi (Brassica rapa ssp. chinensis).

    PubMed

    Xu, Hengjian; Wang, Xiufeng; Zhao, Hong; Liu, Fan

    2008-08-01

    Pakchoi (Brassica rapa L. ssp. chinensis), a kind of Chinese cabbage, is an important vegetable in Asian countries. Agrobacterium mediated in planta vacuum infiltration transformation has been performed in pakchoi since 1998, but a detailed study on this technique was lacking. Pakchoi plants 40-50 days old with inflorescences were vacuum infiltrated with Agrobacterium tumefaciens strain C58C1 harboring the binary vector pBBBast-gus-intron. The transformation frequency in the harvested seeds mainly varied from 1 x 10(-4) to 3 x 10(-4) over several years, and it was lower than the frequency in Arabidopsis thaliana. Transformants were obtained from both the upper and the lower parts of the infiltrated plants with or without an elongated inflorescence. Stained ovules and pollen grains were found in the unopened flower 13 days post-infiltration, which was about 0.5-1 mm in diameter at infiltration time with an open ovary as revealed by paraffin sections. Histochemical assays revealed that Agrobacteria were more abundant in the flower tissue than in stem and leaf tissues at all times after infiltration despite the sharp decrease of live Agrobacteria in plant 14 days post infiltration as revealed by the colony forming units on the Agrobacteria culture medium. The results of vacuum infiltration transformation of pakchoi and Arabidopsis thaliana were compared and a strategy to optimize the transformation conditions to increase the transformation frequency in pakchoi was discussed.

  2. Regulation of Brassica rapa chloroplast proliferation in vivo and in cultured leaf disks.

    PubMed

    Yagisawa, F; Mori, T; Higashiyama, T; Kuroiwa, H; Kuroiwa, T

    2003-01-01

    To understand the regulatory mechanisms of chloroplast proliferation, chloroplast replication was studied in cultured leaf disks cut from plants of 25 species. In leaf disks from Brassica rapa var. perviridis, the number of chloroplasts per cell increased remarkably in culture. We examined chloroplast replication in this plant in vivo and in culture media with and without benzyladenine, a cytokinin. In whole plants, leaf cells undergo two phases from leaf emergence to full expansion: an early proliferative stage, in which mitosis occurs, and a differential stage after mitosis has diminished. During the proliferative stage, chloroplast replication keeps pace with cell division. In the differential phase, cell division ceases but chloroplast replication continues for two or three more cycles, with the number of chloroplasts per cell reaching about 60. In the leaf disks, the number of chloroplasts per cell increased from about 18 to 300 without benzyladenine, and to over 600 with benzyladenine, indicating that this cytokinin enhances chloroplast replication in cultured tissue. We also studied changes in ploidy and cell volume between in vivo cells and cells grown in culture with and without benzyladenine. Ploidy and cell volume increased in a manner very similar to that of the number of chloroplasts, suggesting a relationship between these phenomena.

  3. Genetic variation in flowering time induces phenological assortative mating: quantitative genetic methods applied to Brassica rapa.

    PubMed

    Weis, Arthur E; Kossler, Tanya M

    2004-06-01

    It has been argued from first principles that plants mate assortatively by flowering time. However, there have been very few studies of phenological assortative mating, perhaps because current methods to infer paternal phenotype are difficult to apply to natural populations. Two methods are presented to estimate the phenotypic correlation between mates-the quantitative genetic metric for assortative mating-for phenological traits. The first method uses individual flowering schedules to estimate mating probabilities for every potential pairing in a sample. These probabilities are then incorporated into a weighted phenotypic correlation between all potential mates and thus yield a prospective estimate based on mating opportunities. The correlation between mates can also be estimated retrospectively by comparing the regression of offspring phenotype over one parent, which is inflated by assortative mating, to the regression over mid-parent, which is not. In a demonstration experiment with Brassica rapa, the prospective correlation between flowering times (days from germination to anthesis) of pollen recipients and their potential donors was 0.58. The retrospective estimate of this correlation strongly agreed with the prospective estimate. The prospective method is easily employed in field studies that explore the effect of phenological assortative mating on selection response and population differentiation.

  4. Molecular cloning and characterization of the Dicer-like 2 gene from Brassica rapa.

    PubMed

    Yan, Fei; Peng, Jiejun; Lu, Yuwen; Lin, Lin; Zheng, Hongying; Chen, Hairu; Chen, Jianping; Adams, Michael J

    2009-07-01

    Dicer-like proteins (DCLs) are involved in small RNA-mediated development and viral defense in plants. In model plants, at least four DCLs have been found and a number of studies have helped to understand their function. However, the function of the Dicer or DCLs in other plants is still unclear. Here, we report the full-length cDNA sequence of Brassica rapa ssp. chinensis DCL2 (BrDCL2) gene, which contains a 4,179 bp open reading frame (ORF) encoding a protein of 1,392 amino acids. At the 3' end of BrDCL2, clones with three different lengths of 3' untranslated region were found. An alternative splice variant of BrDCL2, BrDCL2sv, in which one intron was retained between exon9 and exon10, was also cloned. Because of a change in the coding sequence resulting in a premature terminal codon, BrDCL2sv was expected to translate a short peptide containing the whole DEXHc domain.

  5. Impact of cry1AC-carrying Brassica rapa subsp. pekinensis on leaf bacterial community.

    PubMed

    Kim, Young Tae; Lee, Kang Seon; Kim, Moon Jung; Kim, Seung Bum

    2009-02-01

    The effects of Chinese cabbage (Brassica rapa subsp. pekinensis) carrying cry1AC derived from Bacillus thuringiensis (Bt) on leaf bacterial community were examined by analyzing the horizontal transfer of trans-gene fragments from plants to bacteria. The effect of plant pathogenic bacteria on the gene transfer was also examined using Pseudomonas syringae pathovar. maculicola. The frequency of hygromycin-resistant bacteria did not alter in Bt leaves, though slight increase was observed in Pseudomonas-infected Bt leaves with no statistical significance. The analysis of bacterial community profiles using the denaturing gradient gel electrophoresis (DGGE) fingerprinting indicated that there were slight differences between Bt and control Chinese cabbage, and also that infected tissues were dominated by P. syringae pv. maculicola. However, the cultured bacterial pools were not found to contain any transgene fragments. Thus, no direct evidence of immediate gene transfer from plant to bacteria or acquisition of hygromycin resistance could be observed. Still, long-term monitoring on the possibility of gene transfer is necessary to correctly assess the environmental effects of the Bt crop on bacteria.

  6. Mapping of a QTL for oleic acid concentration in spring turnip rape (Brassica rapa ssp. oleifera).

    PubMed

    Tanhuanpää, P K; Vilkki, J P; Vilkki, H J

    1996-06-01

    Bulk segregant analysis was used to search for RAPD (random amplified polymorphic DNA) markers linked to gene(s) affecting oleic acid concentration in an F2 population from the Brassica rapa ssp. oleifera cross Jo4002 x a high oleic acid individual from line Jo4072. Eight primers (=8 markers) out of 104 discriminated the 'high' and 'low' bulks consisting of extreme individuals from the oleic acid distribution. These markers were analysed throughout the entire F2 population, and their association with oleic acid was studied using both interval mapping and ANOVA analysis. Six of the markers mapped to one linkage group. A quantitative trait locus (QTL) affecting oleic acid concentration was found to reside within this linkage group with a LOD score >15. The most suitable marker for oleic acid content is OPH-17, a codominant marker close (<4cM) to the QTL. The mean seed oleic acid content in the F2 individuals carrying the larger allele of this marker was 80.14±9.76%; in individuals with the smaller allele, 54.53±6.83%; in the heterozygotes, 65.47±8.15%. To increase reproducibility, the RAPD marker was converted into a SCAR (sequence characterized amplied region) marker with specific primers. Marker OPH-17 can be used to select spring turnip rape individuals with the desired oleic acid content.

  7. Effects of stress and phenotypic variation on inbreeding depression in Brassica rapa.

    PubMed

    Waller, Donald M; Dole, Jefferey; Bersch, Andrew J

    2008-04-01

    Stressful environments are often said to increase the expression of inbreeding depression. Alternatively, Crow's "opportunity for selection" (the squared phenotypic coefficient of variation) sets a limit to how much selection can occur, constraining the magnitude of inbreeding depression. To test these hypotheses, we planted self- and cross-fertilized seeds of Brassica rapa into a factorial experiment that varied plant density and saline watering stresses. We then repeated the experiment, reducing the salt concentration. We observed considerable inbreeding depression, particularly for survival in the first experiment and growth in the second. Both stresses independently depressed plant performance. Families differed in their amounts of inbreeding depression and reaction norms across environments. Outcrossed progeny were sometimes more variable. Stresses had small and inconsistent effects on inbreeding depression and, when significant, tended to diminish it. Levels of phenotypic variability often predicted whether inbreeding depression would increase or decrease across environments and were particularly effective in predicting which traits display the most inbreeding depression. Thus, we find little support for the stress hypothesis and mixed support for the phenotypic variability hypothesis. Variable levels of phenotypic variation provide a parsimonious explanation for shifts in inbreeding depression that should be tested before invoking more complex hypotheses. PMID:18208569

  8. Comparative Transcriptome Analysis Reveals Heat-Responsive Genes in Chinese Cabbage (Brassica rapa ssp. chinensis)

    PubMed Central

    Wang, Aihua; Hu, Jihong; Huang, Xingxue; Li, Xia; Zhou, Guolin; Yan, Zhixiang

    2016-01-01

    Chinese cabbage (Brassica rapa ssp. chinensis) is an economically and agriculturally significant vegetable crop and is extensively cultivated throughout the world. Heat stress disturbs cellular homeostasis and causes visible growth inhibition of shoots and roots, severe retardation in growth and development, and even death. However, there are few studies on the transcriptome profiling of heat stress in non-heading Chinese cabbage. In this study, we investigated the transcript profiles of non-heading Chinese cabbage from heat-sensitive and heat-tolerant varieties “GHA” and “XK,” respectively, in response to high temperature using RNA sequencing (RNA seq). Approximately 625 genes were differentially expressed between the two varieties. The responsive genes can be divided into three phases along with the time of heat treatment: response to stimulus, programmed cell death and ribosome biogenesis. Differentially expressed genes (DEGs) were identified in the two varieties, including transcription factors (TFs), kinases/phosphatases, genes related to photosynthesis and effectors of homeostasis. Many TFs were involved in the heat stress response of Chinese cabbage, including NAC069 TF which was up-regulated at all the heat treatment stages. And their expression levels were also validated by quantitative real-time-PCR (qRT-PCR). These candidate genes will provide genetic resources for further improving the heat-tolerant characteristics in non-heading Chinese cabbage. PMID:27443222

  9. Overexpression of Brassica rapa SHI-RELATED SEQUENCE genes suppresses growth and development in Arabidopsis thaliana.

    PubMed

    Hong, Joon Ki; Kim, Jin A; Kim, Jung Sun; Lee, Soo In; Koo, Bon Sung; Lee, Yeon-Hee

    2012-08-01

    S HI-R ELATED SEQUENCE (SRS) genes are plant-specific transcription factors containing a zinc-binding RING finger motif, which play a critical role in plant growth and development. We have characterized six SRS genes in Brassica rapa. Overexpression of the SRSs BrSTY1, BrSRS7, and BrLRP1 induced dwarf and compact plants, and significantly decreased primary root elongation and lateral root formation. Additionally, the transgenic plants had upward-curled leaves of narrow widths and with short petioles, and had shorter siliques and low fertility. In stems, hypocotyls, and styles, epidermal cell lengths were also significantly reduced in transgenic plants. RT-PCR analysis of transgenic plants revealed that BrSTY1, BrSRS7, and BrLRP1 regulate expression of several gibberellin (GA)- and auxin-related genes involved in morphogenesis in shoot apical regions. We conclude that BrSTY1, BrSRS7, and BrLRP1 regulate plant growth and development by regulating expression of GA- and auxin-related genes.

  10. The Genetic Architecture of Ecophysiological and Circadian Traits in Brassica rapa

    PubMed Central

    Edwards, Christine E.; Ewers, Brent E.; Williams, David G.; Xie, Qiguang; Lou, Ping; Xu, Xiaodong; McClung, C. Robertson; Weinig, Cynthia

    2011-01-01

    Developmental mechanisms that enable perception of and response to the environment may enhance fitness. Ecophysiological traits typically vary depending on local conditions and contribute to resource acquisition and allocation, yet correlations may limit adaptive trait expression. Notably, photosynthesis and stomatal conductance vary diurnally, and the circadian clock, which is an internal estimate of time that anticipates diurnal light/dark cycles, may synchronize physiological behaviors with environmental conditions. Using recombinant inbred lines of Brassica rapa, we examined the quantitative-genetic architecture of ecophysiological and phenological traits and tested their association with the circadian clock. We also investigated how trait expression differed across treatments that simulated seasonal settings encountered by crops and naturalized populations. Many ecophysiological traits were correlated, and some correlations were consistent with expected biophysical constraints; for example, stomata jointly regulate photosynthesis and transpiration by affecting carbon dioxide and water vapor diffusion across leaf surfaces, and these traits were correlated. Interestingly, some genotypes had unusual combinations of ecophysiological traits, such as high photosynthesis in combination with low stomatal conductance or leaf nitrogen, and selection on these genotypes could provide a mechanism for crop improvement. At the genotypic and QTL level, circadian period was correlated with leaf nitrogen, instantaneous measures of photosynthesis, and stomatal conductance as well as with a long-term proxy (carbon isotope discrimination) for gas exchange, suggesting that gas exchange is partly regulated by the clock and thus synchronized with daily light cycles. The association between circadian rhythms and ecophysiological traits is relevant to crop improvement and adaptive evolution. PMID:21750258

  11. Proteomic and gene expression analyses during bolting-related leaf color change in Brassica rapa.

    PubMed

    Zhang, Y W; Guo, M H; Tang, X B; Jin, D; Fang, Z Y

    2016-01-01

    Bolting and flowering are key processes during the growth and development of Chinese cabbage (Brassica rapa L. ssp pekinensis). Understanding the molecular mechanisms underlying bolting and flowering is of significance for improving production of the vegetable. A leaf-color change from bright green to gray-green has been observed following differentiation of the flowering stem and before bolting in the vegetable, and is considered to be a signal for bolting. Proteomics in meristem tissues of an inbred line (C30) were analyzed by two-dimensional electrophoresis during the transition period. We found that some proteins were specifically expressed while others were differentially expressed. Among these, 17 proteins were specifically expressed before the color change, 18 were specifically expressed after the color change, 21 were downregulated during the color change, and 29 were upregulated. Mass spectrometric analysis (MALDI-TOF-TOF/MS) was used to analyze 17 protein spots, and four proteins (subunit E1 of vacuolar-type H+ transporter ATPase, the large subunit of Rubicon, S-adenosylmethionine synthetase, and tubulin α-2) were identified. qPCR analysis was conducted to quantify the expression of genes encoding these proteins during the transitional period. The expression of BrVHA-E1, BrSAMS, BrrbcL, and BrTUA6 was significantly different before and after the leaf-color change, suggesting that these genes might be involved in regulating flower differentiation and bolting.

  12. Quantitative trait loci × environment interactions for plant morphology vary over ontogeny in Brassica rapa.

    PubMed

    Dechaine, Jennifer M; Brock, Marcus T; Iniguez-Luy, Federico L; Weinig, Cynthia

    2014-01-01

    Growth in plants occurs via the addition of repeating modules, suggesting that the genetic architecture of similar subunits may vary between earlier- and later-developing modules. These complex environment × ontogeny interactions are not well elucidated, as studies examining quantitative trait loci (QTLs) expression over ontogeny have not included multiple environments. Here, we characterized the genetic architecture of vegetative traits and onset of reproduction over ontogeny in recombinant inbred lines of Brassica rapa in the field and glasshouse. The magnitude of genetic variation in plasticity of seedling internodes was greater than in those produced later in ontogeny. We correspondingly detected that QTLs for seedling internode length were environment-specific, whereas later in ontogeny the majority of QTLs affected internode lengths in all treatments. The relationship between internode traits and onset of reproduction varied with environment and ontogenetic stage. This relationship was observed only in the glasshouse environment and was largely attributable to one environment-specific QTL. Our results provide the first evidence of a QTL × environment × ontogeny interaction, and provide QTL resolution for differences between early- and later-stage plasticity for stem elongation. These results also suggest potential constraints on morphological evolution in early vs later modules as a result of associations with reproductive timing.

  13. Effect of Diffusion on Discoloration of Congo Red by Alginate Entrapped Turnip (Brassica rapa) Peroxidase.

    PubMed

    Ahmedi, Afaf; Abouseoud, Mahmoud; Abdeltif, Amrane; Annabelle, Couvert

    2015-01-01

    Enzymatic discoloration of the diazo dye, Congo red (CR), by immobilized plant peroxidase from turnip "Brassica rapa" is investigated. Partially purified turnip peroxidase (TP) was immobilized by entrapment in spherical particles of calcium alginate and was assayed for the discoloration of aqueous CR solution. Experimental data revealed that pH, reaction time, temperature, colorant, and H2O2 concentration play a significant role in dye degradation. Maximum CR removal was found at pH 2.0, constant temperature of 40°C in the presence of 10 mM H2O2, and 180 mg/L of CR. More than 94% of CR was removed by alginate immobilized TP after 1 h of incubation in a batch process under optimal conditions. About 74% removal efficiency was retained after four recycles. Diffusional limitations in alginate beads such as effectiveness factor η, Thiele modulus Φ, and effective diffusion coefficients (D e ) of Congo red were predicted assuming a first-order biodegradation kinetic. Results showed that intraparticle diffusion resistance has a significant effect on the CR biodegradation rate. PMID:25734011

  14. Effects of fixation protocol and gravistimulation on cytoskeletal organization in Brassica rapa roots

    NASA Astrophysics Data System (ADS)

    Edge, Andrea; Hasenstein, Karl H.

