Science.gov

Sample records for break repair genes

  1. Double-strand break damage and associated DNA repair genes predispose smokers to gene methylation

    PubMed Central

    Leng, Shuguang; Stidley, Christine A.; Willink, Randy; Bernauer, Amanda; Do, Kieu; Picchi, Maria A.; Sheng, Xin; Frasco, Melissa, A.; Berg, David Van Den; Gilliland, Frank D.; Zima, Christopher; Crowell, Richard E.; Belinsky, Steven A.

    2008-01-01

    Gene promoter hypermethylation in sputum is a promising biomarker for predicting lung cancer. Identifying factors that predispose smokers to methylation of multiple gene promoters in the lung could impact strategies for early detection and chemoprevention. This study evaluated the hypothesis that double-strand break repair capacity and sequence variation in genes in this pathway are associated with a high methylation index in a cohort of current and former cancer-free smokers. A 50% reduction in the mean level of double-strand break repair capacity was seen in lymphocytes from smokers with a high methylation index, defined as ≥ 3 of 8 genes methylated in sputum, compared to smokers with no genes methylated. The classification accuracy for predicting risk for methylation was 88%. Single nucleotide polymorphisms within the MRE11A, CHEK2, XRCC3, DNA-Pkc, and NBN DNA repair genes were highly associated with the methylation index. A 14.5-fold increased odds for high methylation was seen for persons with ≥ 7 risk alleles of these genes. Promoter activity of the MRE11A gene that plays a critical role in recognition of DNA damage and activation of ATM was reduced in persons with the risk allele. Collectively, ours is the first population-based study to identify double-strand break DNA repair capacity and specific genes within this pathway as critical determinants for gene methylation in sputum, that is, in turn, associated with elevated risk for lung cancer. PMID:18413776

  2. Biochemical studies of DNA strand break repair and molecular characterization of mei-41, a gene involved in DNA break repair

    SciTech Connect

    Oliveri, D.R.

    1989-01-01

    The ability to repair X-irradiation induced single-strand DNA breaks was examined in mutagen-sensitive mutants of Drosophila melanogaster. This analysis demonstrated that examined stocks possess a normal capacity to repair X-ray induced single-strand breaks. One of the mutants in this study, mei-41, has been shown to be involved in a number of DNA metabolizing functions. A molecular characterization of this mutant is presented. A cDNA hybridizing to genomic DNA both proximal and distal to a P element inducing a mei-41 mutation was isolated from both embryonic and adult female recombinant lambda phage libraries. A 2.2 kilobase embryonic cDNA clone was sequenced; the sequence of an open reading frame was identified which would predict a protein of 384 amino acids with a molecular weight of 43,132 daltons. An examination of homologies to sequences in protein and nucleic acid data bases revealed no sequences with significant homology to mei-41, however, two potential Zinc-finger domains were identified. Analysis of RNA hybridizing to the embryonic cDNA demonstrated the existence of a major 2.2 kilobase transcript expressed primarily in embryos and adult flies. An examination of the transcription of this gene in mei-41 mutants revealed significant variation from wild-type, an indication that the embryonic cDNA does represent a mei-41 transcript. Expression in tissues from adult animals demonstrated that the 2.2 kilobase RNA is expressed primarily in reproductive tissues. A 3.8kb transcript is the major species of RNA in the adult head and thorax. Evidence is presented which implies that expression of the mei-41 gene is strongly induced by exposure of certain cells to mutagens.

  3. Preferential Repair of DNA Double-strand Break at the Active Gene in Vivo*

    PubMed Central

    Chaurasia, Priyasri; Sen, Rwik; Pandita, Tej K.; Bhaumik, Sukesh R.

