Science.gov

Sample records for brazilian semi-arid region

  1. Waste biorefinery in arid/semi-arid regions.

    PubMed

    Bastidas-Oyanedel, Juan-Rodrigo; Fang, Chuanji; Almardeai, Saleha; Javid, Usama; Yousuf, Ahasa; Schmidt, Jens Ejbye

    2016-09-01

    The utilization of waste biorefineries in arid/semi-arid regions is advisable due to the reduced sustainable resources in arid/semi-arid regions, e.g. fresh water and biomass. This review focuses on biomass residues available in arid/semi-arid regions, palm trees residues, seawater biomass based residues (coastal arid/semi-arid regions), and the organic fraction of municipal solid waste. The present review aims to describe and discuss the availability of these waste biomasses, their conversion to value chemicals by waste biorefinery processes. For the case of seawater biomass based residues it was reviewed and advise the use of seawater in the biorefinery processes, in order to decrease the use of fresh water.

  2. Waste biorefinery in arid/semi-arid regions.

    PubMed

    Bastidas-Oyanedel, Juan-Rodrigo; Fang, Chuanji; Almardeai, Saleha; Javid, Usama; Yousuf, Ahasa; Schmidt, Jens Ejbye

    2016-09-01

    The utilization of waste biorefineries in arid/semi-arid regions is advisable due to the reduced sustainable resources in arid/semi-arid regions, e.g. fresh water and biomass. This review focuses on biomass residues available in arid/semi-arid regions, palm trees residues, seawater biomass based residues (coastal arid/semi-arid regions), and the organic fraction of municipal solid waste. The present review aims to describe and discuss the availability of these waste biomasses, their conversion to value chemicals by waste biorefinery processes. For the case of seawater biomass based residues it was reviewed and advise the use of seawater in the biorefinery processes, in order to decrease the use of fresh water. PMID:27072789

  3. Arbuscular mycorrhizal fungi in Mimosa tenuiflora (Willd.) Poir from Brazilian semi-arid.

    PubMed

    de Souza, Tancredo Augusto Feitosa; Rodriguez-Echeverría, Susana; de Andrade, Leonaldo Alves; Freitas, Helena

    2016-01-01

    Many plant species from Brazilian semi-arid present arbuscular mycorrhizal fungi (AMF) in their rhizosphere. These microorganisms play a key role in the establishment, growth, survival of plants and protection against drought, pathogenic fungi and nematodes. This study presents a quantitative analysis of the AMF species associated with Mimosa tenuiflora, an important native plant of the Caatinga flora. AMF diversity, spore abundance and root colonization were estimated in seven sampling locations in the Ceará and Paraíba States, during September of 2012. There were significant differences in soil properties, spore abundance, percentage of root colonization, and AMF diversity among sites. Altogether, 18 AMF species were identified, and spores of the genera Acaulospora, Claroideoglomus, Dentiscutata, Entrophospora, Funneliformis, Gigaspora, Glomus, Racocetra, Rhizoglomus and Scutellospora were observed. AMF species diversity and their spore abundance found in M. tenuiflora rhizosphere shown that this native plant species is an important host plant to AMF communities from Brazilian semi-arid region. We concluded that: (a) during the dry period and in semi-arid conditions, there is a high spore production in M. tenuiflora root zone; and (b) soil properties, as soil pH and available phosphorous, affect AMF species diversity, thus constituting key factors for the similarity/dissimilarity of AMF communities in the M. tenuiflora root zone among sites. PMID:26991277

  4. Arbuscular mycorrhizal fungi in Mimosa tenuiflora (Willd.) Poir from Brazilian semi-arid.

    PubMed

    de Souza, Tancredo Augusto Feitosa; Rodriguez-Echeverría, Susana; de Andrade, Leonaldo Alves; Freitas, Helena

    2016-01-01

    Many plant species from Brazilian semi-arid present arbuscular mycorrhizal fungi (AMF) in their rhizosphere. These microorganisms play a key role in the establishment, growth, survival of plants and protection against drought, pathogenic fungi and nematodes. This study presents a quantitative analysis of the AMF species associated with Mimosa tenuiflora, an important native plant of the Caatinga flora. AMF diversity, spore abundance and root colonization were estimated in seven sampling locations in the Ceará and Paraíba States, during September of 2012. There were significant differences in soil properties, spore abundance, percentage of root colonization, and AMF diversity among sites. Altogether, 18 AMF species were identified, and spores of the genera Acaulospora, Claroideoglomus, Dentiscutata, Entrophospora, Funneliformis, Gigaspora, Glomus, Racocetra, Rhizoglomus and Scutellospora were observed. AMF species diversity and their spore abundance found in M. tenuiflora rhizosphere shown that this native plant species is an important host plant to AMF communities from Brazilian semi-arid region. We concluded that: (a) during the dry period and in semi-arid conditions, there is a high spore production in M. tenuiflora root zone; and (b) soil properties, as soil pH and available phosphorous, affect AMF species diversity, thus constituting key factors for the similarity/dissimilarity of AMF communities in the M. tenuiflora root zone among sites.

  5. Uses of tree legumes in semi-arid regions

    SciTech Connect

    Felker, P.

    1980-01-01

    Uses of tree legumes in semi-arid and arid regions are reviewed. This review is divided into sections according to the following general use categories: fuels; human food; livestock food; to increase yields of crops grown beneath their canopies;and control of desertification. (MHR)

  6. Helminthological records of six-banded armadillos Euphractus sexcinctus (Linnaeus, 1758) from the Brazilian semi-arid region, Patos county, Paraíba state, including new morphological data on Trichohelix tuberculata (Parona and Stossich, 1901) Ortlepp, 1922 and proposal of Hadrostrongylus ransomi nov. comb.

    PubMed

    Hoppe, E G L; Araújo de Lima, R C; Tebaldi, J H; Athayde, A C R; Nascimento, A A

    2009-05-01

    This work aimed to evaluate the gastrointestinal helminthfauna composition of six-banded armadillos from the Brazilian semi-arid region. Gastrointestinal contents of six road-killed adult animals from Patos County, Paraíba State, were analyzed. Six species of nematodes, comprising five genera and four families, were recovered from the analyzed animals. New morphological data on Trichohelix tuberculata is given, along with a new taxonomical proposal for Hadrostrongylus ransomi (Travassos, 1935) n. comb. This is the first record for parasitic helminths in this host from the Brazilian semi-arid.

  7. Droughts and governance impacts on water scarcity: an~analysis in the Brazilian semi-arid

    NASA Astrophysics Data System (ADS)

    Silva, A. C. S.; Galvão, C. O.; Silva, G. N. S.

    2015-06-01

    Extreme events are part of climate variability. Dealing with variability is still a challenge that might be increased due to climate change. However, impacts of extreme events are not only dependent on their variability, but also on management and governance. In Brazil, its semi-arid region is vulnerable to extreme events, especially droughts, for centuries. Actually, other Brazilian regions that have been mostly concerned with floods are currently also experiencing droughts. This article evaluates how a combination between climate variability and water governance might affect water scarcity and increase the impacts of extreme events on some regions. For this evaluation, Ostrom's framework for analyzing social-ecological systems (SES) was applied. Ostrom's framework is useful for understanding interactions between resource systems, governance systems and resource users. This study focuses on social-ecological systems located in a drought-prone region of Brazil. Two extreme events were selected, one in 1997-2000, when Brazil's new water policy was very young, and the other one in 2012-2015. The analysis of SES considering Ostrom's principle "Clearly defined boundaries" showed that deficiencies in water management cause the intensification of drought's impacts for the water users. The reasons are more related to water management and governance problems than to drought event magnitude or climate change. This is a problem that holdup advances in dealing with extreme events.

  8. Karst characterization in a semi-arid region using gravity, seismic, and resistivity geophysical techniques.

    SciTech Connect

    Barnhart, Kevin Scott

    2013-10-01

    We proposed to customize emerging in situ geophysical monitoring technology to generate time-series data during sporadic rain events in a semi-arid region. Electrodes were to be connected to wireless \

  9. Distribution and density of the mollusk Donax striatus (Linnaeus, 1767) in a tropical estuarine region in the brazilian semi-arid.

    PubMed

    Medeiros, E L; Fernandes, G V; Henry-Silva, G G

    2015-11-01

    This study evaluated the spatial and temporal distribution and density of the bivalve Donax striatus, at beaches close to the Apodi/Mossoró River estuary, through, six semiannual sampling campaigns were performed between April/2009 and October/2011. The sampled area was delimited by 20 transects that were laid perpendicular to the beach line and extended over 300 m in the intertidal zone. Seven sampling points were established in each transect, organisms and sediment were collected, and water temperature and salinity were recorded. The highest D. striatus average density (103 individuals.m-2) was observed in April/2009 and the lowest (18 individuals.m-2) in October/2010. The highest D. striatus densities occurred in beaches further from the estuarine region as demonstrated by a significant positive correlation (r2 = 0.67 and p = 0.0007). The D. striatus densities presented significant negative correlations with the percentages of organic matter in the water. This species demonstrated an aggregated distribution in the studied area. PMID:26675907

  10. The relationship between anthropogenic dust and population over global semi-arid regions

    NASA Astrophysics Data System (ADS)

    Guan, Xiaodan; Huang, Jianping; Zhang, Yanting; Xie, Yongkun; Liu, Jingjing

    2016-04-01

    Although anthropogenic dust has received more attention from the climate research community, its dominant role in the production process is still not identified. In this study, we analysed the relationship between anthropogenic dust and population density/change over global semi-arid regions and found that semi-arid regions are major source regions in producing anthropogenic dust. The results showed that the relationship between anthropogenic dust and population is more obvious in cropland than in other land cover types (crop mosaics, grassland, and urbanized regions) and that the production of anthropogenic dust increases as the population density grows to more than 90 persons km-2. Four selected semi-arid regions, namely East China, India, North America, and North Africa, were used to explore the relationship between anthropogenic dust production and regional population. The most significant relationship between anthropogenic dust and population occurred in an Indian semi-arid region that had a greater portion of cropland, and the high peak of anthropogenic dust probability appeared with 220 persons km-2 of population density and 60 persons km-2 of population change. These results suggest that the influence of population on production of anthropogenic dust in semi-arid regions is obvious in cropland regions. However, the impact does not always have a positive contribution to the production of anthropogenic dust, and overly excessive population will suppress the increase of anthropogenic dust. Moreover, radiative and climate effects of increasing anthropogenic dust need more investigation.

  11. Tropical Warm Semi-Arid Regions Expanding Over Temperate Latitudes In The Projected 21st Century

    NASA Astrophysics Data System (ADS)

    Rajaud, A.; de Noblet, N. I.

    2015-12-01

    Two billion people today live in drylands, where extreme climatic conditions prevail, and natural resources are limited. Drylands are expected to expand under several scenarios of climatic change. However, relevant adaptation strategies need to account for the aridity level: it conditions the equilibrium tree-cover density, ranging from deserts (hyper-arid) to dense savannas (sub-humid). Here we focus on the evolution of climatically defined warm semi-arid areas, where low-tree density covers can be maintained. We study the global repartition of these regions in the future and the bioclimatic shifts involved. We adopted a bioclimatological approach based on the Köppen climate classification. The warm semi-arid class is characterized by mean annual temperatures over 18°C and a rainfall-limitation criterion. A multi-model ensemble of CMIP5 projections for three representative concentration pathways was selected to analyze future conditions. The classification was first applied to the start, middle and end of the 20th and 21st centuries, in order to localize past and future warm semi-arid regions. Then, time-series for the classification were built to characterize trends and variability in the evolution of those regions. According to the CRU datasets, global expansion of the warm semi-arid area has already started (~+13%), following the global warming trend since the 1900s. This will continue according to all projections, most significantly so outside the tropical belt. Under the "business as usual" scenario, the global warm semi-arid area will increase by 30% and expand 12° poleward in the Northern Hemisphere, according to the multi-model mean. Drying drives the conversion from equatorial sub-humid conditions. Beyond 30° of latitude, cold semi-arid conditions become warm semi-arid through warming, and temperate conditions through combined warming and drying processes. Those various transitions may have drastic but also very distinct ecological and sociological

  12. Thin scale ecohydrological data and relations at semi-arid regions: a methodological approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In semi-arid regions worldwide the vegetation is organized in patches surrounded by bare soil with marked differences in their soil properties that play important roles in runoff and infiltration. Chihuahuan-Sonoran and Patagonian Monte deserts regions show floristic similarity greater than that ex...

  13. Understanding sources of uncertainty in flash-flood forecasting for semi-arid regions 1913

    Technology Transfer Automated Retrieval System (TEKTRAN)

    About one-third of the earth’s landsurface is located in arid or semi-arid regions, often in areas suffering severely from the negative impacts of desertification and population pressure. Reliable hydrological forecasts across spatial and temporal scales are crucial in order to achieve water securit...

  14. Radioecological characterization of a uranium mining site located in a semi-arid region in Brazil.

    PubMed

    Fernandes, Horst M; Lamego Simoes Filho, F Fernando; Perez, Valeska; Franklin, Mariza Ramalho; Gomiero, Luiz Alberto

    2006-01-01

    The work presents the radioecological characterization of the new Brazilian uranium mining and milling site located in a semi-arid region of the country. The process characterization demonstrated that in heap leach plants most of the 226Ra remains in the leached ore. Despite the potential higher availability of radium isotopes in the soils of the studied region the lack of precipitation in that area reduces the leaching/mobilization of the radionuclides. High 226Ra and 228Ra concentrations were found in manioc while 210Pb was significant in pasture. It was suggested that a range from 10(-3) to 10(-1) may conveniently encompass most of the transfer factors (TF) values for soil/plant systems (i.e. involving different cultures, different soils and natural radionuclides). Impacts due to aerial transportation of aerosols and radon generated in the mining were proved to be minimal and restricted to an area not greater than 15 km2. Finally, uranium complexation by carbonates was shown to be the main mechanism responding for the elevated radionuclide concentration in groundwater.

  15. Soil Unit Delineation in Semi-Arid Regions Using Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Engle, E.; Harrison, J. J.; Hendrickx, J. M.; Ramirez Torres, C. F.

    2011-12-01

    Creating accurate, high resolution soil maps in remote semi-arid areas is time consuming and expensive. The traditional methods of soil mapping in areas of high economic value involve spending considerable amounts of time in the field, often verifying boundaries identified from aerial photographs and validating the boundaries with point observations in soil pits. In contrast, soils in semi-arid rangelands often receive very little attention because the land is of little economic use with the exception of some high-value agricultural soils. Even areas of high interest are generally mapped broadly, with map units on the scale of associations and complexes. However, today societal demands require accurate soil information in semi-arid regions for climate change and echohydrological modeling as well as the estimation of carbon sequestration. Remote sensing techniques can provide data that is spatially and spectrally contiguous and have been used successfully to conduct landuse and landcover surveys as well as to obtain surface information about soils and soil properties. We used the Surface Energy Balance Algorithms for Land (SEBAL) algorithm that solves the surface energy balance on an instantaneous time scale for every pixel of a satellite image to produce maps of root zone soil moisture. Landsat images during the growing season covering several years were analyzed to identify recurring patterns in soil moisture and compared to existing soil and landform maps. Initial investigations using this technique provided good correlations between soil map unit boundaries, landform boundaries and the patterns of soil moisture suggesting that this method may be a useful tool for mapping semi-arid rangeland soils. Recent work has indicated that the soil boundaries detected previously using the remote sensing approach can be further verified using electromagnetic induction, depth to calcic horizon, and percentage of calcium carbonate by depth. Overall, these data illustrate the

  16. Microbial community biogeographic patterns in the rhizosphere of two Brazilian semi-arid leguminous trees.

    PubMed

    Lançoni, Milena Duarte; Taketani, Rodrigo Gouvêa; Kavamura, Vanessa Nessner; de Melo, Itamar Soares

    2013-07-01

    Arid environments are regular and well distributed over all continents and display drought characteristics whether full-time or seasonal. This study aims to characterize how the microbial communities of the rhizosphere of two leguminous trees from the Brazilian semi-arid biome the Caatinga are geographically and seasonally shaped, as well as the factors driving this variation. With that purpose, the soil rhizosphere from two leguminous trees (Mimosa tenuiflora and Piptadenia stipulacea (Benth.) Ducke) were sampled in two different seasons: rainy and drought at five different sites. Assessment of bacterial and archaeal communities occurred by T-RFLP analysis of 16S rRNA and archaeal amoA genes. By these means, it was observed that the seasons (wet and dry periods) are the factors that most influence the composition of the microbial community from both analyzed plants, except for the results obtained from the CCA applied to Archaeas. Furthermore, soil physical-chemical factors also had a significant influence on the community and indicated a geographical pattern of the bacterial community. It was not possible to observe significant modifications in the composition in relation to the plant species. We have seen that soil characteristics and rainfall were the factors that most influenced the microbial composition. Also, the bacterial community had a significant correlation with soil characteristics that indicates that these rhizosphere communities might be selected by environmental characteristics. Furthermore, the data suggest that climate plays a key role in structuring the microbial community of this biome. PMID:23435935

  17. [Effects of environmental factors on litter decomposition in arid and semi-arid regions: A review].

    PubMed

    Wang, Xin-Yuan; Zhao, Xue-Yong; Li, Yu-Lin; Lian, Jie; Qu, Hao; Yue, Xiang-Fei

    2013-11-01

    Litter decomposition is one of the important biochemical processes in arid and semi-arid regions, and a key component of regional nutrient turnover and carbon cycling, which is mainly affected by climate, litter quality, and decomposer community. In order to deeply understand the relationships between litter decomposition and environmental factors in arid and semi-arid regions, this paper summarized the research progress in the effects of abiotic factors (soil temperature, precipitation, and ultraviolet-B radiation) and biotic factors (litter quality, soil microbial and animal composition and community structure) on the litter decomposition in these regions. Among the factors, precipitation and ultraviolet-B radiation are considered to be the main limiting factors of litter decomposition. In arid and semi-arid regions, precipitation can significantly increase the litter decomposition rate in a short term, while the photo-degradation induced by ultraviolet-B radiation, due to the strong and long-term radiation, can increase the decomposition rate of terrestrial litter. Litter quality, soil microbial and animal composition and community structure are mainly affected by the type of ecosystems in a long term. However, the affecting mechanisms of these environmental factors on litter decomposition are still not very clear. It was suggested that the future litter ecological research should be paid more attention to the interaction of environmental factors under climate change, the variations of litter decomposition at different spatial scales, and the establishment of litter decomposition models in relation to the synergistic interactions of multiple factors. PMID:24564163

  18. [Effects of environmental factors on litter decomposition in arid and semi-arid regions: A review].

    PubMed

    Wang, Xin-Yuan; Zhao, Xue-Yong; Li, Yu-Lin; Lian, Jie; Qu, Hao; Yue, Xiang-Fei

    2013-11-01

    Litter decomposition is one of the important biochemical processes in arid and semi-arid regions, and a key component of regional nutrient turnover and carbon cycling, which is mainly affected by climate, litter quality, and decomposer community. In order to deeply understand the relationships between litter decomposition and environmental factors in arid and semi-arid regions, this paper summarized the research progress in the effects of abiotic factors (soil temperature, precipitation, and ultraviolet-B radiation) and biotic factors (litter quality, soil microbial and animal composition and community structure) on the litter decomposition in these regions. Among the factors, precipitation and ultraviolet-B radiation are considered to be the main limiting factors of litter decomposition. In arid and semi-arid regions, precipitation can significantly increase the litter decomposition rate in a short term, while the photo-degradation induced by ultraviolet-B radiation, due to the strong and long-term radiation, can increase the decomposition rate of terrestrial litter. Litter quality, soil microbial and animal composition and community structure are mainly affected by the type of ecosystems in a long term. However, the affecting mechanisms of these environmental factors on litter decomposition are still not very clear. It was suggested that the future litter ecological research should be paid more attention to the interaction of environmental factors under climate change, the variations of litter decomposition at different spatial scales, and the establishment of litter decomposition models in relation to the synergistic interactions of multiple factors.

  19. Effect of irrigation systems on temporal distribution of malaria vectors in semi-arid regions.

    PubMed

    Ohta, Shunji; Kaga, Takumi

    2014-04-01

    Previous research models have used climate data to explain habitat conditions of Anopheles mosquitoes transmitting malaria parasites. Although they can estimate mosquito populations with sufficient accuracy in many areas, observational data show that there is a tendency to underestimate the active growth and reproduction period of mosquitoes in semi-arid agricultural regions. In this study, a new, modified model that includes irrigation as a factor was developed to predict the active growing period of mosquitoes more precisely than the base model for ecophysiological and climatological distribution of mosquito generations (ECD-mg). Five sites with complete sets of observational data were selected in semi-arid regions of India for the comparison. The active growing period of mosquitoes determined from the modified ECD-mg model that incorporated the irrigation factor was in agreement with the observational data, whereas the active growing period was underestimated by the previous ECD-mg model that did not incorporate irrigation. This suggests that anthropogenic changes in the water supply due to extensive irrigation can encourage the growth of Anopheles mosquitoes through the alteration of the natural water balance in their habitat. In addition, it was found that the irrigation systems not only enable the active growth of mosquitoes in dry seasons but also play an important role in stabilizing the growth in rainy seasons. Consequently, the irrigation systems could lengthen the annual growing period of Anopheles mosquitoes and increase the maximum generation number of mosquitoes in semi-arid subtropical regions.

  20. The impacts of precipitation on land- atmosphere interaction over the semi-arid Loess Plateau region

    NASA Astrophysics Data System (ADS)

    WANG, G.; Huang, J.

    2015-12-01

    To understand the impacts of precipitation on land-atmosphere interactions over semi-arid regions, 6-year continuous measurements data in situ were analyzed to investigate the influence of precipitation on soil moisture, evapotranspiration, energy partitioning and plant growing over Loess Plateau in northwest China. Results show that annual precipitation had obvious inter-annual variability, and the variation of soil moisture; evaporation and CO2 flux were very consistently with the annual cycle and intensity of precipitation. Soil moisture is the key participant in land-atmosphere interaction. However, as the water shortage and disconnected from water table over the semi-arid region, it is much more sensitive with precipitation compensation and evaporation feedbacks. Soil water can cooling the near surface air temperature by evaporation (latent heat flux), and also as the main energy partitioning consumer of net radiation in humid area or pluvial period in arid area, yet it was water limited in arid and semi-arid region, sensible heat flux predominated net radiation for enhancing the surface air temperature. We also found that soil moisture profile significantly affected the plant physiology, which was also consistent with the annual cycle and intensity of precipitation.

  1. Effect of irrigation systems on temporal distribution of malaria vectors in semi-arid regions

    NASA Astrophysics Data System (ADS)

    Ohta, Shunji; Kaga, Takumi

    2014-04-01

    Previous research models have used climate data to explain habitat conditions of Anopheles mosquitoes transmitting malaria parasites. Although they can estimate mosquito populations with sufficient accuracy in many areas, observational data show that there is a tendency to underestimate the active growth and reproduction period of mosquitoes in semi-arid agricultural regions. In this study, a new, modified model that includes irrigation as a factor was developed to predict the active growing period of mosquitoes more precisely than the base model for ecophysiological and climatological distribution of mosquito generations (ECD-mg). Five sites with complete sets of observational data were selected in semi-arid regions of India for the comparison. The active growing period of mosquitoes determined from the modified ECD-mg model that incorporated the irrigation factor was in agreement with the observational data, whereas the active growing period was underestimated by the previous ECD-mg model that did not incorporate irrigation. This suggests that anthropogenic changes in the water supply due to extensive irrigation can encourage the growth of Anopheles mosquitoes through the alteration of the natural water balance in their habitat. In addition, it was found that the irrigation systems not only enable the active growth of mosquitoes in dry seasons but also play an important role in stabilizing the growth in rainy seasons. Consequently, the irrigation systems could lengthen the annual growing period of Anopheles mosquitoes and increase the maximum generation number of mosquitoes in semi-arid subtropical regions.

  2. The Dynamics of a Semi-Arid Region in Response to Climate and Water - Use Policy

    NASA Technical Reports Server (NTRS)

    Mustard, John F.; Hamburg, Steve; Grant, John A.; Manning, Sara J.; Steinwand, Aaron; Howard, Chris

    2000-01-01

    The objectives of this project were to determine the response of semi-arid ecosystems to the combined forcings of climate variability and anthropogenic stress. Arid and semi-arid systems encompass close to 40% of the worlds land surface. The ecology of these regions are principally limited by water, and as the water resources wax and wane, so should the health and vigor of the ecosystems. Water, however, is a necessary and critical resource for humans living in these same regions. Thus for many and and semi-arid regions the natural systems and human systems are in direct competition for a limited resource. Increasing competition through development of and and semi-arid regions, export of water resources, as well as potential persistent changes in weather patterns are likely to lead to fundamental changes in carrying capacity, resilience, and ecology of these regions. A detailed understanding of these systems respond to forcing on a regional and local scale is required in order to better prepare for and manage future changes in the availability of water. In the Owens Valley CA, decadal changes in rainfall and increased use of groundwater resources by Los Angles (which derives 60-70% of its water from this region) have resulted in a large-scale experiment on the impacts of these changes in semi-arid ecosystems. This project works directly with the Inyo County Water Department (local water authority) and the Los Angles Department of Water and Power (regional demand on water resources) to understand changes, their causes, and impacts. Very detailed records have been kept for a number of selected sites in the valley which provide essential ground truth. These results are then scaled up through remote sensed data to regions scale to assess large scale patterns and link them to the fundamental decisions regarding the water resources of this region. A fundamental goal is to understand how resilient the native ecosystems are to large changes in water resources. Are they are

  3. Assessment of the performance of water harvesting systems in semi-arid regions

    NASA Astrophysics Data System (ADS)

    Lasage, Ralph

    2016-04-01

    Water harvesting is widely practiced and has the potential to improve water availability for domestic and agricultural use in semi-arid regions. New funds are becoming available to stimulate the implementation of water harvesting projects, for meeting the Sustainable Development Goals and to help communities to adapt to climate change. For this, it is important to understand which factors determine the success of water harvesting techniques under different conditions. For this, we review the literature, including information on the crop yield impacts of water harvesting projects in semi-arid Africa and Asia. Results show that large water harvesting structures (> 500 m3) are less expensive than small structures, when taking into account investment costs, storage capacity and lifetimes. We also find that water harvesting improves crop yields significantly, and that the relative impact of water harvesting on crop yields is largest in low rainfall years. We also see that the governance, technical knowledge and initial investment are more demanding for the larger structures than for smaller structures, which may affect their spontaneous adoption and long term sustainability when managed by local communities. To support the selection of appropriate techniques, we present a decision framework based on case specific characteristics. This framework can also be used when reporting and evaluating the performance of water harvesting techniques, which is up to now quite limited in peer reviewed literature. Based on Bouma, J., Hegde, S.E., Lasage, R., (2016). Assessing the returns to water harvesting: A meta-analysis. Agricultural Water Management 163, 100-109. Lasage, R., Verburg P.H., (2015). Evaluation of small scale water harvesting techniques for semi-arid environments. Journal of Arid Environments 118, 48-57.

  4. A Methodology to Assess and Evaluate Rainwater Harvesting Techniques in (Semi-)Arid Regions

    NASA Astrophysics Data System (ADS)

    Ali, Ammar; Riksen, Michel; Ouessar, Mohamed; Ritsema, Coen

    2015-04-01

    Arid and semi-arid regions around the world are generally facing water scarcity problems due to lack of precipitation and unpredictable rainfall patterns. For thousands of years rainwater harvesting (RWH) techniques have been applied to cope with water scarcity. Many researchers have presented and applied different methodologies for determining suitable sites and techniques for RWH. However, there is still little attention given to evaluation of the performance of RWH structures. The aim of this research was to design a scientifically-based and generally applicable methodology to evaluate and assess the performance of existing RWH techniques in (semi-) arid regions. The methodology takes engineering, biophysical, and socio-economic criteria into account to assess the performance of RWH using the Analytical Hierarchy Process (AHP) supported by Geographic Information System (GIS). The Oum Zessar watershed in south-eastern Tunisia is used as a case study site to test this evaluation tool. The performance of 58 RWH locations (14 jessour and 44 tabias) in three main sub-catchments of Oum Zessar watershed were assessed and evaluated. Based on the criteria selected, 60performance, 36received good performance scores. The results very accurately represent the real performance of each site. This integrated methodology, which is highly flexible, saves time and costs, and is easy to adapt in different regions, provides a scientifically based analytical tool to support designers and decision makers aiming to improve the performance of existing and new RWH sites.

  5. Drought Quantifications in Semi-Arid Regions Using Precipitation Effectiveness Variables

    NASA Astrophysics Data System (ADS)

    Otun, J. A.

    2009-04-01

    This study proposes a new drought index based on several precipitation -based parameters to quantify drought hazard in semi arid region. In addition to the practice of using only rainfall volume for indexing drought, the proposed index verifies the potentials of nine (9) other precipitation effectiveness variables PEVs, (onset of rain, cessation of rain, length of rainy and dry season, wet days and dry days within a wet season, dry days within the year, maximum dry spell length within a wet season and mean seasonal rainfall depth (MAR) in quantifying the drought conditions over a place. In formulating the index, each standardized deficit for each PEV is magnified using the Kridging principle and summed up together. A statistical comparison test using historical drought data is used to determine the most appropriate PEVs set that can be conjunctively included in indexing the drought hazard at each location. The daily rainfall data from seven stations in the semi-arid region of Nigeria (namely Gusau, Kano, Katsina, Maiduguri, Nguru, Potiskum, and Sokoto) were used to verify the effectiveness of this new method.

  6. New species and records of Anacroneuria (Plecoptera: Perlidae) from the northeastern semi-arid region of Brazil.

    PubMed

    Duarte, Tácio; Lecci, Lucas Silveira

    2016-01-01

    The genus Anacroneuria is widely distributed in the Neotropical Region. There are about 80 species listed from Brazil, five of which are recorded from the northeastern semi-arid region of Brazil, an area characterized by irregular and low precipitation. Examination of adult Anacroneuria material from this including areas of Caatinga desert vegetation and Atlantic forest revealed two new species records, A. debilis (Pictet) and A. terere Righi-Cavallaro & Lecci. Additionally, two new species, A. calori n. sp. and A. singela n. sp., are described from this material. These new records and new species reflect a major effort to document the biodiversity of the aquatic insects of the northeastern semi-arid region of Brazil by the Research Program in Semi-arid Biodiversity. PMID:27396007

  7. Acupunctural Afforestation for Desertification Mitigation over Semi-Arid Regions in East Asia

    NASA Astrophysics Data System (ADS)

    Myoung, B.; Choi, Y.; Park, S. K.

    2011-12-01

    Desertification over the arid/semi-arid regions in East Asia and dust transports from the regions have been serious concerns for the societies not only in adjacent Asian countries but also in the western US. One of the strategies for desertification mitigation is tree planting over the semi-arid areas. However, unless the newly planted vegetation changes the feedback characteristics between land-surface and the atmosphere, the impact is not profound and effective for a long time. Here we show afforestation effects on the coupling strength between the land-surface and atmosphere, measured by the monthly anomalies of precipitation and evapotranspiration. The coupling strength is an important parameter to diagnose the aridity of a region since the stronger coupling strength is indicative of the higher vulnerability of the local climate to droughts. Simulations of a regional vegetation-climate coupled model reveal that afforestation substantially modulates local coupling strength mainly through controlling variability of evapotranspiration. The coupling strength decreases most significantly with an increase of unit vegetation fraction over the northern and central China including Manchurian Plains and highly populated areas of Beijing and Tianjin. The coupling characteristics of these regions are expected to reduce the occurrence of extreme weather events such as droughts by alleviating positive responses of the surface to precipitation deficit. Therefore, afforestation concentrated on these regions, which is called "acupunctural afforestation", may most effectively contribute to desertification mitigation than other regions by attenuating mechanisms maintaining warm season droughts. This study suggests that our attention should be paid to understanding the coupling strength between land and the atmosphere for desertification mitigation.

  8. [Effect of Biochar on Soil Greenhouse Gas Emissions in Semi-arid Region].

    PubMed

    Guo, Yan-liang; Wang, Dan-dan; Zheng, Ji-yong; Zhao, Shi-wei; Zhang, Xing-chang

    2015-09-01

    This study aimed to investigate the effects of biochar addition on the emission of greenhouse gases from farmland soil in semi-arid region. Through an in-situ experiments, the influence of sawdust biochar(J) and locust tree skin biochar (H) at three doses (1%, 3%, and 5% of quality percentage) on C2, CH4 and N2O emissions were studied within the six months in the south of Ningxiaprovince. The results indicated that soil CO2 emission flux was slightly increased with the addition doses for both biochars, and the averaged CO2 emission flux for sawdust and locust tree skin biochar was enhanced by 1. 89% and 3. 34% compared to the control, but the difference between treatments was not statistically significant. The soil CH4 emission was decreased with the increasing of biochar doses, by 1. 17%, 2. 55%, 4. 32% for J1, J3, J5 and 2. 35%, 5. 83%, 7. 32% for H1, H3, H5, respectively. However, the difference was statistically significant only for J5, H3 and H5 treatments (P <0. 05). Across addition doses, there was no apparent effect on soil N2O emission. Our study indicated that the biochar has no significant influence on soil CO2 and N2O emissions within six months in semi-arid region and can significantly influence soil CH4 emissions (P < 0. 05). As for biochar type, the locust tree skin biochar is significantly better than the sawdust biochar in terms of restraining CH4 emission(P = 0. 048). PMID:26717703

  9. [Effect of Biochar on Soil Greenhouse Gas Emissions in Semi-arid Region].

    PubMed

    Guo, Yan-liang; Wang, Dan-dan; Zheng, Ji-yong; Zhao, Shi-wei; Zhang, Xing-chang

    2015-09-01

    This study aimed to investigate the effects of biochar addition on the emission of greenhouse gases from farmland soil in semi-arid region. Through an in-situ experiments, the influence of sawdust biochar(J) and locust tree skin biochar (H) at three doses (1%, 3%, and 5% of quality percentage) on C2, CH4 and N2O emissions were studied within the six months in the south of Ningxiaprovince. The results indicated that soil CO2 emission flux was slightly increased with the addition doses for both biochars, and the averaged CO2 emission flux for sawdust and locust tree skin biochar was enhanced by 1. 89% and 3. 34% compared to the control, but the difference between treatments was not statistically significant. The soil CH4 emission was decreased with the increasing of biochar doses, by 1. 17%, 2. 55%, 4. 32% for J1, J3, J5 and 2. 35%, 5. 83%, 7. 32% for H1, H3, H5, respectively. However, the difference was statistically significant only for J5, H3 and H5 treatments (P <0. 05). Across addition doses, there was no apparent effect on soil N2O emission. Our study indicated that the biochar has no significant influence on soil CO2 and N2O emissions within six months in semi-arid region and can significantly influence soil CH4 emissions (P < 0. 05). As for biochar type, the locust tree skin biochar is significantly better than the sawdust biochar in terms of restraining CH4 emission(P = 0. 048).

  10. Determine the optimum spectral reflectance of juniper and pistachio in arid and semi-arid region

    NASA Astrophysics Data System (ADS)

    Fadaei, Hadi; Suzuki, Rikie

    2012-11-01

    Arid and semi-arid areas of northeast Iran cover about 3.4 million ha are populated by two main tree species, the broadleaf Pistacia vera. L (pistachio) and the conifer Juniperus excelsa ssp. polycarpos (Persian juniper). Natural stands of pistachio in Iran are not only environmentally important but genetically essential as seed sources for pistachio production in orchards. In this study, we estimated the optimum spectral reflectance of juniper forests and natural pistachio stands using remote sensing to help in the sustainable management and production of pistachio in Iran. In this research spectral reflectance are able to specify of multispectral from Advanced Land Observing Satellite (ALOS) that provided by JAXA. These data included PRISM is a panchromatic radiometer with a 2.5 m spatial resolution at nadir, has one band with a wavelength of 0.52-0.77 μm and AVNIR-2 is a visible and near infrared radiometer for observing land and coastal zones with a 10 m spatial resolution at nadir, has four multispectral bands: blue (0.42-0.50 μm), green (0.52-0.60 μm), red (0.61-0.69 μm), and near infrared (0.76-0.89 μm). Total ratio vegetation index (TRVI) of optimum spectral reflectance of juniper and pistachio have been evaluated. The result of TRVI for Pistachio and juniper were (R2= 0.71 and 0.55). I hope this research can provide decision of managers to helping sustainable management for arid and semi-arid regions in Iran.

  11. Developing a CFD-based Approach to Estimate Evaporation from Water Surfaces in (Semi-) Arid Regions

    NASA Astrophysics Data System (ADS)

    Abbasi, Ali; Annor, Frank; van de Giesen, Nick

    2015-04-01

    In arid and semi-arid regions where evaporation highly exceeds rainfall, approximately one half of the stored water in shallow lakes may be lost due to evaporation. Precisely estimating this for very shallow lakes is however a daunting tasks due to the complexity of lake thermodynamics and the interactions between the water surface and air. Evaporation in water is largely uncoupled from land based evapotranspiration and most methods used are case-specific equations which are usually not applicable for other lakes. In this study a Computational Fluid Dynamics(CFD) Evaporation Model is established to adequately quantify the evaporation losses by simulating the air flow and heat transfer in the atmospheric boundary layer. Consideration of the air flow and heat transfer is required to simulate the fetch effect. This model will help to understand the complexities involved in open water evaporation and consequently will lead to more accurate estimates and better strategies for managing and controlling the evaporative loss of fresh water in arid and semi-arid regions. The proposed approach is used to drive a convective mass-transfer coefficient (wind function) required for estimating evaporation of water bodies with the mass-transfer method. The model was applied for a small shallow (with a surface area of 45 hectares and 3m deep on the average) artificial lake in Ghana called Binaba. The heat and mass transfer coefficient over the water surface and their distributions were extracted from the CFD analysis. The results showed that the CFD-derived wind functions were very similar to those empirically derived from the measurements over the lake using Eddy Covariance(EC) System. The evaporation rates calculated with the synthetic wind functions were in good agreement with hourly and daily evaporation measurements for the lake. The established CFD-model is generalizable and cost effective, since it needs low input data. Besides, the model is able to provide additional

  12. Improving Modeling of the Summer Climate of Semi-Arid Regions

    NASA Astrophysics Data System (ADS)

    Eltahir, E.; Marcella, M.

    2009-04-01

    Presented is a study on the importance of certain land surface processes in accurately simulating the summertime climate of Southwest Asia. A nearly 4 degree C bias is simulated in summertime temperatures, by standard Regional Climate Model version 3 (RegCM3). Biases are also found in surface albedo, shortwave incident, and surface vapor pressure. Using satellite data, (Earth Radiation Budget Experiment-ERBE) modifications are introduced to match simulated surface albedo to the ERBE data. In addition, by incorporating RegCM3's dust module with sub-grid variability, surface shortwave incident biases are reduced. Lastly, representing the irrigation and marshlands of Mesopotamia reduces vapor pressure deficits in the region. All of these factors combined, along with errors in observational datasets, account for the 4 degree C warm bias in RegCM3 simulations. We conclude that accurate representations of albedo, irrigation, and dust emissions are important processes to be included for accurate summertime climate modeling in semi-arid regions around the world.

  13. Predictability and prediction of summer rainfall in the arid and semi-arid regions of China

    NASA Astrophysics Data System (ADS)

    Xing, Wen; Wang, Bin

    2016-09-01

    Northwest China (NWC) is an arid and semi-arid region where climate variability and environmental changes are sensitive to precipitation. The present study explores sources and limits of predictability of summer precipitation over NWC using the predictable mode analysis (PMA) of percentage of rainfall anomaly data. Two major modes of NWC summer rainfall variability are identified which are tied to Eurasian continental scale precipitation variations. The first mode features wet northern China corresponding to dry central Siberia and wet Mongolia, which is mainly driven by tropical Pacific sea surface temperature anomalies (SSTA). The second mode features wet western China reflecting wet Central Asia and dry Ural-western Siberia, which strongly links to Indian Ocean SSTA. Anomalous land warming over Eurasia also provides important precursors for the two modes. The cross-validated hindcast results demonstrate these modes can be predicted with significant correlation skills, suggesting that they may be considered as predictable modes. The domain averaged temporal correlation coefficient (TCC) skill during 1979 to 2015 using 0-month (1-month) lead models is 0.39 (0.35), which is considerably higher than dynamical models' multi-model ensemble mean skill (-0.02). Maximum potential attainable prediction skills are also estimated and discussed. The result illustrates advantage of PMA in predicting rainfall over dry land areas and large room for dynamical model improvement. However, secular changes of predictors need to be detected continuously in order to make practical useful prediction.

  14. Animal-Based Remedies as Complementary Medicines in the Semi-Arid Region of Northeastern Brazil

    PubMed Central

    Alves, Rômulo R. N.; Barbosa, José A. A.; Santos, Silene L. D. X.; Souto, Wedson M. S.; Barboza, Raynner R. D.

    2011-01-01

    Animals (and their derived products) are essential ingredients in the preparation of many traditional remedies. Despite its prevalence in traditional medical practices worldwide, research on medicinal animals has often been neglected in comparison to medicinal plant research. This work documents the medicinal animals used by a rural community in the semi-arid region, inserted in Caatinga Biome, where 66 respondents provided information on animal species used as medicine, body parts used to prepare the remedies and illnesses to which the remedies were prescribed. We calculated the informant consensus factor to determine the consensus over which species are effective for particular ailments, as well as the species use value to determine the extent of utilization of each species. We recorded the use of 51 animal species as medicines, whose products were recommended for the treatment of 68 illnesses. The informant consensus in the use of many specific remedies is fairly high, giving an additional validity to this folk medicine. Eight species not previously reported as having medicinal use were recorded. The local medicinal fauna is largely based on wild animals, including some endangered species. Given a high proportion of medicinal animals observed in the study area, it is logical to conclude that any conservation strategy should include access to modern health care. PMID:19729490

  15. Peach response to water deficit in a semi-arid region

    NASA Astrophysics Data System (ADS)

    Paltineanu, C.; Septar, L.; Moale, C.; Nicolae, S.; Nicola, C.

    2013-09-01

    During three years a deficit irrigation experiment was performed on peach response under the semi-arid conditions of south-eastern Romania. Three sprinkler-irrigated treatments were investigated: fully irrigated, deficit irrigation treatment, and non-irrigated control treatment. Soil water content ranged between 60 and 76% of the plant available soil water capacity in fully irrigated, between 40 and 62% in deficit irrigation treatment, and between 30 and 45% in control. There were significant differences in fruit yield between the treatments. Irrigation water use efficiency was maximum in deficit irrigation treatment. Fruit yield correlated significantly with irrigation application. Total dry matter content, total solids content and titrable acidity of fruit were significantly different in the irrigated treatments vs. the control. Significant correlation coefficients were found between some fruit chemical components. For the possible future global warming conditions, when water use becomes increasingly restrictive, deficit irrigation will be a reasonable solution for water conservation in regions with similar soil and climate conditions.

  16. Integrated Water Resources Planning and Management in Arid/Semi-arid Regions: Data, Modeling, and Assessment

    NASA Astrophysics Data System (ADS)

    Gupta, H.; Liu, Y.; Wagener, T.; Durcik, M.; Duffy, C.; Springer, E.

    2005-12-01

    Water resources in arid and semi-arid regions are highly sensitive to climate variability and change. As the demand for water continues to increase due to economic and population growth, planning and management of available water resources under climate uncertainties becomes increasingly critical in order to achieve basin-scale water sustainability (i.e., to ensure a long-term balance between supply and demand of water).The tremendous complexity of the interactions between the natural hydrologic system and the human environment means that modeling is the only available mechanism for properly integrating new knowledge into the decision-making process. Basin-scale integrated models have the potential to allow us to study the feedback processes between the physical and human systems (including institutional, engineering, and behavioral components); and an integrated assessment of the potential second- and higher-order effects of political and management decisions can aid in the selection of a rational water-resources policy. Data and information, especially hydrological and water-use data, are critical to the integrated modeling and assessment for water resources management of any region. To this end we are in the process of developing a multi-resolution integrated modeling and assessment framework for the south-western USA, which can be used to generate simulations of the probable effects of human actions while taking into account the uncertainties brought about by future climatic variability and change. Data are being collected (including the development of a hydro-geospatial database) and used in support of the modeling and assessment activities. This paper will present a blueprint of the modeling framework, describe achievements so far and discuss the science questions which still require answers with a particular emphasis on issues related to dry regions.

  17. Holocene semi-arid oak woodlands in the Irano-Anatolian region of Southwest Asia: natural or anthropogenic?

    NASA Astrophysics Data System (ADS)

    Asouti, Eleni; Kabukcu, Ceren

    2014-04-01

    It is commonly accepted that, following the end of the Pleistocene, semi-arid deciduous oak woodlands did not spread in the Irano-Anatolian region of Southwest Asia as quickly as they did in the Levantine Mediterranean littoral, despite the fact that climatic improvement occurred broadly at the same time in both regions. Prehistoric impacts on woodland vegetation (such as woodcutting, burning and clearance for cultivation), the harsh continental climate of inland Southwest Asia and its distance from late Pleistocene arboreal refugia have all been discussed in the literature as likely causes of the delay. In this paper we argue that semi-arid deciduous oak woodlands should not be viewed as part of the “natural” vegetation of the Irano-Anatolian region that has been progressively destroyed by millennia of human activities since the Neolithic. They represent instead one of the earliest anthropogenic vegetation types in Southwest Asia, one that owes its very existence to prehistoric landscape practices other scholars commonly label as “destructive”. Drawing on anthracological, pollen and modern vegetation data from central Anatolia we describe how the post-Pleistocene species-rich and structurally diverse temperate semi-arid savanna grasslands were gradually substituted by low-diversity, even-aged Quercus-dominated parklands and wood pastures in the course of the early Holocene. Economic strategies that encouraged the establishment and spread of deciduous oaks included sheep herding that impacted on grass and forb vegetation, the controlling of competing arboreal vegetation through woodcutting, and woodland management practices such as coppicing, pollarding and shredding that enhanced Quercus vegetative propagation, crown and stem growth. Understanding the origin and evolution of the Irano-Anatolian semi-arid oak woodlands of Southwest Asia is of critical importance for reconstructing the changing ecologies and geographical distributions of the progenitors of

  18. Controlling stomatal aperture in semi-arid regions-The dilemma of saving water or being cool?

    PubMed

    Chaves, M M; Costa, J M; Zarrouk, O; Pinheiro, C; Lopes, C M; Pereira, J S

    2016-10-01

    Stomatal regulation of leaf gas exchange with the atmosphere is a key process in plant adaptation to the environment, particularly in semi-arid regions with high atmospheric evaporative demand. Development of stomata, integrating internal signaling and environmental cues sets the limit for maximum diffusive capacity of stomata, through size and density and is under a complex genetic control, thus providing multiple levels of regulation. Operational stomatal conductance to water vapor and CO2 results from feed-back and/or feed-forward mechanisms and is the end-result of a plethora of signals originated in leaves and/or in roots at each moment. CO2 assimilation versus water vapor loss, proposed to be the subject of optimal regulation, is species dependent and defines the water use efficiency (WUE). WUE has been a topic of intense research involving areas from genetics to physiology. In crop plants, especially in semi-arid regions, the question that arises is how the compromise of reducing transpiration to save water will impact on plant performance through leaf temperature. Indeed, plant transpiration by providing evaporative cooling, is a major component of the leaf energy balance. In this paper we discuss the dilemma of 'saving water or being cool' bringing about recent findings from molecular genetics, to development and physiology of stomata. The question of 'how relevant is screening for high/low WUE in crops for semi-arid regions, where drought and heat co-occur' is discussed. PMID:27593463

  19. Monitoring small reservoirs in semi-arid region by satellite SAR data

    NASA Astrophysics Data System (ADS)

    Nicolina Papa, Maria; Mitidieri, Francesco; Amitrano, Donato; Ruello, Giuseppe; Di Martino, Gerardo; Iodice, Antonio; Riccio, Daniele

    2016-04-01

    The work presents a novel tool for the monitoring of small reservoirs in semi-arid regions. The pilot project was developed in the Yatenga region, a Sahelian area in northern Burkina Faso. In semi-arid regions, small reservoirs are widely employed for facing seasonal variability in water availability due to the alternation of a rainy (3 months) and a dry (9 months) season. Beside their crucial importance, the small reservoirs are not appropriately monitored, they are often built for the initiative of small local communities and even basic data as their location and capacity are not available. Another major problem is linked to soil erosion due to water and consequent reservoirs' sedimentation that reduces the amount of available water and the life span of reservoirs. This lack of data prevents the implementation of strategies for the optimization of water resources management. It is therefore necessary to improve the data availability through the development of cost-effective monitoring techniques and to adapt the hydrological modeling to the limited available data. In this context the use if satellite data can highly contribute to the achievement of crucial information at low costs, high resolution in time and wide areas. In the present work, we used COSMO-SkyMed Stripmap (3m resolution) and Spotligth (1m resolution) Synthetic Aperture Radar (SAR) data acquired under the aegis of the 2007 Italian Space Agency Announcement of Opportunity and of the HydroCIDOT project. The shorelines of the reservoirs were extracted from the series of SAR images by employing an innovative change-detection framework. A digital elevation model (DEM) of the study area was obtained via standard interferometry processing of images acquired at the end of the dry season, when small reservoirs are completely empty, and information about the surface usually covered by water can be retrieved. The obtained DEM and shorelines were used for bathymetry extraction of reservoirs. For the

  20. Groundwater recharge estimation in semi-arid zone: a study case from the region of Djelfa (Algeria)

    NASA Astrophysics Data System (ADS)

    Ali Rahmani, S. E.; Chibane, Brahim; Boucefiène, Abdelkader

    2016-03-01

    Deficiency of surface water resources in semi-arid area makes the groundwater the most preferred resource to assure population increased needs. In this research we are going to quantify the rate of groundwater recharge using new hybrid model tack in interest the annual rainfall and the average annual temperature and the geological characteristics of the area. This hybrid model was tested and calibrated using a chemical tracer method called Chloride mass balance method (CMB). This hybrid model is a combination between general hydrogeological model and a hydrological model. We have tested this model in an aquifer complex in the region of Djelfa (Algeria). Performance of this model was verified by five criteria [Nash, mean absolute error (MAE), Root mean square error (RMSE), the coefficient of determination and the arithmetic mean error (AME)]. These new approximations facilitate the groundwater management in semi-arid areas; this model is a perfection and amelioration of the model developed by Chibane et al. This model gives a very interesting result, with low uncertainty. A new recharge class diagram was established by our model to get rapidly and quickly the groundwater recharge value for any area in semi-arid region, using temperature and rainfall.

  1. Modelling long-term sustainability of irrigation practices in semi arid region

    NASA Astrophysics Data System (ADS)

    Guyennon, Nicolas; Romano, Emanuele; Portoghese, Ivan

    2016-04-01

    The impact of climate change on groundwater or surface water resources can be investigated through models simulating the hydrological and hydrogeological processes at the atmosphere/surface water/soil/groundwater interfaces. However, in aquifers extensively exploited for irrigation purposes, the water demand variability related to actual water availability, as well as to variation of the crops, and associated supply management options should be considered to evaluate impacts. Moreover, in the case of a multi-resources water supply system it is necessary to develop models able to simulate also the variation of the total demand distribution among each resource. We proposed a modeling scheme able to simulate an integrated multiple-resources and multiple-purposes water supply system by merging distributed crop water requirements with surface reservoir and ground water mass balance, considering resources availability and management, with emphasis on irrigation practices. The overall framework has been implemented for the case study of the Fortore water supply system, a semi-arid region in south Italy. It permits to simulate the conjunctive use of the water from the Occhito artificial reservoir (160 Mm3) and from groundwater to supply domestic, industrial and agricultural demand. The overall model successfully reproduces the Occhito dam level variability (both seasonal and inter-annual) as well as the observed groundwater depletion. The proposed model was forced by 60 years of meteorological observation to test the long-term sustainability of the current irrigation practices and has been extended to the next decades under a1b IPCC scenario using three ENSEMBLES member to test adaptation strategies.

  2. Keeping Sediment and Nutrients out of Streams in Arid/Semi-Arid Regions: Application of Low Impact Development/Green Infrastructure Practices

    NASA Astrophysics Data System (ADS)

    Yongping, Yuan

    2015-04-01

    Climatic and hydrological characteristics in the arid/semi-arid areas create unique challenges to soil, water and biodiversity conservation. These areas are environmentally sensitive, but very valuable for the ecosystems services they provide to society. Some of these areas are experiencing the fastest urbanization and now face multiple water resource challenges. Low Impact Development (LID)/Green Infrastructure (GI) practices are increasingly popular for reducing stormwater and nonpoint source pollution in many regions around the world. However, streamflow in the arid/semi-arid regions is largely dependent on seasonal, short term, and high intensity rainfall events. LID has not been very common in the arid/semi-arid regions due to a lack of performance evaluation, as well as the perception that LID may not be very useful for regions with little annual precipitation. This study focused on investigating the hydrologic and pollutant removal performance of LID/GI systems in arid/semi-arid climates. Ten types of practices were found in use in the Western/Southwestern U.S.: rainwater harvest systems, detention ponds, retention ponds, bioretention, media filters, porous pavements, vegetated swales/buffer/strips, green roofs, infiltration trenches, and integrated LIDs. This study compared the performance of these practices in terms of their effectiveness at pollutant removal and cost-effectiveness. This analysis provides insight into the future implementation of LID/GI in the arid/semi-arid areas. Key words: LID/GI, arid/semi-arid, effectiveness of pollutant removal, cost-effectiveness analysis

  3. Carbon dioxide and methane supersaturation in lakes of semi-humid/semi-arid region, Northeastern China

    NASA Astrophysics Data System (ADS)

    Wen, Zhidan; Song, Kaishan; Zhao, Ying; Jin, Xiuliang

    2016-08-01

    Understanding concentrations of carbon dioxide (CO2) and methane (CH4) in lakes is an important part of a comprehensive global carbon budget. We estimated data on the partial pressure of CO2 (pCO2) and CH4 (pCH4) from sampling with 95 lakes in semi-humid/semi-arid region of Northeastern China during ice-free period. Both pCO2 and pCH4 varied greatly among the study sites. p(CO2) values in these lakes ranged from 21.9 to 30,152.3 μatm (n = 403), and 91% of lakes in this survey were supersaturated with CO2. p(CH4) values ranged from 12.6 to 139,630.7 μatm with all sites in this study of CH4 sources to the atmosphere during the ice-free period. The collected urban lakes samples exhibited higher pCO2 and pCH4 than wild lakes samples. Either the mean value of p(CO2) or p(CH4) in saline waters is higher than in fresh waters. Correlation analysis implied that the partial pressure of the GHGs (CO2 and CH4) showed statistically correlations with water environment indicators like pH, dissolved organic carbon (DOC), total nitrogen (TN), total phosphorus (TP), and chlorophyll a (Chla). However, the most of the relationships showed a high degree of scatter, only pH might be used as the predictor of the gas partial pressure based on the result of this study (rpCO2 = -0.437, p < 0.01, n = 382; rpCH4 = -0.265, p < 0.01, n = 400). Furthermore, salinity could be a good predictor for p(CO2) and p(CH4) in 83 freshwater lakes in our study (rpCO2 = 0.365, rpCH4 = 0.323, p < 0.01, n = 348). The mean CO2 flux increased with the decreasing lake area size. The calculated annual areal carbon emission rate is 560.2 g C m-2 from 95 lakes in Northeastern China. We could not extrapolate carbon emission from these lakes to the boreal region or a wider scale because of the change of environmental conditions.

  4. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India.

    PubMed

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah; Kotalo, Rama Gopal; Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy; Rajuru Ramakrishna, Reddy; Surendranair, Suresh Babu

    2016-10-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500nm are found to be 0.47±0.09, 0.34±0.08, 0.29±0.06 and 0.30±0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α380-1020) value is observed maximum in March (1.25±0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33±0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00-08:00 (IST) and evening 19:00-21:00 (IST) hours and one minima noticed during afternoon (13:00-16:00). The highest monthly mean BC concentration is observed in the month of January (3.4±1.2μgm(-3)) and the lowest in July (1.1±0.2μgm(-3)). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be +36.8±1.7Wm(-2), +26.9±0.2Wm(-2), +18.0±0.6Wm(-2) and +18.5±3.1Wm(-2) during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80Wm(-2)) which contributes more increase in atmospheric heating by ~1K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating.

  5. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India.

    PubMed

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah; Kotalo, Rama Gopal; Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy; Rajuru Ramakrishna, Reddy; Surendranair, Suresh Babu

    2016-10-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500nm are found to be 0.47±0.09, 0.34±0.08, 0.29±0.06 and 0.30±0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α380-1020) value is observed maximum in March (1.25±0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33±0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00-08:00 (IST) and evening 19:00-21:00 (IST) hours and one minima noticed during afternoon (13:00-16:00). The highest monthly mean BC concentration is observed in the month of January (3.4±1.2μgm(-3)) and the lowest in July (1.1±0.2μgm(-3)). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be +36.8±1.7Wm(-2), +26.9±0.2Wm(-2), +18.0±0.6Wm(-2) and +18.5±3.1Wm(-2) during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80Wm(-2)) which contributes more increase in atmospheric heating by ~1K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating. PMID:27344510

  6. Reconstruction of paleohydrology in semi-arid regions for water resources management: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Elshorbagy, Amin; Wagener, Thorsten; Razavi, Saman; Sauchyn, David

    2016-04-01

    Tree-ring based reconstruction of paleohydrology can be a valuable and important means to extend the available hydrological records for several centuries. Such record extension, when properly done, can improve water resources management and planning by making available realistic long records that reflect past short- and long-term hydrometeorological variabilities. This research highlights some of the important, and perhaps unresolved, issues in tree-ring based reconstruction of paleohydrology, especially in semi-arid regions. The relationships between tree growth, as represented by tree-ring chronologies (TRCs), runoff (Q), precipitation (P), and evapotranspiration (ET) are discussed within both statistical and hydrological contexts. The Oldman River Basin (OMRB), Alberta, Canada, is presented as a case study, with TRCs and hydrometeorological data used to demonstrate the relevant issues. Runoff and precipitation data were available through measurements, and actual evapotranspiration was estimated using a lumped conceptual hydrological model developed in this study for the OMRB. Correlation analysis was conducted to explore the relationships between TRCs and each of Q, P, and ET over the entire historical record (globally) as well as locally within the wet and dry subperiods. Global and local correlation strengths and linear relationships appear to be significantly different, particularly affecting tree-ring based inferences about the hydrology and wet and dry episodes from reconstructions made using regression models. This finding is not typically highlighted in the available literature. Reconstruction of paleoQ may also not be as credible as paleoP and paleoET. This is discussed within the context of the watershed storage and release functions. It was also found that a moving average window, of more than one year, of P and ET time series might be necessary for reconstruction of these variables using tree-ring chronologies. This study improves our understanding of

  7. Transport of multiple tracers in variably saturated humid region structured soils and semi-arid region laminated sediments

    NASA Astrophysics Data System (ADS)

    Mayes, M. A.; Jardine, P. M.; Mehlhorn, T. L.; Bjornstad, B. N.; Ladd, J. L.; Zachara, J. M.

    2003-05-01

    The processes governing physical nonequilibrium (PNE)—coupled preferential flow and matrix diffusion—are diverse between humid and semi-arid regions, and are directly related to climate and rock/sediment type, and indirectly related to subsequent soil profile development. The fate and transport of contaminants in these variably saturated undisturbed media is largely a function of the influence of PNE processes. Large cores of laminated silts and sands were collected from the US Department of Energy Pacific Northwest National Laboratory (PNNL) in semi-arid south central Washington. Additional cores of weathered, fractured interbedded limestone and shale saprolite were collected from the Oak Ridge National Laboratory (ORNL) in humid eastern Tennessee. PNNL cores were collected parallel (FBP) and perpendicular (FXB) to bedding, and the ORNL core was 30° to bedding. Saturated and unsaturated transport experiments were performed using multiple nonreactive tracers that had different diffusion coefficients (Br -, PFBA, and PIPES), in order to identify the influence of PNE on the fate and transport of solutes. In the ORNL structured saprolite, solute transport was governed by coupled preferential flow and matrix diffusion, as evidenced by tracer separation and highly asymmetric breakthrough curves (BTC). BTCs became more symmetric as preferential flowpaths became inactive during drainage. Tracer separation persisted during unsaturated flow suggesting the continued importance of nonequilibrium mass transfer between flowpaths and the immobile water that was held in the soil matrix. No evidence of PNE was observed under near-saturated conditions in the semi-arid region (PNNL) laminated silts and sands. Unsaturated flow in cores with discontinuous layering resulted in preferential flow and the development of perched, immobile water as evidenced by early breakthrough and separation of tracers. Conversely, transport parallel to laterally continuous beds did not result in

  8. a Proposed New Vegetation Index, the Total Ratio Vegetation Index (trvi), for Arid and Semi-Arid Regions

    NASA Astrophysics Data System (ADS)

    Fadaei, H.; Suzuki, R.; Sakai, T.; Torii, K.

    2012-07-01

    Vegetation indices that provide important key to predict amount vegetation in forest such as percentage vegetation cover, aboveground biomass, and leaf-area index. Arid and semi-arid areas are not exempt of this rule. Arid and semi-arid areas of northeast Iran cover about 3.4 million ha and are populated by two main tree species, the broadleaf Pistacia vera (pistachio) and the conifer Juniperus excelsa ssp. polycarpos (Persian juniper). Natural stands of pistachio in Iran are not only environmentally important but also genetically essential as seed sources for pistachio production in orchards. We investigated the relationships between tree density and vegetation indices in the arid and semi-arid regions in the northeast of Iran by analysing Advanced Land Observing Satellite (ALOS) data PRISM is a panchromatic radiometer with a 2.5 m spatial resolution at nadir, and has one band with a wavelength of 0.52-0.77 μm (JAXA EORC). AVNIR-2 is a visible and near infrared radiometer for observing land and coastal zones with a 10 m spatial resolution at nadir, and has four multispectral bands: blue (0.42-0.50 μm), green (0.52-0.60 μm), red (0.61-0.69 μm), and near infrared (0.76-0.89 μm) (JAXA EORC). In this study, we estimated various vegetation indices using maximum filtering algorithm (5×5) and examined. This study carried out of juniper forests and natural pistachio stand using Advanced Land Observing Satellite (ALOS) and field inventories. Have been compared linear regression model of vegetation indices and proposed new vegetation index for arid and semi-arid regions. Also, we estimated the densities of juniper forests and natural pistachio stands using remote sensing to help in the sustainable management and production of pistachio in Iran. We present a new vegetation index for arid and semi-arid regions with sparse forest cover, the Total Ratio Vegetation Index (TRVI), and we investigate the relationship of the new index to tree density by analysing data from the

  9. Modeling the Surface Water-Groundwater Interaction in Arid and Semi-Arid Regions Impacted by Agricultural Activities

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Wu, B.; Zheng, Y.

    2013-12-01

    In many semi-arid and arid regions, interaction between surface water and groundwater plays an important role in the eco-hydrological system. The interaction is often complicated by agricultural activities such as surface water diversion, groundwater pumping, and irrigation. In existing surface water-groundwater integrated models, simulation of the interaction is often simplified, which could introduce significant simulation uncertainty under certain circumstance. In this study, GSFLOW, a USGS model coupling PRMS and MODFLOW, was improved to better characterize the surface water-groundwater interaction. The practices of water diversion from rivers, groundwater pumping and irrigation are explicitly simulated. In addition, the original kinematic wave routing method was replaced by a dynamic wave routing method. The improved model was then applied in Zhangye Basin (the midstream part of Heihe River Baisn), China, where the famous 'Silk Road' came through. It is a typical semi-arid region of the western China, with extensive agriculture in its oasis. The model was established and calibrated using the data in 2000-2008. A series of numerical experiments were conducted to evaluate the effect of those improvements. It has been demonstrated that with the improvements, the observed streamflow and groundwater level were better reproduced by the model. The improvements have a significant impact on the simulation of multiple fluxes associated with the interaction, such as groundwater discharge, riverbed seepage, infiltration, etc. Human activities were proved to be key elements of the water cycle in the study area. The study results have important implications to the water resources modeling and management in semi-arid and arid basins.

  10. Impacts of urbanization on nitrogen cycling and aerosol, surface and groundwater transport in semi-arid regions

    NASA Astrophysics Data System (ADS)

    Lohse, K. A.; Gallo, E.; Carlson, M.; Riha, K. M.; Brooks, P. D.; McIntosh, J. C.; Sorooshian, A.; Michalski, G. M.; Meixner, T.

    2011-12-01

    Semi-arid regions are experiencing disproportionate increases in human population and land transformation worldwide, taxing limited water resources and altering nitrogen (N) biogeochemistry. How the redistribution of water and N by urbanization affects semi-arid ecosystems and downstream water quality (e.g. drinking water) is unclear. Understanding these interactions and their feedbacks will be critical for developing science-based management strategies to sustain these limited resources. This is especially true in the US where some of the fastest growing urban areas are in semi-arid ecosystems, where N and water cycles are accelerated, and intimately coupled, and where runoff from urban ecosystems is actively managed to augment a limited water supply to the growing human population. Here we synthesize several ongoing studies from the Tucson Basin in Arizona and examine how increasing urban land cover is altering rainfall-runoff relationships, groundwater recharge, water quality, and long range transport of atmospheric N. Studies across 5 catchments varying in impervious land cover showed that only the least impervious catchment responded to antecedent moisture conditions while hydrologic responses were not statistically related to antecedent rainfall conditions at more impervious sites. Regression models indicated that rainfall depth, imperviousness, and their combined effect control discharge and runoff ratios (p < 0.01, r2 = 0.91 and 0.75, respectively). In contrast, runoff quality was not predictably related to imperviousness or catchment size. Rather, rainfall depth and duration, time since antecedent rainfall, and stream channel characteristics and infrastructure controlled runoff chemistry. Groundwater studies showed nonpoint source contamination of CFCs and associated nitrate in areas of rapid recharge along ephemeral channels. Aerosol measurements indicate that both long-range transport of N and N emissions from Tucson are being transported and deposited

  11. Morphology and Chemical composition of Atmospheric Particles over Semi-Arid region (Jaipur, Rajasthan) of India

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Agnihotri, R.; Yadav, P.; Singh, S.; Tawale, J. S.; Rashmi, R.; Prasad, M.; Arya, B. C.; Mishra, N.

    2012-12-01

    Uncertainties associated with the radiative forcing of atmospheric dust particles is highest, owing to lack of region-specific dust morphology (particle shape, size) and mineralogy (chemical composition) database, needed for modeling their optical properties (Mishra and Tripathi, 2008). To fill this gap for the Indian region, we collected atmospheric particles (with aerodynamic size <5um, PM5 and a few bulk particles; TSP) from seven sites of Jaipur and nearby locales (semi-arid region, in the vicinity of Thar Desert of Rajasthan) at varying altitude, during late winters of ca. 2012. PM5 particles were collected on Teflon filters (for bulk chemical analyses), while pure Tin substrates (~1×1 mm2) were used for investigating individual particle morphology. Using Scanning Electron Microscope equipped with Energy Dispersive X ray (SEM-EDX) facility at NPL, images of individual particles were recorded and the morphological parameters (e.g. Aspect ratio; AR, Circulatory parameter; CIR.) were retrieved following Okada et al. (2001), whereas chemical compositions of individual particles were determined by EDX and bulk samples by X ray fluorescence (XRF). The geometrical size distributions of atmospheric particles were generated for each site. Based on NIST (National Institute of Standard and Technology, USA) morphology database, the site-specific individual particle shapes reveal predominance of "Layered" (calcite and quartz rich), "Angular" structures (quartz rich) and "Flattened" particles over all the sites. Particles were found to be highly non-spherical with irregular shapes (CIR varying from 1 to 0.22 with median value ~0.76; AR varying from 1 to 5.4 with median value ~1.64). Noteworthy to mention, that unit values of AR and CIR represent spherical particles. Chemical analyses of PM5 particles revealed dominance of crustal elements e.g. Si, Al, Fe, Ca, Mg, in general. Particles over Kukas Hill (27.027° N, 75.919° E; ~800 MAGL) showed highest Fe mass fractions (~43

  12. Satellite observation of aerosol - cloud interactions over semi-arid and arid land regions

    NASA Astrophysics Data System (ADS)

    Klüser, L.; Holzer-Popp, T.

    2012-04-01

    Satellite observations from three different sources are used to study the interactions between aerosol and ice clouds in five semi-arid and arid land regions over Africa and Asia, reaching from the South-African Kalahari to the Taklimakan and Gobi in Mongolia. (1) Six years of Aqua MODIS cloud and aerosol observations (including "Deep Blue" retrievals) which contain a qualitative separation into coarse and fine mode aerosol are analysed. (2) Five years of APOLLO cloud observations and SYNAER aerosol retrievals which allow discriminating between mineral dust and soot dominated cases from AATSR and SCIAMACHY on ENVISAT are exploited. (3) Moreover IASI provides one year of ice cloud and mineral dust observations over land retrieved with a newly developed method based on singular vector decomposition. Cloud top temperature observations are used to asses the state of convection and to statistically re-project observation distributions of cloud properties to background conditions. Then the difference between observation density distributions of background and re-projected aerosol-contaminated samples can be evaluated. By such way of analysis the influence of different cloud development stages, which also manifest in seasonal cycles of cloud properties, can be minimised. The analysis of the various observation density distributions shows that liquid water and ice effective radius is mainly decreased for increased total aerosol content for both aerosol types, biomass burning aerosols and mineral dust, separately. Two different modes of aerosol impacts on cloud optical depth can be shown. Optical depth is mainly increased, directly following the theory of the so-called "Twomey effect". In the West African Sahel a decrease of cloud water path (for both liquid water and ice) under the influence of absorbing aerosols results also in decreased optical depth. As at the same time the cloud fraction does not decrease under aerosol influence, the statistical decrease of mean

  13. Hierarchical distance-based fuzzy approach to evaluate urban water supply systems in a semi-arid region.

    PubMed

    Yekta, Tahereh Sadeghi; Khazaei, Mohammad; Nabizadeh, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Yari, Ahmad Reza

    2015-01-01

    Hierarchical distance-based fuzzy multi-criteria group decision making was served as a tool to evaluate the drinking water supply systems of Qom, a semi-arid city located in central part of Iran. A list of aspects consisting of 6 criteria and 35 sub-criteria were evaluated based on a linguistic term set by five decision-makers. Four water supply alternatives including "Public desalinated distribution system", "PET Bottled Drinking Water", "Private desalinated water suppliers" and "Household desalinated water units" were assessed based on criteria and sub-criteria. Data were aggregated and normalized to apply Performance Ratings of Alternatives. Also, the Performance Ratings of Alternatives were aggregated again to achieve the Aggregate Performance Ratings. The weighted distances from ideal solution and anti-ideal solution were calculated after secondary normalization. The proximity of each alternative to the ideal solution was determined as the final step. The alternatives were ranked based on the magnitude of ideal solutions. Results showed that "Public desalinated distribution system" was the most appropriate alternative to supply the drinking needs of Qom population. Also, "PET Bottled Drinking Water" was the second acceptable option. A novel classification of alternatives to satisfy the drinking water requirements was proposed which is applicable for the other cities located in semi-arid regions of Iran. The health issues were considered as independent criterion, distinct from the environmental issues. The constraints of high-tech alternatives were also considered regarding to the level of dependency on overseas.

  14. Hierarchical distance-based fuzzy approach to evaluate urban water supply systems in a semi-arid region.

    PubMed

    Yekta, Tahereh Sadeghi; Khazaei, Mohammad; Nabizadeh, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Yari, Ahmad Reza

    2015-01-01

    Hierarchical distance-based fuzzy multi-criteria group decision making was served as a tool to evaluate the drinking water supply systems of Qom, a semi-arid city located in central part of Iran. A list of aspects consisting of 6 criteria and 35 sub-criteria were evaluated based on a linguistic term set by five decision-makers. Four water supply alternatives including "Public desalinated distribution system", "PET Bottled Drinking Water", "Private desalinated water suppliers" and "Household desalinated water units" were assessed based on criteria and sub-criteria. Data were aggregated and normalized to apply Performance Ratings of Alternatives. Also, the Performance Ratings of Alternatives were aggregated again to achieve the Aggregate Performance Ratings. The weighted distances from ideal solution and anti-ideal solution were calculated after secondary normalization. The proximity of each alternative to the ideal solution was determined as the final step. The alternatives were ranked based on the magnitude of ideal solutions. Results showed that "Public desalinated distribution system" was the most appropriate alternative to supply the drinking needs of Qom population. Also, "PET Bottled Drinking Water" was the second acceptable option. A novel classification of alternatives to satisfy the drinking water requirements was proposed which is applicable for the other cities located in semi-arid regions of Iran. The health issues were considered as independent criterion, distinct from the environmental issues. The constraints of high-tech alternatives were also considered regarding to the level of dependency on overseas. PMID:26221535

  15. Assessment of desertification risk in semi-arid Mediterranean environments: the case study of Apulia region (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Ladisa, Gaetano; Todorovic, Mladen; Trisorio Liuzzi, Giuliana

    2010-05-01

    This work focuses on the risk assessment of the areas threatened with desertification in the semi-arid Mediterranean environments. The presented approach uses as a reference the ESAs model (Environmental Sensitive Areas to Desertification; Kosmas et al., 1999) which is modified through a set of new indicators which take into account the region-specific environmental characteristics as well as identifiable parameters relevant for planning control measures. These supplementary indicators, comprehending socio-economic and environmental factors, are integrated in the ESAs model and, by using a GIS, applied to Apulia region (Southern Italy). This area represents a typical Mediterranean landscape affected by land degradation and desertification risks. The analyses include the elaboration of the whole set of indices on both the regional and the administrative scales which constitute the principal territorial units for the management of natural resources. The results have demonstrated that the introduction of the new indices has improved substantially the overall evaluation of the desertification risk in the Apulia region. The proposed approach permits not only the identification and refinement of different degrees of sensibility of an area to land degradation, but also the analyses of the factors affecting desertification and their evaluation in terms of spatial and temporal distribution. Moreover, the presented method is conceptually very simple and easy to implement from local to regional and national scale, and can be proposed as a methodology for the definition of priorities in adoption of strategies to mitigate desertification in the semi-arid Mediterranean environments. Key words: desertification risk, sensitivity areas, Apulia region, Mediterranean environment.

  16. A Framework Predicting Water Availability in a Rapidly Growing, Semi-Arid Region under Future Climate Change

    NASA Astrophysics Data System (ADS)

    Han, B.; Benner, S. G.; Glenn, N. F.; Lindquist, E.; Dahal, K. R.; Bolte, J.; Vache, K. B.; Flores, A. N.

    2014-12-01

    Climate change can lead to dramatic variations in hydrologic regime, affecting both surface water and groundwater supply. This effect is most significant in populated semi-arid regions where water availability are highly sensitive to climate-induced outcomes. However, predicting water availability at regional scales, while resolving some of the key internal variability and structure in semi-arid regions is difficult due to the highly non-linearity relationship between rainfall and runoff. In this study, we describe the development of a modeling framework to evaluate future water availability that captures elements of the coupled response of the biophysical system to climate change and human systems. The framework is built under the Envision multi-agent simulation tool, characterizing the spatial patterns of water demand in the semi-arid Treasure Valley area of Southwest Idaho - a rapidly developing socio-ecological system where urban growth is displacing agricultural production. The semi-conceptual HBV model, a population growth and allocation model (Target), a vegetation state and transition model (SSTM), and a statistically based fire disturbance model (SpatialAllocator) are integrated to simulate hydrology, population and land use. Six alternative scenarios are composed by combining two climate change scenarios (RCP4.5 and RCP8.5) with three population growth and allocation scenarios (Status Quo, Managed Growth, and Unconstrained Growth). Five-year calibration and validation performances are assessed with Nash-Sutcliffe efficiency. Irrigation activities are simulated using local water rights. Results show that in all scenarios, annual mean stream flow decreases as the projected rainfall increases because the projected warmer climate also enhances water losses to evapotranspiration. Seasonal maximum stream flow tends to occur earlier than in current conditions due to the earlier peak of snow melting. The aridity index and water deficit generally increase in the

  17. Diversity of the ground-dwelling ant fauna (Hymenoptera: Formicidae) of a moist, Montane forest of the semi-arid Brazilian "Nordeste".

    PubMed

    Hites, N L; Mourão, M A N; Araújo, F O; Melo, M V C; de Biseau, J C; Quinet, Y

    2005-01-01

    Although the so called "green islands" of the semi-arid Brazilian "Nordeste" are economically, socially, and ecologically important. relatively little is known about their biodiversity. We present the results of the first survey of the ground-dwelling ant fauna of a secondary forest in the Serra de Baturité (4 degrees 05'-4 degrees 40' S / 38 degrees 30'-39 degrees 10' W), among the biggest of the moist, montane forests of the state of Ceará, Brazil. From February to March 2001, samples were taken every 50 m along twelve 200 m transects, each separated from the others by at least 50 m and cut on either side of a recreational trail. Where possible, two transects were cut from the same starting point on the trail, one on either side. At each sample site two methods were used, as recommended in the ALL. protocol: a pitfall trap and the treatment of 1 m2 of leaf litter with the Winkler extractor. The myrmecofauna of the Serra de Baturité is quite diverse: individuals from 72 species, 23 genera, and six subfamilies were collected. The observed patterns of specific richness show the same tendencies noted in other tropical regions, particularly the frequency of capture distribution with many rare and few abundant species. Differences with the Atlantic and Amazonian forests were also observed, especially the relative importance of the Ponerinac and Formicinae subfamilies, indicating a possible influence of the surrounding "caatinga" (savanna-like ecosystem) on the myrmecofauna of the moist, montane forest. PMID:17354429

  18. Investigating transport capacity equations in sediment yield modelling for the Cariri semi-arid region of Paraiba-PB/Brazil

    NASA Astrophysics Data System (ADS)

    De Figueiredo, E. E.; Souto, C. C. R. A.; Vieira, Z. C.