    2012-07-01

    In preparation for a flight experiment we have studied the optimization of the staining protocols for microtubules and actin filaments in Brassica rapa seedlings. Microtubules (MT) were stained with monoclonal antibody (mAb) YOL 1/34. F-actin (FA) staining was achieved with C4 mAb antibody. Fixative prepared more than three weeks before use produces specimens that stained poorly. Storage in fixative for more than four weeks resulted in noticeably poorer staining. Staining was best in cortical cells but more difficult and less consistent in cap cells, especially for FA. In addition, the quality of staining of root cap cells was dependent on the age of the formaldehyde. The organization of the MTs corresponded with previously published descriptions; FA was prominent in the stele with thick and numerous parallel bundles; cortical cells showed less dense and less directional organization of mostly thinner filaments. FA organization was determined by tissue rather than by differential elongation. The organization of MTs in cortical cells of curving roots was uniformly circular and perpendicular to the long cell axis despite different cell length. The effect of clinorotation around the horizontal axis and centrifugation on the cytoskeletal organization was inconsistent. (Supported by NASA grant NNX10AP91G)

  15. Effects of microgravityon the structural organization of Brassica rapa photosynthetic appartus

    NASA Astrophysics Data System (ADS)

    Adamchuk, N.; Kordyum, E.; Guikema, J.

    Leaf mesophyll cells of 13- and 15-day old Brassica rapa plants grown on board the space shuttle Columbia (STS-87) and in the ground control have been investigated using the methods of light and electron microscopy. 13-day old plants were fixed on orbit and 15-day old plants were fixed after landing. It was shown the essential differences in leaf mesophyll quantitative anatomical and ultrastructural characteristics between spaceflight and ground control variants. Both the volume of palisade parenchyma cells and a number of chloroplasts in those cells increased in spaceflight samples. Simultaneusly, a chloroplast size decreased together with increasing of a relative volume of stromal thylakoids, starch grains and plastoglobuli. It was also noted increasing of stromal thylakoid length. In the same time, both a total length of thylakoids in granae and the grana number diminished in space flight. In addition, the interthylakoid space could be expended and the thylakoid length was more variable in chloroplast granae on microgravity, that correlated with a shrinkage of thylakoids in granal stacks. The obtained data a er discussed with the questions on both the photosynthetic apparatus sensitivity to gravity and its adaptive possibility to microgravity.

  16. Anthocyanin accumulation and transcriptional regulation of anthocyanin biosynthesis in purple bok choy (Brassica rapa var. chinensis).

    PubMed

    Zhang, Yanjie; Chen, Guoping; Dong, Tingting; Pan, Yu; Zhao, Zhiping; Tian, Shibing; Hu, Zongli

    2014-12-24

    Bok choy (Brassica rapa var. chinensis) is an important dietary vegetable cultivated and consumed worldwide for its edible leaves. The purple cultivars rich in health-promoting anthocyanins are usually more eye-catching and valuable. Fifteen kinds of anthocyanins were separated and identified from a purple bok choy cultivar (Zi He) by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. To investigate the molecular mechanisms underlying anthocyanin accumulation in bok choy, the expression profiles of anthocyanin biosynthetic and regulatory genes were analyzed in seedlings and leaves of the purple cultivar and the green cultivar (Su Zhouqing). Compared with the other tissues, BrTT8 and most of the anthocyanin biosynthetic genes were significantly up-regulated in the leaves and light-grown seedlings of Zi He. The results that heterologous expression of BrTT8 promotes the transcription of partial anthocyanin biosynthetic genes in regeneration shoots of tomato indicate that BrTT8 plays an important role in the regulation of anthocyanin biosynthesis.

  17. Comparative Transcriptome Analysis Reveals Heat-Responsive Genes in Chinese Cabbage (Brassica rapa ssp. chinensis).

    PubMed

    Wang, Aihua; Hu, Jihong; Huang, Xingxue; Li, Xia; Zhou, Guolin; Yan, Zhixiang

    2016-01-01

    Chinese cabbage (Brassica rapa ssp. chinensis) is an economically and agriculturally significant vegetable crop and is extensively cultivated throughout the world. Heat stress disturbs cellular homeostasis and causes visible growth inhibition of shoots and roots, severe retardation in growth and development, and even death. However, there are few studies on the transcriptome profiling of heat stress in non-heading Chinese cabbage. In this study, we investigated the transcript profiles of non-heading Chinese cabbage from heat-sensitive and heat-tolerant varieties "GHA" and "XK," respectively, in response to high temperature using RNA sequencing (RNA seq). Approximately 625 genes were differentially expressed between the two varieties. The responsive genes can be divided into three phases along with the time of heat treatment: response to stimulus, programmed cell death and ribosome biogenesis. Differentially expressed genes (DEGs) were identified in the two varieties, including transcription factors (TFs), kinases/phosphatases, genes related to photosynthesis and effectors of homeostasis. Many TFs were involved in the heat stress response of Chinese cabbage, including NAC069 TF which was up-regulated at all the heat treatment stages. And their expression levels were also validated by quantitative real-time-PCR (qRT-PCR). These candidate genes will provide genetic resources for further improving the heat-tolerant characteristics in non-heading Chinese cabbage.

  18. Anthocyanin accumulation and transcriptional regulation of anthocyanin biosynthesis in purple bok choy (Brassica rapa var. chinensis).

    PubMed

    Zhang, Yanjie; Chen, Guoping; Dong, Tingting; Pan, Yu; Zhao, Zhiping; Tian, Shibing; Hu, Zongli

    2014-12-24

    Bok choy (Brassica rapa var. chinensis) is an important dietary vegetable cultivated and consumed worldwide for its edible leaves. The purple cultivars rich in health-promoting anthocyanins are usually more eye-catching and valuable. Fifteen kinds of anthocyanins were separated and identified from a purple bok choy cultivar (Zi He) by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. To investigate the molecular mechanisms underlying anthocyanin accumulation in bok choy, the expression profiles of anthocyanin biosynthetic and regulatory genes were analyzed in seedlings and leaves of the purple cultivar and the green cultivar (Su Zhouqing). Compared with the other tissues, BrTT8 and most of the anthocyanin biosynthetic genes were significantly up-regulated in the leaves and light-grown seedlings of Zi He. The results that heterologous expression of BrTT8 promotes the transcription of partial anthocyanin biosynthetic genes in regeneration shoots of tomato indicate that BrTT8 plays an important role in the regulation of anthocyanin biosynthesis. PMID:25419600

  19. Comparative Transcriptome Analysis Reveals Heat-Responsive Genes in Chinese Cabbage (Brassica rapa ssp. chinensis).

    PubMed

    Wang, Aihua; Hu, Jihong; Huang, Xingxue; Li, Xia; Zhou, Guolin; Yan, Zhixiang

    2016-01-01

    Chinese cabbage (Brassica rapa ssp. chinensis) is an economically and agriculturally significant vegetable crop and is extensively cultivated throughout the world. Heat stress disturbs cellular homeostasis and causes visible growth inhibition of shoots and roots, severe retardation in growth and development, and even death. However, there are few studies on the transcriptome profiling of heat stress in non-heading Chinese cabbage. In this study, we investigated the transcript profiles of non-heading Chinese cabbage from heat-sensitive and heat-tolerant varieties "GHA" and "XK," respectively, in response to high temperature using RNA sequencing (RNA seq). Approximately 625 genes were differentially expressed between the two varieties. The responsive genes can be divided into three phases along with the time of heat treatment: response to stimulus, programmed cell death and ribosome biogenesis. Differentially expressed genes (DEGs) were identified in the two varieties, including transcription factors (TFs), kinases/phosphatases, genes related to photosynthesis and effectors of homeostasis. Many TFs were involved in the heat stress response of Chinese cabbage, including NAC069 TF which was up-regulated at all the heat treatment stages. And their expression levels were also validated by quantitative real-time-PCR (qRT-PCR). These candidate genes will provide genetic resources for further improving the heat-tolerant characteristics in non-heading Chinese cabbage. PMID:27443222

  20. Proteomic and gene expression analyses during bolting-related leaf color change in Brassica rapa.

    PubMed

    Zhang, Y W; Guo, M H; Tang, X B; Jin, D; Fang, Z Y

    2016-01-01

    Bolting and flowering are key processes during the growth and development of Chinese cabbage (Brassica rapa L. ssp pekinensis). Understanding the molecular mechanisms underlying bolting and flowering is of significance for improving production of the vegetable. A leaf-color change from bright green to gray-green has been observed following differentiation of the flowering stem and before bolting in the vegetable, and is considered to be a signal for bolting. Proteomics in meristem tissues of an inbred line (C30) were analyzed by two-dimensional electrophoresis during the transition period. We found that some proteins were specifically expressed while others were differentially expressed. Among these, 17 proteins were specifically expressed before the color change, 18 were specifically expressed after the color change, 21 were downregulated during the color change, and 29 were upregulated. Mass spectrometric analysis (MALDI-TOF-TOF/MS) was used to analyze 17 protein spots, and four proteins (subunit E1 of vacuolar-type H+ transporter ATPase, the large subunit of Rubicon, S-adenosylmethionine synthetase, and tubulin α-2) were identified. qPCR analysis was conducted to quantify the expression of genes encoding these proteins during the transitional period. The expression of BrVHA-E1, BrSAMS, BrrbcL, and BrTUA6 was significantly different before and after the leaf-color change, suggesting that these genes might be involved in regulating flower differentiation and bolting. PMID:27525926

  1. Heritability of floral volatiles and pleiotropic responses to artificial selection in Brassica rapa.

    PubMed

    Zu, Pengjuan; Blanckenhorn, Wolf U; Schiestl, Florian P

    2016-02-01

    The evolution of the vast diversity of floral volatiles is little understood, although they serve fundamental functions, such as pollinator attraction and herbivore deterrence. Floral volatiles are often species specific, yet highly variable and sensitive to environmental factors. To date, nothing is known about the heritability of floral volatiles, and whether individual compounds can evolve independently or solely in concert with the whole volatile bouquet. We conducted bi-directional artificial selection on four target floral volatiles to estimate heritability and correlated pleiotropic responses in the wild turnip (Brassica rapa). The realized heritability of the four target volatiles ranged from 20% to 45%. The average narrow-sense heritability of all 13 analyzed floral volatiles was 18% based on parent-offspring regressions. There were pleiotropic effects of the selected floral volatile compounds on other constituents of the floral scent bouquet, on flowering time and on some morphological traits. We found that the whole floral scent bouquet changed, even when there was selection only on single compounds, with the overall phenotypic covariance being unaffected. Our study demonstrates that floral scent can evolve rapidly under phenotypic selection, but with additional correlated responses in traits that are not direct targets of selection. PMID:26391626

  2. Regulatory hotspots are associated with plant gene expression under varying soil phosphorus supply in Brassica rapa.

    PubMed

    Hammond, John P; Mayes, Sean; Bowen, Helen C; Graham, Neil S; Hayden, Rory M; Love, Christopher G; Spracklen, William P; Wang, Jun; Welham, Sue J; White, Philip J; King, Graham J; Broadley, Martin R

    2011-07-01

    Gene expression is a quantitative trait that can be mapped genetically in structured populations to identify expression quantitative trait loci (eQTL). Genes and regulatory networks underlying complex traits can subsequently be inferred. Using a recently released genome sequence, we have defined cis- and trans-eQTL and their environmental response to low phosphorus (P) availability within a complex plant genome and found hotspots of trans-eQTL within the genome. Interval mapping, using P supply as a covariate, revealed 18,876 eQTL. trans-eQTL hotspots occurred on chromosomes A06 and A01 within Brassica rapa; these were enriched with P metabolism-related Gene Ontology terms (A06) as well as chloroplast- and photosynthesis-related terms (A01). We have also attributed heritability components to measures of gene expression across environments, allowing the identification of novel gene expression markers and gene expression changes associated with low P availability. Informative gene expression markers were used to map eQTL and P use efficiency-related QTL. Genes responsive to P supply had large environmental and heritable variance components. Regulatory loci and genes associated with P use efficiency identified through eQTL analysis are potential targets for further characterization and may have potential for crop improvement. PMID:21527424

  3. Dynamics of storage reserve deposition during Brassica rapa L. pollen and seed development in microgravity.

    PubMed

    Kuang, A; Popova, A; McClure, G; Musgrave, M E

    2005-01-01

    Pollen and seeds share a developmental sequence characterized by intense metabolic activity during reserve deposition before drying to a cryptobiotic form. Neither pollen nor seed development has been well studied in the absence of gravity, despite the importance of these structures in supporting future long-duration manned habitation away from Earth. Using immature seeds (3-15 d postpollination) of Brassica rapa L. cv. Astroplants produced on the STS-87 flight of the space shuttle Columbia, we compared the progress of storage reserve deposition in cotyledon cells during early stages of seed development. Brassica pollen development was studied in flowers produced on plants grown entirely in microgravity on the Mir space station and fixed while on orbit. Cytochemical localization of storage reserves showed differences in starch accumulation between spaceflight and ground control plants in interior layers of the developing seed coat as early as 9 d after pollination. At this age, the embryo is in the cotyledon elongation stage, and there are numerous starch grains in the cotyledon cells in both flight and ground control seeds. In the spaceflight seeds, starch was retained after this stage, while starch grains decreased in size in the ground control seeds. Large and well-developed protein bodies were observed in cotyledon cells of ground control seeds at 15 d postpollination, but their development was delayed in the seeds produced during spaceflight. Like the developing cotyledonary tissues, cells of the anther wall and filaments from the spaceflight plants contained numerous large starch grains, while these were rarely seen in the ground controls. The tapetum remained swollen and persisted to a later developmental stage in the spaceflight plants than in the ground controls, even though most pollen grains appeared normal. These developmental markers indicate that Brassica seeds and pollen produced in microgravity were physiologically younger than those produced in 1 g

  4. Dynamics of storage reserve deposition during Brassica rapa L. pollen and seed development in microgravity

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Popova, A.; McClure, G.; Musgrave, M. E.

    2005-01-01

    Pollen and seeds share a developmental sequence characterized by intense metabolic activity during reserve deposition before drying to a cryptobiotic form. Neither pollen nor seed development has been well studied in the absence of gravity, despite the importance of these structures in supporting future long-duration manned habitation away from Earth. Using immature seeds (3-15 d postpollination) of Brassica rapa L. cv. Astroplants produced on the STS-87 flight of the space shuttle Columbia, we compared the progress of storage reserve deposition in cotyledon cells during early stages of seed development. Brassica pollen development was studied in flowers produced on plants grown entirely in microgravity on the Mir space station and fixed while on orbit. Cytochemical localization of storage reserves showed differences in starch accumulation between spaceflight and ground control plants in interior layers of the developing seed coat as early as 9 d after pollination. At this age, the embryo is in the cotyledon elongation stage, and there are numerous starch grains in the cotyledon cells in both flight and ground control seeds. In the spaceflight seeds, starch was retained after this stage, while starch grains decreased in size in the ground control seeds. Large and well-developed protein bodies were observed in cotyledon cells of ground control seeds at 15 d postpollination, but their development was delayed in the seeds produced during spaceflight. Like the developing cotyledonary tissues, cells of the anther wall and filaments from the spaceflight plants contained numerous large starch grains, while these were rarely seen in the ground controls. The tapetum remained swollen and persisted to a later developmental stage in the spaceflight plants than in the ground controls, even though most pollen grains appeared normal. These developmental markers indicate that Brassica seeds and pollen produced in microgravity were physiologically younger than those produced in 1 g

  5. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance.

    PubMed

    Suwabe, Keita; Tsukazaki, Hikaru; Iketani, Hiroyuki; Hatakeyama, Katsunori; Kondo, Masatoshi; Fujimura, Miyuki; Nunome, Tsukasa; Fukuoka, Hiroyuki; Hirai, Masashi; Matsumoto, Satoru

    2006-05-01

    An SSR-based linkage map was constructed in Brassica rapa. It includes 113 SSR, 87 RFLP, and 62 RAPD markers. It consists of 10 linkage groups with a total distance of 1005.5 cM and an average distance of 3.7 cM. SSRs are distributed throughout the linkage groups at an average of 8.7 cM. Synteny between B. rapa and a model plant, Arabidopsis thaliana, was analyzed. A number of small genomic segments of A. thaliana were scattered throughout an entire B. rapa linkage map. This points out the complex genomic rearrangements during the course of evolution in Cruciferae. A 282.5-cM region in the B. rapa map was in synteny with A. thaliana. Of the three QTL (Crr1, Crr2, and Crr4) for clubroot resistance identified, synteny analysis revealed that two major QTL regions, Crr1 and Crr2, overlapped in a small region of Arabidopsis chromosome 4. This region belongs to one of the disease-resistance gene clusters (MRCs) in the A. thaliana genome. These results suggest that the resistance genes for clubroot originated from a member of the MRCs in a common ancestral genome and subsequently were distributed to the different regions they now inhabit in the process of evolution.

  6. Use of airborne remote sensing to detect riverside Brassica rapa to aid in risk assessment of transgenic crops

    NASA Astrophysics Data System (ADS)

    Elliott, Luisa M.; Mason, David C.; Allainguillaume, Joel; Wilkinson, Mike J.

    2009-11-01

    High resolution descriptions of plant distribution have utility for many ecological applications but are especially useful for predictive modeling of gene flow from transgenic crops. Difficulty lies in the extrapolation errors that occur when limited ground survey data are scaled up to the landscape or national level. This problem is epitomized by the wide confidence limits generated in a previous attempt to describe the national abundance of riverside Brassica rapa (a wild relative of cultivated rapeseed) across the United Kingdom. Here, we assess the value of airborne remote sensing to locate B. rapa over large areas and so reduce the need for extrapolation. We describe results from flights over the river Nene in England acquired using Airborne Thematic Mapper (ATM) and Compact Airborne Spectrographic Imager (CASI) imagery, together with ground truth data. It proved possible to detect 97% of flowering B. rapa on the basis of spectral profiles. This included all stands of plants that occupied >2m square (>5 plants), which were detected using single-pixel classification. It also included very small populations (<5 flowering plants, 1-2m square) that generated mixed pixels, which were detected using spectral unmixing. The high detection accuracy for flowering B. rapa was coupled with a rather large false positive rate (43%). The latter could be reduced by using the image detections to target fieldwork to confirm species identity, or by acquiring additional remote sensing data such as laser altimetry or multitemporal imagery.