    2012-01-01

    Previous studies have demonstrated transcription-coupled nucleotide/base excision repair. We report here for the first time that DNA double-strand break (DSB) repair is also coupled to transcription. We generated a yeast strain by introducing a homing (Ho) endonuclease cut site followed by a nucleotide sequence for multiple Myc epitopes at the 3′ end of the coding sequence of a highly active gene, ADH1. This yeast strain also contains the Ho cut site at the nearly silent or poorly active mating type α (MATα) locus and expresses Ho endonuclease under the galactose-inducible GAL1 promoter. Using this strain, DSBs were generated at the ADH1 and MATα loci in galactose-containing growth medium that induced HO expression. Subsequently, yeast cells were transferred to dextrose-containing growth medium to stop HO expression, and the DSB repair was monitored at the ADH1 and MATα loci by PCR, using the primer pairs flanking the Ho cut sites. Our results revealed a faster DSB repair at the highly active ADH1 than that at the nearly silent MATα locus, hence implicating a transcription-coupled DSB repair at the active gene in vivo. Subsequently, we extended this study to another gene, PHO5 (carrying the Ho cut site at its coding sequence), under transcriptionally active and inactive growth conditions. We found a fast DSB repair at the active PHO5 gene in comparison to its inactive state. Collectively, our results demonstrate a preferential DSB repair at the active gene, thus supporting transcription-coupled DSB repair in living cells. PMID:22910905

  4. Analysis of gene repair tracts from Cas9/gRNA double-stranded breaks in the human CFTR gene

    PubMed Central

    Hollywood, Jennifer A.; Lee, Ciaran M.; Scallan, Martina F.; Harrison, Patrick T.

    2016-01-01

    To maximise the efficiency of template-dependent gene editing, most studies describe programmable and/or RNA-guided endonucleases that make a double-stranded break at, or close to, the target sequence to be modified. The rationale for this design strategy is that most gene repair tracts will be very short. Here, we describe a CRISPR Cas9/gRNA selection-free strategy which uses deep sequencing to characterise repair tracts from a donor plasmid containing seven nucleotide differences across a 216 bp target region in the human CFTR gene. We found that 90% of the template-dependent repair tracts were >100 bp in length with equal numbers of uni-directional and bi-directional repair tracts. The occurrence of long repair tracts suggests that a single gRNA could be used with variants of the same template to create or correct specific mutations within a 200 bp range, the size of ~80% of human exons. The selection-free strategy used here also allowed detection of non-homologous end joining events in many of the homology-directed repair tracts. This indicates a need to modify the donor, possibly by silent changes in the PAM sequence, to prevent creation of a second double-stranded break in an allele that has already been correctly edited by homology-directed repair. PMID:27557525

  5. Analysis of gene repair tracts from Cas9/gRNA double-stranded breaks in the human CFTR gene.

    PubMed

    Hollywood, Jennifer A; Lee, Ciaran M; Scallan, Martina F; Harrison, Patrick T

    2016-01-01

    To maximise the efficiency of template-dependent gene editing, most studies describe programmable and/or RNA-guided endonucleases that make a double-stranded break at, or close to, the target sequence to be modified. The rationale for this design strategy is that most gene repair tracts will be very short. Here, we describe a CRISPR Cas9/gRNA selection-free strategy which uses deep sequencing to characterise repair tracts from a donor plasmid containing seven nucleotide differences across a 216 bp target region in the human CFTR gene. We found that 90% of the template-dependent repair tracts were >100 bp in length with equal numbers of uni-directional and bi-directional repair tracts. The occurrence of long repair tracts suggests that a single gRNA could be used with variants of the same template to create or correct specific mutations within a 200 bp range, the size of ~80% of human exons. The selection-free strategy used here also allowed detection of non-homologous end joining events in many of the homology-directed repair tracts. This indicates a need to modify the donor, possibly by silent changes in the PAM sequence, to prevent creation of a second double-stranded break in an allele that has already been correctly edited by homology-directed repair. PMID:27557525

  6. Changes in the expression of DNA double strand break repair genes in primordial follicles from immature and aged rats.