    2015-03-01

    In the semi arid Cariri region of the state of Paraiba, Brazil, runoff is of the Hortonian type generated by excess of rainfall over infiltration capacity, and soil erosion is governed by rainfall intensity and sediment size. However, the governing sediment transport mechanism is not well understood. Sediment transport generally depends on the load of sediment provided by soil erosion and on the transport capacity of the flow. The latter is mainly governed by mechanisms such as water shear stress, or stream power. Accordingly, the load of sediment transported by the flow may vary depending on the mechanism involved in the equation of estimation. Investigation of the sediment transport capacity of the flow via a distributed physically-based model is an important and necessary task, but quite rare in semi-arid climates, and particularly in the Cariri region of the state of Paraíba/Brazil. In this study, the equations of Yalin, Engelund & Hansen, Laursen, DuBoys and Bagnold have been coupled with the MOSEE distributed physically based model aiming at identifying the mechanisms leading to the best model simulations when compared with data observed at various basin scales and land uses in the study region. The results obtained with the investigated methods were quite similar and satisfactory suggesting the feasibility of the mechanisms involved, but the observed values were better represented with Bagnold's equation, which is physically grounded on the stream power, and we recommend it for simulations of similar climate, runoff generation mechanisms and sediment characteristics as in the study region.

  19. Green Infrastructure Management Techniques in Arid and Semi-arid Regions: Software Implementation and Demonstration using the AGWA/KINEROS2 Watershed Model

    EPA Science Inventory

    Increasing urban development in the arid and semi-arid regions of the southwestern United States has led to greater demand for water in a region with limited water resources and has fundamentally altered the hydrologic response of developed watersheds. Green Infrastructure (GI) p...

  20. Representing Green Infrastructure Management Techniques in Arid and Semi-arid Regions: Software Implementation and Demonstration using the AGWA/KINEROS2 Watershed Model

    EPA Science Inventory

    Increasing urban development in the arid and semi-arid regions of the southwestern United States has led to greater demand for water from a region of limited water resources which has fundamentally altered the hydrologic response of developed watersheds. Green Infrastructure (GI)...

  1. Satellite-based monitoring of decadal soil salinization and climate effects in a semi-arid region of China

    NASA Astrophysics Data System (ADS)

    Wang, Hesong; Jia, Gensuo

    2012-09-01

    Soil salinization is a common phenomenon that affects both the environment and the socio-economy in arid and semi-arid regions; it is also an important aspect of land cover change. In this study, we integrated multi-sensor remote sensing data with a field survey to analyze processes of soil salinization in a semi-arid area in China from 1979 to 2009. Generally, the area of salt-affected soils increased by 0.28% per year with remarkable acceleration from 1999 to 2009 (0.42% increase per year). In contrast, the area of surface water bodies showed a decreasing trend (-0.08% per year) in the same period. Decreases in precipitation and increases in aridity due to annual (especially summer) warming provided a favorable condition for soil salinization. The relatively flat terrain favored waterlogging at the surface, and continuous drought facilitated upward movement of soil water and accumulation of surface saline and calcium. Meanwhile, land-use practices also played a crucial role in accelerating soil salinization. The conversion to cropland from natural vegetation greatly increased the demand for groundwater irrigation and aggravated the process of soil salinization. Furthermore, there are potential feedbacks of soil salinization to regional climate. The salinization of soils can limit the efficiency of plant water use as well as photosynthesis; therefore, it reduces the amount of carbon sequestrated by terrestrial ecosystem. Soil salinization also reduces the absorbed solar radiation by increasing land surface albedo. Such conversions of land cover significantly change the energy and water balance between land and atmosphere.

  2. Impact of possible climate and land use changes in the semi arid regions: A case study from North Eastern Brazil

    NASA Astrophysics Data System (ADS)

    Montenegro, Suzana; Ragab, Ragab

    2012-04-01

    SummaryThis paper combines hydrological observations and modelling results of a semi arid catchment in Brazil that could lead to a better understanding of the hydrology of similar catchments in semi-arid regions. The Tapacurá catchment (area 470.5 km2) in the Northeast of Brazil was selected for this study. The Distributed Catchment Scale Model, DiCaSM, was calibrated and validated for the stream flows of the Tapacurá catchment. The model performance was further tested by comparing simulated and observed scaled soil moisture. The results showed the ability of the model to simulate the stream flow and the scaled soil moisture. The simulated impacts of climate change of low emission (B1) scenarios, on the worst perspective, indicated the possibility of reduction in surface water availability by -13.90%, -22.63% and -32.91% in groundwater recharge and by -4.98%, -14.28% and -20.58% in surface flows for the time spans 2010-2039, 2040-2069, 2070-2099, respectively. This would cause severe impacts on water supply in the region. Changing the land use, for example by reforestation of part of the catchment area which is currently arable land, would lead to a decrease in both groundwater recharge by -4.2% and stream flow by -2.7%. Changing land use from vegetables to sugar cane would result in decreasing groundwater recharge by almost -11%, and increasing stream flow by almost 5%. The combination of possible impacts of climate change and land use requires a proper plan for water resources management and mitigation strategies.

  3. A review of groundwater recharge estimation in humid and semi-arid African regions

    NASA Astrophysics Data System (ADS)

    Chung, Il-Moon; Kim, Nam Won

    2016-04-01

    For the review of African recharge estimation, the distinct methods such as the geochemical approach, a method using groundwater level data, the streamflow method, and the water balance methods were first outlined. The major challenge of an African recharge study is the lack of basic data. Thus, this work suggests how to deal with this limitation and from future perspective using recently developed technologies such as RS, GIS, etc. With the rapid growth of information technology, more and more data, in terms of both volume and variety, are expected to be made available on the internet in the near future. RS technology has a great potential to revolutionize the groundwater development and management in the future by providing unique and completely new hydrological and hydrogeological data. However, at present, the RS data should be considered along with the conventional field data. In spite of the weaknesses of water balance methods in semi-arid areas, recently developed water balance methods combined with GIS technology are powerful tools for estimating groundwater re-charge, when spatial-temporal variability of components in water balance is taken into account (Lerner et al., 1990; De Vries and Simmers, 2002; Eilers et al., 2007).When enough data sets are available, integrated surface-groundwater modeling is recommended for more accurate estimation of groundwater recharge and discharge. Acknowledgements This work was supported by a grant(14RDRP-B076275-01-000000) from Infrastructure and transportation technology promotion research Program funded by the Ministry of Land, Infrastructure and Transport of Korean government.

  4. Breeding under unpredictable conditions: Annual variation in gonadal maturation, energetic reserves and plasma levels of androgens and corticosterone in anurans from the Brazilian semi-arid.

    PubMed

    Madelaire, Carla Bonetti; Gomes, Fernando Ribeiro

    2016-03-01

    Anurans living in arid and semi-arid habitats are subjected to unpredictable rain patterns. Consequently, they should be prepared to reproduce at the onset of rain events. We investigated the covariation between calling behavior, testicular maturation, abdominal fat body index (FBI), plasma levels of androgens (T-DHT) and corticosterone (CORT) of males from three species of anurans in the Brazilian semi-arid during the reproductive period and drought. One of these species aestivates during the drought, while the other two species remain foraging. Although the three species display different behavioral strategies during the dry period, they present the same general reproductive patterns. T-DHT levels on the plasma and germinative cyst diameters were higher during the reproductive and breeding period compared to the drought. Additionally, the germinative cysts had all cell stages including sperm bundles during the dry season, however, it was only during the breeding event that free spermatozoa were found in the cyst lumen. These results suggest that these species present the reproductive pattern typical of desert anurans, consisting of opportunistic breeders that reproduce when triggered by a rain stimulus. Rhinella jimi and Pleurodema diplolister had higher CORT when males were calling. Moreover, Rhinella granulosa and P. diplolister showed lower FBI during breeding event, when males were calling. The high levels of CORT and lower FBI during reproductive period are associated, indicating that CORT modulates the recruitment of energy stores to prepare and maintain reproduction, particularly the expensive calling effort. PMID:26808964

  5. Assessment of Grazing Effect on Sheep Fescue (Festuca valesiaca)Dominated Steppe Rangelands in the semi-arid Central Anatolian Region of Turkey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of increased grazing pressure over the last fifty years, vegetation of the steppe rangelands in the semi-arid Central Anatolian Region of Turkey has been severely degraded. In these pastures, Festuca valesiaca (a sod forming short-grass) and Thymus sipyleus ssp rosulans (a prostrate shrub) a...

  6. Quantifying the impact of groundwater depth on evapotranspiration in a semi-arid grassland region

    NASA Astrophysics Data System (ADS)

    Soylu, M. E.; Istanbulluoglu, E.; Lenters, J. D.; Wang, T.

    2011-03-01

    Interactions between shallow groundwater and land surface processes play an important role in the ecohydrology of riparian zones. Some recent land surface models (LSMs) incorporate groundwater-land surface interactions using parameterizations at varying levels of detail. In this paper, we examine the sensitivity of land surface evapotranspiration (ET) to water table depth, soil texture, and two commonly used soil hydraulic parameter datasets using four models with varying levels of complexity. The selected models are Hydrus-1D, which solves the pressure-based Richards equation, the Integrated Biosphere Simulator (IBIS), which simulates interactions among multiple soil layers using a (water-content) variant of the Richards equation, and two forms of a steady-state capillary flux model coupled with a single-bucket soil moisture model. These models are first evaluated using field observations of climate, soil moisture, and groundwater levels at a semi-arid site in south-central Nebraska, USA. All four models are found to compare reasonably well with observations, particularly when the effects of groundwater are included. We then examine the sensitivity of modelled ET to water table depth for various model formulations, node spacings, and soil textures (using soil hydraulic parameter values from two different sources, namely Rawls and Clapp-Hornberger). The results indicate a strong influence of soil texture and water table depth on groundwater contributions to ET. Furthermore, differences in texture-specific, class-averaged soil parameters obtained from the two literature sources lead to large differences in the simulated depth and thickness of the "critical zone" (i.e., the zone within which variations in water table depth strongly impact surface ET). Depending on the depth-to-groundwater, this can also lead to large discrepancies in simulated ET (in some cases by more than a factor of two). When the Clapp-Hornberger soil parameter dataset is used, the critical zone

  7. Stable isotopic and geochemical characteristics of groundwater in Kherlen River basin, a semi-arid region in eastern Mongolia

    NASA Astrophysics Data System (ADS)

    Tsujimura, Maki; Abe, Yutaka; Tanaka, Tadashi; Shimada, Jun; Higuchi, Satoru; Yamanaka, Tsutomu; Davaa, Gombo; Oyunbaatar, Dambaravjaa

    2007-01-01

    SummaryInorganic solute ion concentrations and stable isotopes of oxygen and hydrogen in groundwater, river water and precipitation were investigated to gain insight into the groundwater recharge process in the Kherlen River basin, a semi-arid region in eastern Mongolia. The solute constituents in the river water (main stream) were of Ca-HCO 3 type, spatially invariant and low in concentration. Groundwater in the upstream region was also characterized by a Ca-HCO 3 type, though all ion concentrations were higher than in the river water. On the other hand, the chemical composition of the groundwater in the midstream region (southern and eastern) was spatially variable and the Na +, Mg 2+, Cl - and HCO3- concentrations were considerably higher than in the river water and upstream groundwater. The stable isotopic compositions showed an evaporation effect on the groundwater and river water, as well as an altitude effect in the precipitation and river water. Preferential recharge by relatively large rainfall events is thought to have caused the depleted isotopic ratio in the groundwater in the dry regions. The stable isotope, chemical and hydrological data suggest that the main stream water of the Kherlen River is recharged by precipitation that falls in a headwater region at an altitude of more than 1650 m, and that the interaction between the groundwater and river water is not dominant in the midstream and downstream regions of the river basin.

  8. A conjunctive use hydrologic model for a semi-arid region with irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Ruud, N. C.; Harter, T.

    2003-04-01

    A GIS-based sub-basin scale conjunctive use (CU) model is developed for a semi-arid agricultural area in the southern San Joaquin Valley, California. The study area is 2230 square kilometers, and consists of 9114 individual landuse units and 26 water service districts. The CU model consists of three sub-models: 1) a surface water supply (SWS) model, 2) an unsaturated zone water budget (UZWB) model, and 3) a groundwater flow model. The study period is 1970-99. For each modeled surface water channel, the SWS model computes monthly surface water deliveries to each district and conveyance losses due to evaporation and seepage. The UZWB model then calculates the monthly water storage changes in the soil root zone and deep vadose zone of each landuse unit. The UZWB model is driven by surface water applications, precipitation, and crop consumptive use (evapotranspiration) demands. Its outputs are the recharge to the unconfined aquifer and the groundwater pumping demand from the unconfined and confined aquifers. The transient recharge and pumping rates become input for the groundwater flow model which calculates changes in unconfined aquifer water levels and inter-district groundwater fluxes. The groundwater flow model was calibrated against data from 1970-85 and validated with data from 1986-99. From 1970-99, a total of 18500 million cubic meters (MCM) of surface water was applied to land units in the study area. Precipitation added from 219 MCM (1990) to 1200 MCM (1998) annually. The combined total annual agricultural and urban consumptive use ranged from 1070 MCM in 1970 to 1540 MCM in 1999. Total annual channel seepage varied over almost two orders of magnitude from a low of 10 MCM in 1977 to 576 MCM in 1983. Diffuse recharge from surface applied water ranged from 79.9 MCM in 1992 to 432 MCM in 1983. The estimated total pumping ranged from 183 MCM in 1978 to 703 MCM in 1990. As expected, pumping was heaviest during the droughts of 1975-77 and 1987-92, and lightest

  9. [Irrigated perimeters as a geopolitical strategy for the development of the semi-arid region and its implications for health, labor and the environment].

    PubMed

    Pontes, Andrezza Graziella Veríssimo; Gadelha, Diego; Freitas, Bernadete Maria Coêlho; Rigotto, Raquel Maria; Ferreira, Marcelo José Monteiro

    2013-11-01

    An analysis was made of irrigated perimeters as a geopolitical strategy for expanding Brazilian agricultural frontiers and the "development" of the northeastern semi-arid region with respect to social determinants in health in rural communities. Research was conducted in the Chapada do Apodi in the states of Ceará and Rio Grande do Norte between 2007 and 2011. Various research techniques and tools were adopted, such as research-action, ethnographic studies, questionnaires and laboratory exams, water contamination analyses, social cartography and focal groups. In the context of agribusiness expansion, it was revealed that public policies of irrigation have had consequences for health, labor and the environment with the implementation of the Jaguaribe-Apodi Irrigated Perimeter in Ceará. The social and environmental conflict and resistance in the phase prior to the installation of the Santa Cruz do Apodi Irrigated Perimeter in Rio Grande do Norte was significant as it had consequences for the health-disease process on rural communities. It is important for the evaluation of public irrigation policies to consider the impacts of the perimeters on the lifestyle, labor, health and the environment of the affected territories.

  10. Multi-criteria analysis for improving strategic environmental assessment of water programmes. A case study in semi-arid region of Brazil.

    PubMed

    Garfì, Marianna; Ferrer-Martí, Laia; Bonoli, Alessandra; Tondelli, Simona

    2011-03-01

    Multi-criteria analysis (MCA) is a family of decision-making tools that can be used in strategic environmental assessment (SEA) procedures to ensure that environmental, social and economic aspects are integrated into the design of human development strategies and planning, in order to increase the contribution of the environment and natural resources to poverty reduction. The aim of this paper is to highlight the contribution of a particular multi-criteria technique, the analytic hierarchy process (AHP), in two stages of the SEA procedure applied to water programmes in developing countries: the comparison of alternatives and monitoring. This proposal was validated through its application to a case study in Brazilian semi-arid region. The objective was to select and subsequently monitor the most appropriate programme for safe water availability. On the basis of the SEA results, a project was identified and implemented with successful results. In terms of comparisons of alternatives, AHP meets the requirements of human development programme assessment, including the importance of simplicity, a multidisciplinary and flexible approach, and a focus on the beneficiaries' concerns. With respect to monitoring, the study shows that AHP contributes to SEA by identifying the most appropriate indicators, in order to control the impacts of a project.

  11. Aerosol radiative effects over global arid and semi-arid regions based on MODIS Deep Blue satellite observations

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, Nikolaos; Papadimas, Christos D.; Gkikas, Antonis; Matsoukas, Christos; Sayer, Andrew M.; Hsu, N. Christina; Vardavas, Ilias

    2014-05-01

    Aerosols are a key parameter for several atmospheric processes related to weather and climate of our planet. Specifically, the aerosol impact on Earth's climate is exerted and quantified through their radiative effects, which are induced by their direct, indirect and semi-direct interactions with radiation, in particular at short wavelengths (solar). It is acknowledged that the uncertainty of present and future climate assessments is mainly associated with aerosols and that a better understanding of their physico-chemical, optical and radiative effects is needed. The contribution of satellites to this aim is important as a complementary tool to climate and radiative transfer models, as well as to surface measurements, since space observations of aerosol properties offer an extended spatial coverage. However, such satellite based aerosol properties and associated model radiation computations have suffered from unavailability over highly reflecting surfaces, namely polar and desert areas. This is also the case for MODIS which, onboard the Terra and Aqua satellites, has been providing high quality aerosol data since 2000 and 2002, respectively. These data, more specifically the aerosol optical depth (AOD) which is the most important optical property used in radiative and climate models, are considered to be of best quality. In order to address this problem, the MODIS Deep Blue (DB) algorithm has been developed which enables the retrieval of AOD above arid and semi-arid areas of the globe, including the major deserts. In the present study we make use of the FORTH detailed spectral radiative transfer model (RTM) with MODIS DB AOD data, supplemented with single scattering albedo (SSA) and asymmetry parameter (AP) aerosol data from the Global Aerosol DataSet (GADS) to estimate the aerosol DREs over the arid and semi-arid regions of the globe. The RTM is run using surface and atmospheric data from the ISCCP-D2 dataset and the NCEP global reanalysis project and computes the

  12. A Reservoir of Natural Perchlorate in Unsaturated Zones of Arid and Semi-Arid Regions, Southwestern USA

    NASA Astrophysics Data System (ADS)

    Rao, B. A.; Stonestrom, D. A.; Anderson, T. A.; Orris, G. J.; Rajagapolan, S.; Sandvig, R. M.; Scanlon, B. R.; Walvoord, M. A.; Jackson, W.

    2006-12-01

    Natural perchlorate (ClO4-) is generally present in unsaturated zones of steppe-to-desert regions of the arid and semi-arid southwestern United States. The perchlorate is associated with atmospherically deposited chloride that has accumulated throughout the Holocene. To assess this natural reservoir, we analyzed unsaturated-zone profiles from ten sites across Nevada, New Mexico, Texas, and Utah for perchlorate and other anions. The sampled sites represent a wide range of precipitation (0.1 0.5 m yr-1), dominant vegetation, soil type, underlying geology, and include five distinct ecological regions: Chihuahuan, Mojave, and southern Great Basin deserts; Arizona-New Mexico semi-desert; and Texas High Plains dry steppe. Concentrations of perchlorate correlated closely with chloride and bromide. The perchlorate reservoir (up to 1 kg ha-1) is sufficiently large to impact groundwater when natural recharge during pluvial periods or induced recharge after conversion to agriculture flushes accumulated salts from the unsaturated zone. This little explored source can explain perchlorate in milk and other agricultural products far from anthropogenic contamination, and should be considered when evaluating overall exposure risk.

  13. Dimethylamine as a major alkyl amine species in particles and cloud water: Observations in semi-arid and coastal regions

    PubMed Central

    Youn, J.-S.; Crosbie, E.; Maudlin, L.C.; Wang, Z.; Sorooshian, A.

    2016-01-01

    Aerosol and cloud water measurements of dimethylamine (DMA), the most abundant amine in this study, were conducted in semi-arid (Tucson, Arizona) and marine (Nucleation in California Experiment, NiCE; central coast of California) areas. In both regions, DMA exhibits a unimodal aerosol mass size distribution with a dominant peak between 0.18 and 0.56 μm. Particulate DMA concentrations increase as a function of marine biogenic emissions, sulfate, BVOC emissions, and aerosol-phase water. Such data supports biogenic sources of DMA, aminium salt formation, and partitioning of DMA to condensed phases. DMA concentrations exhibit positive correlations with various trace elements and most especially vanadium, which warrants additional investigation. Cloud water DMA levels are enhanced significantly during wildfire periods unlike particulate DMA levels, including in droplet residual particles, due to effective dissolution of DMA into cloud water and probably DMA volatilization after drop evaporation. DMA:NH+4 molar ratios peak between 0.18 and 1.0 μm depending on the site and time of year, suggesting that DMA competes better with NH3 in those sizes in terms of reactive uptake by particles. PMID:26807039

  14. Dimethylamine as a Major Alkyl Amine Species in Particles and Cloud Water: Observations in Semi-Arid and Coastal Regions

    NASA Astrophysics Data System (ADS)

    Youn, J. S.; Crosbie, E.; Maudlin, L.; Wang, Z.; Sorooshian, A.

    2015-12-01

    Aerosol and cloud water measurements of dimethylamine (DMA), the most abundant amine in this study, were conducted in semi-arid (Tucson, Arizona) and marine (Nucleation in California Experiment, NiCE; central coast of California) areas. In both regions, DMA exhibits a unimodal mass size distribution with a dominant peak between 0.18 - 0.56 μm. Aminium salt formation is likely the dominant path for DMA into particles, but DMA can partition to coarse particle (e.g., dust, sea salt) surfaces too. The ratio of DMA to ammonium for bulk aerosol reaches up to 8% and 15% for Tucson and NiCE, respectively. Marine biogenic emissions are shown to be a significant source of DMA, with DMA being over three times as high during NiCE versus at Tucson. Wildfires during NiCE did not impact the mass size distribution of particulate DMA; conversely, significant DMA concentration enhancements were observed in cloud water due to dissolution. It is likely that DMA, similar to nitrate, volatilizes after drop evaporation, which is why enhancements were not observed in surface or airborne aerosol measurements. PM1.0 data in Tucson show the following: (i) year-long DMA concentrations are positively correlated with factors that enhance sulfate formation, biogenic volatile organic compound emissions, and aerosol-phase water; and (ii) DMA concentrations exhibit positive correlations with various trace elements, most especially vanadium, which warrants additional investigation.

  15. Estimate the soil moisture over semi-arid region of Loess Plateau using Radarsat-2 SAR data

    NASA Astrophysics Data System (ADS)

    Hu, D.; Guo, N.; Wang, L. J.; Sha, S.

    2014-11-01

    Radarsat-2 Synthetic Aperature Radar (SAR) remote sensing data were used to record soil surface moisture and evaluate the utility of a cross polarization (VV/VH) combination. Studies were conducted at Dingxi, in the semi-arid region of the Loess Plateau, China. We combined these data with MODIS optical data, used a Water-Cloud model to correct for the influence of vegetation, and then estimated the soil moisture under crop cover. For bare surfaces, the value of the cross polarization combination model was highly correlated to the measurement of soil moisture at 10~20 cm depth (R=0.75, P<0.01). The correlations between estimated values and the measured soil moisture at 0~10 cm and 20~30 cm depths were lower but still significant (R=0.47 and R=0.52, respectively, P<0.05). For soil surfaces covered with vegetation the model significantly underestimated soil moisture. After vegetation removal, the correlation coefficient increased from 0.30 to 0.70, the standard deviation decreased from 4.99 to 3.05, and the accuracy of the soil moisture model improved. Most soil moisture readings in the study area were 10~30% and these were consistent with the actual field moisture levels. Improving the accuracy of soil moisture readings in agricultural fields using optical and microwave remote sensing data will promote increased use of this technology.

  16. Dimethylamine as a major alkyl amine species in particles and cloud water: Observations in semi-arid and coastal regions

    NASA Astrophysics Data System (ADS)

    Youn, J.-S.; Crosbie, E.; Maudlin, L. C.; Wang, Z.; Sorooshian, A.

    2015-12-01

    Aerosol and cloud water measurements of dimethylamine (DMA), the most abundant amine in this study, were conducted in semi-arid (Tucson, Arizona) and marine (Nucleation in California Experiment, NiCE; central coast of California) areas. In both regions, DMA exhibits a unimodal aerosol mass size distribution with a dominant peak between 0.18 and 0.56 μm. Particulate DMA concentrations increase as a function of marine biogenic emissions, sulfate, BVOC emissions, and aerosol-phase water. Such data supports biogenic sources of DMA, aminium salt formation, and partitioning of DMA to condensed phases. DMA concentrations exhibit positive correlations with various trace elements and most especially vanadium, which warrants additional investigation. Cloud water DMA levels are enhanced significantly during wildfire periods unlike particulate DMA levels, including in droplet residual particles, due to effective dissolution of DMA into cloud water and probably DMA volatilization after drop evaporation. DMA: NH4+ molar ratios peak between 0.18 and 1.0 μm depending on the site and time of year, suggesting that DMA competes better with NH3 in those sizes in terms of reactive uptake by particles.

  17. Maximizing biomass production in semi-arid regions: genotypic selection of identified species. [Saltbush and Johnson Grass

    SciTech Connect

    Goodin, J.R.; Newton, R.J.

    1983-08-31

    This project identifies genotypes selected from two species of unconventional plants previously identified as having exceptional potential for the production of biomass feedstock in semi-arid regions. The project involved collection of germ plasm from indigenous Atriplex canescens (saltbush) and introduced Sorghum halepense (Johnson grass). In addition, greenhouse and field screening techniques recently aplied to domesticated crop plants are used to identify exceptional biomass productivity based on drought tolerance, salinity tolerance, and seedling vigor. In both of these species, the genetic base is enormous. Saltbush is common to all of western North America, and Johnsongrass had established itself as an important forage and weedy species throughout most of the world. It would appear that artificial selection for desirable genotypes is a feasible process, and this project has demonstrated the possibility of selection from many accessions from the field. Preliminary screening for seedling vigor, drought tolerance, and salt tolerance has produced a few genotypes now ready for field testing. Propagation of these cloned genotypes is underway. 22 references, 2 figures, 1 table.

  18. Estrus synchronization and fixed-time artificial insemination in sheep under field conditions of a semi-arid tropical region.

    PubMed

    De, Kalyan; Kumar, Davendra; Sethi, Debabrata; Gulyani, Rajiv; Naqvi, Syed Mohammed Khursheed

    2015-02-01

    A study was conducted to assess the success of estrus synchronization and fixed-time artificial insemination (FTAI) in sheep under field conditions of a semi-arid tropical region. A total of 471 ewes belonging to 17 farmers of four villages in Tonk district of Rajasthan (Jelmiya, Dhani Jaisinghpura, Tantiya and Bheepur) were synchronized for estrus during the years 2011 and 2012. Synchronization of estrus was done by AVIKESIL-S, cost-effective intra-vaginal sponges developed by the Institute and eCG protocol. The sponges were kept in situ in the vagina for 12 days and 200 IU eCG (Folligon, Intervet) was administered intramuscularly at the time of sponge withdrawal on the 12th day. Fixed-time cervical insemination was performed twice in ewes exhibiting estrus (restlessness, shaking of tail, slightly swollen vulva, moist and reddish cervical external os), 48 and 56 h after sponge removal, using liquid chilled semen of Patanwadi/Malpura rams containing 100 million sperm per dose. The estrus response recorded was 79.4 % (374/471) and lambing rate was 60.42 % (226/374). It may be concluded from the encouraging results of the present study that FTAI can be used effectively to take advantage of both the genetic improvement and economic benefit that can be realized by the use of estrus synchronization in conjunction with artificial insemination (AI).

  19. Appraisal of salinity and fluoride in a semi-arid region of India using statistical and multivariate techniques.

    PubMed

    Mor, Suman; Singh, Surender; Yadav, Poonam; Rani, Versha; Rani, Pushpa; Sheoran, Monika; Singh, Gurmeet; Ravindra, Khaiwal

    2009-12-01

    Various physico-chemical parameters, including fluoride (F(-)), were analyzed to understand the hydro-geochemistry of an aquifer in a semi-arid region of India. Furthermore, the quality of the shallow and deep aquifer (using tube well and hand pumps) was also investigated for their best ecological use including drinking, domestic, agricultural and other activities. Different multivariate techniques were applied to understand the groundwater chemistry of the aquifer. Findings of the correlation matrix were strengthened by the factor analysis, and this shows that salinity is mainly caused by magnesium salts as compared to calcium salts in the aquifer. The problem of salinization seems mainly compounded by the contamination of the shallow aquifers by the recharging water. High factor loading of total alkalinity and bicarbonates indicates that total alkalinity was mainly due to carbonates and bicarbonates of sodium. The concentration of F(-) was found more in the deep aquifer than the shallow aquifer. Further, only a few groundwater samples lie below the permissible limit of F(-), and this indicates a risk of dental caries in the populace of the study area. The present study indicates that regular monitoring of groundwater is an important step to avoid human health risks and to assess its quality for various ecological purposes.

  20. Regional differences in the surface temperature of Naked Neck laying hens in a semi-arid environment.

    PubMed

    de Souza, João Batista Freire; de Arruda, Alex Martins Varela; Domingos, Hérica Girlane Tertulino; de Macedo Costa, Leonardo Lelis

    2013-05-01

    The aim of this study was to evaluate the regional differences in the surface temperature of Naked Neck hens that were subjected to different temperatures in a semi-arid environment. The surface temperature was measured in four body regions (face, neck, legs and feathered area) of 60 Naked Neck hens. The following environmental variables were measured at the center of the shed: the black globe temperature (T G ), air temperature (T A ), wind speed (U) and relative humidity (R H ). The T A was divided into three classes: 1 (24.0-26.0 °C), 2 (26.1-28.9 °C) and 3 (29.0-31.0 °C). An analysis of variance was performed by the least squares method and a comparison of the means by the Tukey-Kramer test. The results showed a significant effect of T A class, the body region and the interaction between these two effects on the surface temperature. There was no significant difference between the T A classes for the face and neck. The legs and feathered area showed significant differences between the T A classes. Regarding the effect of body regions within each T A class, there was a significant difference among all regions in the three T A classes. In all T A classes the neck had the highest average followed by the face and legs. The feathered area showed the lowest average of the different T A classes. In conclusion, this study showed that there are regional differences in the surface temperature of Naked Neck hens, with the legs acting as thermal windows. PMID:22689146

  1. Regional differences in the surface temperature of Naked Neck laying hens in a semi-arid environment

    NASA Astrophysics Data System (ADS)

    de Souza, João Batista Freire; de Arruda, Alex Martins Varela; Domingos, Hérica Girlane Tertulino; de Macedo Costa, Leonardo Lelis

    2013-05-01

    The aim of this study was to evaluate the regional differences in the surface temperature of Naked Neck hens that were subjected to different temperatures in a semi-arid environment. The surface temperature was measured in four body regions (face, neck, legs and feathered area) of 60 Naked Neck hens. The following environmental variables were measured at the center of the shed: the black globe temperature ( T G ), air temperature ( T A ), wind speed ( U) and relative humidity ( R H ). The T A was divided into three classes: 1 (24.0-26.0 °C), 2 (26.1-28.9 °C) and 3 (29.0-31.0 °C). An analysis of variance was performed by the least squares method and a comparison of the means by the Tukey-Kramer test. The results showed a significant effect of T A class, the body region and the interaction between these two effects on the surface temperature. There was no significant difference between the T A classes for the face and neck. The legs and feathered area showed significant differences between the T A classes. Regarding the effect of body regions within each T A class, there was a significant difference among all regions in the three T A classes. In all T A classes the neck had the highest average followed by the face and legs. The feathered area showed the lowest average of the different T A classes. In conclusion, this study showed that there are regional differences in the surface temperature of Naked Neck hens, with the legs acting as thermal windows.

  2. Large scale characterization of unsaturated soil properties in a semi-arid region combining infiltration, pedotransfer functions and evaporation tests

    NASA Astrophysics Data System (ADS)

    Shabou, Marouen; Angulo-Jaramillo, Rafael; Lassabatère, Laurent; Boulet, Gilles; Mougenot, Bernard; Lili Chabaane, Zohra; Zribi, Mehrez

    2016-04-01

    Water resource management is a major issue in semi-arid regions, especially where irrigated agriculture is dominant on soils with highly variable clay content. Indeed, topsoil clay content has a significant importance on infiltration and evaporation processes and therefore in the estimation of the volume of water needed for crops. In this poster we present several methods to estimate wilting point, field capacity volumetric water contents and saturated hydraulic conductivity of the Kairouan plain (680 km2), central Tunisia (North Africa). The first method relies on the Beerkan Estimation of Soil Transfer parameters (BEST) method, which consists in local estimate of unsaturated soil hydraulic properties from a single-ring infiltration test, combined with the use of pedotransfer functions applied to the Kairouan plain different soil types. Results are obtained over six different topsoil texture classes along the Kairouan plain. Saturated hydraulic conductivity is high for coarse textured and some of the fine textured soils due to shrinkage cracking-macropore soil structure. The saturated hydraulic conductivity values are respectively 1.31E-5 m.s-1 and 1.71E-05 m.s-1. The second method is based on evaporation tests on different test plots. It consists of analyzing soil moisture profile changes during the dry down periods to detect the time-to-stress that can be obtained from observation of soil moisture variation, albedo measurements and variation of soil temperature. Results show that the estimated parameters with the evaporation method are close to those obtained by combining the BEST method and pedotransfer functions. The results validate that combining local infiltration tests and pedotransfer functions is a promising tool for the large scale hydraulic characterization of region with strong spatial variability of soils properties.

  3. Traditional uses of medicinal animals in the semi-arid region of northeastern Brazil.

    PubMed

    Alves, Rômulo Romeu Nóbrega; Neta, Rita Oliveira de Sousa; Trovão, Dilma Maria de Brito Melo; Barbosa, Jose Etham de Lucena; Barros, Adrianne Teixeira; Dias, Thelma Lucia Pereira

    2012-01-01

    The present work presents an inventory of the traditional medicinal uses of animals in the municipality of Bom Sucesso in Paraíba State (PB) in the semiarid northeastern region of Brazil. Information was obtained through the use of semi-structured interviews with 50 people who use zootherapeutic products. A total of 25 animal species used for medicinal purposes were identified (18 vertebrates and seven invertebrates) distributed among five taxonomic categories; the groups with the largest numbers of citations were: mammals (8 citations), insects (7), and reptiles (5). The most cited animal species were: Tubinambis merianae "teju" lizards (44 citations); Apis mellifera Italian honeybees (318 citations); Gallus gallus chickens (31 citations); Ovis aries sheep (31 citations); Crotalus durissus rattlesnakes (14 citations); Boa constrictor (12 citations); and Bos taurus cattle (12 citations). A significant number of illnesses and conditions treated with animal-based medicines were cited, and the category with the greatest number of citations was "problems affecting the respiratory system". Our results suggest that the use of zootherapeutics in the region is persistent, and that knowledge about these curative practices is an integral part of the regional culture. As such, studies concerning the uses of zootherapeutics are important windows to understanding human/environmental/cultural interactions and a pathway to conciliating regional cultures with efforts to conserve the native fauna.

  4. Traditional uses of medicinal animals in the semi-arid region of northeastern Brazil

    PubMed Central

    2012-01-01

    The present work presents an inventory of the traditional medicinal uses of animals in the municipality of Bom Sucesso in Paraíba State (PB) in the semiarid northeastern region of Brazil. Information was obtained through the use of semi-structured interviews with 50 people who use zootherapeutic products. A total of 25 animal species used for medicinal purposes were identified (18 vertebrates and seven invertebrates) distributed among five taxonomic categories; the groups with the largest numbers of citations were: mammals (8 citations), insects (7), and reptiles (5). The most cited animal species were: Tubinambis merianae “teju” lizards (44 citations); Apis mellifera Italian honeybees (318 citations); Gallus gallus chickens (31 citations); Ovis aries sheep (31 citations); Crotalus durissus rattlesnakes (14 citations); Boa constrictor (12 citations); and Bos taurus cattle (12 citations). A significant number of illnesses and conditions treated with animal-based medicines were cited, and the category with the greatest number of citations was “problems affecting the respiratory system”. Our results suggest that the use of zootherapeutics in the region is persistent, and that knowledge about these curative practices is an integral part of the regional culture. As such, studies concerning the uses of zootherapeutics are important windows to understanding human/environmental/cultural interactions and a pathway to conciliating regional cultures with efforts to conserve the native fauna. PMID:23050756

  5. Effects of different agricultural managements in soil microbial community structure in a semi-arid Mediterranean region.

    NASA Astrophysics Data System (ADS)

    García-Orenes, Fuensanta; Morugan, Alicia; Mataix-Solera, Jorge; Scow, Kate

    2013-04-01

    Agriculture has been practiced in semi-arid Mediterranean regions for 10.000 years and in many cases these practices have been unsuitable causing land degradation for millennium and an important loss of soil quality. The land management can provide solutions to find the best agricultural practices in order to maintain the soil quality and get a sustainable agriculture model. Microbiological properties are the most sensitive and rapid indicators of soil perturbations and land use managements. The study of microbial community and diversity has an important interest as indicators of changes in soil quality. The main objective of this work was to asses the effect of different agricultural management practices in soil microbial community (evaluated as abundance of phospholipid fatty acids, PLFA). Four different treatments were selected, based on the most commonly practices applied by farmers in the study area, "El Teularet Experimental Station", located at the Enguera Range in the southern part of the Valencia province (eastern Spain). These treatments were: a) ploughing, b) herbicides c) mulch, using the types applied by organic farmers to develop a sustainable agriculture, such as oat straw and d) control that was established as plot where the treatment was abandonment after farming. An adjacent area with the same type of soil, but with natural vegetation was used as a standard or reference high quality soil. Soil samples were taken to evaluate the changes in microbial soil structure, analysing the abundance of PLFA. The results showed a major content of total PLFA in soils treated with oats straw, being these results similar to the content of PLFA in the soil with natural vegetation, also these soils were similar in the distribution of abundance of different PLFA studied. However, the herbicide and tillage treatments showed great differences regarding the soil used as reference (soil under natural vegetation).

  6. Land Surface Model and Particle Swarm Optimization Algorithm Based on the Model-Optimization Method for Improving Soil Moisture Simulation in a Semi-Arid Region.

    PubMed

    Yang, Qidong; Zuo, Hongchao; Li, Weidong

    2016-01-01

    Improving the capability of land-surface process models to simulate soil moisture assists in better understanding the atmosphere-land interaction. In semi-arid regions, due to limited near-surface observational data and large errors in large-scale parameters obtained by the remote sensing method, there exist uncertainties in land surface parameters, which can cause large offsets between the simulated results of land-surface process models and the observational data for the soil moisture. In this study, observational data from the Semi-Arid Climate Observatory and Laboratory (SACOL) station in the semi-arid loess plateau of China were divided into three datasets: summer, autumn, and summer-autumn. By combing the particle swarm optimization (PSO) algorithm and the land-surface process model SHAW (Simultaneous Heat and Water), the soil and vegetation parameters that are related to the soil moisture but difficult to obtain by observations are optimized using three datasets. On this basis, the SHAW model was run with the optimized parameters to simulate the characteristics of the land-surface process in the semi-arid loess plateau. Simultaneously, the default SHAW model was run with the same atmospheric forcing as a comparison test. Simulation results revealed the following: parameters optimized by the particle swarm optimization algorithm in all simulation tests improved simulations of the soil moisture and latent heat flux; differences between simulated results and observational data are clearly reduced, but simulation tests involving the adoption of optimized parameters cannot simultaneously improve the simulation results for the net radiation, sensible heat flux, and soil temperature. Optimized soil and vegetation parameters based on different datasets have the same order of magnitude but are not identical; soil parameters only vary to a small degree, but the variation range of vegetation parameters is large. PMID:26991786

  7. Land Surface Model and Particle Swarm Optimization Algorithm Based on the Model-Optimization Method for Improving Soil Moisture Simulation in a Semi-Arid Region

    PubMed Central

    Yang, Qidong; Zuo, Hongchao; Li, Weidong

    2016-01-01

    Improving the capability of land-surface process models to simulate soil moisture assists in better understanding the atmosphere-land interaction. In semi-arid regions, due to limited near-surface observational data and large errors in large-scale parameters obtained by the remote sensing method, there exist uncertainties in land surface parameters, which can cause large offsets between the simulated results of land-surface process models and the observational data for the soil moisture. In this study, observational data from the Semi-Arid Climate Observatory and Laboratory (SACOL) station in the semi-arid loess plateau of China were divided into three datasets: summer, autumn, and summer-autumn. By combing the particle swarm optimization (PSO) algorithm and the land-surface process model SHAW (Simultaneous Heat and Water), the soil and vegetation parameters that are related to the soil moisture but difficult to obtain by observations are optimized using three datasets. On this basis, the SHAW model was run with the optimized parameters to simulate the characteristics of the land-surface process in the semi-arid loess plateau. Simultaneously, the default SHAW model was run with the same atmospheric forcing as a comparison test. Simulation results revealed the following: parameters optimized by the particle swarm optimization algorithm in all simulation tests improved simulations of the soil moisture and latent heat flux; differences between simulated results and observational data are clearly reduced, but simulation tests involving the adoption of optimized parameters cannot simultaneously improve the simulation results for the net radiation, sensible heat flux, and soil temperature. Optimized soil and vegetation parameters based on different datasets have the same order of magnitude but are not identical; soil parameters only vary to a small degree, but the variation range of vegetation parameters is large. PMID:26991786

  8. Uncertainties in downscaled relative humidity for a semi-arid region in India

    NASA Astrophysics Data System (ADS)

    Anandhi, Aavudai

    2011-06-01

    Monthly scenarios of relative humidity ( R H) were obtained for the Malaprabha river basin in India using a statistical downscaling technique. Large-scale atmospheric variables (air temperature and specific humidity at 925 mb, surface air temperature and latent heat flux) were chosen as predictors. The predictor variables are extracted from the (1) National Centers for Environmental Prediction reanalysis dataset for the period 1978-2000, and (2) simulations of the third generation Canadian Coupled Global Climate Model for the period 1978-2100. The objective of this study was to investigate the uncertainties in regional scenarios developed for R H due to the choice of emission scenarios (A1B, A2, B1 and COMMIT) and the predictors selected. Multi-linear regression with stepwise screening is the downscaling technique used in this study. To study the uncertainty in the regional scenarios of R H, due to the selected predictors, eight sets of predictors were chosen and a downscaling model was developed for each set. Performance of the downscaling models in the baseline period (1978-2000) was studied using three measures (1) Nash-Sutcliffe error estimate ( E f), (2) mean absolute error (MAE), and (3) product moment correlation ( P). Results show that the performances vary between 0.59 and 0.68, 0.42 and 0.50 and 0.77 and 0.82 for E f, MAE and P. Cumulative distribution functions were prepared from the regional scenarios of R H developed for combinations of predictors and emission scenarios. Results show a variation of 1 to 6% R H in the scenarios developed for combination of predictor sets for baseline period. For a future period (2001-2100), a variation of 6 to 15% R H was observed for the combination of emission scenarios and predictors. The variation was highest for A2 scenario and least for COMMIT and B1 scenario.

  9. The influence of agricultural management on soil's CO2 regime in semi-arid and arid regions

    NASA Astrophysics Data System (ADS)

    Eshel, G.; Lifshithz, D.; Sternberg, M.; Ben-Dor, E.; Bonfile, D. J.; Arad, B.; Mingelgrin, U.; Fine, P.; Levy, G. J.

    2008-12-01

    Two of the more important parameters which may help us better evaluate the impact of agricultural practices on the global carbon cycle are the in-situ soil pCO2 profile and the corresponding CO2 fluxes to the atmosphere. In an ongoing study, we monitored the pCO2 to a depth of 5 m in two adjacent irrigated Avocado orchards in the coastal plain of Israel (semi-arid region), and to a depth of 2 m in a semi- arid rain-fed and a arid rain-fed wheat fields in southern Israel. The soil pCO2 profiles and CO2 fluxes measurements were supplemented by measurements of soil moisture and temperature. The results showed differences in the CO2 profiles (both in the depth of the highest concentration and its absolute values) and the CO2 fluxes between the orchards and the wheat fields as well as along the year. In the irrigated Avocado orchards pCO2 values were in the range of 1.5 kPa at a depth of 0.5 m up to 8 kPa at depths of 3-5 m (even though Avocado trees are characterized by shallow roots). Such levels could affect reactions (e.g., enhancement of inorganic carbon dissolution) that may take place in the soil and some of its chemical properties (e.g., pH). As expected, soil pCO2 was affected by soil moisture and temperature, and the distance from the trees. Maximum soil respiration was observed during the summer when the orchards are under irrigation. In the wheat fields pCO2 level ranged from 0.2- 0.6 kPa at a depth of 0.2 m to 0.2-1 kPa at depths of 1-1.5 m (in arid and semiarid respectively). These pCO2 levels were much lower than those obtained in the irrigated orchards and seemed to depend on the wheat growing cycle (high concentration were noted at depth of 1-1.5 m close to the end of grain filling) and precipitation gradient (arid vs. semiarid). Since CO2 fluxes are directly affected by the pCO2 profile and soil moister and temperature the CO2 fluxes from the wheat fields were much lower (0.02- 0.2 ml min-1 m-2) compared to those obtained from the Avocado orchards (2

  10. Impact of sublimation losses in the mass balance of glaciers in semi-arid mountain regions

    NASA Astrophysics Data System (ADS)

    Ayala, Alvaro; Pellicciotti, Francesca; Burlando, Paolo; MacDonell, Shelley; McPhee, James

    2016-04-01

    Glaciers in semiarid mountain regions may lose an important part of their winter snow accumulation through sublimation processes that are enhanced by the high-elevation, intense radiation and dry atmosphere of these environments. As glaciers in these regions secure freshwater resources to lower valleys during summer and drought periods, it is important to advance in a detailed quantification of their sublimation losses. However, logistical concerns and complex meteorological features make the measuring and modelling of glacier mass balances a difficult task. In this study, we estimated the spring-summer mass balances of Tapado and Juncal Norte glaciers in the semiarid Andes of north-central Chile by running a distributed energy balance model that accounts for melt, refreezing and sublimation from the surface and blowing snow. Meteorological input data were available from on-glacier Automatic Weather Stations (AWS) that were installed during the ablation season of years 2005-06, 2008-09, 2013-14 and 2014-15. Snow pits, ablation stakes and a time-lapse camera that provided surface albedo were also available. Distributed air temperature and wind speed were dynamically downscaled from NASA MERRA reanalysis using the software WINDSIM and validated against the data from the AWSs. The rest of the meteorological variables were distributed using statistical relations with air temperature derived from the AWSs data. Initial snow conditions were estimated using satellite images and distributed manual snow depth measurements. Preliminary results show that total ablation diminishes with elevation and that, during the early ablation season (October-November), melt is the main ablation component below 4500 m with sublimation dominating the ablation above this elevation. Above 4500 m an important fraction of meltwater refreezes during night. As the ablation season advances (December-February), melt extends to higher elevations, refreezing plays a smaller role and sublimation is

  11. Hunting strategies used in the semi-arid region of northeastern Brazil

    PubMed Central

    Alves, Rômulo RN; Mendonça, Lívia ET; Confessor, Maine VA; Vieira, Washington LS; Lopez, Luiz CS

    2009-01-01

    Hunting for wild animals is stimulated by the many different human uses of faunal resources, and these animals constitute important subsistence items in local communities in the Caatinga region. In order to gain access to these resources, hunters have developed a series of techniques and strategies that are described in the present work. The principal hunting techniques encountered were: waiting, especially directed towards hunting diurnal birds; calling ("arremedo"), a technique in which the hunters imitate the animal's call to attract it to close range; hunting with dogs, a technique mostly used for capturing mammals; tracking, a technique used by only a few hunters who can recognize and follow animal tracks; and "facheado", in which the hunters go out at night with lanterns to catch birds in their nests. Additionally, many animal species are captured using mechanical traps. The types of traps used by the interviewees were: dead-fall traps ("quixó"), iron-jaw snap traps ("arataca"), wooden cages with bait ("arapuca"), iron-cage traps ("gaiola'), "visgo", multi-compartment bird cages ("alçapão"), buried ground traps with pivoted tops ("fojo"), and nooses and cages for carnivorous. The choice of which technique to use depends on the habits of the species being hunted, indicating that the hunters possess a wide knowledge of the biology of these animals. From a conservation perspective, active hunting techniques (waiting, imitation, hunting with dogs, and "facheado") have the greatest impact on the local fauna. The use of firearm and dogs brought greater efficiency to hunting activities. Additional studies concerning these hunting activities will be useful to contribute to proposals for management plans regulating hunting in the region – with the objective of attaining sustainable use of faunal resources of great importance to the local human communities. PMID:19386121

  12. Hunting strategies used in the semi-arid region of northeastern Brazil.

    PubMed

    Alves, Rômulo R N; Mendonça, Lívia E T; Confessor, Maine V A; Vieira, Washington L S; Lopez, Luiz C S

    2009-01-01

    Hunting for wild animals is stimulated by the many different human uses of faunal resources, and these animals constitute important subsistence items in local communities in the Caatinga region. In order to gain access to these resources, hunters have developed a series of techniques and strategies that are described in the present work. The principal hunting techniques encountered were: waiting, especially directed towards hunting diurnal birds; calling ("arremedo"), a technique in which the hunters imitate the animal's call to attract it to close range; hunting with dogs, a technique mostly used for capturing mammals; tracking, a technique used by only a few hunters who can recognize and follow animal tracks; and "facheado", in which the hunters go out at night with lanterns to catch birds in their nests. Additionally, many animal species are captured using mechanical traps. The types of traps used by the interviewees were: dead-fall traps ("quixó"), iron-jaw snap traps ("arataca"), wooden cages with bait ("arapuca"), iron-cage traps ("gaiola'), "visgo", multi-compartment bird cages ("alçapão"), buried ground traps with pivoted tops ("fojo"), and nooses and cages for carnivorous. The choice of which technique to use depends on the habits of the species being hunted, indicating that the hunters possess a wide knowledge of the biology of these animals. From a conservation perspective, active hunting techniques (waiting, imitation, hunting with dogs, and "facheado") have the greatest impact on the local fauna. The use of firearm and dogs brought greater efficiency to hunting activities. Additional studies concerning these hunting activities will be useful to contribute to proposals for management plans regulating hunting in the region - with the objective of attaining sustainable use of faunal resources of great importance to the local human communities. PMID:19386121

  13. Carbonaceous aerosol over semi-arid region of western India: Heterogeneity in sources and characteristics

    NASA Astrophysics Data System (ADS)

    Sudheer, A. K.; Aslam, M. Y.; Upadhyay, M.; Rengarajan, R.; Bhushan, R.; Rathore, J. S.; Singh, S. K.; Kumar, S.

    2016-09-01

    Carbonaceous species (elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC)) and water-soluble inorganic species (Na+, NH4+, K+, Ca2 +, Mg2 +, Cl-, NO3-, SO42 -) in PM10 and PM2.5 from Ahmedabad and Jodhpur (urban and semi-urban locations, respectively) in western India were measured during May-September, 2011. Stable isotope composition of carbonaceous aerosol (δ13C of TC) in PM10 samples was also determined. Average EC concentration in PM10 at Ahmedabad was 1 μg m- 3 (range: 0.34 to 3.4 μg m- 3), almost 80% of which remained in PM2.5. Similarly, 70% of EC in PM10 (average: 0.9 μg m- 3) resided in PM2.5 at Jodhpur. Average OC concentration at Ahmedabad was 6.4 μg m- 3 and ~ 52% of this was found in PM2.5. On the contrary, OC concentration at Jodhpur was 40 μg m- 3, 80% of which was found in coarse particles contributing substantially to aerosol mass. δ13C of TC (average: - 27.5‰, range: - 29.6 to - 25.8‰) along with WSOC/EC ratio shows an increasing trend at Jodhpur suggesting the possibility of aging of aerosol, since aging results in enrichment of heavier isotope. OC and WSOC show significant correlations with K+ and not with EC, indicating biogenic origin of OC. Different size distributions are also exhibited by WSOC at the two stations. On the other hand, δ13C exhibits an inverse trend with sea-salt constituents at Ahmedabad, indicating the influence of air masses transported from the western/south-western region on carbonaceous aerosol. These results suggest that a strong heterogeneity exists in the sources of carbonaceous aerosol over this region and potential sources of non-combustion emissions such as bio-aerosol that need further investigation.

  14. Aerosol pollution in the arid and semi-arid regions of southern Russia

    NASA Astrophysics Data System (ADS)

    Artamonova, Maria; Chkhetiani, Otto; Gledzer, Evgeny; Golitsyn, Georgy; Iordansky, Michael; Kadygrov, Evgeny; Khapaev, Alexey; Knyazev, Alexander; Kurgansky, Michael; Lebedev, Vladimir; Maksimenkov, Leonid; Minashkin, Vyacheslav; Obvintsev, Yury; Pogarsky, Fedor

    2014-05-01

    We present the systematized data results from field measurements of submicron aerosol. These measurements were carried out in the steppe regions of Rostov region and in semi-desert areas of Kalmykia Republic (the Caspian lowland) in the summer period of years 2007-2013. These data include the diurnal variation of the counting and mass aerosol concentration in the range of 0.1-15 microns, the diurnal variation of the counting and mass concentrations of the various fractions of submicron aerosol, the elemental composition of aerosol and soil samples, meteorological parameters of the atmosphere, soil temperature and radiation balance. Fine sand fraction (86.6%) is predominant in the soil. It is significantly higher than the percentage of silt fractions, medium and coarse sand. The chemical composition of sand is aluminum-silicon one. Elemental and mineralogical analysis of soil and aerosol particles confirmed the identity of the chemical composition of the soil and the fine fraction of the aerosol, respectively. Obtained data show the presence, in hot and dry weather, of convective lifting and outflow of fine aerosol in the daytime over dry sandy areas and dry loamy soils, in these areas. Studies have shown that the removal of the fine aerosol increases proportionally to the temperature lapse rate in the surface air layer and decreases with increased wind speed. The coarser fraction of aerosol prevails in the airflow for wind speed of 5 m/s and more. Relationship between the aerosol emission and the stability of the atmospheric boundary layer (Monin-Obukhov length-scale) is considered. Aerosol mass concentration at different periods of observations (2007-2013) was from a few dozen to several hundred mg/m3. Calculations of the average annual value of the convective flow of the aerosol into the atmosphere from sand areas in Kalmykia are presented. Distribution of lifted aerosol particles depends on the weather conditions (wind speed, relative humidity air and soil

  15. Ecological restoration and effect investigation of a river wetland in a semi-arid region, China

    NASA Astrophysics Data System (ADS)

    Xu, S.; Jiang, X.; Liu, Y.; Fu, Y.; Zhao, Q.

    2015-05-01

    River wetlands are heavily impacted by human intervention. The degradation and loss of river wetlands has made the restoration of river ecosystems a top priority. How to rehabilitate rivers and their services has been a research focus. The main goal of it is to restore the river wetland ecosystems with ecological methods. The Gudong River was selected as a study site in Chaoyang city in this study. Based on the analysis of interference factors in the river wetland degradation, a set of restoration techniques were proposed and designed for regional water level control, including submerged dikes, ecological embankments, revegetation and dredging. The restoration engineering has produced good results in water quality, eco-environment, and landscape. Monthly reports of the Daling River show that the water quality of Gudong River was better than Grade III in April 2013 compared with Grade V in May 2012. The economic benefit after restoration construction is 1.71 million RMB per year, about 1.89 times that before. The ratio of economic value, social value and eco-environmental value is 1:4:23.

  16. Root density of cherry trees grafted on prunus mahaleb in a semi-arid region

    NASA Astrophysics Data System (ADS)

    Paltineanu, Cristian; Septar, Leinar; Gavat, Corina; Chitu, Emil; Oprita, Alexandru; Moale, Cristina; Lamureanu, Gheorghe; Vrinceanu, Andrei

    2016-07-01

    Root density was investigated using the trench method in a cherry (Prunus avium grafted on Prunus mahaleb) orchard with clean cultivation in inter-rows and in-row. Trenches of 1 m width and 1.2 m depth were dug up between neighbouring trees. The objectives of the paper were to clarify the spatial distribution of root density of cherry trees under the soil and climate conditions of the region to expand knowledge of optimum planting distance and orchard management for a broad area of chernozems. Some soil physical properties were significantly worsened in inter-rows versus in-row, mainly due to soil compaction, and there were higher root density values in in-row versus inter-rows. Root density decreased more intensely with soil depth than with distance from trees. The pattern of root density suggests that the cherry tree density and fruit yield could be increased. However, other factors concerning orchard management and fruit yield should also be considered. The results obtained have a potential impact to improve irrigation and fertilizer application by various methods, considering the soil depth and distance from trees to wet soil, in accordance with root development.

  17. Too Much or Too Little? Eco-hydrology in Arid and Semi-arid Regions

    NASA Astrophysics Data System (ADS)

    Toch, S. L.

    2009-04-01

    Around the world, disastrous effects of floods and droughts are painful evidence of our continuing struggle between human resource demands and the sustainability of our hydrologic ecosystems. Too much or too little rainfall is often deemed the culprit in these water crises, focusing on water "lacks and needs" instead of exploring the diverse mechanisms of the hydrologic functions and processes that sustain us. Applicable to regions around the world, this unified approach focuses on the connections between our human and ecological qualities, with user friendly concepts and how-to guides backed up by real life experiences. From the poorest parts of Africa to Urban France to the wealthiest state in the USA, examples from surface to groundwater to marine environments demonstrate how the links between vulnerable natural areas, and the basins that they support are integral to the availability, adequacy and accessibility of our drinking water. The interactions of watersheds within our diverse communities can link our resource practices with our human needs, serving as a basis for our ecological health and human well-being. Hydrologic ecosystems provide links to geographic and cultural information traversing physical and social boundaries. This international, community-based project demonstrates how our human resource demands can be managed within ecological constraints. An inter-disciplinary process is used that specifically explores the connections between ecological integrity and the preservation of potable supplies. A monitoring strategy is developed that assesses risk to human health from resource use practices, and explores the similarities and interactions between our human needs and those of the ecosystems in which we all must live together. This work is geared as a reference for groups, individuals and agencies concerned with land use and watershed management, a supplement for interdisciplinary high school through University curriculum, for professional

  18. What Climate Conditions Enhance Hillslope Erosion in Semi-Arid Regions?

    NASA Astrophysics Data System (ADS)

    Pierce, J. L.; Riley, K. E.; Kenworthy, M.; Poulos, M. J.; Weppner, K.; Nelson, N.; Svenson, L.

    2011-12-01

    Researchers have long pondered the question of how climate and climate change influence rates and processes of erosion: this question has become more relevant in the face of ongoing and future anthropogenic warming. We examine evidence of hillslope erosion and sedimentation on alluvial fans over Holocene and Quaternary timescales throughout a range of ecosystems in Idaho, USA. Records of erosion include fire-related and non-fire related deposition on alluvial fans, and landscape-scale analysis of hillslope slope angles. Over Holocene timescales, five independent records of forest-fires and fire-related erosion from sagebrush steppe, pinion-juniper, ponderosa pine, lodgepole pine and mixed conifer ecosystems indicate that sedimentation rates and processes on alluvial fans vary temporally with Holocene climate and spatially with vegetation type. Despite variations in ecosystem type and associated fire regimes, all sites show similar broad-scale temporal patterns. The mid-Holocene (~4-8 ka) is characterized by few fire-related deposits and many non-fire related sheetflooding events (vs. debris flows); this relatively fire-free interval is punctuated by fire peaks and associated sheetflooding ~7-6 ka. As regional paleoclimatic reconstructions generally indicate this time was generally warm and dry the lack of fire is somewhat counterintuitive; however, decreased fuel loads, combined with perhaps a more stable climate may reduce fire and storm intensity and frequency. Late Holocene (last ~3 ka) cooler, wetter and more variable climates (as compared to the mid-Holocene) are characterized by increased fire activity at all sites, and more large debris flows. Medieval droughts correspond with major fire and debris flow peaks ~1000-800 cal yr BP; decadal to annual droughts during the generally cooler and wetter LIA also promote fire peaks ~500-300 cal yr BP. Modern observations of hillslope erosion indicate north-facing or moister slopes are characterized by dense vegetation

  19. Mashhad Wise Water Forum: a path to sustainable water resources management in a semi-arid region of Iran

    NASA Astrophysics Data System (ADS)

    Tabatabaee, Seyyed Alireza; Neyshaboori, Shahnaz; Basirat, Ali; Tavakoli Aminiyan, Samaneh; Mirbehrooziyan, Ahmad; Sakhdari, Hossein; Shafiei, Mojtaba; Davary, Kamran

    2016-04-01

    Water is key to sustainable development especially in semi-arid regions in which the main source of water provision is groundwater. Water has value from a social, economic and environmental perspective and is required to be managed within a sound, integrated socio-economic and environmental framework. Mashhad, the second big city in Iran, has been faced with rapid growth rates of population and economic activities. The groundwater in Mashhad basin has been overexploited to meet the increasing trend of water demand during the past 20 years. Consequently, the region has faced with water scarcity and water quality problems which originates from inefficient use and poor management. To tackle the water issue on a durable basis, within the economic, ecological, and political constraints (i.e. the integrated water resources management, IWRM concept), a Non-Governmental Organization (NGO), named as Mashhad Wise Water Forum (MWWF), has been established in 2013 that encompasses contribution of experts from academia, industry, and governmental policy-makers. The MWWF considers the UN-Water IWRM spiral conceptual model (which contains four stages: Recognizing and identifying; Conceptualizing; Coordinating and planning; Implementing, Monitoring and Evaluating) by implicating participatory water management (water users' involvement) methods in Mashhad basin. Furthermore, the MWWF has planned to look at all dimensions of water crisis (i.e. physical, economic, policy and institutional) particularly institutional dimension by gathering all stockholders, beneficiaries and experts in different parts of water policy making in Mashhad basin. The MWWF vision for Mashhad basin is achieving to sustainable equilibrium of water resources and consumptions in the basin by the prospect to 2040 year. So far, the MWWF has tried to understand and deal with regional diversity in legal systems as well as conflicts between private interests and public welfare in water allocation and management. At

  20. Fluvial transport and surface enrichment of arsenic in semi-arid mining regions: examples from the Mojave Desert, California.

    PubMed

    Kim, Christopher S; Stack, David H; Rytuba, James J

    2012-07-01

    As a result of extensive gold and silver mining in the Mojave Desert, southern California, mine wastes and tailings containing highly elevated arsenic (As) concentrations remain exposed at a number of former mining sites. Decades of weathering and erosion have contributed to the mobilization of As-enriched tailings, which now contaminate surrounding communities. Fluvial transport plays an intermittent yet important and relatively undocumented role in the migration and dispersal of As-contaminated mine wastes in semi-arid climates. Assessing the contribution of fluvial systems to tailings mobilization is critical in order to assess the distribution and long-term exposure potential of tailings in a mining-impacted environment. Extensive sampling, chemical analysis, and geospatial mapping of dry streambed (wash) sediments, tailings piles, alluvial fans, and rainwater runoff at multiple mine sites have aided the development of a conceptual model to explain the fluvial migration of mine wastes in semi-arid climates. Intense and episodic precipitation events mobilize mine wastes downstream and downslope as a series of discrete pulses, causing dispersion both down and lateral to washes with exponential decay behavior as distance from the source increases. Accordingly a quantitative model of arsenic concentrations in wash sediments, represented as a series of overlapping exponential power-law decay curves, results in the acceptable reproducibility of observed arsenic concentration patterns. Such a model can be transferable to other abandoned mine lands as a predictive tool for monitoring the fate and transport of arsenic and related contaminants in similar settings. Effective remediation of contaminated mine wastes in a semi-arid environment requires addressing concurrent changes in the amounts of potential tailings released through fluvial processes and the transport capacity of a wash. PMID:22718027

  1. Fluvial transport and surface enrichment of arsenic in semi-arid mining regions: examples from the Mojave Desert, California.

    PubMed

    Kim, Christopher S; Stack, David H; Rytuba, James J

    2012-07-01

    As a result of extensive gold and silver mining in the Mojave Desert, southern California, mine wastes and tailings containing highly elevated arsenic (As) concentrations remain exposed at a number of former mining sites. Decades of weathering and erosion have contributed to the mobilization of As-enriched tailings, which now contaminate surrounding communities. Fluvial transport plays an intermittent yet important and relatively undocumented role in the migration and dispersal of As-contaminated mine wastes in semi-arid climates. Assessing the contribution of fluvial systems to tailings mobilization is critical in order to assess the distribution and long-term exposure potential of tailings in a mining-impacted environment. Extensive sampling, chemical analysis, and geospatial mapping of dry streambed (wash) sediments, tailings piles, alluvial fans, and rainwater runoff at multiple mine sites have aided the development of a conceptual model to explain the fluvial migration of mine wastes in semi-arid climates. Intense and episodic precipitation events mobilize mine wastes downstream and downslope as a series of discrete pulses, causing dispersion both down and lateral to washes with exponential decay behavior as distance from the source increases. Accordingly a quantitative model of arsenic concentrations in wash sediments, represented as a series of overlapping exponential power-law decay curves, results in the acceptable reproducibility of observed arsenic concentration patterns. Such a model can be transferable to other abandoned mine lands as a predictive tool for monitoring the fate and transport of arsenic and related contaminants in similar settings. Effective remediation of contaminated mine wastes in a semi-arid environment requires addressing concurrent changes in the amounts of potential tailings released through fluvial processes and the transport capacity of a wash.

  2. Spatial Distribution of Aboveground Carbon Stock of the Arboreal Vegetation in Brazilian Biomes of Savanna, Atlantic Forest and Semi-Arid Woodland.

    PubMed

    Scolforo, Henrique Ferraco; Scolforo, Jose Roberto Soares; Mello, Carlos Rogerio; Mello, Jose Marcio; Ferraz Filho, Antonio Carlos

    2015-01-01

    The objective of this study was to map the spatial distribution of aboveground carbon stock (using Regression-kriging) of arboreal plants in the Atlantic Forest, Semi-arid woodland, and Savanna Biomes in Minas Gerais State, southeastern Brazil. The database used in this study was obtained from 163 forest fragments, totaling 4,146 plots of 1,000 m2 distributed in these Biomes. A geographical model for carbon stock estimation was parameterized as a function of Biome, latitude and altitude. This model was applied over the samples and the residuals generated were mapped based on geostatistical procedures, selecting the exponential semivariogram theoretical model for conducting ordinary Kriging. The aboveground carbon stock was found to have a greater concentration in the north of the State, where the largest contingent of native vegetation is located, mainly the Savanna Biome, with Wooded Savanna and Shrub Savanna phytophysiognomes. The largest weighted averages of carbon stock per hectare were found in the south-center region (48.6 Mg/ha) and in the southern part of the eastern region (48.4 Mg/ha) of Minas Gerais State, due to the greatest predominance of Atlantic Forest Biome forest fragments. The smallest weighted averages per hectare were found in the central (21.2 Mg/ha), northern (20.4 Mg/ha), and northwestern (20.7 Mg/ha) regions of Minas Gerais State, where Savanna Biome fragments are predominant, in the phytophysiognomes Wooded Savanna and Shrub Savanna.

  3. Spatial Distribution of Aboveground Carbon Stock of the Arboreal Vegetation in Brazilian Biomes of Savanna, Atlantic Forest and Semi-Arid Woodland

    PubMed Central

    2015-01-01

    The objective of this study was to map the spatial distribution of aboveground carbon stock (using Regression-kriging) of arboreal plants in the Atlantic Forest, Semi-arid woodland, and Savanna Biomes in Minas Gerais State, southeastern Brazil. The database used in this study was obtained from 163 forest fragments, totaling 4,146 plots of 1,000 m2 distributed in these Biomes. A geographical model for carbon stock estimation was parameterized as a function of Biome, latitude and altitude. This model was applied over the samples and the residuals generated were mapped based on geostatistical procedures, selecting the exponential semivariogram theoretical model for conducting ordinary Kriging. The aboveground carbon stock was found to have a greater concentration in the north of the State, where the largest contingent of native vegetation is located, mainly the Savanna Biome, with Wooded Savanna and Shrub Savanna phytophysiognomes. The largest weighted averages of carbon stock per hectare were found in the south-center region (48.6 Mg/ha) and in the southern part of the eastern region (48.4 Mg/ha) of Minas Gerais State, due to the greatest predominance of Atlantic Forest Biome forest fragments. The smallest weighted averages per hectare were found in the central (21.2 Mg/ha), northern (20.4 Mg/ha), and northwestern (20.7 Mg/ha) regions of Minas Gerais State, where Savanna Biome fragments are predominant, in the phytophysiognomes Wooded Savanna and Shrub Savanna. PMID:26066508

  4. Potential of the Thermal Infrared Wavelength Region to predict semi-arid Soil Surface Properties for Remote Sensing Monitoring

    NASA Astrophysics Data System (ADS)

    Eisele, Andreas; Chabrillat, Sabine; Lau, Ian; Hecker, Christoph; Hewson, Robert; Carter, Dan; Wheaton, Buddy; Ong, Cindy; Cudahy, Thomas John; Kaufmann, Hermann

    2014-05-01

    Digital soil mapping with the means of passive remote sensing basically relies on the soils' spectral characteristics and an appropriate atmospheric window, where electromagnetic radiation transmits without significant attenuation. Traditionally the atmospheric window in the solar-reflective wavelength region (visible, VIS: 0.4 - 0.7 μm; near infrared, NIR: 0.7 - 1.1 μm; shortwave infrared, SWIR: 1.1 - 2.5 μm) has been used to quantify soil surface properties. However, spectral characteristics of semi-arid soils, typically have a coarse quartz rich texture and iron coatings that can limit the prediction of soil surface properties. In this study we investigated the potential of the atmospheric window in the thermal wavelength region (long wave infrared, LWIR: 8 - 14 μm) to predict soil surface properties such as the grain size distribution (texture) and the organic carbon content (SOC) for coarse-textured soils from the Australian wheat belt region. This region suffers soil loss due to wind erosion processes and large scale monitoring techniques, such as remote sensing, is urgently required to observe the dynamic changes of such soil properties. The coarse textured sandy soils of the investigated area require methods, which can measure the special spectral response of the quartz dominated mineralogy with iron oxide enriched grain coatings. By comparison, the spectroscopy using the solar-reflective region has limitations to discriminate such arid soil mineralogy and associated coatings. Such monitoring is important for observing potential desertification trends associated with coarsening of topsoil texture and reduction in SOC. In this laboratory study we identified the relevant LWIR wavelengths to predict these soil surface properties. The results showed the ability of multivariate analyses methods (PLSR) to predict these soil properties from the soil's spectral signature, where the texture parameters (clay and sand content) could be predicted well in the models

  5. Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation.

    PubMed

    Alarcón-Herrera, María Teresa; Bundschuh, Jochen; Nath, Bibhash; Nicolli, Hugo B; Gutierrez, Melida; Reyes-Gomez, Victor M; Nuñez, Daniel; Martín-Dominguez, Ignacio R; Sracek, Ondra

    2013-11-15

    Several million people around the world are currently exposed to excessive amounts of arsenic (As) and fluoride (F) in their drinking water. Although the individual toxic effects of As and F have been analyzed, there are few studies addressing their co-occurrences and water treatment options. Several studies conducted in arid and semi-arid regions of Latin America show that the co-occurrences of As and F in drinking water are linked to the volcaniclastic particles in the loess or alluvium, alkaline pH, and limited recharge. The As and F contamination results from water-rock interactions and may be accelerated by geothermal and mining activities, as well as by aquifer over-exploitation. These types of contamination are particularly pronounced in arid and semi-arid regions, where high As concentrations often show a direct relationship with high F concentrations. Enrichment of F is generally related to fluorite dissolution and it is also associated with high Cl, Br, and V concentrations. The methods of As and F removal, such as chemical precipitation followed by filtration and reverse osmosis, are currently being used at different scales and scenarios in Latin America. Although such technologies are available in Latin America, it is still urgent to develop technologies and methods capable of monitoring and removing both of these contaminants simultaneously from drinking water, with a particular focus towards small-scale rural operations.

  6. Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation.

    PubMed

    Alarcón-Herrera, María Teresa; Bundschuh, Jochen; Nath, Bibhash; Nicolli, Hugo B; Gutierrez, Melida; Reyes-Gomez, Victor M; Nuñez, Daniel; Martín-Dominguez, Ignacio R; Sracek, Ondra

    2013-11-15

    Several million people around the world are currently exposed to excessive amounts of arsenic (As) and fluoride (F) in their drinking water. Although the individual toxic effects of As and F have been analyzed, there are few studies addressing their co-occurrences and water treatment options. Several studies conducted in arid and semi-arid regions of Latin America show that the co-occurrences of As and F in drinking water are linked to the volcaniclastic particles in the loess or alluvium, alkaline pH, and limited recharge. The As and F contamination results from water-rock interactions and may be accelerated by geothermal and mining activities, as well as by aquifer over-exploitation. These types of contamination are particularly pronounced in arid and semi-arid regions, where high As concentrations often show a direct relationship with high F concentrations. Enrichment of F is generally related to fluorite dissolution and it is also associated with high Cl, Br, and V concentrations. The methods of As and F removal, such as chemical precipitation followed by filtration and reverse osmosis, are currently being used at different scales and scenarios in Latin America. Although such technologies are available in Latin America, it is still urgent to develop technologies and methods capable of monitoring and removing both of these contaminants simultaneously from drinking water, with a particular focus towards small-scale rural operations. PMID:22920686

  7. A Two-source Energy Balance Model for estimating evapotranspiration over an olive orchard in a semi-arid region of Morocco

    NASA Astrophysics Data System (ADS)

    Ezzahar, Jamal; Chehbouni, Abdelghani; Er-Raki, Salah; Aouade, Ghizlane; Khabba, Said; Merlin, Olivier; Boulet, Gilles; Jarlan, Lionel

    2016-04-01

    In arid and semi-arid regions, about 85% of the available water is used for irrigated agriculture, and therefore a sound and efficient irrigation practice is an important step towards achieving sustainable management of water resources in these regions. In this regard, a better understanding of the water balance is essential for exploring water-saving techniques. One of the most important components of the water balance in semi-arid areas is the evapotranspiration (ET). Therefore, a precise estimation evapotranspiration is of crucial importance for agricultural water management. In this work, a two source energy balance model (TSEB) is used to estimate ET over an irrigated olive orchard located near located near to the Marrakech city (Centre of Morocco). In addition to its simplicity, TSEB does not require a large number of input parameters that are not readily available. Evapotranspiration and micrometeorological parameters were continuously measured during the year 2003 in order to evaluate the performance of TSEB estimates. The comparison between daily estimated and measured evapotranspiration yielded a good agreement although the complexity of the study surface with a correlation coefficient of 0.78 and a root mean square of 61.9wm-².

  8. Comparison Of Multi-Frequency SAR Land Cover Signatures For Multi-Site Semi-Arid Regions Of Africa

    NASA Astrophysics Data System (ADS)

    Spies, Bernard; Lamb, Alistair; Brown, Sarah, Balzter, Heiko; Fisher, Peter

    2013-12-01

    This study shows the analysis and comparison of different SAR backscatter signatures (σ0 distributions) for distinguishable land cover types over two semi-arid test sites in Africa. The two sites that were chosen are located in Tanzania and Chad, where existing multi- frequency data was available from the different synthetic aperture radar (SAR) archives. Images were grouped into wet and dry season for the Tanzania site, whereas only dry season imagery was available for the Chad site. An IsoData unsupervised classification was applied on all three sets of images to classify seven land cover classes. Random samples were taken from each of the classes, resulting in σ0 distributions for the different classes for each site. These SAR land cover signatures are interpreted and discussed, with further steps identified.

  9. Water Quality and Toxic Element Effects on Isohumic Soil Properties and Crops in Semi-arid Regions.

    PubMed

    Azouzi, Rim; Charef, Abdelkrim; Ayed, Lamia

    2015-06-01

    Treated wastewater (TWW) and freshwater used separately or within the same agricultural soil is a key element in soil parameter evolution, soil-plant pollution and crop yields. The long-term application of TWW increased CaCO3, P, N, K, TOC, metal contents, pH and salinity in isohumic soil in semi-arid and arid climates. Also, it was found that using freshwater after TWW within the same land leached soil compounds and pollutants. Consequently, a clear decline of salinity, pH, macronutrient and pollutant concentrations occured. Therefore, the economic profitability in topsoil decreased. TWW contributed to crop production increase, despite high fertilizer and metal concentrations in TWW and soil. Also, no toxic metal trace was detected in cultivated plants despite soil pollution. Occasional rainwater removed the stable part of fertilizers in topsoil and slightly improved plant development. PMID:25661007

  10. Water Quality and Toxic Element Effects on Isohumic Soil Properties and Crops in Semi-arid Regions.

    PubMed

    Azouzi, Rim; Charef, Abdelkrim; Ayed, Lamia

    2015-06-01

    Treated wastewater (TWW) and freshwater used separately or within the same agricultural soil is a key element in soil parameter evolution, soil-plant pollution and crop yields. The long-term application of TWW increased CaCO3, P, N, K, TOC, metal contents, pH and salinity in isohumic soil in semi-arid and arid climates. Also, it was found that using freshwater after TWW within the same land leached soil compounds and pollutants. Consequently, a clear decline of salinity, pH, macronutrient and pollutant concentrations occured. Therefore, the economic profitability in topsoil decreased. TWW contributed to crop production increase, despite high fertilizer and metal concentrations in TWW and soil. Also, no toxic metal trace was detected in cultivated plants despite soil pollution. Occasional rainwater removed the stable part of fertilizers in topsoil and slightly improved plant development.

  11. Potential of Carbon Sequestration as Soil Carbonate in Arid and Semi-arid Region of North China: Impacts of Land Use Change

    NASA Astrophysics Data System (ADS)

    Wang, X.; Wang, J.; Li, X.; Guo, Y.

    2015-12-01

    Soil carbonate (SIC) exceeds organic carbon (SOC) greatly in (semi-)arid lands, thus may be important for carbon sequestration. However, field data for studying SIC dynamics and quantifying SIC accumulation have been lacking. This paper consists of two parts. We first present our recent findings of SIC accumulation in the croplands of north China (Wang et al., 2014; 2015). We then report a meta-analysis of field based SIC data from 745 soil profiles in China. Our recent findings were based on two sets of data: >100 soil samples recently collected from the Yanqi Basin of central Xinjiang and ~200 archived soil samples from four long-term experiment (LTE) sites in the north China. Our study showed that intensive cropping in the arid and semi-arid region leaded to a greater increase in SIC than in SOC; organic amendments enhanced SIC accumulation in the cropland of north China. Our meta-analysis shows that despite a large variation of SIC stock (5-42 kg C m-2), SIC storage in agricultural soils is generally higher relative to non-agricultural soils. We provide assessment how land use change may affect SIC storage in north China.

  12. Application of Dempster-Shafer theory, spatial analysis and remote sensing for groundwater potentiality and nitrate pollution analysis in the semi-arid region of Khuzestan, Iran.