  7. Genome-wide survey and expression analysis of the PUB family in Chinese cabbage (Brassica rapa ssp. pekinesis).

    PubMed

    Wang, Cheng; Duan, Weike; Riquicho, Ali RamuliMaquina; Jing, Zange; Liu, Tongkun; Hou, Xilin; Li, Ying

    2015-12-01

    U-box proteins are widely distributed among eukaryotic organisms and show a higher prevalence in plants than in other organisms. Plant U-box (PUB) proteins play crucial regulatory roles in various developmental and physiological processes. Previously, 64 and 77 PUB genes have been identified in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), respectively. In this study, 101 putative PUB genes were identified in the Chinese cabbage (Brassica rapa ssp. pekinensis line Chiifu-401-42) genome and compared with other 15 representative plants. By specific protein domains and a phylogenetic analysis, the B. rapa PUB (BrPUB) gene family was subdivided into 10 groups. Localization of BrPUB genes showed an uneven distribution on the ten chromosomes of B. rapa. The orthologous and co-orthologous PUB gene pairs were identified between B. rapa and A. thaliana. RNA-seq transcriptome data of different tissues revealed tissue-specific and differential expression profiles of the BrPUBs, and quantitative real-time PCR analysis showed inverse gene expression patterns of the BrPUB-ARMs in response to cold and heat stresses. Altogether, the identification, classification, phylogenetic analysis, chromosome distribution, conserved motifs, and expression patterns of BrPUBs were predicted and analysed. Importantly, this study of BrPUBs provides a rich resource that will aid in the determination of PUB functions in plant development.

  8. Genome-wide survey and expression analysis of the PUB family in Chinese cabbage (Brassica rapa ssp. pekinesis).

    PubMed

    Wang, Cheng; Duan, Weike; Riquicho, Ali RamuliMaquina; Jing, Zange; Liu, Tongkun; Hou, Xilin; Li, Ying

    2015-12-01

    U-box proteins are widely distributed among eukaryotic organisms and show a higher prevalence in plants than in other organisms. Plant U-box (PUB) proteins play crucial regulatory roles in various developmental and physiological processes. Previously, 64 and 77 PUB genes have been identified in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), respectively. In this study, 101 putative PUB genes were identified in the Chinese cabbage (Brassica rapa ssp. pekinensis line Chiifu-401-42) genome and compared with other 15 representative plants. By specific protein domains and a phylogenetic analysis, the B. rapa PUB (BrPUB) gene family was subdivided into 10 groups. Localization of BrPUB genes showed an uneven distribution on the ten chromosomes of B. rapa. The orthologous and co-orthologous PUB gene pairs were identified between B. rapa and A. thaliana. RNA-seq transcriptome data of different tissues revealed tissue-specific and differential expression profiles of the BrPUBs, and quantitative real-time PCR analysis showed inverse gene expression patterns of the BrPUB-ARMs in response to cold and heat stresses. Altogether, the identification, classification, phylogenetic analysis, chromosome distribution, conserved motifs, and expression patterns of BrPUBs were predicted and analysed. Importantly, this study of BrPUBs provides a rich resource that will aid in the determination of PUB functions in plant development. PMID:26054324

  9. Biological and phylogenetic characterization of Fusarium oxysporum complex, which causes yellows on Brassica spp., and proposal of F. oxysporum f. sp. rapae, a novel forma specialis pathogenic on B. rapa in Japan.

    PubMed

    Enya, J; Togawa, M; Takeuchi, T; Yoshida, S; Tsushima, S; Arie, T; Sakai, T

    2008-04-01

    Although the causal agent of yellows of Brassica rapa (turnip, pak choi, and narinosa) in Japan was reported in 1996 to be Fusarium oxysporum f. sp. conglutinans, this classification has remained inconclusive because of a lack of detailed genetic and pathogenic studies. Therefore, we analyzed the taxonomic position of this organism using Japanese isolates of F. oxysporum complex obtained from diseased individuals of various B. rapa subspecies. Phylogenetic analyses using partial sequences of the rDNA intergenic spacer region and the mating-type gene (MAT1-1-1alpha-box) showed that B. rapa and cabbage isolates belong to different monophyletic clades that separated at early evolutionary stages. Additionally, correlations were observed between the molecular phylogeny and the vegetative compatibility groups. Isolates from turnip, komatsuna, and narinosa (B. rapa group) did not show pathogenicity against cabbage or broccoli (B. oleracea group), although they caused severe symptoms on their original host species. In contrast, cabbage isolates had significantly higher (P = 0.05) virulence on B. oleracea than on B. rapa crops. Our results indicate that F. oxysporum complex isolates from B. rapa and B. oleracea are not only phylogenetically distinct but also differ in host specificity. Therefore, we propose a novel forma specialis, F. oxysporum f. sp. rapae, which causes yellows on B. rapa, including turnip, komatsuna, pak choi, and narinosa.

  10. Overexpression of mitochondrial genes is caused by interactions between the nucleus of Brassica rapa and the cytoplasm of Diplotaxis muralis in the leaves of alloplasmic lines of B. rapa.

    PubMed

    Yamasaki, Seiji; Konno, Noboru; Kishitani, Sachie

    2004-10-01

    In Brassica species, alloplasmic lines displaying cytoplasmic male sterility (CMS) are established by combining the nucleus from B. rapa with the cytoplasm from Diplotaxis muralis. The failure to observe restriction fragment length polymorphism (RFLP) patterns of mitochondrial genes ( coxII, coxIII, atpA, atp6, atp9, cob, nad3, nad6, and nad9) between alloplasmic lines of B. rapa and D. muralis indicates that introgression of the B. rapa nucleus into the cytoplasm of D. muralis does not cause any alterations in the structure of the mitochondrial genome. To investigate how the nucleus influences the cytoplasm, we examined the expression of mitochondrial genes in the leaves of euplasmic and alloplasmic lines of B. rapa and D. muralis. We detected higher levels of mitochondrial gene mRNAs in alloplasmic lines of B. rapa than in D. muralis. Patterns of mitochondrial gene transcription also differed among the alloplasmic lines of B. rapa. Thus, expression of mitochondrial genes in alloplasmic lines of B. rapa differed in the leaves compared to D. muralis. Overexpression of mitochondrial genes may be the result of novel interactions between the nucleus and the mitochondria in alloplasmic lines of B. rapa. Further study is necessary to clarify how these phenomena are involved in CMS.

  11. Evaluation of Brassica rapa L. genotypes for microspore culture response and identification of a highly embryogenic line.

    PubMed

    Ferrie, A M; Epp, D J; Keller, W A

    1995-06-01

    Isolated microspore culture techniques are being widely used in Brassica breeding programs to generate haploid and doubled haploid plants. A number of factors influence regeneration response in vitro including genotype. In order to assess the effect of genotype on microspore embryogenesis in B. rapa L. var. oleifera, 17 cultivars and breeding lines were evaluated. Embryos developed from all but one genotype when using NLN medium with 17% sucrose, followed by a reduction in sucrose concentration to 10%, 48 h later. The number of embryos /100 buds differed between genotypes, ranging from 0 to 70. Further studies indicated that sucrose concentration and incubation time influenced embryogenesis. Selection studies carried out with an Agriculture and Agri-Food Canada breeding line have resulted in the identification of a highly embryogenic B. rapa line. This line produced thousands of microspore-derived embryos /100 buds and will be useful in mutant selection and gene transfer as well as biochemical and developmental studies.

  12. Metabolomic differentiation of Brassica rapa following herbivory by different insect instars using two-dimensional nuclear magnetic resonance spectroscopy.

    PubMed

    Widarto, Heru Tri; Van Der Meijden, Ed; Lefeber, Alfons W M; Erkelens, Cornelis; Kim, Hye Kyong; Choi, Young Hae; Verpoorte, Robert

    2006-11-01

    The metabolic alterations of Brassica rapa (L.) leaves attacked by larvae of the specialist Plutella xylostella L. (Lepidoptera: Yponomeutidae) and the generalist Spodoptera exigua Hubner (Lepidoptera: Noctuidae) were investigated with nuclear magnetic resonance (NMR) spectroscopy, followed by a multivariate data analysis. The principal component analysis (PCA) of (1)H NMR spectra showed that metabolic changes in B. rapa leaves induced by the 2nd and the 4th instars were different from each other. However, the congestion of the one-dimensional (1)H NMR spectrum made it difficult to identify discriminating metabolites. To overcome the spectral complexity, several two-dimensional NMR techniques were applied. Of those evaluated, J-resolved spectroscopy, which affords an additional coupling constant, provided a wide range of structure information on differentiating the metabolites. Based on the J-resolved spectra combined with PCA, the major signals contributing to the discrimination were alanine, threonine, glucose, sucrose, feruloyl malate, sinapoyl malate, and gluconapin.

  13. Generation and characterization of Brassica rapa ssp. pekinensis - B. oleracea var. capitata monosomic and disomic alien addition lines.

    PubMed

    Gu, Ai Xia; Shen, Shu Xing; Wang, Yan Hua; Zhao, Jian Jun; Xuan, Shu Xin; Chen, Xue Ping; Li, Xiao Feng; Luo, Shuang Xia; Zhao, Yu Jing

    2015-09-01

    Five monosomic alien addition lines (MAALs) of Brassica rapa ssp. pekinensis - B. oleracea var. capitata were obtained by hybridization and backcrossing between B. rapa ssp. pekinensis (female parent) and B. oleracea var. capitata. The alien linkage groups were identified using 42 B. oleracea var. capitata linkage group-specific markers as B. oleracea linkage groups C2, C3, C6, C7 and C8. Based on the chromosomal karyotype of root tip cells, these five MAALs added individual chromosomes from B. oleracea var. capitata: chr 1 (the longest), chr 2 or 3, chr 5 (small locus of 25S rDNA), chr 7 (satellite-carrying) and chr 9 (the shortest). Five disomic alien addition lines were then generated by selfing their corresponding MAALs.

  14. Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes.

    PubMed

    Halfhill, Matthew D; Sutherland, Jamie P; Moon, Hong Seok; Poppy, Guy M; Warwick, Suzanne I; Weissinger, Arthur K; Rufty, Thomas W; Raymer, Paul L; Stewart, C Neal

    2005-09-01

    Concerns exist that transgenic crop x weed hybrid populations will be more vigorous and competitive with crops compared with the parental weed species. Hydroponic, glasshouse, and field experiments were performed to evaluate the effects of introgression of Bacillus thuringiensis (Bt) cry1Ac and green fluorescent protein (GFP) transgenes on hybrid productivity and competitiveness in four experimental Brassica rapa x transgenic Brassica napus hybrid generations (F1, BC1F1, BC2F1 and BC2F2). The average vegetative growth and nitrogen (N) use efficiency of transgenic hybrid generations grown under high N hydroponic conditions were lower than that of the weed parent (Brassica rapa, AA, 2n = 20), but similar to the transgenic crop parent, oilseed rape (Brassica napus, AACC, 2n = 38). No generational differences were detected under low N conditions. In two noncompetitive glasshouse experiments, both transgenic and nontransgenic BC2F2 hybrids had on average less vegetative growth and seed production than B. rapa. In two high intraspecific competition field experiments with varied herbivore pressure, BC2F2 hybrids produced less vegetative dry weight than B. rapa. The competitive ability of transgenic and nontransgenic BC2F2 hybrids against a neighbouring crop species were quantified in competition experiments that assayed wheat (Triticum aestivum) yield reductions under agronomic field conditions. The hybrids were the least competitive with wheat compared with parental Brassica competitors, although differences between transgenic and nontransgenic hybrids varied with location. Hybridization, with or without transgene introgression, resulted in less productive and competitive populations.

  15. Effect of enzyme-aided cell wall disintegration on protein extractability from intact and dehulled rapeseed (Brassica rapa L. and Brassica napus L.) press cakes.

    PubMed

    Rommi, Katariina; Hakala, Terhi K; Holopainen, Ulla; Nordlund, Emilia; Poutanen, Kaisa; Lantto, Raija

    2014-08-13

    Cell-wall- and pectin-degrading enzyme preparations were used to enhance extractability of proteins from rapeseed press cake. Rapeseed press cakes from cold pressing of intact Brassica rapa and partially dehulled Brassica napus seeds, containing 36-40% protein and 35% carbohydrates, were treated with pectinolytic (Pectinex Ultra SP-L), xylanolytic (Depol 740L), and cellulolytic (Celluclast 1.5L) enzyme preparations. Pectinex caused effective disintegration of embryonic cell walls through hydrolysis of pectic polysaccharides and glucans and increased protein extraction by up to 1.7-fold in comparison to treatment without enzyme addition. Accordingly, 56% and 74% of the total protein in the intact and dehulled press cakes was extracted. Light microscopy of the press cakes suggested the presence of pectins colocalized with proteins inside the embryo cells. Hydrolysis of these intracellular pectins and deconstruction of embryonic cell walls during Pectinex treatment were concluded to relate with enhanced protein release.

  16. Construction of chromosome segment substitution lines enables QTL mapping for flowering and morphological traits in Brassica rapa

    PubMed Central

    Li, Xiaonan; Wang, Wenke; Wang, Zhe; Li, Kangning; Lim, Yong Pyo; Piao, Zhongyun

    2015-01-01

    Chromosome segment substitution lines (CSSLs) represent a powerful method for precise quantitative trait loci (QTL) detection of complex agronomical traits in plants. In this study, we used a marker-assisted backcrossing strategy to develop a population consisting of 63 CSSLs, derived from backcrossing of the F1 generated from a cross between two Brassica rapa subspecies: “Chiifu” (ssp. pekinensis), the Brassica “A” genome-represented line used as the donor, and “49caixin” (ssp. parachinensis), a non-heading cultivar used as the recipient. The 63 CSSLs covered 87.95% of the B. rapa genome. Among them, 39 lines carried a single segment; 15 lines, two segments; and nine lines, three or more segments of the donor parent chromosomes. To verify the potential advantage of these CSSL lines, we used them to locate QTL for six morphology-related traits. A total of 58 QTL were located on eight chromosomes for all six traits: 17 for flowering time, 14 each for bolting time and plant height, six for plant diameter, two for leaf width, and five for flowering stalk diameter. Co-localized QTL were mainly distributed on eight genomic regions in A01, A02, A05, A06, A08, A09, and A10, present in the corresponding CSSLs. Moreover, new chromosomal fragments that harbored QTL were identified using the findings of previous studies. The CSSL population constructed in our study paves the way for fine mapping and cloning of candidate genes involved in late bolting, flowering, and plant architecture-related traits in B. rapa. Furthermore, it has great potential for future marker-aided gene/QTL pyramiding of other interesting traits in B. rapa breeding. PMID:26106405

  17. BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa.

    PubMed

    Zhao, Jianjun; Kulkarni, Vani; Liu, Nini; Del Carpio, Dunia Pino; Bucher, Johan; Bonnema, Guusje

    2010-06-01

    Flowering time is an important agronomic trait, and wide variation exists among Brassica rapa. In Arabidopsis, FLOWERING LOCUS C (FLC) plays an important role in modulating flowering time and the response to vernalization. Brassica rapa contains several paralogues of FLC at syntenic regions. BrFLC2 maps under a major flowering time and vernalization response quantitative trait locus (QTL) at the top of A02. Here the effects of vernalization on flowering time in a double haploid (DH) population and on BrFLC2 expression in selected lines of a DH population in B. rapa are descibed. The effect of the major flowering time QTL on the top of A02 where BrFLC2 maps clearly decreases upon vernalization, which points to a role for BrFLC2 underlying the QTL. In all developmental stages and tissues (seedlings, cotyledons, and leaves), BrFLC2 transcript levels are higher in late flowering pools of DH lines than in pools of early flowering DH lines. BrFLC2 expression diminished after different durations of seedling vernalization in both early and late DH lines. The reduction of BrFLC2 expression upon seedling vernalization of both early and late flowering DH lines was strongest at the seedling stage and diminished in subsequent growth stages, which suggests that the commitment to flowering is already set at very early developmental stages. Taken together, these data support the hypothesis that BrFLC2 is a candidate gene for the flowering time and vernalization response QTL in B. rapa.

  18. Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population.

    PubMed

    Warwick, S I; Légère, A; Simard, M-J; James, T

    2008-03-01

    The existence of transgenic hybrids resulting from transgene escape from genetically modified (GM) crops to wild or weedy relatives is well documented but the fate of the transgene over time in recipient wild species populations is still relatively unknown. This is the first report of the persistence and apparent introgression, i.e. stable incorporation of genes from one differentiated gene pool into another, of an herbicide resistance transgene from Brassica napus into the gene pool of its weedy relative, Brassica rapa, monitored under natural commercial field conditions. Hybridization between glyphosate-resistant [herbicide resistance (HR)]B. napus and B. rapa was first observed at two Québec sites, Ste Agathe and St Henri, in 2001. B. rapa populations at these two locations were monitored in 2002, 2003 and 2005 for the presence of hybrids and transgene persistence. Hybrid numbers decreased over the 3-year period, from 85 out of approximately 200 plants surveyed in 2002 to only five out of 200 plants in 2005 (St Henri site). Most hybrids had the HR trait, reduced male fertility, intermediate genome structure, and presence of both species-specific amplified fragment length polymorphism markers. Both F(1) and backcross hybrid generations were detected. One introgressed individual, i.e. with the HR trait and diploid ploidy level of B. rapa, was observed in 2005. The latter had reduced pollen viability but produced approximately 480 seeds. Forty-eight of the 50 progeny grown from this plant were diploid with high pollen viability and 22 had the transgene (1:1 segregation). These observations confirm the persistence of the HR trait over time. Persistence occurred over a 6-year period, in the absence of herbicide selection pressure (with the exception of possible exposure to glyphosate in 2002), and in spite of the fitness cost associated with hybridization.

  19. Construction of chromosome segment substitution lines enables QTL mapping for flowering and morphological traits in Brassica rapa.