    PubMed

    Govindaraj, Vijayakumar; Keralapura Basavaraju, Rajani; Rao, Addicam Jagannadha

    2015-03-01

    Oocytes present at birth undergo a progressive process of apoptosis in humans and other mammals as they age. Accepted opinion is that no fresh oocytes are produced other than those present at the time of birth. Studies have shown that DNA repair genes in oocytes of mice and women decline with age, and lack of these genes show higher DNA breaks and increased oocyte death rates. In contrast to the ethical problems associated with monitoring the changes in DNA double-strand breaks in oocytes from young and old humans, it is relatively easy to carry out such a study using a rodent model. In this study, the mRNA levels of DNA repair genes are compared with protein products of some of the genes in the primordial follicles isolated from immature (18-20 days) and aged (400-450 days) female rats. Results revealed a significant decline in mRNA levels of BRAC1 (P < 0.01), RAD51 (P < 0.05), ERCC2 (P < 0.05), and H2AX (P < 0.01) of DNA repair genes and phospho-protein levels of BRAC1 (P < 0.01) and H2AX (P < 0.05) in primordial follicles of aged rats. Impaired DNA repair is confirmed as a mechanism of oocyte ageing.

  7. Reduced Activity of Double-Strand Break Repair Genes in Prostate Cancer Patients With Late Normal Tissue Radiation Toxicity

    SciTech Connect

    Oorschot, Bregje van; Hovingh, Suzanne E.; Moerland, Perry D.; Medema, Jan Paul; Stalpers, Lukas J.A.; Vrieling, Harry; Franken, Nicolaas A.P.

    2014-03-01

    Purpose: To investigate clinical parameters and DNA damage response as possible risk factors for radiation toxicity in the setting of prostate cancer. Methods and Materials: Clinical parameters of 61 prostate cancer patients, 34 with (overresponding, OR) and 27 without (non-responding, NR) severe late radiation toxicity were assembled. In addition, for a matched subset the DNA damage repair kinetics (γ-H2AX assay) and expression profiles of DNA repair genes were determined in ex vivo irradiated lymphocytes. Results: Examination of clinical data indicated none of the considered clinical parameters to be correlated with the susceptibility of patients to develop late radiation toxicity. Although frequencies of γ-H2AX foci induced immediately after irradiation were similar (P=.32), significantly higher numbers of γ-H2AX foci were found 24 hours after irradiation in OR compared with NR patients (P=.03). Patient-specific γ-H2AX foci decay ratios were significantly higher in NR patients than in OR patients (P<.0001). Consequently, NR patients seem to repair DNA double-strand breaks (DSBs) more efficiently than OR patients. Moreover, gene expression analysis indicated several genes of the homologous recombination pathway to be stronger induced in NR compared with OR patients (P<.05). A similar trend was observed in genes of the nonhomologous end-joining repair pathway (P=.09). This is congruent with more proficient repair of DNA DSBs in patients without late radiation toxicity. Conclusions: Both gene expression profiling and DNA DSB repair kinetics data imply that less-efficient repair of radiation-induced DSBs may contribute to the development of late normal tissue damage. Induction levels of DSB repair genes (eg, RAD51) may potentially be used to assess the risk for late radiation toxicity.

  8. Contribution of DNA double-strand break repair gene XRCC3 genotypes to oral cancer susceptibility in Taiwan.

    PubMed

    Tsai, Chia-Wen; Chang, Wen-Shin; Liu, Juhn-Cherng; Tsai, Ming-Hsui; Lin, Cheng-Chieh; Bau, Da-Tian

    2014-06-01

    The DNA repair gene X-ray repair cross complementing protein 3 (XRCC3) is thought to play a major role in double-strand break repair and in maintaining genomic stability. Very possibly, defective double-strand break repair of cells can lead to carcinogenesis. Therefore, a case-control study was performed to reveal the contribution of XRCC3 genotypes to individual oral cancer susceptibility. In this hospital-based research, the association of XRCC3 rs1799794, rs45603942, rs861530, rs3212057, rs1799796, rs861539, rs28903081 genotypes with oral cancer risk in a Taiwanese population was investigated. In total, 788 patients with oral cancer and 956 age- and gender-matched healthy controls were genotyped. The results showed that there was significant differential distribution among oral cancer and controls in the genotypic (p=0.001428) and allelic (p=0.0013) frequencies of XRCC3 rs861539. As for the other polymorphisms, there was no difference between case and control groups. In gene-lifestyle interaction analysis, we have provided the first evidence showing that there is an obvious joint effect of XRCC3 rs861539 genotype with individual areca chewing habits on oral cancer risk. In conclusion, the T allele of XRCC3 rs861539, which has an interaction with areca chewing habit in oral carcinogenesis, may be an early marker for oral cancer in Taiwanese.