    PubMed

    Rahmati, Omid; Melesse, Assefa M

    2016-10-15

    Effective management and sustainable development of groundwater resources of arid and semi-arid environments require monitoring of groundwater quality and quantity. The aim of this paper is to develop a reasonable methodological framework for producing the suitability map for drinking water through the geographic information system, remote sensing and field surveys of the Andimeshk-Dezful, Khozestan province, Iran as a semi-arid region. This study investigated the delineation of groundwater potential zone based on Dempster-Shafer (DS) theory of evidence and evaluate its applicability for groundwater potentiality mapping. The study also analyzed the spatial distribution of groundwater nitrate concentration; and produced the suitability map for drinking water. The study has been carried out with the following steps: i) creation of maps of groundwater conditioning factors; ii) assessment of groundwater occurrence characteristics; iii) creation of groundwater potentiality map (GPM) and model validation; iv) collection and chemical analysis of water samples; v) assessment of groundwater nitrate pollution; and vi) creation of groundwater potentiality and quality map. The performance of the DS was also evaluated using the receiver operating characteristic (ROC) curve method and pumping test data to ensure its generalization ability, which eventually, the GPM showed 87.76% accuracy. The detailed analysis of groundwater potentiality and quality revealed that the 'non acceptable' areas covers an area of about 1479km(2) (60%). The study will provide significant information for groundwater management and exploitation in areas where groundwater is a major source of water and its exploration is critical to support drinking water need.

  13. Soil temperature investigations using satellite acquired thermal-infrared data in semi-arid regions. Thesis. Final Report; [Utah

    NASA Technical Reports Server (NTRS)

    Day, R. L.; Petersen, G. W.

    1983-01-01

    Thermal-infrared data from the Heat Capacity Mapping Mission satellite were used to map the spatial distribution of diurnal surface temperatures and to estimate mean annual soil temperatures (MAST) and annual surface temperature amplitudes (AMP) in semi-arid east central Utah. Diurnal data with minimal snow and cloud cover were selected for five dates throughout a yearly period and geometrically co-registered. Rubber-sheet stretching was aided by the WARP program which allowed preview of image transformations. Daytime maximum and nighttime minimum temperatures were averaged to generation average daily temperature (ADT) data set for each of the five dates. Five ADT values for each pixel were used to fit a sine curve describing the theoretical annual surface temperature response as defined by a solution of a one-dimensinal heat flow equation. Linearization of the equation produced estimates of MAST and AMP plus associated confidence statistics. MAST values were grouped into classes and displayed on a color video screen. Diurnal surface temperatures and MAST were primarily correlated with elevation.

  14. Future Water Management in the South Platte River Basin: Impacts of Hydraulic Fracturing, Population, Agriculture, and Climate Change in a Semi-Arid Region.

    NASA Astrophysics Data System (ADS)

    Walker, E. L.; Hogue, T. S.; Anderson, A. M.; Read, L.

    2015-12-01

    In semi-arid basins across the world, the gap between water supply and demand is growing due to climate change, population growth, and shifts in agriculture and unconventional energy development. Water conservation efforts among residential and industrial water users, recycling and reuse techniques and innovative regulatory frameworks for water management strive to mitigate this gap, however, the extent of these strategies are often difficult to quantify and not included in modeling water allocations. Decision support systems (DSS) are purposeful for supporting water managers in making informed decisions when competing demands create the need to optimize water allocation between sectors. One region of particular interest is the semi-arid region of the South Platte River basin in northeastern Colorado, where anthropogenic and climatic effects are expected to increase the gap between water supply and demand in the near future. Specifically, water use in the South Platte is impacted by several high-intensity activities, including unconventional energy development, i.e. hydraulic fracturing, and large withdrawals for agriculture; these demands are in addition to a projected population increase of 100% by 2050. The current work describes the development of a DSS for the South Platte River basin, using the Water Evaluation and Planning system software (WEAP) to explore scenarios of how variation in future water use in the energy, agriculture, and municipal sectors will impact water allocation decisions. Detailed data collected on oil and gas water use in the Niobrara shale play will be utilized to predict future sector use. We also employ downscaled climate projections for the region to quantify the potential range of water availability in the basin under each scenario, and observe whether or not, and to what extent, climate may impact management decisions at the basin level.

  15. Trends and variations of pH and hardness in a typical semi-arid river in a monsoon climate region during 1985-2009.

    PubMed

    Hao, Shaonan; Li, Xuyong; Jiang, Yan; Zhao, Hongtao; Yang, Lei

    2016-09-01

    The rapid growth of urbanization and industrialization, along with dramatic climate change, has strongly influenced hydrochemical characteristics in recent decades in China and thus could cause the variation of pH and general total hardness of a river. To explore such variations and their potential influencing factors in a river of the monsoon climate region, we analyzed a long-term monitoring dataset of pH, SO4 (2-), NOx, general total hardness (GH), Mg(2+), Ca(2+), and Cl(-) in surface water and groundwater in the Luan River basin from 1985 to 2009. The nonparametric Seasonal Kendall trend test was used to test the long-term trends of pH and GH. Relationship between the affecting factors, pH and GH were discussed. Results showed that pH showed a decreasing trend and that GH had an increasing trend in the long-term. Seasonal variation of pH and GH was mainly due to the typical monsoon climate. Results of correlation analysis showed that the unit area usage amounts of chemical fertilizer, NO3 (-), and SO4 (2-) were negatively correlated with pH in groundwater. In addition, mining activity affected GH spatial variation. Acid deposition, drought, and increasing the use of chemical fertilizers would contribute to the acidification trend, and mining activities would affect the spatial variation of GH. Variations of precipitation and runoff in semi-arid monsoon climate areas had significant influences on the pH and GH. Our findings implied that human activities played a critical role in river acidification in the semi-arid monsoon climate region of northern China. PMID:27255317

  16. Trends and variations of pH and hardness in a typical semi-arid river in a monsoon climate region during 1985-2009.

    PubMed

    Hao, Shaonan; Li, Xuyong; Jiang, Yan; Zhao, Hongtao; Yang, Lei

    2016-09-01

    The rapid growth of urbanization and industrialization, along with dramatic climate change, has strongly influenced hydrochemical characteristics in recent decades in China and thus could cause the variation of pH and general total hardness of a river. To explore such variations and their potential influencing factors in a river of the monsoon climate region, we analyzed a long-term monitoring dataset of pH, SO4 (2-), NOx, general total hardness (GH), Mg(2+), Ca(2+), and Cl(-) in surface water and groundwater in the Luan River basin from 1985 to 2009. The nonparametric Seasonal Kendall trend test was used to test the long-term trends of pH and GH. Relationship between the affecting factors, pH and GH were discussed. Results showed that pH showed a decreasing trend and that GH had an increasing trend in the long-term. Seasonal variation of pH and GH was mainly due to the typical monsoon climate. Results of correlation analysis showed that the unit area usage amounts of chemical fertilizer, NO3 (-), and SO4 (2-) were negatively correlated with pH in groundwater. In addition, mining activity affected GH spatial variation. Acid deposition, drought, and increasing the use of chemical fertilizers would contribute to the acidification trend, and mining activities would affect the spatial variation of GH. Variations of precipitation and runoff in semi-arid monsoon climate areas had significant influences on the pH and GH. Our findings implied that human activities played a critical role in river acidification in the semi-arid monsoon climate region of northern China.

  17. Ectoparasite Infestations and Canine Infection by Rickettsiae and Ehrlichiae in a Semi-Arid Region of Northeastern Brazil.

    PubMed

    Araes-Santos, Ana Isabel; Moraes-Filho, Jonas; Peixoto, Renata M; Spolidorio, Mariana G; Azevedo, Sérgio S; Costa, Mateus M; Labruna, Marcelo B; Horta, Mauricio C

    2015-11-01

    This study investigated the prevalence of Rickettsia spp. and Ehrlichia canis infection in dogs and their ectoparasites from rural and urban areas of two municipalities, Petrolina and Juazeiro, within a semiarid region (Caatinga biome) of northeastern Brazil, by immunofluorescence assay (IFA) and polymerase chain reaction (PCR). Overall, 12.1% (61/504) and 23.0% (116/504) of canine plasma samples had antibodies reactive to Rickettsia spp. and E. canis. E. canis DNA was detected by PCR in 8.3% (42/504) of canine blood samples, whereas no blood sample was positive for Rickettsia spp. The infection by E. canis was determined by PCR in 4.9% (14/285) Rhipicephalus sanguineus sensu lato (s.l.) ticks and by Rickettsia felis in 1.1% (3/285) and 40.6% (74/182) ticks and fleas, respectively. Multivariate regression analyses revealed that canine seropositivity to Rickettsia spp. was associated statistically with the variables "to reside in Petrolina" and "presence of ectoparasites." Our results indicate that canine infection by E. canis might be endemic in the Caatinga biome as it is in other Brazilian biomes. Although no previous serosurvey for Rickettsia spp. has been conducted on dogs from the Caatinga biome, our values are much lower than the ones reported for rural dogs from other Brazilian biomes. These differences are likely related to the semiarid climate of the aatinga biome, which minimizes the exposure of rural dogs to Amblyomma spp. ticks, the most common vectors of Rickettsia spp. in Brazil. Considering that dogs are excellent sentinels for human exposure to Rickettsia spp., we can infer that the risks of human acquiring tick-borne rickettsiosis in the Caatinga region of the present study are low. The rickettsial infection rates in fleas and ticks were not related to canine seropositivity; i.e., areas with higher Rickettsia infection rates in fleas had the lowest canine seroreactivity to Rickettsia spp. PMID:26565771

  18. Ectoparasite Infestations and Canine Infection by Rickettsiae and Ehrlichiae in a Semi-Arid Region of Northeastern Brazil.

    PubMed

    Araes-Santos, Ana Isabel; Moraes-Filho, Jonas; Peixoto, Renata M; Spolidorio, Mariana G; Azevedo, Sérgio S; Costa, Mateus M; Labruna, Marcelo B; Horta, Mauricio C

    2015-11-01

    This study investigated the prevalence of Rickettsia spp. and Ehrlichia canis infection in dogs and their ectoparasites from rural and urban areas of two municipalities, Petrolina and Juazeiro, within a semiarid region (Caatinga biome) of northeastern Brazil, by immunofluorescence assay (IFA) and polymerase chain reaction (PCR). Overall, 12.1% (61/504) and 23.0% (116/504) of canine plasma samples had antibodies reactive to Rickettsia spp. and E. canis. E. canis DNA was detected by PCR in 8.3% (42/504) of canine blood samples, whereas no blood sample was positive for Rickettsia spp. The infection by E. canis was determined by PCR in 4.9% (14/285) Rhipicephalus sanguineus sensu lato (s.l.) ticks and by Rickettsia felis in 1.1% (3/285) and 40.6% (74/182) ticks and fleas, respectively. Multivariate regression analyses revealed that canine seropositivity to Rickettsia spp. was associated statistically with the variables "to reside in Petrolina" and "presence of ectoparasites." Our results indicate that canine infection by E. canis might be endemic in the Caatinga biome as it is in other Brazilian biomes. Although no previous serosurvey for Rickettsia spp. has been conducted on dogs from the Caatinga biome, our values are much lower than the ones reported for rural dogs from other Brazilian biomes. These differences are likely related to the semiarid climate of the aatinga biome, which minimizes the exposure of rural dogs to Amblyomma spp. ticks, the most common vectors of Rickettsia spp. in Brazil. Considering that dogs are excellent sentinels for human exposure to Rickettsia spp., we can infer that the risks of human acquiring tick-borne rickettsiosis in the Caatinga region of the present study are low. The rickettsial infection rates in fleas and ticks were not related to canine seropositivity; i.e., areas with higher Rickettsia infection rates in fleas had the lowest canine seroreactivity to Rickettsia spp.

  19. Population dynamics of small mammals in semi-arid regions: a comparative study of demographic variability in two rodent species.

    PubMed Central

    Lima, Mauricio; Stenseth, Nils Chr; Leirs, Herwig; Jaksic, Fabián M

    2003-01-01

    The seasonally determined demographic structure of two semi-arid rodents, both agricultural pest species (the leaf-eared mouse (Phyllotis darwini) in Chile and the multimammate mouse (Mastomys natalensis) in Tanzania), is analysed using capture-mark-recapture (CMR) statistical models and measures for elasticity (the relative change in the growth rate due to a relative unit change in the parameter of concern) derived from projection linear matrix models. We demonstrate that reproduction and survival during the breeding season contribute approximately equally to population growth in the leaf-eared mouse, whereas the multimammate mouse is characterized by a more clearly defined seasonal structure into breeding and non-breeding seasons and that reproduction contributes far more than survival during the breeding season. On this basis, we discuss evolutionary and applied (pest control) issues. Regarding the evolution of life histories (leading to a maximization of the overall net annual growth rate), we suggest that for the leaf-eared mouse, features favouring survival throughout the year will provide selective value, but that during the main breeding season, features favouring reproduction and survival are about equally favourable. For the multimammate mouse, features favouring survival are particularly important outside the breeding season, whereas during the breeding season features favouring reproduction are more important. Regarding pest control (aiming at reducing the overall net annual growth rate), we suggest that (ignoring economic considerations) affecting survival outside the main breeding season is particularly effective for the leaf-eared mouse, a feature that is even more the case for the multimammate mouse. In sum, we demonstrate through this comparative study that much is to be learnt from studying the dynamics of fluctuating small rodents-a focal issue within much of population ecology. PMID:14561287

  20. Joint meteorological and hydrological drought model: a management tool for proactive water resources planning of semi-arid regions

    NASA Astrophysics Data System (ADS)

    Modaresi Rad, Arash; Ahmadi Ardakani, Samira; Ghahremani, Zahra; Ghahreman, Bijan; Khalili, Davar

    2016-04-01

    Conventionally drought analysis has been limited to single drought category. Utilization of models incorporating multiple drought categories, can relax this limitation. A copula-based model is proposed, which uses meteorological and hydrological drought indices to assess drought events for ultimate management of water resources, at small scales, i.e., sub-watersheds. The study area is a sub basin located at Karkheh watershed (western Iran), utilizing 41-year data of 4 raingauge stations and one hydrometric station located upstream and at the outlet respectively. Prior to drought analysis, time series of precipitation and streamflow records are investigated for possible dependency/significant trend. Considering the semi-arid nature of the study area, boxplots are utilized to graphically capture the rainy months, which used to evaluate the degree of correlation between streamflow and precipitation records via nonparametric correlations and bivariate tail dependence. Time scales of 3- and 12-month are considered, which are used to study vulnerability of early vegetation establishment and long-term ecosystem resilience, respectively. Among four common goodness of fit tests, the Cramér-von-Mises is found preferable for defining copula distribution functions through Akaike & Bayesian information criteria and coefficient of determination. Furthermore the uncertainty associated with different copula models is measured using the concept of entropy. A new bivariate drought modeling approach is proposed through copulas. The proposed index, named standardized precipitation-streamflow index (SPSI) is compared with two separate indices of streamflow drought index (SDI) and standardized precipitation index (SPI). According to results, the SPSI could detect onset of droughts dominated by precipitation as is similarly indicated by SPI index. It also captures discordant case of normal period precipitation with dry period streamflow and vice versa. Finally, combination of severity

  1. Application of Dempster-Shafer theory, spatial analysis and remote sensing for groundwater potentiality and nitrate pollution analysis in the semi-arid region of Khuzestan, Iran.

    PubMed

    Rahmati, Omid; Melesse, Assefa M

    2016-10-15

    Effective management and sustainable development of groundwater resources of arid and semi-arid environments require monitoring of groundwater quality and quantity. The aim of this paper is to develop a reasonable methodological framework for producing the suitability map for drinking water through the geographic information system, remote sensing and field surveys of the Andimeshk-Dezful, Khozestan province, Iran as a semi-arid region. This study investigated the delineation of groundwater potential zone based on Dempster-Shafer (DS) theory of evidence and evaluate its applicability for groundwater potentiality mapping. The study also analyzed the spatial distribution of groundwater nitrate concentration; and produced the suitability map for drinking water. The study has been carried out with the following steps: i) creation of maps of groundwater conditioning factors; ii) assessment of groundwater occurrence characteristics; iii) creation of groundwater potentiality map (GPM) and model validation; iv) collection and chemical analysis of water samples; v) assessment of groundwater nitrate pollution; and vi) creation of groundwater potentiality and quality map. The performance of the DS was also evaluated using the receiver operating characteristic (ROC) curve method and pumping test data to ensure its generalization ability, which eventually, the GPM showed 87.76% accuracy. The detailed analysis of groundwater potentiality and quality revealed that the 'non acceptable' areas covers an area of about 1479km(2) (60%). The study will provide significant information for groundwater management and exploitation in areas where groundwater is a major source of water and its exploration is critical to support drinking water need. PMID:27358196

  2. Determination of unit nutrient loads for different land uses in wet periods through modelling and optimization for a semi-arid region

    NASA Astrophysics Data System (ADS)

    Özcan, Zeynep; Kentel, Elçin; Alp, Emre

    2016-09-01

    Diffuse pollution abatement has been a challenge for decision-makers because of the intermittent nature and difficulty of identifying impacts of non-point sources. Depending on the degree of complexity of the system processes and constraints related to time, budget and human resources, variety of tools are used in diffuse pollution management. Decision-makers prefer to use rough estimates that require limited time and budget, in the preliminary assessment of diffuse pollution. The unit pollution load method which is based on the pollution generation rate per unit area and time for a given land use can aid decision-makers in the preliminary assessment of diffuse pollution. In this study, a deterministic distributed watershed model, SWAT is used together with nonlinear optimization models to estimate unit nutrient pollution loads during wet periods for different land use classes for the semi-arid Lake Mogan watershed that is dominated by agricultural activities. Extensive data sets including in-stream water quality and flowrate measurements, meteorological data, land use/land cover (LULC) map developed using remote sensing algorithms, information about agricultural activities, and soil data are used to calibrate and verify the hydraulic and water quality components of SWAT model. Results show that the unit total nitrogen (TN) and total phosphorus (TP) loads (0.46 kg TN/ha/yr and 0.07 kg TP/ha/yr) generated from the watershed during wet periods are very close to the minimum values of the loads specified in the literature and highly depend on the variations in rainfall. Estimated unit nutrient loads both at watershed scale and for different land use classes can be used to assess diffuse pollution control measures for similar regions with semi-arid conditions and heavy agricultural activity.

  3. Ectoparasite Infestations and Canine Infection by Rickettsiae and Ehrlichiae in a Semi-Arid Region of Northeastern Brazil

    PubMed Central

    Araes-Santos, Ana Isabel; Moraes-Filho, Jonas; Peixoto, Renata M.; Spolidorio, Mariana G.; Azevedo, Sérgio S.; Costa, Mateus M.; Labruna, Marcelo B.

    2015-01-01

    Abstract This study investigated the prevalence of Rickettsia spp. and Ehrlichia canis infection in dogs and their ectoparasites from rural and urban areas of two municipalities, Petrolina and Juazeiro, within a semiarid region (Caatinga biome) of northeastern Brazil, by immunofluorescence assay (IFA) and polymerase chain reaction (PCR). Overall, 12.1% (61/504) and 23.0% (116/504) of canine plasma samples had antibodies reactive to Rickettsia spp. and E. canis. E. canis DNA was detected by PCR in 8.3% (42/504) of canine blood samples, whereas no blood sample was positive for Rickettsia spp. The infection by E. canis was determined by PCR in 4.9% (14/285) Rhipicephalus sanguineus sensu lato (s.l.) ticks and by Rickettsia felis in 1.1% (3/285) and 40.6% (74/182) ticks and fleas, respectively. Multivariate regression analyses revealed that canine seropositivity to Rickettsia spp. was associated statistically with the variables “to reside in Petrolina” and “presence of ectoparasites.” Our results indicate that canine infection by E. canis might be endemic in the Caatinga biome as it is in other Brazilian biomes. Although no previous serosurvey for Rickettsia spp. has been conducted on dogs from the Caatinga biome, our values are much lower than the ones reported for rural dogs from other Brazilian biomes. These differences are likely related to the semiarid climate of the aatinga biome, which minimizes the exposure of rural dogs to Amblyomma spp. ticks, the most common vectors of Rickettsia spp. in Brazil. Considering that dogs are excellent sentinels for human exposure to Rickettsia spp., we can infer that the risks of human acquiring tick-borne rickettsiosis in the Caatinga region of the present study are low. The rickettsial infection rates in fleas and ticks were not related to canine seropositivity; i.e., areas with higher Rickettsia infection rates in fleas had the lowest canine seroreactivity to Rickettsia spp. PMID:26565771

  4. Hydrological Connectivity and Science and Policy Integration Issues for Aquatic Resource Jurisdictional Determinations in a Semi-Arid Region of the Western U.S

    NASA Astrophysics Data System (ADS)

    Caruso, B. S.

    2012-12-01

    Rivers and streams are becoming increasingly stressed and degraded, and wetlands lost, due to human development and associated management policies and actions that are generally ineffective for aquatic resources protection and restoration. In the semi-arid western U.S., these issues are more severe due to the limited quantity of water and aquatic resources, the magnified role of their ecological services in drier landscapes, and increasing impacts from urbanization and energy development. However, a significant disconnect between policy and science exists that leads to continued degradation of surface waters. Supreme Court decisions and joint Federal agency guidance for determining jurisdiction as 'waters of the US' that can be protected under Clean Water Act Section 404 (permitting discharge of dredged and fill materials into wetlands and other waters) are good examples of this disconnect. The hydrological and ecological connectivity of intermittent and ephemeral streams and wetlands with downstream navigable waters is a critical issue that must be evaluated to determine jurisdiction, but this can be a complex endeavour in semi-arid regions. The hydrological connectivity and key science and policy integration issues for stream and wetland jurisdictional determinations (JDs) were evaluated for a semi-arid region of the western U.S. (Environmental Protection Agency [EPA] Region 8), including much of the Rocky Mountains, Great Plains and Colorado Plateau. The key scientific approaches recommended in the agency guidance were analyzed in detail. An evaluation was performed of a sample of JDs reviewed by EPA Region 8 and their outcomes in terms of aquatic resources that were considered non-jurisdictional. An analysis of stream types and characteristics across the region using available digital spatial analysis tools was performed. A subset of finalized JDs issued by COE was reviewed to analyze the scientific information used to evaluate connectivity to downstream waters

  5. Net CO2 and water exchanges of trees and grasses in a semi-arid region (Gourma, Mali)

    NASA Astrophysics Data System (ADS)

    Le Dantec, Valérie; Kergoat, Laurent; Timouk, Franck; Hiernaux, Pierre; Mougin, Eric

    2010-05-01

    An improved understanding of plant and soil processes is critical to predict land surface-atmosphere water exchanges, especially in semi-arid environments, where knowledge is still severely lacking. Within the frame of the African Monsoon Multidisciplinary Project (AMMA), eddy covariance and sapflow stations have been installed to document the intensity, the temporal variability and the main drivers of net CO2 fluxes, water fluxes and contribution of the trees to these fluxes in a pastoral Sahelian landscape. Indeed, although the importance of vegetation in the West African monsoon system has long been postulated, extremely few data were available sofar to test and develop land surface models. In particular, data documenting seasonal and inter-annual dynamics of vegetation/atmosphere exchanges did not exist at 15° N in West Africa before AMMA. The site is located in the Gourma, Mali. Vegetation in this area is sparse and mainly composed of annual grasses and forbs, and trees. Vegetation is organized according to soil type and lateral water redistribution, with bare soil with scattered trees on shallow soils and rocky outcrops (35% of the area), annual grasses and scattered trees on sandy soils (65% of the area), and more dense canopies of grasses and trees growing in valley bottoms over clay soil. To quantify tree transpiration in the overall evapotranspiration flux, sapflow measurements, associated to soil moisture measurements, have been conducted on the main tree species (Acacia senegal, A. seyal, A. raddiana, Combretum glutinosum, Balanites aegyptiaca) in a grassland site and in an open forest site, where eddy covariance fluxes measured the total flux. Using this dataset, we have studied the effects of plant diversity on carbon and water fluxes at the foot-print scale and seasonal dynamics of fluxes due to plant phenology and variations of soil water content (SWC). Carbon fluxes were documented as well, over two years. NEE was close to 0 during the dry season

  6. Aiming towards improved flood forecasting: Identification of an adequate model structure for a semi-arid and data-scarce region

    NASA Astrophysics Data System (ADS)

    Pilz, Tobias; Francke, Till; Bronstert, Axel

    2015-04-01

    A lot of effort has already been put into the development of forecasting systems to warn people of approaching flood events. Such systems, however, are influenced by various sources of uncertainty which constrain the skill of forecasts. The main goal of this study is the identification, quantification and reduction of uncertainties to provide improved early warnings with adequate lead times in a data-scarce region with strong seasonality of the hydrological regime. This includes the setup of hydrological models and post-processing of simulation results by mathematical means such as data assimilation. The focus area is the Jaguaribe watershed in northeastern Brazil. The region is characterized by a seasonal climate with strong inter-annual variation and recurrent droughts. To ensure a secure water supply also during the dry season several thousand small and some large reservoirs have been constructed. On the other hand, floods caused by heavy rain events are an issue as well. This topic, however, so far has hardly been considered by the scientific community and until today no flood forecasting system exists for that region. To identify the most appropriate model structure for the catchment the process-based hydrological model for semi-arid environments WASA was implemented into the eco-hydrological simulation environment ECHSE. The environment consists of a generic part providing data types and simulation methods, and a problem-specific part where the user can implement different model formulations. This provides the possibility to test various process realisations under consistent input and output data structures. The most appropriate model structure can then be determined by statistical means such as Bayesian model averaging. Subsequently, forecast results may be updated by post-processing and/or data assimilation. Furthermore, methods of data fusion can be used to combine measurements of different quality and resolution, such as in-situ and remotely sensed data

  7. The effect of vegetation and beaver dams on geomorphic recovery rates of incised streams in the semi-arid regions of the Columbia River basin, USA.

    NASA Astrophysics Data System (ADS)

    Pollock, M.; Beechie, T.; Jordan, C.

    2005-05-01

    Channel incision is a common occurrence in semi-arid regions of the Columbia River basin and throughout the world, where a fragile balance between climate, vegetation and geology makes channels susceptible to changes in hillslope erosion, stream discharge and sediment yield. Incision is defined as a rapid downcutting and lowering of the stream bed such that it reduces the frequency and duration of flooding onto the adjacent floodplain. We are studying the feasibility of restoring incised streams throughout the interior Columbia River basin. We hypothesize that under proper land use management, it is possible for them to aggrade such that they reconnect to their former floodplains within relatively short time frames. Theoretical and empirical evidence suggests that over decadal time scales, changes to land management that excludes grazing and allows riparian vegetation to become established can cause significant fill within the incised valleys. Preliminary modeling suggests that factors most affecting the length of time for an incised valley to completely aggrade and reconnect to its pre-incision floodplain are the depth of the incision, sediment production in the watershed, the amount and type of riparian vegetation, and the extent of beaver dam construction. While most natural resource and fisheries managers are aware of widespread incision throughout the Columbia River basin, the extent of incision within the range of the Pacific salmon is largely undocumented. However, we do know many incised streams that historically supported salmon no longer do so, and that habitat conditions are severely degraded in these incised streams. The historical record shows that numerous salmon-bearing streams in the semi-arid region of the interior Columbia River basin once contained narrow and deep, slowly meandering channels lined with cottonwoods, willows and/or sedges, contained numerous beaver dams, contained abundant and easily accessible off-channel habitat on the floodplain

  8. Dynamics and Sources of Soil Organic C Following Afforestation of Croplands with Poplar in a Semi-Arid Region in Northeast China

    PubMed Central

    Hu, Ya-Lin; Hu, Li-Le; Zeng, De-Hui

    2014-01-01

    Afforestation of former croplands has been proposed as a promising way to mitigate rising atmospheric CO2 concentration in view of the commitment to the Kyoto Protocol. Central to this C sequestration is the dynamics of soil organic C (SOC) storage and stability with the development of afforested plantations. Our previous study showed that SOC storage was not changed after afforestation except for the 0–10 cm layer in a semi-arid region of Keerqin Sandy Lands, northeast China. In this study, soil organic C was further separated into light and heavy fractions using the density fractionation method, and their organic C concentration and 13C signature were analyzed to investigate the turnover of old vs. new SOC in the afforested soils. Surface layer (0–10 cm) soil samples were collected from 14 paired plots of poplar (Populus × xiaozhuanica W. Y. Hsu & Liang) plantations with different stand basal areas (the sum of the cross-sectional area of all live trees in a stand), ranging from 0.2 to 32.6 m2 ha−1, and reference maize (Zea mays L.) croplands at the same sites as our previous study. Soil ΔC stocks (ΔC refers to the difference in SOC content between a poplar plantation and the paired cropland) in bulk soil and light fraction were positively correlated with stand basal area (R2 = 0.48, p<0.01 and R2 = 0.40, p = 0.02, respectively), but not for the heavy fraction. SOCcrop (SOC derived from crops) contents in the light and heavy fractions in poplar plantations were significantly lower as compared with SOC contents in croplands, but tree-derived C in bulk soil, light and heavy fraction pools increased gradually with increasing stand basal area after afforestation. Our study indicated that cropland afforestation could sequester new C derived from trees into surface mineral soil, but did not enhance the stability of SOC due to a fast turnover of SOC in this semi-arid region. PMID:24466183

  9. Dynamics and sources of soil organic C following afforestation of croplands with poplar in a semi-arid region in northeast China.

    PubMed

    Hu, Ya-Lin; Hu, Li-Le; Zeng, De-Hui

    2014-01-01

    Afforestation of former croplands has been proposed as a promising way to mitigate rising atmospheric CO2 concentration in view of the commitment to the Kyoto Protocol. Central to this C sequestration is the dynamics of soil organic C (SOC) storage and stability with the development of afforested plantations. Our previous study showed that SOC storage was not changed after afforestation except for the 0-10 cm layer in a semi-arid region of Keerqin Sandy Lands, northeast China. In this study, soil organic C was further separated into light and heavy fractions using the density fractionation method, and their organic C concentration and (13)C signature were analyzed to investigate the turnover of old vs. new SOC in the afforested soils. Surface layer (0-10 cm) soil samples were collected from 14 paired plots of poplar (Populus × xiaozhuanica W. Y. Hsu & Liang) plantations with different stand basal areas (the sum of the cross-sectional area of all live trees in a stand), ranging from 0.2 to 32.6 m(2) ha(-1), and reference maize (Zea mays L.) croplands at the same sites as our previous study. Soil ΔC stocks (ΔC refers to the difference in SOC content between a poplar plantation and the paired cropland) in bulk soil and light fraction were positively correlated with stand basal area (R (2) = 0.48, p<0.01 and R (2) = 0.40, p = 0.02, respectively), but not for the heavy fraction. SOCcrop (SOC derived from crops) contents in the light and heavy fractions in poplar plantations were significantly lower as compared with SOC contents in croplands, but tree-derived C in bulk soil, light and heavy fraction pools increased gradually with increasing stand basal area after afforestation. Our study indicated that cropland afforestation could sequester new C derived from trees into surface mineral soil, but did not enhance the stability of SOC due to a fast turnover of SOC in this semi-arid region.

  10. Using remote sensing to create indicators of ecosystem variability for a semi-arid savanna watershed in the Kavango-Zambezi region of Southern Africa

    NASA Astrophysics Data System (ADS)

    Pricope, Narcisa Gabriela

    This dissertation addresses changes in land and resource availability occurring as a result of climate, water variability and changes in fire regimes in a semi-arid savanna region in Southern Africa. The research combines geospatial analyses of climatological and hydrologic data and various remotely-sensed datasets to create measures of ecosystem variability and adaptability to natural and anthropogenic changes in sensitive ecosystems. The study area is the Chobe River Basin (CRB), a watershed shared between Botswana and Namibia situated at the heart of one of the world.s largest transfrontier conservation areas, where different land-use management strategies and economic policies affect both the ecosystem and the livelihoods support system differentially. The southern African savanna is a highly variable environment and people have adapted to its harshness through the generations. However, in light of past and ongoing environmental changes, their ability to adapt may become threatened. By mapping and then analyzing the spatial and temporal variability of two important factors, namely flooding and fires, in conjunction with indices of vegetation health and productivity, the findings of this research can ultimately contribute to enhancing our understanding of local adaptation mechanisms to future environmental change. This is the first reconstruction of the spatial and temporal patterns of inundation for the last 25 years in the CRB, a transboundary basin with an unusual hydrologic regime and an important water resource for both human and wildlife populations. In the context of increasing temperatures, decreasing precipitation trends and increasing frequencies and intensities of El Nino episodes in southern Africa (Boko et al., 2007), I also investigated changes in fire incidences and marked shifts in fire seasonality both within and outside of protected areas of central Kavango Zambezi Transfrontier Conservation Area (KAZA TFCA). These changes are likely to have a

  11. Water and Carbon Fluxes in a Semi-Arid Region Floodplain: Multiple Approaches to Constrain Estimates of Seasonal- and Depth Dependent Fluxes at Rifle, Colorado

    NASA Astrophysics Data System (ADS)

    Tokunaga, T. K.; Wan, J.; Dong, W.; Kim, Y.; Williams, K. H.; Conrad, M. E.; Christensen, J. N.; Bill, M.; Faybishenko, B.; Hobson, C.; Dayvault, R.; Long, P. E.; Hubbard, S. S.

    2014-12-01

    The importance of floodplains as links between watersheds and rivers highlights the need to understand water and carbon fluxes within floodplain profiles, from their surface soil, through the vadose zone and underlying groundwater. Here, we present results of field and laboratory measurements conducted to quantify fluxes at a remediated uranium/vanadium mill tailings site on a floodplain at Rifle, Colorado. This semi-arid site has a vegetated, locally derived fill soil that replaced the original milling-contaminated soil to a depth of about 1.5 m. The fill soil overlies about 4.5 m of native sandy and cobbly alluvium containing the shallow aquifer. The aquifer generally drains into the Colorado River and is underlain by low permeability Wasatch Formation shale. Within this system, key issues being investigated include water and carbon fluxes between the vadose zone and aquifer, and CO2 fluxes through the vadose zone soil out to the atmosphere. Magnitudes of these fluxes are typically low, thus challenging to measure, yet increasingly important to quantify given the expansion of arid and semi-arid regions under changing climate. The results of field investigations demonstrated that the annual water table rise and fall are driven by snowmelt runoff into the Colorado River in late spring to early summer. Tensiometer data indicate that net recharge from the deeper part of the vadose zone into groundwater occurs later in summer, after water table decline. The effectiveness of summer evapotranspiration in limiting groundwater recharge is reflected in water potentials decreasing to as low as -3 MPa within the upper 1.5 m of the vadose zone. Examination of the historical precipitation record further indicates that net recharge only occurs in years with above-average precipitation during winter and spring. These short intervals of net recharge also facilitate C transport into groundwater because of higher organic C concentrations in the vadose zone. Fluxes of CO2 measured

  12. Genotypic and symbiotic diversity of Rhizobium populations associated with cultivated lentil and pea in sub-humid and semi-arid regions of Eastern Algeria.

    PubMed

    Riah, Nassira; Béna, Gilles; Djekoun, Abdelhamid; Heulin, Karine; de Lajudie, Philippe; Laguerre, Gisèle

    2014-07-01

    The genetic structure of rhizobia nodulating pea and lentil in Algeria, Northern Africa was determined. A total of 237 isolates were obtained from root nodules collected on lentil (Lens culinaris), proteaginous and forage pea (Pisum sativum) growing in two eco-climatic zones, sub-humid and semi-arid, in Eastern Algeria. They were characterised by PCR-restriction fragment length polymorphism (RFLP) of the 16S-23S rRNA intergenic region (IGS), and the nodD-F symbiotic region. The combination of these haplotypes allowed the isolates to be clustered into 26 distinct genotypes, and all isolates were classified as Rhizobium leguminosarum. Symbiotic marker variation (nodD-F) was low but with the predominance of one nod haplotype (g), which had been recovered previously at a high frequency in Europe. Sequence analysis of the IGS further confirmed its high variability in the studied strains. An AMOVA analysis showed highly significant differentiation in the IGS haplotype distribution between populations from both eco-climatic zones. This differentiation was reflected by differences in dominant genotype frequencies. Conversely, no host plant effect was detected. The nodD gene sequence-based phylogeny suggested that symbiotic gene diversity in pea and lentil nodulating rhizobial populations in Algeria was low compared to that reported elsewhere in the world.

  13. Remotely-Sensed Regional-Scale Evapotranspiration of a Semi-Arid Great Basin Desert and its Relationship to Geomorphology, Soils, and Vegetation

    NASA Technical Reports Server (NTRS)

    Laymon, C.; Quattrochi, D.; Malek, E.; Hipps, L.; Boettinger, J.; McCurdy, G.

    1997-01-01

    Landsat Thematic Mapper data is used to estimate instantaneous regional-scale surface water and energy fluxes in a semi-arid Great Basin desert of the western United States. Results suggest that it is possible to scale from point measurements of environmental state variables to regional estimates of water and energy exchange. This research characterizes the unifying thread in the classical climate-topography-soil-vegetation relation-the surface water and energy balance-through maps of the partitioning of energy throughout the landscape. The study was conducted in Goshute Valley of northeastern Nevada, which is characteristic of most faulted graben valleys of the Basin and Range Province of the western United States. The valley comprises a central playa and lake plain bordered by alluvial fans emanating from the surrounding mountains. The distribution of evapotranspiration (ET) is lowest in the middle reaches of the fans where the water table is deep and plants are small, resulting in low evaporation and transpiration. Highest ET occurs in the center of the valley, particularly in the playa, where limited to no vegetation occurs, but evaporation is relatively high because of a shallow water table and silty clay soil capable of large capillary movement. Intermediate values of ET are associated with large shrubs and is dominated by transpiration.

  14. Remotely-Sensed Regional-Scale Evapotranspiration of a Semi-Arid Great Basin Desert and its Relationship to Geomorphology, Soils, and Vegetation

    NASA Technical Reports Server (NTRS)

    Laymon, C.; Quattrochi, D.; Malek, E.; Hipps, L.; Boettinger, J.; McCurdy, G.

    1998-01-01

    Landsat thematic mapper data are used to estimate instantaneous regional-scale surface water and energy fluxes in a semi-arid Great Basin desert of the western United States. Results suggest that it is possible to scale from point measurements of environmental state variables to regional estimates of water and energy exchange. This research characterizes the unifying thread in the classical climate-topography-soil-vegetation relation -the surface water and energy balance-through maps of the partitioning of energy throughout the landscape. The study was conducted in Goshute Valley of northeastern Nevada, which is characteristic of most faulted graben valleys of the Basin and Range Province of the western United States. The valley comprises a central playa and lake plain bordered by alluvial fans emanating from the surrounding mountains. The distribution of evapotranspiration (ET) is lowest in the middle reaches of the fans where the water table is deep and plants are small, resulting in low evaporation and transpiration. Highest ET occurs in the center of the valley, particularly in the playa, where limited to no vegetation occurs, but evaporation is relatively high because of a shallow water table and silty clay soil capable of large capillary movement. Intermediate values of ET are associated with large shrubs and is dominated by transpiration.

  15. Evaluation of hydrological balance and its variability in arid and semi-arid regions of Eurasia from ECMWF 15 year reanalysis

    NASA Astrophysics Data System (ADS)

    Yatagai, Akiyo

    2003-10-01

    Hydrometeorological cycles over arid and semi-arid regions in mid-latitude Eurasia (the Silk Road region) were investigated using meteorological reanalysis data for the period 1979-93, available from the European Centre for Medium-range Weather Forecasts (ECMWF).Results show that seasonal changes of moisture balance in Turkey and central Asia, hereafter referred to as the western region, differ from those in the Taklimakan Desert and Loess Plateau, hereafter referred to as the eastern region. Here, we equate evaporation minus precipitation with the divergence field of the vertically integrated water vapour flux. In the western region, precipitation and positive convergence C of moisture primarily occurs during October-March. In contrast, the eastern region receives precipitation and has its positive C occurring during June-August. As a result, the eastern region has nearly simultaneous seasonal peaks in precipitation P and evapotranspiration E, whereas the western region has minimum P and maximum E in summer.The main annual moisture route for the Silk Road region is from the west to east; however, moisture also comes from the north in July. Over Turkey, moisture arrives from the west and south. In central Asia, however, most of the moisture comes from the west, the convergence peaks in March, and moisture from the south and west is also greater during this month. In the Loess Plateau, moisture enters from the west, the north, and the south, and exits to the east. In July, the peak precipitation and convergence season, all moisture flows are greater for the entire region, and a large influx of moisture from the south occurs during the summer season. The moisture from the south, the monsoonal flow, has a large interannual variability. Copyright

  16. Identifying and managing risk factors for salt-affected soils: a case study in a semi-arid region in China.

    PubMed

    Zhou, De; Xu, Jianchun; Wang, Li; Lin, Zhulu; Liu, Liming

    2015-07-01

    Soil salinization and desalinization are complex processes caused by natural conditions and human-induced risk factors. Conventional salinity risk identification and management methods have limitations in spatial data analysis and often provide an inadequate description of the problem. The objectives of this study were to identify controllable risk factors, to provide response measures, and to design management strategies for salt-affected soils. We proposed to integrate spatial autoregressive (SAR) model, multi-attribute decision making (MADM), and analytic hierarchy process (AHP) for these purposes. Our proposed method was demonstrated through a case study of managing soil salinization in a semi-arid region in China. The results clearly indicated that the SAR model is superior to the OLS model in terms of risk factor identification. These factors include groundwater salinity, paddy area, corn area, aquaculture (i.e., ponds and lakes) area, distance to drainage ditches and irrigation channels, organic fertilizer input, and cropping index, among which the factors related to human land use activities are dominant risk factors that drive the soil salinization processes. We also showed that ecological irrigation and sustainable land use are acceptable strategies for soil salinity management.

  17. An empirical method for peak discharge prediction in ungauged arid and semi-arid region catchments based on morphological parameters and SCS curve number

    NASA Astrophysics Data System (ADS)

    El-Hames, A. S.

    2012-08-01

    SummaryAn empirical method that utilizes the SCS curve number and catchment characteristics has been developed to help in the prediction of peak discharge in ungauged arid and semi-arid region catchments. The morphological factors that were found to control peak discharge are catchment area and slope, and main channel length. The hydrological controls, however, are the effective rainfall that reflects the antecedent wetness condition of the catchment which was calculated from the determined catchment curve number (CN). The data incorporated in the developed method are easy to obtain from satellite images and by utilizing GIS techniques without the need for intensive field visits or relying on historical runoff records. The developed method has been calibrated and validated against 76 rainfall-runoff events from six different countries around the world and it has shown encouraging performance when compared with observed peak discharge data or the results from other models. The developed method performs very well with catchments larger than 45 km2 with coefficient of correlation of 0.92. However, for catchments with areas less than 45 km2 the obtained coefficient of correlation was 0.67. Also, the developed method performs very well with either event-based or return-period-based peak discharge prediction and it can be considered a good alternative to the rational method.

  18. Permanent salt evaporation ponds in a semi-arid Mediterranean region as model systems to study primary production processes under hypersaline conditions

    NASA Astrophysics Data System (ADS)

    Asencio, Antonia D.

    2013-06-01

    A change from planktonic to benthic primary production was observed along an increasing salinity gradient in a permanent solar saltpan sequence (Las Salinas del Pinet) in a semi-arid Mediterranean region (Spain). The biomass and photosynthesis of the water column decreased greatly when salinity increased, while benthic production increased when cyanobacteria crusts developed. This produced a change from autotrophic to heterotrophic in water column productivity. However in the benthos, the changes from heterotrophic to autotrophic were seen throughout the pond sequence. Changes in phytoplankton composition in the studied saltern appeared more influenced by phytoplankton salinity tolerance since 88.0% of variation in the photosynthesis rates and 76.0% in the respiration rates were negatively and positively explained by increased salinity, respectively. However the changes in the benthos composition did not appear to be highly influenced by the benthos salinity tolerance since only half of the variation in the photosynthesis rates were explained by increased salinity. A lack of correlation between the respiration and photosynthesis benthic values can be explained by the oxygen consumed by heterotrophic organisms and by chemical demand. The nutrients system varied seasonally in this saltern, and this variability appeared to relate to the occurrence of the evaporative concentration of water and bacterial activity. This study highlighted that stressors such as water salinity should be considered in future hydrological management plans in order to preserve water resources, especially in warmer and drier climates.

  19. Hydraulic parameters estimation by using an approach based on vertical electrical soundings (VES) in the semi-arid Khanasser valley region, Syria

    NASA Astrophysics Data System (ADS)

    Asfahani, Jamal

    2016-05-01

    A new alternative approach based on using Vertical electrical sounding (VES) technique is proposed for computing the hydraulic conductivity K of an aquifer. The approach takes only the salinity of the groundwater into consideration. VES measurements in the locations, where available water samples exist, are required in such an approach, in order to calibrate and establish empirical relationships between transverse resistance Dar-Zarrouck TR parameter and modified transverse resistance MTR, and between MTR and transmissivity T. Those relationships are thereafter used to extrapolate the transmissivity even in the VES points where no water samples exist. This approach is tested and practiced in the Khanasser valley, Northern Syria, where the hydraulic conductivity of the Quaternary aquifer is computed. An acceptable agreement is found between the hydraulic conductivity values obtained by the proposed approach and those obtained by the pumping test which range between 0.864 and 8.64 m/day (10-5 and 10-4 m/s). The Quaternary aquifer transmissivity of the Khanasser Valley, has been characterized by using this approach and by adapting the MTR parameter. The transmissivity varies between a minimum of 79 m2/day and a maximum of 814 m2/day, with an average of 283 m2/day and a standard deviation of 145 m2/day. The easy and inexpensive approach proposed in this paper can be applied in other semi arid regions.

  20. Spatial and temporal analysis of the drought vulnerability and risks over eight decades in a semi-arid region (Tensift basin: Morocco)

    NASA Astrophysics Data System (ADS)

    Fniguire, Fatima; Laftouhi, Nour-Eddine; Saidi, Mohamed Elmehdi; Zamrane, Zineb; El Himer, Hicham; Khalil, Nourddine

    2016-08-01

    In the last few decades, drought has become a chronic phenomenon in Morocco. It began at the end of the 1970s and continued to the late 2000s. In the present study, hydrometeorological data sets, Standardized Precipitation Index method, and non-parametric tests were used to recognize the frequency and the severity of drought events during the period between 1929 and 2010. The Standardized Precipitation Index showed significant inter-annual fluctuation and evolution of rainfall amounts representing wet cycles (i.e., before 1975) followed by a long period of drought between 1975 and 2004. The inter-annual variability of rainfall is accompanied by shifts of stationarity in the rainfall series. The statistical test of Pettitt, Bayesian method of Lee and Heghinian, Buishand procedure, and Hubert test revealed shifts around the mid 70s. After this period, a deficit of rainfall (with a maximum value of -30 %) was registered. The probabilities of monthly Standardized Precipitation Index values were normal to below normal during the last 40 years. In fact, the increase of drought risk may be resulted from the increase of frequency and severity of meteorological drought. The proposed Standardized Precipitation Index method and non-parametric tests yielded reasonable and satisfactory results for Morocco. Therefore, this approach could be successfully applied to other semi-arid, dry, sub-humid, or semi-humid regions worldwide, where rainfall series are showing high seasonality and year-to-year variability.

  1. Identification of spatiotemporal patterns of biophysical droughts in semi-arid region - a case study of the Karkheh river basin in Iran

    NASA Astrophysics Data System (ADS)

    Kamali, B.; Abbaspour, K. C.; Lehmann, A.; Wehrli, B.; Yang, H.

    2015-06-01

    This study aims at identifying historical patterns of meteorological, hydrological, and agricultural (inclusively biophysical) droughts in the Karkheh River Basin (KRB), one of the nine benchmark watersheds of the CGIAR Challenge Program on Water and Food. Standardized precipitation index (SPI), standardized runoff index (SRI), and soil moisture deficit index (SMDI) were used to represent the above three types of droughts, respectively. The three drought indices were compared across temporal and spatial dimensions. Variables required for calculating the indices were obtained from the Soil and Water Assessment Tool (SWAT) constructed for the region. The model was calibrated based on monthly runoff and yearly wheat yield using the Sequential Uncertainty Fitting (SUFI-2) algorithm. Five meteorological drought events were identified in the studied period (1980-2004), of which four corresponded with the hydrological droughts with 1-3 month lag. The meteorological droughts corresponded well with the agricultural droughts during dry months (May-August), while the latter lasted for a longer period of time. Analysis of drought patterns showed that southern parts of the catchment were more prone to agricultural drought, while less influenced by hydrological drought. Our analyses highlighted the necessity for monitoring all three aspects of drought for a more effective watershed management. The analysis on different types of droughts in this study provides a framework for assessing their possible impacts under future climate change in semi-arid areas.

  2. Identifying and managing risk factors for salt-affected soils: a case study in a semi-arid region in China.

    PubMed

    Zhou, De; Xu, Jianchun; Wang, Li; Lin, Zhulu; Liu, Liming

    2015-07-01

    Soil salinization and desalinization are complex processes caused by natural conditions and human-induced risk factors. Conventional salinity risk identification and management methods have limitations in spatial data analysis and often provide an inadequate description of the problem. The objectives of this study were to identify controllable risk factors, to provide response measures, and to design management strategies for salt-affected soils. We proposed to integrate spatial autoregressive (SAR) model, multi-attribute decision making (MADM), and analytic hierarchy process (AHP) for these purposes. Our proposed method was demonstrated through a case study of managing soil salinization in a semi-arid region in China. The results clearly indicated that the SAR model is superior to the OLS model in terms of risk factor identification. These factors include groundwater salinity, paddy area, corn area, aquaculture (i.e., ponds and lakes) area, distance to drainage ditches and irrigation channels, organic fertilizer input, and cropping index, among which the factors related to human land use activities are dominant risk factors that drive the soil salinization processes. We also showed that ecological irrigation and sustainable land use are acceptable strategies for soil salinity management. PMID:26063060

  3. Rivers through time: historical changes in the riparian vegetation of the semi-arid, winter rainfall region of South Africa in response to climate and land use.

    PubMed

    Hoffman, M Timm; Rohde, Richard Frederick

    2011-01-01

    This paper examines how the riparian vegetation of perennial and ephemeral rivers systems in the semi-arid, winter rainfall region of South Africa has changed over time. Using an environmental history approach we assess the extent of change in plant cover at 32 sites using repeat photographs that cover a time span of 36-113 years. The results indicate that in the majority of sites there has been a significant increase in cover of riparian vegetation in both the channel beds and adjacent floodplain environments. The most important species to have increased in cover across the region is Acacia karroo. We interpret the findings in the context of historical changes in climate and land use practices. Damage to riparian vegetation caused by mega-herbivores probably ceased sometime during the early 19th century as did scouring events related to large floods that occurred at regular intervals from the 15th to early 20th centuries. Extensive cutting of riparian vegetation for charcoal and firewood has also declined over the last 150 years. Changes in the grazing history as well as increased abstraction and dam building along perennial rivers in the region also account for some of the changes observed in riparian vegetation during the second half of the 20th century. Predictions of climate change related to global warming anticipate increased drought events with the subsequent loss of species and habitats in the study area. The evidence presented here suggests that an awareness of the region's historical ecology should be considered more carefully in the modelling and formulation of future climate change predictions as well as in the understanding of climate change impacts over time frames of decades and centuries.

  4. Rivers through time: historical changes in the riparian vegetation of the semi-arid, winter rainfall region of South Africa in response to climate and land use.

    PubMed

    Hoffman, M Timm; Rohde, Richard Frederick

    2011-01-01

    This paper examines how the riparian vegetation of perennial and ephemeral rivers systems in the semi-arid, winter rainfall region of South Africa has changed over time. Using an environmental history approach we assess the extent of change in plant cover at 32 sites using repeat photographs that cover a time span of 36-113 years. The results indicate that in the majority of sites there has been a significant increase in cover of riparian vegetation in both the channel beds and adjacent floodplain environments. The most important species to have increased in cover across the region is Acacia karroo. We interpret the findings in the context of historical changes in climate and land use practices. Damage to riparian vegetation caused by mega-herbivores probably ceased sometime during the early 19th century as did scouring events related to large floods that occurred at regular intervals from the 15th to early 20th centuries. Extensive cutting of riparian vegetation for charcoal and firewood has also declined over the last 150 years. Changes in the grazing history as well as increased abstraction and dam building along perennial rivers in the region also account for some of the changes observed in riparian vegetation during the second half of the 20th century. Predictions of climate change related to global warming anticipate increased drought events with the subsequent loss of species and habitats in the study area. The evidence presented here suggests that an awareness of the region's historical ecology should be considered more carefully in the modelling and formulation of future climate change predictions as well as in the understanding of climate change impacts over time frames of decades and centuries. PMID:20665084

  5. How To Assess The Future Tree-Cover Potential For Reforestation Planning In Semi-Arid Regions? An Attempt Using The Vegetation Model ORCHIDEE

    NASA Astrophysics Data System (ADS)

    Rajaud, A.; De Noblet-Ducoudré, N.

    2015-12-01

    More and more reforestation projects are undertaken at local to continental scales to fight desertification, to address development challenges, and to improve local living conditions in tropical semi-arid regions. These regions are very sensitive to climatic changes and the potential for maintaining tree-covers will be altered in the next decades. Therefore, reforestation planning needs predicting the future "climatic tree-cover potential": the optimum tree-fraction sustainable in future climatic states. Global circulation models projections provide possible future climatologies for the 21st century. These can be used at the global scale to force a land-surface model, which in turn simulates the vegetation development under these conditions. The tree cover leading to an optimum development may then be identified. We propose here to run a state-of-the-art model and to assess the span and the relevance of the answers that can be obtained for reforestation planning. The ORCHIDEE vegetation model is chosen here to allow a multi-criteria evaluation of the optimum cover, as it returns surface climate state variables as well as vegetation functioning and biomass products. It is forced with global climate data (WFDEI and CRU) for the 20th century and models projections (CMIP5 outputs) for the 21st century. At the grid-cell resolution of the forcing climate data, tree-covers ranging from 0 to 100% are successively prescribed. A set of indicators is then derived from the model outputs, meant for modulating reforestation strategies according to the regional priorities (e.g. maximize the biomass production or decrease the surface air temperature). The choice of indicators and the relevance of the final answers provided will be collectively assessed by the climate scientists and reforestation project management experts from the KINOME social enterprise (http://en.kinome.fr). Such feedback will point towards the model most urging needs for improvement.

  6. A combined deficit index for regional agricultural drought assessment over semi-arid tract of India using geostationary meteorological satellite data

    NASA Astrophysics Data System (ADS)

    Vyas, Swapnil S.; Bhattacharya, Bimal K.; Nigam, Rahul; Guhathakurta, Pulak; Ghosh, Kripan; Chattopadhyay, N.; Gairola, R. M.

    2015-07-01

    The untimely onset and uneven distribution of south-west monsoon rainfall lead to agricultural drought causing reduction in food-grain production with high vulnerability over semi-arid tract (SAT) of India. A combined deficit index (CDI) has been developed from tri-monthly sum of deficit in antecedent rainfall and deficit in monthly vegetation vigor with a lag period of one month between the two. The formulation of CDI used a core biophysical (e.g., NDVI) and a hydro-meteorological (e.g., rainfall) variables derived using observation from Indian geostationary satellites. The CDI was tested and evaluated in two drought years (2009 and 2012) within a span of five years (2009-2013) over SAT. The index was found to have good correlation (0.49-0.68) with standardized precipitation index (SPI) computed from rain-gauge measurements but showed lower correlation with anomaly in monthly land surface temperature (LST). Significant correlations were found between CDI and reduction in agricultural carbon productivity (0.67-0.83), evapotranspiration (0.64-0.73), agricultural grain yield (0.70-0.85). Inconsistent correlation between CDI and ET reduction was noticed in 2012 in contrast to consistent correlation between CDI and reduction in carbon productivity both in 2009 and 2012. The comparison of CDI-based drought-affected area with those from existing operational approach showed 75% overlapping regions though class-to-class matching was only 40-45%. The results demonstrated that CDI is a potential indicator for assessment of late-season regional agricultural drought based on lag-response between water supply and crop vigor.

  7. Downscaling of Minimum Surface Temperature in the Semi-arid Great Basin Region and Implications for Bio-geophysical Processes

    NASA Astrophysics Data System (ADS)

    Hatchett, B. J.; Vellore, R.; Koracin, D.

    2009-12-01

    This study addresses downscaling methodology for monthly surface air temperature from global climate model (GCM) horizontal grid resolutions (> 100 km) to regional scales (< 10 km) appropriate for climate impact studies. Preliminary hindcast analysis for the period 1950-2008 indicated that the minimum temperatures extracted from the GCMs at 46 individual stations in Nevada show correct seasonal trends, but the monthly mean minima are significantly underestimated compared to three observational networks (Western Regional Climate Center (WRCC), DRI), National Climate Data Center (NCDC), and Parameter-elevation Regressions on Independent Slopes Model (PRISM) climate data sets. The daily mean surface air temperature, from the three GCMs (NCAR-CCSM3, ECHAM5, and CSIRO-Mk3.5) and a regional climate model (RCM) using the Weather Research and Forecasting (WRF) model forced by the CCSM3 outputs, is generally under-predicted with root-mean-square errors as large as 6 K on an annual scale. The underlying premise of this study is that changes in minimum temperature are manifested on the landscape via changes in hydrological parameters viz., runoff timing and evapotranspiration rates, ecological parameters viz., rates of invasion of exotic species and fire hazards, and socio-economic parameters viz., urban energy use. The systematic error or bias in surface minimum temperature simulated by the GCMs and their ensembles under designated Intergovernmental Panel on Climate Change (IPCC) climate change scenarios (A1B, A2, and B1) is investigated to assess and substantiate this argument. The present study employs the downscaling technique of bias correction and spatial disaggregation (BCSD) to improve GCM representation of monthly minimum temperature characteristics at local and regional scales which are critical to properly quantify for ecologic, hydrologic, and socio-economic forecasting under future climate change scenarios.

  8. Detection and differentiation of pollution in urban surface soils using magnetic properties in arid and semi-arid regions of northwestern China.

    PubMed

    Wang, Bo; Xia, Dunsheng; Yu, Ye; Jia, Jia; Xu, Shujing

    2014-01-01

    Increasing urbanization and industrialization over the world has caused many social and environmental problems, one of which drawing particular concern is the soil pollution and its ecological degradation. In this study, the efficiency of magnetic methods for detecting and discriminating contaminates in the arid and semi-arid regions of northwestern China was investigated. Topsoil samples from six typical cities (i.e. Karamay, Urumqi, Lanzhou, Yinchuan, Shizuishan and Wuhai) were collected and a systematic analysis of their magnetic properties was conducted. Results indicate that the topsoil samples from the six cities were all dominated by coarse low-coercivity magnetite. In addition, the average magnetite contents in the soils from Urumqi and Lanzhou were shown to be much higher than those from Karamay, Yinchuan, Shizuishan and Wuhai, and they also have relatively higher χlf and χfd% when compared with cities in eastern China. Moreover, specific and distinctive soil pollution signals were identified at each sampling site using the combined various magnetic data, reflecting distinct sources. Industrial and traffic-derived pollution was dominant in Urumqi and Lanzhou, in Yinchuan industrial progress was observed to be important with some places affected by vehicle emission, while Karamay, Shizuishan and Wuhai were relatively clean. The magnetic properties of these latter three cities are significantly affected by both anthropogenic pollution and local parent materials from the nearby Gobi desert. The differences in magnetic properties of topsoil samples affected by mixed industrial and simplex traffic emissions are not obvious, but significant differences exist in samples affected by simplex industrial/vehicle emissions and domestic pollution. The combined magnetic analyses thus provide a sensitive and powerful tool for classifying samples according to likely sources, and may even provide a valuable diagnostic tool for discriminating among different cities.

  9. Influence of Different Fertilization on moisture Characteristics of Black Soil under Drought Year in Semi-arid Regions in Northeast China

    NASA Astrophysics Data System (ADS)

    Han, X.; Zou, W.

    2009-04-01

    Water was a mainly limited factor for crop yield in rain-feed agriculture of semi-arid region. Whereas, fertilization can regulate capability of soil water supply. Therefore, field experiments were set up at the National Field Research Station of Agroecosystem of Chinese Academy of Science in Hailun County, Heilongjiang Province, China, in 1990, including three fertilizer treatments: no fertilizer (NF), applying chemical nitrogen and phosphorus fertilizer (NP), applying chemical nitrogen and phosphorus fertilizer plus organic manure (NPM). The experiments were carried out to investigate the effects of different fertilization on soil water supply, water consumption of maize, water use efficiency under drought year. The results showed that rainfall didn't satisfy water need of maize in drought year, the deficient water was compensated by soil water reservoir, Fertilizer application, especially organic manure application, can improve the capability of soil water supply, the ratio between soil water supply and water consumption of NF, NP, NPM were 22.23%,23.58% and 25.99% in the whole development period of maize, respectively. Total water consumption and water consumption rate of maize were significantly impacted by different fertilization and increased with application of chemical fertilizer and organic manure, results showed total water consumption of maize were 485.82mm,494.83mm and 509.91mm for NF, NP and NPM, respectively, while water consumption rates were 3.18mm d-1,3.23mm d-1 and 3.33mm d-1 for NF, NP and NPM, respectively. The effect of fertilizer application on water use efficiency was in the order of NPM > NP > NF. From the study, it can be concluded that soil water supply buffered and regulated soil water condition, and played an important role on guaranteeing crop yield; fertilizer application, can enhance soil water supply, increase crop yield and water use efficiency, especially organic manure application.

  10. Influence of Different Fertilization on moisture Characteristics of Black Soil under Drought Year in Semi-arid Regions in Northeast China

    NASA Astrophysics Data System (ADS)

    Han, X.; Zou, W.

    2009-04-01

    Water was a mainly limited factor for crop yield in rain-feed agriculture of semi-arid region. Whereas, fertilization can regulate capability of soil water supply. Therefore, field experiments were set up at the National Field Research Station of Agroecosystem of Chinese Academy of Science in Hailun County, Heilongjiang Province, China, in 1990, including three fertilizer treatments: no fertilizer (NF), applying chemical nitrogen and phosphorus fertilizer (NP), applying chemical nitrogen and phosphorus fertilizer plus organic manure (NPM). The experiments were carried out to investigate the effects of different fertilization on soil water supply, water consumption of maize, water use efficiency under drought year. The results showed that rainfall didn't satisfy water need of maize in drought year, the deficient water was compensated by soil water reservoir, Fertilizer application, especially organic manure application, can improve the capability of soil water supply, the ratio between soil water supply and water consumption of NF, NP, NPM were 22.23%, 23.58% and 25.99% in the whole development period of maize, respectively. Total water consumption and water consumption rate of maize were significantly impacted by different fertilization and increased with application of chemical fertilizer and organic manure, results showed total water consumption of maize were 485.82mm, 494.83mm and 509.91mm for NF, NP and NPM, respectively, while water consumption rates were 3.18mm/d, 3.23mm/d and 3.33mm/d for NF, NP and NPM, respectively. The effect of fertilizer application on water use efficiency was in the order of NPM > NP > NF. From the study, it can be concluded that soil water supply buffered and regulated soil water condition, and played an important role on guaranteeing crop yield; fertilizer application, can enhance soil water supply, increase crop yield and water use efficiency, especially organic manure application.

  11. Managing Environmental Flows for Impounded Rivers in Semi-Arid Regions- A Habitat Suitability Index (HSI) Approach for the Assessment of River Habitat for Salmonid Populations

    NASA Astrophysics Data System (ADS)

    Pai, H.; Sivakumaran, K.; Villamizar, S. R.; Flanagan, J.; Guo, Q.; Harmon, T. C.

    2013-12-01

    Balancing ecosystem health in water-scarce, agriculturally dominated river basins remains a challenge. In dry water years, maintaining conditions for restored and sustained indigenous fish populations (a frequently used indicator for ecosystem health) is particularly challenging. Competing human demands include urban and agricultural water supplies, hydropower, and flood control. In many semi-arid regions, increasing drought intensity and frequency under future climate scenarios will combine with population increases to water scarcity. The goal of this work is to better understand how reservoir releases affect fish habitat and overall river aquatic ecosystem quality. Models integrating a diverse array of physical and biological processes and system state are used to forecast the river ecosystem response to changing drivers. We propose a distributed parameter-based Habitat Suitability Index (HSI) approach for assessing fish habitat quality. Our river ecosystem HSI maps are based on a combination of the following: (1) In situ data describing stream flow and water quality conditions; (2) Spatial observations, including surveyed cross-sections, aerial imagery and digital elevation maps (DEM) of the river and its riparian corridor; and (3) Simulated spatially distributed water depths, flow velocities, and temperatures estimated from 1D and 2D river flow and temperature models (HEC-RAS and CE-QUAL-W2, respectively). With respect to (2), image processing schemes are used to classify and map key habitat features, namely riparian edge and shallow underwater vegetation. HSI maps can be modified temporally to address specific life cycle requirements of indicator fish species. Results are presented for several reaches associated with the San Joaquin River Restoration Project, focusing on several components of the Chinook salmon life cycle. HSI maps and interpretations are presented in the context of a range of prescribed reservoir release hydrographs linked to California water

  12. Combining Hydrology and Mosquito Population Models to Identify the Drivers of Rift Valley Fever Emergence in Semi-Arid Regions of West Africa

    PubMed Central

    Soti, Valérie; Tran, Annelise; Degenne, Pascal; Chevalier, Véronique; Lo Seen, Danny; Thiongane, Yaya; Diallo, Mawlouth; Guégan, Jean-François; Fontenille, Didier

    2012-01-01

    Background Rift Valley fever (RVF) is a vector-borne viral zoonosis of increasing global importance. RVF virus (RVFV) is transmitted either through exposure to infected animals or through bites from different species of infected mosquitoes, mainly of Aedes and Culex genera. These mosquitoes are very sensitive to environmental conditions, which may determine their presence, biology, and abundance. In East Africa, RVF outbreaks are known to be closely associated with heavy rainfall events, unlike in the semi-arid regions of West Africa where the drivers of RVF emergence remain poorly understood. The assumed importance of temporary ponds and rainfall temporal distribution therefore needs to be investigated. Methodology/Principal Findings A hydrological model is combined with a mosquito population model to predict the abundance of the two main mosquito species (Aedes vexans and Culex poicilipes) involved in RVFV transmission in Senegal. The study area is an agropastoral zone located in the Ferlo Valley, characterized by a dense network of temporary water ponds which constitute mosquito breeding sites. The hydrological model uses daily rainfall as input to simulate variations of pond surface areas. The mosquito population model is mechanistic, considers both aquatic and adult stages and is driven by pond dynamics. Once validated using hydrological and entomological field data, the model was used to simulate the abundance dynamics of the two mosquito species over a 43-year period (1961–2003). We analysed the predicted dynamics of mosquito populations with regards to the years of main outbreaks. The results showed that the main RVF outbreaks occurred during years with simultaneous high abundances of both species. Conclusion/Significance Our study provides for the first time a mechanistic insight on RVFV transmission in West Africa. It highlights the complementary roles of Aedes vexans and Culex poicilipes mosquitoes in virus transmission, and recommends the

  13. Analysis of drought events in a Mediterranean semi-arid region, Using SPOT-VGT and TERRA-MODIS satellite products

    NASA Astrophysics Data System (ADS)

    Zribi, Mehrez; Dridi, Ghofrane; Amri, Rim; Lili-Chabaane, Zohra

    2015-04-01

    In semi-arid regions, and northern Africa in particular, the scarcity of rainfall and the occurrence of long periods of drought, represent one of the main environmental factors having a negative effect on agricultural productivity. This is the case in Central Tunisia, where the monitoring of agricultural and water resources is of prime importance. Vegetation cover is a key parameter to analyse this problem. Remote sensing has shown in the last decades a high potential to estimate these surface parameters. This study is based on two satellite products: SPOT-VGT (1998-2012) and TERRA-MODIS (2001-2012) NDVI products. They are used to study the dynamics of vegetation and land use. Different behaviors linked to drought periods have been observed. A strong agreement is observed between products proposed by the two sensors. Low spatial resolution SPOT-VGT and TERRA-MODIS NDVI images were used to map the land into three characteristic classes: olive trees, annual agriculture and pastures. An analysis of vegetation behaviour for dry years is proposed using the Windowed Fourier Transform (WTF). The Fourier Transform is able to analyze the frequency content of a signal in the time domain by decomposing the signal as the superposition of sine and cosine basis functions. Analysis for annual agricultural areas demonstrates a combined effect between climate and farmers behaviours. In these areas, bare soils show a high increasing for drought years. Highest percent of bare soil is retrieved with TERRA-MODIS than with SPOT-VGT. This could be explained by the spatial resolution of the two sensors. The temporal series of optical images are finally used to calculate a drought index, namely the VAI (Vegetation Anomaly Index), on the plain of Kairouan (Amri et al., 2011). This index shows a high correlation with precipitation statistics.

  14. Medicinal plants popularly used in the Xingó region – a semi-arid location in Northeastern Brazil

    PubMed Central

    Almeida, Cecília de Fátima CBR; de Amorim, Elba Lúcia Cavalcanti; de Albuquerque, Ulysses Paulino; Maia, Maria Bernadete S

    2006-01-01

    The aim of this study was to identify plant species among the diverse flora of the caatinga ecosystem that are used therapeutically. Research was undertaken in the municipalities of Piranhas and Delmiro Gouveia, in the Xingó region (state of Alagoas, NE Brazil). In order to identify the medicinal plants used in this region, semi-structured questionnaires were applied. The species cited were collected and sent to the Xingó Herbarium for taxonomic analysis. The relative importance (RI) of each species cited was calculated to verify their cultural importance. The therapeutic indications attributed to the species were classified under 16 body systems. A total of 187 medicinal species were cited, from 64 families and 128 genera. The main indications for medicinal plant use were against common colds, bronchitis, cardiovascular problems, kidney problems, inflammations in general, and as tranquilizers. Approximately 16% (30 plant species) were versatile in relation to their use, with an Relative Importance value over 1, having been indicated for up to nine body systems. The body systems that stood out the most were: the respiratory system, the gastrointestinal system, and infectious diseases. Most cited plant parts used for medicinal purposes were flowers, leaves, and inner stem bark. PMID:16556305

  15. An analytical framework for extracting hydrological information from time series of small reservoirs in a semi-arid region

    NASA Astrophysics Data System (ADS)

    Annor, Frank; van de Giesen, Nick; Bogaard, Thom; Eilander, Dirk

    2013-04-01

    small reservoirs in the Upper East Region of Ghana. Reservoirs without obvious large seepage losses (field survey) were selected. To verify this, stable water isotopic samples are collected from groundwater upstream and downstream from the reservoir. By looking at possible enrichment of downstream groundwater, a good estimate of seepage can be made in addition to estimates on evaporation. We estimated the evaporative losses and compared those with field measurements using eddy correlation measurements. Lastly, we determined the cumulative surface runoff curves for the small reservoirs .We will present this analytical framework for extracting hydrological information from time series of small reservoirs and show the first results for our study region of northern Ghana.

  16. Groundwater quality and management in arid and semi-arid regions: Case study, Central Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Amer, Reda; Ripperdan, Robert; Wang, Tao; Encarnación, John

    2012-07-01

    This study presents a model budget for groundwater in the Central Eastern Desert of Egypt. The stable isotopic composition and hydrochemistry of groundwater samples collected from different aquifers were determined to identify recharge sources and water quality. Stable isotopic values suggest that shallow alluvial and fracture zone aquifers are recharged from seasonal precipitation, while groundwater in deeper sedimentary sub-basins is paleowater that was recharged during periods of less arid regional climate. Hydrochemical analysis indicates elevated salinity in each aquifer type, which is attributed to leaching and dissolution of terrestrial salts and to mixing with marine water. Groundwater from sedimentary sub-basin aquifers can be treated and used for drinking and domestic purposes. Groundwater from shallow alluvial and fracture zone wells is suitable for animal husbandry and mineral ore dressing. A model water budget shows that approximately 4.8 × 109 m3 of recoverable groundwater is stored in sedimentary sub-basin aquifers, or approximately 550 years of water at present utilization rates.

  17. Rain gauge network evaluation and optimal design using spatial correlation approach in arid and semi-arid regions of Iran

    NASA Astrophysics Data System (ADS)

    Nazaripour, Hamid; Mansouri Daneshvar, Mohammad Reza

    2016-06-01

    The present study is aimed at evaluation of a rain gauge network in order to optimize a network design. In this regard, point rainfall estimations were assessed using a spatial correlation approach in the Kerman region, Iran. This approach was implemented based on monthly rainfall data for existing 117 rain gauge stations in the study area. The results revealed that the regular arrangement of rain gauges could provide the reliable values for accurate rainfall estimation. Low density of rain gauge combined with the low rainfall values may result in strong increase of the interpolation errors. Based on the existing rain gauge network, the relative mean error of observed rainfalls (E a ) is less than 5 % over the study area. The spatial interpolation errors (E i ) were considered to optimize the design of rain gauge network at the confidence level of 85 %, where the mean errors were exhibited from 8.5 to 14 % in districts A and B, respectively. On this basis, about 46 locations were proposed for allocation of new stations. Therefore, it was suggested to relocate about 20 existing stations in order to achieve an accurate design.

  18. The role of economic analysis in groundwater management in semi-arid regions: the case of Nigeria

    NASA Astrophysics Data System (ADS)

    Acharya, Gayatri

    The aim of this paper is to use an economic framework to derive decision making rules for river basin management with a focus on groundwater resources. Using an example from northern Nigeria, the paper provides an example of how decision making for sustainable water resources management may be facilitated by comparing net benefits and costs across a river basin. It is argued that economic tools can be used to assess the value of water resources in different uses, identify and analyze management scenarios, and provide decision rules for the sustainable use and management of surface and ground water resources in the region. L'objet de cet article est l'utilisation d'un cadre économique pour établir des règles de prise de décision pour la gestion d'un bassin versant prenant en compte les ressources en eau souterraine. À partir d'un exemple du Nigéria septentrional, cet article explique comment une prise de décision pour la gestion durable de ressources en eau peut être facilitée en comparant les bénéfices nets et les coûts sur tout le bassin versant. Il est montré que les outils économiques peuvent être utilisés pour établir la valeur des ressources en eau dans les différents usages, pour identifier et analyser des scénarios de gestion et pour fournir des règles de décision pour un usage et une gestion durables des ressources en eaux de surface et souterraines dans la région. El objetivo de este artículo es utilizar un enfoque económico para deducir reglas de toma de decisión en la gestión de cuencas, haciendo énfasis en los recursos subterráneos. Por medio de un ejemplo del Norte de Nigeria, se ilustra cómo la toma de decisiones orientadas a la gestión sustentable de los recursos hídricos puede ser facilitada si se compara los beneficios netos y los costes en toda la cuenca. Se argumenta que las herramientas económicas pueden servir para establecer el valor de los recursos hídricos destinados a usos diferentes, para identificar y

  19. Problems and Prospects of SWAT Model Application on an Arid/Semi-Arid Watershed in Arizona

    EPA Science Inventory

    In arid/semi-arid regions, precipitation mainly occurs during two periods: long-duration, low-intensity rainfall in winter; and short-duration, high-intensity rainfall in summer. Watersheds in arid/semi-arid regions often release water almost immediately after a storm due to spa...

  20. Larvicidal potential of wild mustard (Cleome viscosa) and gokhru (Tribulus terrestris) against mosquito vectors in the semi-arid region of Western Rajasthan.

    PubMed

    Bansal, S K; Singh, Karam V; Sharma, Sapna

    2014-03-01

    effective as compared to the fruit extracts of T. terrestris indicating that active larvicidal principle may be present in the fruits of this plant species. The studywould be of great importance while formulating the control strategy, for vectors of malaria, dengue and lymphatic filariasis, based on alternative plant based insecticides in this semi-arid region.

  1. Application of a soil moisture diagnostic equation for estimating root-zone soil moisture in arid and semi-arid regions

    NASA Astrophysics Data System (ADS)

    Pan, Feifei; Nieswiadomy, Michael; Qian, Shuan

    2015-05-01

    Knowledge of soil moisture in the root zone is critical for crop growth estimation and irrigation scheduling. In this study, a soil moisture diagnostic equation is applied to estimate soil moisture at depths of 0-100 cm (because the majority of crop roots are in the top 100 cm of soil) at four USDA Soil Climate Analysis Network (SCAN) sites in arid and semi-arid regions: TX2105 in northwest Texas, NM2015 and NM2108 in east New Mexico, and AZ2026 in southeast Arizona. At each site, a dataset of 5-6 years of records of daily soil moisture, daily mean air temperature, precipitation and downward solar radiation is compiled and processed. Both the sinusoidal wave function of day of year (DOY) and a linear function of the potential evapotranspiration (PET) are used to approximate the soil moisture loss coefficient. The first four years of data are used to derive the soil moisture loss function and the empirical parameters in the soil moisture diagnostic equation. The derived loss function and empirical parameters are then applied to estimate soil moisture in the last fifth or sixth year at each site. Root mean square errors (RMSEs) of the estimated volumetric soil moistures in five different soil columns (i.e., 5 cm, 10 cm, 20 or 30 cm, 50 cm, and 100 cm) are less than 3.2 (%V/V), and the accuracy of the estimated soil moistures using the sinusoidal soil moisture loss function is slightly better than the PET-based loss functions. In addition to the three advantages of this soil moisture diagnostic equation, i.e., (1) non-cumulative errors in the estimated soil moisture, (2) no regular recalibration is required to correct the cumulative errors, and (3) no numerical iteration and initial moisture inputs are needed since only precipitation data are required, this study also demonstrates that the soil moisture diagnostic equation not only can be used to estimate surface soil moisture, but also the entire root-zone soil moisture.

  2. Effects of a Reservoir Water on the GW Quality in a Coastal Aquifer of Semi-arid Region, North-east of Tunisia

    NASA Astrophysics Data System (ADS)

    Uchida, C.; Kawachi, A.; Tsujimura, M.; Tarhouni, J.