    PubMed

    Li, Xiaonan; Wang, Wenke; Wang, Zhe; Li, Kangning; Lim, Yong Pyo; Piao, Zhongyun

    2015-01-01

    Chromosome segment substitution lines (CSSLs) represent a powerful method for precise quantitative trait loci (QTL) detection of complex agronomical traits in plants. In this study, we used a marker-assisted backcrossing strategy to develop a population consisting of 63 CSSLs, derived from backcrossing of the F1 generated from a cross between two Brassica rapa subspecies: "Chiifu" (ssp. pekinensis), the Brassica "A" genome-represented line used as the donor, and "49caixin" (ssp. parachinensis), a non-heading cultivar used as the recipient. The 63 CSSLs covered 87.95% of the B. rapa genome. Among them, 39 lines carried a single segment; 15 lines, two segments; and nine lines, three or more segments of the donor parent chromosomes. To verify the potential advantage of these CSSL lines, we used them to locate QTL for six morphology-related traits. A total of 58 QTL were located on eight chromosomes for all six traits: 17 for flowering time, 14 each for bolting time and plant height, six for plant diameter, two for leaf width, and five for flowering stalk diameter. Co-localized QTL were mainly distributed on eight genomic regions in A01, A02, A05, A06, A08, A09, and A10, present in the corresponding CSSLs. Moreover, new chromosomal fragments that harbored QTL were identified using the findings of previous studies. The CSSL population constructed in our study paves the way for fine mapping and cloning of candidate genes involved in late bolting, flowering, and plant architecture-related traits in B. rapa. Furthermore, it has great potential for future marker-aided gene/QTL pyramiding of other interesting traits in B. rapa breeding.

  20. Cerium Oxide Nanoparticles and Bulk Cerium Oxide Leading to Different Physiological and Biochemical Responses in Brassica rapa.

    PubMed

    Ma, Xingmao; Wang, Qiang; Rossi, Lorenzo; Zhang, Weilan

    2016-07-01

    Cerium oxide nanoparticles (CeO2NPs) have been incorporated into many commercial products, and their potential release into the environment through the use and disposal of these products has caused serious concerns. Despite the previous efforts and rapid progress on elucidating the environmental impact of CeO2NPs, the long-term impact of CeO2NPs to plants, a key component of the ecosystem, is still not well understood. The potentially different impact of CeO2NPs and their bulk counterparts to plants is also unclear. The main objectives of this study were (1) to investigate whether continued irrigation with solutions containing different concentrations of CeO2NPs (0, 10, and 100 mg/L) would induce physiological and biochemical adjustments in Brassica rapa in soil growing conditions and (2) to determine whether CeO2NPs and bulk CeO2 particles exert different impacts on plants. The results indicated that bulk CeO2 at 10 and 100 mg/L enhanced plant biomass by 28% and 35%, respectively, while CeO2NPs at equivalent concentrations did not. While the bulk CeO2 treatment resulted in significantly higher concentrations of hydrogen peroxide (H2O2) in plant tissues at the vegetative stage, CeO2NPs led to significantly higher H2O2 levels in plant tissues at the floral stage. The activity of superoxide dismutase (SOD) in Brassica rapa also displayed a growth-stage dependent response to different sizes of CeO2 while catalase (CAT) activity was not affected by either size of CeO2 throughout the life cycle of Brassica rapa. Altogether, the results demonstrated that plant responses to CeO2 exposure varied with the particle sizes and the growth stages of plants.

  1. Cerium Oxide Nanoparticles and Bulk Cerium Oxide Leading to Different Physiological and Biochemical Responses in Brassica rapa.

    PubMed

    Ma, Xingmao; Wang, Qiang; Rossi, Lorenzo; Zhang, Weilan

    2016-07-01

    Cerium oxide nanoparticles (CeO2NPs) have been incorporated into many commercial products, and their potential release into the environment through the use and disposal of these products has caused serious concerns. Despite the previous efforts and rapid progress on elucidating the environmental impact of CeO2NPs, the long-term impact of CeO2NPs to plants, a key component of the ecosystem, is still not well understood. The potentially different impact of CeO2NPs and their bulk counterparts to plants is also unclear. The main objectives of this study were (1) to investigate whether continued irrigation with solutions containing different concentrations of CeO2NPs (0, 10, and 100 mg/L) would induce physiological and biochemical adjustments in Brassica rapa in soil growing conditions and (2) to determine whether CeO2NPs and bulk CeO2 particles exert different impacts on plants. The results indicated that bulk CeO2 at 10 and 100 mg/L enhanced plant biomass by 28% and 35%, respectively, while CeO2NPs at equivalent concentrations did not. While the bulk CeO2 treatment resulted in significantly higher concentrations of hydrogen peroxide (H2O2) in plant tissues at the vegetative stage, CeO2NPs led to significantly higher H2O2 levels in plant tissues at the floral stage. The activity of superoxide dismutase (SOD) in Brassica rapa also displayed a growth-stage dependent response to different sizes of CeO2 while catalase (CAT) activity was not affected by either size of CeO2 throughout the life cycle of Brassica rapa. Altogether, the results demonstrated that plant responses to CeO2 exposure varied with the particle sizes and the growth stages of plants. PMID:26691446

  2. Investigating genotype specific response in photosynthetic behavior under drought stress and nitrogen limitation in Brassica rapa.

    NASA Astrophysics Data System (ADS)

    Pleban, J. R.; Mackay, D. S.; Ewers, B. E.; Weinig, C.; Aston, T.

    2015-12-01

    Challenges in terrestrial ecosystem modeling include characterizing the impact of stress on vegetation and the heterogeneous behavior of different species within the environment. In an effort to address these challenges the impacts of drought and nutrient limitation on the CO2 assimilation of multiple genotypes of Brassica rapa was investigated using the Farquhar Model (FM) of photosynthesis following a Bayesian parameterization and updating scheme. Leaf gas exchange and chlorophyll fluorescence measurements from an unstressed group (well-watered/well-fertilized) and two stressed groups (drought/well-fertilized and well-watered/nutrient limited) were used to estimate FM model parameters. Unstressed individuals were used to initialize Bayesian parameter estimation. Posterior mean estimates yielded a close fit with data as observed assimilation (An) closely matched predicted (Ap) with mean standard error for all individuals ranging from 0.8 to 3.1 μmol CO2 m-2 s-1. Posterior parameter distributions of the unstressed individuals were combined and fit to distributions to establish species level Bayesian priors of FM parameters for testing stress responses. Species level distributions of unstressed group identified mean maximum rates of carboxylation standardized to 25° (Vcmax25) as 101.8 μmol m-2 s-1 (± 29.0) and mean maximum rates of electron transport standardized to 25° (Jmax25) as 319.7 μmol m-2 s-1 (± 64.4). These updated priors were used to test the response of drought and nutrient limitations on assimilation. In the well-watered/nutrient limited group a decrease of 28.0 μmol m-2 s-1 was observed in mean estimate of Vcmax25, a decrease of 27.9 μmol m-2 s-1 in Jmax25 and a decrease in quantum yield from 0.40 mol photon/mol e- in unstressed individuals to 0.14 in the nutrient limited group. In the drought/well-fertilized group a decrease was also observed in Vcmax25 and Jmax25. The genotype specific unstressed and stressed responses were then used to

  3. Evaluation of glucosinolate variation in a collection of turnip (Brassica rapa) germplasm by the analysis of intact and desulfo glucosinolates.

    PubMed

    Lee, Jun Gu; Bonnema, Guusje; Zhang, Ningwen; Kwak, Jung Ho; de Vos, Ric C H; Beekwilder, Jules

    2013-04-24

    Glucosinolates (GLS) are secondary metabolites occurring in cruciferous species. These compounds are important for plant defense, human health, and the characteristic flavor of Brassica vegetables. In this study, the GLS in tubers from a collection of 48 turnip ( Brassica rapa ) accessions from different geographic origin were analyzed. Two different methods were used: desulfo GLS were analyzed by high-performance liquid chromatography with a photodiode array detector, and intact GLS were analyzed by accurate mass liquid chromatography-mass spectrometry. For most GLS, desulfo and intact signals correlated well, and the analytical reproducibility for individual GLS was similar for both methods. A total of 11 different GLS was monitored in the turnip tubers, through both intact and desulfo GLS analysis methods. Four clusters of accessions could be clearly distinguished based on GLS composition of the turnip tuber. Clustering based on tuber GLS differed markedly from a previously published clustering based on leaf GLS.

  4. Growth and (137)Cs uptake and accumulation among 56 Japanese cultivars of Brassica rapa, Brassica juncea and Brassica napus grown in a contaminated field in Fukushima: Effect of inoculation with a Bacillus pumilus strain.

    PubMed

    Djedidi, Salem; Kojima, Katsuhiro; Ohkama-Ohtsu, Naoko; Bellingrath-Kimura, Sonoko Dorothea; Yokoyama, Tadashi

    2016-06-01

    Fifty six local Japanese cultivars of Brassica rapa (40 cultivars), Brassica juncea (10 cultivars) and Brassica napus (6 cultivars) were assessed for variability in growth and (137)Cs uptake and accumulation in association with a Bacillus pumilus strain. Field trial was conducted at a contaminated farmland in Nihonmatsu city, in Fukushima prefecture. Inoculation resulted in different responses of the cultivars in terms of growth and radiocesium uptake and accumulation. B. pumilus induced a significant increase in shoot dry weight in 12 cultivars that reached up to 40% in one B. rapa and three B. juncea cultivars. Differences in radiocesium uptake were observed between the cultivars of each Brassica species. Generally, inoculation resulted in a significant increase in (137)Cs uptake in 22 cultivars, while in seven cultivars it was significantly decreased. Regardless of plant cultivar and bacterial inoculation, the transfer of (137)Cs to the plant shoots (TF) varied by a factor of up to 5 and it ranged from to 0.011 to 0.054. Five inoculated cultivars, showed enhanced shoot dry weights and decreased (137)Cs accumulations, among which two B. rapa cultivars named Bitamina and Nozawana had a significantly decreased (137)Cs accumulation in their shoots. Such cultivars could be utilized to minimize the entry of radiocesium into the food chain; however, verifying the consistency of their radiocesium accumulation in other soils is strongly required. Moreover, the variations in growth and radiocesium accumulation, as influenced by Bacillus inoculation, could help selecting well grown inoculated Brassica cultivars with low radiocesium accumulation in their shoots.

  5. Growth and (137)Cs uptake and accumulation among 56 Japanese cultivars of Brassica rapa, Brassica juncea and Brassica napus grown in a contaminated field in Fukushima: Effect of inoculation with a Bacillus pumilus strain.

    PubMed

    Djedidi, Salem; Kojima, Katsuhiro; Ohkama-Ohtsu, Naoko; Bellingrath-Kimura, Sonoko Dorothea; Yokoyama, Tadashi

    2016-06-01

    Fifty six local Japanese cultivars of Brassica rapa (40 cultivars), Brassica juncea (10 cultivars) and Brassica napus (6 cultivars) were assessed for variability in growth and (137)Cs uptake and accumulation in association with a Bacillus pumilus strain. Field trial was conducted at a contaminated farmland in Nihonmatsu city, in Fukushima prefecture. Inoculation resulted in different responses of the cultivars in terms of growth and radiocesium uptake and accumulation. B. pumilus induced a significant increase in shoot dry weight in 12 cultivars that reached up to 40% in one B. rapa and three B. juncea cultivars. Differences in radiocesium uptake were observed between the cultivars of each Brassica species. Generally, inoculation resulted in a significant increase in (137)Cs uptake in 22 cultivars, while in seven cultivars it was significantly decreased. Regardless of plant cultivar and bacterial inoculation, the transfer of (137)Cs to the plant shoots (TF) varied by a factor of up to 5 and it ranged from to 0.011 to 0.054. Five inoculated cultivars, showed enhanced shoot dry weights and decreased (137)Cs accumulations, among which two B. rapa cultivars named Bitamina and Nozawana had a significantly decreased (137)Cs accumulation in their shoots. Such cultivars could be utilized to minimize the entry of radiocesium into the food chain; however, verifying the consistency of their radiocesium accumulation in other soils is strongly required. Moreover, the variations in growth and radiocesium accumulation, as influenced by Bacillus inoculation, could help selecting well grown inoculated Brassica cultivars with low radiocesium accumulation in their shoots. PMID:26986237

  6. Distribution of calcium (Ca) and magnesium (Mg) in the leaves of Brassica rapa under varying exogenous Ca and Mg supply

    PubMed Central

    Rios, Juan Jose; Ó Lochlainn, Seosamh; Devonshire, Jean; Graham, Neil S.; Hammond, John P.; King, Graham J.; White, Philip J.; Kurup, Smita; Broadley, Martin R.

    2012-01-01

    Background and Aims Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution. Methods Brassica rapa ssp. trilocularis ‘R-o-18’ was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM). Key Results Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply. Conclusions The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding. PMID:22362665

  7. Quantitative Trait Loci Mapping in Brassica rapa Revealed the Structural and Functional Conservation of Genetic Loci Governing Morphological and Yield Component Traits in the A, B, and C Subgenomes of Brassica Species

    PubMed Central

    Li, Xiaonan; Ramchiary, Nirala; Dhandapani, Vignesh; Choi, Su Ryun; Hur, Yoonkang; Nou, Ill-Sup; Yoon, Moo Kyoung; Lim, Yong Pyo

    2013-01-01

    Brassica rapa is an important crop species that produces vegetables, oilseed, and fodder. Although many studies reported quantitative trait loci (QTL) mapping, the genes governing most of its economically important traits are still unknown. In this study, we report QTL mapping for morphological and yield component traits in B. rapa and comparative map alignment between B. rapa, B. napus, B. juncea, and Arabidopsis thaliana to identify candidate genes and conserved QTL blocks between them. A total of 95 QTL were identified in different crucifer blocks of the B. rapa genome. Through synteny analysis with A. thaliana, B. rapa candidate genes and intronic and exonic single nucleotide polymorphisms in the parental lines were detected from whole genome resequenced data, a few of which were validated by mapping them to the QTL regions. Semi-quantitative reverse transcriptase PCR analysis showed differences in the expression levels of a few genes in parental lines. Comparative mapping identified five key major evolutionarily conserved crucifer blocks (R, J, F, E, and W) harbouring QTL for morphological and yield components traits between the A, B, and C subgenomes of B. rapa, B. juncea, and B. napus. The information of the identified candidate genes could be used for breeding B. rapa and other related Brassica species. PMID:23223793

  8. Quantitative trait loci mapping in Brassica rapa revealed the structural and functional conservation of genetic loci governing morphological and yield component traits in the A, B, and C subgenomes of Brassica species.

    PubMed

    Li, Xiaonan; Ramchiary, Nirala; Dhandapani, Vignesh; Choi, Su Ryun; Hur, Yoonkang; Nou, Ill-Sup; Yoon, Moo Kyoung; Lim, Yong Pyo

    2013-02-01

    Brassica rapa is an important crop species that produces vegetables, oilseed, and fodder. Although many studies reported quantitative trait loci (QTL) mapping, the genes governing most of its economically important traits are still unknown. In this study, we report QTL mapping for morphological and yield component traits in B. rapa and comparative map alignment between B. rapa, B. napus, B. juncea, and Arabidopsis thaliana to identify candidate genes and conserved QTL blocks between them. A total of 95 QTL were identified in different crucifer blocks of the B. rapa genome. Through synteny analysis with A. thaliana, B. rapa candidate genes and intronic and exonic single nucleotide polymorphisms in the parental lines were detected from whole genome resequenced data, a few of which were validated by mapping them to the QTL regions. Semi-quantitative reverse transcriptase PCR analysis showed differences in the expression levels of a few genes in parental lines. Comparative mapping identified five key major evolutionarily conserved crucifer blocks (R, J, F, E, and W) harbouring QTL for morphological and yield components traits between the A, B, and C subgenomes of B. rapa, B. juncea, and B. napus. The information of the identified candidate genes could be used for breeding B. rapa and other related Brassica species.

  9. Molecular cloning of Brassica rapa nitrilases and their expression during clubroot development.

    PubMed

    Ishikawa, Toshiki; Okazaki, Keiichi; Kuroda, Haruka; Itoh, Kimiko; Mitsui, Toshiaki; Hori, Hidetaka

    2007-09-01

    SUMMARY Three isoforms of nitrilase were cloned from turnip, Brassica rapa L., and their expression during clubroot development caused by Plasmodiophora brassicae was investigated. The isoforms were designated BrNIT-T1, BrNIT-T2 and BrNIT-T4 based on homology to known nitrilases. BrNIT-T1 and BrNIT-T2 have 80% homology to three nitrilases from Arabidopsis thaliana (AtNIT1, AtNIT2 and AtNIT3). BrNIT-T4 showed 90% homology to AtNIT4. To confirm their enzyme activity, the recombinant proteins were expressed in Escherichia coli. The recombinant BrNIT-T1 and BrNIT-T2 but not BrNIT-T4 converted indole-3-acetonitrile to indole-3-acetic acid, an endogenous plant auxin, although kinetic analysis showed that indole-3-acetonitrile is a poor substrate compared with various aliphatic and aromatic nitriles. By contrast, the recombinant BrNIT-T4 specifically converted beta-cyano-l-alanine to aspartic acid and asparagine and these findings agree with the idea that it is involved in the cyanide detoxification pathway. Real-time PCR analysis clearly showed that these isoforms were differentially expressed during clubroot development. BrNIT-T1 transcripts were very low in non-infected roots but were enhanced up to 100-fold in infected roots exhibiting club growth. By contrast, BrNIT-T2 transcripts remained at a very low level during clubroot formation. All these results clearly indicate the specific involvement of BrNIT-T1 in clubroot formation. The BrNIT-T4 transcripts were substantially reduced in the clubroot-growing phase, but thereafter they increased rapidly to a level found in non-infected roots as the clubroot growth reached a plateau. These findings suggest the specific involvement of BrNIT-T4 in clubroot maturation. In fully developed clubs, the BrNIT-T1 and BrNIT-T2 transcripts also increased. Free indole-3-acetic acid (IAA) content increased in the early and the latest phase of infected roots compared with non-infected roots, but decreased substantially at the middle

  10. Evidence of root zone hypoxia in Brassica rapa L. grown in microgravity.

    PubMed

    Stout, S C; Porterfield, D M; Briarty, L G; Kuang, A; Musgrave, M E

    2001-03-01

    A series of experiments was conducted aboard the U.S. space shuttle and the Mir space station to evaluate microgravity-induced root zone hypoxia in rapid-cycling Brassica (Brassica rapa L.), using both root and foliar indicators of low-oxygen stress to the root zone. Root systems from two groups of plants 15 and 30 d after planting, grown in a phenolic foam nutrient delivery system on the shuttle (STS-87), were harvested and fixed for microscopy or frozen for enzyme assays immediately postflight or following a ground-based control. Activities of fermentative enzymes were measured as indicators of root zone hypoxia and metabolism. Following 16 d of microgravity, ADH (alcohol dehydrogenase) activity was increased in the spaceflight roots 47% and 475% in the 15-d-old and 30-d-old plants, respectively, relative to the ground control. Cytochemical localization showed ADH activity in only the root tips of the space-grown plants. Shoots from plants that were grown from seed in flight in a particulate medium on the Mir station were harvested at 13 d after planting and quick-frozen and stored in flight in a gaseous nitrogen freezer or chemically fixed in flight for subsequent microscopy. When compared to material from a high-fidelity ground control, concentrations of shoot sucrose and total soluble carbohydrate were significantly greater in the spaceflight treatment according to enzymatic carbohydrate analysis. Stereological analysis of micrographs of sections from leaf and cotyledon tissue fixed in flight and compared with ground controls indicated no changes in the volume of protoplast, cell wall, and intercellular space in parenchyma cells. Within the protoplasm, the volume occupied by starch was threefold higher in the spaceflight than in the ground control, with a concomitant decrease in vacuolar volume in the spaceflight treatment. Both induction of fermentative enzyme activity in roots and accumulation of carbohydrates in foliage have been repeatedly shown to occur

  11. Evidence of root zone hypoxia in Brassica rapa L. grown in microgravity

    NASA Technical Reports Server (NTRS)

    Stout, S. C.; Porterfield, D. M.; Briarty, L. G.; Kuang, A.; Musgrave, M. E.