  9. Role of the silkworm argonaute2 homolog gene in double-strand break repair of extrachromosomal DNA.

    PubMed

    Tsukioka, Haruna; Takahashi, Masateru; Mon, Hiroaki; Okano, Kazuhiro; Mita, Kazuei; Shimada, Toru; Lee, Jae Man; Kawaguchi, Yutaka; Koga, Katsumi; Kusakabe, Takahiro

    2006-01-01

    The argonaute protein family provides central components for RNA interference (RNAi) and related phenomena in a wide variety of organisms. Here, we isolated, from a Bombyx mori cell, a cDNA clone named BmAGO2, which is homologous to Drosophila ARGONAUTE2, the gene encoding a repressive factor for the recombination repair of extrachromosomal double-strand breaks (DSBs). RNAi-mediated silencing of the BmAGO2 sequence markedly increased homologous recombination (HR) repair of DSBs in episomal DNA, but had no effect on that in chromosomes. Moreover, we found that RNAi for BmAGO2 enhanced the integration of linearized DNA into a silkworm chromosome via HR. These results suggested that BmAgo2 protein plays an indispensable role in the repression of extrachromosomal DSB repair.

  10. DNA Double-Strand Break Repair Genes and Oxidative Damage in Brain Metastasis of Breast Cancer

    PubMed Central

    Evans, Lynda; Duchnowska, Renata; Reed, L. Tiffany; Palmieri, Diane; Qian, Yongzhen; Badve, Sunil; Sledge, George; Gril, Brunilde; Aladjem, Mirit I.; Fu, Haiqing; Flores, Natasha M.; Gökmen-Polar, Yesim; Biernat, Wojciech; Szutowicz-Zielińska, Ewa; Mandat, Tomasz; Trojanowski, Tomasz; Och, Waldemar; Czartoryska-Arlukowicz, Bogumiła; Jassem, Jacek; Mitchell, James B.

    2014-01-01

    Background Breast cancer frequently metastasizes to the brain, colonizing a neuro-inflammatory microenvironment. The molecular pathways facilitating this colonization remain poorly understood. Methods Expression profiling of 23 matched sets of human resected brain metastases and primary breast tumors by two-sided paired t test was performed to identify brain metastasis–specific genes. The implicated DNA repair genes BARD1 and RAD51 were modulated in human (MDA-MB-231-BR) and murine (4T1-BR) brain-tropic breast cancer cell lines by lentiviral transduction of cDNA or short hairpin RNA (shRNA) coding sequences. Their functional contribution to brain metastasis development was evaluated in mouse xenograft models (n = 10 mice per group). Results Human brain metastases overexpressed BARD1 and RAD51 compared with either matched primary tumors (1.74-fold, P < .001; 1.46-fold, P < .001, respectively) or unlinked systemic metastases (1.49-fold, P = .01; 1.44-fold, P = .008, respectively). Overexpression of either gene in MDA-MB-231-BR cells increased brain metastases by threefold to fourfold after intracardiac injections, but not lung metastases upon tail-vein injections. In 4T1-BR cells, shRNA-mediated RAD51 knockdown reduced brain metastases by 2.5-fold without affecting lung metastasis development. In vitro, BARD1- and RAD51-overexpressing cells showed reduced genomic instability but only exhibited growth and colonization phenotypes upon DNA damage induction. Reactive oxygen species were present in tumor cells and elevated in the metastatic neuro-inflammatory microenvironment and could provide an endogenous source of genotoxic stress. Tempol, a brain-permeable oxygen radical scavenger suppressed brain metastasis promotion induced by BARD1 and RAD51 overexpression. Conclusions BARD1 and RAD51 are frequently overexpressed in brain metastases from breast cancer and may constitute a mechanism to overcome reactive oxygen species–mediated genotoxic stress in the metastatic

  11. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae.