    2015-12-01

    This study investigated effects of a reservoir water in a salinized shallow aquifer based on spatial distribution of geochemical properties in groundwater (GW). In many coastal shallow aquifers of arid and semi-arid regions, groundwater table (GWT) depression and salinization have occurred due to GW overexploitation. In Korba aquifer, north-east of Tunisia, after a dam reservoir has been constructed in order to assure a water resource for irrigation, improvement of GW level and quality have been observed in the downstream area of the dam (area-A), while the GW in the other area (area-B) still has high salinity. This study, therefore, aimed to investigate the effects of the reservoir water on the GW quality. In June 2013, water quality survey and sampling were carried out at 60 wells (GW), a dam reservoir, river and the sea. Major ions, boron, bromide, and oxygen-18 and deuterium in collected samples were analyzed. From the results, in the area-B, the GWT was lower than the sea level and the high salinity were observed. The Br- concentration of the GW was correlated with the Cl- concentration, and the values of B/Cl- and Br-/Cl- of the GW were similar to the seawater. Since the GWT depression allowed the seawater to intrude into the aquifer, the GW salinization occurred in this area. On the other hand, in the area-A, GWT was higher than the seawater level, and the Na+ and Cl- concentrations were lower than the area-B. Especially, in the irrigated areas by using the reservoir water, the isotopic values, B/Cl- and Br-/Cl- of the GW were relatively higher than the others. The reservoir water has high isotopic values due to evaporation effect, and the B/Cl- and Br-/Cl- values become higher due to organic matters in sediment of the reservoir or soil in the filtration process. Thus, in addition to the direct infiltration from the reservoir into the aquifer, irrigation using a reservoir water probably has a positive impact on the GW quality in this area.

  3. Evaluation of the SAFRAN-ISBA-RAPID hydrometeorological chain on a mountainous catchment in a semi-arid region. Case of the Rheraya (Marrakech, Morocco)

    NASA Astrophysics Data System (ADS)

    Szczypta, Camille; Gascoin, Simon; Habets, Florence; Saaidi, Amina; Berjamy, Brahim; Marchane, Ahmed; Boulet, Gilles; Hanich, Lahoucine; Jarlan, Lionel

    2015-04-01

    The water content of snow pack is an important resource for many watershed in semi-arid areas where downstream plains are dominated by irrigated agriculture. As part of the ANR Amethyst, this work is to develop, adapt and evaluate a hydro-meteorological forecasting chain for quantifying streamflows at the outlet of a mountainous watershed (Rheraya wadi, Marrakech region, Morocco), a pilot basin instrumented since 2003 as part of SudMed project. Two sets of atmospheric forcing were used: (1) The first was generated by spatializing meteorological data observed on 6 stations (Asni, Aremdt, Tachedert, Oukaimeden, Imskerbour and Neltner) using the semi-physical module Micromet (Liston and Elder, 2006) on the hydrological period September 2003 - August 2012; (2) the second is provided by the SAFRAN re-analysis, implemented by the Metoffice of Morocco (Casablanca, Morocco), during the period August 2004 - July 2008. These two sets were then used as inputs for the ISBA surface model, within the modeling platform SURFEX. Finally, runoff and drainage simulations derived from ISBA were forced into the hydrological model RAPID to predict streamflows. The flows predictions and the snow covered area (SCA) were compared respectively to the observations available for the 2003-2009 period and to the daily MODIS products of SCA. Despite time unsystematic lags and low biases on flow values, the initial results are encouraging due to topographical and hydro-complexity of the studied area. Despite a slight tendency to underestimate the SCA for the "Micromet" run and to over-estimate for the "Safran" run, SCA is well reproduced with a determination coefficient of r²=0.76 and r²=0.79, respectively. Given the complex topography of the basin, a sensitivity analysis to the size of the grid point (from 8 km to 250 m) was conducted. If the different simulated series of SCA are close from a resolution to another, streamflows simulations are, by contrast, highly sensitive to the resolution

  4. Improving estimates of water resources in a semi-arid region by assimilating GRACE data into the PCR-GLOBWB hydrological model

    NASA Astrophysics Data System (ADS)

    Tangdamrongsub, Natthachet; Steele-Dunne, Susan; Gunter, Brian; Ditmar, Pavel; Sutanudjaja, Edwin; Sun, Yu; Xia, Ting; Wang, Zhongjing

    2016-04-01

    An accurate estimate of water resources is critical for proper management of both agriculture and the local ecology, particularly in semi-arid regions where water is scarce. Imperfections in model physics, uncertainties in model land parameters and meteorological data, and the human impact on land changes often limit the accuracy of hydrological models in estimating water storages. To address this problem, this study investigated the assimilation of Terrestrial Water Storage (TWS) estimates derived from the Gravity Recovery And Climate Experiment (GRACE) data using an Ensemble Kalman Filter (EnKF) approach. The region considered was the Hexi Corridor of Northern China. The hydrological model used for the analysis was PCR-GLOBWB, driven by satellite-based forcing data from April 2002 to December 2010. The performance of the GRACE Data Assimilation (DA) scheme was evaluated in terms of its impact on the TWS as well as on the individual hydrological storage estimates. The capability of GRACE DA to adjust the storage level was apparent not only in the TWS but also in the groundwater component, which had annual amplitude, phase, and long-term trend estimates closer to the GRACE observations. This study also assessed the impact of considering correlated errors in GRACE-based estimates. These were derived based on the error propagation approach using the full error variance-covariance matrices provided as a part of the GRACE data product. The assessment was carried out by comparing the EnKF results after excluding (EnKF 1D) and including (EnKF 3D) error correlations with the in situ groundwater data from 5 well sites, and the in situ streamflow data from two river gauges. Both EnKF 1D and 3D improved groundwater and streamflow estimates compared to the results from the PCR-GLOBWB alone (Ensemble Open Loop, EnOL). Although EnKF 3D was inferior to 1D at some groundwater measurement locations, on average, it showed equal or greater improvement in all metrics. For example

  5. Surface soil moisture retrieval over a Mediterranean semi-arid region using X-band TerraSAR-X SAR data

    NASA Astrophysics Data System (ADS)

    Azza, Gorrab; Zribi, Mehrez; Baghdadi, Nicolas; Mougenot, Bernard; Boulet, Gilles; Lili-Chabaane, Zohra

    2015-04-01

    Mapping surface soil moisture with meter-scale spatial resolution is appropriate for multi- domains particularly hydrology and agronomy. It allows water resources and irrigation management decisions, drought monitoring and validation of multi-hydrological water balance models. In the last years, various studies have demonstrated the large potential of radar remote sensing data, mainly from C frequency band, to retrieve soil moisture. However, the accuracy of the soil moisture estimation, by inversing backscattering radar coefficients (σ°), is affected by the influence of surface roughness and vegetation biomass contributions. In recent years, different empirical, semi empirical and physical approaches are developed for bare soil conditions, to estimate accurately spatial soil moisture variability. In this study, we propose an approach based on the change detection method for the retrieval of surface soil moisture at a higher spatial resolution. The proposal algorithm combines multi-temporal X-band SAR images (TerraSAR-X) with different continuous thetaprobe measurements. Seven thetaprobe stations are installed at different depths over the central semi arid region of Tunisia (9°23' - 10°17' E, 35° 1'-35°55' N). They cover approximately the entire of our study site and provide regional scale information. Ground data were collected over agricultural bare soil fields simultaneously to various TerraSAR-X data acquired during 2013-2014 and 2014-2015. More than fourteen test fields were selected for each spatial acquisition campaign, with variations in soil texture and in surface soil roughness. For each date, we considered the volumetric water content with thetaprobe instrument and gravimetric sampling; we measured also the roughness parameters with pin profilor. To retrieve soil moisture from X-band SAR data, we analyzed statistically the sensitivity between radar measurements and ground soil moisture derived from permanent thetaprobe stations. Our analyses are

  6. Climate warming threatens semi-arid forests in Inner Asia

    NASA Astrophysics Data System (ADS)

    WU, X.

    2015-12-01

    A line of evidences reveal an increasing tree growth decline and tree mortality mainly attributable to climate warming and the warming-mediated changes in drought and other processes in many parts of world tropical, temperate and boreal forests. However, the growth responses to climate change of the widely distributed semi-arid forests are unclear. Here, we synthetically investigate the tree growth patterns during past decades and its interannual response to climate variations in Inner Asia combining the ground truth field survey and samplings, remote sensing observations and climate data. We identified a pervasive tree growth decline since mid-1990s in semi-arid forests in Inner Asia. The widely observed tree growth decline is dominantly attributable to warming-induced water stress during pre- and early growing season. Tree growth of semi-arid forests in Inner Asia is particularly susceptible to spring warming and has been suffering a prolonged growth limitation in recent decades due to spring warming-mediated water conditions. Additionally, we identified a much slower growth rate in younger trees and a lack of tree regeneration in these semi-arid forests. The widely observed forest growth reduction and lack of tree regeneration over semi-arid forests in Inner Asia could predictably exert great effects on forest structure, regionally/globally biophysical and biochemical processes and the feedbacks between biosphere and atmosphere. Notably, further increases in forest stress and tree mortality could be reasonably expected, especially in context of the increase frequency and severity of high temperature and heat waves and changes in forest disturbances, potentially driving the eventual regional loss of current semi-arid forests. Given the potential risks of climate induced forest dieback, increased management attention to adaptation options for enhancing forest resistance and resilience to projected climate stress can be expected. However, the functionally realistic

  7. Climate Warming Threatens Semi-arid Forests in Inner Asia

    NASA Astrophysics Data System (ADS)

    WU, X.; Liu, H.; Qi, Z.; Li, X.

    2014-12-01

    A line of evidences reveal an increasing tree growth decline and tree mortality mainly attributable to climate warming and the warming-mediated changes in drought and other processes (such as fire and insect dynamics) in many parts of world tropical, temperate and boreal forests. However, the growth responses to climate change of the widely distributed semi-arid forests are unclear. Here, we synthetically investigate the tree growth patterns during past decades and its interannual response to climate variations in Inner Asia combining the ground truth field survey and samplings, remote sensing observations and climate data. We identified a pervasive tree growth decline since mid-1990s in semi-arid forests in Inner Asia. The widely observed tree growth decline is dominantly attributable to warming-induced water stress during pre- and early growing season. Tree growth of semi-arid forests in Inner Asia is particularly susceptible to spring warming and has been suffering a prolonged growth limitation in recent decades due to spring warming-mediated water conditions. Additionally, we identified a much slower growth rate in younger trees and a lack of tree regeneration in these semi-arid forests. The widely observed forest growth reduction and lack of tree regeneration over semi-arid forests in Inner Asia could predictably exert great effects on forest structure, regionally/globally biophysical and biochemical processes and the feedbacks between biosphere and atmosphere. Notably, further increases in forest stress and tree mortality could be reasonably expected, especially in context of the increase frequency and severity of high temperature and heat waves and changes in forest disturbances, potentially driving the eventual regional loss of current semi-arid forests. Given the potential risks of climate induced forest dieback, increased management attention to adaptation options for enhancing forest resistance and resilience to projected climate stress can be expected

  8. Symbiotic characterization and diversity of rhizobia associated with native and introduced acacias in arid and semi-arid regions in Algeria.

    PubMed

    Boukhatem, Zineb Faiza; Domergue, Odile; Bekki, Abdelkader; Merabet, Chahinez; Sekkour, Sonia; Bouazza, Fatima; Duponnois, Robin; de Lajudie, Philippe; Galiana, Antoine

    2012-06-01

    The diversity of rhizobia associated with introduced and native Acacia species in Algeria was investigated from soil samples collected across seven districts distributed in arid and semi-arid zones. The in vitro tolerances of rhizobial strains to NaCl and high temperature in pure culture varied greatly regardless of their geographical and host plant origins but were not correlated with the corresponding edaphoclimatic characteristics of the sampling sites, as clearly demonstrated by principal component analysis. Based on 16S rRNA gene sequence comparisons, the 48 new strains isolated were ranked into 10 phylogenetic groups representing five bacterial genera, namely, Ensifer, Mesorhizobium, Rhizobium, Bradyrhizobium, and Ochrobactrum. Acacia saligna, an introduced species, appeared as the most promiscuous host because it was efficiently nodulated with the widest diversity of rhizobia taxa including both fast-growing ones, Rhizobium, Ensifer, and Mesorhizobium, and slow-growing Bradyrhizobium. The five other Acacia species studied were associated with fast-growing bacterial taxa exclusively. No difference in efficiency was found between bacterial taxa isolated from a given Acacia species. The tolerances of strains to salinity and temperature remains to be tested in symbiosis with their host plants to select the most adapted Acacia sp.-LNB taxa associations for further revegetation programs. PMID:22283876

  9. Assessment of vulnerability in karst aquifers using a quantitative integrated numerical model: catchment characterization and high resolution monitoring - Application to semi-arid regions- Lebanon.

    NASA Astrophysics Data System (ADS)

    Doummar, Joanna; Aoun, Michel; Andari, Fouad

    2016-04-01

    Karst aquifers are highly heterogeneous and characterized by a duality of recharge (concentrated; fast versus diffuse; slow) and a duality of flow which directly influences groundwater flow and spring responses. Given this heterogeneity in flow and infiltration, karst aquifers do not always obey standard hydraulic laws. Therefore the assessment of their vulnerability reveals to be challenging. Studies have shown that vulnerability of aquifers is highly governed by recharge to groundwater. On the other hand specific parameters appear to play a major role in the spatial and temporal distribution of infiltration on a karst system, thus greatly influencing the discharge rates observed at a karst spring, and consequently the vulnerability of a spring. This heterogeneity can only be depicted using an integrated numerical model to quantify recharge spatially and assess the spatial and temporal vulnerability of a catchment for contamination. In the framework of a three-year PEER NSF/USAID funded project, the vulnerability of a karst catchment in Lebanon is assessed quantitatively using a numerical approach. The aim of the project is also to refine actual evapotranspiration rates and spatial recharge distribution in a semi arid environment. For this purpose, a monitoring network was installed since July 2014 on two different pilot karst catchment (drained by Qachqouch Spring and Assal Spring) to collect high resolution data to be used in an integrated catchment numerical model with MIKE SHE, DHI including climate, unsaturated zone, and saturated zone. Catchment characterization essential for the model included geological mapping and karst features (e.g., dolines) survey as they contribute to fast flow. Tracer experiments were performed under different flow conditions (snow melt and low flow) to delineate the catchment area, reveal groundwater velocities and response to snowmelt events. An assessment of spring response after precipitation events allowed the estimation of the

  10. Rainfall-recharge relationships within a karstic terrain in the Eastern Mediterranean semi-arid region, Israel: δ 18O and δD characteristics

    NASA Astrophysics Data System (ADS)

    Ayalon, Avner; Bar-Matthews, Miryam; Sass, Eytan

    1998-06-01

    Annual rainfall variations and processes in the upper vadose zone exert a profound influence on the chemical and isotopic compositions of waters of carbonate aquifers in semi-arid climatic zones. In order to define these processes we have studied the surface temperatures during rainfall events, the isotopic composition of rain, infiltrating and groundwaters. This study was carried out within a karstic terrain (Soreq Cave), Israel, located in Cenomanian dolomitic rocks, approximately 40 km inland of the Mediterranean Sea, and 400 m above sea level. The climate is typical of the Eastern Mediterranean semi-arid conditions, with a rainy winter and dry summer and the average annual rainfall in the area is ˜500 mm. Close monitoring indicates that the δD and δ 18O values of individual rainstorm events decrease with increasing rainfall. Annual average isotopic values of years with rainfall of 500-600 mm do not vary systematically. Years with extreme rainfall values define a negative covariation between the δ 18O and rainfall. The δD-δ 18O relationship of all rain events of more than 20 mm fall on the Mediterranean Meteoric Water Line (MMWL) with a slope of ˜8 and d-excesses of 20-30%. These rain events occur when mid-winter surface temperatures are 5 to 10°C. Rainfall events of less than 20 mm, mainly occurring at above 10°C, have slopes of less than 8 and smaller d-excess as a consequence of evaporation processes beneath the clouds. Two main water-types infiltrating into the cave are recognized: slow- and fast-drip. Slow-drip occurs from the tips of stalactites and takes place throughout the year; these waters represent seepage water that remains in the upper vadose zone for up to several decades. Fast-drip emanates from fissures in the cave roof during the winter seasons; these waters represent vadose flow with a short residence time of less than 1 year. The infiltration of the fast-drip water into the cave depends on the fracture system of the rock cover and on

  11. The cactus effect: an alternative to the lupin effect for increasing ovulation rate in sheep reared in semi-arid regions?

    PubMed

    Rekik, M; Gonzalez-Bulnes, A; Lassoued, N; Ben Salem, H; Tounsi, A; Ben Salem, I

    2012-04-01

    The present study evaluated the effects of supplementation with cactus cladodes on follicular dynamics and ovulatory response of sheep reared in semi-arid areas. A total of 76 ewes were distributed into two equal groups supplemented with either concentrated feed or cactus cladodes. After 30 days of supplementation, no differences were found between feeding regimens on the final live weight (LW; 41.5 ± 0.6 and 42.1 ± 0.7 kg in the Concentrate and Cactus groups respectively) and body condition score (BCS; 1.8 ± 0.3 and 1.8 ± 0.4 for Concentrate and Cactus group respectively). Moreover, no differences were found between the initial and the final values of both LW and BCS; thus, there were no effects of supplementation on any of both parameters. Analysis of follicular population showed that, during the follicular phase induced by ram effect, the number of follicles reaching ovulatory size increased in both groups. However, the number was always higher in Cactus ewes and, at oestrus, Cactus ewes had 1.6 ± 0.2 and Concentrate sheep had 1.2 ± 0.2 large follicles (p < 0.05). Thereafter, ovulation rate was affected by duration of supplementation; being higher in sheep fed with cactus for 6-10 days (1.7 ± 0.1) than in ewes supplied with cactus for more than 11 days (1.3 ± 0.1; p < 0.05), in sheep fed with concentrate for 6-10 days (1.2 ± 0.1; p < 0.01) and even than in individuals subjected to classical flushing with concentrate (1.3 ± 0.1; p < 0.05).

  12. Latent heat loss of dairy cows in an equatorial semi-arid environment

    NASA Astrophysics Data System (ADS)

    da Silva, Roberto Gomes; Maia, Alex Sandro Campos; de Macedo Costa, Leonardo Lelis; de Queiroz, João Paulo A. Fernandes

    2012-09-01

    The present study aimed to evaluate evaporative heat transfer of dairy cows bred in a hot semi-arid environment. Cutaneous ( E S) and respiratory ( E R) evaporation were measured (810 observations) in 177 purebred and crossbred Holstein cows from five herds located in the equatorial semi-arid region, and one herd in the subtropical region of Brazil. Rectal temperature ( T R), hair coat surface temperature ( T S) and respiratory rate ( F R) were also measured. Observations were made in the subtropical region from August to December, and in the semi-arid region from April to July. Measurements were done from 1100 to 1600 hours, after cows remained in a pen exposed to the sun. Environmental variables measured in the same locations as the animals were black globe temperature ( T G), air temperature ( T A), wind speed ( U), and partial air vapour pressure ( P V). Data were analysed by mixed models, using the least squares method. Results showed that average E S and E R were higher in the semi-arid region (117.2 W m-2 and 44.0 W m-2, respectively) than in the subtropical region (85.2 W m-2 and 30.2 W m-2, respectively). Herds and individual cows were significant effects ( P < 0.01) for all traits in the semi-arid region. Body parts did not affect T S and E S in the subtropical region, but was a significant effect ( P < 0.01) in the semi-arid region. The average flank T S (42.8°C) was higher than that of the neck and hindquarters (39.8°C and 41.6°C, respectively). Average E S was higher in the neck (133.3 W m-2) than in the flank (116.2 W m-2) and hindquarters (98.6 W m-2). Coat colour affected significantly both T S and E S ( P < 0.01). Black coats had higher T S and E S in the semi-arid region (41.7°C and 117.2 W m-2, respectively) than white coats (37.2°C and 106.7 W m-2, respectively). Rectal temperatures were almost the same in both subtropical and semi-arid regions. The results highlight the need for improved management methods specific for semi-arid regions.

  13. Latent heat loss of dairy cows in an equatorial semi-arid environment.

    PubMed

    da Silva, Roberto Gomes; Maia, Alex Sandro Campos; de Macedo Costa, Leonardo Lelis; de Queiroz, João Paulo A Fernandes

    2012-09-01

    The present study aimed to evaluate evaporative heat transfer of dairy cows bred in a hot semi-arid environment. Cutaneous (E(S)) and respiratory (E(R)) evaporation were measured (810 observations) in 177 purebred and crossbred Holstein cows from five herds located in the equatorial semi-arid region, and one herd in the subtropical region of Brazil. Rectal temperature (T(R)), hair coat surface temperature (T(S)) and respiratory rate (F(R)) were also measured. Observations were made in the subtropical region from August to December, and in the semi-arid region from April to July. Measurements were done from 1100 to 1600 hours, after cows remained in a pen exposed to the sun. Environmental variables measured in the same locations as the animals were black globe temperature (T(G)), air temperature (T(A)), wind speed (U), and partial air vapour pressure (P(V)). Data were analysed by mixed models, using the least squares method. Results showed that average E(S) and E(R) were higher in the semi-arid region (117.2 W m(-2) and 44.0 W m(-2), respectively) than in the subtropical region (85.2 W m(-2) and 30.2 W m(-2), respectively). Herds and individual cows were significant effects (P < 0.01) for all traits in the semi-arid region. Body parts did not affect T(S) and E(S) in the subtropical region, but was a significant effect (P < 0.01) in the semi-arid region. The average flank T(S) (42.8°C) was higher than that of the neck and hindquarters (39.8°C and 41.6°C, respectively). Average E(S) was higher in the neck (133.3 W m(-2)) than in the flank (116.2 W m(-2)) and hindquarters (98.6 W m(-2)). Coat colour affected significantly both T(S) and E(S) (P < 0.01). Black coats had higher T(S) and E(S) in the semi-arid region (41.7°C and 117.2 W m(-2), respectively) than white coats (37.2°C and 106.7 W m(-2), respectively). Rectal temperatures were almost the same in both subtropical and semi-arid regions. The results highlight the need for improved management methods specific

  14. Understanding Hydrologic Processes in Semi-Arid Cold Climates

    NASA Astrophysics Data System (ADS)

    Barber, M. E.; Beutel, M.; Lamb, B.; Watts, R.

    2004-12-01

    Water shortages destabilize economies and ecosystems. These shortages are caused by complex interactions between climate variability, ecosystem processes, and increased demand from human activities. In the semi-arid region of the northwestern U.S., water availability during drought periods has already reached crisis levels and the problems are expected to intensify as the effects of global climate change and population growth continue to alter the supply and demand patterns. Many of the problems are critical to this region because hydropower, agriculture, navigation, fish and wildlife survival, water supply, tourism, environmental protection, and water-based recreation are vital to state economies and our way of life. In order to assess the spatial and temporal nature of hydrologic responses, consistent and comprehensive long-term data sets are needed. In response to these needs, we would like to propose the Spokane River drainage basin as a long-term hydrologic observatory. The Spokane River basin is located in eastern Washington and northern Idaho and is a tributary of the Columbia River. The watershed consists of several major surface water tributaries as well as natural and man-made lakes and reservoirs. With headwaters beginning in the Rocky Mountains, the drainage area is approximately 6,640 mi2. In addition to providing an excellent study area for examining many conventional water resource problems, the Spokane River watershed also presents a unique opportunity for investigating many of the hydrologic processes found in semi-arid cold climates. Snowfall in the watershed varies spatially between 35 inches near the mouth of the basin to over 112 inches at the headwaters. These varied hydrologic uses provide a unique opportunity to address many common challenges faced by water resource professionals. This broad array of issues encompasses science, engineering, agriculture, social sciences, economics, fisheries, and a host of other disciplines. In addition

  15. The legacy of organochlorine pesticide usage in a tropical semi-arid region (Jaguaribe River, Ceará, Brazil): Implications of the influence of sediment parameters on occurrence, distribution and fate.

    PubMed

    Oliveira, André H B; Cavalcante, Rivelino M; Duaví, Wersângela C; Fernandes, Gabrielle M; Nascimento, Ronaldo F; Queiroz, Maria E L R; Mendonça, Kamila V

    2016-01-15

    Between the 1940s and 1990s, immeasurable amounts of organochlorine pesticides (OCPs) were used in endemic disease control campaigns and agriculture in the tropical semi-arid regions of Brazil. The present study evaluated the legacy of banned OCP usage, considering the levels, ecological risk and dependence on sediment physicochemical properties for the fate and distribution in the Jaguaribe River. The sum concentration of OCPs (ΣOCPs) ranged from 5.09 to 154.43 ng·g(-1), comparable to the levels found in other tropical and subtropical regions that have traditionally used OCPs. The environmental and geographical distribution pattern of p,p-DDT, p,p-DDD and p,p-DDE shows that the estuarine zone contained more than 3.5 times the levels observed in the fluvial region, indicating that the estuary of the Jaguaribe River is a sink. The temporal pattern indicates application of dichloro-diphenyl-trichloroethanes (DDTs) in the past; however, there is evidence of recent input of these pesticides. High ecological risk was observed for levels of γ-hexachlorocyclohexanes (γ-HCH) and heptachlor, and moderate ecological risk was observed for levels of DDTs in sediments from the Jaguaribe River. The heptachlor, γ-HCH and hexachlorobenzene (HCB) concentrations depend on the organic and inorganic fractions of sediment from the Jaguaribe River, whereas the p,p-DDE, p,p-DDD, p,p-DDT and α-endosulfan concentrations depend solely on the organic fraction of the sediment.

  16. Buffalo gourd: potential as a fuel resource on semi-arid lands

    SciTech Connect

    Young, P.G.; Morgan, R.P.; Shultz, E.B. Jr.

    1982-01-01

    Buffalo gourd, (Cucurbita foetidissima), is a wild, hot-dry-land plant native to the semi-arid regions of North America. Its triglyceride oil and fermentable starch make it a potential biomass energy source. These products, along with the seed meal and foliage, also offer the potential for cultivation in semi-arid regions of the developing world as a food and feed source. Alternatively, the plant may help to maintain economic vitality in regions such as the Texas High Plains, where declining water supplies threaten present irrigation practices. Technical feasibility, impacts, commercialization requirements, and research needs are discussed.

  17. The legacy of organochlorine pesticide usage in a tropical semi-arid region (Jaguaribe River, Ceará, Brazil): Implications of the influence of sediment parameters on occurrence, distribution and fate.

    PubMed

    Oliveira, André H B; Cavalcante, Rivelino M; Duaví, Wersângela C; Fernandes, Gabrielle M; Nascimento, Ronaldo F; Queiroz, Maria E L R; Mendonça, Kamila V

    2016-01-15

    Between the 1940s and 1990s, immeasurable amounts of organochlorine pesticides (OCPs) were used in endemic disease control campaigns and agriculture in the tropical semi-arid regions of Brazil. The present study evaluated the legacy of banned OCP usage, considering the levels, ecological risk and dependence on sediment physicochemical properties for the fate and distribution in the Jaguaribe River. The sum concentration of OCPs (ΣOCPs) ranged from 5.09 to 154.43 ng·g(-1), comparable to the levels found in other tropical and subtropical regions that have traditionally used OCPs. The environmental and geographical distribution pattern of p,p-DDT, p,p-DDD and p,p-DDE shows that the estuarine zone contained more than 3.5 times the levels observed in the fluvial region, indicating that the estuary of the Jaguaribe River is a sink. The temporal pattern indicates application of dichloro-diphenyl-trichloroethanes (DDTs) in the past; however, there is evidence of recent input of these pesticides. High ecological risk was observed for levels of γ-hexachlorocyclohexanes (γ-HCH) and heptachlor, and moderate ecological risk was observed for levels of DDTs in sediments from the Jaguaribe River. The heptachlor, γ-HCH and hexachlorobenzene (HCB) concentrations depend on the organic and inorganic fractions of sediment from the Jaguaribe River, whereas the p,p-DDE, p,p-DDD, p,p-DDT and α-endosulfan concentrations depend solely on the organic fraction of the sediment. PMID:26519585

  18. Use of Special Sensor Microwave/Imager (SSM/I) for estimation of precipitation features in a semi-arid, mountain region: A case study of southwest Saudi Arabia

    SciTech Connect

    Mashat, A.S.

    1992-01-01

    The linear regression method was used to determine the degree of correlation between soil caused by rainfall and Special Sensor Microwave/Imager (SSM/I) brightness temperatures or combinations of two brightness temperatures. This study is concerned with the application of passive microwaves to soil moisture classifications in a semi-arid, mountain region. The southwest region of Saudi Arabia was chosen for this study. Two case studies were performed to investigate the response of SSM/I brightness temperatures to soil moisture. The first case study is at satellite ascending overpass time (about 6:00 a.m. local solar time), and the second case study is at satellite descending overpass time (about 6:00 p.m. local solar time). It is shown that brightness temperatures normalized with respect to ground temperature may be interpreted in terms of the soil moisture in the surface layer of the soil. Normalized brightness temperatures are not sensitive to soil moisture when precipitating clouds are present. The existence of precipitating clouds over the study area was determined through an examination of brightness temperatures at 8.5. GHz. It was found that the normalized brightness temperatures with respect to ground temperature responded to the change of the soil moisture caused by rainfall. The normalized brightness temperature in channel H19 with respect to ground temperature (H19/T) was the best single SSM/I channel to use for a surface soil moisture investigation at satellite descending overpass time, and the normalized brightness temperature in channel H37 with respect to ground temperature (H37/T) was the best single SSM/I channel to use for a surface soil moisture investigation at satellite ascending overpass time.

  19. The Carbon Balance of Semi-Arid Ecosystems: Why Southern Africa Carbon-Climate Dynamics are uniquely different

    NASA Astrophysics Data System (ADS)

    Lawal, S. A.; Fisher, J. B.

    2015-12-01

    Previous studies by Poulter et al (2014) and Alhstrom et al (2015) have shown that the semi-arid ecosystems (e.g. Australia) can dramatically alter the regional and global net carbon sink/source status depending on sporadic precipitation. For example, the unprecedented huge carbon sink which occurred in 2011 was mainly due to the growth semi-arid vegetation over Australia; which was driven by increased precipitation. Thus, we sought to uncover if this was the case with the semi-arid ecosystems in southern Africa. We used 10 models from the "Trends In Net Land-Atmosphere Carbon Exchange - Model Inter comparison Project (TRENDY-MIP)" to evaluate response of southern Africa semi-arid ecosystems to precipitation in the 20th century. Our study revealed that the sensitivities and net carbon source/sink dynamics in these ecosystems are distinctly different from those elsewhere owing to opposite climate anomalies; i.e. the region receives sporadic precipitation drops, rather than spikes which is the case in other semi-arid regions. The implications for this study is explored in an ecosystem services context for future trajectories of the region as the ability of the ecosystems to continually provide such services directly depends on the soaring population rise in the region. Key words: Semi-arid ecosystem, Southern Africa, TRENDY-MIP, Carbon dynamics and climate change.

  20. Canola integration into semi-arid wheat cropping systems of the inland Pacific Northwestern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inland Pacific Northwestern USA (iPNW) wheat-producing region has a diversity of environments and soils, yet it lacks crop diversity and is one of the few semi-arid wheat-growing regions without significant integration of oilseeds. Four major agroecological zones, primarily characterised by wate...

  1. Study of air-soil exchange of polycyclic aromatic hydrocarbons (PAHs) in the north-central part of India--a semi arid region.

    PubMed

    Masih, Amit; Masih, Jamson; Taneja, Ajay

    2012-01-01

    Soil is the major environmental reservoir of organic compounds and soil-air exchange is a key process in governing the environmental fate of these compounds on a regional and global scale. Samples of air and soil were collected to study the levels of PAHs in the air and soil of the Agra region. Concentrations of PAH measured at four locations in the city of Agra, covers industrial, residential, roadside and agricultural areas. Samples were extracted with hexane by ultrasonic agitation. Extracts were then fractioned on a silica-gel column and the aromatic fraction was analysed by GC-MS. The mean concentration of the total PAH (T-PAH) in the air of Agra was 24.95, 17.95 and 14.25 ng m(-3), during winter, monsoon and summer respectively. The average concentration of T-PAH in the soil of Agra was 12.50, 8.25 and 6.44 μg g(-1) in winter, monsoon and summer seasons respectively. The aim of this study was to investigate the rate of approach to equilibrium partitioning of PAHs between air and soil compartments and to determine the direction of net flux of the studied PAH between air and soil. Calculated soil-air fugacity quotients indicate that the soil may now be a source of some lighter weight PAHs to the atmosphere, whereas it appears to be still acting as a long-term sink for the heavier weight PAHs to some extent in this region.

  2. A regional field-based assessment of organic C sequestration and GHG balances in irrigated agriculture in Mediterranean semi-arid land

    NASA Astrophysics Data System (ADS)

    Virto, Inigo; Antón, Rodrigo; Arias, Nerea; Orcaray, Luis; Enrique, Alberto; Bescansa, Paloma

    2016-04-01

    In a context of global change and increasing food demand, agriculture faces the challenge of ensuring food security making a sustainable use of resources, especially arable land and water. This implies in many areas a transition towards agricultural systems with increased and stable productivity and a more efficient use of inputs. The introduction of irrigation is, within this framework, a widespread strategy. However, the C cycle and the net GHG emissions can be significantly affected by irrigation. The net effect of this change needs to be quantified at a regional scale. In the region of Navarra (NE Spain) more than 22,300 ha of rainfed agricultural land have been converted to irrigation in the last years, adding to the previous existing irrigated area of 70,000 ha. In this framework the project Life+ Regadiox (LIFE12 ENV/ES/000426, http://life-regadiox.es/) has the objective of evaluating the net GHG balances and atmospheric CO2 fixation rates of different management strategies in irrigated agriculture in the region. The project involved the identification of areas representative of the different pedocllimatic conditions in the region. This required soil and climate characterizations, and the design of a network of agricultural fields representative of the most common dryland and irrigation managements in these areas. This was done from available public datasets on climate and soil, and from soil pits especially sampled for this study. Two areas were then delimited, mostly based on their degree of aridity. Within each of those areas, fields were selected to allow for comparisons at three levels: (i) dryland vs irrigation, (ii) soil and crop management systems for non-permanent crops, and (iii) soil management strategies for permanent crops (namely olive orchards and vineyards). In a second step, the objective of this work was to quantify net SOC variations and GHG balances corresponding to the different managements identified in the previous step. These

  3. Correlations between microbial tetraether lipids and environmental variables in Chinese soils: Optimizing the paleo-reconstructions in semi-arid and arid regions

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Pancost, Richard D.; Dang, Xinyue; Zhou, Xinying; Evershed, Richard P.; Xiao, Guoqiao; Tang, Changyan; Gao, Li; Guo, Zhengtang; Xie, Shucheng

    2014-02-01

    The bacterial membrane lipid-based continental paleothermometer, the MBT/CBT or MBT‧-CBT proxy (methylation index of branched tetraethers/cyclization of branched tetraethers), results in a large temperature deviation when applied in semiarid and arid regions. Here we propose new calibration models based on the investigation of >100 surface soils across a large climatic gradient, with a particular focus on semiarid and arid regions of China, and apply them to a loess-paleosol sequence. As reported elsewhere, MBT values exhibit a much higher correlation with MAAT than with summer temperature, suggesting a minimal seasonality bias; however, MBT is apparently insensitive to temperature <5 °C or >20 °C. Additional complexities are apparent in alkaline and arid soils, which are characterized by different relationships to climatic parameters than those in the complete Chinese (or global) dataset. For example, MBT and CBT indices exhibit a negative correlation in alkaline and arid soils, in contrast to their positive correlation in acid soils. Moreover, the cyclization ratio of bGDGTs (CBT), previously defined as a proxy for soil pH, is apparently primarily controlled by MAAT in these alkaline soils. Thus, we propose (1) a local Chinese calibration of the MBT-CBT proxy and (2) an alternative temperature proxy for use in semiarid and arid regions based on the fractional abundances of bGDGTs; the latter has a markedly higher determination factor and lower root mean square error in alkaline soils than the Chinese local calibration and is suggested to be preferred for paleotemperature reconstruction in Chinese loess/paleosol sequences. These new bGDGT proxies have been applied to the Weinan Holocene paleosol section of the Chinese Loess Plateau (CLP). The fractional abundance calibration, when applied in the Weinan Holocene paleosol, produces a total Holocene temperature variation of 5.2 °C and a temperature for the topmost sample that is consistent with the modern

  4. Population Genetic Analysis Reveals a High Genetic Diversity in the Brazilian Cryptococcus gattii VGII Population and Shifts the Global Origin from the Amazon Rainforest to the Semi-arid Desert in the Northeast of Brazil

    PubMed Central

    Ferreira-Paim, Kennio; Trilles, Luciana; Martins, Marilena; Ribeiro-Alves, Marcelo; Pham, Cau D.; Martins, Liline; dos Santos, Wallace; Chang, Marilene; Brito-Santos, Fabio; Santos, Dayane C. S.; Fortes, Silvana; Lockhart, Shawn R.; Wanke, Bodo; Melhem, Márcia S. C.; Lazéra, Márcia S.; Meyer, Wieland

    2016-01-01

    Cryptococcus neoformans and Cryptococcus gattii are responsible globally for almost one million cryptococcosis cases yearly, mostly in immunocompromised patients, such as those living with HIV. Infections due to C. gattii have mainly been described in tropical and subtropical regions, but its adaptation to temperate regions was crucial in the species evolution and highlighted the importance of this pathogenic yeast in the context of disease. Cryptococcus gattii molecular type VGII has come to the forefront in connection with an on-going emergence in the Pacific North West of North America. Taking into account that previous work pointed towards South America as an origin of this species, the present work aimed to assess the genetic diversity within the Brazilian C. gattii VGII population in order to gain new insights into its origin and global dispersal from the South American continent using the ISHAM consensus MLST typing scheme. Our results corroborate the finding that the Brazilian C. gattii VGII population is highly diverse. The diversity is likely due to recombination generated from sexual reproduction, as evidenced by the presence of both mating types in clinical and environmental samples. The data presented herein strongly supports the emergence of highly virulent strains from ancestors in the Northern regions of Brazil, Amazonia and the Northeast. Numerous genotypes represent a link between Brazil and other parts of the world reinforcing South America as the most likely origin of the C. gattii VGII subtypes and their subsequent global spread, including their dispersal into North America, where they caused a major emergence. PMID:27529479

  5. Population Genetic Analysis Reveals a High Genetic Diversity in the Brazilian Cryptococcus gattii VGII Population and Shifts the Global Origin from the Amazon Rainforest to the Semi-arid Desert in the Northeast of Brazil.

    PubMed

    Souto, Ana C P; Bonfietti, Lucas X; Ferreira-Paim, Kennio; Trilles, Luciana; Martins, Marilena; Ribeiro-Alves, Marcelo; Pham, Cau D; Martins, Liline; Dos Santos, Wallace; Chang, Marilene; Brito-Santos, Fabio; Santos, Dayane C S; Fortes, Silvana; Lockhart, Shawn R; Wanke, Bodo; Melhem, Márcia S C; Lazéra, Márcia S; Meyer, Wieland

    2016-08-01

    Cryptococcus neoformans and Cryptococcus gattii are responsible globally for almost one million cryptococcosis cases yearly, mostly in immunocompromised patients, such as those living with HIV. Infections due to C. gattii have mainly been described in tropical and subtropical regions, but its adaptation to temperate regions was crucial in the species evolution and highlighted the importance of this pathogenic yeast in the context of disease. Cryptococcus gattii molecular type VGII has come to the forefront in connection with an on-going emergence in the Pacific North West of North America. Taking into account that previous work pointed towards South America as an origin of this species, the present work aimed to assess the genetic diversity within the Brazilian C. gattii VGII population in order to gain new insights into its origin and global dispersal from the South American continent using the ISHAM consensus MLST typing scheme. Our results corroborate the finding that the Brazilian C. gattii VGII population is highly diverse. The diversity is likely due to recombination generated from sexual reproduction, as evidenced by the presence of both mating types in clinical and environmental samples. The data presented herein strongly supports the emergence of highly virulent strains from ancestors in the Northern regions of Brazil, Amazonia and the Northeast. Numerous genotypes represent a link between Brazil and other parts of the world reinforcing South America as the most likely origin of the C. gattii VGII subtypes and their subsequent global spread, including their dispersal into North America, where they caused a major emergence. PMID:27529479

  6. Population Genetic Analysis Reveals a High Genetic Diversity in the Brazilian Cryptococcus gattii VGII Population and Shifts the Global Origin from the Amazon Rainforest to the Semi-arid Desert in the Northeast of Brazil.

    PubMed

    Souto, Ana C P; Bonfietti, Lucas X; Ferreira-Paim, Kennio; Trilles, Luciana; Martins, Marilena; Ribeiro-Alves, Marcelo; Pham, Cau D; Martins, Liline; Dos Santos, Wallace; Chang, Marilene; Brito-Santos, Fabio; Santos, Dayane C S; Fortes, Silvana; Lockhart, Shawn R; Wanke, Bodo; Melhem, Márcia S C; Lazéra, Márcia S; Meyer, Wieland

    2016-08-01

    Cryptococcus neoformans and Cryptococcus gattii are responsible globally for almost one million cryptococcosis cases yearly, mostly in immunocompromised patients, such as those living with HIV. Infections due to C. gattii have mainly been described in tropical and subtropical regions, but its adaptation to temperate regions was crucial in the species evolution and highlighted the importance of this pathogenic yeast in the context of disease. Cryptococcus gattii molecular type VGII has come to the forefront in connection with an on-going emergence in the Pacific North West of North America. Taking into account that previous work pointed towards South America as an origin of this species, the present work aimed to assess the genetic diversity within the Brazilian C. gattii VGII population in order to gain new insights into its origin and global dispersal from the South American continent using the ISHAM consensus MLST typing scheme. Our results corroborate the finding that the Brazilian C. gattii VGII population is highly diverse. The diversity is likely due to recombination generated from sexual reproduction, as evidenced by the presence of both mating types in clinical and environmental samples. The data presented herein strongly supports the emergence of highly virulent strains from ancestors in the Northern regions of Brazil, Amazonia and the Northeast. Numerous genotypes represent a link between Brazil and other parts of the world reinforcing South America as the most likely origin of the C. gattii VGII subtypes and their subsequent global spread, including their dispersal into North America, where they caused a major emergence.

  7. Use and management of mimosa species in the Tehuacán-Cuicatlán Valley, a tropical semi-arid region in Mexico (Fabaceae-Mimosoideae).

    PubMed

    Camargo-Ricalde, S L; Dhillion, S S

    2004-12-01

    We report on the use of 15 Mimosa species within the Tehucán-Cuicatlán Valley, south-central Mexico. Seven of these species are endemic to Mexico, and four species and one variety are endemic to the Valley. We reviewed historical, ethnobotanical and floristic manuscripts, and conducted field studies. Several herbaria were consulted, as well as the BADEPLAM data base. Field work in the Valley has been done from 1994 to date. Most of the Mimosa species occur in the arid tropical scrub and the tropical deciduous forest, which are considered the most endangered vegetation types of the Valley. Our findings show that Mimosa species are used as fodder (45%), fuel (31%), living fences (14%) and construction material (7%). Only one species is used as medicine. Mimosa species are "multipurpose" shrubs/trees of the agrosilvopastoral system of this region.

  8. Interannual variability of a precipitation gradient along the semi-arid catchment areas for the metropolitan region of Lima- Peru in relation to atmospheric circulation at the mesoscale

    NASA Astrophysics Data System (ADS)

    Otto, Marco; Seidel, Jochen; Trachte, Katja

    2013-04-01

    The main moisture source for precipitation on the western slopes of the Central Andes is located east of the mountain range known as the Amazon basin. However, the Andean mountains, which reach up to 6000 m a.s.l., strongly influence climatic conditions along the Pacific coastline of South America as a climatic barrier for the low-level tropospheric flow and associated moisture transport from the Amazon basin. Additional, large scale subsidence caused by the South Pacific High inhabits convective rainfall at the Pacific coast where large metropolitan areas such as the Peruvian capital Lima are located. Two contrasts in precipitation can be found while crossing the Andean mountains from West to East. On the Pacific coast, at the location of the metropolitan area of Lima, no more than 10 mm mean annual rainfall occurs. In contrast, up to 1000 mm mean annual rainfall occur only 100 km east of Lima within the upper region (4000 m .a.s.l.) of the Western Cordillera. The transition takes place along the western slopes of the Western Cordillera and is characterised by a strong precipitation gradient. Here, catchment areas are located that provide most of the water resources needed to sustain an urban area of approximately 10 million people. This study investigates the interannual variability of the precipitation gradient between 1998 and 2012. The analysis is based on daily precipitation data of 22 rain gauge station, daily rainfall data of the Tropical Rainfall Mission (TRMM 3B42) at 0.25 degrees and reanalysis data at 36 km spatial resolution at the mesoscale. The reanalysis data was produced using the Weather Research and Forecasting Model. Station data was provided by the Peruvian weather service during the project "Sustainable Water and Wastewater Management in Urban Growth Centres Coping with Climate Change - Concepts for Lima Metropolitana (Peru) (LiWa)", which is financed by the German Federal Ministry of Education and Research (BMBF). We are interested in the

  9. Water use and physiology of the riparian tree species Eucalyptus victrix in the semi-arid Pilbara region of Western Australia

    NASA Astrophysics Data System (ADS)

    Pfautsch, S.; Keitel, C.; Adams, M. A.; Turnbull, T.

    2009-04-01

    We examined the water use and physiology of trees growing in a riparian community within the seasonally arid Pilbara region of north-western Australia. This region is arid during the winter months, but monsoonal during summer (November to April). Maximum monthly mean temperatures in summer exceed 40 °C and are c. 25 °C during the winter months. The Millstream study site is located on a section of the Fortescue River system along the base of the Chichester Range c. 100km south of Karratha. This system creates a unique landscape in the Pilbara as it forms several large permanent pools. These pools are maintained by springs from an aquifer beneath the alluvial plain. The groundwater from this aquifer is used as a public water supply for towns in the west Pilbara but industrial development and a growing population will place greater demand on this aquifer. Changes to the local hydrology may have dramatic effects on the local plant community, dominated variously by stands of Eucalyptus victrix (Coolibah) and Eucalyptus camaldulensis (River red gum). This study seeks to understand the dependence of the Millstream riparian ecosystem on the height of the aquifer and to characterise the water use and physiology of Eucalyptus victrix. We used a number of techniques to determine the hydraulic and photosynthetic status of the tree canopy, including isotope, sap flow, water-potential and gas exchange measurements. Initial results from this study show: a) Soil water d18O and d2H is strongly enriched towards the surface, which coincides with a strong increase in salinity. The water source accessed by these trees has been identified by d18O and d2H analysis of xylem water. d18O and d2H were additionally analysed in atmospheric and leaf water pools. b) Sap flow in Coolibah trees shows a unique pattern of sharp early morning rise to a plateau maintained throughout the hottest part of the day, followed by a sharp decline in flow late in the afternoon. c) Leaf water potential

  10. Hydrologic modeling in semi-arid agricultural region: An integrated approach to study water resources in southern San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Roy, Sagarika

    deficit in the region is 135.66 +/- 11.3 mm and the total annual surplus is 291.47 +/- 24.29 mm. Irrigation should apply when this region undergoes a period of moisture deficit in the months of May to July. From September to October are months of soil water recharge; from November to early February is the period of water surplus due to winter rainfall. It was observed that the growers should apply a depth of approximately 79.37 +/- 11.3 mm to replenish the soil moisture storage over the entire field in the growing season of almond orchards.

  11. Wild flora of mine tailings: perspectives for use in phytoremediation of potentially toxic elements in a semi-arid region in Mexico.

    PubMed

    Sánchez-López, Ariadna S; Del Carmen A González-Chávez, Ma; Carrillo-González, Rogelio; Vangronsveld, Jaco; Díaz-Garduño, Margarita

    2015-01-01

    The aim of this research was to identify wild plant species applicable for remediation of mine tailings in arid soils. Plants growing on two mine tailings were identified and evaluated for their potential use in phytoremediation based on the concentration of potentially toxic elements (PTEs) in roots and shoots, bioconcentration (BCF) and translocation factors (TF). Total, water-soluble and DTPA-extractable concentrations of Pb, Cd, Zn, Cu, Co and Ni in rhizospheric and bulk soil were determined. Twelve species can grow on mine tailings, accumulate PTEs concentrations above the commonly accepted phytotoxicity levels, and are suitable for establishing a vegetation cover on barren mine tailings in the Zimapan region. Pteridium sp. is suitable for Zn and Cd phytostabilization. Aster gymnocephalus is a potential phytoextractor for Zn, Cd, Pb and Cu; Gnaphalium sp. for Cu and Crotalaria pumila for Zn. The species play different roles according to the specific conditions where they are growing at one site behaving as a PTEs accumulator and at another as a stabilizer. For this reason and due to the lack of a unified approach for calculation and interpretation of bioaccumulation factors, only considering BCF and TF may be not practical in all cases.

  12. Quantifying macropore recharge: Examples from a semi-arid area

    USGS Publications Warehouse

    Wood, W.W.; Rainwater, K.A.; Thompson, D.B.

    1997-01-01

    The purpose of this paper is to illustrate the significantly increased resolution of determining macropore recharge by combining physical, chemical, and isotopic methods of analysis. Techniques for quantifying macropore recharge were developed for both small-scale (1 to 10 km2) and regional-scale areas in and semi-arid areas. The Southern High Plains region of Texas and New Mexico was used as a representative field site to test these methods. Macropore recharge in small-scale areas is considered to be the difference between total recharge through floors of topographically dosed basins and interstitial recharge through the same area. On the regional scale, macropore recharge was considered to be the difference between regional average annual recharge and interstitial recharge measured in the unsaturated zone. Stable isotopic composition of ground water and precipitation was used us an independent estimate of macropore recharge on the regional scale. Results of this analysis suggest that in the Southern High Plains recharge flux through macropores is between 60 and 80 percent of the total 11 mm/y. Between 15 and 35 percent of the recharge occurs by interstitial recharge through the basin floors. Approximately 5 percent of the total recharge occurs as either interstitial or matrix recharge between the basin floors, representing approximately 95 percent of the area. The approach is applicable to other arid and semi-arid areas that focus rainfall into depressions or valleys.The purpose of this paper is to illustrate the significantly increased resolution of determining macropore recharge by combining physical, chemical, and isotopic methods of analysis. Techniques for quantifying macropore recharge were developed for both small-scale (1 to 10 km2) and regional-scale areas in arid and semi-arid areas. The Southern High Plains region of Texas and New Mexico was used as a representative field site to test these methods. Macropore recharge in small-scale areas is considered

  13. Irrigated plantations and their effect on energy fluxes in a semi-arid region of Israel - a validated 3-D model simulation

    NASA Astrophysics Data System (ADS)

    Branch, O.; Warrach-Sagi, K.; Wulfmeyer, V.; Cohen, S.

    2013-11-01

    A large irrigated biomass plantation was simulated in an arid region of Israel within the WRF-NOAH coupled atmospheric/land surface model in order to assess land surface atmosphere feedbacks. Simulations were carried out for the 2012 summer season (JJA). The irrigated plantations were simulated by prescribing tailored land surface and soil/plant parameters, and by implementing a newly devised, controllable sub-surface irrigation scheme within NOAH. Two model cases studies were considered and compared - Impact and Control. Impact simulates a hypothetical 10 km × 10 km irrigated plantation. Control represents a baseline and uses the existing land surface data, where the predominant land surface type in the area is bare desert soil. Central to the study is model validation against observations collected for the study over the same period. Surface meteorological and soil observations were made at a desert site and from a 400 ha Simmondsia chinensis (Jojoba) plantation. Control was validated with data from the desert, and Impact from the Jojoba. Finally, estimations were made of the energy balance, applying two Penman-Monteith based methods along with observed meteorological data. These estimations were compared with simulated energy fluxes. Control simulates the daytime desert surface 2 m air temperatures (T2) with less than 0.2 °C deviation and the vapour pressure deficit (VPD) to within 0.25 hPa. Desert wind speed (U) is simulated to within 0.5 m s-1 and the net surface radiation (Rn) to 25 W m-2. Soil heat flux (G) is not so accurately simulated by Control (up to 30 W m-2 deviation) and 5 cm soil temperatures (ST5) are simulated to within 1.5 °C. Impact simulates daytime T2 over irrigated vegetation to within 1-1.5 °C, the VPD to 0.5 hPa, Rn to 50 W m-2 and ST5 to within 2 °C. Simulated Impact G deviates up to 40 W m-2, highlighting a need for re-parameterisation or better soil classification, but the overall contribution to the energy balance is small (5

  14. Remote sensing for mapping soil moisture and drainage potential in semi-arid regions: Applications to the Campidano plain of Sardinia, Italy.

    PubMed

    Filion, Rébecca; Bernier, Monique; Paniconi, Claudio; Chokmani, Karem; Melis, Massimo; Soddu, Antonino; Talazac, Manon; Lafortune, Francois-Xavier

    2016-02-01

    The aim of this study is to investigate the potential of radar (ENVISAT ASAR and RADARSAT-2) and LANDSAT data to generate reliable soil moisture maps to support water management and agricultural practice in Mediterranean regions, particularly during dry seasons. The study is based on extensive field surveys conducted from 2005 to 2009 in the Campidano plain of Sardinia, Italy. A total of 12 small bare soil fields were sampled for moisture, surface roughness, and texture values. From field scale analysis with ENVISAT ASAR (C-band, VV polarized, descending mode, incidence angle from 15.0° to 31.4°), an empirical model for estimating bare soil moisture was established, with a coefficient of determination (R(2)) of 0.85. LANDSAT TM5 images were also used for soil moisture estimation using the TVX slope (temperature/vegetation index), and in this case the best linear relationship had an R(2) of 0.81. A cross-validation on the two empirical models demonstrated the potential of C-band SAR data for estimation of surface moisture, with and R(2) of 0.76 (bias +0.3% and RMSE 7%) for ENVISAT ASAR and 0.54 (bias +1.3% and RMSE 5%) for LANDSAT TM5. The two models developed at plot level were then applied over the Campidano plain and assessed via multitemporal and spatial analyses, in the latter case against soil permeability data from a pedological map of Sardinia. Encouraging estimated soil moisture (ESM) maps were obtained for the SAR-based model, whereas the LANDSAT-based model would require a better field data set for validation, including ground data collected on vegetated fields. ESM maps showed sensitivity to soil drainage qualities or drainage potential, which could be useful in irrigation management and other agricultural applications.

  15. Decision support for on-farm water management and long-term agricultural sustainability in a semi-arid region of India

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2010-09-01

    SummaryThe long-term success of irrigated agriculture for sustainable crop production in India depends largely on the careful management of land and water resources. Currently, some serious environmental problems of waterlogging and soil salinization are burgeoning in parts of Haryana State of India; half a million hectare area of the State is already waterlogged. Poor irrigation and drainage management and inadequate exploitation of saline ground water are the main factors responsible for this phenomenon. In order to prevent further degradation and to maintain the food production for the growing population, judicious use of natural resources is a must. A wide range of solutions could be considered to address the problems. But the effectiveness of all the solutions and their combinations cannot be verified with on-farm experiments. Simulation models by way of their predictive capability are often the only viable means of providing input to management decisions. These models can help to forecast the likely impacts of a particular alternative management strategy. In the present study a physical based one-dimensional simulation model SWASALT was employed to evaluate on-farm irrigation water management options. After successful calibration and validation with field experimentation data, several scenario building exercises have been conducted under different crop, soil and rainfall conditions. The water and salt balance component obtained for each simulation run were used to derive water management response indicators. The simulation study revealed that in most conditions, saline water of up to 7.5 dS/m can be used safely on long term basis for crop production. The simulation study further revealed that alternative use of canal and saline water had an edge over mix use. Several alternatives have been suggested for sustainable agricultural production in the region. The strategies suggested, if followed, would lend sustainability to the agricultural production besides

  16. Remote sensing for mapping soil moisture and drainage potential in semi-arid regions: Applications to the Campidano plain of Sardinia, Italy.

    PubMed

    Filion, Rébecca; Bernier, Monique; Paniconi, Claudio; Chokmani, Karem; Melis, Massimo; Soddu, Antonino; Talazac, Manon; Lafortune, Francois-Xavier

    2016-02-01

    The aim of this study is to investigate the potential of radar (ENVISAT ASAR and RADARSAT-2) and LANDSAT data to generate reliable soil moisture maps to support water management and agricultural practice in Mediterranean regions, particularly during dry seasons. The study is based on extensive field surveys conducted from 2005 to 2009 in the Campidano plain of Sardinia, Italy. A total of 12 small bare soil fields were sampled for moisture, surface roughness, and texture values. From field scale analysis with ENVISAT ASAR (C-band, VV polarized, descending mode, incidence angle from 15.0° to 31.4°), an empirical model for estimating bare soil moisture was established, with a coefficient of determination (R(2)) of 0.85. LANDSAT TM5 images were also used for soil moisture estimation using the TVX slope (temperature/vegetation index), and in this case the best linear relationship had an R(2) of 0.81. A cross-validation on the two empirical models demonstrated the potential of C-band SAR data for estimation of surface moisture, with and R(2) of 0.76 (bias +0.3% and RMSE 7%) for ENVISAT ASAR and 0.54 (bias +1.3% and RMSE 5%) for LANDSAT TM5. The two models developed at plot level were then applied over the Campidano plain and assessed via multitemporal and spatial analyses, in the latter case against soil permeability data from a pedological map of Sardinia. Encouraging estimated soil moisture (ESM) maps were obtained for the SAR-based model, whereas the LANDSAT-based model would require a better field data set for validation, including ground data collected on vegetated fields. ESM maps showed sensitivity to soil drainage qualities or drainage potential, which could be useful in irrigation management and other agricultural applications. PMID:26254021

  17. Problems and Prospects of Swat Model Application on an Arid/Semi-Arid Watershed in Arizona

    EPA Science Inventory

    Hydrological characteristics in the semi-arid southwest create unique challenges to watershed modellers. Streamflow in these regions is largely dependent on seasonal, short term, and high intensity rainfall events. The objectives of this study are: 1) to analyze the unique hydrol...

  18. Impacts of Urbanization on Groundwater Quality and Recharge in a Semi-arid Alluvial Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The management of groundwater resources is paramount in semi-arid regions experiencing urban development. In the southwestern United States, enhancing recharge of urban storm runoff has been identified as a strategy for augmenting groundwater resources. An understanding of how urbanization may impac...

  19. A TEN-YEAR WATER BALANCE OF A MOUNTAINOUS SEMI-ARID WATERSHED. (R824784)

    EPA Science Inventory

    Quantifying water balance components, which is particularly challenging in snow-fed, semi-arid regions, is crucial to understanding the basic hydrology of a watershed. In this study, a water balance was computed using 10 years of data collected at the Upper Sheep Creek Water...

  20. Problems and Prospects of SWAT Model Application on an Arid/Semi-arid Watershed in Arizona

    EPA Science Inventory

    Hydrological characteristics in the semi-arid southwest create unique challenges to watershed modelers. Streamflow in these regions is largely dependent on seasonal, short term, and high intensity rainfall events. The objectives of this study are: 1) to analyze the unique hydrolo...

  1. Preface paper to the Semi-Arid Land-Surface-Atmosphere (SALSA) Program special issue

    USGS Publications Warehouse

    Goodrich, D.C.; Chehbouni, A.; Goff, B.; MacNish, B.; Maddock, T.; Moran, S.; Shuttleworth, W.J.; Williams, D.G.; Watts, C.; Hipps, L.H.; Cooper, D.I.; Schieldge, J.; Kerr, Y.H.; Arias, H.; Kirkland, M.; Carlos, R.; Cayrol, P.; Kepner, W.; Jones, B.; Avissar, R.; Begue, A.; Bonnefond, J.-M.; Boulet, G.; Branan, B.; Brunel, J.P.; Chen, L.C.; Clarke, T.; Davis, M.R.; DeBruin, H.; Dedieu, G.; Elguero, E.; Eichinger, W.E.; Everitt, J.; Garatuza-Payan, J.; Gempko, V.L.; Gupta, H.; Harlow, C.; Hartogensis, O.; Helfert, M.; Holifield, C.; Hymer, D.; Kahle, A.; Keefer, T.; Krishnamoorthy, S.; Lhomme, J.-P.; Lagouarde, J.-P.; Lo, Seen D.; Luquet, D.; Marsett, R.; Monteny, B.; Ni, W.; Nouvellon, Y.; Pinker, R.; Peters, C.; Pool, D.; Qi, J.; Rambal, S.; Rodriguez, J.; Santiago, F.; Sano, E.; Schaeffer, S.M.; Schulte, M.; Scott, R.; Shao, X.; Snyder, K.A.; Sorooshian, S.; Unkrich, C.L.; Whitaker, M.; Yucel, I.

    2000-01-01

    The Semi-Arid Land-Surface-Atmosphere Program (SALSA) is a multi-agency, multi-national research effort that seeks to evaluate the consequences of natural and human-induced environmental change in semi-arid regions. The ultimate goal of SALSA is to advance scientific understanding of the semi-arid portion of the hydrosphere-biosphere interface in order to provide reliable information for environmental decision making. SALSA approaches this goal through a program of long-term, integrated observations, process research, modeling, assessment, and information management that is sustained by cooperation among scientists and information users. In this preface to the SALSA special issue, general program background information and the critical nature of semi-arid regions is presented. A brief description of the Upper San Pedro River Basin, the initial location for focused SALSA research follows. Several overarching research objectives under which much of the interdisciplinary research contained in the special issue was undertaken are discussed. Principal methods, primary research sites and data collection used by numerous investigators during 1997-1999 are then presented. Scientists from about 20 US, five European (four French and one Dutch), and three Mexican agencies and institutions have collaborated closely to make the research leading to this special issue a reality. The SALSA Program has served as a model of interagency cooperation by breaking new ground in the approach to large scale interdisciplinary science with relatively limited resources.

  2. Nebkha patterns in semi-arid environments

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; Gillies, J. A.; Nickling, W. G.

    2014-12-01

    In semi-arid supply-limited, environments, nehbka dunes typically form through ecogeomorphic feedbacks. The size, shape and orientation of these dunes are controlled by the interactions between vegetation growth and aeolian sedimentations processes. Once established, these dune patterns modify sediment transport and often form streets of bare surfaces between dune corridors. We examine typical dune and vegetation patterns that form with varying amounts of sediment availability and nebkha maturity at Jornada in the Chihuahuan Desert, New Mexico, USA using terrestrial laser scanning (TLS) to separate the plant and sand elements. Manual and automated TLS shrub height extractions compare well at all sites (p = 0.48-0.94) enabling the quantification of both solid and plant roughness element components in three dimensions. We find that there is a switch in orientation of the dune elements with respect to dominant wind direction from perpendicular to parallel as the landscape develops from an incipient to mature configuration and mesquite-nebkha streets are enhanced. As the nebkha dunes develop the surface coverage of bare sand increases and dune surfaces exceed the size of their companion shrubs. Roughness density also increases at the mature dune site. Individual shrub orientations remain similar at each site, but nebkhas typically host multiple shrub crowns at the mature site. Over a two year period up to 20 cm of erosion was measured on the upwind faces of the mature nebkha dunes, in agreement with the dominant annual wind direction. However, deposition patterns were more diffuse and influenced by the vegetation patterns. This study highlights the importance of ecogeomorphic interactions in shaping nebkha landscape patterns.

  3. Intra-seasonal NDVI change projections in semi-arid Africa

    USGS Publications Warehouse

    Funk, Christopher C.; Brown, Molly E.

    2006-01-01

    Early warning systems (EWS) tend to focus on the identification of slow onset disasters such famine and epidemic disease. Since hazardous environmental conditions often precede disastrous outcomes by many months, effective monitoring via satellite and in situ observations can successfully guide mitigation activities. Accurate short term forecasts of NDVI could increase lead times, making early warning earlier. This paper presents a simple empirical model for making 1 to 4 month NDVI projections. These statistical projections are based on parameterized satellite rainfall estimates (RFE) and relative humidity demand (RHD). A quasi-global, 1 month ahead, 1° study demonstrates reasonable accuracies in many semi-arid regions. In Africa, a 0.1° cross-validated skill assessment quantifies the technique's applicability at 1 to 4 month forecast intervals. These results suggest that useful projections can be made over many semi-arid, food insecure regions of Africa, with plausible extensions to drought prone areas of Asia, Australia and South America.

  4. Water balance of two earthen landfill caps in a semi-arid climate

    SciTech Connect

    Khire, M.V.; Benson, C.H.; Bosscher, P.J.

    1997-12-31

    Water balance data are presented that were obtained from two earthen cap test sections located in a semi-arid region. The test sections were constructed on a municipal solid waste landfill in East Wenatchee, Washington, USA. One test section represents a traditional resistive barrier, and is constructed with a compacted silty clay barrier 60 cm thick and a vegetated silty clay surface layer 15 cm thick. The other test section represents a capillary barrier and has a sand layer 75 cm thick overlain by a 15-cm-thick vegetated surface layer of silt. Extensive hydrological and meteorological data have been collected since November 1992. Unsaturated hydraulic properties of soils, hydrologic parameters, and vegetation have been extensively characterized. Results of the study show that capillary barriers can be effective caps in semi-arid and arid regions. They are also cheaper to construct and can perform better than traditional resistive barriers.

  5. Using NDVI to measure precipitation in semi-arid landscapes

    USGS Publications Warehouse

    Birtwhistle, Amy N.; Laituri, Melinda; Bledsoe, Brian; Friedman, Jonathan M.

    2016-01-01

    Measuring precipitation in semi-arid landscapes is important for understanding the processes related to rainfall and run-off; however, measuring precipitation accurately can often be challenging especially within remote regions where precipitation instruments are scarce. Typically, rain-gauges are sparsely distributed and research comparing rain-gauge and RADAR precipitation estimates reveal that RADAR data are often misleading, especially for monsoon season convective storms. This study investigates an alternative way to map the spatial and temporal variation of precipitation inputs along ephemeral stream channels using Normalized Difference Vegetation Index (NDVI) derived from Landsat Thematic Mapper imagery. NDVI values from 26 years of pre- and post-monsoon season Landsat imagery were derived across Yuma Proving Ground (YPG), a region covering 3,367 km2 of semiarid landscapes in southwestern Arizona, USA. The change in NDVI from a pre-to post-monsoon season image along ephemeral stream channels explained 73% of the variance in annual monsoonal precipitation totals from a nearby rain-gauge. In addition, large seasonal changes in NDVI along channels were useful in determining when and where flow events have occurred.

  6. Spatial Patterns and Natural Recruitment of Native Shrubs in a Semi-arid Sandy Land

    PubMed Central

    Wu, Bo; Yang, Hongxiao

    2013-01-01

    Passive restoration depending on native shrubs is an attractive approach for restoring desertified landscapes in semi-arid sandy regions. We sought to understand the relationships between spatial patterns of native shrubs and their survival ability in sandy environments. Furthermore, we applied our results to better understand whether passive restoration is feasible for desertified landscapes in semi-arid sandy regions. The study was conducted in the semi-arid Mu Us sandy land of northern China with the native shrub Artemisia ordosica. We analyzed population structures and patterns of A. ordosica at the edges and centers of land patches where sand was stabilized by A. ordosica-dominated vegetation. Saplings were more aggregated than adults, and both were more aggregated at the patch edges than at the patch centers. At the patch edges, spatial association of the saplings with the adults was mostly positive at distances 0.3–6.6 m, and turned from positive to neutral, and even negative, at other distances. At the patch centers, the saplings were spaced almost randomly around the adults, and their distances from the adults did not seem to affect their locations. A greater number of A. ordosica individuals emerged at the patch edges than at the patch centers. Such patterns may have resulted from their integrative adjustment to specific conditions of soil water supply and sand drift intensity. These findings suggest that in semi-arid sandy regions, native shrubs that are well-adapted to local environments may serve as low-cost and competent ecological engineers that can promote the passive restoration of surrounding patches of mobile sandy land. PMID:23505489

  7. Semi-arid ecosystem response under seasonal hydroclimatic forcings

    NASA Astrophysics Data System (ADS)

    Feng, Xue; Souza, Rodolfo; Vico, Giulia; Antonino, Antonio; Montenegro, Suzana; Porporato, Amilcare

    2015-04-01

    The interannual variability of seasonal rainfall has been observed to change in conjunction with the magnitude, timing, and duration of seasonality. Such changes are especially pronounced in several seasonality hotspots around the world, including in the semi-arid regions of northeast Brazil. Rainfall variability, combined with a generally low rainfall amount and high year-round potential evapotranspiration, poses challenges here for plant survival in the local ecosystems of dry forests and managed pastures. As a result, the native vegetation has adopted many physiological and phenological strategies to deal with the yearly alteration between favorable (wet) and adverse (dry) growing conditions, including drought deciduousness and succulence. To understand the ecosystem-level response to future changes in climate seasonality, we adopt a new model for resolving the seasonal trajectory of stochastic soil moisture, coupled to a vegetation growth model that accounts for various plant water use strategies and phenological adjustments. This is validated using satellite data (e.g., NDVI) and field surveys, with special attention to the role of water storage capacity of the ecosystem, which governs hysteretic responses under seasonal forcings, and may ultimately determine ecosystem resilience and recovery after periods of drought.

  8. Time Profile of Three Semi-Arid Ecosystems in Africa

    NASA Astrophysics Data System (ADS)

    Anyamba, A.; Damoah, R.; Small, J. L.; Tucker, C. J.

    2015-12-01

    We examine the spatio-temporal variability of rainfall and satellite derived-vegetation index of three endorheic semi-arid ecosystems in Africa: Lake Chad (in the Sahel region), Okavango and Etosha (Southern Africa) to infer the nature and trends of the variability during the satellite data instrumental record. We utilize African Rainfall Climatology Precipitation Estimates (1983-2014) and Normalized Difference Vegetation Index (NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR: 1981-2014) and Moderate Resolution Imaging Spectroradiometer (MODIS: 2001:2014) to examine the aspects of the annual cycle and interannual variability using both time series plots and time-space diagrams. With respect to Lake Chad region, the first two decades of the series (1981-2000) show predominantly dryer than long-term average conditions with the periods 1989, 1992 and 1996/1997 as the signature drought periods coinciding with the desiccation of the Sahel region during the 1980s to early 1990s decades. The period 2000 to present is dominated by above average rainfall and NDVI with 2003, 2007 and 2012 being the most pronounced wet/greener years. The southern African ecosystems (Okavango and Etosha) show more or less a similar temporal pattern to that of Lake Chad basin, however, the wet periods are more amplified and persistent especially 2000, 2006, 2010 and 2014, with corresponding above average NDVI departures. The amplified nature of wet and dry periods present in the southern African ecosystem time series are consistent with the El Niño Southern Oscillation teleconnection patterns. Overall these three ecosystems serve as detectable fingerprints of changing climate conditions and ecosystems in these arid regions.

  9. Patch scale turbulence over dryland and irrigated surfaces in a semi-arid landscape during BEAREX08

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying turbulent fluxes of heat and water vapor over heterogeneous surfaces presents unique challenges. For example, in many arid and semi-arid regions, parcels of irrigated cropland are juxtaposed with hot, dry surfaces. Contrasting surface conditions can result in the advection of warm dry ai...

  10. An Overview of Biodegradation of LNAPLs in Coastal (Semi)-arid Environment.

    PubMed

    Yadav, Brijesh Kumar; Hassanizadeh, S Majid

    2011-09-01

    Contamination of soil and water due to the release of light non-aqueous phase liquids (LNAPLs) is a ubiquitous problem. The problem is more severe in arid and semi-arid coastal regions where most of the petroleum production and related refinery industries are located. Biological treatment of these organic contaminated resources is receiving increasing interests and where applicable, can serve as a cost-effective remediation alternative. The success of bioremediation greatly depends on the prevailing environmental variables, and their remediation favoring customization requires a sound understanding of their integrated behavior on fate and transport of LNAPLs under site-specific conditions. The arid and semi-arid coastal sites are characterized by specific environmental extremes; primarily, varying low and high temperatures, high salinity, water table dynamics, and fluctuating soil moisture content. An understanding of the behavior of these environmental variables on biological interactions with LNAPLs would be helpful in customizing the bioremediation for restoring problematic sites in these regions. Therefore, this paper reviews the microbial degradation of LNAPLs in soil-water, considering the influences of prevailing environmental parameters of arid and semi-arid coastal regions. First, the mechanism of biodegradation of LNAPLs is discussed briefly, followed by a summary of popular kinetic models used by researchers for describing the degradation rate of these hydrocarbons. Next, the impact of soil moisture content, water table dynamics, and soil-water temperature on the fate and transport of LNAPLs are discussed, including an overview of the studies conducted so far. Finally, based on the reviewed information, a general conclusion is presented with recommendations for future research subjects on optimizing the bioremediation technique in the field under the aforesaid environmental conditions. The present review will be useful to better understand the

  11. Large-scale hydrological modelling in the semi-arid north-east of Brazil

    NASA Astrophysics Data System (ADS)

    Güntner, Andreas

    2002-07-01

    Semi-arid areas are, due to their climatic setting, characterized by small water resources. An increasing water demand as a consequence of population growth and economic development as well as a decreasing water availability in the course of possible climate change may aggravate water scarcity in future, which often exists already for present-day conditions in these areas. Understanding the mechanisms and feedbacks of complex natural and human systems, together with the quantitative assessment of future changes in volume, timing and quality of water resources are a prerequisite for the development of sustainable measures of water management to enhance the adaptive capacity of these regions. For this task, dynamic integrated models, containing a hydrological model as one component, are indispensable tools. The main objective of this study is to develop a hydrological model for the quantification of water availability in view of environmental change over a large geographic domain of semi-arid environments. The study area is the Federal State of Ceará (150 000 km2) in the semi-arid north-east of Brazil. Mean annual precipitation in this area is 850 mm, falling in a rainy season with duration of about five months. Being mainly characterized by crystalline bedrock and shallow soils, surface water provides the largest part of the water supply. The area has recurrently been affected by droughts which caused serious economic losses and social impacts like migration from the rural regions. The hydrological model Wasa (Model of Water Availability in Semi-Arid Environments) developed in this study is a deterministic, spatially distributed model being composed of conceptual, process-based approaches. Water availability (river discharge, storage volumes in reservoirs, soil moisture) is determined with daily resolution. Sub-basins, grid cells or administrative units (municipalities) can be chosen as spatial target units. The administrative units enable the coupling of Wasa in

  12. Role of radiatively forced temperature changes in enhanced semi-arid warming over East Asia

    NASA Astrophysics Data System (ADS)

    Guan, X.; Huang, J.; Guo, R.; Lin, P.; Zhang, Y.

    2015-08-01

    As the climate change occurred over East Asia since 1950s, intense interest and debate have arisen concerning the contribution of human activities to the warming observed in previous decades. In this study, we investigate surface temperature change using a recently developed methodology that can successfully identify and separate the dynamically induced temperature (DIT) and radiatively forced temperature (RFT) changes in raw surface air temperature (SAT) data. For regional averages, DIT and RFT make 43.7 and 56.3 % contributions to the SAT over East Asia, respectively. The DIT changes dominate the SAT decadal variability and are mainly determined by internal climate variability, such as the North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO). The radiatively forced SAT changes made major contribution to the global-scale warming trend and the regional-scale enhanced semi-arid warming (ESAW). Such enhanced warming is also found in radiatively forced daily maximum and minimum SAT. The long-term global-mean SAT warming trend is mainly related to radiative forcing produced by global well-mixed greenhouse gases. The regional anthropogenic radiative forcing, however, caused the enhanced warming in the semi-arid region, which may be closely associated with local human activities. Finally, the relationship between global warming hiatus and regional enhanced warming is discussed.

  13. Land cover controls on summer discharge and runoff solution chemistry of semi-arid urban catchments

    NASA Astrophysics Data System (ADS)

    Gallo, Erika L.; Brooks, Paul D.; Lohse, Kathleen A.; McLain, Jean E. T.

    2013-04-01

    SummaryRecharge of urban runoff to groundwater as a stormwater management practice has gained importance in semi-arid regions where water resources are scarce and urban centers are growing. Despite this trend, the importance of land cover in controlling semi-arid catchment runoff quantity and quality remains unclear. Here we address the question: How do land cover characteristics control the amount and quality of storm runoff in semi-arid urban catchments? We monitored summertime runoff quantity and quality from five catchments dominated by distinct urban land uses: low, medium, and high density residential, mixed use, and commercial. Increasing urban land cover increased runoff duration and the likelihood that a rainfall event would result in runoff, but did not increase the time to peak discharge of episodic runoff. The effect of urban land cover on hydrologic responses was tightly coupled to the magnitude of rainfall. At distinct rainfall thresholds, roads, percent impervious cover and the stormwater drainage network controlled runoff frequency, runoff depth and runoff ratios. Contrary to initial expectations, runoff quality did not vary in repose to impervious cover or land use. We identified four major mechanisms controlling runoff quality: (1) variable solute sourcing due to land use heterogeneity and above ground catchment connectivity; (2) the spatial extent of pervious and biogeochemically active areas; (3) the efficiency of overland flow and runoff mobilization; and (4) solute flushing and dilution. Our study highlights the importance of the stormwater drainage systems characteristics in controlling urban runoff quantity and quality; and suggests that enhanced wetting and in-stream processes may control solute sourcing and retention. Finally, we suggest that the characteristics of the stormwater drainage system should be integrated into stormwater management approaches.

  14. A Water Balance Approach to Characterizing the Hydroclimatology of a Mountainous Semi-arid Catchment

    NASA Astrophysics Data System (ADS)

    Chauvin, G.; Flerchinger, G.; Marks, D.; Link, T.

    2004-12-01

    A long-term water balance is needed to understand the hydrology of mountainous semi-arid catchments, which exhibit considerable interannual variability in precipitation and temperature as well as spatial variation in snow accumulation, soils, and vegetation. Long-term data sets reduce the uncertainty associated with estimating water balance quantities that are difficult to measure in practice. In this study, the data required to compute a long-term water balance are assembled from on-site and nearby locations to create a continuous 21-year hourly record of precipitation, meteorological parameters, and streamflow for the Upper Sheep Creek (USC) catchment, a 26 ha, snow-fed, semi-arid rangeland headwater drainage within the Reynolds Creek Experimental Watershed in southwestern Idaho, USA. This study will allow us to extend a previous 10-year water balance (water years 1985-1994) computed for the USC catchment, enabling a more thorough consideration of climate variability including periods of drought and flood. It also sets the stage for analyzing the hydrologic response of the USC catchment to a prescribed fire planned for 2006. Statistical correlations between on-site and nearby meteorological stations were used to develop a complete 21-year hourly data set (water years 1984-2004) of climate and precipitation records. These data will be used to drive the Simultaneous Heat and Water (SHAW) model to simulate evaporation and transpiration, precipitation, storage, and stream discharge. Water balance quantities will be computed for separate landscape units and then aggregated for the overall watershed. This research will improve our ability to manage water resources in semi-arid mountain regions.