    2001-01-01

    A series of experiments was conducted aboard the U.S. space shuttle and the Mir space station to evaluate microgravity-induced root zone hypoxia in rapid-cycling Brassica (Brassica rapa L.), using both root and foliar indicators of low-oxygen stress to the root zone. Root systems from two groups of plants 15 and 30 d after planting, grown in a phenolic foam nutrient delivery system on the shuttle (STS-87), were harvested and fixed for microscopy or frozen for enzyme assays immediately postflight or following a ground-based control. Activities of fermentative enzymes were measured as indicators of root zone hypoxia and metabolism. Following 16 d of microgravity, ADH (alcohol dehydrogenase) activity was increased in the spaceflight roots 47% and 475% in the 15-d-old and 30-d-old plants, respectively, relative to the ground control. Cytochemical localization showed ADH activity in only the root tips of the space-grown plants. Shoots from plants that were grown from seed in flight in a particulate medium on the Mir station were harvested at 13 d after planting and quick-frozen and stored in flight in a gaseous nitrogen freezer or chemically fixed in flight for subsequent microscopy. When compared to material from a high-fidelity ground control, concentrations of shoot sucrose and total soluble carbohydrate were significantly greater in the spaceflight treatment according to enzymatic carbohydrate analysis. Stereological analysis of micrographs of sections from leaf and cotyledon tissue fixed in flight and compared with ground controls indicated no changes in the volume of protoplast, cell wall, and intercellular space in parenchyma cells. Within the protoplasm, the volume occupied by starch was threefold higher in the spaceflight than in the ground control, with a concomitant decrease in vacuolar volume in the spaceflight treatment. Both induction of fermentative enzyme activity in roots and accumulation of carbohydrates in foliage have been repeatedly shown to occur

  12. Growth and antioxidant response of Brassica rapa var. rapa L. (turnip) irrigated with different compositions of paper and board mill (PBM) effluent.

    PubMed

    Iqbal, Shahid; Younas, Umer; Chan, Kim Wei; Saeed, Zohaib; Shaheen, Muhammad Ashraf; Akhtar, Naeem; Majeed, Abdul

    2013-05-01

    Current study presents the effect of irrigation with different compositions (0%, 20%, 40%, 60%, 80% and 100%) of PBM effluent on growth and antioxidant potential of Brassica rapa var. rapa L. plants. Seeds were exposed to different PBM effluent compositions, which resulted in significant decrease in their germination potential with elevated delay index. Significant changes in growth parameters (plant height, number of leaves and leaf area) were recorded for turnip plants at regular intervals (25, 50 and 75 d) as function of PBM effluent proportion. Response of biochemical and antioxidant constituents in different parts of turnip, against stress induced by PBM effluent, was assessed by estimating the contents of chlorophyll (a+b), carotenoids, protein, phenolics, flavonoids, ascorbic acid and malondialdehyde. Antioxidant activity was evaluated by measuring DPPH radical scavenging potential. The results of this study suggest that the impact of PBM effluent irrigation is dependent on concentration of effluent in irrigation mixture and is very clear on plant growth and antioxidant attributes. Maximum benefits were secured at 40% PBM effluent to irrigate turnip plants till maturity while higher concentrations were found useful for shorter period (25-50 d).

  13. Assigning Brassica microsatellite markers to the nine C-genome chromosomes using Brassica rapa var. trilocularis-B. oleracea var. alboglabra monosomic alien addition lines.

    PubMed

    Geleta, Mulatu; Heneen, Waheeb K; Stoute, Andrew I; Muttucumaru, Nira; Scott, Roderick J; King, Graham J; Kurup, Smita; Bryngelsson, Tomas

    2012-08-01

    Brassica rapa var. trilocularis-B. oleracea var. alboglabra monosomic alien addition lines (MAALs) were used to assign simple sequence repeat (SSR) markers to the nine C-genome chromosomes. A total of 64 SSR markers specific to single C-chromosomes were identified. The number of specific markers for each chromosome varied from two (C3) to ten (C4, C7 and C9), where the designation of the chromosomes was according to Cheng et al. (Genome 38:313-319, 1995). Seventeen additional SSRs, which were duplicated on 2-5 C-chromosomes, were also identified. Using the SSR markers assigned to the previously developed eight MAALs and recently obtained aneuploid plants, a new Brassica rapa-B. oleracea var. alboglabra MAAL carrying the alien chromosome C7 was identified and developed. The application of reported genetically mapped SSR markers on the nine MAALs contributed to the determination of the correspondence between numerical C-genome cytological (Cheng et al. in Genome 38:313-319, 1995) and linkage group designations. This correspondence facilitates the integration of C-genome genetic information that has been generated based on the two designation systems and accordingly increases our knowledge about each chromosome. The present study is a significant contribution to genetic linkage analysis of SSR markers and important agronomic traits in B. oleracea and to the potential use of the MAALs in plant breeding.

  14. Atmospheric H2S and SO2 as sulfur source for Brassica juncea and Brassica rapa: impact on the glucosinolate composition.

    PubMed

    Aghajanzadeh, Tahereh; Kopriva, Stanislav; Hawkesford, Malcolm J; Koprivova, Anna; De Kok, Luit J

    2015-01-01

    The impact of sulfate deprivation and atmospheric H2S and SO2 nutrition on the content and composition of glucosinolates was studied in Brassica juncea and B. rapa. Both species contained a number of aliphatic, aromatic and indolic glucosinolates. The total glucosinolate content was more than 5.5-fold higher in B. juncea than in B. rapa, which could solely be attributed to the presence of high levels of sinigrin, which was absent in the latter species. Sulfate deprivation resulted in a strong decrease in the content and an altered composition of the glucosinolates of both species. Despite the differences in patterns in foliarly uptake and metabolism, their exposure hardly affected the glucosinolate composition of the shoot, both at sulfate-sufficient and sulfate-deprived conditions. This indicated that the glucosinolate composition in the shoot was hardly affected by differences in sulfur source (viz., sulfate, sulfite and sulfide). Upon sulfate deprivation, where foliarly absorbed H2S and SO2 were the sole sulfur source for growth, the glucosinolate composition of roots differed from sulfate-sufficient B. juncea and B. rapa, notably the fraction of the indolic glucosinolates was lower than that observed in sulfur-sufficient roots.

  15. Interspecific hybridization, polyploidization, and backcross of Brassica oleracea var. alboglabra with B. rapa var. purpurea morphologically recapitulate the evolution of Brassica vegetables

    PubMed Central

    Zhang, Xiaohui; Liu, Tongjin; Li, Xixiang; Duan, Mengmeng; Wang, Jinglei; Qiu, Yang; Wang, Haiping; Song, Jiangping; Shen, Di

    2016-01-01

    Brassica oleracea and B. rapa are two important vegetable crops. Both are composed of dozens of subspecies encompassing hundreds of varieties and cultivars. Synthetic B. napus with these two plants has been used extensively as a research model for the investigation of allopolyploid evolution. However, the mechanism underlying the explosive evolution of hundreds of varieties of B. oleracea and B. rapa within a short period is poorly understood. In the present study, interspecific hybridization between B. oleracea var. alboglabra and B. rapa var. purpurea was performed. The backcross progeny displayed extensive morphological variation, including some individuals that phenocopied subspecies other than their progenitors. Numerous interesting novel phenotypes and mutants were identified among the backcross progeny. The chromosomal recombination between the A and C genomes and the chromosomal asymmetric segregation were revealed using Simple Sequence Repeats (SSR) markers. These findings provide direct evidence in support of the hypothesis that interspecific hybridization and backcrossing have played roles in the evolution of the vast variety of vegetables among these species and suggest that combination of interspecific hybridization and backcrossing may facilitate the development of new mutants and novel phenotypes for both basic research and the breeding of new vegetable crops. PMID:26727246

  16. Atmospheric H2S and SO2 as sulfur source for Brassica juncea and Brassica rapa: impact on the glucosinolate composition

    PubMed Central

    Aghajanzadeh, Tahereh; Kopriva, Stanislav; Hawkesford, Malcolm J.; Koprivova, Anna; De Kok, Luit J.

    2015-01-01

    The impact of sulfate deprivation and atmospheric H2S and SO2 nutrition on the content and composition of glucosinolates was studied in Brassica juncea and B. rapa. Both species contained a number of aliphatic, aromatic and indolic glucosinolates. The total glucosinolate content was more than 5.5-fold higher in B. juncea than in B. rapa, which could solely be attributed to the presence of high levels of sinigrin, which was absent in the latter species. Sulfate deprivation resulted in a strong decrease in the content and an altered composition of the glucosinolates of both species. Despite the differences in patterns in foliarly uptake and metabolism, their exposure hardly affected the glucosinolate composition of the shoot, both at sulfate-sufficient and sulfate-deprived conditions. This indicated that the glucosinolate composition in the shoot was hardly affected by differences in sulfur source (viz., sulfate, sulfite and sulfide). Upon sulfate deprivation, where foliarly absorbed H2S and SO2 were the sole sulfur source for growth, the glucosinolate composition of roots differed from sulfate-sufficient B. juncea and B. rapa, notably the fraction of the indolic glucosinolates was lower than that observed in sulfur-sufficient roots. PMID:26579170

  17. Interspecific hybridization, polyploidization, and backcross of Brassica oleracea var. alboglabra with B. rapa var. purpurea morphologically recapitulate the evolution of Brassica vegetables.

    PubMed

    Zhang, Xiaohui; Liu, Tongjin; Li, Xixiang; Duan, Mengmeng; Wang, Jinglei; Qiu, Yang; Wang, Haiping; Song, Jiangping; Shen, Di

    2016-01-01

    Brassica oleracea and B. rapa are two important vegetable crops. Both are composed of dozens of subspecies encompassing hundreds of varieties and cultivars. Synthetic B. napus with these two plants has been used extensively as a research model for the investigation of allopolyploid evolution. However, the mechanism underlying the explosive evolution of hundreds of varieties of B. oleracea and B. rapa within a short period is poorly understood. In the present study, interspecific hybridization between B. oleracea var. alboglabra and B. rapa var. purpurea was performed. The backcross progeny displayed extensive morphological variation, including some individuals that phenocopied subspecies other than their progenitors. Numerous interesting novel phenotypes and mutants were identified among the backcross progeny. The chromosomal recombination between the A and C genomes and the chromosomal asymmetric segregation were revealed using Simple Sequence Repeats (SSR) markers. These findings provide direct evidence in support of the hypothesis that interspecific hybridization and backcrossing have played roles in the evolution of the vast variety of vegetables among these species and suggest that combination of interspecific hybridization and backcrossing may facilitate the development of new mutants and novel phenotypes for both basic research and the breeding of new vegetable crops.

  18. Interspecific hybridization, polyploidization, and backcross of Brassica oleracea var. alboglabra with B. rapa var. purpurea morphologically recapitulate the evolution of Brassica vegetables.

    PubMed

    Zhang, Xiaohui; Liu, Tongjin; Li, Xixiang; Duan, Mengmeng; Wang, Jinglei; Qiu, Yang; Wang, Haiping; Song, Jiangping; Shen, Di

    2016-01-01

    Brassica oleracea and B. rapa are two important vegetable crops. Both are composed of dozens of subspecies encompassing hundreds of varieties and cultivars. Synthetic B. napus with these two plants has been used extensively as a research model for the investigation of allopolyploid evolution. However, the mechanism underlying the explosive evolution of hundreds of varieties of B. oleracea and B. rapa within a short period is poorly understood. In the present study, interspecific hybridization between B. oleracea var. alboglabra and B. rapa var. purpurea was performed. The backcross progeny displayed extensive morphological variation, including some individuals that phenocopied subspecies other than their progenitors. Numerous interesting novel phenotypes and mutants were identified among the backcross progeny. The chromosomal recombination between the A and C genomes and the chromosomal asymmetric segregation were revealed using Simple Sequence Repeats (SSR) markers. These findings provide direct evidence in support of the hypothesis that interspecific hybridization and backcrossing have played roles in the evolution of the vast variety of vegetables among these species and suggest that combination of interspecific hybridization and backcrossing may facilitate the development of new mutants and novel phenotypes for both basic research and the breeding of new vegetable crops. PMID:26727246

  19. Quantification of Alternaria brassicicola infection in the Arabidopsis thaliana and Brassica rapa subsp. pekinensis.

    PubMed

    Su'udi, Mukhamad; Park, Jong-Mi; Park, Sang-Ryeol; Hwang, Duk-Ju; Bae, Shin-Chul; Kim, Soonok; Ahn, Il-Pyung

    2013-09-01

    Black spot caused by Alternaria brassicicola is an important fungal disease affecting cruciferous crops, including Korean cabbage (Brassica rapa subsp. pekinensis). The interaction between Arabidopsis thaliana and Alt. brassicicola is a representative model system, and objective estimation of disease progression is indispensable for accurate functional analyses. Five strains caused black spot symptom progression on Korean cabbage and Ara. thaliana ecotype Col-0. In particular, challenge with the strains Ab44877 and Ab44414 induced severe black spot progression on Korean cabbage. Ab44877 was also highly infective on Col-0; however, the virulence of Ab44414 and the remaining strains on Col-0 was lower. To unveil the relationship between mycelial growth in the infected tissues and symptom progression, we have established a reliable quantification method using real-time PCR that employs a primer pair and dual-labelled probe specific to a unigene encoding A. brassicicola SCYTALONE DEHYDRATASE1 (AbSCD1), which is involved in fungal melanin biosynthesis. Plotting the crossing point values from the infected tissue DNA on a standard curve revealed active fungal ramification of Ab44877 in both host species. In contrast, the proliferation rate of Ab44414 in Korean cabbage was 3.8 times lower than that of Ab44877. Massive infective mycelial growth of Ab44877 was evident in Col-0; however, inoculation with Ab44414 triggered epiphytic growth rather than actual in planta ramification. Mycelial growth did not always coincide with symptom development. Our quantitative evaluation system is applicable and reliable for the objective estimation of black spot disease severity.

  20. The biosynthesis of erucic acid in developing embryos of brassica rapa

    PubMed

    Bao; Pollard; Ohlrogge

    1998-09-01

    The prevailing hypothesis on the biosynthesis of erucic acid in developing seeds is that oleic acid, produced in the plastid, is activated to oleoyl-coenzyme A (CoA) for malonyl-CoA-dependent elongation to erucic acid in the cytosol. Several in vivo-labeling experiments designed to probe and extend this hypothesis are reported here. To examine whether newly synthesized oleic acid is directly elongated to erucic acid in developing seeds of Brassica rapa L., embryos were labeled with [14C]acetate, and the ratio of radioactivity of carbon atoms C-5 to C-22 (de novo fatty acid synthesis portion) to carbon atoms C-1 to C-4 (elongated portion) of erucic acid was monitored with time. If newly synthesized 18:1 (oleate) immediately becomes a substrate for elongation to erucic acid, this ratio would be expected to remain constant with incubation time. However, if erucic acid is produced from a pool of preexisting oleic acid, the ratio of 14C in the 4 elongation carbons to 14C in the methyl-terminal 18 carbons would be expected to decrease with time. This labeling ratio decreased with time and, therefore, suggests the existence of an intermediate pool of 18:1, which contributes at least part of the oleoyl precursor for the production of erucic acid. The addition of 2-[3-chloro-5-(trifluromethyl)-2-pyridinyloxyphenoxy] propanoic acid, which inhibits the homodimeric acetyl-CoA carboxylase, severely inhibited the synthesis of [14C]erucic acid, indicating that essentially all malonyl-CoA for elongation of 18:1 to erucate was produced by homodimeric acetyl-CoA carboxylase. Both light and 2-[3-chloro-5-(trifluromethyl)-2-pyridinyloxyphenoxy]-propanoic acid increased the accumulation of [14C]18:1 and the parallel accumulation of [14C]phosphatidylcholine. Taken together, these results show an additional level of complexity in the biosynthesis of erucic acid.