    PubMed

    Ivanov, E L; Haber, J E

    1995-04-01

    HO endonuclease-induced double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae can be repaired by the process of gap repair or, alternatively, by single-strand annealing if the site of the break is flanked by directly repeated homologous sequences. We have shown previously (J. Fishman-Lobell and J. E. Haber, Science 258:480-484, 1992) that during the repair of an HO-induced DSB, the excision repair gene RAD1 is needed to remove regions of nonhomology from the DSB ends. In this report, we present evidence that among nine genes involved in nucleotide excision repair, only RAD1 and RAD10 are required for removal of nonhomologous sequences from the DSB ends. rad1 delta and rad10 delta mutants displayed a 20-fold reduction in the ability to execute both gap repair and single-strand annealing pathways of HO-induced recombination. Mutations in RAD2, RAD3, and RAD14 reduced HO-induced recombination by about twofold. We also show that RAD7 and RAD16, which are required to remove UV photodamage from the silent HML, locus, are not required for MAT switching with HML or HMR as a donor. Our results provide a molecular basis for understanding the role of yeast nucleotide excision repair gene and their human homologs in DSB-induced recombination and repair.

  12. Evidence that the product of the xrs gene is predominantly involved in the repair of a subset of radiation-induced interphase chromosome breaks rejoining with fast kinetics

    SciTech Connect

    Okayasu, R.; Iliakis, G. )

    1994-04-01

    We classified interphase chromosome breaks into [alpha] and [beta] forms to study the requirement for the xrs gene product in the repair of each of these forms of damage. The [alpha] form of damage comprises radiation-induced interphase chromosome breaks whose rejoining is slow and sensitive to treatment with [beta]-arabinofuranosyladenine ([beta]-araA), whereas the [beta] form of damage comprises interphase chromosome breaks whose rejoining is fast and sensitive to treatment in hypertonic medium. Interphase chromosome breaks of the [alpha] form are visualized in plateau-phase cells by premature chromosome condensation (PCC) carried out in the absence of any treatment during the condensation period. More interphase chromosome breaks of the [beta] form are not visualized in experiments using standard PCC protocols but can be uncovered by treatment in hypertonic growth medium during the period allowed for PCC. In the present report, we show that the yield of interphase chromosome breaks of the [alpha] form is similar in CHO and xrs-5 cells and demonstrate that xrs-5 cells rejoin this type of interphase chromosome breaks with an efficiency similar to that observed in repair-proficient CHO cells. Furthermore, we provide evidence supporting the notion that xrs-5 cells are deficient in the rejoining of the [beta] form of interphase chromosome breaks. These results strongly suggest that the product of the xrs gene is required predominantly in the repair of the [beta] form of interphase chromosome damage and emphasize the need for discrimination between different forms of interphase chromosome breaks in irradiated cells. 41 refs., 8 figs., 1 tab.

  13. Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining.