  15. Interactions of soil water content heterogeneity and species diversity patterns in semi-arid steppes on the Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Wu, Gao-Lin; Zhang, Zhi-Nan; Wang, Dong; Shi, Zhi-Hua; Zhu, Yuan-Jun

    2014-11-01

    Soil water is a major driving force for plant community succession in semi-arid area. Many studies have focused on the relationships of species diversity-productivity, but few studies have paid attentions to the effects of soil water content heterogeneity on the plant species diversity in the semi-arid loess regions. To determine relationship of soil water content heterogeneity and plant community structure properties a semi-arid steppe on the Loess Plateau, we conducted a gradient analysis of soil water content variation and above- and below-ground properties of plant communities. Results showed that community coverage, above- and below-ground biomass were significantly and positively related to the surface soil water contents (0-5 cm). Plant diversity (Shannon index and Richness index) were closely correlated to soil water content at the soil depth of 0-10 cm. But plant height, litter biomass and root/shoot ratio were not related to soil water content. These results showed that there is an positive interaction effects for plant diversity and soil water content in the semi-arid grassland communities. Our observations indicate that change of plant species diversity is also an important community responses to soil water content heterogeneity in the semi-arid grassland ecosystem.

  16. Semi-arid aquifer responses to forest restoration treatments and climate change.

    PubMed

    Wyatt, Clinton J W; O'Donnell, Frances C; Springer, Abraham E

    2015-01-01

    The purpose of this study was to develop an interpretive groundwater-flow model to assess the impacts that planned forest restoration treatments and anticipated climate change will have on large regional, deep (>400 m), semi-arid aquifers. Simulations were conducted to examine how tree basal area reductions impact groundwater recharge from historic conditions to 2099. Novel spatial analyses were conducted to determine areas and rates of potential increases in groundwater recharge. Changes in recharge were applied to the model by identifying zones of basal area reduction from planned forest restoration treatments and applying recharge-change factors to these zones. Over a 10-year period of forest restoration treatment, a 2.8% increase in recharge to one adjacent groundwater basin (the Verde Valley sub-basin) was estimated, compared to conditions that existed from 2000 to 2005. However, this increase in recharge was assumed to quickly decline after treatment due to regrowth of vegetation and forest underbrush and their associated increased evapotranspiration. Furthermore, simulated increases in groundwater recharge were masked by decreases in water levels, stream baseflow, and groundwater storage resulting from surface water diversions and groundwater pumping. These results indicate that there is an imbalance between water supply and demand in this regional, semi-arid aquifer. Current water management practices may not be sustainable into the far future and comprehensive action should be taken to minimize this water budget imbalance. PMID:24665998

  17. Semi-arid aquifer responses to forest restoration treatments and climate change.

    PubMed

    Wyatt, Clinton J W; O'Donnell, Frances C; Springer, Abraham E

    2015-01-01

    The purpose of this study was to develop an interpretive groundwater-flow model to assess the impacts that planned forest restoration treatments and anticipated climate change will have on large regional, deep (>400 m), semi-arid aquifers. Simulations were conducted to examine how tree basal area reductions impact groundwater recharge from historic conditions to 2099. Novel spatial analyses were conducted to determine areas and rates of potential increases in groundwater recharge. Changes in recharge were applied to the model by identifying zones of basal area reduction from planned forest restoration treatments and applying recharge-change factors to these zones. Over a 10-year period of forest restoration treatment, a 2.8% increase in recharge to one adjacent groundwater basin (the Verde Valley sub-basin) was estimated, compared to conditions that existed from 2000 to 2005. However, this increase in recharge was assumed to quickly decline after treatment due to regrowth of vegetation and forest underbrush and their associated increased evapotranspiration. Furthermore, simulated increases in groundwater recharge were masked by decreases in water levels, stream baseflow, and groundwater storage resulting from surface water diversions and groundwater pumping. These results indicate that there is an imbalance between water supply and demand in this regional, semi-arid aquifer. Current water management practices may not be sustainable into the far future and comprehensive action should be taken to minimize this water budget imbalance.

  18. Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements

    NASA Astrophysics Data System (ADS)

    Huang, J.; Minnis, P.; Yan, H.; Yi, Y.; Chen, B.; Zhang, L.; Ayers, J. K.

    2010-07-01

    The impact of dust aerosols on the semi-arid climate of Northwest China is analyzed by comparing aerosol and cloud properties derived over the China semi-arid region (hereafter, CSR) and the United States semi-arid region (hereafter, USR) using several years of surface and A-Train satellite observations during active dust event seasons. These regions have similar climatic conditions, but aerosol concentrations are greater over the CSR. Because the CSR is close to two major dust source regions (Taklamakan and Gobi deserts), the aerosols over the CSR not only contain local anthropogenic aerosols (agricultural dust, black carbon and other anthropogenic aerosols), but also include natural dust transported from the source regions. The aerosol optical depth, averaged over a 3-month period, derived from MODIS for the CSR is 0.27, which is 47% higher than that over the USR (0.19). Although transported natural dust only accounts for 53% of this difference, it is a major contributor to the average absorbing aerosol index, which is 27% higher in the CSR (1.07) than in the USR (0.84). During dust event periods, liquid water cloud particle size, optical depth and liquid water path are smaller by 9%, 30% and 33% compared to dust-free conditions, respectively.

  19. Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements

    NASA Astrophysics Data System (ADS)

    Huang, J.; Minnis, P.; Yan, H.; Yi, Y.; Chen, B.; Zhang, L.; Ayers, J. K.

    2010-05-01

    The impact of dust aerosols on the semi-arid climate of Northwest China is analyzed by comparing aerosol and cloud properties derived over the China semi-arid region (hereafter, CSR) and the United States semi-arid region (hereafter, USR) using several years of surface and A-Train satellite observations during active dust event seasons. These regions have similar climatic conditions, but aerosol concentrations are greater over the CSR. Because the CSR is close to two major dust source regions (Taklamakan and Gobi deserts), the aerosols over the CSR not only contain local anthropogenic aerosols (agricultural dust, black carbon and other anthropogenic aerosols), but also include natural dust transported from the source regions. The aerosol optical depth, averaged over a 3-month period, derived from MODIS for the CSR is 0.27, which is 47% higher than that over the USR (0.19). Although transported natural dust only accounts for 53% of this difference, it is a major contributor to the average absorbing aerosol index, which is 27% higher in the CSR (1.07) than in the USR (0.84). During dust event periods, liquid water cloud particle size, optical depth and liquid water path are smaller by 9%, 30% and 33% compared to dust-free conditions, respectively.

  20. A multidisciplinary program for assessing the sustainability of water resources in semi-arid basin in Morocco: SUDMED

    NASA Astrophysics Data System (ADS)

    Chehbouni, A.; Escadafal, R.; Dedieu, G.; Errouane, S.; Boulet, G.; Duchemin, B.; Mougenot, B.; Sminonneaux, V.; Seghieri, J.; Timouk, F.

    2003-04-01

    Regions classified as semi-arid or arid constitute roughly one-third of the total global land cover. Within these regions, the dynamic water balance is the single most critical factor in the sustainability of the ecosystems and human populations. In this coontext, the SUDMED program has been designed to acheive two related objectives: (i) improvement of our overall to our overall understanding of hydrologic, ecologic, and atmospheric processes and their interactions in a semi-arid basin in Morocco. (2) to provide an effective and scientifically based tool to policy makers and natural resource managers to help make informed decisions which sustain the basin for future generations. The objective of this presentation are (1) to provide the overall and the specific objectives of the program ; (2) to decribe the study site and the challenges facing it ; (3) the implementation plan. Finally, some preliminary results associated with different components of the program are presented.

  1. Performance of fenugreek bioinoculated with Rhizobium meliloti strains under semi-arid condition.

    PubMed

    Singh, N K; Patel, D B

    2016-01-01

    Rhizobium meliloti strains were isolated from the fields of S.D. Agricultural University (Gujarat, India) and were maintained in the Congo Red Yeast Extract Mannitol Agar medium. These strains were tested for their effectiveness for fenugreek crop grown under semi-arid condition. Among the six Rhizobium strains, FRS-7 strain showed best plant growth parameters like shoot length, shoot dry weight, shoot total nitrogen, root length, root dry weight, root total nitrogen, seed yield, 1000 grain weight, number of root nodules, and nodules fresh and dry weight. The performance of this strain was better as compared to 20 kgN ha(-1) treatment through urea and was even far better over control plot. Seed yields obtained with FRS-7 during two years were 10.14 and 9.66 q ha(-1); which was about 36.8% and 45.9% high over control. This strain resulted in saving of about 20 kgN ha(-1) accompanied with better crop yield and soil health. Results of the present experiments can be utilized in integrated nutrient management for cultivation of fenugreek in semi-arid areas to provide sustainability to agricultural productivity in such regions. PMID:26930857

  2. Detecting soil erosion in semi-arid mediterranean environments using simulated EnMAP data

    NASA Astrophysics Data System (ADS)

    Bracken, Ashley H.

    Soil is an essential nature resource. Management of this resource is vital for sustainability and the continued functioning of earths atmospheric, hydrospheric and lithospheric functioning. The assessment and continued monitoring of surface soil state provides the information required to effectively manage this resource. This research used a simulated Environmental Mapping and Analysis Program (EnMAP) hyperspectral image cube of an agricultural region in semi- arid Mediterranean Spain to classify soil erosion states. Multiple Endmember Spectral Mixture Analysis (MESMA) was used to derive within pixel fractions of eroded and accumulated soils. A Classification of the soil erosion states using the scene fraction outputs and digital terrain information. The information products generated in this research provided an optimistic outlook for the applicability of the future EnMAP sensor for soil erosion investigations in semi-arid Mediterranean environments. Additionally, this research verifies that the launch of the EnMAP satellite sensor in 2018 will provide the opportunity to further improve the monitoring of earth finite soil resources.

  3. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland.

    PubMed

    Morgan, Jack A; LeCain, Daniel R; Pendall, Elise; Blumenthal, Dana M; Kimball, Bruce A; Carrillo, Yolima; Williams, David G; Heisler-White, Jana; Dijkstra, Feike A; West, Mark

    2011-08-03

    Global warming is predicted to induce desiccation in many world regions through increases in evaporative demand. Rising CO(2) may counter that trend by improving plant water-use efficiency. However, it is not clear how important this CO(2)-enhanced water use efficiency might be in offsetting warming-induced desiccation because higher CO(2) also leads to higher plant biomass, and therefore greater transpirational surface. Furthermore, although warming is predicted to favour warm-season, C(4) grasses, rising CO(2) should favour C(3), or cool-season plants. Here we show in a semi-arid grassland that elevated CO(2) can completely reverse the desiccating effects of moderate warming. Although enrichment of air to 600 p.p.m.v. CO(2) increased soil water content (SWC), 1.5/3.0 °C day/night warming resulted in desiccation, such that combined CO(2) enrichment and warming had no effect on SWC relative to control plots. As predicted, elevated CO(2) favoured C(3) grasses and enhanced stand productivity, whereas warming favoured C(4) grasses. Combined warming and CO(2) enrichment stimulated above-ground growth of C(4) grasses in 2 of 3 years when soil moisture most limited plant productivity. The results indicate that in a warmer, CO(2)-enriched world, both SWC and productivity in semi-arid grasslands may be higher than previously expected.

  4. Groundwater recharge in irrigated semi-arid areas: quantitative hydrological modelling and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Jiménez-Martínez, Joaquín; Candela, Lucila; Molinero, Jorge; Tamoh, Karim

    2010-12-01

    For semi-arid regions, methods of assessing aquifer recharge usually consider the potential evapotranspiration. Actual evapotranspiration rates can be below potential rates for long periods of time, even in irrigated systems. Accurate estimations of aquifer recharge in semi-arid areas under irrigated agriculture are essential for sustainable water-resources management. A method to estimate aquifer recharge from irrigated farmland has been tested. The water-balance-modelling approach was based on VisualBALAN v. 2.0, a computer code that simulates water balance in the soil, vadose zone and aquifer. The study was carried out in the Campo de Cartagena (SE Spain) in the period 1999-2008 for three different groups of crops: annual row crops (lettuce and melon), perennial vegetables (artichoke) and fruit trees (citrus). Computed mean-annual-recharge values (from irrigation+precipitation) during the study period were 397 mm for annual row crops, 201 mm for perennial vegetables and 194 mm for fruit trees: 31.4, 20.7 and 20.5% of the total applied water, respectively. The effects of rainfall events on the final recharge were clearly observed, due to the continuously high water content in soil which facilitated the infiltration process. A sensitivity analysis to assess the reliability and uncertainty of recharge estimations was carried out.

  5. Ticks (Acari: Ixodidae) collected from animals in three western, semi-arid nature reserves in South Africa.

    PubMed

    Golezardy, H; Horak, I G

    2007-03-01

    The objective of this study was to make an inventory of the ixodid tick species infesting wild animals in three western, semi-arid nature reserves in South Africa. To this end 22 animals in the Kgalagadi Transfrontier Park, 10 in the West Coast National Park and 16 in the Karoo National Park were examined. Fourteen tick species were recovered, of which Hyalomma truncatum, Rhipicephalus exophthalmos and Rhipicephalus glabroscutatum were each present in two reserves and the remainder only in one. The distributions of two of the 14 tick species recovered, namely Rhipicephalus capensis and Rhipicephalus neumanni, are virtually confined to the western semi-arid regions of southern Africa. Hyalomma truncatum, R. capensis and R. glabroscutatum were the most numerous of the ticks recovered, and eland, Taurotragus oryx, were the most heavily infested with the former two species and gemsbok, Oryx gazella, and mountain reedbuck, Redunca fulvorufula, with R. glabroscutatum. PMID:17708155

  6. Design principles and common pool resource management: an institutional approach to evaluating community management in semi-arid Tanzania.

    PubMed

    Quinn, Claire H; Huby, Meg; Kiwasila, Hilda; Lovett, Jon C

    2007-07-01

    This paper analyses the role of institutions in the management of common pool resources (CPRs) in semi-arid Tanzania. Common property regimes have often been considered inadequate for the management of CPRs because of the problems of excludability, but they are becoming more widely supported as the way forward to overcome the problems of resource use and degradation in developing countries. A series of design principles for long enduring common property institutions have been proposed by Ostrom, but there is concern that they are not applicable to a wide range of real life situations or that they may be specific to certain types of CPR. Here, we compare these principles to the situation prevailing in 12 villages in six districts in semi-arid Tanzania. Data on management institutions were collected through semi-structured interviews and meetings at district and village level. The combined information was used to make a qualitative assessment of the strength with which each design principle appeared to operate in the management of forest, pasture and water resources. Boundaries, conflict and negotiation in CPR management are of key importance in semi-arid regions. However, the need for flexibility in order to deal with ecological uncertainty means that many management institutions would be considered weak or absent according to the design principle approach. This supports the view that the design principles should not be used as a 'blueprint to be imposed on resource management regimes' rather that they provide a framework for investigating common property regimes with the proviso that, certainly for semi-arid regions, they may highlight where management cannot be explained by institutional theory alone.

  7. Economic valuation of sheep genetic resources: implications for sustainable utilization in the Kenyan semi-arid tropics.

    PubMed

    Omondi, I; Baltenweck, I; Drucker, A G; Obare, G; Zander, K K

    2008-12-01

    Sheep, recognised as one of the important livestock species especially in the semi-arid tropics with high genetic resource potentials, can be exploited through sustainable utilization in order to improve livestock keepers' livelihoods. This study presents the evaluation of the economic values of sheep genetic resources (SGR) in terms of the important non-market traits embedded in sheep and how this information can be utilised to improve livelihoods in semi-arid regions. The results obtained from mixed logit models results derived from stated choice data collected from 157 respondents in the semi-arid Marsabit district of Kenya reveal that disease resistance is the most highly valued trait whose resultant increment results into a welfare improvement of up to KShs.1537. Drought tolerance and fat deposition traits were found to be implicitly valued at KShs.694 and 738 respectively. The results further point out that for livestock stakeholders to effectively improve the livelihoods of poor livestock-keepers, development strategies for improving the management and/or utilisation of SGR in terms of drought tolerance, should not only be tailor made to target regions that are frequently devastated by drought but should also succeed other strategies or efforts that would first lead to the improvement of producers' economic status.

  8. Management implications of the ecology of free-roaming horses in semi-arid ecosystems of the western United States

    USGS Publications Warehouse

    Beever, Erik A.

    2003-01-01

    Compared to other ungulates of North America, free-roaming horses (Equus caballus) possess a unique evolutionary history that has given rise to a distinct suite of behavioral, morphological, and physiological traits. Because of their unique combination of cecal digestion, an elongate head with flexible lips, and non-uniform use of the landscape, horses represent a unique disturbance agent in semi-arid ecosystems of the western United States. Consequently, it is inappropriate to assume that influences of horses on the structure, composition, function, and pattern of arid and semi-arid ecosystems will mirror influences of cattle or other artiodactyls. Although management areas for free-roaming horses occupy 18.6 million ha of land across western North America, we know relatively little about how western ecosystems and their components have responded to this uniquely managed ungulate. I draw on my research of horse habitats in the western Great Basin (U.S.A.) to examine predictions of horses' unique influence, and advocate for continued research to refine our understanding of synecological relationships among horses and diverse ecosystem components in arid and semi-arid regions.

  9. Nitrogen cycling: water use efficiency interactions in semi-arid ecosystems in relation to management of tree legumes (Prosopis)

    SciTech Connect

    Felker, P.; Clark, P.R.; Osborn, J.; Cannell, G.H.

    1980-04-01

    Plant productivity in semi-arid ecosystems is often limited by soil fertility as much as it is by moisture availability. A quantitative assessment of nitrogen limitations on water use efficiency has been made after careful review of plant water use efficiency data at high and low soil fertilities and after careful review of nitrogen inputs to semi arid ecosystems in the form of: blue-green algae-lichen crusts; non-symbiotic nitrogen fixers; rainfall; and tree legumes. This analysis indicates that plant productivity in semi-arid regions may be 10 fold more limited by nitrogen than moisture availability. Forage yields of non-nitrogen fixing trees and shrubs could be greatly increased by interplanting with drought adapted nitrogen fixers such as Prosopis and Acacia. Calculations based on water use efficiencies of annual legumes and nitrogen fixation values of tree legumes predict that well managed, spaced, and cared for orchards of specially selected Prosopis could produce 4000 Kgha/sup -1/ yr/sup -1/ of 13% protein pods at 500 mm annual rainfall with only light fertilization with phosphate, potassium and sulfur. Field measurements of pod yields for 25 selections of 3 year old Prosopis grown under managed orchard conditions in southern California are presented. Spacing regimes and harvesting techniques for Prosopis are proposed to facilitate pod production.

  10. Contrasting patterns of nutrient dynamics during different storm events in a semi-arid catchment of northern China.

    PubMed

    Du, Xinzhong; Li, Xuyong; Hao, Shaonan; Wang, Huiliang; Shen, Xiao

    2014-01-01

    Nutrient discharge during storm events is a critical pathway for nutrient export in semi-arid catchments. We investigated nutrient dynamics during three summer storms characterized by different rainfall magnitude in 2012 in a semi-arid catchment of northern China. The results showed that, in response to storm events, nutrient dynamics displayed big variation in temporal trends of nutrient concentration and in nutrient concentration-flow discharge relationships. Nutrient concentrations had broader fluctuations during an extreme storm than during lesser storms, whereas the concentration ranges of the a moderate storm were no broader than those of a smaller one. The different concentration fluctuations were caused by storm magnitude and intensity coupled with the antecedent rainfall amount and cumulative nutrients. Correlation coefficients between nutrient concentrations and flow discharge varied from positive to negative for the three different events. There were no consistent hysteresis effects for the three different events, and no hysteresis effects were observed for any of the variables during the moderate storm (E2). Our findings provide useful information for better understanding nutrient loss mechanisms during storm events in semi-arid areas of a monsoon climate region.

  11. Soil biogenic emissions of nitric oxide from a semi-arid savanna in South Africa

    NASA Astrophysics Data System (ADS)

    Feig, G. T.; Mamtimin, B.; Meixner, F. X.

    2008-12-01

    Soils of arid and semi-arid ecosystems are important biogenic sources of atmospheric nitric oxide (NO), however, there is still a shortage of measurements from these systems. Here we present the results of a laboratory study of the biogenic emission of NO from four different landscape positions of the Kruger National Park (KNP), a large conservation area in a semi-arid region of South Africa. Results show that the highest net potential NO fluxes come from the low lying (footslope) landscape regions, which have the largest nitrogen stocks and highest rates of nitrogen input into the soil. Net potential NO fluxes from midslope and crest regions were considerably lower. The maximum release of NO occurred at fairly low soil moisture contents of 10%-20% water filled pore space. Using soil moisture and temperature data obtained in situ at the Kruger National Park flux tower site, net potential NO fluxes obtained in the laboratory were converted to field fluxes for each of the four landscape positions for the period 2003 to 2005. The highest field NO flux is from footslope positions, during each of these years and emissions ranged from 1.5-8.5 kg ha a (in terms of mass of nitrogen). Remote sensing and Geographic Information Systems techniques were used to up-scale field NO fluxes on a regional basis indicating that the highest emissions occurred from the midslope positions, due to their large geographical extent in the considered research area. Emissions for the KNP Skukuza land type (56 000 ha) ranged from 20×103 kg in 2004 to 34×103 kg in 2003. The importance of landscape characteristics in the determination of regional biogenic NO soil emission is emphasized.

  12. Soil biogenic emissions of nitric oxide from a semi-arid savanna in South Africa

    NASA Astrophysics Data System (ADS)

    Feig, G. T.; Mamtimin, B.; Meixner, F. X.

    2008-07-01

    Soils of arid and semi-arid ecosystems are important biogenic sources of atmospheric nitric oxide (NO), however, there is still a shortage of measurements from these systems. Here we present the results of a laboratory study of the biogenic emission of NO from four different landscape positions of the Kruger National Park (KNP), a large conservation area in a semi-arid region of South Africa. Results show that the highest net potential NO fluxes come from the low lying (footslope) landscape regions, which have the largest nitrogen stocks and highest rates of nitrogen input into the soil. Net potential NO fluxes from midslope and crest regions were considerably lower. The maximum release of NO occurred at fairly low soil moisture contents of 10% 20% water filled pore space. Using soil moisture and temperature data obtained in situ at the Kruger National Park flux tower site, net potential NO fluxes obtained in the laboratory were converted to field fluxes for each of the four landscape positions for the period 2003 to 2005. The highest field NO flux is from footslope positions, during each of these years and emissions ranged from 1.5 8.5 kg ha-1 yr-1 (in terms of mass of nitrogen). Remote sensing and Geographic Information Systems techniques were used to up-scale field NO fluxes on a regional basis indicating that the highest emissions occurred from the midslope positions, due to their large geographical extent in the considered research area. Emissions for the KNP Skukuza land type (56 000 ha) ranged from 20×103 kg in 2004 to 34×103 kg in 2003. The importance of landscape characteristics in the determination of regional biogenic NO soil emissions is emphasized.

  13. Understanding runoff processes in a semi-arid environment through isotope and hydrochemical hydrograph separations

    NASA Astrophysics Data System (ADS)

    Camacho, V. V.; Saraiva Okello, A. M. L.; Wenninger, J. W.; Uhlenbrook, S.

    2015-01-01

    The understanding of runoff generation mechanisms is crucial for the sustainable management of river basins such as the allocation of water resources or the prediction of floods and droughts. However, identifying the mechanisms of runoff generation has been a challenging task, even more so in arid and semi-arid areas where high rainfall and streamflow variability, high evaporation rates, and deep groundwater reservoirs increase the complexity of hydrological process dynamics. Isotope and hydrochemical tracers have proven to be useful in identifying runoff components and their characteristics. Moreover, although widely used in humid-temperate regions, isotope hydrograph separations have not been studied in detail in arid and semi-arid areas. Thus the purpose of this study is to determine if isotope hydrograph separations are suitable for the quantification and characterization of runoff components in a semi-arid catchment considering the hydrological complexities of these regions. Through a hydrochemical characterization of the surface water and groundwater sources of the catchment and two and three component hydrograph separations, runoff components of the Kaap Catchment in South Africa were quantified using both, isotope and hydrochemical tracers. No major disadvantages while using isotope tracers over hydrochemical tracers were found. Hydrograph separation results showed that runoff in the Kaap catchment is mainly generated by groundwater sources. Two-component hydrograph separations revealed groundwater contributions between 64 and 98% of total runoff. By means of three-component hydrograph separations, runoff components were further separated into direct runoff, shallow and deep groundwater components. Direct runoff, defined as the direct precipitation on the stream channel and overland flow, contributed up to 41% of total runoff during wet catchment conditions. Shallow groundwater defined as the soil water and near-surface water component, contributed up to 45

  14. Understanding runoff processes in a semi-arid environment through isotope and hydrochemical hydrograph separations

    NASA Astrophysics Data System (ADS)

    Camacho Suarez, V. V.; Saraiva Okello, A. M. L.; Wenninger, J. W.; Uhlenbrook, S.

    2015-10-01

    The understanding of runoff generation mechanisms is crucial for the sustainable management of river basins such as the allocation of water resources or the prediction of floods and droughts. However, identifying the mechanisms of runoff generation has been a challenging task, even more so in arid and semi-arid areas where high rainfall and streamflow variability, high evaporation rates, and deep groundwater reservoirs may increase the complexity of hydrological process dynamics. Isotope and hydrochemical tracers have proven to be useful in identifying runoff components and their characteristics. Moreover, although widely used in humid temperate regions, isotope hydrograph separations have not been studied in detail in arid and semi-arid areas. Thus the purpose of this study is to determine whether isotope hydrograph separations are suitable for the quantification and characterization of runoff components in a semi-arid catchment considering the hydrological complexities of these regions. Through a hydrochemical characterization of the surface water and groundwater sources of the catchment and two- and three-component hydrograph separations, runoff components of the Kaap catchment in South Africa were quantified using both isotope and hydrochemical tracers. No major disadvantages while using isotope tracers over hydrochemical tracers were found. Hydrograph separation results showed that runoff in the Kaap catchment is mainly generated by groundwater sources. Two-component hydrograph separations revealed groundwater contributions of between 64 and 98 % of total runoff. By means of three-component hydrograph separations, runoff components were further separated into direct runoff, shallow and deep groundwater components. Direct runoff, defined as the direct precipitation on the stream channel and overland flow, contributed up to 41 % of total runoff during wet catchment conditions. Shallow groundwater defined as the soil water and near-surface water component (and

  15. Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chickpea (Cicer arietinum L.) is an important legume crop in the semi-arid regions of Asia and Africa. Gains in crop productivity have been low however, particularly due to biotic and abiotic stresses. To help enhance crop productivity using molecular breeding techniques, next generation sequencing ...

  16. The use of soil quality indicators to assess soil functionality in restored semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Erickson, Todd E.; Dixon, Kingsley W.; Merritt, David J.

    2016-04-01

    Keywords: Pilbara, 1-day CO2 test, microbial activity, mine restoration, soil health, ecosystem services. Introduction Semi-arid and arid environments are highly vulnerable to land degradation and their restoration has commonly showed low rates of success (James et al., 2013). A systematic knowledge of soil functionality is critical to successful restoration of degraded ecosystems since approximately 80% of ecosystem services can be connected to soil functions. The assessment of soil functionality generally involves the evaluation of soil properties and processes as they relate to the ability of soil to function effectively as a component of a healthy ecosystem (Costantini et al., 2015) Using soil quality indicators may be a valuable approach to assess functionality of topsoil and novel substrates used in restoration (Muñoz-Rojas et al., 2014; 2015). A key soil chemical indicator is soil organic C, that has been widely used as an attribute of soil quality because of the many functions that it provides and supports (Willaarts et al., 2015). However, microbial indicators can be more sensitive to disturbances and could be a valuable addition in soil assessment studies in restoration programs. Here, we propose a set of soil quality indicators to assess the soil status in restored soils (topsoil and waste material) of semi-arid environments. The study was conducted during March 2015 in the Pilbara biogeographical region (northwestern Australia) at an iron ore mine site rehabilitated in 2011. Methods Soil samples were collected from two sub-areas with different soil materials used as growth media: topsoil retrieved from nearby stockpiles and a lateritic waste material utilised for its erosive stability and physical competence. An undisturbed natural shrub-grassland ecosystem dominated by Triodia spp. and Acacia spp. representative of the restored area was selected as the analogue reference site. Soil physicochemical analysis were undertaken according to standard methods

  17. Surficial weathering of iron sulfide mine tailings under semi-arid climate.

    PubMed

    Hayes, Sarah M; Root, Robert A; Perdrial, Nicolas; Maier, Raina; Chorover, Jon

    2014-09-15

    Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering under semi-arid climate at an EPA Superfund Site in semi-arid central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130-140 and 100-120 g kg(-1), respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in

  18. Surficial weathering of iron sulfide mine tailings under semi-arid climate

    PubMed Central

    Hayes, Sarah M.; Root, Robert A.; Perdrial, Nicolas; Maier, Raina; Chorover, Jon

    2014-01-01

    Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering under semi-arid climate at an EPA Superfund Site in semi-arid central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130–140 and 100–120 g kg−1, respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even

  19. Observing and Quantifying Ecological Disturbance Impacts on Semi-arid Biomes in the Southwestern US.

    NASA Astrophysics Data System (ADS)

    Litvak, M. E.; Krofcheck, D. J.; Morillas, L.; Fox, A. M.

    2014-12-01

    The magnitude of carbon fluxes through arid and semi-arid ecosystems is considered modest, but integrated over the ~40% of the global land surface covered by these ecosystems, the total carbon stored is almost twice that in temperate forest ecosystems. In the semi-arid Southwestern U.S., drought and rising temperatures have triggered insect outbreaks, fire and widespread mortality in the past 5 years, all of which are predicted to increase in the next century. Understanding how resilient carbon pools and fluxes in these biomes are to these disturbances constitutes a large uncertainty in our ability to understand both carbon and energy flux dynamics in this region. We use an 8 year record (2007-2014) of continuous measurements of net ecosystem exchange of carbon (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (Re), and evapotranspiration (ET) made over the New Mexico Elevation Gradient (NMEG) network of flux tower sites (desert grassland, creosote shrubland, juniper savanna, piñon-juniper woodland, ponderosa pine and subalpine mixed conifer) to quantify the biome-specific responses of carbon and water dynamics to these disturbances. In particular, we focus on biome-specific responses across the NMEG biomes to the extended drought in this region from 2011-2014, and to the widespread mortality observed in piñon-juniper woodlands following the turn of the century drought (1999-2002) and multi-year recent drought. Finally, we compare functional responses of land-surface fluxes to recent catastrophic fires (grassland, subalpine conifer biomes), and insect outbreaks (subalpine conifer and piñon-juniper woodland biomes). We discuss the results in terms of which disturbances have contributed to and are likely to trigger the largest changes in carbon sequestration in this region in response to predicted climate change scenarios.

  20. Hydraulics of sub-superficial flow constructed wetlands in semi arid climate conditions.

    PubMed

    Ranieri, E

    2003-01-01

    This paper reports the evaluation of the hydraulics of two constructed wetland (cw(s)) plants located in Apulia (the South Eastern Italy region characterized by semi arid climate conditions). These fields were planted with Phragmites australis hydrophytes and are supplied with local secondary wastewater municipal treatment plant effluent. Each plant--Kickuth Root-Zone method based--covers an area of approx. 2,000 m2. The evapotranspiration phenomenon has been evaluated within perforated tubes fixed to the field bottom and very high values--up to 40 mm/d--were found. Hydraulic conductivity has been evaluated by in situ measurements at different field points. Hydraulic gradients and the piezometric curve within the field are also reported. PMID:12793661

  1. Hydraulics of sub-superficial flow constructed wetlands in semi arid climate conditions.

    PubMed

    Ranieri, E

    2003-01-01

    This paper reports the evaluation of the hydraulics of two constructed wetland (cw(s)) plants located in Apulia (the South Eastern Italy region characterized by semi arid climate conditions). These fields were planted with Phragmites australis hydrophytes and are supplied with local secondary wastewater municipal treatment plant effluent. Each plant--Kickuth Root-Zone method based--covers an area of approx. 2,000 m2. The evapotranspiration phenomenon has been evaluated within perforated tubes fixed to the field bottom and very high values--up to 40 mm/d--were found. Hydraulic conductivity has been evaluated by in situ measurements at different field points. Hydraulic gradients and the piezometric curve within the field are also reported.

  2. Stable Water Isotope Tracing and Model Evaluation in Large Basins: the `` Special Case'' of Semi-Arid Catchments

    NASA Astrophysics Data System (ADS)

    Henderson-Sellers, A.; Airey, P.; McGuffie, K.; Bradd, J.; Stone, D.

    2004-05-01

    The use of stable water isotopes in hydro-climate monitoring and modelling offers a new means of measuring and parameterizing critical processes. Here we review these specifically for the case of semi-arid basins where water resources are essential for potable supply and agriculture around the world. The verity and performance of existing models is examined using observations and simulations of stable water isotopes in rivers, aquifers and their precedent precipitations. Here we report on the Murray-Darling basin in Australia as one example of the `` special case'' of semi-arid catchments and use these data and results to examine evaluation and refinement of models and predictions on three time-scales: (i) minutes to months, (ii) years to decades and (iii) tens to thousands of years. We find that modelled isotopic depletions become increasingly sensitive to parameterized characteristics as the time period is decreased and/or a significant atmospheric circulation disturbance occurs. Minute to monthly isotope fluxes simulated by land surface schemes and river hydrology models allow comparison of the partition of precipitation between transpiration, run-off and open-water evaporation with isotope observations from 2002 and 2003. A range of atmospheric global circulation models (GCMs) simulations of key hydrological parameters over years to decades reveals poor results for the majority (13 in 20). We show that between 1979 and 1996 modelled groundwater is apparently being `tapped' in many of these GCMs at rates required to allow evaporation to greatly exceed precipitation (Ev>>Pr). Analysis of the `` good"'' versus the `` poor'' hydro-climate models reveals that unwitting application of `` poor'' models to current and future hydrological issues in semi-arid basins generates errors of over 100% in predictions. Isotopes demonstrate that in warm semi-arid regions, in contrast to the behaviour in cool temperate zones, groundwater recharge occurs only when rainfall

  3. Shifts in Timing and Magnitude of Precipitation Modulate Soil Carbon Pools in Semi-Arid Ecosystems

    NASA Astrophysics Data System (ADS)

    Joy, S.; Huber, D. P.; Lohse, K. A.; Germino, M. J.; De Graaff, M.; Feris, K. P.

    2012-12-01

    Semi-arid ecosystems cover a large part of continental land area and are predicted to be strongly influenced by climate change. Shifts in the seasonal timing and magnitude of precipitation are predicted to alter ecosystem function in semi-arid rangelands, which are especially sensitive to seasonal changes in precipitation. Of particular interest is how changing climate will impact carbon cycling and the flux of carbon between the land and atmosphere. In semi-arid regions, carbon fluxes are often dynamic, varying orders of magnitude both spatially and temporally; whether long-term changes in climate will diminish or exaggerate these processes is not well studied in cold desert systems. Utilizing a long-term eco-hydrologic site (est. 1993) located in southeastern Idaho, we attempt to study the modulation of soil carbon pools in a cold desert ecosystem containing native and exotic plant species subjected to precipitation treatments varying both magnitude and seasonality of rainfall. The site consist of native sagebrush (Artemisia tridentata spp. tridentata) and exotic crested wheatgrass (Agropyron cristatum) plots, each with three seasonal precipitation treatments (ambient control, 2x ambient added in the winter and 2 x ambient added in the summer). We expect increases in both above and below-ground productivity as precipitation increases, as well as increased heterotrophic activity in the soils; we hypothesized that changes in the timing and magnitude of precipitation provide a mechanism in semi-arid regions for reallocation of soil carbon pools from soil organic matter to precipitated inorganic carbon (IC). Specifically, additional precipitation during the summer season will lead to the greatest increased production of inorganic carbon. Results show summer plots with significantly more IC content (P=0.0091) than winter plots irrespective of vegetation type (14.57 + 0.42 kg IC/m2 and 12.79+ 0.39 kg IC/m2 respectively). Although not significant, summer plots also show

  4. Quantifying the thermal heat requirement of Brassica in assessing biophysical parameters under semi-arid microenvironments

    NASA Astrophysics Data System (ADS)

    Adak, Tarun; Chakravarty, N. V. K.

    2010-07-01

    Evaluation of the thermal heat requirement of Brassica spp. across agro-ecological regions is required in order to understand the further effects of climate change. Spatio-temporal changes in hydrothermal regimes are likely to affect the physiological growth pattern of the crop, which in turn will affect economic yields and crop quality. Such information is helpful in developing crop simulation models to describe the differential thermal regimes that prevail at different phenophases of the crop. Thus, the current lack of quantitative information on the thermal heat requirement of Brassica crops under debranched microenvironments prompted the present study, which set out to examine the response of biophysical parameters [leaf area index (LAI), dry biomass production, seed yield and oil content] to modified microenvironments. Following 2 years of field experiments on Typic Ustocrepts soils under semi-arid climatic conditions, it was concluded that the Brassica crop is significantly responsive to microenvironment modification. A highly significant and curvilinear relationship was observed between LAI and dry biomass production with accumulated heat units, with thermal accumulation explaining ≥80% of the variation in LAI and dry biomass production. It was further observed that the economic seed yield and oil content, which are a function of the prevailing weather conditions, were significantly responsive to the heat units accumulated from sowing to 50% physiological maturity. Linear regression analysis showed that growing degree days (GDD) could indicate 60-70% variation in seed yield and oil content, probably because of the significant response to differential thermal microenvironments. The present study illustrates the statistically strong and significant response of biophysical parameters of Brassica spp. to microenvironment modification in semi-arid regions of northern India.

  5. Variability of atmospheric carbonyl sulfide at a semi-arid urban site in western India.

    PubMed

    Mallik, Chinmay; Chandra, Naveen; Venkataramani, S; Lal, Shyam

    2016-05-01

    Atmospheric carbonyl sulfide (COS) is a major precursor for sulfate aerosols that play a critical role in climate regulation. Recent studies have highlighted the importance of COS measurements as a reliable means to constrain biospheric carbon assimilation. In a scenario of limited availability of COS data around the globe, we present gas-chromatographic measurements of atmospheric COS mixing ratios over Ahmedabad, a semi-arid, urban region in western India. These measurements, being reported for the first time over an Indian site, enable us to understand the diurnal and seasonal variation in atmospheric COS with respect to its natural, anthropogenic and photochemical sources and sinks. The annual mean COS mixing ratio over Ahmedabad is found to be 0.83±0.43ppbv, which is substantially higher than free tropospheric values for the northern hemisphere. Inverse correlation of COS with soil and skin temperature, suggests that the dry soil of the semi-arid study region is a potential sink for atmospheric COS. Positive correlations of COS with NO2 and CO during post-monsoon and the COS/CO slope of 0.78pptv/ppbv reveals influence of diesel combustion and tire wear. The highest concentrations of COS are observed during pre-monsoon; COS/CO2 slope of 44.75pptv/ppmv combined with information from air mass back-trajectories reveal marshy wetlands spanning over 7500km(2) as an important source of COS in Ahmedabad. COS/CO2 slopes decrease drastically (8.28pptv/ppmv) during post-monsoon due to combined impact of biospheric uptake and anthropogenic emissions. PMID:26907740

  6. Modeling mechanisms of vegetation change due to fire in a semi-arid ecosystem

    USGS Publications Warehouse

    White, J.D.; Gutzwiller, K.J.; Barrow, W.C.; Randall, L.J.; Swint, P.

    2008-01-01

    Vegetation growth and community composition in semi-arid environments is determined by water availability and carbon assimilation mechanisms specific to different plant types. Disturbance also impacts vegetation productivity and composition dependent on area affected, intensity, and frequency factors. In this study, a new spatially explicit ecosystem model is presented for the purpose of simulating vegetation cover type changes associated with fire disturbance in the northern Chihuahuan Desert region. The model is called the Landscape and Fire Simulator (LAFS) and represents physiological activity of six functional plant types incorporating site climate, fire, and seed dispersal routines for individual grid cells. We applied this model for Big Bend National Park, Texas, by assessing the impact of wildfire on the trajectory of vegetation communities over time. The model was initialized and calibrated based on landcover maps derived from Landsat-5 Thematic Mapper data acquired in 1986 and 1999 coupled with plant biomass measurements collected in the field during 2000. Initial vegetation cover change analysis from satellite data showed shrub encroachment during this time period that was captured in the simulated results. A synthetic 50-year climate record was derived from historical meteorological data to assess system response based on initial landcover conditions. This simulation showed that shrublands increased to the detriment of grass and yucca-ocotillo vegetation cover types indicating an ecosystem-level trajectory for shrub encroachment. Our analysis of simulated fires also showed that fires significantly reduced site biomass components including leaf area, stem, and seed biomass in this semi-arid ecosystem. In contrast to other landscape simulation models, this new model incorporates detailed physiological responses of functional plant types that will allow us to simulated the impact of increased atmospheric CO2 occurring with climate change coupled with fire

  7. When does colonisation of a semi-arid hillslope generate vegetation patterns?

    PubMed

    Sherratt, Jonathan A

    2016-07-01

    Patterned vegetation occurs in many semi-arid regions of the world. Most previous studies have assumed that patterns form from a starting point of uniform vegetation, for example as a response to a decrease in mean annual rainfall. However an alternative possibility is that patterns are generated when bare ground is colonised. This paper investigates the conditions under which colonisation leads to patterning on sloping ground. The slope gradient plays an important role because of the downhill flow of rainwater. One long-established consequence of this is that patterns are organised into stripes running parallel to the contours; such patterns are known as banded vegetation or tiger bush. This paper shows that the slope also has an important effect on colonisation, since the uphill and downhill edges of an isolated vegetation patch have different dynamics. For the much-used Klausmeier model for semi-arid vegetation, the author shows that without a term representing water diffusion, colonisation always generates uniform vegetation rather than a pattern. However the combination of a sufficiently large water diffusion term and a sufficiently low slope gradient does lead to colonisation-induced patterning. The author goes on to consider colonisation in the Rietkerk model, which is also in widespread use: the same conclusions apply for this model provided that a small threshold is imposed on vegetation biomass, below which plant growth is set to zero. Since the two models are quite different mathematically, this suggests that the predictions are a consequence of the basic underlying assumption of water redistribution as the pattern generation mechanism. PMID:26547308

  8. Carbondioxide exchange of biological soil crusts compared to disturbed soil / sand in semi arid areas

    NASA Astrophysics Data System (ADS)

    Wilske, B.; Yakir, D.; Burgheimer, J.; Karnieli, A.; Zaady, E.; Kesselmeier, J.

    2003-04-01

    Sparse vegetation in semi arid and arid lands is associated with low productivity and minor contribution to biosphere-atmosphere exchange of greenhouse gases, on an area basis. Dryland ecosystems, however, cover large land areas that are continuously increasing. Two third of global population live in semi arid and arid regions and its direct impact contributes to the expansion of dryland ecosystems. Satellite images at the start of the wet season in natural dryland ecosystems clearly show significant photosynthetic activity at a time when most vascular plants are yet inactive or undeveloped, indicating a possibly neglected CO_2 sink. This can likely be assigned to the so-called biological soil crusts (BSC) that consist of poikilohydric microphytes such as cyanobacteria, lichens, green algae, and mosses, which can rapidly recover photosynthesis in response to the earliest water supply. Such non-vascular vegetation activities are an important feature of dryland ecosystems worldwide, often complementary to that of vascular plants. We report on the rates of CO_2 exchange of BSC as measured at two field sites in the northern Negev desert during six months during 2001/2002. Peak rates of net photosynthesis (1.5 - 2 μmol m-2 s-1) were in the range observed in vascular plants, but periods with low or no activities were considerable. Rates of CO_2 exchange of BSC was always compared with that of bare soil / sand. This allowed both estimating net local land surface exchange, and assessing the influence of disturbance, mainly by uncontrolled land use, of the highly vulnerable BSC ecosystems. Simultaneous measurements of spectral reflectance properties of BSC in this study aim to allow calibration of airborne remote sensing for large-scale BSC activity studies.

  9. Impacts of intensive agricultural irrigation and livestock farming on a semi-arid Mediterranean catchment.

    PubMed

    Martín-Queller, Emi; Moreno-Mateos, David; Pedrocchi, César; Cervantes, Juan; Martínez, Gonzalo

    2010-08-01

    Irrigation return flows (IRF) are a major contributor of non-point source pollution to surface and groundwater. We evaluated the effects of irrigation on stream hydrochemistry in a Mediterranean semi-arid catchment (Flumen River, NE Spain). The Flumen River was separated into two zones based on the intensity of irrigation activities in the watershed. General linear models were used to compare the two zones. Relevant covariables (urban sewage, pig farming, and gypsum deposits in the basin) were quantified with the help of geographic information system techniques, accompanied by ground-truthing. High variability of the water quality parameters and temporal dynamics caused by irrigation were used to distinguish the two river reaches. Urban activity and livestock farming had a significant effect on water chemistry. An increase in the concentration of salts (240-541 microS.cm(-1) more in winter) and nitrate (average concentrations increased from 8.5 to 20.8 mg.l(-1) during irrigation months) was associated with a higher level of IRF. Those river reaches more strongly influenced by urban areas tended to have higher phosphorus (0.19-0.42 mg.l(-1) more in winter) concentrations. These results support earlier research about the significant consequences to water quality of both urban expansion and intensive agricultural production in arid and semi-arid regions. Data also indicate that salinization of soils, subsoils, surface water, and groundwater can be an unwelcome result of the application of pig manure for fertilization (increase in sodium concentration in 77.9 to 138.6 mg.l(-1)).

  10. When does colonisation of a semi-arid hillslope generate vegetation patterns?

    PubMed

    Sherratt, Jonathan A

    2016-07-01

    Patterned vegetation occurs in many semi-arid regions of the world. Most previous studies have assumed that patterns form from a starting point of uniform vegetation, for example as a response to a decrease in mean annual rainfall. However an alternative possibility is that patterns are generated when bare ground is colonised. This paper investigates the conditions under which colonisation leads to patterning on sloping ground. The slope gradient plays an important role because of the downhill flow of rainwater. One long-established consequence of this is that patterns are organised into stripes running parallel to the contours; such patterns are known as banded vegetation or tiger bush. This paper shows that the slope also has an important effect on colonisation, since the uphill and downhill edges of an isolated vegetation patch have different dynamics. For the much-used Klausmeier model for semi-arid vegetation, the author shows that without a term representing water diffusion, colonisation always generates uniform vegetation rather than a pattern. However the combination of a sufficiently large water diffusion term and a sufficiently low slope gradient does lead to colonisation-induced patterning. The author goes on to consider colonisation in the Rietkerk model, which is also in widespread use: the same conclusions apply for this model provided that a small threshold is imposed on vegetation biomass, below which plant growth is set to zero. Since the two models are quite different mathematically, this suggests that the predictions are a consequence of the basic underlying assumption of water redistribution as the pattern generation mechanism.

  11. Vertical distribution, migration rates, and model comparison of actinium in a semi-arid environment.

    PubMed

    McClellan, Y; August, R A; Gosz, J R; Gann, S; Parmenter, R R; Windsor, M

    2006-01-01

    Vertical soil characterization and migration of radionuclides were investigated at four radioactively contaminated sites on Kirtland Air Force Base (KAFB), New Mexico to determine the vertical downward migration of radionuclides in a semi-arid environment. The surface soils (0-15 cm) were intentionally contaminated with Brazilian sludge (containing (232)Thorium and other radionuclides) approximately 40 years ago, in order to simulate the conditions resulting from a nuclear weapons accident. Site grading consisted of manually raking or machine disking the sludge. The majority of the radioactivity was found in the top 15 cm of soil, with retention ranging from 69 to 88%. Two models, a compartment diffusion model and leach rate model, were evaluated to determine their capabilities and limitations in predicting radionuclide behavior. The migration rates of actinium were calculated with the diffusion compartment and the leach rate models for all sites, and ranged from 0.009 to 0.1 cm/yr increasing with depth. The migration rates calculated with the leach rate models were similar to those using the diffusion compartment model and did not increase with depth (0.045-0.076, 0.0 cm/yr). The research found that the physical and chemical properties governing transport processes of water and solutes in soil provide a valid radionuclide transport model. The evaluation also showed that the physical model has fewer limitations and may be more applicable to this environment.

  12. Vertical distribution, migration rates, and model comparison of actinium in a semi-arid environment.

    PubMed

    McClellan, Y; August, R A; Gosz, J R; Gann, S; Parmenter, R R; Windsor, M

    2006-01-01

    Vertical soil characterization and migration of radionuclides were investigated at four radioactively contaminated sites on Kirtland Air Force Base (KAFB), New Mexico to determine the vertical downward migration of radionuclides in a semi-arid environment. The surface soils (0-15 cm) were intentionally contaminated with Brazilian sludge (containing (232)Thorium and other radionuclides) approximately 40 years ago, in order to simulate the conditions resulting from a nuclear weapons accident. Site grading consisted of manually raking or machine disking the sludge. The majority of the radioactivity was found in the top 15 cm of soil, with retention ranging from 69 to 88%. Two models, a compartment diffusion model and leach rate model, were evaluated to determine their capabilities and limitations in predicting radionuclide behavior. The migration rates of actinium were calculated with the diffusion compartment and the leach rate models for all sites, and ranged from 0.009 to 0.1 cm/yr increasing with depth. The migration rates calculated with the leach rate models were similar to those using the diffusion compartment model and did not increase with depth (0.045-0.076, 0.0 cm/yr). The research found that the physical and chemical properties governing transport processes of water and solutes in soil provide a valid radionuclide transport model. The evaluation also showed that the physical model has fewer limitations and may be more applicable to this environment. PMID:16243414

  13. Fungal weathering of asbestos in semi arid regions of India.

    PubMed

    Bhattacharya, Shabori; John, P J; Ledwani, Lalita

    2016-02-01

    The science of Geomicrobiology, which deals with mineral- microbe interaction in nature contributes effectively to three important processes namely- mineral and metal bioremediation, biomining and soil mineral formation by microbes. Bioremediation one of the important process of the above, degrades or transforms hazardous contaminants to less toxic compounds. Several groups of fungi have proved highly efficient in this aspect, with asbestos being one such toxic entity in the environment on which their activity was studied. The present investigation uses the same tool as a device for detoxifying asbestos, a potent carcinogenic entity; with fungal isolates native to the asbestos mines of Rajasthan, India, being investigated for the first time. The cellular mechanism of asbestos toxicity is mainly attributed to the presence of iron in its chemical composition which catalyzes generation of free radicals leading to oxidation of biomolecules. The two dominant novel species found therein, identified as Aspergillus tubingenesis and Coemansia reversa have proved capable of actively removing iron from asbestos fibers as studied by scanning electron microscopy- electron diffraction X-ray (SEM-EDX) analysis. This probably could lead to a reduction in toxicity of asbestos, due to reduced iron concentration as reported in related studies. Many fungi are known to release iron chelating compounds, siderophores, which could be instrumental in the study. The findings related to two new fungal species being added to the list of earlier identified fungal bioremediators of asbestos, widens the prospect of using bioremediation as an effective tool for asbestos detoxification.

  14. The use of soil quality indicators to assess soil functionality in restored semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Erickson, Todd E.; Dixon, Kingsley W.; Merritt, David J.

    2016-04-01

    Keywords: Pilbara, 1-day CO2 test, microbial activity, mine restoration, soil health, ecosystem services. Introduction Semi-arid and arid environments are highly vulnerable to land degradation and their restoration has commonly showed low rates of success (James et al., 2013). A systematic knowledge of soil functionality is critical to successful restoration of degraded ecosystems since approximately 80% of ecosystem services can be connected to soil functions. The assessment of soil functionality generally involves the evaluation of soil properties and processes as they relate to the ability of soil to function effectively as a component of a healthy ecosystem (Costantini et al., 2015) Using soil quality indicators may be a valuable approach to assess functionality of topsoil and novel substrates used in restoration (Muñoz-Rojas et al., 2014; 2015). A key soil chemical indicator is soil organic C, that has been widely used as an attribute of soil quality because of the many functions that it provides and supports (Willaarts et al., 2015). However, microbial indicators can be more sensitive to disturbances and could be a valuable addition in soil assessment studies in restoration programs. Here, we propose a set of soil quality indicators to assess the soil status in restored soils (topsoil and waste material) of semi-arid environments. The study was conducted during March 2015 in the Pilbara biogeographical region (northwestern Australia) at an iron ore mine site rehabilitated in 2011. Methods Soil samples were collected from two sub-areas with different soil materials used as growth media: topsoil retrieved from nearby stockpiles and a lateritic waste material utilised for its erosive stability and physical competence. An undisturbed natural shrub-grassland ecosystem dominated by Triodia spp. and Acacia spp. representative of the restored area was selected as the analogue reference site. Soil physicochemical analysis were undertaken according to standard methods

  15. Fish assemblage in a semi-arid Neotropical reservoir: composition, structure and patterns of diversity and abundance.

    PubMed

    Novaes, J L C; Moreira, S I L; Freire, C E C; Sousa, M M O; Costa, R S

    2014-05-01

    The aim of this study was to analyse the composition, structure and spatial and temporal patterns of diversity and abundance of the ichthyofauna of the Santa Cruz Reservoir in semi-arid Brazil. Data were collected quarterly at eight sampling locations on the reservoir between February 2010 and November 2011 using gillnets from 12- to 70-mm mesh that were left in the water for 12h00min during the night. We evaluated the composition, structure and assemblage descriptors (Shannon-Wiener diversity index and equitability, respectively) and catch per unit effort by the number (CPUEn) and biomass (CPUEb) of the ichthyofauna. The 6,047 individuals (399,211.6 g) captured represented three orders, ten families and 20 species, of which four belonged to introduced species. The family Characidae was the most abundant with a total of 2,772 (45.8%) individuals captured. The species-abundance curve fit the log-normal model. In the spatial analysis of diversity, there were significant differences between sampling sites in the lacustrine and fluvial regions, and the highest values were found in the lacustrine region. In the temporal analysis of diversity, significant differences were also observed between the rainy and dry seasons, and the higher values were found during the dry season. Equitability followed the same spatiotemporal pattern as diversity. The Spearman correlation was significantly negative between diversity and rainfall. A cluster analysis spatially separated the ichthyofauna into two groups: one group formed by sampling sites in the fluvial region and another group formed by the remainder of the points in the lacustrine region. Both the CPUEn and CPUEb values were higher at point 8 (fluvial region) and during the rainy season. A two-way ANOVA showed that the CPUEn and CPUEb values were spatially and temporally significant. We conclude that the spatial and temporal trends of diversity in the Santa Cruz reservoir differ from those of other Brazilian reservoirs but that

  16. Ethno-ornithology and conservation of wild birds in the semi-arid Caatinga of northeastern Brazil

    PubMed Central

    2013-01-01

    The utilization of birds as pets has been recognized as one of the principal threats to global avifauna. Most of the information about the use and sale of birds as pets has been limited to areas of high biodiversity and whose impacts of anthropic actions have been widely broadcast internationally, for example for the Amazon Forest and forest remnants of Southeast Asia. The Caatinga predominates in the semi-arid region of Brazil, and is one of the semi-arid biomes with the greatest biological diversity in the world, where 511 species of birds exist. Many of these birds are used as pets, a common practice in the region, which has important conservationist implications but has been little studied. Therefore, the aim of the present study was to detail aspects of the use of birds as pets in a locality in the semi-arid region of Northeast Brazil. Information on the use of avifauna was obtained through interviews and visits to the homes of 78 wild bird keepers. A total of 41 species of birds were recorded, mostly of the families Emberizidae (n = 9 species), Columbidae (n = 7 species), Icteridae (n = 6 species) and Psittacidae (n = 3 species). The birds that were most often recorded were Paroaria dominicana (n = 79 especimens), Sporophila albogularis (n = 67), Aratinga cactorum (n = 49), Sporophila lineola (n = 36), Sicalis flaveola (n = 29) and Sporophila nigricollis (n = 27). The use of wild birds in the area studied, as an example of what occurs in other places in the semi-arid Northeast, demonstrates that such activities persist in the region, in spite of being illegal, and have been happening in clandestine or semi-clandestine manner. No statistically significant correlation were found between socioeconomic factors and keeping birds as pets reflects the cultural importance of this practice of rearing wild birds for pets in the region, which is widespread among the local population, independent of socioeconomic factors. Obviously

  17. Role of radiatively forced temperature changes in enhanced semi-arid warming in the cold season over east Asia

    NASA Astrophysics Data System (ADS)

    Guan, X.; Huang, J.; Guo, R.; Yu, H.; Lin, P.; Zhang, Y.

    2015-12-01

    As climate change has occurred over east Asia since the 1950s, intense interest and debate have arisen concerning the contribution of human activities to the observed warming in past decades. In this study, we investigate regional surface temperature change during the boreal cold season using a recently developed methodology that can successfully identify and separate the dynamically induced temperature (DIT) and radiatively forced temperature (RFT) changes in raw surface air temperature (SAT) data. For regional averages, DIT and RFT contribute 44 and 56 % to the SAT over east Asia, respectively. The DIT changes dominate the SAT decadal variability and are mainly determined by internal climate variability, represented by the North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO). Radiatively forced SAT changes have made a major contribution to the global-scale warming trend and the regional-scale enhanced semi-arid warming (ESAW). Such enhanced warming is also found in radiatively forced daily maximum and minimum SAT. The long-term global-mean SAT warming trend is mainly related to radiative forcing produced by global well-mixed greenhouse gases. The regional anthropogenic radiative forcing, however, caused the enhanced warming in the semi-arid region, which may be closely associated with local human activities. Finally, the relationship between the so-called "global warming hiatus" and regional enhanced warming is discussed.

  18. Seasonal dynamics of soil CO2 efflux in biodiverse semi-arid ecosystems of Western Australia

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Lewandrowski, Wolfgang; Martini, Dylan; Erickson, Todd; Merritt, David; Dixon, Kingsley

    2015-04-01

    Introduction In recent years, soil respiration (Rs) has been a major research focus given the increase in atmospheric CO2 emissions and the large contribution of CO2 fluxes from soils. Rs is the second largest carbon flux in terrestrial ecosystems and globally accounts for 98±12 CO2-C yr-1 or ten times that produced by fossil fuel combustion. In addition to its importance in the global carbon cycle, Rs is a key indicator of ecosystem state and functioning. Despite the global importance of this process, there is still limited knowledge of its and responses to abiotic and biotic processes, particularly in arid and semi-arid areas. In this research we investigated the seasonal variations and controlling factors of Rs for different vegetation types in biodiverse ecosystems of the Pilbara region (Western Australia). This region, with a semi-arid climate and two main seasons (wet-summer and dry-winter), is an ancient landscape with diverse geology and high levels of regional endemism. Methods This research was conducted in seven study sites across the Pilbara region with similar native soils and analogous ecosystems representative of the area. A permanent plot was defined at each site which included three of the most representative and dominant vegetation cover types of the Pilbara ecosystems: trees (Corymbia spp.), shrubs (Acacia spp.), grasses (Triodia spp.), and bare soil. Soil sampling and field measurements were carried out in February 2014 (wet-summer season) and July 2014 (dry-winter season). Rs was measured with a portable soil CO2 flux chamber attached to a Li-Cor 6400 and, simultaneously, both temperature and soil moisture were determined. Results Soil CO2 efflux ranged from 0.57 µmol m-2 s-1 to 1.96 µmol m-2 s-1 in the dry-winter season and from 1.57 µmol m-2 s-1 to 3.91 µmol m-2 s-1 in the wet-summer season. Higher Rs rates were found in the wet-summer season in all vegetation types and below Corymbia spp. in both periods. Rs differed significantly

  19. Patch scale turbulence over dryland and irrigated surfaces in a semi-arid landscape under advective conditions during BEAREX08

    NASA Astrophysics Data System (ADS)

    Prueger, J. H.; Alfieri, J. G.; Hipps, L. E.; Kustas, W. P.; Chavez, J. L.; Evett, S. R.; Anderson, M. C.; French, A. N.; Neale, C. M. U.; McKee, L. G.; Hatfield, J. L.; Howell, T. A.; Agam, N.

    2012-12-01

    Quantifying turbulent fluxes of heat and water vapor over heterogeneous surfaces presents unique challenges. For example, in many arid and semi-arid regions, parcels of irrigated cropland are juxtaposed with hot, dry surfaces. Contrasting surface conditions can result in the advection of warm dry air over an irrigated crop surface where it increases the water vapor deficit and, thereby, atmospheric demand. If sufficient water is available, this can significantly enhance evaporative water loss from the irrigated field. The scale and frequency of turbulent eddies over an irrigated surface during periods of strong advection is not fully understood. High frequency (20 Hz) data were acquired over irrigated cotton, wheat stubble, and rangeland fields during the 2008 growing season as part of the Bushland Evapotranspiration and Agricultural Remote Sensing Experiment (BEAREX08). Spectral analysis of momentum and scalar quantities including heat and water vapor revealed low frequency features in the turbulence structure due to the penetration of the surface boundary layer by large-scale eddies during periods of unusually strong advection. Wavelet analysis was applied to assess specific events contributing to the spatial and temporal structure of turbulent flux eddies. The analysis showed that low frequency contributions were linked to both local and regional scale advective processes. These results clearly point to a need to better understand surface energy balance exchange for heterogeneous surfaces in arid and semi-arid regions under conditions of strong local and regional advection.

  20. Semi-Arid Water Resource Challenges - Can Water Harvesting Close the Gap?

    NASA Astrophysics Data System (ADS)

    Meixner, T.; Niraula, R.; Norman, L.; Pivo, G.; Gerlak, A.; Pavao-Zuckerman, M.; Henry, A.

    2015-12-01

    Water resource availability restricts development in arid and semi-arid regions of world. Past observations show that urban areas can increase stream discharge at least on a local scale. These results suggest that urbanization may increase the availability of wet water capable of being used by urban society. Here we present a combination of observational work demonstrating the increase of available water in urban areas of southern Arizona; and a modelling study demonstrating that future land use change may significantly increase river discharge across the Santa Cruz watershed which is ~12% urban. The observational data comes from over 30 watersheds varying in cover from undeveloped to highly urban and in spatial scale from a few square meters to thousands of square kilometers. The modelling study includes a conservation (~35% urban), megalopolitan (~34% urban) and business as usual scenario (~38% urban) for land use change due to regional population growth. All land use change scenarios result in significant increases in watershed streamflow. Depending upon pattern of urbanization, streamflow increased as much 88% in some watershed locations; demonstrating the potential to partially meet water resources demands in the region with water produced by the urbanization process. This water could be used regionally or locally, and significant efforts at implementing water harvesting in the region have been pursued. However, the ability to scale such implementation and overcome the physical, and social barriers to implementation are currently unquantified.

  1. Pulse driven productivity in semi-arid lands

    NASA Astrophysics Data System (ADS)

    Bennett, A. C.; Collins, S. L.; Maurer, G. E.; Ruhi, A.; Litvak, M. E.

    2015-12-01

    carbon fluxes is in the size and sensitivity of both photosynthetic and respiratory responses. Understanding how these natural systems respond to rain is important for estimating future carbon storage capacity under altered precipitation regimes and assessing the potential contribution of arid and semi-arid ecosystems to the global carbon budget.

  2. Impacts of water development on aquatic macroinvertebrates, amphibians, and plants in wetlands of a semi-arid landscape

    USGS Publications Warehouse

    Euliss, N.H.; Mushet, D.M.

    2004-01-01

    We compared the macroinvertebrate and amphibian communities of 12 excavated and 12 natural wetlands in western North Dakota, USA, to assess the effects of artificially lengthened hydroperiods on the biotic communities of wetlands in this semi-arid region. Excavated wetlands were largely unvegetated or contained submergent and deep-marsh plant species. The natural wetlands had two well-defined vegetative zones populated by plant species typical of wet meadows and shallow marshes. Excavated wetlands had a richer aquatic macroinvertebrate community that included several predatory taxa not found in natural wetlands. Taxa adapted to the short hydroperiods of seasonal wetlands were largely absent from excavated wetlands. The amphibian community of natural and excavated wetlands included the boreal chorus frog, northern leopard frog, plains spadefoot, Woodhouse's toad, and tiger salamander. The plains spadefoot occurred only in natural wetlands while tiger salamanders occurred in all 12 excavated wetlands and only one natural wetland. Boreal chorus frogs and northern leopard frogs were present in both wetland types; however, they successfully reproduced only in wetlands lacking tiger salamanders. Artificially extending the hydroperiod of wetlands by excavation has greatly influenced the composition of native biotic communities adapted to the naturally short hydroperiods of wetlands in this semi-arid region. The compositional change of the biotic communities can be related to hydrological changes and biotic interactions, especially predation, related to excavation.

  3. Hydric soils and the relationship to plant diversity within reclaimed stream channels in semi-arid environments

    SciTech Connect

    Schladweiler, B.K.; Rexroat, S.; Benson, S.

    1999-07-01

    Wetlands are especially important in semi-arid environments, such as the Powder River Basin of northeastern Wyoming, where water is a limiting factor for living organisms. Within this coal mining region of northeastern Wyoming, jurisdictional wetlands are mapped according to the US Army Corps of Engineers 1987 delineation procedure. Within the coal mining region of northeastern Wyoming, little or no full-scale mitigation or reconstruction attempts of jurisdictional wetland areas have been made until recently. Based on the importance of wetlands in a semi-arid environment and lack of information on existing or reconstructed areas, the specific objectives of the 1998 fieldwork were: (1) To define the pre-disturbance ecological state of hydric soils within jurisdictional sections of stream channels on two coal permit areas in northeastern Wyoming, and (2) To determine the effect that hydric soil parameters have on plant community distribution and composition within the two coal permit areas. Undisturbed sections of stream channels and disturbed sections of reconstructed or modified stream channels at the Rawhide Mine and Buckskin Mine, located north of Gillette, Wyoming, were selected for the study. Soils field and laboratory information and field vegetation cover were collected during 1998 within native stream channels and disturbed stream channels that had been reclaimed at each mine. Soils laboratory information is currently preliminary and included pH, electrical conductivity and sodium adsorption ratio. Results and statistical comparisons between soils and vegetation data will be presented.

  4. Using stable isotopes (δ^{18}O and δ$D) of gypsum hydration water to unravel the mode of gypsum speleothem formation in semi-arid caves

    NASA Astrophysics Data System (ADS)

    Gázquez, Fernando; Calaforra, Jose Maria; Evans, Nicholas P.; Hodell, David A.

    2016-04-01

    Subaerial gypsum speleothems form during the evaporation of calcium-sulfate-rich solutions in caves. The evaporation of infiltration water is the widely accepted mechanism to explain precipitation of gypsum speleothems; i.e., the dissolution of gypsum host-rock (e.g. Messinian marine gypsum) supplies Ca2+ and SO42- ions to cave waters and subsequent evaporation leads to gypsum saturation. However, water condensation actively occurs in caves of semi-arid regions and plays a key role in subaerial cave speleogenesis and recharge of aquifers in low-rainfall environments. To date, water condensation in karstic environments has not been considered as an important factor in gypsum speleothem formation. We collected speleothem samples from the upper passages of Covadura Cave in the gypsum karst of Sorbas (Almeria, SE Spain). This cave is located in a temperate (annual mean temperature of 19.5oC), semi-arid region (

  5. Surficial weathering of iron sulfide mine tailings under semi-arid climate

    NASA Astrophysics Data System (ADS)

    Hayes, Sarah M.; Root, Robert A.; Perdrial, Nicolas; Maier, Raina M.; Chorover, Jon

    2014-09-01

    Mine wastes introduce anthropogenic weathering profiles to the critical zone that often remain unvegetated for decades after mining cessation. As such, they are vulnerable to wind and water dispersion of particulate matter to adjacent ecosystems and residential communities. In sulfide-rich ore tailings, propagation to depth of the oxidative weathering front controls the depth-variation in speciation of major and trace elements. Despite the prevalence of surficial mine waste deposits in arid regions of the globe, few prior studies have been conducted to resolve the near-surface profile of sulfide ore tailings weathered under semi-arid climate. We investigated relations between gossan oxidative reaction-front propagation and the molecular speciation of iron and sulfur in tailings subjected to weathering in a semi-arid climate at an EPA Superfund Site in central Arizona (USA). Here we report a multi-method data set combining wet chemical and synchrotron-based X-ray diffraction (XRD) and X-ray absorption near-edge spectroscopy (XANES) methods to resolve the tight coupling of iron (Fe) and sulfur (S) geochemical changes in the top 2 m of tailings. Despite nearly invariant Fe and S concentration with depth (130-140 and 100-120 g kg-1, respectively), a sharp redox gradient and distinct morphological change was observed within the top 0.5 m, associated with a progressive oxidative alteration of ferrous sulfides to (oxyhydr)oxides and (hydroxy)sulfates. Transformation is nearly complete in surficial samples. Trends in molecular-scale alteration were co-located with a decrease in pH from 7.3 to 2.3, and shifts in Fe and S lability as measured via chemical extraction. Initial weathering products, ferrihydrite and gypsum, transform to schwertmannite, then jarosite-group minerals with an accompanying decrease in pH. Interestingly, thermodynamically stable phases such as goethite and hematite were not detected in any samples, but ferrihydrite was observed even in samples with

  6. Effectiveness of conservation agriculture practices on soil erosion processes in semi-arid areas of Zimbabwe

    NASA Astrophysics Data System (ADS)

    Chikwari, Emmanuel; Mhaka, Luke; Gwandu, Tariro; Chipangura, Tafadzwa; Misi Manyanga, Amos; Sabastian Matsenyengwa, Nyasha; Rabesiranana, Naivo; Mabit, Lionel

    2016-04-01

    - The application of fallout radionuclides (FRNs) in soil erosion and redistribution studies has gained popularity since the late 1980s. In Zimbabwe, soil erosion research was mostly based on conventional methods which included the use of erosion plots for quantitative measurements and erosion models for predicting soil losses. Only limited investigation to explore the possibility of using Caesium-137 (Cs-137) has been reported in the early 1990s for undisturbed and cultivated lands in Zimbabwe. In this study, the Cs-137 technique was applied to assess the impact of soil conservation practices on soil losses and to develop strategies and support effective policies that help farmers in Zimbabwe for sustainable land management. The study was carried out at the Makoholi research station 30 km north of the Masvingo region which is located 260 km south of Harare. The area is semi-arid and the study site comprises coarse loamy sands, gleyic lixisols. The conservation agriculture (CA) practices used within the area since 1988 include (i) direct seeding (DS) with mulch, (ii) CA basins with mulch, and (iii) 18 years direct seeding, left fallow for seven years and turned into conventional tillage since 2012 (DS/F/C). The Cs-137 reference inventory was established at 214 ± 16 Bq/m2. The mean inventories for DS, CA basins and DS/F/C were 195, 190 and 214 Bq/m2 respectively. Using the conversion Mass Balance Model 2 on the Cs-137 data obtained along transects for each of the practices, gross erosion rates were found to be 7.5, 7.3 and 2.6 t/ha/yr for direct seeding, CA basins and the DS/F/C while the net erosion rates were found to be 3.8, 4.6 and 0 t/ha/yr respectively. Sediment delivery ratios were 50%, 63% and 2% in the respective order. These preliminary results showed the effectiveness of DS over CA basins in erosion control. The efficiency of fallowing in controlling excessive soil loss was significant in the plot that started as DS for 18 years but left fallow for 7

  7. Biogeochemical and ecological impacts of livestock grazing in semi-arid southeastern Utah, USA

    USGS Publications Warehouse

    Fernandez, D.P.; Neff, J.C.; Reynolds, R.L.

    2008-01-01

    Relatively few studies have examined the ecological and biogeochemical effects of livestock grazing in southeastern Utah. In this study, we evaluated how grazing has affected soil organic carbon and nitrogen to a depth of 50 cm in grasslands located in relict and actively-grazed sites in the Canyonlands physiographic section of the Colorado Plateau. We also evaluated differences in plant ground cover and the spatial distribution of soil resources. Results show that areas used by domestic livestock have 20% less plant cover and 100% less soil organic carbon and nitrogen compared to relict sites browsed by native ungulates. In actively grazed sites, domestic livestock grazing also appears to lead to clustered, rather than random, spatial distribution of soil resources. Magnetic susceptibility, a proxy for soil stability in this region, suggests that grazing increases soil erosion leading to an increase in the area of nutrient-depleted bare ground. Overall, these results, combined with previous studies in the region, suggest that livestock grazing affects both plant cover and soil fertility with potential long-term implications for the sustainability of grazing operations in this semi-arid landscape. ?? 2007 Elsevier Ltd. All rights reserved.

  8. Roots of forbs sense climate fluctuations in the semi-arid Loess Plateau: Herb-chronology based analysis.

    PubMed

    Shi, Songlin; Li, Zongshan; Wang, Hao; von Arx, Georg; Lü, Yihe; Wu, Xing; Wang, Xiaochun; Liu, Guohua; Fu, Bojie

    2016-01-01

    Growth of herbaceous plants responds sensitively and rapidly to climate variability. Yet, little is known regarding how climate warming influences the growth of herbaceous plants, particularly in semi-arid sites. This contrasts with widely reported tree growth decline and even mortality in response to severe water deficits due to climate warming around the world. Here, we use the relatively novel approach of herb-chronology to analyze the correlation between climatic factors and annual ring width in the root xylem of two perennial forb species (Medicago sativa, Potentilla chinensis) in the Loess Plateau of China. We show that warming-induced water deficit has a significant negative effect on the growth of herbaceous plants in the Loess Plateau. Our results indicate that the growth of forbs responds rapidly and sensitively to drought variability, implying that water availability plays a dominant role in regulating the growth of herbaceous plants in semi-arid areas. If warming and drying in the Loess Plateau continue in the future, further affects the growth of herbaceous plants, potentially driving regional changes in the relationship between herbaceous vegetation and climate. PMID:27323906

  9. Impact of seasonal changes on fungal diversity of a semi-arid ecosystem revealed by 454 pyrosequencing.

    PubMed

    Vargas-Gastélum, Lluvia; Romero-Olivares, Adriana L; Escalante, Ana E; Rocha-Olivares, Axayácatl; Brizuela, Carlos; Riquelme, Meritxell

    2015-05-01

    Fungi play fundamental ecological roles in terrestrial ecosystems. However, their distribution and diversity remain poorly described in natural communities, particularly in arid and semi-arid ecosystems. In order to identify environmental factors determining fungal community structure in these systems, we assessed their diversity in conjunction with soil physicochemical characteristics in a semi-arid ecosystem in Baja California, Mexico, endemic for Coccidioidomycosis (Valley Fever). Two different microhabitats, burrows (influenced by rodent activity) and topsoil, were compared in winter and summer. Using a metagenomic approach, the ITS1 region of nuclear ribosomal DNA was used as barcode. A total of 1940 Operational Taxonomic Units (OTUs) were identified from 362 332 ITS1 sequences obtained by 454 pyrosequencing. Differences in fungal composition between seasons were clearly identified. Moreover, differences in composition between microhabitats were mainly correlated to significant differences in environmental factors, such as moisture and clay content in topsoil samples, and temperature and electrical conductivity in burrow samples. Overall, the fungal community structure (dominated by Ascomycota and Basidiomycota) was less variable between seasons in burrow than in topsoil samples. Coccidioides spp. went undetected by pyrosequencing. However, a nested PCR approach revealed its higher prevalence in burrows. PMID:25877341

  10. Mapping ecological processes and ecosystem services for prioritizing restoration efforts in a semi-arid Mediterranean river basin.

    PubMed

    Trabucchi, Mattia; O'Farrell, Patrick J; Notivol, Eduardo; Comín, Francisco A

    2014-06-01

    Semi-arid Mediterranean regions are highly susceptible to desertification processes which can reduce the benefits that people obtain from healthy ecosystems and thus threaten human wellbeing. The European Union Biodiversity Strategy to 2020 recognizes the need to incorporate ecosystem services into land-use management, conservation, and restoration actions. The inclusion of ecosystem services into restoration actions and plans is an emerging area of research, and there are few documented approaches and guidelines on how to undertake such an exercise. This paper responds to this need, and we demonstrate an approach for identifying both key ecosystem services provisioning areas and the spatial relationship between ecological processes and services. A degraded semi-arid Mediterranean river basin in north east Spain was used as a case study area. We show that the quantification and mapping of services are the first step required for both optimizing and targeting of specific local areas for restoration. Additionally, we provide guidelines for restoration planning at a watershed scale; establishing priorities for improving the delivery of ecosystem services at this scale; and prioritizing the sub-watersheds for restoration based on their potential for delivering a combination of key ecosystem services for the entire basin.

  11. Damage caused to the environment by reforestation policies in arid and semi-arid areas of China.

    PubMed

    Cao, Shixiong; Tian, Tao; Chen, Li; Dong, Xiaobin; Yu, Xinxiao; Wang, Guosheng

    2010-06-01

    Traditional approaches to ecosystem restoration have considered afforestation to be an important tool. To alleviate land degradation in China, the Chinese government has therefore invested huge amounts of money in planting trees. However, the results of more than half a century of large-scale afforestation in arid and semi-arid China have shown that when the trees are not adapted to the local environment, the policy does not improve the environment, and may instead increase environmental degradation. When precipitation is lower than potential evaporation, surface soil moisture typically cannot sustain forest vegetation, and shrubs or steppe species replace the forest to form a sustainable natural ecosystem that exists in a stable equilibrium with the available water supply. The climate of much of northwestern China appears to be unsuitable for afforestation owing to the extremely low rainfall. Although some small-scale or short-term afforestation efforts have succeeded in this region, many of the resulting forests have died or degraded over longer periods, so policymakers must understand that these small-scale or short-term results do not support an inflexible policy of large-scale afforestation throughout arid and semi-arid northwestern China. Rather than focusing solely on afforestation, it would be more effective to attempt to recreate natural ecosystems that are better adapted to local environments and that thus provide a better chance of sustainable, long-term rehabilitation. PMID:20799677

  12. Mapping Ecological Processes and Ecosystem Services for Prioritizing Restoration Efforts in a Semi-arid Mediterranean River Basin

    NASA Astrophysics Data System (ADS)

    Trabucchi, Mattia; O'Farrell, Patrick J.; Notivol, Eduardo; Comín, Francisco A.