  1. Physiological and genetic analysis of CO2-induced breakdown of self-incompatibility in Brassica rapa.

    PubMed

    Lao, Xintian; Suwabe, Keita; Niikura, Satoshi; Kakita, Mitsuru; Iwano, Megumi; Takayama, Seiji

    2014-03-01

    Self-incompatibility (SI) of the Brassicaceae family can be overcome by CO2 gas treatment. This method has been used for decades as an effective means to obtain a large amount of inbred seeds which can then be used for F1 hybrid seed production; however, the molecular mechanism by which CO2 alters the SI pathway has not been elucidated. In this study, to obtain new insights into the mechanism of CO2-induced SI breakdown, the focus was on two inbred lines of Brassica rapa (syn. campestris) with different CO2 sensitivity. Physiological examination using X-ray microanalysis suggested that SI breakdown in the CO2-sensitive line was accompanied by a significant accumulation of calcium at the pollen-stigma interface. Pre-treatment of pollen or pistil with CO2 gas before pollination showed no effect on the SI reaction, suggesting that some physiological process after pollination is necessary for SI to be overcome. Genetic analyses using F1 progeny of a CO2-sensitive × CO2-insensitive cross suggested that CO2 sensitivity is a semi-dominant trait in these lines. Analysis of F2 progeny suggested that CO2 sensitivity could be a quantitative trait, which is controlled by more than one gene. Quantitative trait locus (QTL) analyses identified two major loci, BrSIO1 and BrSIO2, which work additively in overcoming SI during CO2 treatment. No QTL was detected at the loci previously shown to affect SI stability, suggesting that CO2 sensitivity is determined by novel genes. The QTL data presented here should be useful for determining the responsible genes, and for the marker-assisted selection of desirable parental lines with stable but CO2-sensitive SI in F1 hybrid breeding. PMID:24376255

  2. Physiological and genetic analysis of CO2-induced breakdown of self-incompatibility in Brassica rapa

    PubMed Central

    Takayama, Seiji

    2014-01-01

    Self-incompatibility (SI) of the Brassicaceae family can be overcome by CO2 gas treatment. This method has been used for decades as an effective means to obtain a large amount of inbred seeds which can then be used for F1 hybrid seed production; however, the molecular mechanism by which CO2 alters the SI pathway has not been elucidated. In this study, to obtain new insights into the mechanism of CO2-induced SI breakdown, the focus was on two inbred lines of Brassica rapa (syn. campestris) with different CO2 sensitivity. Physiological examination using X-ray microanalysis suggested that SI breakdown in the CO2-sensitive line was accompanied by a significant accumulation of calcium at the pollen–stigma interface. Pre-treatment of pollen or pistil with CO2 gas before pollination showed no effect on the SI reaction, suggesting that some physiological process after pollination is necessary for SI to be overcome. Genetic analyses using F1 progeny of a CO2-sensitive×CO2-insensitive cross suggested that CO2 sensitivity is a semi-dominant trait in these lines. Analysis of F2 progeny suggested that CO2 sensitivity could be a quantitative trait, which is controlled by more than one gene. Quantitative trait locus (QTL) analyses identified two major loci, BrSIO1 and BrSIO2, which work additively in overcoming SI during CO2 treatment. No QTL was detected at the loci previously shown to affect SI stability, suggesting that CO2 sensitivity is determined by novel genes. The QTL data presented here should be useful for determining the responsible genes, and for the marker-assisted selection of desirable parental lines with stable but CO2-sensitive SI in F1 hybrid breeding. PMID:24376255

  3. Physiological and genetic analysis of CO2-induced breakdown of self-incompatibility in Brassica rapa.

    PubMed

    Lao, Xintian; Suwabe, Keita; Niikura, Satoshi; Kakita, Mitsuru; Iwano, Megumi; Takayama, Seiji

    2014-03-01

    Self-incompatibility (SI) of the Brassicaceae family can be overcome by CO2 gas treatment. This method has been used for decades as an effective means to obtain a large amount of inbred seeds which can then be used for F1 hybrid seed production; however, the molecular mechanism by which CO2 alters the SI pathway has not been elucidated. In this study, to obtain new insights into the mechanism of CO2-induced SI breakdown, the focus was on two inbred lines of Brassica rapa (syn. campestris) with different CO2 sensitivity. Physiological examination using X-ray microanalysis suggested that SI breakdown in the CO2-sensitive line was accompanied by a significant accumulation of calcium at the pollen-stigma interface. Pre-treatment of pollen or pistil with CO2 gas before pollination showed no effect on the SI reaction, suggesting that some physiological process after pollination is necessary for SI to be overcome. Genetic analyses using F1 progeny of a CO2-sensitive × CO2-insensitive cross suggested that CO2 sensitivity is a semi-dominant trait in these lines. Analysis of F2 progeny suggested that CO2 sensitivity could be a quantitative trait, which is controlled by more than one gene. Quantitative trait locus (QTL) analyses identified two major loci, BrSIO1 and BrSIO2, which work additively in overcoming SI during CO2 treatment. No QTL was detected at the loci previously shown to affect SI stability, suggesting that CO2 sensitivity is determined by novel genes. The QTL data presented here should be useful for determining the responsible genes, and for the marker-assisted selection of desirable parental lines with stable but CO2-sensitive SI in F1 hybrid breeding.

  4. Expression of δ-cyclins of Brassica rapa L. embryos by clinorotation

    NASA Astrophysics Data System (ADS)

    Artemenko, O. A.

    Cyclins is one of the important regulators of cell cycle. There are several types of cyclins exists. They are responding for different phases of cycle and have high homology in plant's and mammalian's cells. δ -cyclins are specific for plants and controlling the presynthetic phase events. These cyclins likes to mammalian D-cyclins and have similar functions. This class consist three types of cyclins -- δ 1, δ 2 and δ 3. Cyclin δ 1 is responding for events in cell, which take place before exiting from stage of quiet (G0). Cyclin δ 1 is responding for entering and outputting from G0, and cyclin δ 3 -- for events, which happen in cell after stage of quiet, by entering to S-phase (phase of DNA's synthesis). In present research was used δ 1- and δ 3-cyclins. For determination of δ -cyclins gene's expression level was excreted RNA from embryos: 3-days (spherical stage), 6-days (heart-shaped stage) and 9-days (generated stage) seedlings of Brassica rapa L. in control and under clinorotation. For definition the cyclins gene's expression level applied Northern Blot Analysis. Obtained data testify about difference in level of gene's expression of cyclin δ 1 between control and clinorotation variants. After three days by pollination the expression of this gene in embryos was observed in control only. By clinorotation the gene's expression was detected on 6 days later, but it level was lower than in control variant. On 9 days it was gently expressed by clinorotation, where as by control it was not detected absolutely. Cyclin δ 3 gene's expression was observed during all time of the experiment. These data also confirm known one about expression δ 1- cyclin, which expressed on beginning of cell cycle only. And δ 3 --cyclin that express during whole presinthetic phase of cell cycle (Sony et al., 1995, Murray, 1994, Inze et al, 1999, Umeda, 2000).

  5. Quantifying the Stress Responses of Brassica Rapa Genotypes, With Experimental Drought in Two Nitrogen Treatments

    NASA Astrophysics Data System (ADS)

    Hickerson, J. L.; Pleban, J. R.; Mackay, D. S.; Aston, T.; Ewers, B. E.; Weinig, C.

    2014-12-01

    In a greenhouse study designed to quantify and compare stress responses of four genotypes of Brassica rapa, broccolette (bro), cabbage (cab), turnip (tur), and oil, leaf water potential and net CO2 assimilations were measured. Individuals from each genotype, grown either with high or low nitrogen, were exposed to experimental drought of the same duration. One hypothesis was that the genotypes would differ significantly in their responses to periodic drought. The other hypothesis was that the nitrogen treatment versus no nitrogen treatment would play a significant role in the stress responses during drought. It would be expected that the nitrogen treated would have greater dry leaf mass. A LI-6400 XT portable photosynthesis system was used to obtain A/Ci curves (net CO2 assimilation rate versus substomatal CO2) for each treatment group. Predawn and midday water potentials were obtained throughout the hydrated and drought periods using a Model 670 pressure chamber. The dry leaf mass was significantly greater among the high nitrogen group versus the low nitrogen group for each genotype. Nitrogen and genotype were both determinants in variation of water potentials and net CO2 assimilation. Bro and cab genotypes with high nitrogen showed the highest net CO2 assimilation rates during hydration, but the assimilation rates dropped to the lowest during droughts. The water potentials for bro and cab were lower than values for tur and oil. Nitrogen treated genotypes had lower water potentials, but higher net CO2 assimilation rates. Bayesian ecophysiological modeling with the TREES model showed significant differences in trait expression, quantified in terms of differences in model parameter posteriors, among the four genotypes.

  6. BcMF13, a new reproductive organ-specific gene from Brassica rapa. ssp. chinensis, affects pollen development.

    PubMed

    Li, Yanyan; Cao, Jiashu; Huang, Li; Yu, Xiaolin; Xiang, Xun

    2008-06-01

    A transcript-derived fragment (GenBank accession number DN237920.1) accumulated in the wild-type flower buds of Chinese cabbage (Brassica campestris L. ssp. chinensis Makino, syn. B. rapa ssp. chinensis) was isolated and further investigated. The full length DNA and cDNA of the fragment were cloned by rapid amplification of cDNA ends. The gene, BcMF13, encodes a protein of 73 amino acids and is interrupted by an intron of 106 bp (GenBank accession number EF158459). Southern blot analysis revealed that BcMF13 could be a single-copy gene in the Chinese cabbage genome. Sequence blast analysis showed that BcMF13 was a new gene. In EST database, those sequences share 96-98% identity with BcMF13 cDNA all came from flower buds, microspores, anthers of Brassica, which proved BcMF13 homologs closely related to the development of male gametogenesis in Brassica. RT-PCR discovered that it is exclusively expressed in stage four and five flower buds of fertile line, strongly expressed in stamens. Successful suppression of BcMF13 gene expression by RNA antisense strategy greatly reduced the normal pollen grains, suggesting that BcMF13 was essential in pollen development in Brassica.

  7. Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes.

    PubMed

    Shen, Dan; Suhrkamp, Ina; Wang, Yu; Liu, Shenyi; Menkhaus, Jan; Verreet, Joseph-Alexander; Fan, Longjiang; Cai, Daguang

    2014-11-01

    Verticillium longisporum, a soil-borne pathogenic fungus, causes vascular disease in oilseed rape (Brassica napus). We proposed that plant microRNAs (miRNAs) are involved in the plant-V. longisporum interaction. To identify oilseed rape miRNAs, we deep-sequenced two small RNA libraries made from V. longisporum infected/noninfected roots and employed Brassica rapa and Brassica oleracea genomes as references for miRNA prediction and characterization. We identified 893 B. napus miRNAs representing 360 conserved and 533 novel miRNAs, and mapped 429 and 464 miRNAs to the AA and CC genomes, respectively. Microsynteny analysis with the conserved miRNAs and their flanking protein coding sequences revealed 137 AA-CC genome syntenic miRNA pairs and 61 AA and 42 CC genome-unique miRNAs. Sixty-two miRNAs were responsive to the V. longisporum infection. We present data for specific interactions and simultaneously reciprocal changes in the expression levels of the miRNAs and their targets in the infected roots. We demonstrate that miRNAs are involved in the plant-fungus interaction and that miRNA168-Argonaute 1 (AGO1) expression modulation might act as a key regulatory module in a compatible plant-V. longisporum interaction. Our results suggest that V. longisporum may have evolved a virulence mechanism by interference with plant miRNAs to reprogram plant gene expression and achieve infection.

  8. Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes.

    PubMed

    Shen, Dan; Suhrkamp, Ina; Wang, Yu; Liu, Shenyi; Menkhaus, Jan; Verreet, Joseph-Alexander; Fan, Longjiang; Cai, Daguang

    2014-11-01

    Verticillium longisporum, a soil-borne pathogenic fungus, causes vascular disease in oilseed rape (Brassica napus). We proposed that plant microRNAs (miRNAs) are involved in the plant-V. longisporum interaction. To identify oilseed rape miRNAs, we deep-sequenced two small RNA libraries made from V. longisporum infected/noninfected roots and employed Brassica rapa and Brassica oleracea genomes as references for miRNA prediction and characterization. We identified 893 B. napus miRNAs representing 360 conserved and 533 novel miRNAs, and mapped 429 and 464 miRNAs to the AA and CC genomes, respectively. Microsynteny analysis with the conserved miRNAs and their flanking protein coding sequences revealed 137 AA-CC genome syntenic miRNA pairs and 61 AA and 42 CC genome-unique miRNAs. Sixty-two miRNAs were responsive to the V. longisporum infection. We present data for specific interactions and simultaneously reciprocal changes in the expression levels of the miRNAs and their targets in the infected roots. We demonstrate that miRNAs are involved in the plant-fungus interaction and that miRNA168-Argonaute 1 (AGO1) expression modulation might act as a key regulatory module in a compatible plant-V. longisporum interaction. Our results suggest that V. longisporum may have evolved a virulence mechanism by interference with plant miRNAs to reprogram plant gene expression and achieve infection. PMID:25132374

  9. Suppressive effect of Yamato-mana (Brassica rapa L. Oleifera Group) constituent 3-butenyl glucosinolate (gluconapin) on postprandial hypertriglyceridemia in mice.

    PubMed

    Washida, Kazuto; Miyata, Mitsuyoshi; Koyama, Tomoyuki; Yazawa, Kazunaga; Nomoto, Kyosuke

    2010-01-01

    We examined the bioactivity of Yamato-mana (Brassica rapa L. Oleifera Group) constituent glucosinolates and found that 3-butenyl glucosinolate (gluconapin) decreased the plasma triglyceride gain induced by corn oil administration to mice. However, phenethyl glucosinolate (gluconasturtiin) had little effect. 2-Propenyl glucosinolate (sinigrin) also reduced the plasma triglyceride level, which suggests that alkenyl glucosinolates might be promising agents to prevent postprandial hypertriglyceridemia.

  10. Identifying the chromosomes of the A- and C-genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid B. napus.

    PubMed

    Snowdon, R. J.; Friedrich, T.; Friedt, W.; Köhler, W.

    2002-03-01

    Oilseed rape ( Brassica napus L.) is an amphidiploid species that originated from a spontaneous hybridisation of Brassica rapa L. (syn. campestris) and Brassica oleracea L., and contains the complete diploid chromosome sets of both parental genomes. The metaphase chromosomes of the highly homoeologous A genome of B. rapa and the C genome of B. oleracea cannot be reliably distinguished in B. napus because of their morphological similarity. Fluorescence in situ hybridisation (FISH) with 5S and 25S ribosomal DNA probes to prometaphase chromosomes, in combination with DAPI staining, allows more dependable identification of Brassica chromosomes. By comparing rDNA hybridisation and DAPI staining patterns from B. rapa and B. oleracea prometaphase chromosomes with those from B. napus, we were able to identify the putative homologues of B. napus chromosomes in the diploid chromosome sets of B. rapa and B. oleracea, respectively. In some cases, differences were observed between the rDNA hybridisation patterns of chromosomes in the diploid species and their putative homologue in B. napus, indicating locus losses or alterations in rDNA copy number. The ability to reliably identify A and C genome chromosomes in B. napus is discussed with respect to evolutionary and breeding aspects.

  11. Expression of a gene for a protein similar to HIV-1 Tat binding protein 1 (TBP1) in floral organs of Brassica rapa.

    PubMed

    Kitashiba, H; Toriyama, K

    1997-08-01

    A cDNA for a protein similar to human immunodeficiency virus Tat binding protein was isolated from an anther cDNA library of Brassica rapa. RNA in situ analysis in flower buds showed that the gene for this cDNA was specifically expressed in the tapetum and middle layer of anthers and pollen.

  12. Yield reduction in Brassica napus, B. rapa, B. juncea, and Sinapis alba caused by flea beetle (Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae)) infestation in northern Idaho.

    PubMed

    Brown, Jack; McCaffrey, Joseph P; Brown, Donna A; Harmon, Bradley L; Davis, James B

    2004-10-01

    Phyllotreta cruciferae is an important insect pest of spring-planted Brassica crops, especially during the seedling stage. To determine the effect of early season P. cruciferae infestation on seed yield, 10 genotypes from each of two canola species (Brassica napus L. and Brassica rapa L.) and two mustard species (Brassica juncea L. and Sinapis alba L.) were grown in 2 yr under three different P. cruciferae treatments: (1) no insecticide control; (2) foliar applications of endosulfan; and (3) carbofuran with seed at planting plus foliar application of carbaryl. Averaged over 10 genotypes, B. rapa showed most visible P. cruciferae injury and showed greatest yield reduction without insecticide application. Mustard species (S. alba and B. juncea) showed least visible injury and higher yield without insecticide compared with canola species (B. napus and B. rapa). Indeed, average seed yield of S. alba without insecticide was higher than either B. napus or B. rapa with most effective P. cruciferae control. Significant variation occurred within each species. A number of lines from B. napus, B. juncea, anid S. alba showed less feeding injury and yield reduction as a result of P. cruciferae infestation compared with other lines from the same species examined, thus having potential genetic background for developing resistant cultivars.

  13. Intergeneric hybridization between Erucastrum canariense and Brassica rapa. Genetic relatedness between E(C) and A genomes.

    PubMed

    Bhaskar, B.; Ahuja, I.; Janeja, S.; Banga, S.

    2002-10-01

    An intergeneric hybrid between a wild species, Erucastrum canariense (2n = 18; E(C)E(C)), and a cultivated oilseed brassica species, Brassica rapa (2n = 20; AA), was synthesized through ovary culture in White's basal medium supplemented with casein hydrolysate. Morphological, cytological and DNA-based analysis helped to establish the hybrid nature of the derived plants. Hybrid plants were morphologically intermediate between the two parents and were completely male, as well as female sterile. Cytological analysis revealed the occurrence of 19 I in about 38% of the PMCs investigated. However 1-8 bivalents/PMC were also observed, indicating a significant level of homology between the two genomes. Normal chromosome pairing and pollen fertility was restored following colchiploidy. The intergeneric amphiploid developed during the investigation can be used as a bridging species for the transfer of desirable genes from E(C) to cultivated genomes (especially A and C), and for resistance to Alternaria blight and mustard aphid. Under field conditions, the E. canariense intergeneric hybrid and the amphiploid appeared to be moderately resistant to Alternaria blight and also harboured a significantly lower population of mustard aphid than the cultivated B. rapa.

  14. Coevolution of the S-locus genes SRK, SLG and SP11/SCR in Brassica oleracea and B. rapa.

    PubMed

    Sato, Keiichi; Nishio, Takeshi; Kimura, Ryo; Kusaba, Makoto; Suzuki, Tohru; Hatakeyama, Katsunori; Ockendon, David J; Satta, Yoko

    2002-10-01

    Brassica self-incompatibility (SI) is controlled by SLG and SRK expressed in the stigma and by SP11/SCR expressed in the anther. We determined the sequences of the S domains of 36 SRK alleles, 13 SLG alleles, and 14 SP11 alleles from Brassica oleracea and B. rapa. We found three S haplotypes lacking SLG genes in B. rapa, confirming that SLG is not essential for the SI recognition system. Together with reported sequences, the nucleotide diversities per synonymous and nonsynonymous site (pi(S) and pi(N)) at the SRK, SLG, and SP11 loci within B. oleracea were computed. The ratios of pi(N):pi(S) for SP11 and the hypervariable region of SRK were significantly >1, suggesting operation of diversifying selection to maintain the diversity of these regions. In the phylogenetic trees of 12 SP11 sequences and their linked SRK alleles, the tree topology was not significantly different between SP11 and SRK, suggesting a tight linkage of male and female SI determinants during the evolutionary course of these haplotypes. Genetic exchanges between SLG and SRK seem to be frequent; three such recent exchanges were detected. The evolution of S haplotypes and the effect of gene conversion on self-incompatibility are discussed.