    PubMed Central

    Lewis, L K; Westmoreland, J W; Resnick, M A

    1999-01-01

    Repair of double-strand breaks (DSBs) in chromosomal DNA by nonhomologous end-joining (NHEJ) is not well characterized in the yeast Saccharomyces cerevisiae. Here we demonstrate that several genes associated with NHEJ perform essential functions in the repair of endonuclease-induced DSBs in vivo. Galactose-induced expression of EcoRI endonuclease in rad50, mre11, or xrs2 mutants, which are deficient in plasmid DSB end-joining and some forms of recombination, resulted in G2 arrest and rapid cell killing. Endonuclease synthesis also produced moderate cell killing in sir4 strains. In contrast, EcoRI caused prolonged cell-cycle arrest of recombination-defective rad51, rad52, rad54, rad55, and rad57 mutants, but cells remained viable. Cell-cycle progression was inhibited in excision repair-defective rad1 mutants, but not in rad2 cells, indicating a role for Rad1 processing of the DSB ends. Phenotypic responses of additional mutants, including exo1, srs2, rad5, and rdh54 strains, suggest roles in recombinational repair, but not in NHEJ. Interestingly, the rapid cell killing in haploid rad50 and mre11 strains was largely eliminated in diploids, suggesting that the cohesive-ended DSBs could be efficiently repaired by homologous recombination throughout the cell cycle in the diploid mutants. These results demonstrate essential but separable roles for NHEJ pathway genes in the repair of chromosomal DSBs that are structurally similar to those occurring during cellular development. PMID:10430580

  14. Sequence conservation of the rad21 Schizosaccharomyces pombe DNA double-strand break repair gene in human and mouse

    SciTech Connect

    McKay, M.J.; Troelstra, C.; Kanaar, R.

    1996-09-01

    The rad21 gene of Schizosaccharomyces pombe is involved in the repair of ionizing radiation-induced DNA double-strand breaks. The isolation of mouse and human putative homologs of rad21 is reported here. Alignment of the predicted amino acid sequence of Rad21 with the mammalian proteins showed that the similarity was distributed across the length of the proteins, with more highly conserved regions at both termini. The mHR21{sup sp} (mouse homolog of Rad21, S. pombe) and hHR21{sup sp} (human homolog of Rad21, S. pombe) predicted proteins were 96% identical, whereas the human and S. pombe proteins were 25% identical and 47% similar. RNA blot analysis showed that mHR21{sup sp} mRNA was abundant in all adult mouse tissues examined, with highest expression in testis and thymus. In addition to a 3.1-kb constitutive mRNA transcript, a 2.2-kb transcript was present at a high level in postmeiotic spermatids, while expression of the 3.1-kb mRNA in testis was confined to the meiotic compartment. hHR21{sup sp} mRNA was cell-cycle regulated in human cells, increasing in late S phase to a peak in G2 phase. The level of hHR21{sup sp} transcripts was not altered by exposure of normal diploid fibroblasts to 10 Gy ionizing radiation. In situ hybridization showed that mHR21{sup sp} resided on chromosome 15D3, whereas hHR21{sup sp} localized to the syntenic 8q24 region. Elevated expression of mHR21{sup sp} in testis and thymus supports a possible role for the rad21 mammalian homologs in V(D)J and meiotic recombination, respectively. Cell cycle regulation of rad21, retained from S. pombe to human, is consistent with a conservation of function between S. pombe and human rad21 genes. 62 refs., 8 figs., 1 tab.

  15. Double-strand break repair and colorectal cancer: gene variants within 3′ UTRs and microRNAs binding as modulators of cancer risk and clinical outcome

    PubMed Central

    Naccarati, Alessio; Rosa, Fabio; Vymetalkova, Veronika; Barone, Elisa; Jiraskova, Katerina; Di Gaetano, Cornelia; Novotny, Jan; Levy, Miroslav; Vodickova, Ludmila; Gemignani, Federica; Buchler, Tomas; Landi, Stefano

    2016-01-01

    Genetic variations in 3′ untranslated regions of target genes may affect microRNA binding, resulting in differential protein expression. microRNAs regulate DNA repair, and single-nucleotide polymorphisms in miRNA binding sites (miRSNPs) may account for interindividual differences in the DNA repair capacity. Our hypothesis is that miRSNPs in relevant DNA repair genes may ultimately affect cancer susceptibility and impact prognosis. In the present study, we analysed the association of polymorphisms in predicted microRNA target sites of double-strand breaks (DSBs) repair genes with colorectal cancer (CRC) risk and clinical outcome. Twenty-one miRSNPs in non-homologous end-joining and homologous recombination pathways were assessed in 1111 cases and 1469 controls. The variant CC genotype of rs2155209 in MRE11A was strongly associated with decreased cancer risk when compared with the other genotypes (OR 0.54, 95% CI 0.38–0.76, p = 0.0004). A reduced expression of the reporter gene was observed for the C allele of this polymorphism by in vitro assay, suggesting a more efficient interaction with potentially binding miRNAs. In colon cancer patients, the rs2155209 CC genotype was associated with shorter survival while the TT genotype of RAD52 rs11226 with longer survival when both compared with their respective more frequent genotypes (HR 1.63, 95% CI 1.06-2.51, p = 0.03 HR 0.60, 95% CI 0.41–0.89, p = 0.01, respectively). miRSNPs in DSB repair genes involved in the maintenance of genomic stability may have a role on CRC susceptibility and clinical outcome. PMID:26735576