    2014-06-01

    Semi-arid Mediterranean regions are highly susceptible to desertification processes which can reduce the benefits that people obtain from healthy ecosystems and thus threaten human wellbeing. The European Union Biodiversity Strategy to 2020 recognizes the need to incorporate ecosystem services into land-use management, conservation, and restoration actions. The inclusion of ecosystem services into restoration actions and plans is an emerging area of research, and there are few documented approaches and guidelines on how to undertake such an exercise. This paper responds to this need, and we demonstrate an approach for identifying both key ecosystem services provisioning areas and the spatial relationship between ecological processes and services. A degraded semi-arid Mediterranean river basin in north east Spain was used as a case study area. We show that the quantification and mapping of services are the first step required for both optimizing and targeting of specific local areas for restoration. Additionally, we provide guidelines for restoration planning at a watershed scale; establishing priorities for improving the delivery of ecosystem services at this scale; and prioritizing the sub-watersheds for restoration based on their potential for delivering a combination of key ecosystem services for the entire basin.

  13. Roots of forbs sense climate fluctuations in the semi-arid Loess Plateau: Herb-chronology based analysis

    PubMed Central

    Shi, Songlin; Li, Zongshan; Wang, Hao; von Arx, Georg; Lü, Yihe; Wu, Xing; Wang, Xiaochun; Liu, Guohua; Fu, Bojie

    2016-01-01

    Growth of herbaceous plants responds sensitively and rapidly to climate variability. Yet, little is known regarding how climate warming influences the growth of herbaceous plants, particularly in semi-arid sites. This contrasts with widely reported tree growth decline and even mortality in response to severe water deficits due to climate warming around the world. Here, we use the relatively novel approach of herb-chronology to analyze the correlation between climatic factors and annual ring width in the root xylem of two perennial forb species (Medicago sativa, Potentilla chinensis) in the Loess Plateau of China. We show that warming-induced water deficit has a significant negative effect on the growth of herbaceous plants in the Loess Plateau. Our results indicate that the growth of forbs responds rapidly and sensitively to drought variability, implying that water availability plays a dominant role in regulating the growth of herbaceous plants in semi-arid areas. If warming and drying in the Loess Plateau continue in the future, further affects the growth of herbaceous plants, potentially driving regional changes in the relationship between herbaceous vegetation and climate. PMID:27323906

  14. Fixation kinetics of chelated and non-chelated zinc in semi-arid alkaline soils: application to zinc management

    NASA Astrophysics Data System (ADS)

    Udeigwe, Theophilus K.; Eichmann, Madeleine; Menkiti, Matthew C.

    2016-07-01

    This study was designed to examine the fixation pattern and kinetics of zinc (Zn) in chelated (ethylenediaminetetraacetic acid, EDTA) and non-chelated mixed micronutrient systems of semi-arid alkaline soils from the Southern High Plains, USA. Soils were characterized for a suite of chemical and physical properties and data obtained from extraction experiments fitted to various kinetic models. About 30 % more plant-available Zn was fixed in the non-chelated system within the first 14 days with only about 18 % difference observed between the two systems by day 90, suggesting that the effectiveness of the chelated compounds tended to decrease over time. The strengths of the relationships of change in available Zn with respect to other micronutrients (copper, iron, and manganese) were higher and more significant in the non-chelated system (average R2 of 0.83), compared to the chelated (average R2 of 0.42). Fixation of plant-available Zn was best described by the power-function model (R2 = 0.94, SE = 0.076) in the non-chelated system, and was poorly described by all the models examined in the chelated system. Reaction rate constants and relationships generated from this study can serve as important tools for micronutrient management and for future micronutrient modeling studies on these soils and other semi-arid regions of the world.

  15. Relationships between primary production and crop yields in semi-arid and arid irrigated agro-ecosystems

    NASA Astrophysics Data System (ADS)

    Jaafar, H. H.; Ahmad, F. A.

    2015-04-01

    In semi-arid areas within the MENA region, food security problems are the main problematic imposed. Remote sensing can be a promising too early diagnose food shortages and further prevent the population from famine risks. This study is aimed at examining the possibility of forecasting yield before harvest from remotely sensed MODIS-derived Enhanced Vegetation Index (EVI), Net photosynthesis (net PSN), and Gross Primary Production (GPP) in semi-arid and arid irrigated agro-ecosystems within the conflict affected country of Syria. Relationships between summer yield and remotely sensed indices were derived and analyzed. Simple regression spatially-based models were developed to predict summer crop production. The validation of these models was tested during conflict years. A significant correlation (p<0.05) was found between summer crop yield and EVI, GPP and net PSN. Results indicate the efficiency of remotely sensed-based models in predicting summer yield, mostly for cotton yields and vegetables. Cumulative summer EVI-based model can predict summer crop yield during crisis period, with deviation less than 20% where vegetables are the major yield. This approach prompts to an early assessment of food shortages and lead to a real time management and decision making, especially in periods of crisis such as wars and drought.

  16. Land degradation assessment by geo-spatially modeling different soil erodibility equations in a semi-arid catchment.

    PubMed

    Saygın, Selen Deviren; Basaran, Mustafa; Ozcan, Ali Ugur; Dolarslan, Melda; Timur, Ozgur Burhan; Yilman, F Ebru; Erpul, Gunay

    2011-09-01

    Land degradation by soil erosion is one of the most serious problems and environmental issues in many ecosystems of arid and semi-arid regions. Especially, the disturbed areas have greater soil detachability and transportability capacity. Evaluation of land degradation in terms of soil erodibility, by using geostatistical modeling, is vital to protect and reclaim susceptible areas. Soil erodibility, described as the ability of soils to resist erosion, can be measured either directly under natural or simulated rainfall conditions, or indirectly estimated by empirical regression models. This study compares three empirical equations used to determine the soil erodibility factor of revised universal soil loss equation prediction technology based on their geospatial performances in the semi-arid catchment of the Saraykoy II Irrigation Dam located in Cankiri, Turkey. A total of 311 geo-referenced soil samples were collected with irregular intervals from the top soil layer (0-10 cm). Geostatistical analysis was performed with the point values of each equation to determine its spatial pattern. Results showed that equations that used soil organic matter in combination with the soil particle size better agreed with the variations in land use and topography of the catchment than the one using only the particle size distribution. It is recommended that the equations which dynamically integrate soil intrinsic properties with land use, topography, and its influences on the local microclimates, could be successfully used to geospatially determine sites highly susceptible to water erosion, and therefore, to select the agricultural and bio-engineering control measures needed.

  17. Roots of forbs sense climate fluctuations in the semi-arid Loess Plateau: Herb-chronology based analysis.

    PubMed

    Shi, Songlin; Li, Zongshan; Wang, Hao; von Arx, Georg; Lü, Yihe; Wu, Xing; Wang, Xiaochun; Liu, Guohua; Fu, Bojie

    2016-06-21

    Growth of herbaceous plants responds sensitively and rapidly to climate variability. Yet, little is known regarding how climate warming influences the growth of herbaceous plants, particularly in semi-arid sites. This contrasts with widely reported tree growth decline and even mortality in response to severe water deficits due to climate warming around the world. Here, we use the relatively novel approach of herb-chronology to analyze the correlation between climatic factors and annual ring width in the root xylem of two perennial forb species (Medicago sativa, Potentilla chinensis) in the Loess Plateau of China. We show that warming-induced water deficit has a significant negative effect on the growth of herbaceous plants in the Loess Plateau. Our results indicate that the growth of forbs responds rapidly and sensitively to drought variability, implying that water availability plays a dominant role in regulating the growth of herbaceous plants in semi-arid areas. If warming and drying in the Loess Plateau continue in the future, further affects the growth of herbaceous plants, potentially driving regional changes in the relationship between herbaceous vegetation and climate.

  18. Overlap in nitrogen sources and redistribution of nitrogen between trees and grasses in a semi-arid savanna.

    PubMed

    Priyadarshini, K V R; Prins, Herbert H T; de Bie, Steven; Heitkönig, Ignas M A; Woodborne, Stephan; Gort, Gerrit; Kirkman, Kevin; Fry, Brian; de Kroon, Hans

    2014-04-01

    A key question in savanna ecology is how trees and grasses coexist under N limitation. We used N stable isotopes and N content to study N source partitioning across seasons from trees and associated grasses in a semi-arid savanna. We also used (15)N tracer additions to investigate possible redistribution of N by trees to grasses. Foliar stable N isotope ratio (δ(15)N) values were consistent with trees and grasses using mycorrhiza-supplied N in all seasons except in the wet season when they switched to microbially fixed N. The dependence of trees and grasses on mineralized soil N seemed highly unlikely based on seasonal variation in mineralization rates in the Kruger Park region. Remarkably, foliar δ(15)N values were similar for all three tree species differing in the potential for N fixation through nodulation. The tracer experiment showed that N was redistributed by trees to understory grasses in all seasons. Our results suggest that the redistribution of N from trees to grasses and uptake of N was independent of water redistribution. Although there is overlap of N sources between trees and grasses, dependence on biological sources of N coupled with redistribution of subsoil N by trees may contribute to the coexistence of trees and grasses in semi-arid savannas.

  19. Effects of stubble and mulching on soil erosion by wind in semi-arid China

    PubMed Central

    Cong, Peifei; Yin, Guanghua; Gu, Jian

    2016-01-01

    Soil erosion is a growing challenge for agricultural production in Northern China. To explore the effect of variation in stubble height and mulching biomass on soil erosion caused by wind, we conducted a field experiment using a quadratic rotation combination design. Results showed that the quantity of straw mulch was the dominant factor affecting soil erosion, and stubble height was of secondary importance. The soil water content in stubble and straw mulching treatments was higher than in a control treatment at 0–20 cm soil, and the tendency in the amount of soil water content was opposite to the amount of wind erosion (r = −0.882, n = 10, p < 0.01). The change in soil water content observed in the stubble and mulch treatments at the 15–20 cm depth was higher than the change from 0–5 cm to 5–10 cm. Combined, the influence of a stubble height of 34 cm and mulch quantity of 4260 kg·ha−1 lowered the amount of erosion to 0.42 t·ha−1, and increased the corn yield to 11900 kg·ha−1. We determined that those were the most appropriate levels of stubble height and straw mulch for crop fields in the semi-arid regions of Northern China. PMID:27426048

  20. Coupled flow and salinity transport modelling in semi-arid environments: The Shashe River Valley, Botswana

    NASA Astrophysics Data System (ADS)

    Bauer, Peter; Held, Rudolf J.; Zimmermann, Stephanie; Linn, Flenner; Kinzelbach, Wolfgang

    2006-01-01

    Numerical groundwater modelling is used as the base for sound aquifer system analysis and water resources assessment. In many cases, particularly in semi-arid and arid regions, groundwater flow is intricately linked to salinity transport. A case in point is the Shashe River Valley in Botswana. A freshwater aquifer located around an ephemeral stream is depleted by the combined effect of transpiration and pumping. Quantitative system analysis reveals that the amount of water taken by transpiration is far more than the quantities pumped for water supply. Furthermore, the salinity distribution in and around Shashe River Valley as well as its temporal dynamics can be satisfactorily reproduced if the transpiration is modelled as a function of groundwater salinity. The location and dynamics of the saltwater-freshwater interface are highly sensitive to the parameterization of evaporative and transpirative salt enrichment. An existing numerical code for coupled flow/transport simulations (SEAWAT) was adapted to this situation. Model results were checked against a large set of field data including water levels, water chemistry, isotope data and ground and airborne geophysical data. The resulting groundwater model was able to reproduce the long-term development of the freshwater lens located in Shashe River Valley as well as the decline in piezometric heads observed over the last decade. Furthermore, the old age of the saline water surrounding the central freshwater lens could be explained.

  1. Can groundwater in the discharge area receive recharge from rainfall in semi-arid areas?

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Wei; Sun, Zhi-Chao; Zhao, Ke-Yu; Wan, Li; Wang, Xu-Sheng

    2016-04-01

    The definition of discharge area, which could be traced back to Toth (1962), is an area where the flow of groundwater is directed upward with respect to the water table. However, such a definition is subjected to criticism because it is usually accepted that rainfall can infiltrate into the subsurface and recharge the aquifer. In this study, the water table and soil moisture in the discharge area of an inland watershed in northwestern China with a semi-arid climate are monitored. The water table is recorded using Diver, while soil moistures at ten different depths are recorded using 5TM. The hourly rainfall data is also available in a nearby weather station. Both groundwater and soil water are found to have responses to heavy rainfalls. Soil moisture in the shallow part (<70 cm) increases due to the infiltration of rainfall, and the magnitude of increase in soil moisture is dependent on the amount of rainfall. Soil moisture in the deep part (>90 cm) also have response to heavy rainfalls, however, they have a more direct relation to the dynamics of the water table. Based on the variations in soil moisture, we conclude that the rise in water table is not caused by the in situ infiltration of rainfall, and the infiltrated rainfall got evaporated before arriving at the water table. The vertical flux from regional groundwater flow is found to be the main contribution of water supply to support evaporation.

  2. Effects of stubble and mulching on soil erosion by wind in semi-arid China.

    PubMed

    Cong, Peifei; Yin, Guanghua; Gu, Jian

    2016-01-01

    Soil erosion is a growing challenge for agricultural production in Northern China. To explore the effect of variation in stubble height and mulching biomass on soil erosion caused by wind, we conducted a field experiment using a quadratic rotation combination design. Results showed that the quantity of straw mulch was the dominant factor affecting soil erosion, and stubble height was of secondary importance. The soil water content in stubble and straw mulching treatments was higher than in a control treatment at 0-20 cm soil, and the tendency in the amount of soil water content was opposite to the amount of wind erosion (r = -0.882, n = 10, p < 0.01). The change in soil water content observed in the stubble and mulch treatments at the 15-20 cm depth was higher than the change from 0-5 cm to 5-10 cm. Combined, the influence of a stubble height of 34 cm and mulch quantity of 4260 kg·ha(-1) lowered the amount of erosion to 0.42 t·ha(-1), and increased the corn yield to 11900 kg·ha(-1). We determined that those were the most appropriate levels of stubble height and straw mulch for crop fields in the semi-arid regions of Northern China. PMID:27426048

  3. Seasonalizing mountain system recharge in semi-arid basins-climate change impacts.

    PubMed

    Ajami, Hoori; Meixner, Thomas; Dominguez, Francina; Hogan, James; Maddock, Thomas

    2012-01-01

    Climate variability and change impact groundwater resources by altering recharge rates. In semi-arid Basin and Range systems, this impact is likely to be most pronounced in mountain system recharge (MSR), a process which constitutes a significant component of recharge in these basins. Despite its importance, the physical processes that control MSR have not been fully investigated because of limited observations and the complexity of recharge processes in mountainous catchments. As a result, empirical equations, that provide a basin-wide estimate of mean annual recharge using mean annual precipitation, are often used to estimate MSR. Here North American Regional Reanalysis data are used to develop seasonal recharge estimates using ratios of seasonal (winter vs. summer) precipitation to seasonal actual or potential evapotranspiration. These seasonal recharge estimates compared favorably to seasonal MSR estimates using the fraction of winter vs. summer recharge determined from isotopic data in the Upper San Pedro River Basin, Arizona. Development of hydrologically based seasonal ratios enhanced seasonal recharge predictions and notably allows evaluation of MSR response to changes in seasonal precipitation and temperature because of climate variability and change using Global Climate Model (GCM) climate projections. Results show that prospective variability in MSR depends on GCM precipitation predictions and on higher temperature. Lower seasonal MSR rates projected for 2050-2099 are associated with decreases in summer precipitation and increases in winter temperature. Uncertainty in seasonal MSR predictions arises from the potential evapotranspiration estimation method, the GCM downscaling technique and the exclusion of snowmelt processes.

  4. Characterising root density of peach trees in a semi-arid Chernozem to increase plant density

    NASA Astrophysics Data System (ADS)

    Paltineanu, Cristian; Septar, Leinar; Gavat, Corina; Chitu, Emil; Oprita, Alexandru; Moale, Cristina; Calciu, Irina; Vizitiu, Olga; Lamureanu, Gheorghe

    2016-01-01

    The available information on root system in fully mature peach orchards in semi-arid regions is insufficient. This paper presents a study on the root system density in an irrigated peach orchard from Dobrogea, Romania, using the trench technique. The old orchard has clean cultivation in inter-row and in-row. The objectives of the study were to: test the hypothesis that the roots of fully mature peach trees occupy the whole soil volume; find out if root repulsive effect of adjacent plants occurred for the rootstocks and soil conditions; find relationships between root system and soil properties and analyse soil state trend. Some soil physical properties were significantly deteriorated in inter-row versus in-row, mainly due to soil compaction induced by technological traffic. Density of total roots was higher in-row than inter-row, but the differences were not significant. Root density decreased more intensely with soil depth than with distance from tree trunks. Root density correlated with some soil properties. No repulsive effect of the roots of adjacent peach trees was noted. The decrease of root density with distance from trunk can be used in optimising tree arrangement. The conclusions could also be used in countries with similar growth conditions.

  5. Impacts of climate change on nutrient cycling in semi-arid and arid ecosystems

    SciTech Connect

    Belnap, J.

    1995-09-01

    Effective precipitation is a major factor in determining nutrient pathways in different ecosystems. Soil flora and fauna play a critical role in nutrient cycles of all ecosystems. Temperature, timing, and amounts of precipitation affect population composition, activity levels, biomass, and recovery rates from disturbance. Changes in these variables can result in very different inputs and outputs for different nutrients. As a result, areas with less effective precipitation have very different nutrient cycles than more mesic zones. Climate change, therefore, can profoundly affect the nutrient cycles of ecosystems. Nitrogen cycles may be especially sensitive to changes in temperature and to timing and amounts of precipitation. Rainfall contains varying amounts of nitrogen compounds. Changes in amounts of rainfall will change amounts of nitrogen available to these systems. Because rainfall is limited in semi-arid and regions, these systems tend to be more dependent on microbial populations for nitrogen input. Consequently, understanding the effects of climate change on these organisms is critical in understanding the overall effect on ecosystems.

  6. Nestedness patterns of sand fly (Diptera: Psychodidae) species in a neotropical semi-arid environment.

    PubMed

    Chaves, Luis Fernando; Añez, Nestor

    2016-01-01

    A common pattern in neotropical Leishmania spp. transmission is the co-occurrence of several sand fly (SF) species at endemic foci. We collected 13 SF spp. by direct aspiration in natural resting places (NRP) and 10 SF spp. with Shannon traps (ST), totaling 15 spp. with both methods, at 6 locations within a semi-arid region with endemic visceral leishmaniasis transmission in Falcón State, Northwestern Venezuela. We used null model testing of species co-occurrence and nestedness metrics estimated with our field data to ask whether SF species composition was segregated/aggregated, and if aggregated whether there was nestedness, i.e., whether species composition across sampling locations could be described by ordered subsets of species from the most species rich location in a landscape. Results showed that SF species were aggregated (P<0.05), i.e., most species were present in species rich locations. Similarly, SF species were significantly nested (P<0.05). Differences in pairwise Sørensen and Simpson indices, estimated with the ST data and the combined ST and NRP data, were positively associated with the distance between sampling locations, suggesting that species nestedness might be partially shaped by dispersal limitation. Our data showed that three species of medical importance were common across the sampling locations: Lutzomyia gomezi, Lutzomyia panamensis and Lutzomyia evansi, suporting that vector species do not turnover in the studied setting.

  7. Effects of stubble and mulching on soil erosion by wind in semi-arid China.

    PubMed

    Cong, Peifei; Yin, Guanghua; Gu, Jian

    2016-07-18

    Soil erosion is a growing challenge for agricultural production in Northern China. To explore the effect of variation in stubble height and mulching biomass on soil erosion caused by wind, we conducted a field experiment using a quadratic rotation combination design. Results showed that the quantity of straw mulch was the dominant factor affecting soil erosion, and stubble height was of secondary importance. The soil water content in stubble and straw mulching treatments was higher than in a control treatment at 0-20 cm soil, and the tendency in the amount of soil water content was opposite to the amount of wind erosion (r = -0.882, n = 10, p < 0.01). The change in soil water content observed in the stubble and mulch treatments at the 15-20 cm depth was higher than the change from 0-5 cm to 5-10 cm. Combined, the influence of a stubble height of 34 cm and mulch quantity of 4260 kg·ha(-1) lowered the amount of erosion to 0.42 t·ha(-1), and increased the corn yield to 11900 kg·ha(-1). We determined that those were the most appropriate levels of stubble height and straw mulch for crop fields in the semi-arid regions of Northern China.

  8. Effects of stubble and mulching on soil erosion by wind in semi-arid China

    NASA Astrophysics Data System (ADS)

    Cong, Peifei; Yin, Guanghua; Gu, Jian

    2016-07-01

    Soil erosion is a growing challenge for agricultural production in Northern China. To explore the effect of variation in stubble height and mulching biomass on soil erosion caused by wind, we conducted a field experiment using a quadratic rotation combination design. Results showed that the quantity of straw mulch was the dominant factor affecting soil erosion, and stubble height was of secondary importance. The soil water content in stubble and straw mulching treatments was higher than in a control treatment at 0–20 cm soil, and the tendency in the amount of soil water content was opposite to the amount of wind erosion (r = ‑0.882, n = 10, p < 0.01). The change in soil water content observed in the stubble and mulch treatments at the 15–20 cm depth was higher than the change from 0–5 cm to 5–10 cm. Combined, the influence of a stubble height of 34 cm and mulch quantity of 4260 kg·ha‑1 lowered the amount of erosion to 0.42 t·ha‑1, and increased the corn yield to 11900 kg·ha‑1. We determined that those were the most appropriate levels of stubble height and straw mulch for crop fields in the semi-arid regions of Northern China.

  9. Spatial and temporal signatures of fragility and threshold proximity in modelled semi-arid vegetation

    PubMed Central

    Bailey, R. M.

    2011-01-01

    Understanding the behaviour of complex environmental systems, particularly as critical thresholds are approached, is vitally important in many contexts. Among these are the moisture-limited vegetation systems in semi-arid (SA) regions of the World, which support approximately 36 per cent of the human population, maintain considerable biodiversity and which are susceptible to rapid stress-induced collapse. Change in spatially self-organized vegetation patterning has previously been proposed as a means of identifying approaching thresholds in these systems. In this paper, a newly developed cellular automata model is used to explore spatial patterning and also the temporal dynamics of SA vegetation cover. Results show, for the first time, to my knowledge, in a cellular automata model, that ‘critical slowdown’ (a pronounced reduction in post-perturbation recovery rates) provides clear signals of system fragility as major thresholds are approached. A consequence of slowing recovery rates is the appearance of quasi-stable population states and increased potential for perturbation-induced multi-staged population collapse. The model also predicts a non-patterned cover where environmental stress levels are high, or where more moderate stress levels are accompanied by frequent perturbations. In the context of changing climatic and environmental pressures, these results provide observable indicators of fragility and threshold proximity in SA vegetation systems that have direct relevance to management policies. PMID:20943693

  10. Weathering in and Calcium Losses From Semi-Arid Agricultural Landscapes: Insight From Strontium Isotope Ratios

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Keller, C.; Vervoort, J. D.

    2004-12-01

    The strontium isotope ratio (87Sr/86Sr) has been used in a number of recent studies of calcium cycling in forested ecosystems. In this research 87Sr/86Sr was used to investigate weathering and, specifically, seasonal variation of calcium loss in drainage from semi-arid, agricultural landscapes in the Palouse Region of Washington State, USA. The Palouse is dominated by rolling loess hills. The soils are silt-loam Mollisols and the predominant origin of the loess substrate is continental crust. Tile drains are widely used to improve drainage of lower-slope fields. 87Sr/86Sr of tile drainage, soil water, stream water and precipitation water were measured by multiple-collector Inductively Coupled Plasma Mass Spectrometry. 87Sr/86Sr of precipitation waters exhibited considerable variation (0.708 to 0.713). 87Sr/86Sr of the other water samples ranged from 0.707 to 0.708. These values are not close to continental crust values (0.716) but are more similar to basalts (0.702 to 0.707). 87Sr/86Sr of tile drainage appeared to be negatively correlated with discharge during the rainy season. Thus it appears that sources of dissolved calcium in drainage vary seasonally. Results of this work may help predict the soil-acidification effects of heavy loading of these systems with ammonia-N fertilizers.

  11. Nestedness patterns of sand fly (Diptera: Psychodidae) species in a neotropical semi-arid environment.

    PubMed

    Chaves, Luis Fernando; Añez, Nestor

    2016-01-01

    A common pattern in neotropical Leishmania spp. transmission is the co-occurrence of several sand fly (SF) species at endemic foci. We collected 13 SF spp. by direct aspiration in natural resting places (NRP) and 10 SF spp. with Shannon traps (ST), totaling 15 spp. with both methods, at 6 locations within a semi-arid region with endemic visceral leishmaniasis transmission in Falcón State, Northwestern Venezuela. We used null model testing of species co-occurrence and nestedness metrics estimated with our field data to ask whether SF species composition was segregated/aggregated, and if aggregated whether there was nestedness, i.e., whether species composition across sampling locations could be described by ordered subsets of species from the most species rich location in a landscape. Results showed that SF species were aggregated (P<0.05), i.e., most species were present in species rich locations. Similarly, SF species were significantly nested (P<0.05). Differences in pairwise Sørensen and Simpson indices, estimated with the ST data and the combined ST and NRP data, were positively associated with the distance between sampling locations, suggesting that species nestedness might be partially shaped by dispersal limitation. Our data showed that three species of medical importance were common across the sampling locations: Lutzomyia gomezi, Lutzomyia panamensis and Lutzomyia evansi, suporting that vector species do not turnover in the studied setting. PMID:26456179

  12. Great Basin semi-arid woodland dynamics during the late quaternary

    SciTech Connect

    Wigand, P.E.; Hemphill, M.L.; Sharpe, S.E.

    1995-09-01

    Semi-arid woodlands have dominated the middle elevations of Great Basin mountain ranges during the Holocene where subalpine woodlands prevailed during the Pleistocene. Ancient woodrat middens, and in a few cases pollen records indicate in the late Pleistocene and early Holocene woodland history lowered elevation of subalpine woodland species. After a middle Holocene retrenchment at elevations in excess of 500 meters above today, Juniper-dominated semi-arid woodland reached its late Holocene maximum areal extent during the Neoglacial (2 to 4 ka). These records, along with others indicate contracting semi-arid woodland after the Neoglacial about 1.9 ka. Desert shrub community expansion coupled with increased precariousness of wetland areas in the southern Great Basin between 1.9 and 1.5 ka coincide with shrinking wet-lands in the west-central and northern Great Basin. Coincident greater grass abundance in northern Great Basin sagebrush steppe, reaching its maximum between 1.5 and 1.2 ka, corresponds to dramatic increases in bison remains in the archaeological sites of the northern Intermontane West. Pollen and woodrat midden records indicate that this drought ended about 1.5 ka. Succeeding ameliorating conditions resulted in the sudden northward and downward expansion of pinon into areas that had been dominated by juniper during the Neoglacial. Maximum areal extent of pinon dominated semi-arid woodland in west-central Nevada was centered at 1.2 ka. This followed by 100 years the shift in dominance from juniper to pinon in southern Nevada semi-arid woodlands. Great Basin woodlands suffered from renewed severe droughts between .5 to .6 ka. Effectively wetter conditions during the {open_quotes}Little Ice Age{close_quotes} resulted in re-expansion of semi-arid woodland. Activities related to European settlement in the Great Basin have modified prehistoric factors or imposed new ones that are affecting woodland response to climate.

  13. Automated mapping of burned areas in semi-arid ecosystems using modis time-series imagery

    NASA Astrophysics Data System (ADS)

    Hardtke, L. A.; Blanco, P. D.; del Valle, H. F.; Metternicht, G. I.; Sione, W. F.

    2015-04-01

    Understanding spatial and temporal patterns of burned areas at regional scales, provides a long-term perspective of fire processes and its effects on ecosystems and vegetation recovery patterns, and it is a key factor to design prevention and post-fire restoration plans and strategies. Standard satellite burned area and active fire products derived from the 500-m MODIS and SPOT are avail - able to this end. However, prior research caution on the use of these global-scale products for regional and sub-regional applica - tions. Consequently, we propose a novel algorithm for automated identification and mapping of burned areas at regional scale in semi-arid shrublands. The algorithm uses a set of the Normalized Burned Ratio Index products derived from MODIS time series; using a two-phased cycle, it firstly detects potentially burned pixels while keeping a low commission error (false detection of burned areas), and subsequently labels them as seed patches. Region growing image segmentation algorithms are applied to the seed patches in the second-phase, to define the perimeter of fire affected areas while decreasing omission errors (missing real burned areas). Independently-derived Landsat ETM+ burned-area reference data was used for validation purposes. The correlation between the size of burnt areas detected by the global fire products and independently-derived Landsat reference data ranged from R2 = 0.01 - 0.28, while our algorithm performed showed a stronger correlation coefficient (R2 = 0.96). Our findings confirm prior research calling for caution when using the global fire products locally or regionally.

  14. Floristic similarity and dispersal syndromes in a rocky outcrop in semi-arid Northeastern Brazil.

    PubMed

    Costa, Elainne Cristina Silva; Lopes, Sérgio de Faria; Melo, José Iranildo Miranda de

    2015-09-01

    Floristic studies provide valuable information on species richness in a region, and are particularly important if these areas belong to less studied environments, such as rocky outcrops, that may increase our knowledge. An important aspect for species colonization includes the mechanisms of diaspores dispersal in each community; these are essential to understand its structure, dynamics, and the regeneration process, and constitute an important tool for conservation. We developed a floristic survey on a granite-gneiss outcrop with the objective to increase the knowledge on plant diversity, through a floristic similarity analysis and detection of dispersal syndromes of sampled species, in a semi-arid region of Brazil. The fieldwork included collection and observation of the botanical material in loco during a period of 12 months. A total of 161 species belonging to 127 genera and 50 families of angiosperms were recorded. Fabaceae, Asteraceae and Convolvulaceae were the most representative families in number of species. Allophylus quercifolius (Mart.) Radlk. (Capparaceae) and Lafoensia pacari A. St.-Hil. (Lythraceae) represented new records for the State of Paraiba. The autochoric syndrome was the most representative, with 51.5 % of the recorded species; the anemochory was the second most representative syndrome with 26.7 % of the species; and finally the zoochory, representing 22.3 % of the species. The floristic similarity dendrogram showed the formation of three well-defined groups, whose area with the highest value (J = 33.2) is located in a Caatinga region called Cariri Paraibano, while the lowest value observed (J = 5.2), occurred in a settled area in two geomorphological units, a crystalline complex and a plateau region. These results may be due to the varying topographic conditions and edaphic heterogeneity arising from the specific geological formation of the region. These results yet demonstrate that, in rocky outcrops, abiotic syndromes represent an

  15. Floristic similarity and dispersal syndromes in a rocky outcrop in semi-arid Northeastern Brazil.

    PubMed

    Costa, Elainne Cristina Silva; Lopes, Sérgio de Faria; Melo, José Iranildo Miranda de

    2015-09-01

    Floristic studies provide valuable information on species richness in a region, and are particularly important if these areas belong to less studied environments, such as rocky outcrops, that may increase our knowledge. An important aspect for species colonization includes the mechanisms of diaspores dispersal in each community; these are essential to understand its structure, dynamics, and the regeneration process, and constitute an important tool for conservation. We developed a floristic survey on a granite-gneiss outcrop with the objective to increase the knowledge on plant diversity, through a floristic similarity analysis and detection of dispersal syndromes of sampled species, in a semi-arid region of Brazil. The fieldwork included collection and observation of the botanical material in loco during a period of 12 months. A total of 161 species belonging to 127 genera and 50 families of angiosperms were recorded. Fabaceae, Asteraceae and Convolvulaceae were the most representative families in number of species. Allophylus quercifolius (Mart.) Radlk. (Capparaceae) and Lafoensia pacari A. St.-Hil. (Lythraceae) represented new records for the State of Paraiba. The autochoric syndrome was the most representative, with 51.5 % of the recorded species; the anemochory was the second most representative syndrome with 26.7 % of the species; and finally the zoochory, representing 22.3 % of the species. The floristic similarity dendrogram showed the formation of three well-defined groups, whose area with the highest value (J = 33.2) is located in a Caatinga region called Cariri Paraibano, while the lowest value observed (J = 5.2), occurred in a settled area in two geomorphological units, a crystalline complex and a plateau region. These results may be due to the varying topographic conditions and edaphic heterogeneity arising from the specific geological formation of the region. These results yet demonstrate that, in rocky outcrops, abiotic syndromes represent an

  16. Pattern selection and hysteresis in the Rietkerk model for banded vegetation in semi-arid environments.

    PubMed

    Dagbovie, Ayawoa S; Sherratt, Jonathan A

    2014-10-01

    Banded vegetation is a characteristic feature of semi-arid environments. It occurs on gentle slopes, with alternating stripes of vegetation and bare ground running parallel to the contours. A number of mathematical models have been proposed to investigate the mechanisms underlying these patterns, and how they might be affected by changes in environmental conditions. One of the most widely used models is due to Rietkerk and co-workers, and is based on a water redistribution hypothesis, with the key feedback being that the rate of rainwater infiltration into the soil is an increasing function of plant biomass. Here, for the first time, we present a detailed study of the existence and stability of pattern solutions of the Rietkerk model on slopes, using the software package wavetrain (www.ma.hw.ac.uk/wavetrain). Specifically, we calculate the region of the rainfall-migration speed parameter plane in which patterns exist, and the sub-region in which these patterns are stable as solutions of the model partial differential equations. We then perform a detailed simulation-based study of the way in which patterns evolve when the rainfall parameter is slowly varied. This reveals complex behaviour, with sudden jumps in pattern wavelength, and hysteresis; we show that these jumps occur when the contours of constant pattern wavelength leave the parameter region giving stable patterns. Finally, we extend our results to the case in which a diffusion term for surface water is added to the model equations. The parameter regions for pattern existence and stability are relatively insensitive to small or moderate levels of surface water diffusion, but larger diffusion coefficients significantly change the subdivision into stable and unstable patterns. PMID:25142517

  17. Pattern selection and hysteresis in the Rietkerk model for banded vegetation in semi-arid environments

    PubMed Central

    Dagbovie, Ayawoa S.; Sherratt, Jonathan A.

    2014-01-01

    Banded vegetation is a characteristic feature of semi-arid environments. It occurs on gentle slopes, with alternating stripes of vegetation and bare ground running parallel to the contours. A number of mathematical models have been proposed to investigate the mechanisms underlying these patterns, and how they might be affected by changes in environmental conditions. One of the most widely used models is due to Rietkerk and co-workers, and is based on a water redistribution hypothesis, with the key feedback being that the rate of rainwater infiltration into the soil is an increasing function of plant biomass. Here, for the first time, we present a detailed study of the existence and stability of pattern solutions of the Rietkerk model on slopes, using the software package wavetrain (www.ma.hw.ac.uk/wavetrain). Specifically, we calculate the region of the rainfall–migration speed parameter plane in which patterns exist, and the sub-region in which these patterns are stable as solutions of the model partial differential equations. We then perform a detailed simulation-based study of the way in which patterns evolve when the rainfall parameter is slowly varied. This reveals complex behaviour, with sudden jumps in pattern wavelength, and hysteresis; we show that these jumps occur when the contours of constant pattern wavelength leave the parameter region giving stable patterns. Finally, we extend our results to the case in which a diffusion term for surface water is added to the model equations. The parameter regions for pattern existence and stability are relatively insensitive to small or moderate levels of surface water diffusion, but larger diffusion coefficients significantly change the subdivision into stable and unstable patterns. PMID:25142517

  18. Pattern selection and hysteresis in the Rietkerk model for banded vegetation in semi-arid environments.

    PubMed

    Dagbovie, Ayawoa S; Sherratt, Jonathan A

    2014-10-01

    Banded vegetation is a characteristic feature of semi-arid environments. It occurs on gentle slopes, with alternating stripes of vegetation and bare ground running parallel to the contours. A number of mathematical models have been proposed to investigate the mechanisms underlying these patterns, and how they might be affected by changes in environmental conditions. One of the most widely used models is due to Rietkerk and co-workers, and is based on a water redistribution hypothesis, with the key feedback being that the rate of rainwater infiltration into the soil is an increasing function of plant biomass. Here, for the first time, we present a detailed study of the existence and stability of pattern solutions of the Rietkerk model on slopes, using the software package wavetrain (www.ma.hw.ac.uk/wavetrain). Specifically, we calculate the region of the rainfall-migration speed parameter plane in which patterns exist, and the sub-region in which these patterns are stable as solutions of the model partial differential equations. We then perform a detailed simulation-based study of the way in which patterns evolve when the rainfall parameter is slowly varied. This reveals complex behaviour, with sudden jumps in pattern wavelength, and hysteresis; we show that these jumps occur when the contours of constant pattern wavelength leave the parameter region giving stable patterns. Finally, we extend our results to the case in which a diffusion term for surface water is added to the model equations. The parameter regions for pattern existence and stability are relatively insensitive to small or moderate levels of surface water diffusion, but larger diffusion coefficients significantly change the subdivision into stable and unstable patterns.

  19. A Bayesian geostatistical estimation of biomass in semi-arid rangelands by combining airborne and terrestrial laser scanning data

    NASA Astrophysics Data System (ADS)

    Li, A.; Glenn, N. F.

    2012-12-01

    Biomass of vegetation is critical for carbon cycle research. Estimating biomass from field survey data is laborious and/or destructive and thus retrieving biomass from remote sensing data may be advantageous. Most remote sensing biomass studies have focused on forest ecosystems, while few have focused on low stature vegetation, such as grasses in semi-arid environments. Biomass estimates for grass are significant for studying wildlife habitat, assessing fuel loads, and studying climate change response in semi-arid regions. Recent research has demonstrated the ability of small footprint airborne laser scanning (ALS) data to extract sagebrush height characteristics and the ability of terrestrial laser scanning (TLS) data to estimate vegetation volume over semi-arid rangelands. ALS has somewhat lower resolution than TLS, but has improved spatial coverage over TLS. Combining ALS and TLS is a powerful tool to estimate biomass on regional scales. Bayesian geostatistics, also known as Bayesian Maximum Entropy (BME), can fuse multiple data sources across scales and provide estimation uncertainties for the integration of ALS and TLS data for grass biomass. Regression models are used to approximately delineate the relationship between field biomass measurements and TLS derived height and shape metrics. We then consider TLS plot-level data at the point scale with ALS data at the area scale. The regularization method is utilized to establish the scaling relations between TLS-derived and ALS-derived metrics. The metric maps from the ALS level are reconstructed using a BME method based on regularized variograms. We gain biomass and estimation uncertainty on the regional scale by introducing updated metrics into the model. In order to evaluate the effectiveness of the BME method, we develop simple independent regression models by assuming the TLS-derived metrics as ground reference data. Therefore, the regression model is used to correct the ALS-estimated values and we retrieve

  20. Coupling stable isotope and satellite to inform a snow accumulation and melt model for data poor, semi-arid watersheds

    NASA Astrophysics Data System (ADS)

    Hublart, Paul; Sproles, Eric; Soulsby, Chris; Tetzlaff, Doerthe; Hevía, Andres

    2016-04-01

    At the most basic level watersheds catch, store, and release water. In semi-arid northern central Chile (29°-32°) snow and glacier melt dominate these basic hydrological stages. In this region precipitation is typically limited to three to five events per year that falls as snow in the High Cordillera at elevations above 3000 m a.s.l. The rugged topography and steep gradient makes snowfall rates highly variable in space and time. Despite its critical importance for water supply, high elevation meteorological data and measurements of snowpack are scarce due to limited winter access above 3000 m a.s.l. Due to the critically limited understanding of catch, store, and release processes most conceptual watershed models for this region remain speculative, are prone to over-parameterization, and greatly inhibits hydrological prediction in the region. Focused on two headwater watersheds of the Elqui River basin (1615-6040 m a.s.l., 429-566 km2) this study couples stable isotope and Moderate Resolution Imaging Spectrometer (MODIS) data to develop an improved conceptual model of how semi-arid mountain watersheds catch, store, and release water. MODIS snow-cover and land surface temperature data are used to inform an enhanced temperature-index Snow Accumulation and Melt (SAM) model. The use of remotely-sensed temperature data as input to this model is evaluated by comparison with an interpolated dataset derived from a few available meteorological stations. The outputs from the SAM model are used as inputs to a conceptual catchment model including two water stores (one standing for surface/subsurface processes and the other for deeper groundwater storage). The model is calibrated and evaluated from a Bayesian perspective using discharge data measured at the catchment outlets over a 15-year period (2000-2015). Stable isotope data collected during 2015-2016 is applied to better constrain model outputs. The combination of MODIS-based and isotope-based information proves very

  1. Long-term runoff and sediment yields from small semi-arid watersheds in southern Arizona

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study presents analysis of 34 years of precipitation, runoff and sediment data collected from 8 small (1.1 to 4.0 ha) semi-arid rangeland watersheds in southern Arizona, USA. Average annual precipitation ranged between 354 mm and 458 mm with 53% of the total rainfall occurring from July throug...

  2. Recommendations for nutrient management plans in a semi-Arid environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A nutrient management plan (NMP) field experiment was conducted to investigate the fate of nitrogen (N), phosphorus (P), potassium (K) and salts in a semi-arid environment (San Jacinto, CA). Our mechanistic approach to study NMP performance was based on comprehensive measurements of water and N mass...

  3. Extensive Green Roof Species and Soilless Media Evaluations in Semi-arid Colorado

    EPA Science Inventory

    In the high elevation, semi-arid climate of Colorado, green roofs have not been scientifically tested. This research examined alternative plant species, soilless media blends and plant interactions on an existing, modular-extensive (shallow, 10 cm deep) green roof in Denver, Colo...

  4. Determining soil erosion rates on semi-arid watersheds using radioisotope-derived sedimentation chronology 2327

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigates erosion dynamics of the past 90 years on three small semi-arid watersheds with histories of grazing and vegetation change. Activity of 137Cs and excess 210Pb from 18 cores collected from sedimentation ponds were measured using a gamma spectrometer. The sediment was dated usi...

  5. CO2 Enrichment and Warming Interact to Facilitate Invasion of a Semi-Arid Grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although a variety of global changes have been shown to influence plant invasions, interactive effects of different changes have rarely been studied. We examined effects of CO2 enrichment and warming on the ability of the invasive forb Linaria dalmatica (Dalmatian toadflax) to invade semi-arid mixed...

  6. Manure and inorganic N affect trace gas emissions under semi-arid irrigated corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy manure is often applied to cropped soils as a substitute for inorganic N fertilizers, but the impacts of manure on soil greenhouse gas (GHG) fluxes, yields and soil N are uncertain in the semi-arid western U.S. Soil carbon dioxide (CO2-C), methane (CH4-C), and nitrous oxide (N2O-N) emissions ...

  7. Woody plants modulate the temporal dynamics of soil moisture in a semi-arid mesquite savanna

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In arid and semi-arid ecosystems (drylands), soil moisture abundance limits biological activity and mediates the effects of anthropogenic global change factors such as atmospheric CO2 increases and climate warming. Moreover, climate variability and human activities are interacting to increase the ab...

  8. Winter grazing decreases wildfire risk, severity, and behavior in semi-arid sagebrush rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wildfires are an ecological and economic risk for many semi-arid rangelands which has resulted in increased pressure for pre-suppression management of fuels. In rangelands, fuel management treatment options are limited by costs. We evaluated winter grazing as a tool to manage fuels and alter fire ...

  9. A UNIFORM VERSUS AN AGGREGATED WATER BALANCE OF A SEMI-ARID WATERSHED. (R824784)

    EPA Science Inventory

    Hydrologists have long struggled with the problem of how to account for the effects of spatial variability in precipitation, vegetation and soils. This problem is particularly acute in snow-fed, semi-arid watersheds, which typically have considerable variability in snow distribut...

  10. Polyacrylamide Molecular Weight and Phosphogypsum Effects on Infiltration and Erosion in Semi-Arid Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seal formation at the surface of semi-arid soils during rainstorms reduces soil infiltration rate (IR) and causes runoff and erosion. Surface application of dry anionic polyacrylamide (PAM) with high molecular weight (MW) has been found to be effective in stabilizing soil aggregates, and decreasing ...

  11. Polyacrylamide molecular weight and phosphogypsum effects on infiltration and erosion in semi-arid soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seal formation at the surface of semi-arid soils during rainstorms reduces soil infiltration rate (IR) and causes runoff and erosion. Surface application of dry anionic polyacrylamide (PAM) with high molecular weight (MW) has been found to be effective in stabilizing soil aggregates, and decreasing ...

  12. INTEGRATING LANDSCAPE AND HYDROLOGIC ANALYSIS FOR WATERSHED ASSESSMENT IN AN AMERICAN SEMI-ARID BIOREGION

    EPA Science Inventory

    The objective of this study is to demonstrate the application of operational hydrologic modeling and landscape assessment tools to investigate the temporal and spatial effects of varying levels of anthropogenic disturbance in a semi-arid catchment and examine the consequences of ...

  13. Economic analysis of a simulated alley cropping system for semi-arid conditions, using micro computers

    SciTech Connect

    Hoekstra, D.A.

    1983-01-01

    Returns were simulated for the semi-arid areas in Mackakos District, Kenya (bimodal rainfall distribution, 600 mm/yr) comparing the present system (maize and beans intercropped twice a year) with a Leucaena leucocephala hedgerow system. Although some of the assumptions contain a large element of uncertainty, the results were promising enough for the system to be considered further. 4 references.

  14. Carbon cycle. The dominant role of semi-arid ecosystems in the trend and variability of the land CO₂ sink.

    PubMed

    Ahlström, Anders; Raupach, Michael R; Schurgers, Guy; Smith, Benjamin; Arneth, Almut; Jung, Martin; Reichstein, Markus; Canadell, Josep G; Friedlingstein, Pierre; Jain, Atul K; Kato, Etsushi; Poulter, Benjamin; Sitch, Stephen; Stocker, Benjamin D; Viovy, Nicolas; Wang, Ying Ping; Wiltshire, Andy; Zaehle, Sönke; Zeng, Ning

    2015-05-22

    The growth rate of atmospheric carbon dioxide (CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. Whereas the mean sink is dominated by highly productive lands (mainly tropical forests), the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature.

  15. Necrophagous beetles associated with carcasses in a semi-arid environment in northeastern Brazil: implications for forensic entomology.

    PubMed

    Mayer, Ana C G; Vasconcelos, Simão D

    2013-03-10

    Data on the ecology and bionomics of necrophagous beetles are scarce in tropical countries despite their relevance in forensic investigations. We performed a survey on the diversity and temporal pattern of colonization of beetles on pig carcasses in a fragment of dry forest in northeastern Brazil. We collected 1550 adults of diverse feeding habits from 12 families, of which 96% had necrophagous and/or copro-necrophagous habits and belonged to four families: Dermestidae, Scarabaeidae, Cleridae and Trogidae. Three species, Dermestes maculatus, Necrobia rufipes and Omorgus suberosus are reported for the first time with an expanded geographical distribution that includes the semi-arid region in Brazil. Adult beetles were collected as early as 24h after death. One endemic species, Deltochilum verruciferum, stood out in terms of numerical dominance and temporal occurrence during different stages of decomposition. Its intimate association with carrion emphasizes their potential role in forensic entomology in the region.

  16. Carbon cycle. The dominant role of semi-arid ecosystems in the trend and variability of the land CO₂ sink.

    PubMed

    Ahlström, Anders; Raupach, Michael R; Schurgers, Guy; Smith, Benjamin; Arneth, Almut; Jung, Martin; Reichstein, Markus; Canadell, Josep G; Friedlingstein, Pierre; Jain, Atul K; Kato, Etsushi; Poulter, Benjamin; Sitch, Stephen; Stocker, Benjamin D; Viovy, Nicolas; Wang, Ying Ping; Wiltshire, Andy; Zaehle, Sönke; Zeng, Ning

    2015-05-22

    The growth rate of atmospheric carbon dioxide (CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. Whereas the mean sink is dominated by highly productive lands (mainly tropical forests), the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature. PMID:25999504

  17. An event-based approach to understanding the hydrological impacts of different land uses in semi-arid catchments

    NASA Astrophysics Data System (ADS)

    Wang, Shengping; Zhang, Zhiqiang; McVicar, Tim R.; Zhang, Jianjun; Zhu, Jinzhao; Guo, Junting

    2012-01-01

    SummaryIn semi-arid catchments around the world re-vegetation is often implemented to reduce quick surface runoff, combat severe soil erosion, restore degraded ecosystem functionality, and, ultimately, improve ecosystem productivity. However, to date, in these water stressed regions, the event-based hydrological impact of different land uses induced by re-vegetation activities is not fully understood at the watershed scale. Traditional hillslope plot experiments and paired watershed experiments have proved difficult to up-scale to a watershed level. In 2006 and 2007, we used broad-crested weirs to measure event streamflow from six catchments within the Caijiachuan watershed (area = 40.1 km 2), located in the Loess Plateau, a semi-arid region in China. The six catchments have different land use compositions with functional combinations of crop, grassland, shrubland, secondary forest, and plantations. Over the same period, event rainfall was measured by a network of rainfall gauges deployed over the study site. We examined the difference in hydrological properties between the catchments using the non-parametric Firedman test, and differentiated the role of each land use in governing watershed hydrology using a numerical analysis technique. Our results showed important differences between the six catchments with respect to event runoff coefficients, normalized peak flow, and event duration. Each land use played a different role in catchment hydrology, as shown by the different mean runoff coefficients ( rc) and mean representative surface flow velocities ( V). Compared to secondary forest ( rc = 0.017 and V = 0.07 m s -1), plantations ( rc = 0.001 and V = 0.18 m s -1) provide a greater potential for increasing shearing force and had a larger impact on runoff reduction. Although shrubland ( rc = 0.096 and V = 0.20 m s -1) and grassland ( rc = 0.127 and V = 0.02 m s -1) have similar magnitude of mean runoff coefficients, grassland seems more capable of trapping sediment

  18. Modeled Impacts of Chronic Wasting Disease on White-Tailed Deer in a Semi-Arid Environment

    PubMed Central

    Hewitt, David G.; DeYoung, Charles A.; DeYoung, Randy W.; Schnupp, Matthew J.

    2016-01-01

    White-tailed deer are a culturally and economically important game species in North America, especially in South Texas. The recent discovery of chronic wasting disease (CWD) in captive deer facilities in Texas has increased concern about the potential emergence of CWD in free-ranging deer. The concern is exacerbated because much of the South Texas region is a semi-arid environment with variable rainfall, where precipitation is strongly correlated with fawn recruitment. Further, the marginally productive rangelands, in combination with erratic fawn recruitment, results in populations that are frequently density-independent, and thus sensitive to additive mortality. It is unknown how a deer population in semi-arid regions would respond to the presence of CWD. We used long-term empirical datasets from a lightly harvested (2% annual harvest) population in conjunction with 3 prevalence growth rates from CWD afflicted areas (0.26%, 0.83%, and 2.3% increases per year) via a multi-stage partially deterministic model to simulate a deer population for 25 years under four scenarios: 1) without CWD and without harvest, 2) with CWD and without harvest, 3) with CWD and male harvest only, and 4) with CWD and harvest of both sexes. The modeled populations without CWD and without harvest averaged a 1.43% annual increase over 25 years; incorporation of 2% annual harvest of both sexes resulted in a stable population. The model with slowest CWD prevalence rate growth (0.26% annually) without harvest resulted in stable populations but the addition of 1% harvest resulted in population declines. Further, the male age structure in CWD models became skewed to younger age classes. We incorporated fawn:doe ratios from three CWD afflicted areas in Wisconsin and Wyoming into the model with 0.26% annual increase in prevalence and populations did not begin to decline until ~10%, ~16%, and ~26% of deer were harvested annually. Deer populations in variable environments rely on high adult

  19. What can be learned from combined event runoff and tracer analysis in a semi-arid, data-scarce catchment?

    NASA Astrophysics Data System (ADS)

    Hrachowitz, M.; Bohte, R.; Mul, M. L.; Bogaard, T. A.; Savenije, H. H. G.; Uhlenbrook, S.

    2012-04-01

    Hydrological processes in small catchments are not quite understood yet, which is true in particular for catchments in data scarce, semi-arid regions. This is in contrast with the need for a better understanding of water fluxes and the interactions between surface- and groundwater in order to facilitate sustainable water resources management in such environments, where both floods and droughts can result in severe crop loss. In this study, event runoff coefficient analysis and limited tracer data of four small, nested sub-catchments (0.4 - 25.3 km2) in a data scarce, semi-arid region of Tanzania helped to characterize the distinct response of the study catchments and to gain insights into the dominant runoff processes. The estimated event runoff coefficients were very low and did not exceed 0.09. They were found to be significantly related to the 5-day antecedent precipitation totals as well as to base flow. This indicated a close relation to changes in soil moisture and thus potential switches in runoff generation processes. The time scales of the "direct flow" reservoirs, used to compute the event runoff coefficients, were up to one order of magnitude reduced for extreme events, compared to "average" events. This suggested the activation of at least a third flow component, besides base- and direct flow, assumed to be infiltration overland flow. Analysis of multiple tracers highlighted the importance of pre-event water to total runoff, even during intense and high yield precipitation events. It further illustrated the distinct nature of the catchments, in particular with respect to the available water storage, which was suggested by different degrees of tracer damping in the individual streams. The use of multiple tracers subsequently allowed estimating uncertainties in hydrograph separations arising from the use of different tracers. The results highlight the presence of considerable uncertainties, emphasizing the need for multiple tracers in order to avoid

  20. Integrated Modelling of Climate Change Impacts in an Irrigated, Semi-arid Catchment

    NASA Astrophysics Data System (ADS)

    Haslauer, C. P.; von Gunten, D.; Wöhling, T.; Rudolph, D. L.; Cirpka, O. A.

    2015-12-01

    Predicting the impacts of climate change on hydrological processes is a central challenge for water management. Commonly, studies on climate-change effects focus on surface flow and feed-backs between surface and subsurface flows are neglected frequently. Furthermore, changes in hydrological processes are generally not distributed realistically. Integrated catchment models, based on partial-differential-equations, have the potential of overcoming these difficulties. However, these models are complicated to use in realistic settings, notably because of their long simulation time. In this presentation, we demonstrate a successful application of an integrated catchment model (HydroGeoSphere) in a semi-arid catchment in north-east Spain. The study area recently underwent a transition to irrigated agriculture, which is reflected in our model evaluations conducted under varying irrigation conditions. To accelerate model calibration, we developed a novel calibration method based on a hierarchy of computational grids. The climate scenarios for the region are based on four regional climate models, which are downscaled using a weather generator. These scenarios are used to estimate climate change impacts on hydrologic parameters in different irrigation settings. The effects of climate change strongly depend on the presence of irrigation. Water table depth and low flows are more sensitive to climate change when irrigation is present, while peak flows exhibit a more pronounced response to climate in scenarios without irrigation. In addition to the climatic means, we examined the impacts of changes in drought conditions. We compare the outcomes of droughts predicted by our hydrological model with simpler approaches based on drought indices. We show that drought indices oversimplify future hydrological impacts of droughts and can result in biased estimation of drought impacts, especially if drought indices do not take temperature changes into account.

  1. An improved conceptual understanding of snowmelt and groundwater dynamics in the semi-arid Andes

    NASA Astrophysics Data System (ADS)

    Sproles, Eric; Hevia, Andres; Soulsby, Chris; Tetzlaff, Doerthe

    2016-04-01

    The contribution of snowmelt to groundwater has long been recognized as an important component of the hydrological cycle in semi-arid northern central Chile (29°-32°S). Despite its importance as a water resource, this transition to groundwater remains poorly understood. Climatically, the High Cordillera in northern central Chile receives approximately 10 times as much annual precipitation as the valley bottoms, falling almost exclusively as snow above 3500 m during the winter months. Geologically, the High Cordillera is characterized by steep topography and a highly dissected landscape underlain by bedrock. Groundwater stores in the mountain headwaters are assumed to be constrained to the valley bottoms. The current working hypothesis of watershed processes in the High Cordillera describes fluxes of spring melt moving through the hillslope via local flowpaths to valley aquifers that recharge streams throughout the headwater reaches. Previous studies in the region indicate Pre-Cordilleran aquifers, located in lower elevation dry ephemeral valleys, are hydrologically disconnected from the High Cordillera. These watersheds have no seasonal snowpack, and recharge occurs primarily during infrequent rain events. These isolated Pre-Cordilleran aquifers serve as an important water resource for rural residents and infrastructure. We present stable isotope, geochemical, and groundwater level data from the wet El Niño winter of 2015 that suggests a topographically disconnected aquifer in the Pre-Cordillera received considerable recharge from High Cordillera snowmelt. These novel findings are indicative of deep groundwater flow paths between the Pre- and High Cordillera during the wet winter and spring of 2015, and improve the conceptual understanding of hydrological processes in the region. Additionally, these results will directly benefit groundwater management in the Pre-Cordillera and better inform modeling efforts in the High Cordillera. While this study is limited to

  2. Bridging structure and function in semi-arid ecosystems by integrating remote sensing and ground based measurements

    NASA Astrophysics Data System (ADS)

    Krofcheck, Dan J.

    The Southwestern US is projected to continue to experience a significant warming trend, with increased variability in the timing and magnitude of rainfall events. The effects of theses changes in climate are already manifesting in the form of expansive, prolonged 'megadroughts', which have resulted in the widespread mortality of woody vegetation across the region.Therefore the need to monitor and model forest mortality and carbon dynamics at the landscape and regional scale is an essential component of regional and global climate mitigation strategies, and critical if we are to understand how the imminent state transitions taking place in forests globally will affect climate forcing and feedbacks. Remote sensing offers the only solution to multitemporal regional observation, yet many challenges exist with employing modern remote sensing solutions in highly stressed vegetation characteristic of semi-arid biomes, making one of the most expansive biomes on the globe also one of the most difficult to accurately monitor and model. The goal of this research was to investigate how changes in the structure of semi-arid woodlands following forest mortality impacts ecosystem function, and address this question in the context of remote sensing data sets, thereby contributing to the remote sensing community's ability to interact with these challenging ecosystems. We first focused on pinus edulis and juniperous monosperma (pinon-juniper) woodlands, as they comprise a model semi-arid biome. We tested the ability of high resolution remote sensing data to mechanistically describe the patterns in overstory mortality and understory green-up, and were able to observe the heterogeneous response of the understory as a function of cover type. We also investigated the relationship between changes in soil water content and the greenness of the canopy, noting that in these stress ecosystems there is often a decoupling of the canopy as measured remotely (e.g., via vegetation indices, VI

  3. Analysis of energy fluxes and vegetation-atmosphere parameters in irrigated and natural ecosystems of semi-arid Brazil

    NASA Astrophysics Data System (ADS)

    Teixeira, A. H. de Castro; Bastiaanssen, W. G. M.; Ahmad, M. D.; Moura, M. S. B.; Bos, M. G.

    2008-11-01

    SummaryKnowledge on evapotranspiration is essential in quantifying water use depletion and to allocate scarce water resources to competing uses. Despite that an extensive literature describes the theoretical mechanisms of turbulent water vapour transport above and within crop canopies fewer studies have examined land surface parameters within composite landscapes of irrigated crops and semi-arid natural vegetation. Aiming to improve parameterizations of the radiation and energy balance in irrigated crops and natural vegetation, micro-climatic measurements were carried out on irrigated land (vineyards and mango orchard) and natural vegetation (caatinga) in the semi-arid zone of the São Francisco River basin (Brazil) from 2002 to 2005. The fractions of 24 h incident solar radiation available for net radiation were 46%, 55%, 51% and 53%, for wine grape, table grape, mango orchard and caatinga, respectively. Daily evaporative fractions of the net available energy used as latent heat flux ( λE) were 0.80, 0.88, 0.75 and 0.33 respectively. The daylight values of bulk surface resistances ( rs) averaged 128 s m -1, 73 s m -1, 133 s m -1 and 1940 s m -1 for wine grape, table grape, mango orchard and caatinga, respectively. Simplified parameterizations on roughness and evaporation resistances were performed. It could be concluded that net radiation can be estimated by means of a linear expression with incident global solar radiation depending on the type of vegetation. The variability of aerodynamic resistance ( ra) could be mainly explained by the friction velocity ( u ∗) which on turn depends on the surface roughness length for momentum transport ( z 0m). The experimental data showed that for sparse canopies z 0m being 9% of the mean vegetation height is a doable operational rule for the semi-arid region of São Francisco River basin. The seasonal values of rs for irrigated crops were highly correlated with water vapour pressure deficit. The availability of analytical

  4. Two-Source Energy Balance Model Evaluation for Mapping Evapotranspiration on the Semi- arid Southern High Plains

    NASA Astrophysics Data System (ADS)

    Gowda, P. H.; Chavez, J. L.; Colaizzi, P. D.; Evett, S. R.; Howell, T. A.; Copeland, K.

    2007-05-01

    Evapotranspiration (ET) is an essential component of the water balance and a major consumptive use of irrigation water and precipitation on cropland. In this study, we applied the Two-Source Energy Balance (T-SEB) model to estimate hourly ET from Landsat Thematic Mapper (TM) data for the semi-arid Southern High Plains of the United States where more than 90 percent of the groundwater withdrawals are used for irrigation. For this purpose, a Landsat TM image covering a major portion of the Southern High Plains (parts of Texas Panhandle and northeastern New Mexico) was acquired for 23 July 2006 for the overpass at 11:26 AM CST. Atmospheric correction on the TM imagery was done using MODTRAN, an atmospheric radiative transfer model. Comprehensive ground-truth data were collected to develop a detailed land use map showing major crops grown in the region. Performance of the T SEB model was evaluated by comparing mapped ET data with measured hourly ET data on five weighing lysimeters at Bushland, TX [35 Deg. 11' N, 102 Deg. 06' W; 1,170 m elevation MSL] managed by the Conservation and Production Research Laboratory, USDA-ARS. Lysimeter-measured ET rates varied from 0.24 to 0.71 mm/h. Comparison of estimated hourly mapped ET values with lysimetric measurements had an accuracy within 6% of the measured ET (r2=0.99), with a root mean squared error of 0.03 mm/h. These results support the use of the T-SEB model for the semi-arid Southern High Plains; however, more evaluation is needed for different agroclimatological conditions in the region.

  5. An integrative approach to characterize hydrological processes and water quality in a semi-arid watershed in Northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Franklin, M. R.; Fernandes, N.; Veiga, L. H. S.; Melo, L. R.; Santos, A. C. S.; Araujo, V. P.

    2014-12-01

    Arid and semi-arid regions face serious challenges in the management of scarce water resources. This situation tends to become worse with the increasing population growth rates and consequently increasing water demand. Groundwater is the most important water resource in these areas and, therefore, the sustainability of its use depends on the effectiveness in which it is managed, both in terms of quantity and quality. The Caetité Experimental Basin (CEB), located in a semi-arid region of Northeastern Brazil, faces not only the challenges associated with water scarcity, but also changes in landscape and potential contamination processes due to mining activity. The only active uranium production center in Brazil (URA) is located in this watershed and the sustainability of mining and milling operations as well as the survival of the local community are highly dependent on the availability of groundwater resources. Hydrogeological studies in this area are scarce, and the potential contamination and overexploitation of groundwater can not be ruled out. Therefore, a national project was launched in order to improve the understanding and quantification of the interaction between the hydrogeological system and human health. The methodological approach involved hydrological and geochemical monitoring and characterization of the CEB, use of isotopic techniques, groundwater modeling, water quality diagnosis and human health risk assessment due to water ingestion. The results suggested that the groundwater in the CEB are not totally connected, with evidence of a mixture of recent and old waters. The Na-Ca-HCO3-Cl is the dominant water type (50%) followed by Ca-Na-HCO3-Cl water type (17%). The relevant non-radioactive contaminants are Mn, F, NO3 and Ba, mostly from natural origin, with the exception of NO3 that could be associated with the livestock activities. The estimated effective doses due to groundwater ingestion containing radionuclides are below the recommended

  6. Impacts of urbanization on groundwater quality and recharge in a semi-arid alluvial basin

    NASA Astrophysics Data System (ADS)

    Carlson, Mark A.; Lohse, Kathleen A.; McIntosh, Jennifer C.; McLain, Jean E. T.

    2011-10-01

    SummaryThe management of groundwater resources is paramount in semi-arid regions experiencing urban development. In the southwestern United States, enhancing recharge of urban storm runoff has been identified as a strategy for augmenting groundwater resources. An understanding of how urbanization may impact the timing of groundwater recharge and its quality is a prerequisite for mitigating water scarcity and identifying vulnerability to contamination. We sampled groundwater wells along the Rillito Creek in southern Arizona that had been previously analyzed for tritium in the late 1980s to early 1990s and analyzed samples for tritium ( 3H) and helium-3 ( 3H/ 3He) to evaluate changes in 3H and age date groundwaters. Groundwater samples were also analyzed for chlorofluorocarbons (CFCs) and basic water quality metrics. Substantial changes in 3H values from waters sampled in the early 1990s compared to 2009 were identified after accounting for radioactive decay and indicate areas of rapid recharge. 3H- 3He groundwater ages ranged from 22 years before 2009 to modern recharge. CFC-11, -12 and -113 concentrations were anomalously high across the basin, and non-point source pollution in runoff and/or leaky infrastructure was identified as the most plausible source of this contamination. CFCs were strongly and positively correlated to nitrate ( r2 = 0.77) and a mobile trace metal, nickel ( r2 = 0.71), suggesting that solutes were derived from a similar source. Findings from this study suggest new waters from urban non-point sources are contributing to groundwater recharge and adversely affecting water quality. Reducing delivery of contaminants to areas of focused recharge will be critical to protect future groundwater resources.

  7. Dynamics of Dissolved Inorganic Carbon in the Waterways of Antropogenically Influenced Closed Semi-Arid Basins

    NASA Astrophysics Data System (ADS)

    Jameel, M. Y.; Bowen, G. J.

    2014-12-01

    Inland aquatic carbon cycling is an important component of global carbon cycle and recent work has shown that anthropogenic activities can significantly alter the flux of terrestrial carbon through these systems to oceans and lakes. The study of dissolved carbon species in rivers provides detailed information about the natural and anthropogenic processing of carbon within a watershed. We measured water chemistry and stable isotope ratios (δ13C, δ18O, δ2H) of three major rivers (Bear, Jordan and Weber) seasonally, within the Great Salt Lake Basin to understand sources and processes governing the carbon cycling within the basin. Our preliminary data suggest strong correlation between the DIC concentration and land use/land cover for all the three waterways, with DIC increasing as the rivers flow through agricultural and urban regions. We also observed significant decrease in the DIC with the addition of fresh water from the tributaries which was most significant during the spring sampling. All the three rivers are super saturated in dissolved CO2 with respected to the atmospheric CO2 concentration, with pCO2 ranging from 1-5 times the atmospheric value and also showing strong seasonal variations. Coupling the pCO2 data with the isotopic value and concentration of DIC suggests that the variations within and among the rivers are manifestation of the different sources of DIC, further altered by in-situ processes such as organic respiration and photosynthesis. Our result suggest that human induced changes in land use and land cover have significantly altered the carbon budget of waterways of the Great Salt Lake Basin and carbon flux to the Great Salt Lake itself. Our future work will further quantify these changes, increasing our understanding of past, present and future changes in carbon cycling in closed semi-arid basins, and its importance in the global carbon cycle.

  8. Physical-chemical determinant properties of biological communities in continental semi-arid waters.

    PubMed

    da Rocha, Francisco Cleiton; de Andrade, Eunice Maia; Lopes, Fernando Bezerra; de Paula Filho, Francisco José; Filho, José Hamilton Costa; da Silva, Merivalda Doroteu

    2016-08-01

    Throughout human history, water has undergone changes in quality. This problem is more serious in dry areas, where there is a natural water deficit due to climatic factors. The aims of this study, therefore, were (i) to verify correlations between physical attributes, chemical attributes and biological metrics and (ii) from the biological attributes, to verify the similarity between different points of a body of water in a tropical semi-arid region. Samples were collected every 2 months, from July 2009 to July 2011, at seven points. Four physical attributes, five chemical attributes and four biological metrics were investigated. To identify the correlations between the physicochemical properties and the biological metrics, hierarchical cluster analysis (HCA) and canonical correlation analysis (CCA) were applied. Nine classes of phytoplankton were identified, with the predominance of species of cyanobacteria, and ten families of macroinvertebrates. The use of HCA resulted in the formation of three similar groups, showing that it was possible to reduce the number of sampling points when monitoring water quality with a consequent reduction in cost. Group I was formed from the waters at the high end of the reservoir (points P1, P2 and P3), group II by the waters from the middle third (points P4 and P5), and group III by the waters from the lower part of the reservoir (points P6 and P7). Richness of the phytoplanktons Cyanophyceae, Chorophyceae and Bacillariophyceae was the attribute which determined dissimilarity in water quality. Using CCA, it was possible to identify the spatial variability of the physicochemical attributes (TSS, TKN, nitrate and total phosphorus) that most influence the metrics of the macroinvertebrates and phytoplankton present in the water. Low macroinvertebrate diversity, with a predominance of indicator families for deterioration in water quality, and the composition of phytoplankton showing a predominance of cyanobacteria, suggests greater

  9. Fragile calculus: Climate, political economy and vegetation change in the semi-arid Karoo, South Africa

    NASA Astrophysics Data System (ADS)

    Archer, Emma Rosa M.

    2001-12-01

    A range of methodologies comprising Remote Sensing, Geographical Information Systems, modeling, published socio-economic data and in-depth ethnographic field interviews are used to identify proximate and underlying anthropogenic dimensions of vegetation cover modification in the eastern semi-arid Karoo, South Africa. A 14 year monthly time series of Normalized Difference Vegetation Index data at the 1 kilometer resolution was extracted, corrected and detrended for rainfall effects, using an interpolated time series of monthly rainfall data for the same spatial extents. Change detection information from the detrended vegetation series was compiled for each of 73 land management units in and around the Graaff Reinet magisterial district in the eastern Karoo. Extensive in-depth interviews were undertaken with each of the managers, gathering data used to determine proximate land-use strategies (such as stocking system and stocking intensity), and underlying socio-economic trends (such as debt level and security of tenure) which are then linked to trends in vegetation change occurring on the farm, and to the location of the management unit within the transforming South African political economy at the regional and national scales. Study results show exciting past linkages between stocking system choice and manager debt level; and current linkages with property acquisition status and affluence. A small but significant relationship between stocking system choice and the detrended vegetation time series for each management unit is further evident. Findings may inform policy and local guidelines concerning rangeland management and land-use allocation, as well as providing new challenges to meaningful work in political ecology, environmental change and climate impact assessment.

  10. Coevolution of hydrodynamics, vegetation and channel evolution in wetlands of a semi-arid floodplain

    NASA Astrophysics Data System (ADS)

    Seoane, Manuel; Rodriguez, Jose Fernando; Rojas, Steven Sandi; Saco, Patricia Mabel; Riccardi, Gerardo; Saintilan, Neil; Wen, Li

    2015-04-01

    The Macquarie Marshes are located in the semi-arid region in north western NSW, Australia, and constitute part of the northern Murray-Darling Basin. The Marshes are comprised of a system of permanent and semi-permanent marshes, swamps and lagoons interconnected by braided channels. The wetland complex serves as nesting place and habitat for many species of water birds, fish, frogs and crustaceans, and portions of the Marshes was listed as internationally important under the Ramsar Convention. Some of the wetlands have undergone degradation over the last four decades, which has been attributed to changes in flow management upstream of the marshes. Among the many characteristics that make this wetland system unique is the occurrence of channel breakdown and channel avulsion, which are associated with decline of river flow in the downstream direction typical of dryland streams. Decrease in river flow can lead to sediment deposition, decrease in channel capacity, vegetative invasion of the channel, overbank flows, and ultimately result in channel breakdown and changes in marsh formation. A similar process on established marshes may also lead to channel avulsion and marsh abandonment, with the subsequent invasion of terrestrial vegetation. All the previous geomorphological evolution processes have an effect on the established ecosystem, which will produce feedbacks on the hydrodynamics of the system and affect the geomorphology in return. In order to simulate the complex dynamics of the marshes we have developed an ecogeomorphological modelling framework that combines hydrodynamic, vegetation and channel evolution modules and in this presentation we provide an update on the status of the model. The hydrodynamic simulation provides spatially distributed values of inundation extent, duration, depth and recurrence to drive a vegetation model based on species preference to hydraulic conditions. It also provides velocities and shear stresses to assess geomorphological

  11. The role of upland wetlands in modulating snowmelt runoff in the semi-arid Andes

    NASA Astrophysics Data System (ADS)

    Hevia, Andres; Sproles, Eric; Soulsby, Chris; Tetzlaff, Doerthe

    2016-04-01

    The wetlands, or bofedales, of semi-arid northern central Chile (29°-32°S) provide a critical store of water that modulate spring snowmelt runoff. Water released from bofedales helps sustain flows throughout the dry portions of the year, providing fresh water to downstream residents and a robust tourist, agricultural, and mining economy. In the Río Claro watershed (30°S, 1515 km2, 800m to 5500 m a.s.l.) a series fourteen bofedales have formed at natural choke points in the valley bottoms of the headwater reaches. The highly erosive dynamic of this watershed provides ample sediment, and some of these bofedales are up to 30 m deep. Annual precipitation in the region is limited to 4-6 events annually that fall primarily as snow at elevations above 3500 m. The subsurface storage of the headwaters is limited by the steep terrain of the headwater catchments that are devoid of soils and primarily underlain by granite bedrock. Downstream, irrigated area has increased by 200% between 1985 and 2005, driven by the cultivation of table grapes for export. For over 70 years local water managers have flooded the bodfedales during spring runoff to augment late season flow when irrigation demand peaks. While this low-tech strategy has worked in the past, a recent 8-year drought has raised concerns over long-term water security. We apply geophysical and geographic measurements, water quality, and stable isotopic tracers to calculate the volume of water storage and residence times in the bofedales of Río Claro. This information will be used to evaluate the reliability of the bofedale system as compared to a proposed reservoir in the headwaters of the Río Claro. Additionally, estimating the storage and residence times of the will help reduce uncertainty for modeling efforts currently underway in Río Claro.

  12. Hydrodynamics, vegetation transition and geomorphology coevolution in a semi-arid floodplain wetland.

    NASA Astrophysics Data System (ADS)

    Sandi, Steven; Rodriguez, Jose F.; Saco, Patricia M.; Riccardi, Gerardo; Wen, Li; Saintilan, Neil

    2016-04-01

    The Macquarie Marshes is a complex system of marshes, swamps and lagoons interconnected by a network of streams in the semi-arid region in north western NSW, Australia. The low-gradient topography of the site leads to channel breakdown processes where the river network becomes practically non-existent. As a result, the flow extends over large areas of wetland that later re-join and reform channels exiting the system. Vegetation in semiarid wetlands are often water dependent and flood tolerant species that rely on periodical floods in order to maintain healthy conditions. The detrimental state of vegetation in the Macquarie Marshes over the past few decades has been linked to decreasing inundation frequencies. Spatial distribution of flood tolerant overstory species such as River Red Gum and Black Box has not greatly changed since early 1990's, however; the condition of the vegetation patches shows a clear deterioration evidenced by terrestrial species encroachment on the wetland understory. On the other hand, areas of flood dependent species such as Water Couch and Common Reed have undergone complete succession to terrestrial species and dryland. In order to simulate the complex dynamics of the marshes we have developed an ecogeomorphological modelling framework that combines hydrodynamic, vegetation and channel evolution modules and in this presentation we provide an update on the status of the model. The hydrodynamic simulation provides spatially distributed values of inundation extent, duration, depth and recurrence to drive a vegetation model based on species preference to hydraulic conditions. It also provides velocities and shear stresses to assess geomorphological changes. Regular updates of stream network, floodplain surface elevations and vegetation coverage provide feedbacks to the hydrodynamic model. We presents also the development and assessment of transitional rules to determine if the water conditions have been met for different vegetation

  13. Landuse Dynamics in a Small Watershed of the Semi-arid Zimbabwe

    NASA Astrophysics Data System (ADS)

    Kileshye-Onema, J.; Rooyen, A. V.

    2007-12-01

    Zimbabwe has experienced a controversial land reform program with physical, political and socio-economical consequences for the country and the entire southern African region. Here, land use decision making is related to water. A study has been undertaken in Insiza River watershed (3401 km 2), located within the semi-arid southern part of Zimbabwe. The Insiza River is a tributary of Mzingwane River, which drains into the transboundary Limpopo River, contributing around 9 % of the unit runoff of the latter river. The Insiza watershed is divided into two main hydrological zones, the Upper Insiza and the Lower Insiza. Mean Annual Runoff of the two hydrological zones is 50 mm and 38 mm respectively. Through a supervised classification of satellite images, the landuse dynamics was assessed from Landsat images acquired in April 1991 and April 2000. Five signature files, bare ground, water bodies, mixed impacted land, good natural vegetation and croplands were used to define the Insiza watershed land use set up while processing Landsat images with IDRISI. For the decade considered, the major changes occurred within mixed impacted lands that were converted into croplands. This conversion was observed on 14% of the total area of the Insiza watershed. Moreover there was a decrease in water bodies (from 1.3% to 0.89%), bare ground (from 1.2% to 0.9%) and in natural good vegetation (from 50.99% to 50.48%) land types. These changes were observed in the Upper Insiza, where the commercial farms were located. However, the decrease in natural good vegetation and the conversion of mixed impacted lands into fields took place mainly in the communal lands.