  15. Alternative management tactics for control of Phyllotreta cruciferae and Phyllotreta striolata (Coleoptera: Chrysomelidae) on Brassica rapa in Massachusetts.

    PubMed

    Andersen, C L; Hazzard, R; Van Driesche, R; Mangan, F X

    2006-06-01

    The flea beetles Phyllotreta cruciferae (Goeze) and Phyllotreta striolata (F.) (Coleoptera: Chrysomelidae: Alticinae) are significant pests of crops in the Brassicaceae family. From 2001 to 2003, the efficacy of both new and commonly used treatments for the control of flea beetles in brassicas, Brassica rapa L., were evaluated in three small plot, randomized complete block design trials. Row cover and carbaryl (applied as a weekly foliar spray) were found to be the most consistent at reducing damage in comparison with untreated controls in all trials. Two new products that may provide adequate flea beetle control are spinosad (in either conventional or organic formulations) and thiamethoxam. The plant-derived compounds azidiractin and pyrethrin did not protect treated plants from flea beetle feeding. Treatment of plants with kaolin, or removal of the beetles with a vacuum, also did not reduce the level of crop damage. The level of damage at harvest was found to be correlated with population size of flea beetles in each plot, as measured by captures on yellow sticky traps and direct visual counts. Removal of the outer two leaves of individual B. rapa plants reduced the total number of holes per plant by 40%, while only removing 15% of the leaf area.

  16. Fine mapping of the clubroot resistance gene CRb and development of a useful selectable marker in Brassica rapa.

    PubMed

    Kato, Takeyuki; Hatakeyama, Katsunori; Fukino, Nobuko; Matsumoto, Satoru

    2013-03-01

    In Chinese cabbage (Brassica rapa), the clubroot resistance (CR) gene CRb is effective against Plasmodiophora brassicae isolate No. 14, which is classified as pathotype group 3. Although markers linked to CRb have been reported, an accurate position in the genome and the gene structure are unknown. To determine the genomic location and estimate the structure of CRb, we developed 28 markers (average distance, 20.4 kb) around CRb and constructed a high-density partial map. The precise position of CRb was determined by using a population of 2,032 F2 plants generated by selfing B. rapa 'CR Shinki.' We determined that CRb is located in the 140-kb genomic region between markers KB59N07 and B1005 and found candidate resistance genes. Among other CR genes on chromosome R3, a genotype of CRa closest marker clearly matched those of CRb and Crr3 did not confer resistance to isolate No. 14. Based on the genotypes of 11 markers developed near CRb and resistance to isolate No. 14, 82 of 108 cultivars showed a strong correlation between genotypes and phenotypes. The results of this study will be useful for isolating CRb and breeding cultivars with resistance to pathotype group 3 by introducing CRb into susceptible cultivars through marker-assisted selection.

  17. Peculiarities [correction of Pfculiarities] of lipid accumulation in Brassica rapa L. embryos on different stages development under altered gravity.

    PubMed

    Popova, Antonina; Kononko, Anna; Ivanenko, Galina

    2004-07-01

    Accumulation of lipid inclusions in Brassica rapa embryos generated under slow horizontal clinorotation and in the laboratory control were analyzed by histochemical methods. The research of lipid accumulation was carried out on consecutive stages of the embryo development, from the moment of two-cellular proembryo formation up to the stages of their full differentiation (21-22-day-old embryos). Accumulation of lipid drops was revealed for the first time at early stages of embryogenesis in this species, beginning from 3-day-old embryos (ball-like stage of embryo development) under clinorotation and in the laboratory control. The quantity of lipid inclusion was estimated by morphometrical analysis. Statistically significant differences between the clinorotation and laboratory control variants in quantity of lipid drops per cell were revealed from 6-day-old embryos (heart-shaped stage). Especially pronounced differences were noted in differentiated embryos (beginning from 12-day-old embryos) under horizontal clinorotation in comparison with the laboratory control. The registered differences testify about influence of altered gravity conditions on lipid accumulation in Brassica rapa embryos.

  18. Genetic Variation and Divergence of Genes Involved in Leaf Adaxial-Abaxial Polarity Establishment in Brassica rapa

    PubMed Central

    Liang, Jianli; Liu, Bo; Wu, Jian; Cheng, Feng; Wang, Xiaowu

    2016-01-01

    Alterations in leaf adaxial-abaxial (ad-ab) polarity are one of the main factors that influence leaf curvature. In Chinese cabbage, leaf incurvature is an essential prerequisite to the formation of a leafy head. Identifying ad-ab patterning genes and investigating their genetic variation may facilitate elucidation of the mechanisms underlying leaf incurvature during head formation. Comparative genomic analysis of 45 leaf ad-ab patterning genes in Brassica rapa based on 26 homologs of Arabidopsis thaliana indicated that these genes underwent expansion and were retained after whole genome triplication (WGT). We also assessed the nucleotide diversity and selection footprints of these 45 genes in a collection of 94 Brassica rapa accessions that were composed of heading and non-heading morphotypes. Six of the 45 genes showed significant negative Tajima's D indices and nucleotide diversity reduction in heading accessions compared to those in non-heading accessions, indicating that they underwent purifying selection. Further testing of the BrARF3.1 gene, which was one of the selection signals from a larger collection, confirmed that purifying selection did occur. Our results provide genetic evidence that ad-ab patterning genes are involved in leaf incurvature, which is associated with formation of a leafy head, as well as promote an understanding of the genetic mechanism underlying leafy head formation in Chinese cabbage. PMID:26904064

  19. Growth inhibition in Chinese cabbage (Brassica rapa var. chinensis) growth exposed to di-n-butyl phthalate.

    PubMed

    Liao, Chien-Sen; Yen, Jui-Hung; Wang, Yei-Shung

    2009-04-30

    The toxicity and effects of di-n-butyl phthalate (DBP), an endocrine disruptor, on the growth of Chinese cabbage (Brassica rapa var. chinensis) were studied. Etiolation occurred on leaves of Chinese cabbage plant treated with 50mg/L of DBP for 42 d. DBP even below 1mg/L had a significant effect on the concentration of chlorophyll in Chinese cabbage and the biomass showed a severe decrease under treatment with more than 30 mg/L of DBP. At a concentration below 1mg/L of DBP, no significant difference in accumulation was found, but treatments with concentration exceeding 10, 30, 50 and 100mg/L all resulted in significant accumulation of DBP. Six protein spots extracted from leaf tissue of DBP-treated Chinese cabbage displaying a differential expression are shown in 2-DE maps. According to proteome level studies, three protein spots were found to increase and were identified, respectively, as acyl-[acyl-carrier-protein] desaturase (acyl-ACP desaturase), root phototropism protein 3 (RPT3) and ferredoxin-nitrite reductase (Fd-NiR). The other three protein spots were found to decrease and were identified respectively as dihydroflavonol-4-reductase (DFR), aminoacyl-tRNA synthetase (aaRS) and ATP synthase subunit beta. The key finding is that the other closely related plant, Bok choy (Brassica rapa subsp. chinensis), the subspecies of Chinese cabbage, respond differently to the same chemicals.

  20. Genetic Variation and Divergence of Genes Involved in Leaf Adaxial-Abaxial Polarity Establishment in Brassica rapa.

    PubMed

    Liang, Jianli; Liu, Bo; Wu, Jian; Cheng, Feng; Wang, Xiaowu

    2016-01-01

    Alterations in leaf adaxial-abaxial (ad-ab) polarity are one of the main factors that influence leaf curvature. In Chinese cabbage, leaf incurvature is an essential prerequisite to the formation of a leafy head. Identifying ad-ab patterning genes and investigating their genetic variation may facilitate elucidation of the mechanisms underlying leaf incurvature during head formation. Comparative genomic analysis of 45 leaf ad-ab patterning genes in Brassica rapa based on 26 homologs of Arabidopsis thaliana indicated that these genes underwent expansion and were retained after whole genome triplication (WGT). We also assessed the nucleotide diversity and selection footprints of these 45 genes in a collection of 94 Brassica rapa accessions that were composed of heading and non-heading morphotypes. Six of the 45 genes showed significant negative Tajima's D indices and nucleotide diversity reduction in heading accessions compared to those in non-heading accessions, indicating that they underwent purifying selection. Further testing of the BrARF3.1 gene, which was one of the selection signals from a larger collection, confirmed that purifying selection did occur. Our results provide genetic evidence that ad-ab patterning genes are involved in leaf incurvature, which is associated with formation of a leafy head, as well as promote an understanding of the genetic mechanism underlying leafy head formation in Chinese cabbage. PMID:26904064

  1. Genetic Variation and Divergence of Genes Involved in Leaf Adaxial-Abaxial Polarity Establishment in Brassica rapa.

    PubMed

    Liang, Jianli; Liu, Bo; Wu, Jian; Cheng, Feng; Wang, Xiaowu

    2016-01-01

    Alterations in leaf adaxial-abaxial (ad-ab) polarity are one of the main factors that influence leaf curvature. In Chinese cabbage, leaf incurvature is an essential prerequisite to the formation of a leafy head. Identifying ad-ab patterning genes and investigating their genetic variation may facilitate elucidation of the mechanisms underlying leaf incurvature during head formation. Comparative genomic analysis of 45 leaf ad-ab patterning genes in Brassica rapa based on 26 homologs of Arabidopsis thaliana indicated that these genes underwent expansion and were retained after whole genome triplication (WGT). We also assessed the nucleotide diversity and selection footprints of these 45 genes in a collection of 94 Brassica rapa accessions that were composed of heading and non-heading morphotypes. Six of the 45 genes showed significant negative Tajima's D indices and nucleotide diversity reduction in heading accessions compared to those in non-heading accessions, indicating that they underwent purifying selection. Further testing of the BrARF3.1 gene, which was one of the selection signals from a larger collection, confirmed that purifying selection did occur. Our results provide genetic evidence that ad-ab patterning genes are involved in leaf incurvature, which is associated with formation of a leafy head, as well as promote an understanding of the genetic mechanism underlying leafy head formation in Chinese cabbage.

  2. Growth inhibition in Chinese cabbage (Brassica rapa var. chinensis) growth exposed to di-n-butyl phthalate.

    PubMed

    Liao, Chien-Sen; Yen, Jui-Hung; Wang, Yei-Shung

    2009-04-30

    The toxicity and effects of di-n-butyl phthalate (DBP), an endocrine disruptor, on the growth of Chinese cabbage (Brassica rapa var. chinensis) were studied. Etiolation occurred on leaves of Chinese cabbage plant treated with 50mg/L of DBP for 42 d. DBP even below 1mg/L had a significant effect on the concentration of chlorophyll in Chinese cabbage and the biomass showed a severe decrease under treatment with more than 30 mg/L of DBP. At a concentration below 1mg/L of DBP, no significant difference in accumulation was found, but treatments with concentration exceeding 10, 30, 50 and 100mg/L all resulted in significant accumulation of DBP. Six protein spots extracted from leaf tissue of DBP-treated Chinese cabbage displaying a differential expression are shown in 2-DE maps. According to proteome level studies, three protein spots were found to increase and were identified, respectively, as acyl-[acyl-carrier-protein] desaturase (acyl-ACP desaturase), root phototropism protein 3 (RPT3) and ferredoxin-nitrite reductase (Fd-NiR). The other three protein spots were found to decrease and were identified respectively as dihydroflavonol-4-reductase (DFR), aminoacyl-tRNA synthetase (aaRS) and ATP synthase subunit beta. The key finding is that the other closely related plant, Bok choy (Brassica rapa subsp. chinensis), the subspecies of Chinese cabbage, respond differently to the same chemicals. PMID:18678443

  3. Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to the linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana.

    PubMed

    Teutonico, R A; Osborn, T C

    1994-12-01

    A linkage map of restriction fragment length polymorphisms (RFLPs) was constructed for oilseed, Brassica rapa, using anonymous genomic DNA and cDNA clones from Brassica and cloned genes from the crucifer Arabidopsis thaliana. We also mapped genes controlling the simply inherited traits, yellow seeds, low seed erucic acid, and pubescence. The map included 139 RFLP loci organized into ten linkage groups (LGs) and one small group covering 1785 cM. Each of the three traits mapped to a single locus on three different LGs. Many of the RFLP loci were detected with the same set of probes used to construct maps in the diploid B. oleracea and the amphidiploid B. napus. Comparisons of the linkage arrangements between the diploid species B. rapa and B. oleracea revealed six LGs with at least two loci in common. Nine of the B. rapa LGs had conserved linkage arrangements with B. napus LGs. The majority of loci in common were in the same order among the three species, although the distances between loci were largest on the B. rapa map. We also compared the genome organization between B. rapa and A. thaliana using RFLP loci detected with 12 cloned genes in the two species and found some evidence for a conservation of the linkage arrangements. This B. rapa map will be used to test for associations between segregation of RFLPs, detected by cloned genes of known function, and traits of interest.

  4. Stable Bacillus thuringiensis (Bt) toxin content in interspecific F1 and backcross populations of wild Brassica rapa after Bt gene transfer.

    PubMed

    Zhu, B; Lawrence, J R; Warwick, S I; Mason, P; Braun, L; Halfhill, M D; Stewart, C N

    2004-01-01

    Stable expression of a transgene may lead to increased fitness for wild plants after acquiring the transgene via crop-weed hybridization. Here, we investigate the stability of Bt toxin content in wild Brassica rapa acquiring the Bt gene from Bt Brassica napus. The Bt toxin content in nine Bt-expressing B. napus lines was 0.80-1.70 micro g/g leaf tissue throughout the growing season. These nine lines were crossed with three accessions of wild B. rapa and the Bt gene was successfully transferred to interspecific hybrids (F1) and successive backcross generations (BC1 to BC4). The Bt toxin level in F1 and BC progenies containing the Bt gene remained at 0.90-3.10 micro g/g leaf tissue. This study indicates that the Bt gene can persist and be stably expressed in wild B. rapa.

  5. Stable Bacillus thuringiensis (Bt) toxin content in interspecific F1 and backcross populations of wild Brassica rapa after Bt gene transfer.

    PubMed

    Zhu, B; Lawrence, J R; Warwick, S I; Mason, P; Braun, L; Halfhill, M D; Stewart, C N

    2004-01-01

    Stable expression of a transgene may lead to increased fitness for wild plants after acquiring the transgene via crop-weed hybridization. Here, we investigate the stability of Bt toxin content in wild Brassica rapa acquiring the Bt gene from Bt Brassica napus. The Bt toxin content in nine Bt-expressing B. napus lines was 0.80-1.70 micro g/g leaf tissue throughout the growing season. These nine lines were crossed with three accessions of wild B. rapa and the Bt gene was successfully transferred to interspecific hybrids (F1) and successive backcross generations (BC1 to BC4). The Bt toxin level in F1 and BC progenies containing the Bt gene remained at 0.90-3.10 micro g/g leaf tissue. This study indicates that the Bt gene can persist and be stably expressed in wild B. rapa. PMID:14653804

  6. Conservation and Expression Patterns Divergence of Ascorbic Acid d-mannose/l-galactose Pathway Genes in Brassica rapa

    PubMed Central

    Duan, Weike; Ren, Jun; Li, Yan; Liu, Tongkun; Song, Xiaoming; Chen, Zhongwen; Huang, Zhinan; Hou, Xilin; Li, Ying

    2016-01-01

    Ascorbic acid (AsA) participates in diverse biological processes, is regulated by multiple factors and is a potent antioxidant and cellular reductant. The D-Mannose/L-Galactose pathway is a major plant AsA biosynthetic pathway that is highly connected within biosynthetic networks, and generally conserved across plants. Previous work has shown that, although most genes of this pathway are expressed under standard growth conditions in Brassica rapa, some paralogs of these genes are not. We hypothesize that regulatory evolution in duplicate AsA pathway genes has occurred as an adaptation to environmental stressors, and that gene retention has been influenced by polyploidation events in Brassicas. To test these hypotheses, we explored the conservation of these genes in Brassicas and their expression patterns divergence in B. rapa. Similar retention and a high degree of gene sequence similarity were identified in B. rapa (A genome), B. oleracea (C genome) and B. napus (AC genome). However, the number of genes that encode the same type of enzymes varied among the three plant species. With the exception of GMP, which has nine genes, there were one to four genes that encoded the other enzymes. Moreover, we found that expression patterns divergence widely exists among these genes. (i) VTC2 and VTC5 are paralogous genes, but only VTC5 is influenced by FLC. (ii) Under light treatment, PMI1 co-regulates the AsA pool size with other D-Man/L-Gal pathway genes, whereas PMI2 is regulated only by darkness. (iii) Under NaCl, Cu2+, MeJA and wounding stresses, most of the paralogs exhibit different expression patterns. Additionally, GME and GPP are the key regulatory enzymes that limit AsA biosynthesis in response to these treatments. In conclusion, our data support that the conservative and divergent expression patterns of D-Man/L-Gal pathway genes not only avoid AsA biosynthesis network instability but also allow B. rapa to better adapt to complex environments. PMID:27313597

  7. Conservation and Expression Patterns Divergence of Ascorbic Acid d-mannose/l-galactose Pathway Genes in Brassica rapa.