  16. Genetic variants in DNA double-strand break repair genes and risk of salivary gland carcinoma: a case-control study.

    PubMed

    Xu, Li; Tang, Hongwei; El-Naggar, Adel K; Wei, Peng; Sturgis, Erich M

    2015-01-01

    DNA double strand break (DSB) repair is the primary defense mechanism against ionizing radiation-induced DNA damage. Ionizing radiation is the only established risk factor for salivary gland carcinoma (SGC). We hypothesized that genetic variants in DSB repair genes contribute to individual variation in susceptibility to SGC. To test this hypothesis, we conducted a case-control study in which we analyzed 415 single nucleotide polymorphisms (SNPs) in 45 DSB repair genes in 352 SGC cases and 598 controls. Multivariate logistic regression analysis was performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Rs3748522 in RAD52 and rs13180356 in XRCC4 were significantly associated with SGC after Bonferroni adjustment; ORs (95% CIs) for the variant alleles of these SNPs were 1.71 (1.40-2.09, P = 1.70 × 10(-7)) and 0.58 (0.45-0.74, P = 2.00 × 10(-5)) respectively. The genetic effects were modulated by histological subtype. The association of RAD52-rs3748522 with SGC was strongest for mucoepidermoid carcinoma (OR = 2.21, 95% CI: 1.55-3.15, P = 1.25 × 10(-5), n = 74), and the association of XRCC4-rs13180356 with SGC was strongest for adenoid cystic carcinoma (OR = 0.60, 95% CI: 0.42-0.87, P = 6.91 × 10(-3), n = 123). Gene-level association analysis revealed one gene, PRKDC, with a marginally significant association with SGC risk in non-Hispanic whites. To our knowledge, this study is the first to comprehensively evaluate the genetic effect of DSB repair genes on SGC risk. Our results indicate that genetic variants in the DSB repair pathways contribute to inter-individual differences in susceptibility to SGC and show that the impact of genetic variants differs by histological subtype. Independent studies are warranted to confirm these findings. PMID:26035306

  17. Mouse BAZ1A (ACF1) Is Dispensable for Double-Strand Break Repair but Is Essential for Averting Improper Gene Expression during Spermatogenesis

    PubMed Central

    Dowdle, James A.; Mehta, Monika; Kass, Elizabeth M.; Vuong, Bao Q.; Inagaki, Akiko; Egli, Dieter; Jasin, Maria; Keeney, Scott