  14. Physical-chemical determinant properties of biological communities in continental semi-arid waters.

    PubMed

    da Rocha, Francisco Cleiton; de Andrade, Eunice Maia; Lopes, Fernando Bezerra; de Paula Filho, Francisco José; Filho, José Hamilton Costa; da Silva, Merivalda Doroteu

    2016-08-01

    Throughout human history, water has undergone changes in quality. This problem is more serious in dry areas, where there is a natural water deficit due to climatic factors. The aims of this study, therefore, were (i) to verify correlations between physical attributes, chemical attributes and biological metrics and (ii) from the biological attributes, to verify the similarity between different points of a body of water in a tropical semi-arid region. Samples were collected every 2 months, from July 2009 to July 2011, at seven points. Four physical attributes, five chemical attributes and four biological metrics were investigated. To identify the correlations between the physicochemical properties and the biological metrics, hierarchical cluster analysis (HCA) and canonical correlation analysis (CCA) were applied. Nine classes of phytoplankton were identified, with the predominance of species of cyanobacteria, and ten families of macroinvertebrates. The use of HCA resulted in the formation of three similar groups, showing that it was possible to reduce the number of sampling points when monitoring water quality with a consequent reduction in cost. Group I was formed from the waters at the high end of the reservoir (points P1, P2 and P3), group II by the waters from the middle third (points P4 and P5), and group III by the waters from the lower part of the reservoir (points P6 and P7). Richness of the phytoplanktons Cyanophyceae, Chorophyceae and Bacillariophyceae was the attribute which determined dissimilarity in water quality. Using CCA, it was possible to identify the spatial variability of the physicochemical attributes (TSS, TKN, nitrate and total phosphorus) that most influence the metrics of the macroinvertebrates and phytoplankton present in the water. Low macroinvertebrate diversity, with a predominance of indicator families for deterioration in water quality, and the composition of phytoplankton showing a predominance of cyanobacteria, suggests greater

  15. Coarse root distribution of a semi-arid oak savanna estimated with ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Raz-Yaseef, Naama; Koteen, Laura; Baldocchi, Dennis D.

    2013-03-01

    The binary nature of Northern California's ecohydrology, in which water is either abundantly available or scarce, should be reflected in the root architecture of the native blue oak. Our objective was to quantify carbon storage and understand how the form of the root system facilitates ecosystem functioning despite the asynchrony between winter water availability, spring leaf growth, and dry-summer canopy maintenance. To do this, we surveyed coarse root distribution with a ground penetrating radar (GPR), due to its advantages in covering large areas rapidly and non-destructively. We calibrated root biomass detected by GPR against roots excavated from a number of small pits. Based on a survey of six tree configurations (varying in age, size, and clumping), we found that coarse roots occupy the full soil profile and that coarse root biomass of old large trees reached a peak directly above the bedrock. As opposed to other semi-arid regions, where trees often develop extensive shallow lateral coarse roots to exploit the entire wet-soil medium, we found that root density decreased with distance from the bole, and dropped sharply beyond a distance of 2 m. We upscaled tree root biomass to stand scale (2.8 ± 0.4 kg m-2) based on lidar analysis of the relative abundance of each tree configuration. We argue that this deep and narrow root structure reflects the ecohydrology of oaks in this ecosystem. An extensive lateral root system would not be beneficial during the growing season, when water is sufficiently abundant, nor during summer, when soil water is highly limited.

  16. Inorganic nitrogen cycling in ephemeral urban waterways of the semi-arid Southwest

    NASA Astrophysics Data System (ADS)

    Gallo, E. L.; Lohse, K. A.; Brooks, P. D.; Meixner, T.; Pavao-zuckerman, M.

    2012-12-01

    Non-point source inorganic nitrogen (N) pollution in urban runoff is a major water quality concern in water and N limited regions such as the semi-arid Southwestern US. Although ephemeral streams in drylands have long been recognized as biogeochemical hotspots, it is unclear how inorganic N cycling varies across ephemeral urban streams of distinct substrates in response to episodic wetting. We performed wetting experiments using an isotopic label (15N as K15NO3) to identify N-processing pathway differences in 3 ephemeral urban streams of distinct substrates in Tucson, AZ: 1) sand, 2) sandy loam and 3) loam. We applied the 15N label at a rate of 1.3 kg ha-1, and wetted the experimental plots to 25% volumetric water content. We monitored soil moisture, CO2 and N2O gas fluxes for 6 hours and soil inorganic and microbial N pools before and after the experiment. Fluxes of CO2 were significantly (α = 0.05) lower in the sand (1.05 ± 0.21 SD g CO2-C m-2 hr-1) than in the sandy loam and loam streams (1.77 ± 0.75 and 1.86 ± 0.87 g CO2-C m-2 hr-1, respectively); and varied with soil temperature, % soil C, % soil N and soil moisture at the loam site. Surprisingly, N2O fluxes in the sand and sandy loam sites (6.91 ± 5.06 and 8.42 ± 7.17 mg N2O-N m-2 hr-1, respectively) were significantly higher than N2O fluxes in the loam site (3.03 ± 2.49 mg N2O-N m-2 hr-1). Similarly, δ15N of N2O was significantly higher in the sand and sandy loam (4652 ± 4685 ‰ and 7280 ± 7191 ‰, respectively) than in the loam stream (794 ± 2577 ‰); indicating that a greater fraction of NO3-N is lost to denitrification in the sand and sandy loam sites. Surprisingly, post-experimental exchangeable inorganic δ15N was significantly higher in the sand and sandy loam sites (1014 ± 740 ‰ and 2840 ± 2686 ‰, respectively) than in the loam site (315 ± 238 ‰). Microbial biomass N did not significantly increase at the sand and sandy loam sites. However, it significantly increased in the deep

  17. Coarse root distribution of a semi-arid oak savanna estimated with ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Raz-Yaseef, N.; Koteen, L. E.; Baldocchi, D. D.

    2013-05-01

    Coarse root distribution of a semi-arid oak savanna estimated with ground penetrating radar North California enjoys wet and mild winters, but experiences extreme hot, dry summer conditions, with occasional drought years. Despite the severity of summer conditions, blue oaks in this ecosystem are winter-deciduous. Water uptake from groundwater helps explain the incongruity of tree growth with soil water availability in this ecosystem. We hypothesized that the binary nature of water availability, in which water is either abundantly available or scarce, would be reflected in blue oak root architecture. The objective of this research was to understand how the form of the root system facilitates ecosystem functioning. To do this, we sought to characterize the structure of the root system, and survey coarse root distribution with ground penetrating radar (GPR), due to its advantages in covering large areas rapidly and non-destructively. Because GPR remains a relatively new technology for examining root distribution, an ancillary objective was to test this methodology, and help facilitate its application more broadly. We used a GPR Noggin1000 SmartTow (Sensors and Software Inc., Ontario, Canada) 1 GHz configuration. In order to best represent the diversity of tree size and age found at the field site, we surveyed six 8x8 m locations with trees varying in size, age and clumping (i.e. isolated trees vs. tree clusters). GPR raw data was processed with designated software in order to construct three-dimensional values of radar reflection intensity for each surveyed grid. Radar signals were transformed to root biomass by calibrating them against excavated roots in twelve 60x100 cm pits. Our results indicate that coarse roots occupy the full soil profile, and that root biomass of old large trees peaks just above the bedrock. As opposed to other semi-arid regions, where trees often develop extensive shallow coarse lateral roots, in order to exploit the entire wet-soil medium, we

  18. Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan

    PubMed Central

    Ardö, Jonas; Mölder, Meelis; El-Tahir, Bashir Awad; Elkhidir, Hatim Abdalla Mohammed

    2008-01-01

    Background Large spatial, seasonal and annual variability of major drivers of the carbon cycle (precipitation, temperature, fire regime and nutrient availability) are common in the Sahel region. This causes large variability in net ecosystem exchange and in vegetation productivity, the subsistence basis for a major part of the rural population in Sahel. This study compares the 2005 dry and wet season fluxes of CO2 for a grass land/sparse savanna site in semi arid Sudan and relates these fluxes to water availability and incoming photosynthetic photon flux density (PPFD). Data from this site could complement the current sparse observation network in Africa, a continent where climatic change could significantly impact the future and which constitute a weak link in our understanding of the global carbon cycle. Results The dry season (represented by Julian day 35–46, February 2005) was characterized by low soil moisture availability, low evapotranspiration and a high vapor pressure deficit. The mean daily NEE (net ecosystem exchange, Eq. 1) was -14.7 mmol d-1 for the 12 day period (negative numbers denote sinks, i.e. flux from the atmosphere to the biosphere). The water use efficiency (WUE) was 1.6 mmol CO2 mol H2O-1 and the light use efficiency (LUE) was 0.95 mmol CO2 mol PPFD-1. Photosynthesis is a weak, but linear function of PPFD. The wet season (represented by Julian day 266–273, September 2005) was, compared to the dry season, characterized by slightly higher soil moisture availability, higher evapotranspiration and a slightly lower vapor pressure deficit. The mean daily NEE was -152 mmol d-1 for the 8 day period. The WUE was lower, 0.97 mmol CO2 mol H2O-1 and the LUE was higher, 7.2 μmol CO2 mmol PPFD-1 during the wet season compared to the dry season. During the wet season photosynthesis increases with PPFD to about 1600 μmol m-2s-1 and then levels off. Conclusion Based on data collected during two short periods, the studied ecosystem was a sink of carbon

  19. Soil carbon sequestration in semi-arid soil through the addition of fuel gas desulfurization gypsum (FGDG)

    NASA Astrophysics Data System (ADS)

    Han, Young-Soo; Tokunaga, Tetsu; Oh, Chamteut

    2014-05-01

    This study investigated a new strategy for increasing carbon retention in slightly alkaline soils through addition of fuel gas desulfurization gypsum (FGDG, CaSO4•2H2O). FGDG is moderately soluble and thus the FGDG amendment may be effective to reduce microbial respiration, to accelerate calcite (CaCO3) precipitation, and to promote soil organic carbon (SOC) complexation on mineral surfaces, but rates of these processes need to be understood. The effects of FGDG addition were tested in laboratory soil columns with and without FGDG-amended layers, and in greenhouse soil columns planted with switchgrass, a biofuel crop. The results of laboratory column experiments demonstrated that additions of FGDG promote soil carbon sequestration through suppressing microbial respiration to the extent of ~200 g per m2 soil per m of supplied water, and promoting calcite precipitation at similar rates. The greenhouse experiments showed that the FGDG treatments did not adversely affect biomass yield (~600 g dry biomass/m2/harvest) at the higher irrigation rate (50 cm/year), but substantially reduced recoverable biomass under the more water-limited conditions (irrigation rate = 20 cm/year). The main achievements of this study are (1) the identification of conditions in which inorganic and organic carbon sequestration is practical in semi-arid and arid soils, (2) development of a method for measuring the total carbon balance in unsaturated soil columns, and (3) the quantification of different pathways for soil carbon sequestration in response to FGDG amendments. These findings provide information for evaluating land use practices for increased soil carbon sequestration under semi-arid region biofuel crop production.

  20. Qualitative soil moisture assessment in semi-arid Africa - the role of experience and training on inter-rater reliability

    NASA Astrophysics Data System (ADS)

    Rinderer, M.; Komakech, H. C.; Müller, D.; Wiesenberg, G. L. B.; Seibert, J.

    2015-08-01

    Soil and water management is particularly relevant in semi-arid regions to enhance agricultural productivity. During periods of water scarcity, soil moisture differences are important indicators of the soil water deficit and are traditionally used for allocating water resources among farmers of a village community. Here we present a simple, inexpensive soil wetness classification scheme based on qualitative indicators which one can see or touch on the soil surface. It incorporates the local farmers' knowledge on the best soil moisture conditions for seeding and brick making in the semi-arid environment of the study site near Arusha, Tanzania. The scheme was tested twice in 2014 with farmers, students and experts (April: 40 persons, June: 25 persons) for inter-rater reliability, bias of individuals and functional relation between qualitative and quantitative soil moisture values. During the test in April farmers assigned the same wetness class in 46 % of all cases, while students and experts agreed on about 60 % of all cases. Students who had been trained in how to apply the method gained higher inter-rater reliability than their colleagues with only a basic introduction. When repeating the test in June, participants were given improved instructions, organized in small subgroups, which resulted in a higher inter-rater reliability among farmers. In 66 % of all classifications, farmers assigned the same wetness class and the spread of class assignments was smaller. This study demonstrates that a wetness classification scheme based on qualitative indicators is a robust tool and can be applied successfully regardless of experience in crop growing and education level when an in-depth introduction and training is provided. The use of a simple and clear layout of the assessment form is important for reliable wetness class assignments.

  1. Qualitative soil moisture assessment in semi-arid Africa: the role of experience and training on inter-rater reliability

    NASA Astrophysics Data System (ADS)

    Rinderer, M.; Komakech, H.; Müller, D.; Seibert, J.

    2015-03-01

    Soil and water management is particularly relevant in semi-arid regions to enhance agricultural productivity. During periods of water scarcity soil moisture differences are important indicators of the soil water deficit and are traditionally used for allocating water resources among farmers of a village community. Here we present a simple, inexpensive soil wetness classification scheme based on qualitative indicators which one can see or touch on the soil surface. It incorporates the local farmers' knowledge on the best soil moisture conditions for seeding and brick making in the semi-arid environment of the study site near Arusha, Tanzania. The scheme was tested twice in 2014 with farmers, students and experts (April: 40 persons, June: 25 persons) for inter-rater reliability, bias of individuals and functional relation between qualitative and quantitative soil moisture values. During the test in April farmers assigned the same wetness class in 46% of all cases while students and experts agreed in about 60% of all cases. Students who had been trained in how to apply the method gained higher inter-rater reliability than their colleagues with only a basic introduction. When repeating the test in June, participants were given improved instructions, organized in small sub-groups, which resulted in a higher inter-rater reliability among farmers. In 66% of all classifications farmers assigned the same wetness class and the spread of class assignments was smaller. This study demonstrates that a wetness classification scheme based on qualitative indicators is a robust tool and can be applied successfully regardless of experience in crop growing and education level when an in-depth introduction and training is provided. The use of a simple and clear layout of the assessment form is important for reliable wetness class assignments.

  2. Use of ALSAT-1 Data for the Follow-Up and the Analysis of Ecosystem in Algerian Semi Arid Medium

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    The degradation of natural resources in arid and semi-arid areas was highlighted dramatically during this century due to population growth and transformation of land use systems. The Algerian steppe has undergone a regression over the past decade due to drought cycle, the extension of areas cultivated in marginal lands, population growth and overgrazing. These phenomena have led to different degradation processes, such as the destruction of vegetation, soil erosion, and deterioration of the physical environment. In this study, the work is mainly based on the criteria for classification and identification of physical parameters for spatial analysis and multi-sources to determine the vulnerability of major steppe formations and their impact on desertification. To do this, we used satellite images Alsat-1 (2009) (IRS 2009) and LANDSAT TM (2001). These cross-sectional data with exogenous information could reduce the impact of the semi arid ecological diversity of steppe formations. This longitudinal study based on the use of remote sensing data is to analyze the evolution of steppe ecosystems. The application, through specific processes, including the supervised classification was used to characterize the main steppe formations. An analysis of the vulnerability of plant communities was conducted to assign weights and identify areas most susceptible to desertification. Vegetation indices are used to characterize the forest and steppe formations to determine changes in land use. This study will map the different components of the steppe, highlighting the magnitude of the degradation pathways, which affects the steppe environment, allowing an analysis of the process of desertification in the region.

  3. Seasonal change detection of riparian zones with remote sensing images and genetic programming in a semi-arid watershed.

    PubMed

    Makkeasorn, Ammarin; Chang, Ni-Bin; Li, Jiahong

    2009-02-01

    Riparian zones are deemed significant due to their interception capability of non-point source impacts and the maintenance of ecosystem integrity region wide. To improve classification and change detection of riparian buffers, this paper developed an evolutionary computational, supervised classification method--the RIparian Classification Algorithm (RICAL)--to conduct the seasonal change detection of riparian zones in a vast semi-arid watershed, South Texas. RICAL uniquely demonstrates an integrative effort to incorporate both vegetation indices and soil moisture images derived from LANDSAT 5 TM and RADARSAT-1 satellite images, respectively. First, an estimation of soil moisture based on RADARSAT-1 Synthetic Aperture Radar (SAR) images was conducted via the first-stage genetic programming (GP) practice. Second, for the statistical analyses and image classification, eight vegetation indices were prepared based on reflectance factors that were calculated as the response of the instrument on LANDSAT. These spectral vegetation indices were then independently used for discriminate analysis along with soil moisture images to classify the riparian zones via the second-stage GP practice. The practical implementation was assessed by a case study in the Choke Canyon Reservoir Watershed (CCRW), South Texas, which is mostly agricultural and range land in a semi-arid coastal environment. To enhance the application potential, a combination of Iterative Self-Organizing Data Analysis Techniques (ISODATA) and maximum likelihood supervised classification was also performed for spectral discrimination and classification of riparian varieties comparatively. Research findings show that the RICAL algorithm may yield around 90% accuracy based on the unseen ground data. But using different vegetation indices would not significantly improve the final quality of the spectral discrimination and classification. Such practices may lead to the formulation of more effective management strategies

  4. Perched groundwater-surface interactions and their consequences in stream flow generation in a semi-arid headwater catchment

    NASA Astrophysics Data System (ADS)

    Molenat, Jerome; Bouteffeha, Maroua; Raclot, Damien; Bouhlila, Rachida

    2013-04-01

    In semi-arid headwater catchment, it is usually admitted that stream flow comes predominantly from Hortonian overland flow (infiltration excess overland flow). Consequently, subsurface flow processes, and especially perched or shallow groundwater flow, have not been studied extensively. Here we made the assumption that perched groundwater flow could play a significant role in stream flow generation in semi-arid catchment. To test this assumption, we analyzed stream flow time series of a headwater catchment in the Tunisian Cap Bon region and quantified the flow fraction coming from groundwater discharge and that from overland flow. Furthermore, the dynamics of the perched groundwater was analyzed, by focusing on the different perched groundwater-surface interaction processes : diffuse and local infiltration, diffuse exfiltration, and direct groundwater discharge to the stream channel. This work is based on the 2.6 km² Kamech catchment (Tunisia), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Results show that even though Hortonian overland flow was the main hydrological process governing the stream flow generation, groundwater discharge contribution to the stream channel annually accounted for from 10% to 20 % depending on the year. Furthermore, at some periods, rising of groundwater table to the soil surface in bottom land areas provided evidences of the occurrence of saturation excess overland flow processes during some storm events. Reference Voltz , M. and Albergel , J., 2002. OMERE : Observatoire Méditerranéen de l'Environnement Rural et de l'Eau - Impact des actions anthropiques sur les transferts de masse dans les hydrosystèmes méditerranéens ruraux. Proposition d'Observatoire de Recherche en Environnement, Ministère de la Recherche.

  5. Extreme climatic events change the dynamics and invasibility of semi-arid annual plant communities.

    PubMed

    Jiménez, Milagros A; Jaksic, Fabian M; Armesto, Juan J; Gaxiola, Aurora; Meserve, Peter L; Kelt, Douglas A; Gutiérrez, Julio R

    2011-12-01

    Extreme climatic events represent disturbances that change the availability of resources. We studied their effects on annual plant assemblages in a semi-arid ecosystem in north-central Chile. We analysed 130 years of precipitation data using generalised extreme-value distribution to determine extreme events, and multivariate techniques to analyse 20 years of plant cover data of 34 native and 11 exotic species. Extreme drought resets the dynamics of the system and renders it susceptible to invasion. On the other hand, by favouring native annuals, moderately wet events change species composition and allow the community to be resilient to extreme drought. The probability of extreme drought has doubled over the last 50 years. Therefore, investigations on the interaction of climate change and biological invasions are relevant to determine the potential for future effects on the dynamics of semi-arid annual plant communities.

  6. Impact of Lupinus leucophyllous on the nitrogen budgets of semi-arid plant communities

    SciTech Connect

    Hinds, W.T.; Hinds, N.R.

    1982-10-01

    In the semi-arid grassland on the Arid Lands Ecology Reserve on the Hanford Site in south-central Washington State, three legume flushes occurred in the past decade. Estimates of leguminous nitrogen in both native and disturbed vegetation after a flush showed that nitrogen in the legume (above-ground) doubled the amount of nitrogen associated with vascular plant tissues. 21 references, 2 tables.

  7. Timing and climatic drivers for glaciation across semi-arid western Himalayan-Tibetan orogen

    NASA Astrophysics Data System (ADS)

    Dortch, Jason M.; Owen, Lewis A.; Caffee, Marc W.

    2013-10-01

    Mapping and forty-seven new 10Be ages help define the timing of glaciation in the Ladakh and Pangong Ranges in Northwest India. Five new local glacial stages are defined for the Ladakh Range. From oldest to youngest these include: the Ladakh-4 glacial stage at 81 ± 20 ka; the Ladakh-3 glacial stage (not dated); the Ladakh-2 glacial stage at 22 ± 3 ka; the Ladakh-1 glacial stage (not dated); and the Ladakh Cirque glacial stage at 1.8 ± 0.4 ka. Three local glacial stages are defined for the Pangong Range, which include: the Pangong-2 glacial stage at 85 ± 15 ka; the Pangong-1 glacial stage at 40 ± 3 ka; and the Pangong Cirque glacial stage at 0.4 ± 0.3 ka. The new 10Be ages are combined with 645 recalculated 10Be ages from previous studies to develop the first regional framework of glaciation across the dryland regions of the Greater Himalaya, Transhimalaya, Pamir and Tian Shan at the western end of the Himalayan-Tibetan orogen. Nineteen regional glacial stages are recognized that are termed semi-arid western Himalayan-Tibetan stages (SWHTS). These include: SWHTS 9 at 311 ± 32 ka; SWHTS 7 at 234 ± 44 ka [tentative]; SWHTS 6 at 146 ± 18 ka; SWHTS 5E at 121 ± 11 ka; SWHTS 5A at 80 ± 5 ka; SWHTS 5A- at 72 ± 8 ka; SWHTS 4 at 61 ± 5 ka; SWHTS 3 at 46 ± 4 ka; SWHTS 2F at 30 ± 3 ka; SWHTS 2E at 20 ± 2 ka; SWHTS 2D at 16.9 ± 0.7 ka; SWHTS 2C at 14.9 ± 0.8 ka; SWHTS 2B at 13.9 ± 0.5 ka; SWHTS 2A at 12.2 ± 0.8 ka; SWHTS 1E at 8.8 ± 0.3 ka [tentative]; SWHTS 1D at 6.9 ± 0.2 ka [tentative]; SWHTS 1C at 3.8 ± 0.6 ka; SWHTS 1B at 1.7 ± 0.2 ka; and SWHTS 1A at 0.4 ± 0.1 ka. Regional glacial stages older than 21 ka are broadly correlated with strong monsoons. SWHTS that are 21 ka or younger, have smaller uncertainties and broadly correlate with global ice volume given by marine Oxygen Isotope Stages, and northern hemisphere climatic events (Oldest Dryas, Older Dryas, Younger Dryas, Roman Humid Period, and Little Ice Age).

  8. Seed Dispersal by Ants in the Semi-arid Caatinga of North-east Brazil

    PubMed Central

    Leal, Inara R.; Wirth, Rainer; Tabarelli, Marcelo

    2007-01-01

    Background and Aims Myrmecochory is a conspicuous feature of several sclerophyll ecosystems around the world but it has received little attention in the semi-arid areas of South America. This study addresses the importance of seed dispersal by ants in a 2500-km2 area of the Caatinga ecosystem (north-east Brazil) and investigates ant-derived benefits to the plant through myrmecochory. Methods Seed manipulation and dispersal by ants was investigated during a 3-year period in the Xingó region. Both plant and ant assemblages involved in seed dispersal were described and ant behaviour was characterized. True myrmecochorous seeds of seven Euphorbiaceae species (i.e. elaiosome-bearing seeds) were used in experiments designed to: (1) quantify the rates of seed cleaning/removal and the influence of both seed size and elaiosome presence on seed removal; (2) identify the fate of seeds dispersed by ants; and (3) document the benefits of seed dispersal by ants in terms of seed germination and seedling growth. Key Results Seed dispersal by ants involved one-quarter of the woody flora inhabiting the Xingó region, but true myrmecochory was restricted to 12·8 % of the woody plant species. Myrmecochorous seeds manipulated by ants faced high levels of seed removal (38–84 %) and 83 % of removed seeds were discarded on ant nests. Moreover, seed removal positively correlated with the presence of elaiosome, and elaiosome removal increased germination success by at least 30 %. Finally, some Euphorbiaceae species presented both increased germination and seedling growth on ant-nest soils. Conclusions Myrmecochory is a relevant seed dispersal mode in the Caatinga ecosystem, and is particularly frequent among Euphorbiaceae trees and shrubs. The fact that seeds reach micro-sites suitable for establishment (ant nests) supports the directed dispersal hypothesis as a possible force favouring myrmecochory in this ecosystem. Ecosystems with a high frequency of myrmecochorous plants appear not

  9. Spatial scaling of waveform lidar data to characterize heterogeneity of semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Litvak, M. E.; Neuenschwander, A. L.; Krofcheck, D. J.

    2012-12-01

    Semi-arid ecosystems are extremely heterogeneous due to varying environmental factors (e.g. precipitation, disturbance, and edaphic controls). The characterization of vegetation in these environments requires the use of high spatial resolution data (i.e. <1m) -yet the high spatial resolution data brings about new challenges to describe the vegetation at these resolutions and how to scale the critical information to a more generalized and coarser representation. For example, in semi-arid environments, the dominant woody species exhibit complex allometric relationships due to the multi-stemmed architecture at the base of the tree. Full-waveform lidar data were flown over an Oak/Juniper savanna (Freeman Ranch, TX) in October 2010 and additional waveform lidar data were flown in September 2011 across an elevation gradient (e.g. creosote scrub to montane conifer) in NM. This research will use these datasets to present analysis for scaling within-tree (i.e. per pixel) to tree level statistics as an improved method for developing allometry in heterogeneous ecosystems. Scaled information at the tree-level can then be scaled to match coarser resolution satellite data products. We will investigate how high spatial resolution, laser waveform derived parameters can provide a more accurate estimation of vegetation structure (above ground biomass, height and leaf area) across a range of semi-arid ecosystems, providing a critical test of the potential of space-based lidar in these environments.

  10. A methodology for small scale rural land use mapping in semi-arid developing countries using orbital imagery. 1: Introduction

    NASA Technical Reports Server (NTRS)

    Vangenderen, J. L. (Principal Investigator); Lock, B. F.

    1976-01-01

    The author has identified the following significant results. This research program has developed a viable methodology for producing small scale rural land use maps in semi-arid developing countries using imagery obtained from orbital multispectral scanners.

  11. Spatio-temporal recharge patterns in a semi-arid alluvial basin with irrigated crops

    NASA Astrophysics Data System (ADS)

    Ruud, N. C.; Harter, T.; Naugle, A. W.

    2001-12-01

    Recharge in semi-arid regions with irrigated crops is predominantly driven by irrigation technology and cropping patterns, but also by the seasonal distribution of rainfall and the availability of irrigation water. A significant amount of basin recharge occurs from ephemeral streams and unlined irrigation canals. A spatially distributed, GIS-based hydrologic model of water application and water use at the land-atmosphere interface was developed to estimate transient recharge to the deep vadose zone and into the unconfined alluvial aquifer. The spatial basis for the hydrologic model are individual landuse units (diffuse recharge) and a network of streams and canals with water seepage (lineal recharge). The land-atmosphere interface and unsaturated zone model component (LAIUZ) is coupled to a surface water supply model component (SWSM) that provides surface water deliveries by district or sub-district, depending on available information. Using LAIUZ and SWSM, we investigate the regional behavior and spatio-temporal variability of deep vadose zone recharge in the 3,800 square kilometer Tule groundwater basin of the San Joaquin Valley, California. Surface water management in the topographically flat basin is divided between two dozen irrigation and water districts. All surface water is imported or is natural discharge into the basin. Groundwater extractions are managed by landowners on a field-by-field basis. Monthly varying recharge and groundwater pumping rates are computed for the hydrologic years 1970 through 2000. The average size of the GIS landuse units is 0.4 sq. kilometers. The GIS coverage distinguishes over 60 landuse types. Applied and consumptive water use are computed based on actual evapotranspiration and known irrigation or water use efficiencies for each landuse unit. Seepage from streams is computed by mass balance. The resulting model estimates of groundwater recharge and pumping are in good agreement with measured groundwater level changes for the

  12. Spatial distribution of rock glaciers in the semi-arid Andes of Argentina

    NASA Astrophysics Data System (ADS)

    Blöthe, Jan Henrik; Halla, Christian; Schrott, Lothar; Götz, Joachim; Trombotto, Dario

    2016-04-01

    Active rock glaciers are indicators for permafrost in periglacial environments of high mountain areas. Within the permafrost body and the seasonally frozen active layer, these rock glaciers potentially store large amounts of water. Especially in semiarid mountain belts, such as the central Andes of Argentina, rock glaciers attain several kilometres in length, covering surface areas of >106 m2. Here, rock glaciers even outrange ice glaciers in cumulative area and absolute number, indicating they might constitute a large water reservoir in this semiarid part of the Andes. Despite their potential hydrological importance, our knowledge about the rock glaciers' spatial distribution, subsurface composition and absolute ice content is still very limited. Our study addresses this shortcoming and aims at assessing the hydrological significance of rock glacier permafrost in the semi-arid Andes of Argentina by combining local geophysical investigations with regional remote sensing analysis. Our research focuses on the central Andes between 30°S and 33°S, where we have compiled an inventory that comprises more than 1200 rock glaciers, as well as 154 clear-ice and debris-covered glaciers. Two field sites that bracket this regional study area towards their northern and southern edge have been selected for local geophysical investigations. At these locations, earlier studies detected the presence of rock glacier permafrost by thermal monitoring and geophysical prospection. Preliminary results of the regional spatial distribution indicate that the spatial density of rock glaciers increases towards the south, concomitant with a twofold increase in mean annual precipitation. Rock glacier density peaks in the area of the Aconcagua massif, while precipitation is further increasing towards the south. Simultaneously, the lower altitudinal limit of intact rock glaciers slightly decreases, with the lowest rock glacier toe positions in the northern study area located at ~3800 m a. s. l

  13. Iranian speleothems: Investigating Quaternary climate variability in semi-arid Western Asia

    NASA Astrophysics Data System (ADS)

    Carolin, Stacy; Morgan, Jacob; Peckover, Emily; Walker, Richard; Henderson, Gideon; Rowe, Peter; Andrews, Julian; Ersek, Vasile; Sloan, Alastair; Talebian, Morteza; Fattahi, Morteza; Nezamdoust, Javad

    2016-04-01

    Rapid population growth and limited water supply has highlighted the need for vigorous water resource management practices in the semi-arid regions of Western Asia. One significant unknown in this discussion is the future change in rainfall amount due to the consequential effects of today's greenhouse gas forcing on the regional climate system. Currently, there is little paleoclimate proxy data in Western Asia to extend climate records beyond the limits of the instrumental period, leaving scant evidence to investigate the system's response to various climate forcings on different timescales. Here we present a synthesis of speleothem climate records across northern Iran, from the wetter climate of the Alborz and Zagros mountain ranges to the dry northeast, in order to investigate the magnitude of past climate variability and the forcings responsible. The stalagmites collected from the west and north-central mountain ranges, areas with ~200-400mm mean annual precipitation mostly falling within the fall-winter-spring months, all demonstrate growth limited to the interglacial periods of the Quaternary. We present overlapping Holocene stable isotope records with a complementary trace element record to assist in interpreting the isotopic variability. One of the records is sampled at <4yr resolution and spans 3.7-5.3 kyBP, a contested period of catastrophic droughts that allegedly eradicated civilizations in areas of the near East. Imposed upon decadal-scale variability, the record reveals a 1,000-yr gradual trend toward enriched stable oxygen isotope values, interpreted as a trend toward drier conditions, which ends with an abrupt 300-yr cessation in growth beginning at 4.3 kyBP, coincident with the so-called 4.2 kyBP drought event. From the northeast Iranian plateau, we present a new stalagmite record that spans the penultimate deglaciation and Stages 5e-5a. This region presently receives limited rain annually (~100-300mm/yr, regularly falling between November and May

  14. Spatiotemporal modelling of groundwater extraction in semi-arid central Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Keir, Greg; Bulovic, Nevenka; McIntyre, Neil

    2016-04-01

    The semi-arid Surat Basin in central Queensland, Australia, forms part of the Great Artesian Basin, a groundwater resource of national significance. While this area relies heavily on groundwater supply bores to sustain agricultural industries and rural life in general, measurement of groundwater extraction rates is very limited. Consequently, regional groundwater extraction rates are not well known, which may have implications for regional numerical groundwater modelling. However, flows from a small number of bores are metered, and less precise anecdotal estimates of extraction are increasingly available. There is also an increasing number of other spatiotemporal datasets which may help predict extraction rates (e.g. rainfall, temperature, soils, stocking rates etc.). These can be used to construct spatial multivariate regression models to estimate extraction. The data exhibit complicated statistical features, such as zero-valued observations, non-Gaussianity, and non-stationarity, which limit the use of many classical estimation techniques, such as kriging. As well, water extraction histories may exhibit temporal autocorrelation. To account for these features, we employ a separable space-time model to predict bore extraction rates using the R-INLA package for computationally efficient Bayesian inference. A joint approach is used to model both the probability (using a binomial likelihood) and magnitude (using a gamma likelihood) of extraction. The correlation between extraction rates in space and time is modelled using a Gaussian Markov Random Field (GMRF) with a Matérn spatial covariance function which can evolve over time according to an autoregressive model. To reduce computational burden, we allow the GMRF to be evaluated at a relatively coarse temporal resolution, while still allowing predictions to be made at arbitrarily small time scales. We describe the process of model selection and inference using an information criterion approach, and present some

  15. Spatial and temporal estimation of runoff in a semi-arid microwatershed of Southern India.

    PubMed

    Rejani, R; Rao, K V; Osman, M; Chary, G R; Pushpanjali; Reddy, K Sammi; Rao, Ch Srinivasa

    2015-08-01

    In a semi-arid microwatershed of Warangal district in Southern India, daily runoff was estimated spatially using Soil Conservation Service (SCS)-curve number (CN) method coupled with GIS. The groundwater status in this region is over-exploited, and precise estimation of runoff is very essential to plan interventions for this ungauged microwatershed. Rainfall is the most important factor governing runoff, and 75.8% of the daily rainfall and 92.1% of the rainy days which occurred were below 25 mm/day. The declines in rainfall and rainy days observed in recent years were 9.8 and 8.4%, respectively. The surface runoff estimated from crop land for a period of 57 years varied from 0 to 365 mm with a mean annual runoff of 103.7 mm or 14.1% of the mean annual rainfall. The mean annual runoff showed a significant reduction from 108.7 to 82.9 mm in recent years. The decadal variation of annual runoff from crop land over the years varied from 49.2 to 89.0% which showed the caution needed while planning watershed management works in this microwatershed. Among the four land use land cover conditions prevailing in the area, the higher runoff (20% of the mean annual rainfall) was observed from current fallow in clayey soil and lower runoff of 8.7% from crop land in loamy soil due to the increased canopy coverage. The drought years which occurred during recent years (1991-2007) in crop land have increased by 3.5%, normal years have increased by 15.6%, and the above normal years have decreased by 19.1%. This methodology can be adopted for estimating the runoff potential from similar ungauged watersheds with deficient data. It is concluded that in order to ensure long-term and sustainable groundwater utilization in the region, proper estimation of runoff and implementation of suitable water harvesting measures are the need of the hour. PMID:26223219

  16. High spatial resolution remote sensing imagery improves GPP predictions in disturbed, semi-arid woodlands

    NASA Astrophysics Data System (ADS)

    Krofcheck, D. J.; Eitel, J.; Vierling, L. A.; Schulthess, U.; Litvak, M. E.

    2012-12-01

    Climate across the globe is changing and consequently the productivity of terrestrial vegetation is changing with it. Gross primary productivity (GPP) is an integral part of the carbon cycle, yet challenging to measure everywhere, all the time. Efforts to estimate GPP in the context of climate change are becoming continually more salient of the need for models sensitive to the heterogeneous nature of drought and pest induced disturbance. Given the increased availability of high spatial resolution remotely sensed imagery, their use in ecosystem scale GPP estimation is becoming increasingly viable. We used a simple linear model with inputs derived from RapidEye time series data (5 meter spatial resolution) as compared to MODIS inputs (250 meter spatial resolution) to estimate GPP in intact and girdled PJ woodland to simulate drought and pest induced disturbance. An area equal to the MODIS pixels measured was aggregated using RapidEye data centered on the flux towers for comparison purposes. We generated four model runs, two using only MODIS or RapidEye spectral vegetation indices (VIs) and two using MODIS and RapidEye VIs combined at both the control and disturbed tower site. Our results suggest that for undisturbed regions, MODIS derived VIs perform better than the higher spatial resolution RapidEye VIs when a moisture sensitive index is incorporated into the model (RMSE of 17.51for MODIS vs. 22.71 for RapidEye). Modeling GPP in disturbed regions however benefits from the inclusion of high spatial resolution data (RMSE of 14.83 for MODIS vs. 14.70 for RapidEye). This discrepancy may have to do with the disparate scale of a MODIS pixel and the size of the tower fetch. Our results suggest that the best source of VI's for the modeling GPP in semi-arid woodlands depends on the level of disturbance in the landscape. Given that the rate and extent of drought and insect induced mortality events in terrestrial forests are projected to increase with our changing climate

  17. Where Does the River Run? Lessons from a Semi-Arid River

    NASA Astrophysics Data System (ADS)

    Meixner, T.; Soto, C. D.; Richter, H.; Uhlman, K.

    2009-12-01

    Spatial data sets to assess the nature of stream groundwater interactions and the resulting power law/fractal structure of travel time distributions are rare. Spatial data sets can be collected using high technology or by use of a large number of field assistants. The labor intensive way is expensive unless the public can be enlisted as citizen scientists to gather large, robust, spatial data sets robustly and cheaply. Such an effort requires public interest and the ability of a few to organize such an effort at a basin if not regional scale. The San Pedro basin offers such an opportunity for citizen science due to the water resource restrictions of the basins semi-arid climate. Since 1999 The Nature Conservancy, in cooperation with the Upper San Pedro Partnership, the public at large and various university and federal science agency participants, has been mapping where the San Pedro River has water present versus where it is dry. This mapping has used an army of volunteers armed with GPS units, clipboards and their eyes to make the determination if a given 10m reach of the river is wet or dry. These wet/dry mapping data now exist for 11 different annual surveys. These data are unique and enable an investigation of the hydrologic connectedness of flowing waters within this system. Analysis of these data reveals several important findings. The total river area that is wet is strongly correlated with stream flow as observed at three USGS gauges. The correlation is strongest however for 90 day and 1 year average flows rather than more local in time observations such as the daily, 7 day or monthly mean flow at the gauges. This result indicates that where the river is flowing depends on long term hydrologic conditions. The length of river reach that is mapped as wet or dry is indicative of the travel distance and thus time that water travels in the surface (wet) and subsurface (dry) of the river system. The reach length that is mapped as wet follows a power law function

  18. Spatial and temporal estimation of runoff in a semi-arid microwatershed of Southern India.

    PubMed

    Rejani, R; Rao, K V; Osman, M; Chary, G R; Pushpanjali; Reddy, K Sammi; Rao, Ch Srinivasa

    2015-08-01

    In a semi-arid microwatershed of Warangal district in Southern India, daily runoff was estimated spatially using Soil Conservation Service (SCS)-curve number (CN) method coupled with GIS. The groundwater status in this region is over-exploited, and precise estimation of runoff is very essential to plan interventions for this ungauged microwatershed. Rainfall is the most important factor governing runoff, and 75.8% of the daily rainfall and 92.1% of the rainy days which occurred were below 25 mm/day. The declines in rainfall and rainy days observed in recent years were 9.8 and 8.4%, respectively. The surface runoff estimated from crop land for a period of 57 years varied from 0 to 365 mm with a mean annual runoff of 103.7 mm or 14.1% of the mean annual rainfall. The mean annual runoff showed a significant reduction from 108.7 to 82.9 mm in recent years. The decadal variation of annual runoff from crop land over the years varied from 49.2 to 89.0% which showed the caution needed while planning watershed management works in this microwatershed. Among the four land use land cover conditions prevailing in the area, the higher runoff (20% of the mean annual rainfall) was observed from current fallow in clayey soil and lower runoff of 8.7% from crop land in loamy soil due to the increased canopy coverage. The drought years which occurred during recent years (1991-2007) in crop land have increased by 3.5%, normal years have increased by 15.6%, and the above normal years have decreased by 19.1%. This methodology can be adopted for estimating the runoff potential from similar ungauged watersheds with deficient data. It is concluded that in order to ensure long-term and sustainable groundwater utilization in the region, proper estimation of runoff and implementation of suitable water harvesting measures are the need of the hour.

  19. Mapping Grazing-Induced Degradation in a Semi-Arid Environment: A Rapid and Cost Effective Approach for Assessment and Monitoring

    NASA Astrophysics Data System (ADS)

    Thompson, Mark; Vlok, Jan; Rouget, Mathieu; Hoffman, M. T.; Balmford, Andrew; Cowling, R. M.

    2009-04-01

    Improved techniques for measuring and monitoring the state of biodiversity are required for reporting on national obligations to international and regional conservation institutions. Measuring the extent of grazing-related degradation in semi-arid ecosystems has proved difficult. Here we present an accurate and cost-effective method for doing this, and apply it in a South African semi-arid region that forms part of a globally significant biodiversity hotspot. We grouped structurally and functionally similar vegetation units, which were expert-mapped at the 1:50,000 scale, into four habitat types, and developed habitat-specific degradation models. We quantified degradation into three categories, using differences between dry and wet season values of the Normalized Difference Vegetation Index (NDVI) for the three succulent karoo habitats, and the difference between maximum and mean NDVI values for the subtropical thicket habitat. Field evaluation revealed an accuracy of 86%. Overall, degradation was high: 24% of the study area was modeled as severely degraded, and only 9% as intact. Levels of degradation were highest for bottomland habitats that were most exposed to grazing impacts. In sharp contrast to our methods, a widely used, broad-scale and snapshot assessment of land cover in South Africa was only 33% accurate, and it considerably underestimated the extent of severely degraded habitat in the study area. While our approach requires a multidisciplinary team, and in particular expert knowledge on the characteristics and spatial delimitation of vegetation types, it is repeatable, rapid, and relatively inexpensive. Consequently, it holds great promise for monitoring and evaluation programs in semi-arid ecosystems, in Africa, and beyond.

  20. Radical scavenging, antioxidant and cytotoxic activity of Brazilian Caatinga plants.

    PubMed

    David, Juceni P; Meira, Marilena; David, Jorge M; Brandão, Hugo N; Branco, Alexsandro; de Fátima Agra, M; Barbosa, M Regina V; de Queiroz, Luciano P; Giulietti, Ana M

    2007-04-01

    Extracts of 32 plants from the Brazilian northeastern semi-arid region called Caatinga were evaluated through DPPH radical scavenging assay, beta-carotene bleaching, and brine shrimp lethality tests (BST). Among the extracts studied Byrsonima cf. gardneriana, Mascagnia coriacea, Cordia globosa, Diodia apiculata and Hypenia salzmannii showed the highest activities in DPPH radical scavenging test. In the beta-carotene bleaching test the highest activities were observed for Passiflora cincinnata, Chamaecrista repens, B. cf. gardneriana, Rollinia leptopetala, Serjania glabrata, Diospyros gaultheriifolia, C. globosa, Mimosa ophtalmocentra, M. coriacea and Lippia cf. microphylla. In contrast, R. leptopetala, Zornia cf. brasiliensis and Leonotis nepetifolia were the most active species in the BST.

  1. Radical scavenging, antioxidant and cytotoxic activity of Brazilian Caatinga plants.

    PubMed

    David, Juceni P; Meira, Marilena; David, Jorge M; Brandão, Hugo N; Branco, Alexsandro; de Fátima Agra, M; Barbosa, M Regina V; de Queiroz, Luciano P; Giulietti, Ana M

    2007-04-01

    Extracts of 32 plants from the Brazilian northeastern semi-arid region called Caatinga were evaluated through DPPH radical scavenging assay, beta-carotene bleaching, and brine shrimp lethality tests (BST). Among the extracts studied Byrsonima cf. gardneriana, Mascagnia coriacea, Cordia globosa, Diodia apiculata and Hypenia salzmannii showed the highest activities in DPPH radical scavenging test. In the beta-carotene bleaching test the highest activities were observed for Passiflora cincinnata, Chamaecrista repens, B. cf. gardneriana, Rollinia leptopetala, Serjania glabrata, Diospyros gaultheriifolia, C. globosa, Mimosa ophtalmocentra, M. coriacea and Lippia cf. microphylla. In contrast, R. leptopetala, Zornia cf. brasiliensis and Leonotis nepetifolia were the most active species in the BST. PMID:17331673

  2. Impacts of grazing, fire, and precipitation variability on woody plant cover expansion in semi-arid grasslands of southeastern Arizona

    NASA Astrophysics Data System (ADS)

    O'neal, K. J.

    2011-12-01

    Northern Chihuahuan semi-arid grasslands are highly managed systems supporting rich biodiversity and many endemic species as well as providing a valuable economic resource for cattle-ranching livelihoods, with 90% of grasslands open to grazing. Chihuahuan grasslands share many characteristics with other managed grazing systems, which occupy 25% of the global land surface and are the most extensive form of land use. These grasslands are experiencing land-cover modification from woody plant cover expansion, leading to diminished biodiversity and grazing capacity. Ongoing research indicates that grazing, fire suppression, and precipitation variability are the primary drivers causing increased woody plant cover in Chihuahuan grasslands; however, there is debate concerning the dominant driver. While it is understood that historical land use and climate variation have facilitated initial woody encroachment in the region, the current relative influence of the three drivers remains unclear. This research explores how grazing, fire/suppression, and seasonal precipitation variability influence woody plant cover in the semi-arid grasslands of southeastern Arizona and identifies the dominant driver behind observed changes. This research used the Landsat Thematic Mapper record from 1984 to 2008 to map changes in woody plant cover and identify spatial patterns and temporal trends of woody plant cover expansion. Spectral mixture analysis (SMA) was used to quantify the percent of woody plant cover in each pixel; trend analysis was used to track per-pixel changes over the time-series. Trend analysis was further refined by segmenting trends around fire events to accommodate abrupt and non-monotonic effects of fire on woody plant cover. The overall trend in the region shows increasing woody plant cover with most values ranging between 5-20% over the 25-year period and significant spatial variability in expansion amounts across the region. The Random Forests decision tree approach was

  3. Scarce data in hydrology and hydrogeology: Estimation and modelling of groundwater recharge for a numerical groundwater flow model in a semi-arid to arid catchment

    NASA Astrophysics Data System (ADS)

    Gräbe, Agnes; Schulz, Stephan; Rödiger, Tino; Kolditz, Olaf

    2013-04-01

    Water resources are strongly limited in semi-arid to arid regions and groundwater constitutes often the only possibility for fresh water for the population and industry. An understanding of the hydrological processes and the estimation of magnitude of water balance parameters also includes the knowledge of processes of groundwater recharge. For the sustainable management of water resources, it is essential to estimate the potential groundwater recharge under the given climatic conditions. We would like to present the results of a hydrological model, which is based on the HRU- concept and intersected the parameters of climatic conditions, topography, geology, soil, vegetation and land use to calculate the groundwater recharge. This model was primarily developed for humid area applications and has now been adapted to the regional conditions in the semi-arid to arid region. It was quite a challenge to understand the hydrological processes in the semi-arid to arid study area and to implement those findings (e.g. routing [Schulz (in prep.)]) into the model structure. Thus we compared the existing approaches for groundwater recharge estimations (chloride mass balance [Marei et. al 2000], empirical relations such as rainfall and base flow-relation [Goldschmidt 1960; Guttman 2000; Hughes 2008; Issar 1993; Lerner 1990; De Vries et. al 2002]) with the results of our numerical model. References: De Vries, J. J., I. Simmers (2002): Groundwater recharge: an overview of processes and challenges. Hydrogeology Journal (2002) 10: 5-17. DOI 10.1007/s10040-001-0171-7. Guttman, J., 2000. Multi-Lateral Project B: Hydrogeology of the Eastern Aquifer in the Judea Hills and Jordan Valley. Mekorot Water Company, Report 468, p. 36. Hughes, A. G., M. M. Mansour, N. S. Robins (2008): Evaluation of distributed recharge in an upland semi-arid karst system: the West Bank Mountain Aquifer, Middle East. Hydrogeology Journal (2008) 16: 845-854. DOI 10.1007/s10040-008-0273-6 Issar, A. S. (1993

  4. Evaporative loss from irrigated interrows in a highly advective semi-arid agricultural area

    NASA Astrophysics Data System (ADS)

    Agam, Nurit; Evett, Steven R.; Tolk, Judy A.; Kustas, William P.; Colaizzi, Paul D.; Alfieri, Joseph G.; McKee, Lynn G.; Copeland, Karen S.; Howell, Terry A.; Chávez, Jose L.

    2012-12-01

    Agricultural productivity has increased in the Texas High Plains at the cost of declining water tables, putting at risk the sustainability of the Ogallala Aquifer as a principal source of water for irrigated agriculture. This has led area producers to seek alternative practices that can increase water use efficiency (WUE) through more careful management of water. One potential way of improving WUE is by reducing soil evaporation (E), thus reducing overall evapotranspiration (ET). Before searching for ways to reduce E, it is first important to quantify E and understand the factors that determine its magnitude. The objectives of this study were (1) to quantify E throughout part of the growing season for irrigated cotton in a strongly advective semi-arid region; (2) to study the effects of LAI, days after irrigation, and measurement location within the row on the E/ET fraction; and (3) to study the ability of microlysimeter (ML) measures of E combined with sap flow gage measures of transpiration (T) to accurately estimate ET when compared with weighing lysimeter ET data and to assess the E/T ratio. The research was conducted in an irrigated cotton field at the Conservation & Production Research Laboratory of the USDA-ARS, Bushland, TX. ET was measured by a large weighing lysimeter, and E was measured by 10 microlysimeters that were deployed in two sets of 5 across the interrow. In addition, 10 heat balance sap flow gages were used to determine T. A moderately good agreement was found between the sum E + T and ET (SE = 1 mm or ˜10% of ET). It was found that E may account for >50% of ET during early stages of the growing season (LAI < 0.2), significantly decreasing with increase in LAI to values near 20% at peak LAI of three. Measurement location within the north-south interrows had a distinct effect on the diurnal pattern of E, with a shift in time of peak E from west to east, a pattern that was governed by the solar radiation reaching the soil surface. However, total

  5. Simulating the Dependence of Sagebrush Steppe Vegetation on Redistributed Snow in a Semi-Arid Watershed.

    NASA Astrophysics Data System (ADS)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Strand, E. K.; Seyfried, M. S.

    2014-12-01

    snow. These results indicate that as snow water subsidies decrease, ecosystems may shift from tree and shrub dominated to grassland dominated. As climate change progresses, shifts in the precipitation regimes in semi-arid environments may lead to changes in species composition and carbon stores throughout the intermountain west.

  6. Water Governance and Adaptation to Disturbances in Irrigated Semi-Arid Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Evans, T. P.; McCord, P. F.; McBride, L.; Gower, D.; Caylor, K. K.

    2013-12-01

    Climate and other physical drivers of environmental systems are modifying the global availability of water for irrigation. At the same time population growth is placing an increased demand on water resources as local municipalities promote agricultural production as a mechanism to support human welfare and development. Substantial has research focused on household-level agricultural decision-making and adaptation. But equally important are institutional dynamics, or the rules implemented to allocate water resources across different user groups. Previous work has identified design principles for common-pool resource systems that tend to lead to sustained governance regimes. Likewise, past research has addressed the issue of "institutional fit", or locally adapted governance arrangements characterized through governance structure. However, much of the complexity behind institutional dynamics and adaptive capacity lies in the translation of data to information to knowledge, and how this sequence contributes to effective cross-scale water management and decision-making - an arena that has arguably received less attention in the water management literature. We investigate the interplay between governance regimes, data/information and institutional dynamics in irrigation systems in semi-arid regions of Kenya. In particular, we articulate the role of knowledge and data in institutional dynamics at multiple levels of analysis. How do users at different decision-making levels incorporate social and hydrological information in water governance? What data is needed to develop the information and knowledge users need for effective management? While governance structure is certainly a critical component of water management systems - we emphasize the interplay between the data-information-knowledge sequence and institutional dynamics. We present findings from household and manager-level surveys examining irrigation practices and the institutions designed to equitably allocate

  7. Management of Meloidogyne incognita with Chemicals and Cultivars in Cotton in a Semi-Arid Environment

    PubMed Central

    Wheeler, T. A.; Siders, K. T.; Anderson, M. G.; Russell, S. A.; Woodward, J. E.; Mullinix, B. G.

    2014-01-01

    Management of Meloidogyne incognita (root-knot nematode) in cotton in the United States was substantially affected by the decision to stop production of aldicarb by its principle manufacturer in 2011. The remaining commercially available tools to manage M. incognita included soil fumigation, nematicide seed treatments, postemergence nematicide application, and cultivars partially resistant to M. incognita. Small plot field studies were conducted on a total of nine sites from 2011–2013 to examine the effects of each of these tools alone or in combinations, on early season galling, late-season nematode density in soil, yield, and value ($/ha = lint value minus chemical costs/ha). The use of a partially resistant cultivar resulted in fewer galls/root system at 35 d after planting in eight of nine tests, lower root-knot nematode density late in the growing season for all test sites, higher lint yield in eight of nine sites, and higher value/ha in six of nine sites. Galls per root were reduced by aldicarb in three of nine sites and by 1,3-dichloropropene (1,3-D) in two of eight sites, relative to the nontreated control (no insecticide or nematicide treatment). Soil fumigation reduced M. incognita density late in the season in three of nine sites. Value/ha was not affected by chemical treatment in four of nine sites, but there was a cultivar × chemical interaction in four of nine sites. When value/ha was affected by chemical treatment, the nontreated control had a similar value to the treatment with the highest value/ha in seven of eight cultivar-site combinations. The next “best” value/ha were associated with seed treatment insecticide (STI) + oxamyl and aldicarb (similar value to the highest value/ha in six of eight cultivar-site combinations). The lowest valued treatment was STI + 1,3-D. In a semi-arid region, where rainfall was low during the spring for all three years, cultivars with partial resistance to M. incognita was the most profitable method of

  8. Simple, spatial and predictive approach for cereal yield prediction in the semi-arid areas

    NASA Astrophysics Data System (ADS)

    Toumi, Jihad; Khabba, Said; Er-Raki, Salah; Le page, Michel; Chahbi Bellakanji, Aicha; Lili Chabaane, Zohra; Ezzahar, Jamal; Zribi, Mehrez; Jarlan, Lionel

    2016-04-01

    The objective is to develop a simple, spatial and predictive approach of dry matter (DM) and grain yield (GY) of cereal in the semi-arid areas. The proposed method is based on the three efficiencies model of Monteith (1972). This approach summarizes the transformation of solar radiation to the dry matter (DM) by the climate (ɛc), interception (ɛi) and conversion (ɛconv) efficiencies. The method combines the maximum of ɛi and ɛconv (noted ɛimax and ɛconvmax) into a single parameter denoted ɛmax, calculating as a function of cumulating growing degree day (CGDD). Also, the stress coefficient ks, which affects the conversion of solar radiation to the biomass was calculated by the surface temperature or the water balance at the root zone. In addition, the expression of ks has been improved by the consideration of the results achieved by deficit irrigation (AquaCrop and STICS models) which showed that the value of ks from 0.7 to 1 didn't affect significantly the cereal production. For the partitioning of the dry matter developed, between straw and grain, the method proposed calculates a variable Harvest Index coefficient (HI). HI is deducted from CGDD and HI0max (maximal final harvest Index in the region of study). Finally, the approach calculates DM depending Satellite Information (NDVI and surface temperature Ts) and climatic data (solar radiation and air temperature). In the case of no availability of Ts, the amount of irrigation is required to calculate ks. Until now, the developed model has been calibrated and validated on the irrigated area R3, located 40 Km east of Marrakech. The evolutions of DM and GY were reproduced satisfactorily. R2 and RMSE are respectively 0.98 and 0.35 t/ha and 0.98 and 0.19 t/ha, respectively. Currently, additional tests are in progress on data relating to the Kairouan plain of Tunisia.

  9. Coarse root distribution of a semi-arid oak savanna estimated with ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Raz-Yaseef, N.; Koteen, L. E.; Baldocchi, D. D.

    2012-12-01

    North California enjoys wet and mild winters, but experiences extreme hot, dry summer conditions, with occasional drought years. Despite the severity of summer conditions, blue oaks are winter-deciduous. We hypothesized that the binary nature of water availability would be reflected in blue oak root architecture. Our objective was to understand how the form of the root system facilitates ecosystem functioning. To do this, we sought to characterize the structure of the root system, and survey coarse root distribution with ground penetrating radar (GPR), due to its advantages in covering large areas rapidly and non-destructively. Because GPR remains a relatively new technology for examining root distribution, an ancillary objective was to test this methodology, and help facilitate its application more broadly. A third objective was to test the potential for upscaling coarse root biomass by developing allometric relations based on LIDAR measurements of above ground canopy structure. We surveyed six 8x8 m locations with trees varying in size, age and clumping (i.e. isolated trees vs. tree clusters). GPR signals were transformed to root biomass by calibrating them against excavated roots. Toward this goal, we positioned two rectangles of size 60x100 cm in each of the grids, excavated and sieved soil to harvest roots. Our results indicate that coarse roots occupy the full soil profile, and that root biomass of old large trees peaks just above the bedrock. As opposed to other semi-arid regions, where trees often develop extensive shallow coarse lateral roots, in order to exploit the entire wet-soil medium, we found that coarse root density decreased with distance from the bole, and dropped sharply at a distance of 2 m. We upscaled root biomass to stand-scale (2.8±0.4 kg m-2) based on LiDAR analysis of the relative abundance of each tree configuration. We argue that the deep and narrow root structure we observed reflects the ecohydrology of oaks in this ecosystem, because

  10. Use of carbon isotope analysis to understand semi-arid erosion dynamics and long-term semi-arid land degradation.

    PubMed

    Turnbull, Laura; Brazier, Richard E; Wainwright, John; Dixon, Liz; Bol, Roland

    2008-06-01

    Many semi-arid areas worldwide are becoming degraded, in the form of C(4) grasslands being replaced by C(3) shrublands, which causes an increase in surface runoff and erosion, and altered nutrient cycling, which may affect global biogeochemical cycling. The prevention or control of vegetation transitions is hindered by a lack of understanding of their temporal and spatial dynamics, particularly in terms of interactions between biotic and abiotic processes. This research investigates (1) the effects of soil erosion on the delta(13)C values of soil organic matter (SOM) throughout the soil profile and its implications for reconstructing vegetation change using carbon-isotope analysis and (2) the spatial properties of erosion over a grass-shrub transition to increase understanding of biotic-abiotic interactions by using delta(13)C signals of eroded material as a sediment tracer. Results demonstrate that the soils over grass-shrub transitions are not in steady state. A complex interplay of factors determines the input of SOM to the surface horizon of the soil and its subsequent retention and turnover through the soil profile. A positive correlation between event runoff and delta(13)C signatures of eroded sediment was found in all plots. This indicates that the delta(13)C signatures of eroded sediment may provide a means of distinguishing between changes in erosion dynamics over runoff events of different magnitudes and over different vegetation types. The development of this technique using delta(13)C signatures of eroded sediment provides a new means of furthering existing understanding of erosion dynamics over vegetation transitions. This is critical in terms of understanding biotic-abiotic feedbacks and the evolution of areas subject to vegetation change in semi-arid environments.

  11. Latent heat loss and sweat gland histology of male goats in an equatorial semi-arid environment

    NASA Astrophysics Data System (ADS)

    de Melo Costa, Cíntia Carol; Maia, Alex Sandro Campos; Neto, José Domingues Fontenele; Oliveira, Steffan Edward Octávio; de Queiroz, João Paulo Araújo Fernandes

    2014-03-01

    The objective of this work was to quantify the heat loss by cutaneous evaporation of goats in an equatorial semi-arid environment. The latent heat loss from the body surfaces of these ten undefined breed goats was measured using a ventilated capsule in sun and shade and in the three body regions (neck, flank and hindquarters). Skin samples from these three regions were histologically analyzed to relate the quantity of sweat glands, the area of sweat glands and the epithelium thickness of each of these regions to the heat loss by cutaneous evaporation of the examined goats. The epithelium thickness that was measured varied significantly for body regions with different quantities and areas of sweat glands ( P < 0.01). Among the body regions that were examined, the samples from the neck demonstrated the highest epithelium thickness (16.23 ± 0.13 μm). However, the samples of sweat glands from the flank had the biggest area (43330.51 ± 778.71 μm2) and quantity per square centimeter (390 ± 9 cm-2). After the animals were exposed to sun, the flanks lost the greatest amount of heat by cutaneous evaporation (73.03 ± 1.75 W m-2) and possessed the highest surface temperatures (39.47 ± 0.18 °C). The histological characteristics may have influenced the heat loss by cutaneous evaporation that was observed in the flank region after the animals were exposed to sun.

  12. Latent heat loss and sweat gland histology of male goats in an equatorial semi-arid environment

    NASA Astrophysics Data System (ADS)

    de Melo Costa, Cíntia Carol; Maia, Alex Sandro Campos; Neto, José Domingues Fontenele; Oliveira, Steffan Edward Octávio; de Queiroz, João Paulo Araújo Fernandes

    2013-03-01

    The objective of this work was to quantify the heat loss by cutaneous evaporation of goats in an equatorial semi-arid environment. The latent heat loss from the body surfaces of these ten undefined breed goats was measured using a ventilated capsule in sun and shade and in the three body regions (neck, flank and hindquarters). Skin samples from these three regions were histologically analyzed to relate the quantity of sweat glands, the area of sweat glands and the epithelium thickness of each of these regions to the heat loss by cutaneous evaporation of the examined goats. The epithelium thickness that was measured varied significantly for body regions with different quantities and areas of sweat glands (P < 0.01). Among the body regions that were examined, the samples from the neck demonstrated the highest epithelium thickness (16.23 ± 0.13 μm). However, the samples of sweat glands from the flank had the biggest area (43330.51 ± 778.71 μm2) and quantity per square centimeter (390 ± 9 cm-2). After the animals were exposed to sun, the flanks lost the greatest amount of heat by cutaneous evaporation (73.03 ± 1.75 W m-2) and possessed the highest surface temperatures (39.47 ± 0.18 °C). The histological characteristics may have influenced the heat loss by cutaneous evaporation that was observed in the flank region after the animals were exposed to sun.

  13. Understanding environmental drivers in the regulation of soil respiration dynamics after fire in semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Lewandrowski, Wolfgang; Erickson, Todd E.; Dixon, Kingsley W.; Merritt, David J.

    2016-04-01

    Keywords: Pilbara, soil CO2 efflux, soil C, soil moisture, soil temperature Introduction Soil respiration (Rs) has become a major research focus given the increase in atmospheric CO2 emissions and the large contribution of these CO2 fluxes from soils (Van Groenigen et al., 2014). In addition to its importance in the global C cycle, Rs is a fundamental indicator of soil health and quality that reflects the level of microbial activity and provides an indication of the ability of soils to support plant growth (Oyonarte et al., 2012; Munoz-Rojas et al., 2015). Wildfires can have a significant impact on Rs rates, with the scale of the impact depending on environmental factors such as temperature and moisture, and organic C content in the soil. Vegetation cover can have a significant effect on regulating organic C contents; and while advances are made into understanding the effects of fire on organic C contents and CO2 fluxes (Granged et al., 2011; Willaarts et al., 2015; Muñoz-Rojas et al., 2016), there is limited knowledge of the variability of Rs across ecosystem types, vegetation communities, and responses to fire. In this research we aimed to assess the impacts of a wildfire on the soil CO2 fluxes and soil respiration in a semi-arid ecosystem of Western Australia (Pilbara biogeographical region), and to understand the main environmental drivers controlling these fluxes in different vegetation types. The study has application for other arid and semi-arid regions of the world. Methods The study area was selected following a wildfire that affected 25 ha in February 2014. Twelve plots were established in the burnt site (B) within a 400 m2 area, and 12 plots in an adjacent unburnt control site. At each site, three plots were installed below the canopy of each of the most representative vegetation types of the areas: Eucalyptus trees, Acacia shrubs and Triodia grasses, and three on bare soil. Soil sampling and measurement of soil CO2 efflux, temperature and moisture were

  14. Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments

    NASA Astrophysics Data System (ADS)

    Jackson, W. Andrew; Böhlke, J. K.; Andraski, Brian J.; Fahlquist, Lynne; Bexfield, Laura; Eckardt, Frank D.; Gates, John B.; Davila, Alfonso F.; McKay, Christopher P.; Rao, Balaji; Sevanthi, Ritesh; Rajagopalan, Srinath; Estrada, Nubia; Sturchio, Neil; Hatzinger, Paul B.; Anderson, Todd A.; Orris, Greta; Betancourt, Julio; Stonestrom, David; Latorre, Claudio; Li, Yanhe; Harvey, Gregory J.

    2015-09-01

    Natural perchlorate (ClO4-) is of increasing interest due to its wide-spread occurrence on Earth and Mars, yet little information exists on the relative abundance of ClO4- compared to other major anions, its stability, or long-term variations in production that may impact the observed distributions. Our objectives were to evaluate the occurrence and fate of ClO4- in groundwater and soils/caliche in arid and semi-arid environments (southwestern United States, southern Africa, United Arab Emirates, China, Antarctica, and Chile) and the relationship of ClO4- to the more well-studied atmospherically deposited anions NO3- and Cl- as a means to understand the prevalent processes that affect the accumulation of these species over various time scales. ClO4- is globally distributed in soil and groundwater in arid and semi-arid regions on Earth at concentrations ranging from 10-1 to 106 μg/kg. Generally, the ClO4- concentration in these regions increases with aridity index, but also depends on the duration of arid conditions. In many arid and semi-arid areas, NO3- and ClO4- co-occur at molar ratios (NO3-/ClO4-) that vary between ∼104 and 105. We hypothesize that atmospheric deposition ratios are largely preserved in hyper-arid areas that support little or no biological activity (e.g. plants or bacteria), but can be altered in areas with more active biological processes including N2 fixation, N mineralization, nitrification, denitrification, and microbial ClO4- reduction, as indicated in part by NO3- isotope data. In contrast, much larger ranges of Cl-/ClO4- and Cl-/NO3- ratios indicate Cl- varies independently from both ClO4- and NO3-. The general lack of correlation between Cl- and ClO4- or NO3- implies that Cl- is not a good indicator of co-deposition and should be used with care when interpreting oxyanion cycling in arid systems. The Atacama Desert appears to be unique compared to all other terrestrial locations having a NO3-/ClO4- molar ratio ∼103. The relative

  15. Estimation of groundwater recharge via deuterium labelling in the semi-arid Cuvelai-Etosha Basin, Namibia.

    PubMed

    Beyer, Matthias; Gaj, Marcel; Hamutoko, Josefina Tulimeveva; Koeniger, Paul; Wanke, Heike; Himmelsbach, Thomas

    2015-01-01

    The stable water isotope deuterium ((2)H) was applied as an artificial tracer ((2)H2O) in order to estimate groundwater recharge through the unsaturated zone and describe soil water movement in a semi-arid region of northern central Namibia. A particular focus of this study was to assess the spatiotemporal persistence of the tracer when applied in the field on a small scale under extreme climatic conditions and to propose a method to obtain estimates of recharge in data-scarce regions. At two natural sites that differ in vegetation cover, soil and geology, 500 ml of a 70% (2)H2O solution was irrigated onto water saturated plots. The displacement of the (2)H peak was analyzed 1 and 10 days after an artificial rain event of 20 mm as well as after the rainy season. Results show that it is possible to apply the peak displacement method for the estimation of groundwater recharge rates in semi-arid environments via deuterium labelling. Potential recharge for the rainy season 2013/2014 was calculated as 45 mm a(-1) at 5.6 m depth and 40 mm a(-1) at 0.9 m depth at the two studied sites, respectively. Under saturated conditions, the artificial rain events moved 2.1 and 0.5 m downwards, respectively. The tracer at the deep sand site (site 1) was found after the rainy season at 5.6 m depth, corresponding to a displacement of 3.2 m. This equals in an average travel velocity of 2.8 cm d(-1) during the rainy season at the first site. At the second location, the tracer peak was discovered at 0.9 m depth; displacement was found to be only 0.4 m equalling an average movement of 0.2 cm d(-1) through the unsaturated zone due to an underlying calcrete formation. Tracer recovery after one rainy season was found to be as low as 3.6% at site 1 and 1.9% at site 2. With an in situ measuring technique, a three-dimensional distribution of (2)H after the rainy season could be measured and visualized. This study comprises the first application of the peak displacement method using a

  16. Estimation of groundwater recharge via deuterium labelling in the semi-arid Cuvelai-Etosha Basin, Namibia.

    PubMed

    Beyer, Matthias; Gaj, Marcel; Hamutoko, Josefina Tulimeveva; Koeniger, Paul; Wanke, Heike; Himmelsbach, Thomas

    2015-01-01

    The stable water isotope deuterium ((2)H) was applied as an artificial tracer ((2)H2O) in order to estimate groundwater recharge through the unsaturated zone and describe soil water movement in a semi-arid region of northern central Namibia. A particular focus of this study was to assess the spatiotemporal persistence of the tracer when applied in the field on a small scale under extreme climatic conditions and to propose a method to obtain estimates of recharge in data-scarce regions. At two natural sites that differ in vegetation cover, soil and geology, 500 ml of a 70% (2)H2O solution was irrigated onto water saturated plots. The displacement of the (2)H peak was analyzed 1 and 10 days after an artificial rain event of 20 mm as well as after the rainy season. Results show that it is possible to apply the peak displacement method for the estimation of groundwater recharge rates in semi-arid environments via deuterium labelling. Potential recharge for the rainy season 2013/2014 was calculated as 45 mm a(-1) at 5.6 m depth and 40 mm a(-1) at 0.9 m depth at the two studied sites, respectively. Under saturated conditions, the artificial rain events moved 2.1 and 0.5 m downwards, respectively. The tracer at the deep sand site (site 1) was found after the rainy season at 5.6 m depth, corresponding to a displacement of 3.2 m. This equals in an average travel velocity of 2.8 cm d(-1) during the rainy season at the first site. At the second location, the tracer peak was discovered at 0.9 m depth; displacement was found to be only 0.4 m equalling an average movement of 0.2 cm d(-1) through the unsaturated zone due to an underlying calcrete formation. Tracer recovery after one rainy season was found to be as low as 3.6% at site 1 and 1.9% at site 2. With an in situ measuring technique, a three-dimensional distribution of (2)H after the rainy season could be measured and visualized. This study comprises the first application of the peak displacement method using a

  17. Quantifying the resilience of carbon dynamics in semi-arid biomes in the Southwestern U.S. to drought

    NASA Astrophysics Data System (ADS)

    Litvak, M. E.; Krofcheck, D. J.; Maurer, G.

    2015-12-01

    Semi-arid biomes in many parts of the Southwestern U.S. have experienced a range of precipitation over the last decade, ranging from wetter than average years 2006-2010 (relative to the 40-year PRISM mean), extreme drought years (2010-2011) and slightly dry-average precipitation years (2013-2015). While annual carbon uptake in semi-arid biomes of the Southwestern US is relatively low, compared to more temperate ecosystems, collectively these biomes store a significant amount of carbon on a regional scale. It is therefore of great interest to understand what impact this range in precipitation variability has on inter- and intra- annual variability in regional carbon dynamics. We use an 9 year record from 2007-2015 of continuous measurements of net ecosystem exchange of carbon (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (Re), made across a network of flux towers along an elevation/aridity gradient in New Mexico, the New Mexico Elevation Gradient (NMEG), to quantify biome-specific responses of carbon dynamics to climate variability over this time period. Biomes include a desert grassland, creosote shrubland, juniper savanna, piñon-juniper woodland, and ponderosa pine and subalpine mixed conifer forests. We compared daily, seasonal and annual NEP, GPP and Re means between pre-drought (2007-2010), drought (2011-2012), and post-drought years (2013-2015). All biomes sequestered less carbon in the drought years, compared to the pre-drought years (~30-40, 270 and 60 g C/m2 less in low and middle elevation biomes, ponderosa pine, and mixed conifer forest, respectively), as GPP in all biomes was more sensitive to the drought than Re. In the post-drought years, GPP was still only 80-90% what it was in the pre-drought years. Re, however, in all biomes except for the creosote shrubland, was 5-15% higher in the post-drought years compared to pre-drought. As a result, carbon sequestration in these biomes was 20-75% lower in the post

  18. Stomatal characteristics of riparian poplar species in a semi-arid environment.

    PubMed

    Pearce, David W; Millard, Sandra; Bray, Douglas F; Rood, Stewart B

    2006-02-01

    Several native poplar species meet at the margins of their natural distributions in southern Alberta, Canada. In this semi-arid area, poplars are obligate riparian species but they occupy several intergrading ecoregions. Populus deltoides Bartr. ex Marsh predominates in the warmest and driest eastern prairie ecoregions; P. balsamifera L. occupies the cooler and wetter western parkland and montane ecoregions; and P. angustifolia James and hybrids between the species occur in the intermediate grassland ecoregions. We investigated stomatal characteristics of these poplars in 51 genotypes collected across the range of ecoregions and grown in a semi-arid common garden. Stomatal length differed among genotypes within species but did not differ among species, ranging from 19 to 22 microm. Total stomatal densities (adaxial plus abaxial) differed among genotypes within species but were similar among species (290-420 stomata mm(-2)). Single-surface stomatal densities differed among species and consequently, the ratio of adaxial:abaxial stomatal density also differed, ranging from 0.94 for P. deltoides to 0.27 for P. balsamifera, with intermediate stomatal density ratios in P. angustifolia and hybrids. In a subsequent study of a subset of the same genotypes, stomatal density was correlated with stomatal conductance (r2 = 0.75) and the conductance ratios differed among species in the same manner as the stomatal density ratios. We conclude that: (1) diverse poplar genotypes respond similarly to a semi-arid environment by producing comparatively small and dense stomata; (2) differences in stomatal density underlie differences in stomatal conductance and differences among species in stomatal density ratio or conductance ratio may reflect adaptation to climatic differences among ecoregions; and (3) there is substantial variation in stomatal characteristics within and among species and hybrids in this area that could be useful for the selection and breeding of poplars adapted to

  19. Changes in Semi-Arid Plant Species Associations along a Livestock Grazing Gradient

    PubMed Central

    Saiz, Hugo; Alados, Concepción L.

    2012-01-01

    In semi-arid ecosystems, vegetation is heterogeneously distributed, with plant species often associating in patches. These associations between species are not constant, but depend on the particular response of each species to environmental factors. Here, we investigated how plant species associations change in response to livestock grazing in a semi-arid ecosystem, Cabo de Gata-Níjar Natural Park in South East Spain. We established linear point-intercept transects at four sites with different grazing intensity, and recorded all species at each point. We investigated plant associations by comparing the number of times that each pair of species occurred at the same spatial point (co-occurrences), with the expected number of times based on species abundances. We also assessed associations for each shrub and grass species by considering all their pairs of associations and for the whole plant community by considering all pairs of associations on each site. At all sites, the plant community had a negative pattern of association, with fewer co-occurrences than expected. Negative association in the plant community increased at maximum grazing intensity. Most species associated as expected, particularly grass species, and positive associations were most important at intermediate grazing intensities. No species changed its type of association along the grazing gradient. We conclude that in the present plant community, grazing-resistant species compete among themselves and segregate in space. Some shrub species act as refuges for grazing-sensitive species that benefit from being spatially associated with shrub species, particularly at intermediate grazing intensities where positive associations were highest. At high grazing intensity, these shrubs can no longer persist and positive associations decrease due to the disappearance of refuges. Spatial associations between plant species and their response to grazing help identify the factors that organize plant communities, and

  20. Recharge estimation in a large semi-arid basin using storage - discharge relationships

    NASA Astrophysics Data System (ADS)

    Bulovic, Nena; Larsen, Joshua; Reading, Lucy; McIntyre, Neil; Jarihani, Abdollah; Sabburg, Letitia; Undershultz, Jim

    2015-04-01

    The characteristics of flow recession in the absence of precipitation have long been used to infer upstream catchment storage properties. An intriguing aspect of this storage - discharge relationship occurs when changes in flow recession occur following a rainfall event due to increased storage. The main assumption in this case is that additional groundwater recharge has increased the storage within flow systems connected to the stream, which is then reflected in the increased recessional flow. Using flow records from 4 catchments (~100 km2) across the headwaters of the semi-arid Condamine Basin (and the unconfined section of the Surat artesian groundwater basin) within central eastern Australia, we evaluate and compare storage -discharge relationships and the change in storage for large individual events. Converting this to recharge resulted in low values compared to a number of independent recharge estimation techniques (chloride mass balance, water balance, groundwater hydrograph analysis). This discrepancy may arise because of some inherent differences between the techniques, however some important assumptions in the storage - discharge analysis are worth exploring. These include: the impact of evapotranspiration (ET) on the flow recession, which is largely unaccounted for, and is likely to be significant in semi-arid environments, and the bias towards larger events within the analysis, which is related to the difficulty associated with incorporating the large number of small events within automated time series analysis. We propose accounting for these limitations through the inclusion of remote sensing based ET estimates, and the use of multiple automated hydrograph separation techniques in extracting flow recession periods for analysis, and preferably those with lower user subjectivity. Overcoming these limitations is essential if catchment storage - discharge analysis techniques are to be more broadly applied to groundwater recharge estimation problems

  1. Carbon storage capacity of semi-arid grassland soils and sequestration potentials in Northern China

    NASA Astrophysics Data System (ADS)

    Wiesmeier, Martin; Munro, Sam; Barthold, Frauke; Steffens, Markus; Schad, Peter; Kögel-Knabner, Ingrid

    2015-04-01

    Organic carbon (OC) sequestration in degraded semi-arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the potential saturation of soil organic carbon (SOC) and derived sequestration potentials in steppe soils is missing. In this study, we estimated the OC storage capacity of semi-arid grassland soils on the basis of remote, natural steppe locations in Inner Mongolia, Northern China. Based on the maximum OC saturation of the fine mineral fraction (silt and clay particles <20 µm) of natural grassland soils, OC sequestration potentials of degraded steppe soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its OC content, confirming the importance of silt and clay particles for OC stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the derived OC storage capacity, degraded steppe soils showed a high OC saturation of 84 to 89% despite massive SOC losses. As a result, the OC sequestration potential of degraded grassland soils was generally low. This can be related to a relatively high contribution of labile SOC, which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and thus to a direct loss of the ability to stabilize additional OC amounts. Our findings indicate that the SOC loss in semi-arid environments induced by intensive land use is largely irreversible. Observed SOC increases after improved land management mainly result in an accumulation of labile SOC prone to land use/climate changes and can thus not be regarded as contribution to long-term OC sequestration.

  2. Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China.