    PubMed

    Duan, Weike; Ren, Jun; Li, Yan; Liu, Tongkun; Song, Xiaoming; Chen, Zhongwen; Huang, Zhinan; Hou, Xilin; Li, Ying

    2016-01-01

    Ascorbic acid (AsA) participates in diverse biological processes, is regulated by multiple factors and is a potent antioxidant and cellular reductant. The D-Mannose/L-Galactose pathway is a major plant AsA biosynthetic pathway that is highly connected within biosynthetic networks, and generally conserved across plants. Previous work has shown that, although most genes of this pathway are expressed under standard growth conditions in Brassica rapa, some paralogs of these genes are not. We hypothesize that regulatory evolution in duplicate AsA pathway genes has occurred as an adaptation to environmental stressors, and that gene retention has been influenced by polyploidation events in Brassicas. To test these hypotheses, we explored the conservation of these genes in Brassicas and their expression patterns divergence in B. rapa. Similar retention and a high degree of gene sequence similarity were identified in B. rapa (A genome), B. oleracea (C genome) and B. napus (AC genome). However, the number of genes that encode the same type of enzymes varied among the three plant species. With the exception of GMP, which has nine genes, there were one to four genes that encoded the other enzymes. Moreover, we found that expression patterns divergence widely exists among these genes. (i) VTC2 and VTC5 are paralogous genes, but only VTC5 is influenced by FLC. (ii) Under light treatment, PMI1 co-regulates the AsA pool size with other D-Man/L-Gal pathway genes, whereas PMI2 is regulated only by darkness. (iii) Under NaCl, Cu(2+), MeJA and wounding stresses, most of the paralogs exhibit different expression patterns. Additionally, GME and GPP are the key regulatory enzymes that limit AsA biosynthesis in response to these treatments. In conclusion, our data support that the conservative and divergent expression patterns of D-Man/L-Gal pathway genes not only avoid AsA biosynthesis network instability but also allow B. rapa to better adapt to complex environments.

  8. Conservation and Expression Patterns Divergence of Ascorbic Acid d-mannose/l-galactose Pathway Genes in Brassica rapa.

    PubMed

    Duan, Weike; Ren, Jun; Li, Yan; Liu, Tongkun; Song, Xiaoming; Chen, Zhongwen; Huang, Zhinan; Hou, Xilin; Li, Ying

    2016-01-01

    Ascorbic acid (AsA) participates in diverse biological processes, is regulated by multiple factors and is a potent antioxidant and cellular reductant. The D-Mannose/L-Galactose pathway is a major plant AsA biosynthetic pathway that is highly connected within biosynthetic networks, and generally conserved across plants. Previous work has shown that, although most genes of this pathway are expressed under standard growth conditions in Brassica rapa, some paralogs of these genes are not. We hypothesize that regulatory evolution in duplicate AsA pathway genes has occurred as an adaptation to environmental stressors, and that gene retention has been influenced by polyploidation events in Brassicas. To test these hypotheses, we explored the conservation of these genes in Brassicas and their expression patterns divergence in B. rapa. Similar retention and a high degree of gene sequence similarity were identified in B. rapa (A genome), B. oleracea (C genome) and B. napus (AC genome). However, the number of genes that encode the same type of enzymes varied among the three plant species. With the exception of GMP, which has nine genes, there were one to four genes that encoded the other enzymes. Moreover, we found that expression patterns divergence widely exists among these genes. (i) VTC2 and VTC5 are paralogous genes, but only VTC5 is influenced by FLC. (ii) Under light treatment, PMI1 co-regulates the AsA pool size with other D-Man/L-Gal pathway genes, whereas PMI2 is regulated only by darkness. (iii) Under NaCl, Cu(2+), MeJA and wounding stresses, most of the paralogs exhibit different expression patterns. Additionally, GME and GPP are the key regulatory enzymes that limit AsA biosynthesis in response to these treatments. In conclusion, our data support that the conservative and divergent expression patterns of D-Man/L-Gal pathway genes not only avoid AsA biosynthesis network instability but also allow B. rapa to better adapt to complex environments. PMID:27313597

  9. Seeds of a possible natural hybrid between herbicide-resistant Brassica napus and Brassica rapa detected on a riverbank in Japan.

    PubMed

    Aono, Mitsuko; Wakiyama, Seiji; Nagatsu, Masato; Kaneko, Yukio; Nishizawa, Toru; Nakajima, Nobuyoshi; Tamaoki, Masanori; Kubo, Akihiro; Saji, Hikaru

    2011-01-01

    Transgenic herbicide-resistant varieties of Brassica napus, or oilseed rape, from which canola oil is obtained, are imported into Japan, where this plant is not commercially cultivated to a large extent. This study aimed to examine the distribution of herbicide-resistant B. napus and transgene flow to escaped populations of its closely related species, B. rapa and B. juncea. Samples were collected from 12 areas near major ports through which oilseed rape imports into Japan passed--Kashima, Chiba, Yokohama, Shimizu, Nagoya, Yokkaichi, Sakai-Senboku, Kobe, Uno, Mizushima, Kita-Kyushu, and Hakata--and the presence of glyphosate- and/or glufosinate-resistant B. napus was confirmed in all areas except Yokohama, Sakai-Senboku, Uno, and Kita-Kyushu. The Yokkaichi area was the focus because several herbicide-resistant B. napus plants were detected not only on the roadside where oilseed rape spilled during transportation but also on the riverbanks, where escaped populations of B. rapa and B. juncea grew. Samples of B. napus that were tolerant to both herbicides were detected in four continuous years (2005-2008) in this area, suggesting the possibility of intraspecific transgene flow within the escaped B. napus populations. Moreover, in 2008, seeds of a possible natural hybrid between herbicide-tolerant B. napus (2n = 38) and B. rapa (2n = 20) were detected; some seedlings derived from the seeds collected at a Yokkaichi site showed glyphosate resistance and had 2n = 29 chromosomes. This observation strongly suggests the occurrence of hybridization between herbicide-resistant B. napus and escaped B. rapa and the probability of introgression of a herbicide-resistance gene into related escaped species.

  10. Production of partial new-typed Brassica napus by introgression of genomic components from B. rapa and B. carinata.

    PubMed

    Li, Maoteng; Liu, Jianmin; Wang, Yanting; Yu, Longjiang; Meng, Jinling

    2007-05-01

    A breeding strategy for widening the germplasm of Brassica napus was proposed by introgression of the A(r) subgenome of B. rapa (A(r)A(r)) and C(c) of B. carinata (B(c)B(c)C(c)C(c)) into natural B. napus (A(n)A(n)C(n)C(n)). The progenies with 38 chromosomes that were derived from the self-pollinated seeds of pentaploid hybrids (A(r)A(n)B(c)C(c)C(n)) were used for further research. Some of the partial new-typed B. napus showed normal meiotic behavior, high portion of germinated pollen and normal embryological development. This indicates that the selected new-typed B. napus had a balanced genetic base. Molecular analysis showed that about 50% of the genome in the new-typed B. napus was replaced by A(r) and C(c) subgenome from B. rapa and B. carinata. Considering the genetic diversity among different lines of new-typed B. napus it was deduced that the introgression of the genomic components from B. rapa and B. carinata could widen the genetic diversity of rapeseed.

  11. The quantitative-genetic and QTL architecture of trait integration and modularity in Brassica rapa across simulated seasonal settings.

    PubMed

    Edwards, C E; Weinig, C

    2011-04-01

    Within organisms, groups of traits with different functions are frequently modular, such that variation among modules is independent and variation within modules is tightly integrated, or correlated. Here, we investigated patterns of trait integration and modularity in Brassica rapa in response to three simulated seasonal temperature/photoperiod conditions. The goals of this research were to use trait correlations to understand patterns of trait integration and modularity within and among floral, vegetative and phenological traits of B. rapa in each of three treatments, to examine the QTL architecture underlying patterns of trait integration and modularity, and to quantify how variation in temperature and photoperiod affects the correlation structure and QTL architecture of traits. All floral organs of B. rapa were strongly correlated, and contrary to expectations, floral and vegetative traits were also correlated. Extensive QTL co-localization suggests that covariation of these traits is likely due to pleiotropy, although physically linked loci that independently affect individual traits cannot be ruled out. Across treatments, the structure of genotypic and QTL correlations was generally conserved. Any observed variation in genetic architecture arose from genotype × environment interactions (GEIs) and attendant QTL × E in response to temperature but not photoperiod.

  12. One step beyond lethal equivalents: characterization of deleterious loci in the rapid cycling Brassica rapa L. base population.

    PubMed

    Lascoux, M; Lee, J K

    1998-10-01

    The total number of lethal equivalents as defined by Morton, Crow and Muller (1956) is a function of three parameters: M, the number of loci at which deleterious mutations can occur, q, the frequency of the deleterious alleles at each locus, and s, their selective value. A new approach based on multi-generation inbreeding data is outlined and used to infer these three parameters as well as the dominance coefficient, h, in a self-incompatible species, Brassica rapa L. Germination and flowering data from thirty bud-selfed lines of fast-cycling B.rapa were assessed over three generations. Germination and flowering were significantly postponed by inbreeding but germination and flowering success were not so strongly decreased. Estimates of the average s values were obtained but it was not possible to get separate estimates of M and q. For both characters, the average dominance coefficient was particularly low. The number of lethal equivalents at the zygotic level was around two for germination and three for flowering, which, owing to the self-incompatibility of B.rapa, is an unexpectedly low value. These results may be explained by past biparental inbreeding which in turn may have increased self-compatibility thus allowing the purging of more deleterious alleles than under strict self-incompatibility.

  13. Ogura-CMS in Chinese cabbage (Brassica rapa ssp. pekinensis) causes delayed expression of many nuclear genes.

    PubMed

    Dong, Xiangshu; Kim, Wan Kyu; Lim, Yong-Pyo; Kim, Yeon-Ki; Hur, Yoonkang

    2013-02-01

    We investigated the mechanism regulating cytoplasmic male sterility (CMS) in Brassica rapa ssp. pekinensis using floral bud transcriptome analyses of Ogura-CMS Chinese cabbage and its maintainer line in B. rapa 300-K oligomeric probe (Br300K) microarrays. Ogura-CMS Chinese cabbage produced few and infertile pollen grains on indehiscent anthers. Compared to the maintainer line, CMS plants had shorter filaments and plant growth, and delayed flowering and pollen development. In microarray analysis, 4646 genes showed different expression, depending on floral bud size, between Ogura-CMS and its maintainer line. We found 108 and 62 genes specifically expressed in Ogura-CMS and its maintainer line, respectively. Ogura-CMS line-specific genes included stress-related, redox-related, and B. rapa novel genes. In the maintainer line, genes related to pollen coat and germination were specifically expressed in floral buds longer than 3mm, suggesting insufficient expression of these genes in Ogura-CMS is directly related to dysfunctional pollen. In addition, many nuclear genes associated with auxin response, ATP synthesis, pollen development and stress response had delayed expression in Ogura-CMS plants compared to the maintainer line, which is consistent with the delay in growth and development of Ogura-CMS plants. Delayed expression may reduce pollen grain production and/or cause sterility, implying that mitochondrial, retrograde signaling delays nuclear gene expression.

  14. Genome-wide analysis of the expansin gene superfamily reveals Brassica rapa-specific evolutionary dynamics upon whole genome triplication.

    PubMed

    Krishnamurthy, Panneerselvam; Hong, Joon Ki; Kim, Jin A; Jeong, Mi-Jeong; Lee, Yeon-Hee; Lee, Soo In

    2015-04-01

    Chinese cabbage (Brassica rapa subsp. pekinensis) is an economically important vegetable that has encountered four rounds of polyploidization. The fourth event, whole genome triplication (WGT), occurred after its divergence from Arabidopsis. Expansins (EXPs) are cell wall loosening proteins that participate in cell wall modification processes. In this study, the impacts of WGT on the B. rapa expansin (BrEXP) superfamily were evaluated. Whole genome screening of B. rapa identified 32 loci coding 53 expansin genes. Fifteen of the loci maintained a single gene copy, 15 maintained two gene copies and 2 maintained three gene copies. Six loci had no synteny to any Arabidopsis thaliana orthologs. Two loci were involved in tandem duplication. Segmental duplication and fragment recombination were dominant in accelerating BrEXP evolution. Three genes (BrEXPA7, BrEXLA1 and BrEXLA2) lost one of their ancestral introns, two genes (BrEXPA18 and BrEXPB6) gained new introns, and a domain tandem repeat (BrEXPA18) and domain recombination (Bra016981; not considered as expansin) were observed in one gene each. Further, domain deletion was observed in an additional five genes (Bra033068, Bra000142, Bra025800, Bra016473 and Bra004891, not considered as expansins) that lost one of their expansin-specific domains evolutionarily. These findings provide a basis for the evolution and modification of the BrEXP superfamily after a WGT event, which will help in determining the functional characteristics of BrEXPs.

  15. Genome-wide analysis of the expansin gene superfamily reveals Brassica rapa-specific evolutionary dynamics upon whole genome triplication.

    PubMed

    Krishnamurthy, Panneerselvam; Hong, Joon Ki; Kim, Jin A; Jeong, Mi-Jeong; Lee, Yeon-Hee; Lee, Soo In

    2015-04-01

    Chinese cabbage (Brassica rapa subsp. pekinensis) is an economically important vegetable that has encountered four rounds of polyploidization. The fourth event, whole genome triplication (WGT), occurred after its divergence from Arabidopsis. Expansins (EXPs) are cell wall loosening proteins that participate in cell wall modification processes. In this study, the impacts of WGT on the B. rapa expansin (BrEXP) superfamily were evaluated. Whole genome screening of B. rapa identified 32 loci coding 53 expansin genes. Fifteen of the loci maintained a single gene copy, 15 maintained two gene copies and 2 maintained three gene copies. Six loci had no synteny to any Arabidopsis thaliana orthologs. Two loci were involved in tandem duplication. Segmental duplication and fragment recombination were dominant in accelerating BrEXP evolution. Three genes (BrEXPA7, BrEXLA1 and BrEXLA2) lost one of their ancestral introns, two genes (BrEXPA18 and BrEXPB6) gained new introns, and a domain tandem repeat (BrEXPA18) and domain recombination (Bra016981; not considered as expansin) were observed in one gene each. Further, domain deletion was observed in an additional five genes (Bra033068, Bra000142, Bra025800, Bra016473 and Bra004891, not considered as expansins) that lost one of their expansin-specific domains evolutionarily. These findings provide a basis for the evolution and modification of the BrEXP superfamily after a WGT event, which will help in determining the functional characteristics of BrEXPs. PMID:25325993

  16. A Genome-Wide Analysis Reveals Stress and Hormone Responsive Patterns of TIFY Family Genes in Brassica rapa

    PubMed Central

    Saha, Gopal; Park, Jong-In; Kayum, Md. Abdul; Nou, Ill-Sup

    2016-01-01

    The TIFY family is a plant-specific group of proteins with a diversity of functions and includes four subfamilies, viz. ZML, TIFY, PPD, and JASMONATE ZIM-domain (JAZ) proteins. TIFY family members, particularly JAZ subfamily proteins, play roles in biological processes such as development and stress and hormone responses in Arabidopsis, rice, chickpea, and grape. However, there is no information about this family in any Brassica crop. This study identifies 36 TIFY genes in Brassica rapa, an economically important crop species in the Brassicaceae. An extensive in silico analysis of phylogenetic grouping, protein motif organization and intron-exon distribution confirmed that there are four subfamilies of BrTIFY proteins. Out of 36 BrTIFY genes, we identified 21 in the JAZ subfamily, seven in the TIFY subfamily, six in ZML and two in PPD. Extensive expression profiling of 21 BrTIFY JAZs in various tissues, especially in floral organs and at different flower growth stages revealed constitutive expression patterns, which suggest that BrTIFY JAZ genes are important during growth and development of B. rapa flowers. A protein interaction network analysis also pointed to association of these proteins with fertility and defense processes of B. rapa. Using a low temperature-treated whole-genome microarray data set, most of the JAZ genes were found to have variable transcript abundance between the contrasting inbred lines Chiifu and Kenshin of B. rapa. Subsequently, the expression of all 21 BrTIFY JAZs in response to cold stress was characterized in the same two lines via qPCR, demonstrating that nine genes were up-regulated. Importantly, the BrTIFY JAZs showed strong and differential expression upon JA treatment, pointing to their probable involvement in JA-mediated growth regulatory functions, especially during flower development and stress responses. Additionally, BrTIFY JAZs were induced in response to salt, drought, Fusarium, ABA, and SA treatments, and six genes (BrTIFY3

  17. A Genome-Wide Analysis Reveals Stress and Hormone Responsive Patterns of TIFY Family Genes in Brassica rapa.

    PubMed

    Saha, Gopal; Park, Jong-In; Kayum, Md Abdul; Nou, Ill-Sup

    2016-01-01

    The TIFY family is a plant-specific group of proteins with a diversity of functions and includes four subfamilies, viz. ZML, TIFY, PPD, and JASMONATE ZIM-domain (JAZ) proteins. TIFY family members, particularly JAZ subfamily proteins, play roles in biological processes such as development and stress and hormone responses in Arabidopsis, rice, chickpea, and grape. However, there is no information about this family in any Brassica crop. This study identifies 36 TIFY genes in Brassica rapa, an economically important crop species in the Brassicaceae. An extensive in silico analysis of phylogenetic grouping, protein motif organization and intron-exon distribution confirmed that there are four subfamilies of BrTIFY proteins. Out of 36 BrTIFY genes, we identified 21 in the JAZ subfamily, seven in the TIFY subfamily, six in ZML and two in PPD. Extensive expression profiling of 21 BrTIFY JAZs in various tissues, especially in floral organs and at different flower growth stages revealed constitutive expression patterns, which suggest that BrTIFY JAZ genes are important during growth and development of B. rapa flowers. A protein interaction network analysis also pointed to association of these proteins with fertility and defense processes of B. rapa. Using a low temperature-treated whole-genome microarray data set, most of the JAZ genes were found to have variable transcript abundance between the contrasting inbred lines Chiifu and Kenshin of B. rapa. Subsequently, the expression of all 21 BrTIFY JAZs in response to cold stress was characterized in the same two lines via qPCR, demonstrating that nine genes were up-regulated. Importantly, the BrTIFY JAZs showed strong and differential expression upon JA treatment, pointing to their probable involvement in JA-mediated growth regulatory functions, especially during flower development and stress responses. Additionally, BrTIFY JAZs were induced in response to salt, drought, Fusarium, ABA, and SA treatments, and six genes (BrTIFY3

  18. A Genome-Wide Analysis Reveals Stress and Hormone Responsive Patterns of TIFY Family Genes in Brassica rapa.

    PubMed

    Saha, Gopal; Park, Jong-In; Kayum, Md Abdul; Nou, Ill-Sup

    2016-01-01

    The TIFY family is a plant-specific group of proteins with a diversity