    PubMed

    Wiesmeier, Martin; Munro, Sam; Barthold, Frauke; Steffens, Markus; Schad, Peter; Kögel-Knabner, Ingrid

    2015-10-01

    Organic carbon (OC) sequestration in degraded semi-arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the OC storage capacity of semi-arid grassland soils on the basis of remote, natural steppe fragments in northern China. Based on the maximum OC saturation of silt and clay particles <20 μm, OC sequestration potentials of degraded steppe soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its OC content, confirming the importance of silt and clay particles for OC stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the estimated OC storage capacity, degraded steppe soils showed a high OC saturation of 78-85% despite massive SOC losses due to unsustainable land use. As a result, the potential of degraded grassland soils to sequester additional OC was generally low. This can be related to a relatively high contribution of labile SOC, which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and consequently results in a direct loss of the ability to stabilize additional OC. Our findings indicate that the SOC loss in semi-arid environments induced by intensive land use is largely irreversible. Observed SOC increases after improved land management mainly result in an accumulation of labile SOC prone to land use/climate changes and therefore cannot be regarded as contribution to long-term OC sequestration.

  3. Soil seed bank recovery occurs more rapidly than expected in semi-arid Mediterranean gypsum vegetation

    PubMed Central

    Olano, J. M.; Caballero, I.; Escudero, A.

    2012-01-01

    Background and Aims Seed banks are critical in arid ecosystems and ensure the persistence of species. Despite the importance of seed banks, knowledge about their formation and the extent to which a seed bank can recover after severe perturbation remains scarce. If undisturbed, soil seed banks reflect a long vegetation history; therefore, we would expect that new soil seed banks and those of undisturbed soils require long periods to become similar with respect to both density and composition. In contrast, if soil seed banks are only a short- to mid-term reservoir in which long-term accumulation constitutes only a tiny fraction, they will recover rapidly from the vegetation. To shed light on this question, we evaluated seed bank formation in a semi-arid gypsum community. Methods Soils from 300 plots were replaced with sterilized soil in an undisturbed semi-arid Mediterranean community. Seasonal changes in seed bank density and composition were monitored for 3 years by comparing paired sterilized and control soil samples at each plot. Key Results Differences in seed bank density between sterilized and control soil disappeared after 18 months. The composition of sterilized seed banks was correlated with that of the control plots from the first sampling date, and both were highly correlated with vegetation. Nearly 24 % of the seed bank density could be attributed to secondary dispersal. Most seeds died before emergence (66·41–71·33 %), whereas the rest either emerged (14·08–15·48 %) or persisted in the soil (14·59–18·11 %). Conclusions Seed banks can recover very rapidly even under the limiting and stressful conditions of semi-arid environments. This recovery is based mainly on the seed rain at small scales together with secondary dispersal from intact seed banks in the vicinity. These results emphasize the relevance of processes occurring on short spatial scales in determining community structure. PMID:22003238

  4. Geochemical Weathering Increases Lead Bioaccessibility in Semi-Arid Mine Tailings

    PubMed Central

    Hayes, Sarah M.; Webb, Sam M.; Bargar, John R.; O'Day, Peggy A.; Maier, Raina M.; Chorover, Jon

    2012-01-01

    Mine tailings can host elevated concentrations of toxic metal(loid)s that represent a significant hazard to surrounding communities and ecosystems. Eolian transport, capable of translocating small (micrometer-sized) particles, can be the dominant mechanism of toxic metal dispersion in arid or semi-arid landscapes. Human exposure to metals can then occur via direct inhalation or ingestion of particulates. The fact that measured doses of total lead (Pb) in geomedia correlate poorly with blood Pb levels highlights a need to better resolve the precise distribution of molecularly-speciated metal-bearing phases in the complex particle mixtures. Species distribution controls bioaccessibility, thereby directly impacting health risk. This study seeks to correlate Pb-containing particle size and mineral composition with lability and bioaccessibility in mine tailings subjected to weathering in a semi-arid environment. We employed X-ray absorption spectroscopy (XAS) and X-ray fluorescence (XRF), coupled with sequential chemical extractions, to study Pb speciation in tailings from the semi-arid Arizona Klondyke State Superfund Site. Representative samples ranging in pH from 2.6 to 5.4 were selected for in-depth study of Pb solid-phase speciation. The principle lead-bearing phase was plumbojarosite (PbFe6(SO4)4(OH)12), but anglesite (PbSO4) and iron oxide-sorbed Pb were also observed. Anglesite, the most bioavailable mineral species of lead identified in this study, was enriched in surficial tailings samples, where Pb concentrations in the clay size fraction were 2–3 times higher by mass relative to bulk. A mobile and bioaccessible Pb phase accumulates in surficial tailings, with a corresponding increase in risk of human exposure to atmospheric particles. PMID:22553941

  5. Hydrological modelling in small, semi-arid catchments of south-eastern Australia: reforestation affects groundwater but not streamflow

    NASA Astrophysics Data System (ADS)

    Dean, Joshua; Camporese, Matteo; Grover, Samantha; Webb, John; Dresel, Evan; Daly, Edoardo

    2015-04-01

    controls on hydrological regimes in semi-arid regions can be highly complex and region-specific.

  6. VNIR-SWIR-TIR hyperspectral airborne campaign for soil and sediment mapping in semi-arid south african environments

    NASA Astrophysics Data System (ADS)

    Milewski, Robert; Chabrillat, Sabine; Eisele, Andreas

    2016-04-01

    Airborne hyperspectral remote sensing techniques has been proven to offer efficient procedures for soil and sediment mineralogical mapping in arid areas on larger scales. Optical methods based on traditional remote sensing windows using the solar reflective spectral wavelength range from the visible-near infrared (VNIR: 0.4-1.1 μm) to the short-wave infrared region (SWIR: 1.1-2.5 μm) allow mapping of common soil properties such as iron oxides, textural characteristics and organic carbon. However, soil mapping in semi-arid environments using VNIR-SWIR is currently limited due to specific spectral characteristics. Challenges appear in such environments due to the common presence of sandy soils (coarse textured) which grain size distribution is driven by the dominant mineral, quartz (SiO2), and which lacks any distinctive Si-O bond related spectral features within the VNIR-SWIR. Furthermore, another challenge is represented by the common presence of other specific spectral features due to different salts (gypsum, halite) or coatings of different forms (cyanobacteria, iron-oxides and/or -oxyhydroxides) for which few studies exists or that oft prevent detection of any other potential spectral feature of e.g. soil organics. In this context, more methodological developments are needed to overcome current limitations of hyperspectral remote sensing for arid areas, and to extent its scope using the thermal infrared (TIR) wavelength region within the atmospheric window between 8 and 14 μm (longwave infrared). In 2015 an extensive VNIR-SWIR-TIR airborne hyperspectral dataset consisting of HySpex-VNIR, HySpex-SWIR (NEO) and Hyper-Cam (TELOPS) data has been acquired in various Namibian and South African landscapes part of the Dimap/GFZ campaign in the frame of the BMBF-SPACES Geoarchive project. Research goals are 1) to demonstrate the capabilities to extract information from such a dataset and 2) to demonstrate the potential of advanced hyperspectral remote sensing

  7. Recovery of microbial community structure and functioning after wildfire in semi-arid environments: optimising methods for monitoring and assessment

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Martini, Dylan; Erickson, Todd; Merritt, David; Dixon, Kingsley

    2015-04-01

    Introduction In semi-arid areas such as northern Western Australia, wildfires are a natural part of the environment and many ecosystems in these landscapes have evolved and developed a strong relationship with fire. Soil microbial communities play a crucial role in ecosystem processes by regulating the cycling of nutrients via decomposition, mineralization, and immobilization processes. Thus, the structure (e.g. soil microbial biomass) and functioning (e.g. soil microbial activity) of microbial communities, as well as their changes after ecosystem disturbance, can be useful indicators of soil quality and health recovery. In this research, we assess the impacts of fire on soil microbial communities and their recovery in a biodiverse semi-arid environment of Western Australia (Pilbara region). New methods for determining soil microbial respiration as an indicator of microbial activity and soil health are also tested. Methodology Soil samples were collected from 10 similar ecosystems in the Pilbara with analogous native vegetation, but differing levels of post-fire disturbance (i.e. 3 months, 1 year, 5, 7 and 14 years after wildfire). Soil microbial activity was measured with the Solvita test which determines soil microbial respiration rate based on the measurement of the CO2 burst of a dry soil after it is moistened. Soils were dried and re-wetted and a CO2 probe was inserted before incubation at constant conditions of 25°C during 24 h. Measurements were taken with a digital mini spectrometer. Microbial (bacteria and fungi) biomass and community composition were measured by phospholipid fatty acid analysis (PLFA). Results Immediately after the fire (i.e. 3 months), soil microbial activity and microbial biomass are similar to 14 years 'undisturbed' levels (53.18±3.68 ppm CO2-CO and 14.07±0.65 mg kg-1, respectively). However, after the first year post-fire, with larger plant productivity, microbial biomass and microbial activity increase rapidly, peaking after 5

  8. The management of VA (vesicular-arbuscular) mycorrhizae in semi-arid environments

    SciTech Connect

    Miller, R.M.

    1987-01-01

    The need for management of vesicular-arbuscular mycorrhizae in semi-arid ecosystems represent an important challenge to belowground researchers especially as we increase our utilization of these stressed habitats. Within the laser couple of years several reviews have been prepared on the effects of disturbance to shrub and grasslands and their mycorrhizae. The purpose of this presentation is to discuss some research findings and management needs using examples from a high elevation cold desert, and from research in mid-grass and tallgrass prairies.

  9. A max-to-min technique for making projections of NDVI change in semi-arid Africa for food security early warning

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Funk, C. C.

    2005-12-01

    Climatic hazards such as droughts and floods often result in a decline in food production in economically vulnerable pre-industrial economies such as those in Africa. Early warning systems (EWS) have been developed to identify slow onset disasters such famine and epidemic disease that may result from hazardous environmental conditions. These conditions often precede food crises by many months, thus effective monitoring via satellite and in situ observations can allow for successful mitigation activities. Accurate forecasts of NDVI could increase monitoring lead times and allow for effective institutional planning of intervention, making early warning earlier. This paper presents a simple empirical max-to-min model for making 1 to 4 month NDVI projections. These statistical projections are based on parameterized satellite rainfall estimates (RFE) and relative humidity demand (RHD). A heuristic example in central Zimbabwe introduces the RFE growth and RHD loss terms. A quasi-global, one month ahead, 1 degree study then demonstrates reasonable accuracies in many semi-arid regions. In Africa, a 0.1 degree cross-validated skill assessment quantifies the technique's applicability at 1 to 4 month forecast intervals. These results suggest that useful projections can be made over many semi-arid, food insecure regions of Africa, with plausible extensions to drought prone areas of Asia, Australia and South America.

  10. Opportunities for optimization of in-field water harvesting to cope with changing climate in semi-arid smallholder farming areas of Zimbabwe.

    PubMed

    Nyamadzawo, George; Wuta, Menas; Nyamangara, Justice; Gumbo, Douglas

    2013-12-01

    Climate change has resulted in increased vulnerability of smallholder farmers in marginal areas of Zimbabwe where there is limited capacity to adapt to changing climate. One approach that has been used to adapt to changing climate is in-field water harvesting for improved crop yields in the semi- arid regions of Zimbabwe. This review analyses the history of soil and water conservation in Zimbabwe, efforts of improving water harvesting in the post independence era, farmer driven innovations, water harvesting technologies from other regions, and future directions of water harvesting in semi arid marginal areas. From this review it was observed that the blanket recommendations that were made on the early conservation method were not suitable for marginal areas as they resulted in increased losses of the much needed water. In the late 1960 and 70s', soil and water conservation efforts was a victim of the political environment and this resulted in poor uptake. Most of the water harvesting innovations which were promoted in the 1990s' and some farmer driven innovations improved crop yields in marginal areas but were poorly taken up by farmers because they are labour intensive as the structures should be made annually. To address the challenges of labour shortages, the use of permanent in-field water harvesting technologies are an option. There is also need to identify ways for promoting water harvesting techniques that have been proven to work and to explore farmer-led knowledge sharing platforms for scaling up proven technologies.

  11. Adjusting homestead feeding to requirements and nutrient intake of grazing goats on semi-arid, subtropical highland pastures.

    PubMed

    Dickhoefer, U; Mahgoub, O; Schlecht, E

    2011-03-01

    the natural vegetation. This management strategy therefore appears to be a valuable alternative to intensive livestock feeding in zero-grazing systems and may contribute to sustainable livestock production in ecologically fragile, semi-arid mountain regions. PMID:22445414

  12. Assessment of strip tillage systems for maize production in semi-arid Ethiopia: effects on grain yield and water balance

    NASA Astrophysics Data System (ADS)

    Temesgen, M.; Rockstrom, J.; Savenije, H. H. G.; Hoogmoed, W. B.

    2007-07-01

    The traditional tillage implement, the Maresha plow, and the tillage systems that require repeated and cross plowing have caused poor rainfall partitioning, land degradation and hence low water productivity in Ethiopia. Conservation tillage could alleviate these problems. However, no-till can not be feasible for smallholder farmers in semi-arid regions of Ethiopia because of difficulties in maintaining soil cover due to low rainfall and communal grazing and because of high costs of herbicides. Strip tillage systems may offer a solution. This study was initiated to test strip tillage systems using implements that were modified forms of the Maresha plow, and to evaluate the impacts of the new tillage systems on water balance and grain yields of maize (Zea mays XX). Experiments were conducted in two dry semi arid areas called Melkawoba and Wulinchity, in the central Rift Valley of Ethiopia during 2003-2005. Strip tillage systems that involved cultivating planting lines at a spacing of 0.75 m using the Maresha plow followed by subsoiling along the same lines (STS) and without subsoiling (ST) were compared with the traditional tillage system of 3 to 4 times plowing with the Maresha plow (CONV). Soil moisture was monitored to a depth of 1.8 m using Time Domain Reflectometer while surface runoff was measured using rectangular trough installed at the bottom of each plot. STS resulted in the least surface runoff (Qs=17 mm-season-1), the highest transpiration (T=196 mm-season-1), the highest grain yields (Y=2130 kg-ha-1) and the highest water productivity using total evaporation (WPET=0.67 kg-m-3) followed by ST (Qs=25 mm-season-1, T=178 mm-season-1, Y=1840 kg-ha-1, WPET=0.60 kg-m-3) and CONV (Qs=40 mm-season-1,T=158 mm-season-1, Y=1720 kg-ha-1, WPET=0.58 kg-m-3). However, when the time between the last tillage operation and planting of maize was more than 26 days, the reverse occurred. There was no statistically significant change in soil physical and chemical properties

  13. Applicability of passive compost bioreactors for treatment of extremely acidic and saline waters in semi-arid climates.

    PubMed

    Biermann, Vera; Lillicrap, Adam M; Magana, Claudia; Price, Barry; Bell, Richard W; Oldham, Carolyn E

    2014-05-15

    Extremely acidic and saline groundwater occurs naturally in south-western Australia. Discharge of this water to surface waters has increased following extensive clearing of native vegetation for agriculture and is likely to have negative environmental impacts. The use of passive treatment systems to manage the acidic discharge and its impacts is complicated by the region's semi-arid climate with hot dry summers and resulting periods of no flow. This study evaluates the performance of a pilot-scale compost bioreactor treating extremely acidic and saline drainage under semi-arid climatic conditions over a period of 2.5 years. The bioreactor's substrate consisted of municipal waste organics (MWO) mixed with 10 wt% recycled limestone. After the start-up phase the compost bioreactor raised the pH from ≤3.7 to ≥7 and produced net alkaline outflow for 126 days. The bioreactor removed up to 28 g/m(2)/d CaCO3 equivalent of acidity and acidity removal was found to be load dependent during the first and third year. Extended drying over summer combined with high salinity caused the formation of a salt-clay surface layer on top of the substrate, which was both beneficial and detrimental for bioreactor performance. The surface layer prevented the dehydration of the substrate and ensured it remained waterlogged when the water level in the bioreactor fell below the substrate surface in summer. However, when flow resumed the salt-clay layer acted as a barrier between the water and substrate decreasing performance efficiency. Performance increased again when the surface layer was broken up indicating that the negative climatic impacts can be managed. Based on substrate analysis after 1.5 years of operation, limestone dissolution was found to be the dominant acidity removal process contributing up to 78-91% of alkalinity generation, while bacterial sulfate reduction produced at least 9-22% of the total alkalinity. The substrate might last up to five years before the limestone

  14. Adjusting homestead feeding to requirements and nutrient intake of grazing goats on semi-arid, subtropical highland pastures.

    PubMed

    Dickhoefer, U; Mahgoub, O; Schlecht, E

    2011-03-01

    the natural vegetation. This management strategy therefore appears to be a valuable alternative to intensive livestock feeding in zero-grazing systems and may contribute to sustainable livestock production in ecologically fragile, semi-arid mountain regions.

  15. Impact of climate and analysis of desertification processes in semi arid land in Algeria: using data of Alsat-1 and Landsat

    NASA Astrophysics Data System (ADS)

    Ahmed, Z.; Habib, M.; Sid Ali, H.; Sofiane, K.

    2015-04-01

    The degradation of natural resources in arid and semi-arid areas was highlighted dramatically during this century due to population growth and transformation of land use systems. The Algerian steppe has undergone a regression over the past decade due to drought cycle, the extension of areas cultivated in marginal lands, population growth and overgrazing. These phenomena have led to different degradation processes, such as the destruction of vegetation, soil erosion, and deterioration of the physical environment. In this study, the work is mainly based on the criteria for classification and identification of physical parameters for spatial analysis, and multi-sources factors to determine the vulnerability of steppe formations and their impact on desertification. To do this, we used satellite data Alsat-1 (2009) IRS (2009) and LANDSAT TM (2001). These cross-sectional data with exogenous information could monitor the impact of the semi arid ecological diversity of steppe formations. A hierarchical process including the supervised image classification was used to characterize the main steppe formations. An analysis of the vulnerability of plant was conducted to assign weights and identify areas most susceptible to desertification. Vegetation indices combined with classification are used to characterize the forest and steppe formations to determine changes in land use. The results of this present study provide maps of different components of the steppe, formation that could assist in highlighting the magnitude of the degradation pathways, which affects the steppe environment, allowing an analysis of the process of desertification in the region.

  16. Use of vegetation index and surface temperature to estimate soil moisture in a semi-arid catchment in Brazil with limited monitoring

    NASA Astrophysics Data System (ADS)

    Rebello, V. P. A.; Cunha, T. M.; Rotunno Filho, O. C.; Barbosa, M. C.; Franklin, M. R.; Lakshmi, V.

    2014-12-01

    During the last two decades, there have been numerous studies using remote sensing to study catchment energy and water balance. A well-known example is the combination of surface temperature (Ts) and the normalized difference vegetation index (NDVI), which can provide information on vegetation and moisture conditions at the land surface. Since the soil moisture is a key variable in hydrological modeling, this information is potentially useful in large watersheds and remote areas in developing countries, where little infrastructure and few resources still make continuous in-situ monitoring of environmental variables a difficult task, as well as in semi arid areas, where the lack of water may represent an obstacle to the regional economic and sustainable development. The basic methodology is to calculate soil moisture indexes by the scatter plots of NDVI and Ts and to analyze the Ts/NDVI slope, in order to estimate temporal patterns of soil moisture. We will utilize the standard vegetation index and surface temperature products from MODIS and NOAA - AVHRR, and the results will be compared with soil moisture derived from a hydrological model (Soil Moisture Accounting Procedure). This work will focus on a 18200 km² semi-arid catchment in Northeastern Brazil.

  17. On the potential for regolith control of fluvial terrace formation in semi-arid escarpments

    NASA Astrophysics Data System (ADS)

    Norton, K. P.; Schlunegger, F.; Litty, C.

    2016-02-01

    Cut-fill terraces occur throughout the western Andes, where they have been associated with pluvial episodes on the Altiplano. The mechanism relating increased rainfall to sedimentation is, however, not well understood. Here, we apply a hillslope sediment model and reported cosmogenic nuclide concentrations in terraces to examine terrace formation in semi-arid escarpment environments. We focus on the Pisco river system in western Peru in order to determine probable hillslope processes and sediment transport conditions during phases of terrace formation. Specifically, we model steady-state and transient hillslope responses to increased precipitation rates. The measured terrace distribution and sediment agree with the transient predictions, suggesting strong climatic control on the cut-fill sequences in western Peru primarily through large variations in sediment load. Our model suggests that the ultimate control for these terraces is the availability of sediment on the hillslopes, with hillslope stripping supplying large sediment loads early in wet periods. At the Pisco river, this is manifest as an approximately 4-fold increase in erosion rates during pluvial periods. We suggest that this mechanism may also control terrace occurrence other semi-arid escarpment settings.

  18. On the potential for regolith control of fluvial terrace formation in semi-arid escarpments

    NASA Astrophysics Data System (ADS)

    Norton, K. P.; Schlunegger, F.; Litty, C.

    2015-08-01

    Cut-fill terraces occur throughout the western Andes where they have been associated with pluvial episodes on the Altiplano. The mechanism relating increased rainfall to sedimentation is however not well understood. Here, we apply a hillslope sediment model and reported cosmogenic nuclide concentrations in terraces to examine terrace formation in semi-arid escarpment environments. We focus on the Rio Pisco system in western Peru in order to determine probable hillslope processes and sediment transport conditions during phases of terrace formation. Specifically, we model steady state and transient hillslope responses to increased precipitation rates. The measured terrace distribution and reconstructed sediment loads measured for the Rio Pisco agree with the transient model predictions, suggesting strong climatic control on the cut-fill sequences in western Peru primarily through large variations in sediment load. Our model suggests that the ultimate control for these terraces is the availability of sediment on the hillslopes with hillslope stripping supplying large sediment loads early in wet periods. At the Rio Pisco, this is manifest as an approximately 4 × increase in erosion rates during pluvial periods. We suggest that this mechanism may also control terrace occurrence in other semi-arid escarpment settings.

  19. Predicting the Future Impact of Droughts on Ungulate Populations in Arid and Semi-Arid Environments

    PubMed Central

    Duncan, Clare; Chauvenet, Aliénor L. M.; McRae, Louise M.; Pettorelli, Nathalie

    2012-01-01

    Droughts can have a severe impact on the dynamics of animal populations, particularly in semi-arid and arid environments where herbivore populations are strongly limited by resource availability. Increased drought intensity under projected climate change scenarios can be expected to reduce the viability of such populations, yet this impact has seldom been quantified. In this study, we aim to fill this gap and assess how the predicted worsening of droughts over the 21st century is likely to impact the population dynamics of twelve ungulate species occurring in arid and semi-arid habitats. Our results provide support to the hypotheses that more sedentary, grazing and mixed feeding species will be put at high risk from future increases in drought intensity, suggesting that management intervention under these conditions should be targeted towards species possessing these traits. Predictive population models for all sedentary, grazing or mixed feeding species in our study show that their probability of extinction dramatically increases under future emissions scenarios, and that this extinction risk is greater for smaller populations than larger ones. Our study highlights the importance of quantifying the current and future impacts of increasing extreme natural events on populations and species in order to improve our ability to mitigate predicted biodiversity loss under climate change. PMID:23284700

  20. Spatial variation, mapping, and classification of moss families in semi-arid landscapes in NW Turkey.

    PubMed

    Abay, Gökhan; Gül, Ebru; Günlü, Alkan; Erşahin, Sabit; Ursavaş, Serhat

    2015-03-01

    Geostatistics and remote sensing techniques are frequently used in analyzing the spatial variability of terrestrial ecosystems. We analyzed spatial variation of moss families by geostatistics and Landsat imagery in a typical semi-arid landscape in North Central Anatolia, Turkey. We sampled 49 sites, chosen based on elevation, slope steepness, and slope aspect. Moss families were determined in a 10-m(2) representative area at each sampling site. The samples were transported to a laboratory and identified for moss families. In total, 10 families were found. Semivariogram analysis was performed to analyze the spatial structure of these families. The semivariogram analysis showed that the moss families were spatially dependent within 117 m in the study area. Thirteen thematic classes were categorized by Landsat Thematic Mapper (TM) image in the study area. The classification resulted in an overall kappa statistic of 0.8535, producer accuracy of 74.29, and user accuracy of 86.67. The family with the lowest classification accuracy was Orthotrichaceae (kappa of 0.6379, producer accuracy of 64.52, and user accuracy of 66.67). The moss families and the other classes were identified with a 0.78 kappa statistic value and an 80.74 % accuracy level by using the Landsat TM. The classification showed that Brachytheciaceae, Pottiaceae, Bryaceae, and Grimmiaceae were the most abundant moss families in this semi-arid environment.

  1. Climate change mitigation by carbon stock - the case of semi-arid West Africa

    NASA Astrophysics Data System (ADS)

    Lykke, A. M.; Barfod, A. S.; Tinggaard Svendsen, G.; Greve, M.; Svenning, J.-C.

    2009-11-01

    Semi-arid West Africa has not been integrated into the afforestation/reforestation (AR) carbon market. Most projects implemented under the Clean Development Mechanism (CDM) have focused on carbon emission reductions from industry and energy consumption, whereas only few (only one in West Africa) have been certified for AR carbon sequestration. A proposed mechanism, Reducing Emissions from Deforestation and Degradation (REDD) to be discussed under COP15 aims to reduce emissions by conserving already existing forests. REDD has high potential for carbon stocking at low costs, but focuses primarily on rain forest countries and excludes semi-arid West Africa from the preliminary setup. African savannas have potential to store carbon in the present situation with degrading ecosystems and relatively low revenues from crops and cattle, especially if it is possible to combine carbon stocking with promotion of secondary crops such as food resources and traditional medicines harvested on a sustainable basis. Methods for modelling and mapping of potential carbon biomass are being developed, but are still in a preliminary state. Although economic benefits from the sale of carbon credits are likely to be limited, carbon stocking is an interesting option if additional benefits are considered such as improved food security and protection of biodiversity.

  2. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain

    PubMed Central

    Maestre, Fernando T.; Bowker, Matthew A.; Cantón, Yolanda; Castillo-Monroy, Andrea P.; Cortina, Jordi; Escolar, Cristina; Escudero, Adrián; Lázaro, Roberto; Martínez, Isabel

    2015-01-01

    Biological soil crusts (BSCs), composed of lichens, cyanobacteria, mosses, liverworts and microorganisms, are key biotic components of arid and semi-arid ecosystems worldwide. Despite they are widespread in Spain, these organisms have been historically understudied in this country. This trend is beginning to change as a recent wave of research has been identifying BSCs as a model ecological system. Many studies and research projects carried out in Spain have explored the role of BSCs on water, carbon and nitrogen fluxes, the interactions between BSCs and vascular plants, their dynamics after disturbances, and their response to global change, among other topics. In this article we review the growing body of research on BSCs available from semi-arid areas of Spain, highlighting its importance for increasing our knowledge on this group of organisms. We also discuss how it is breaking new ground in emerging research areas on the ecology of BSCs, and how it can be use to guide management and restoration efforts. Finally, we provide directions for future research on the ecology of BSCs in Spain and abroad. PMID:25908884

  3. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil.

    PubMed

    Banning, Natasha C; Maccarone, Linda D; Fisk, Louise M; Murphy, Daniel V

    2015-06-08

    Ammonia-oxidising archaea (AOA) and bacteria (AOB) are responsible for the rate limiting step in nitrification; a key nitrogen (N) loss pathway in agricultural systems. Dominance of AOA relative to AOB in the amoA gene pool has been reported in many ecosystems, although their relative contributions to nitrification activity are less clear. Here we examined the distribution of AOA and AOB with depth in semi-arid agricultural soils in which soil organic matter content or pH had been altered, and related their distribution to gross nitrification rates. Soil depth had a significant effect on gene abundances, irrespective of management history. Contrary to reports of AOA dominance in soils elsewhere, AOA gene copy numbers were four-fold lower than AOB in the surface (0-10 cm). AOA gene abundance increased with depth while AOB decreased, and sub-soil abundances were approximately equal (10-90 cm). The depth profile of total archaea did not mirror that of AOA, indicating the likely presence of archaea without nitrification capacity in the surface. Gross nitrification rates declined significantly with depth and were positively correlated to AOB but negatively correlated to AOA gene abundances. We conclude that AOB are most likely responsible for regulating nitrification in these semi-arid soils.

  4. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil

    NASA Astrophysics Data System (ADS)

    Banning, Natasha C.; Maccarone, Linda D.; Fisk, Louise M.; Murphy, Daniel V.

    2015-06-01

    Ammonia-oxidising archaea (AOA) and bacteria (AOB) are responsible for the rate limiting step in nitrification; a key nitrogen (N) loss pathway in agricultural systems. Dominance of AOA relative to AOB in the amoA gene pool has been reported in many ecosystems, although their relative contributions to nitrification activity are less clear. Here we examined the distribution of AOA and AOB with depth in semi-arid agricultural soils in which soil organic matter content or pH had been altered, and related their distribution to gross nitrification rates. Soil depth had a significant effect on gene abundances, irrespective of management history. Contrary to reports of AOA dominance in soils elsewhere, AOA gene copy numbers were four-fold lower than AOB in the surface (0-10 cm). AOA gene abundance increased with depth while AOB decreased, and sub-soil abundances were approximately equal (10-90 cm). The depth profile of total archaea did not mirror that of AOA, indicating the likely presence of archaea without nitrification capacity in the surface. Gross nitrification rates declined significantly with depth and were positively correlated to AOB but negatively correlated to AOA gene abundances. We conclude that AOB are most likely responsible for regulating nitrification in these semi-arid soils.

  5. [Soil water resource use limit in semi-arid loess hilly area].

    PubMed

    Guo, Zhong-sheng

    2010-12-01

    Taking Caragana korshinskii as test object, and by using neutron probe, a long term observation was conducted on the soil water and plant growth during the process of vegetation restoration in semi-arid loess hilly area. The results showed that after seeding on waste land, the capability of plant community in conserving soil and water was promoted with time, with the depth of roots to absorb and use soil water increased and the soil water content reduced. Then, the dried soil layer appeared, and its deepness and thickness increased with increasing plant age. Therefore, the plant use of soil water had a limit, soil water resource use limit, i.e., the soil water storage when the deepness of dried soil layer was equal to the largest depth that rain could recharge. In the C. korshinskii woodland in semi-arid loess hilly area, the soil water resource use limit in 0-290 cm layer was 249.4 mm. When the soil water storage in woodland was close or equal to the soil water resource use limit, effective measures should be taken to decrease soil evapotranspiration or increase soil water supply to ensure the sustainable water use of plant roots. PMID:21442986

  6. Biogeochemical Connectivity in a Semi-Arid River Basin: San Pedro River , Arizona, USA

    NASA Astrophysics Data System (ADS)

    Meixner, T.; Brooks, P.; Hogan, J.

    2008-12-01

    Streams and rivers are closely connected to the groundwater that supplies their baseflow, but only episodically connected to the biogeochemically diverse uplands that dominate catchment area. This disconnection with uplands is especially marked in semi-arid systems where full connection of the catchment to the drainage network is infrequent, occurring for only a few days each year. While these hydrologic connections are infrequent, they are critical for supplying the carbon and nitrogen that drive in and near stream biogeochemistry for non-flood periods in these systems. Here we discuss a conceptual model of river scale catchment biogeochemistry for the San Pedro River. An important element of biogeochemical linkages in semi-arid river systems is that dissolved constituents are consumed during transport and thus upland contributions of dissolved materials decrease with travel distance and catchment size. Suspended and particulate export do not decrease with catchment size and thus represent large fluxes of nitrogen and carbon during flood flows in a river system. While some fraction of this suspended load is transported through a system a significant percentage remains in stream bed sediments. This sediment load represents a key resource for biogeochemical processing and nutrient availability during non-flood periods. These resources are mobilized into the aquatic environment through groundwater flux into the surface water system, hyporheic exchange and diurnal ET pumping of the stream bank environment. Floods and the sediment and nutrients fluxes they transport thus represent a hot moment that later drives the hot spot of riparian systems on the landscape.

  7. Fertilizer induced nitrous oxide emissions from Vertisols and Alfisols during sweet sorghum cultivation in the Indian semi-arid tropics.

    PubMed

    Ramu, Karri; Watanabe, Takeshi; Uchino, Hiroshi; Sahrawat, Kanwar L; Wani, Suhas P; Ito, Osamu

    2012-11-01

    Nitrous oxide (N(2)O) emissions from Vertisols and Alfisols during sweet sorghum cultivation in the Indian semi-arid tropics were determined using a closed chamber technique during the rainy season (June-October) of 2010. The study included two treatments, nitrogen (N) at a rate of 90 kg/ha and a control without N fertilizer application. The N(2)O emissions strongly coincided with N fertilization and rainfall events. The cumulative N(2)O-N emission from Alfisols was 1.81 N(2)O-N kg/ha for 90 N treatment and 0.15 N(2)O-N kg/ha for the 0 N treatment. Similarly, the N(2)O-N emission from Vertisols was 0.70 N(2)O-N kg/ha for 90 N treatment and 0.09 N(2)O-N kg/ha for the 0 N treatment. The mean N(2)O-N emission factor for fertilizer induced emissions from the Alfisols was 0.90% as compared to 0.32% for Vertisols. Our results suggest that the N(2)O emissions are dependent on the soil properties. Therefore, the monitoring of N(2)O emissions from different agro-ecological regions, having different soil types, rainfall characteristics, cropping systems and crop management practices are necessary to develop comprehensive and accurate green house gas inventories.

  8. Estimating the Changes and Impact Factors of Evapotranspiration in the Semi-arid Laohahe Basin, Northeast China

    NASA Astrophysics Data System (ADS)

    Yang, X.; Ren, L.; Yu, Z.

    2011-12-01

    Evapotranspiration (ET) is one important component of hydrological cycle in semi-arid regions, which can not be availably space-based measured. Remote sensors can make spatially resolved measurements over large areas, providing both spatial distribution and visualization of complex processes of evapotranspiration. In this paper, the spatial distribution of daily ET over Laohahe Basin in northeast China with area of 18112 km2 was assessed by using the Surface Energy Balance Algorithm for Land (SEBAL) model. A series of available Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite images on clouds-free days over the growing season (from April to October) in 2008 are used to estimate ET at a spatial resolution of 1 km. Harmonic Analysis of NDVI Time Series (HANTS) is then applied to generate a time series of daily ET over a year period by filling the gaps in the observation series for clouds. Finally, the results were validated with the water balance for the whole study area. The impact of ground parameters on evapotranspiration of the study area was quantified. The result indicates that (1) the SEBAL algorithm can be used to effectively estimate the ET in the Laohahe Basin; (2) The vegetation types, NDVI, and terrain have a direct effect on the spatial distribution of ET. These results can be used to provide current, reliable land use information for management and decision-making in the Laohahe Basin.

  9. Safe greywater reuse to augment water supply and provide sanitation in semi-arid areas of rural India.

    PubMed

    Godfrey, S; Labhasetwar, P; Wate, S; Jimenez, B

    2010-01-01

    Water reuse is recognized as a tool to increase water supply in peri-urban areas of semi-arid and arid regions of the world. However, it is an option rarely explored for rural areas in developing countries, and has not been documented extensively in the scientific literature. This paper presents results from 6 greywater reuse systems which were built with the objective to augment water supply and to provide sanitation in rural low income areas of Madhya Pradesh, India. The systems are based on reclaiming greywater from bathing for the use in toilet flushing and kitchen garden irrigation. The reuse systems were implemented based on the scientific rationale presented in the WHO (2006) guidelines. The paper presents evidence from the operation and evaluation of the greywater treatment plants under field conditions between 2005 and 2008. The paper concludes that greywater is a highly cost effective solution for water scarcity. In this study, reusing greywater resulted in a 60% increase in water availability, a reduction in open defecation and a fourfold increase in food availability.

  10. A 500-year history of floods in the semi arid basins of south-eastern Spain

    NASA Astrophysics Data System (ADS)

    Sánchez García, Carlos; Schulte, Lothar; Peña, Juan Carlos; Carvalho, Filpe; Brembilla, Carla

    2016-04-01

    Floods are one of the natural hazards with higher incidence in the south-eastern Spain, the driest region in Europe, causing fatalities, damage of infrastructure and economic losses. Flash-floods in semi arid environments are related to intensive rainfall which can last from few hours to days. These floods are violent and destructive because of their high discharges, sediment transport and aggradation processes in the flood plain. Also during historical times floods affected the population in the south-eastern Spain causing sever damage or in some cases the complete destruction of towns. Our studies focus on the flood reconstruction from historical sources of the Almanzora, Aguas and Antas river basins, which have a surface between 260-2600 km2. We have also compiled information from the Andarax river and compared the flood series with the Guadalentín and Segura basins from previous studies (Benito et. al., 2010 y Machado et al., 2011). Flood intensities have been classified in four levels according to the type of damage: 1) ordinary floods that only affect agriculture plots; 2) extraordinary floods which produce some damage to buildings and hydraulic infrastructure; 3) catastrophic floods which caused sever damage, fatalities and partial or complete destruction of towns. A higher damage intensity of +1 magnitude was assigned when the event is recorded from more than one major sub-basin (stretches and tributaries such as Huércal-Overa basin) or catchment (e.g. Antas River). In total 102 incidences of damages and 89 floods were reconstructed in the Almanzora (2.611 km2), Aguas (539 km2), Antas (261 km2) and Andarax (2.100 km2) catchments. The Almanzora River was affected by 36 floods (1550-2012). The highest events for the Almanzora River were in 1580, 1879, 1973 and 2012 producing many fatalities and destruction of several towns. In addition, we identified four flood-clusters 1750-1780, 1870-1900, 1960-1977 and 1989-2012 which coincides with the periods of

  11. Mapping Soil hydrologic features in a semi-arid irrigated area in Spain

    NASA Astrophysics Data System (ADS)

    Jiménez-Aguirre, M.° Teresa; Isidoro, Daniel; Usón, Asunción

    2016-04-01

    The lack of soil information is a managerial problem in irrigated areas in Spain. The Violada Irrigation District (VID; 5234 ha) is a gypsic, semi-arid region in the Middle Ebro River Basin, northeast Spain. VID is under irrigation since the 1940's. The implementation of the flood irrigation system gave rise to waterlogging problems, solved along the years with the installation of an artificial drainage network. Aggregated water balances have been performed in VID since the early 1980's considering average soil properties and aggregated irrigation data for the calculations (crop evapotranspiration, canal seepage, and soil drainage). In 2008-2009, 91% of the VID was modernized to sprinkler irrigation. This new system provides detailed irrigation management information that together with detailed soil information would allow for disaggregated water balances for a better understanding of the system. Our goal was to draw a semi-detailed soil map of VID presenting the main soil characteristics related to irrigation management. A second step of the work was to set up pedotransfer functions (PTF) to estimate the water content and saturated hydraulic conductivity (Ks) from easily measurable parameters. Thirty four pits were opened, described and sampled for chemical and physical properties. Thirty three additional auger holes were sampled for water holding capacity (WHC; down to 60 cm), helping to draw the soil units boundaries. And 15 Ks tests (inverse auger hole method) were made. The WHC was determined as the difference between the field capacity (FC) and wilting point (WP) measured in samples dried at 40°C during 5 days. The comparison with old values dried at 105°C for 2 days highlighted the importance of the method when gypsum is present in order to avoid water removal from gypsum molecules. The soil map was drawn down to family level. Thirteen soil units were defined by the combination of five subgroups [Typic Calcixerept (A), Petrocalcic Calcixerept (B), Gypsic

  12. Sr isotope study in the drainage water in semi-arid irrigation district, Adana, Turley

    NASA Astrophysics Data System (ADS)

    Kume, T.; Akca, E.; Nakano, T.; Nagano, T.; Kapur, S.; Watanabe, T.

    2009-12-01

    The management of drainage water from irrigated lands is an important issue not only for agricultural planning but also for environmental conservation. In arid and semi-arid regions, drainage water is reused as irrigation water due to lack of enough fresh irrigation water and irrigation schemes. The drainage water reuse should be undertaken only if long-term deleterious effects on soil properties can be avoided. In addition to salt concentration, the origin of salts of drainage water should be examined to avoid agricultural and environmental pollution. The Lower Seyhan Irrigation Project (LSIP), Adana, Turkey, faces to the Mediterranean. In the LSIP, intensive irrigated agriculture has conducted since 1960s. Recently, total amount of applied irrigation water has been increased along with expansion of agricultural area and fertilizer input is also increasing. Some part of the southern lowest fields is under sea level. Soil salinization and shallow groundwater have been observed in the lowest part due to irrigation water seepage from upper stream and insufficient drainage. Moreover, agricultural drainage water has been used for irrigation water there, so that the salt is a mixture of several components. Therefore, geo-chemical measurements are indispensable to clarify the source of salt. In this study, we focused on the isotopic and chemical compositions of agricultural drain water of three main drainage canals in the LSIP. Seasonal changes in drainage features were examined using 87Sr/86Sr ratio (Sr isotope ratio) and major cation data. The abundances of possible end components were determined using mixing model. The result of measurements showed that there was a good relationship between 87Sr/86Sr values and reciprocal values of Sr concentration, while drain water quality clearly differed between summer and winter. This means Sr of drain water consists of several origins. The relationship and other data showed that Sr of drain water was a mixture of three

  13. Understanding environmental drivers in the regulation of soil respiration dynamics after fire in semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Lewandrowski, Wolfgang; Erickson, Todd E.; Dixon, Kingsley W.; Merritt, David J.

    2016-04-01

    Keywords: Pilbara, soil CO2 efflux, soil C, soil moisture, soil temperature Introduction Soil respiration (Rs) has become a major research focus given the increase in atmospheric CO2 emissions and the large contribution of these CO2 fluxes from soils (Van Groenigen et al., 2014). In addition to its importance in the global C cycle, Rs is a fundamental indicator of soil health and quality that reflects the level of microbial activity and provides an indication of the ability of soils to support plant growth (Oyonarte et al., 2012; Munoz-Rojas et al., 2015). Wildfires can have a significant impact on Rs rates, with the scale of the impact depending on environmental factors such as temperature and moisture, and organic C content in the soil. Vegetation cover can have a significant effect on regulating organic C contents; and while advances are made into understanding the effects of fire on organic C contents and CO2 fluxes (Granged et al., 2011; Willaarts et al., 2015; Muñoz-Rojas et al., 2016), there is limited knowledge of the variability of Rs across ecosystem types, vegetation communities, and responses to fire. In this research we aimed to assess the impacts of a wildfire on the soil CO2 fluxes and soil respiration in a semi-arid ecosystem of Western Australia (Pilbara biogeographical region), and to understand the main environmental drivers controlling these fluxes in different vegetation types. The study has application for other arid and semi-arid regions of the world. Methods The study area was selected following a wildfire that affected 25 ha in February 2014. Twelve plots were established in the burnt site (B) within a 400 m2 area, and 12 plots in an adjacent unburnt control site. At each site, three plots were installed below the canopy of each of the most representative vegetation types of the areas: Eucalyptus trees, Acacia shrubs and Triodia grasses, and three on bare soil. Soil sampling and measurement of soil CO2 efflux, temperature and moisture were

  14. Genetic characterization of Kyrgyzstan fine-leaved Festuca valesiaca germplasm for use in semi-arid low-maintenance turf applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fine-leaved Festuca valesiaca Shleidcher ex. Gaudin (2n = 2x-4x) is native to heavily grazed, cold, semi-arid, Asian rangelands. However, its potential for low-maintenance turf applications in the semi-arid western United States and its relatedness to other agriculturally important Festuca species ...

  15. Dependence of juvenile reef fishes on semi-arid hypersaline estuary microhabitats as nurseries.

    PubMed

    Sales, N S; Dias, T L P; Baeta, A; Pessanha, A L M

    2016-07-01

    The differences between fish assemblages in three microhabitat types, in relation to vegetation and sediment characteristics of a hypersaline estuary located in an semi-arid zone in north-eastern Brazil, were investigated. Fishes were collected using a beach seine during the rainy and dry seasons in 2012. A total of 78 species were recorded, with the most common families being Gerreidae, Lutjanidae and Tetraodontidae. The majority of species were represented by juveniles, with Eucinostomus argenteus, Ulaema lefroyi and Sphoeroides greeleyi being the dominant species. The fish assemblage structures differed significantly among microhabitat types, with the narrow intertidal flat adjacent to the mangrove fringe supporting the most diverse fish fauna. In addition, only 27 species were common to all of the microhabitats. The results support the hypothesis that hypersaline estuaries serve as important nursery areas for various reef fish species, due to the structural complexity provided by their macroalgae beds and mangroves. PMID:27237742

  16. Dependence of juvenile reef fishes on semi-arid hypersaline estuary microhabitats as nurseries.

    PubMed

    Sales, N S; Dias, T L P; Baeta, A; Pessanha, A L M

    2016-07-01

    The differences between fish assemblages in three microhabitat types, in relation to vegetation and sediment characteristics of a hypersaline estuary located in an semi-arid zone in north-eastern Brazil, were investigated. Fishes were collected using a beach seine during the rainy and dry seasons in 2012. A total of 78 species were recorded, with the most common families being Gerreidae, Lutjanidae and Tetraodontidae. The majority of species were represented by juveniles, with Eucinostomus argenteus, Ulaema lefroyi and Sphoeroides greeleyi being the dominant species. The fish assemblage structures differed significantly among microhabitat types, with the narrow intertidal flat adjacent to the mangrove fringe supporting the most diverse fish fauna. In addition, only 27 species were common to all of the microhabitats. The results support the hypothesis that hypersaline estuaries serve as important nursery areas for various reef fish species, due to the structural complexity provided by their macroalgae beds and mangroves.

  17. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle.

    PubMed

    Poulter, Benjamin; Frank, David; Ciais, Philippe; Myneni, Ranga B; Andela, Niels; Bi, Jian; Broquet, Gregoire; Canadell, Josep G; Chevallier, Frederic; Liu, Yi Y; Running, Steven W; Sitch, Stephen; van der Werf, Guido R

    2014-05-29

    The land and ocean act as a sink for fossil-fuel emissions, thereby slowing the rise of atmospheric carbon dioxide concentrations. Although the uptake of carbon by oceanic and terrestrial processes has kept pace with accelerating carbon dioxide emissions until now, atmospheric carbon dioxide concentrations exhibit a large variability on interannual timescales, considered to be driven primarily by terrestrial ecosystem processes dominated by tropical rainforests. We use a terrestrial biogeochemical model, atmospheric carbon dioxide inversion and global carbon budget accounting methods to investigate the evolution of the terrestrial carbon sink over the past 30 years, with a focus on the underlying mechanisms responsible for the exceptionally large land carbon sink reported in 2011 (ref. 2). Here we show that our three terrestrial carbon sink estimates are in good agreement and support the finding of a 2011 record land carbon sink. Surprisingly, we find that the global carbon sink anomaly was driven by growth of semi-arid vegetation in the Southern Hemisphere, with almost 60 per cent of carbon uptake attributed to Australian ecosystems, where prevalent La Niña conditions caused up to six consecutive seasons of increased precipitation. In addition, since 1981, a six per cent expansion of vegetation cover over Australia was associated with a fourfold increase in the sensitivity of continental net carbon uptake to precipitation. Our findings suggest that the higher turnover rates of carbon pools in semi-arid biomes are an increasingly important driver of global carbon cycle inter-annual variability and that tropical rainforests may become less relevant drivers in the future. More research is needed to identify to what extent the carbon stocks accumulated during wet years are vulnerable to rapid decomposition or loss through fire in subsequent years.

  18. Impact of debris dams on hyporheic interaction along a semi-arid stream

    NASA Astrophysics Data System (ADS)

    Lautz, Laura K.; Siegel, Donald I.; Bauer, Robert L.

    2006-01-01

    Hyporheic exchange increases the potential for solute retention in streams by slowing downstream transport and increasing solute contact with the substrate. Hyporheic exchange may be a major mechanism to remove nutrients in semi-arid watersheds, where livestock have damaged stream riparian zones and contributed nutrients to stream channels. Debris dams, such as beaver dams and anthropogenic log dams, may increase hyporheic interactions by slowing stream water velocity, increasing flow complexity and diverting water to the subsurface.Here, we report the results of chloride tracer injection experiments done to evaluate hyporheic interaction along a 320 m reach of Red Canyon Creek, a second order stream in the semi-arid Wind River Range of Wyoming. The study site is part of a rangeland watershed managed by The Nature Conservancy of Wyoming, and used as a hydrologic field site by the University of Missouri Branson Geologic Field Station. The creek reach we investigated has debris dams and tight meanders that hypothetically should enhance hyporheic interaction. Breakthrough curves of chloride measured during the field experiment were modelled with OTIS-P, a one-dimensional, surface-water, solute-transport model from which we extracted the storage exchange rate and cross-sectional area of the storage zone As for hyporheic exchange. Along gaining reaches of the stream reach, short-term hyporheic interactions associated with debris dams were comparable to those associated with severe meanders. In contrast, along the non-gaining reach, stream water was diverted to the subsurface by debris dams and captured by large-scale near-stream flow paths. Overall, hyporheic exchange rates along Red Canyon Creek during snowmelt recession equal or exceed exchange rates observed during baseflow at other streams.

  19. Assemblage of a semi-arid annual plant community: abiotic and biotic filters act hierarchically.

    PubMed

    Luzuriaga, Arantzazu L; Sánchez, Ana M; Maestre, Fernando T; Escudero, Adrián

    2012-01-01

    The study of species coexistence and community assembly has been a hot topic in ecology for decades. Disentangling the hierarchical role of abiotic and biotic filters is crucial to understand community assembly processes. The most critical environmental factor in semi-arid environments is known to be water availability, and perennials are usually described as nurses that create milder local conditions and expand the niche range of several species. We aimed to broaden this view by jointly evaluating how biological soil crusts (BSCs), water availability, perennial species (presence/absence of Stipa tenacissima) and plant-plant interactions shape a semi-arid annual plant community. The presence and cover of annual species was monitored during three years of contrasting climate. Water stress acted as the primary filter determining the species pool available for plant community assembly. Stipa and BSCs acted as secondary filters by modulating the effects of water availability. At extremely harsh environmental conditions, Stipa exerted a negative effect on the annual plant community, while at more benign conditions it increased annual community richness. Biological soil crusts exerted a contradictory effect depending on climate and on the presence of Stipa, favoring annuals in the most adverse conditions but showing repulsion at higher water availability conditions. Finally, interactions among co-occurring annuals shaped species richness and diversity of the final annual plant assembly. This study sheds light on the processes determining the assembly of annual communities and highlights the importance of Biological Soil Crusts and of interactions among annual plants on the final outcome of the species assembly.

  20. The importance of plant water use on evapotranspiration covers in semi-arid Australia

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Arnold, S.; Doley, D.; Mulligan, D. R.; Baumgartl, T.

    2012-10-01

    We estimated the evapotranspiration (ET) for an area vegetated with characteristic semi-arid native Australian plant species on ET mine waste cover systems. These systems aim to minimise drainage into underlying hazardous wastes by maximising evaporation (E) from the soil surface and transpiration from vegetation. An open top chamber was used to measure diurnal and daily ET of two plant species - Senna artemisioides (silver cassia) and Sclerolaena birchii (galvanised burr) - after a simulated rainfall event, as well as E from bare soil. Both ET and E decreased with increasing time after initial watering. Different temporal patterns were observed for daily ET from the two plant species and E from bare soil, revealing Senna artemisioides as intensive and Sclerolaena birchii as extensive water exploiters. A strong positive linear relationship was identified between ET (and E), and the atmospheric water demand represented by the vapour pressure deficit. The relationship always was more pronounced in the morning than in the afternoon, indicating a diminishing water supply from the soil associated with a declining unsaturated hydraulic conductivity of the soil in the afternoon. The slopes of the regression lines were steepest for Senna artemisioides, reflecting its intensive water-exploiting characteristics. We used the derived estimates of ET and E to predict the effect of species composition on plot ET in relation to total vegetation coverage. Although both species proved suitable for an operational ET cover system, vegetation coverage should exceed at least 50% in order to markedly influence plot ET, a value which is likely to be unsustainable in semi-arid climates.

  1. Evaluation of water-limited cropping systems in a semi-arid climate using DSSAT-CSM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water is the major factor limiting crop production in western Kansas due to declining groundwater levels in the Ogallala aquifer resulting from withdrawals for irrigation exceeding recharge rates coupled with erratic semi-arid rainfall. Objectives were to calibrate and validate DSSAT-CSM (Decision S...

  2. Effects of feral free-roaming horses on semi-arid rangeland ecosystems: an example from the sagebrush steppe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feral horses (Equus caballus) are viewed as a symbol of freedom and power; however, they are also a largely unmanaged, non-native grazer in North America, South America, and Australia. Information on their influence on vegetation and soil characteristics in semi-arid rangelands has been limited by ...

  3. Simulating the hydrologic impacts of land-cover and climate changes in a semi-arid watershed

    EPA Science Inventory

    Changes in climate and land cover are principal variables affecting watershed hydrology. This paper uses a cell-based model to examine the hydrologic impacts of climate and land cover changes in the semi-arid Lower Virgin River (LVR) watershed located upstream of Lake Mead, Nevad...

  4. Small-Scale Farming in Semi-Arid Areas: Livelihood Dynamics between 1997 and 2010 in Laikipia, Kenya

    ERIC Educational Resources Information Center

    Ulrich, Anne; Speranza, Chinwe Ifejika; Roden, Paul; Kiteme, Boniface; Wiesmann, Urs; Nusser, Marcus

    2012-01-01

    The rural population of semi-arid lands in Kenya face multiple challenges that result from population growth, poor markets, land use and climatic changes. In particular, subsistence oriented farmers face various risks and opportunities in their attempt to secure their livelihoods. This paper presents an analysis on how livelihood assets and…

  5. Ecohydrologic response and recovery of a semi-arid shrubland over a five year period following burning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing trends in wildfire activity on semi-arid rangelands necessitate advancement in understanding of fire impacts on vegetation, soils, and runoff and erosion processes. This study used artificially applied rainfall and concentrated overland flow experiments to evaluate the ecohydrologic resp...

  6. Approaches of Integrated Watershed Management Project: Experiences of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

    ERIC Educational Resources Information Center

    Mula, Rosana P.; Wani, Suhas P.; Dar, William D.

    2008-01-01

    The process of innovation-development to scaling is varied and complex. Various actors are involved in every stage of the process. In scaling the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)-led integrated watershed management projects in India and South Asia, three drivers were identified--islanding approach,…

  7. Overview of water-saving potato production research for the semi-arid areas of Northern China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the arid and semi-arid areas of Northern China, potato makes a greater contribution to solve food problems, even though,frequent droughts, general water shortages and poor irrigation management often lead to low yields and poor tuber quality. Therefore, water-saving potato production plays an imp...

  8. Parameterization of ALMANAC crop simulation model for non-irrigated dry bean in semi-arid temperate areas in Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simulation models can be used to make management decisions when properly parameterized. This study aimed to parameterize the ALMANAC (Agricultural Land Management Alternatives with Numerical Assessment Criteria) crop simulation model for dry bean in the semi-arid temperate areas of Mexico. The par...

  9. Woody plants modulate the temporal dynamics of soil moisture in a semi-arid mesquite savanna 2023

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In arid and semi-arid ecosystems (drylands), soil moisture abundance limits biological activity and mediates the effects of anthropogenic global change factors such as atmospheric CO2 increases and climate warming. Moreover, climate variability and human activities are interacting to increase the ab...

  10. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in sequencing and genotyping technologies have enabled generation of several thousand markers including SSRs, SNPs, DArTs, hundreds of thousands transcript reads and BAC-end sequences in chickpea, pigeonpea and groundnut, three major legume crops of the semi-arid tropics. Comprehensive tran...

  11. Evaluation of soil and water conservation measures in a semi-arid river basin in Tunisia using SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Merguellil catchment (Central Tunisia) is a typical Mediterranean semi-arid basin which suffers from regular water shortage aggravated by current droughts. During the recent decades the continuous construction of small and large dams and Soil and Water Conservation Works (i.e. Contour ridges) ha...

  12. Short-term soil responses to late-seeded cover crops in a semi-arid environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops can expand ecosystem services, though sound management recommendations for their use within semi-arid cropping systems is currently constrained by a lack of information. This study was conducted to determine agroecosystem responses to late-summer seeded cover crops under no-till managem...

  13. Development and implementation of a monitoring and information system to increase water use efficiency in arid and semi-arid areas in Limarí, Central Chile (WEIN)

    NASA Astrophysics Data System (ADS)

    Berger, Erich; Balmert, David; Richter, Jürgen

    2016-10-01

    The project WEIN was funded by the Federal Ministry of Education and Research (BMBF | Berlin, Germany) in the framework of the high-tech strategy of Germany's program "KMU-Innovativ". The project started in 2012 and was completed in 2014. In the scope of the project, an integrated system for analysis, monitoring and information at river basin level was developed, which provides relevant information for all stakeholders that are concerned with water resource issues. The main objective of the project was to improve water use efficiency and hence ensure the agricultural production in the region. The pilot region, in which this system was implemented, is the semi-arid Limarí basin in Northern Central Chile. One of the main parts of the project was the development and implementation of a web- and app-based irrigation water ordering and accounting system for local farmers.

  14. Groundwater Trends and Availability Under Current and Future Groundwater Withdrawals and Climate Scenarios in Semi-arid India

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Sishodia, R. P.; Graham, W. D.; Jones, J. W.; Wani, S.; Heaney, J.

    2015-12-01

    Irrigation withdrawals have caused groundwater depletion, decreased surface flows and water quality problems in many parts of the world including India. Anticipated increase in groundwater demand and climate change is likely to exacerbate the problem. This study investigated long term (1990-2012) groundwater level trends in hard rock aquifers of semi-arid south India and used an integrated hydrologic model MIKE SHE/MIKE 11 to analyze the effects of changes in groundwater withdrawals and climate on groundwater and surface water flow and levels. Contrary to the common perception of widespread groundwater declines, statistical trend test results showed significant declines in only 22-36% of the wells in a three district region (3.15 million ha). Free electricity policy for farmers, implemented in 2004, and increased irrigated area were the two main causal factors. Groundwater levels in up to 76% of these wells showed significant decline after the subsidy (2005-2012) indicating the nexus between energy and groundwater. An integrated hydrologic model, developed using long-term monitoring data for a watershed (320 ha) in the region, performed well in simulating surface and groundwater levels. Compared to the current withdrawal scenario, prolonged hydrologic drought and decreased surface flows were predicted under future withdrawal scenarios. Future (2040-2069) climate scenarios from five General Circulation Models (GCMs), showed increased rainfall and flooding in the watershed. Although, projected increase in rainfall under the climate change scenarios is likely to provide opportunities for capture and reuse of surface flows, earlier well drying, and increased frequency and duration of hydrologic drought is likely to affect livelihoods of millions of small-scale farmers in this hard rock aquifer region. Several management options including changes in power subsidy and implementation of efficient irrigation systems, effective institutional mechanism to regulate

  15. Measurement and analysis of black carbon aerosols over a tropical semi-arid station in Kadapa, India

    NASA Astrophysics Data System (ADS)

    Begam, G. Reshma; Vachaspati, C. Viswanath; Ahammed, Y. Nazeer; Kumar, K. Raghavendra; Babu, S. Suresh; Reddy, R. R.

    2016-05-01

    This paper presents aerosol light absorption measurements using a seven channel Aethalometer (AE-42), recorded during September 2011-November 2012 over a tropical semi-arid site in Kadapa, India. The annual average black carbon (BC) mass concentration ([BC]) during the studied period was 2.20 ± 0.78 μg m- 3 which is in agreement when compared to other sites of similar environment. Strong seasonal variation was observed with high values during winter (2.87 ± 0.81 μg m- 3) and low in monsoon (1.30 ± 0.31 μg m- 3) season, which could be attributed to regional synoptic meteorology and long range transport. The two peaks in diurnal variations of [BC] were observed during morning between 06:00 and 08:00 h local time (LT) and in the evening around 19:00-21:00 h LT, with a minimum peak in the afternoon (~ 16:00 h LT) which is strongly correlated with the boundary layer dynamics, local and regional sources, and associated meteorology. The relationships between measured [BC] and the corresponding meteorological parameters for the studied region were also analysed. The estimated monthly mean spectral absorption coefficient values range from 0.56 to 1.15 with an average of 0.90, which suggests high BC/OC ratio and possible source of emission of aerosols is fossil fuel burning. Trajectory cluster analysis showed significant impact of long range transport of BC aerosols towards the observational site during the period of study.

  16. Comparison of multi-monthly rainfall-based drought severity indices, with application to semi-arid Konya closed basin, Turkey

    NASA Astrophysics Data System (ADS)

    Dogan, Selim; Berktay, Ali; Singh, Vijay P.

    2012-11-01

    SummaryMany drought indices (DIs) have been introduced to monitor drought conditions. This study compares Percent of Normal (PN), Rainfall Decile based Drought Index (RDDI), statistical Z-Score, China-Z Index (CZI), Standardized Precipitation Index (SPI), and Effective Drought Index (EDI) to identify droughts in a semi-arid closed basin (Konya), Turkey. Comparison studies of DIs under different climatic conditions is always interesting and may be insightful. Employing and comparing 18 different timesteps, the objective of comparison is twofold: (1) to determine the effect of timestep for choosing an appropriate value, and (2) to determine the sensitivity of DI to timestep and the choice of a DI. Monthly rainfall data obtained from twelve spatially distributed stations was used to compare DIs for timesteps ranging from 1 month to 48 months. These DIs were evaluated through correlations for various timesteps. Surprisingly, in many earlier studies, only 1-month time step has been used. Results showed that the employment of median timesteps was essential for future studies, since 1-month timestep DIs were found as irrelevant to those for other timesteps in arid/semi-arid regions because seasonal rainfall deficiencies are common there. Comparing time series of various DI values (numerical values of drought severity) instead of drought classes was advantageous for drought monitoring. EDI was found to be best correlated with other DIs when considering all timesteps. Therefore, drought classes discerned by DIs were compared with EDI. PN and RDDI provided different results than did others. PN detected a decrease in drought percentage for increasing timestep, while RDDI overestimated droughts for all timesteps. SPI and CZI were more consistent in detecting droughts for different timesteps. The response of DI and timestep combination to the change of monthly and multi-monthly rainfall for a qualitative comparison of severities (drought classes) was investigated. Analyzing the

  17. Climate change impact on future water resources availability for a semi-arid area (Ferghana Valley, Central Asia)

    NASA Astrophysics Data System (ADS)

    Radchenko, Iuliia; Breuer, Lutz; Mannig, Birgit; Frede, Hans-Georg

    2014-05-01

    Considering increasing temperatures and glacier recession during the last decades, it is of high interest to study the climate change impact on water resources availability in semi-arid regions of Central Asia. The Ferghana Valley is surrounded by the Tien-Shan and Pamiro-Alay mountain systems that store big amounts of water in snowpacks and glaciers. In the valley the agricultural activity of local people strongly depends on available water from the Syrdarya River. The river is formed by the confluence of the Naryn and Karadarya Rivers, which are mainly fed by the glacier and snow melt from the Akshiirak and Ferghana ridges of the aforementioned mountain systems. The small upper river basins of the valley also contribute with runoff (~34 %) to the Syrdarya River. These small rivers are mainly fed by precipitation and seasonal snow melt. Thus, because of climate change and glacier decline, it is necessary to investigate the comparative contribution of the small catchments versus two big river basins to the Syrdarya River system, as these small upper catchments could become more important for future water consumption. In this study the conceptual hydrological HBV-light model has been calibrated and validated for the period 1980-1985 over 18 upper catchments that feed the Syrdarya River from the surrounding mountain ridges. Dynamically downscaled climate change scenarios were then applied up to the year 2100 for these basins. The scenarios were generated by means of Global Circulation Model (ECHAM5) and Regional Climate Model (REMO) with a baseline period from 1971 till 2000. We will present modelling results of water resources, the contribution of small rivers to the Syrdarya River and to what extent this contribution is likely to change in the future. Moreover, the results of simulated potential runoff will be used to develop future climate change adaptation strategies regarding socio-economic and environmental sustainable water use.

  18. Detection of extreme climate events in semi-arid biomes using a combination of near-field and satellite based remote sensing across the New Mexico Elevation Gradient network of flux towers

    NASA Astrophysics Data System (ADS)

    Litvak, M. E.; Krofcheck, D. J.; Maurer, G.

    2015-12-01

    Semi-arid biomes in the Southwestern U.S. over the past decade have experienced high inter- and intra-annual variability in precipitation and vapor-pressure deficit (VPD), and from recent observations, are particularly vulnerable to both VPD and drought. Given the large land area occupied by semi-arid biomes in the U.S., the ability to quantify how climate extremes alter ecosystem function, in addition to being able to use satellites to remotely detect when these climate extremes occur, is crucial to scale the impact of these events on regional carbon dynamics. In an effort to understand how well commonly employed remote sensing platforms capture the impact of extreme events on semi-arid biomes, we coupled a 9-year record of eddy-covariance measurements made across an elevation/aridity gradient in NM with remote sensing data sets from tower-based phenocams, MODIS and Landsat 7 ETM+. We compared anomalies in air temperature, vapor pressure deficit, and precipitation, to the degree in variability of remote sensing vegetation indices (e.g, NDVI, EVI, 2G-Rbi, LST, etc.), and tower-derived gross primary productivity (GPP), across a range of temporal lags to quantify : 1) how sensitive vegetation indices from various platforms, LST, and carbon uptake are to climate disturbances, and the extremity of the disturbance; 2) how well correlated vegetation indices and tower fluxes are on monthly, seasonal and annual time scales, and if the degree to which they are correlated is related to the extent of climate anomalies during that period; and 3) the lags in the response of both GPP and vegetation indices to climate-anomalies and how well correlated these were on various time scales. Our initial results show differential sensitivities across a range of semi-arid ecosystems to drought and vapor pressure deficit. We see the strongest sensitivity of vegetation indices, and correlations between vegetation indices and tower GPP in the low and high elevation biomes that have a more

  19. Using ISBA model for partitioning evapotranspiration into soil evaporation and plant transpiration of irrigated crops under semi-arid climate

    NASA Astrophysics Data System (ADS)

    Aouade, Ghizlane; Jarlan, Lionel; Ezzahar, Jamal; Er-raki, Salah; Napoly, Adrien; Benkaddour, Abdelfettah; Khabba, Said; Boulet, Gilles; Chehbouni, Abdelghani; Boone, Aaron

    2016-04-01

    The Haouz region, typical of southern Mediterranean basins, is characterized by a semi-arid climate, with average annual rainfall of 250, whilst evaporative demand is about 1600 mm per year. Under these conditions, crop irrigation is inevitable for growth and development. Irrigated agriculture currently consumes the majority of total available water (up to 85%), making it critical for more efficient water use. Flood irrigation is widely practiced by the majority of the farmers (more than 85 %) with an efficiency which does not exceed 50%. In this context, a good knowledge of the partitioning of evapotranspiration (ET) into soil evaporation and plant transpiration is of crucial need for improving the irrigation scheduling and thus water use efficiency. In this study, the ISBA (Interactions Soil-Biosphere-Atmosphere) model was used for estimating ET and its partition over an olive orchard and a wheat field located near to the Marrakech City (Centre of Morocco). Two versions were evaluated: standard version which simulates a single energy balance for the soil and vegetation and the recently developed multiple energy balance (MEB) version which solves a separate energy balance for each of the two sources. Eddy covariance system, which provides the sensible and latent heat fluxes and meteorological instruments were operated during years 2003-2004 for the Olive Orchard and during years 2013 for wheat. The transpiration component was measured using a Sap flow system during summer over the wheat crop and stable isotope samples were gathered over wheat. The comparison between ET estimated by ISBA model and that measured by the Eddy covariance system showed that MEB version yielded a remarkable improvement compared to the standard version. The root mean square error (RMSE) and the correlation coefficient (R²) were about 45wm-2 and 0.8 for MEB version. By contrast, for the standard version, the RMSE and R² were about 60wm-2 and 0.7, respectively. The result also showed that

  20. Soil moisture and soil loss study under different cover densities in Ultisolsin Pernambuco State semi-arid (Brazil)

    NASA Astrophysics Data System (ADS)

    Borges, T. K. S.; Montenegro, A. A. A.; Santos, T. E. M.; Silva Junior, V. P.; Siqueira, G. M.

    2012-04-01

    Throughout Brazil occurs a large loss of soil and water runoff due to soil erosion especially in rural areas. The soil moisture monitoringhas been a practice increasingly important in agriculture, especially in regions where water scarcity is high and rainfed cropping is adopted. The soil cover is one of the factors that minimize these effects of degradation arising from agricultural land use. To monitor the water content in the soil profile, point measurements were performed using an FDR equipment, which is a capacitance probe, Diviner 2000 ® model, the Sentek Pty Ltd, Australia. The objective of this study was to investigate the dynamics of soil water content under different types of ground cover, using a probe and the Diviner soil loss in the semi-arid Pernambuco. The study was carried out in the Municipality of Pesqueira-PE, located in the State of Pernambuco, in the Alto Ipanema Representative Basin, with average annual rainfall of 730 mm and average annual potential evapotranspiration of 1683 mm. The soil of the study areas is classified as Eutrophic Yellow Ultisol abruptly (Area A) and typical Eutrophic Yellow Ultisol (Area B). For this, study three experimental plots were installed in two different areas, totalling six plots, bounded by brick, with 4.5 m wide and 11 m long in the direction of the slope, under three soil cover conditions. The treatments involved in this study are: bare soil (SD); with cactus (P) and natural cover (CN). The water content in soil was evaluated at 0.10, 0.20 and 0.30 m at the soil profile and sediment sampling were carried out fortnightly between April and July 2011 (rainy season). In this work we used cumulative precipitation for seven and fourteen days before the readings with the Divinerprobe. The highest rainfall is concentrated during the months of May and July of 2011, and May is the month with the highest cumulative rainfall. April received the lowest rainfall, considered the driest. The water content in the soil

  1. Systematic revision of the marbled velvet geckos (Oedura marmorata species complex, Diplodactylidae) from the Australian arid and semi-arid zones.

    PubMed

    Oliver, Paul M; Doughty, Paul

    2016-01-01

    Lizards restricted to rocky habitats often comprise numerous deeply divergent lineages, reflecting the disjunct nature of their preferred habitat and the capacity of rocky habitats to function as evolutionary refugia. Here we review the systematics and diversity of the predominantly saxicoline Australian marbled velvet geckos (genus Oedura) in the Australian arid and semi-arid zones using newly-gathered morphological data and previously published genetic data. Earlier work showed that four largely allopatric and genetically divergent lineages are present: Western (Pilbara and Gascoyne regions), Gulf (west and south of the Gulf of Carpentaria), Central (central ranges) and Eastern (Cooper and Darling Basins). None of these four populations are conspecific with true O. marmorata, a seperate species complex that is restricted to the Top End region of the Northern Territory. Top End forms share a short, bulbous tail whereas the other four lineages treated here possess a long, tapering tail. Morphological differences among the arid and semi-arid lineages include smaller body size, tapering lamellae and a shorter tail for the Gulf population, and a partially divided rostral scale in the Western population compared to the Central and Eastern populations. Accordingly, we resurrect O. cincta de Vis from synonymy for the Central and Eastern lineages, and regard this species as being comprised of two evolutionary significant units. We also describe the Gulf and Western lineages as new species: Oedura bella sp. nov. and O. fimbria sp. nov., respectively. We note that a predominantly arboreal lineage (the Eastern lineage of O. cincta) is more widely distributed than the other lineages and is phylogenetically nested within a saxicoline clade, but tends to have a deeper head and shorter limbs, consistent with morphological variation observed in other lizard radiations including both saxicoline and arboreal taxa. PMID:27394333

  2. Systematic revision of the marbled velvet geckos (Oedura marmorata species complex, Diplodactylidae) from the Australian arid and semi-arid zones.

    PubMed

    Oliver, Paul M; Doughty, Paul

    2016-03-08

    Lizards restricted to rocky habitats often comprise numerous deeply divergent lineages, reflecting the disjunct nature of their preferred habitat and the capacity of rocky habitats to function as evolutionary refugia. Here we review the systematics and diversity of the predominantly saxicoline Australian marbled velvet geckos (genus Oedura) in the Australian arid and semi-arid zones using newly-gathered morphological data and previously published genetic data. Earlier work showed that four largely allopatric and genetically divergent lineages are present: Western (Pilbara and Gascoyne regions), Gulf (west and south of the Gulf of Carpentaria), Central (central ranges) and Eastern (Cooper and Darling Basins). None of these four populations are conspecific with true O. marmorata, a seperate species complex that is restricted to the Top End region of the Northern Territory. Top End forms share a short, bulbous tail whereas the other four lineages treated here possess a long, tapering tail. Morphological differences among the arid and semi-arid lineages include smaller body size, tapering lamellae and a shorter tail for the Gulf population, and a partially divided rostral scale in the Western population compared to the Central and Eastern populations. Accordingly, we resurrect O. cincta de Vis from synonymy for the Central and Eastern lineages, and regard this species as being comprised of two evolutionary significant units. We also describe the Gulf and Western lineages as new species: Oedura bella sp. nov. and O. fimbria sp. nov., respectively. We note that a predominantly arboreal lineage (the Eastern lineage of O. cincta) is more widely distributed than the other lineages and is phylogenetically nested within a saxicoline clade, but tends to have a deeper head and shorter limbs, consistent with morphological variation observed in other lizard radiations including both saxicoline and arboreal taxa.

  3. The influence of several changes in atmospheric states over semi-arid areas on the incidence of mental health disorders

    NASA Astrophysics Data System (ADS)

    Yackerson, Naomy S.; Zilberman, Arkadi; Todder, Doron; Kaplan, Zeev

    2011-05-01

    The incidence of suicide attempts [Deliberate Self Harm (DSH); ICD-10: X60-X84] and psychotic attacks (PsA; ICD-10, F20-F29) in association with atmospheric states, typical for areas close to big deserts, was analyzed. A retrospective study is based on the 4,325 cases of DSH and PsA registered in the Mental Health Center (MHC) of Ben-Gurion University (Be'er-Sheva, Israel) during 2001-2003. Pearson and Spearman test correlations were used; the statistical significance was tested at p < 0.1. The influence of temperature and humidity on suicide attempts ( N SU ) and psychotic attacks ( N PS ) was weakly pronounced ( p > 0.1). Correlation coefficients between N SU and N PS and speed WS of westerly wind reaches 0.3 ( p < 0.05), while their dependence on easterly WS was weaker ( p > 0.09). Variations in easterly wind direction WD influence N SU and N PS values ( p < 0.04), but no corresponding correlation with westerly winds was found ( p > 0.3). Obviously ,in transition areas located between different regions ,the main role of air streams in meteorological-biological impact can scarcely be exaggerated. An unstable balance in the internal state of a weather-sensitive person is disturbed when the atmospheric state is changed by specific desert winds, which can provoke significant perturbations in meteorological parameters. Results indicate the importance of wind direction, defining mainly the atmospheric situation in semi-arid areas: changes in direction of the easterly wind influence N SU and N PS , while changes in WS are important for mental health under westerly air streams. Obviously, N SU and N PS are more affected by the disturbance of weather from its normal state, for a given season, to which the local population is accustomed, than by absolute values of meteorological parameters.

  4. Long-term effect of irrigation with waste water on soil microbial community in semi-arid conditions

    NASA Astrophysics Data System (ADS)

    García-Orenes, Fuensanta; Morugan, Alicia; Mar Alguacil, Mª; Roldan, Antonio

    2013-04-01

    The water shortage is one of the most serious environmental problems in semi-arid areas around the world, which implicates the search for alternatives sources of water to satisfy the water demand in these regions. The use of wastewater for the irrigation of agricultural land is one of most suitable solutions to save better quality water when the natural resources are scarce. The reuse of wastewater in soil irrigation is not a new practise and is increasing in many places around the world; however the implications for the sustainability of agro-ecosystems must be studied in deep. The objective of this work was to study the effects of the long-term irrigation with treated wastewater in soil microbial community (evaluated as abundance of phospholipid fatty acids, PLFA). The experiment was conducted in an area located in Alicante (Southeast Spain) (Coordinates 38° 17´38" N, 0° 33´50" W). During 40 years an experimental Citrus aurantium L. (orange tree) orchard has been drip-irrigated with waste water, and control plots with the same characteristics subjected to drip irrigation with fresh water, were also stabilised during all the experimental period. Soil samples from individual trees were colleted in a randomised design with three replicates for each irrigation treatment (irrigation with waste water and irrigation with fresh water), to analyse the abundance of PLFA at the end of the experiment. The results show a major content of total PLFA in soils irrigated with fresh water, also these soils showed higher variety of PLFAs, and so a higher variety of groups of microorganims.

  5. CO2 production rate maxima in the deeper unsaturated zone of a semi-arid floodplain at Rifle, Colorado

    NASA Astrophysics Data System (ADS)

    Tokunaga, T. K.; Kim, Y.; Wan, J.; Dong, W.; Conrad, M. E.; Bill, M.; Hobson, C.; Williams, K. H.; Long, P. E.

    2015-12-01

    Fluxes of CO2 from soils are important to understand in order to predict subsurface feedbacks to the atmosphere and responses to climate change. Such fluxes are commonly monitored at the soil surface and generally assumed to largely originate within shallow depths. Relatively little is understood on the depth distribution of CO2 production below the rhizosphere. We monitored CO2 fluxes at the soil surface, and measured vertical profiles of vadose CO2 concentrations, matric potentials, and temperatures at the Rifle Site, a saline semi-arid floodplain along the Colorado River in order to determine the significance of deeper vadose zone respiration. Vadose zone CO2 profiles exhibit temperature-dependent seasonal variations, and are consistent with CO2 fluxes measured at the soil surface. The measured vadose zone CO2 concentration profiles combined with gas diffusion coefficients estimated from soil properties indicated that local maxima in rates of CO2 production persist in the deeper vadose zone, about 1 m below the rhizosphere, and above the water table (~3.5 m below the soil surface). We hypothesized that water and oxygen activities, nutrient levels, and temperatures remain favorable for microbial respiration throughout the year in the subrhizosphere, unlike overlying drier soils and the underlying poorly aerated aquifer. Using soils and sediments from the field site, the hypothesized existence of deeper subsurface maxima in CO2 production rate is currently being tested in the laboratory through sediment incubation experiments and in 2.0 m tall vadose zone columns. Initial results from the laboratory support the hypothesized persistence of a subrhizosphere "hot zone" for microbial respiration, partly sustained through seasonal pulses of dissolved and labile organic carbon originating from the rhizosphere. These findings sug