    2013-01-01

    ATP-dependent chromatin remodelers control DNA access for transcription, recombination, and other processes. Acf1 (also known as BAZ1A in mammals) is a defining subunit of the conserved ISWI-family chromatin remodelers ACF and CHRAC, first purified over 15 years ago from Drosophila melanogaster embryos. Much is known about biochemical properties of ACF and CHRAC, which move nucleosomes in vitro and in vivo to establish ordered chromatin arrays. Genetic studies in yeast, flies and cultured human cells clearly implicate these complexes in transcriptional repression via control of chromatin structures. RNAi experiments in transformed mammalian cells in culture also implicate ACF and CHRAC in DNA damage checkpoints and double-strand break repair. However, their essential in vivo roles in mammals are unknown. Here, we show that Baz1a-knockout mice are viable and able to repair developmentally programmed DNA double-strand breaks in the immune system and germ line, I-SceI endonuclease-induced breaks in primary fibroblasts via homologous recombination, and DNA damage from mitomycin C exposure in vivo. However, Baz1a deficiency causes male-specific sterility in accord with its high expression in male germ cells, where it displays dynamic, stage-specific patterns of chromosomal localization. Sterility is caused by pronounced defects in sperm development, most likely a consequence of massively perturbed gene expression in spermatocytes and round spermatids in the absence of BAZ1A: the normal spermiogenic transcription program is largely intact but more than 900 other genes are mis-regulated, primarily reflecting inappropriate up-regulation. We propose that large-scale changes in chromatin composition that occur during spermatogenesis create a window of vulnerability to promiscuous transcription changes, with an essential function of ACF and/or CHRAC chromatin remodeling activities being to safeguard against these alterations. PMID:24244200

  18. Repair of DNA Double-Strand Breaks

    NASA Astrophysics Data System (ADS)

    Falk, Martin; Lukasova, Emilie; Kozubek, Stanislav

    The genetic information of cells continuously undergoes damage induced by intracellular processes including energy metabolism, DNA replication and transcription, and by environmental factors such as mutagenic chemicals and UV and ionizing radiation. This causes numerous DNA lesions, including double strand breaks (DSBs). Since cells cannot escape this damage or normally function with a damaged genome, several DNA repair mechanisms have evolved. Although most "single-stranded" DNA lesions are rapidly removed from DNA without permanent damage, DSBs completely break the DNA molecule, presenting a real challenge for repair mechanisms, with the highest risk among DNA lesions of incorrect repair. Hence, DSBs can have serious consequences for human health. Therefore, in this chapter, we will refer only to this type of DNA damage. In addition to the biochemical aspects of DSB repair, which have been extensively studied over a long period of time, the spatio-temporal organization of DSB induction and repair, the importance of which was recognized only recently, will be considered in terms of current knowledge and remaining questions.

  19. Classical non-homologous end-joining pathway utilizes nascent RNA for error-free double-strand break repair of transcribed genes

    PubMed Central

    Chakraborty, Anirban; Tapryal, Nisha; Venkova, Tatiana; Horikoshi, Nobuo; Pandita, Raj K.; Sarker, Altaf H.; Sarkar, Partha S.; Pandita, Tej K.; Hazra, Tapas K.

    2016-01-01

    DNA double-strand breaks (DSBs) leading to loss of nucleotides in the transcribed region can be lethal. Classical non-homologous end-joining (C-NHEJ) is the dominant pathway for DSB repair (DSBR) in adult mammalian cells. Here we report that during such DSBR, mammalian C-NHEJ proteins form a multiprotein complex with RNA polymerase II and preferentially associate with the transcribed genes after DSB induction. Depletion of C-NHEJ factors significantly abrogates DSBR in transcribed but not in non-transcribed genes. We hypothesized that nascent RNA can serve as a template for restoring the missing sequences, thus allowing error-free DSBR. We indeed found pre-mRNA in the C-NHEJ complex. Finally, when a DSB-containing plasmid with several nucleotides deleted within the E. coli lacZ gene was allowed time to repair in lacZ-expressing mammalian cells, a functional lacZ plasmid could be recovered from control but not C-NHEJ factor-depleted cells, providing important mechanistic insights into C-NHEJ-mediated error-free DSBR of the transcribed genome. PMID:27703167

  20. Human DNA repair genes.

    PubMed

    Wood, R D; Mitchell, M; Sgouros, J; Lindahl, T

    2001-02-16

    Cellular DNA is subjected to continual attack, both by reactive species inside cells and by environmental agents. Toxic and mutagenic consequences are minimized by distinct pathways of repair, and 130 known human DNA repair genes are described here. Notable features presently include four enzymes that can remove uracil from DNA, seven recombination genes related to RAD51, and many recently discovered DNA polymerases that bypass damage, but only one system to remove the main DNA lesions induced by ultraviolet light. More human DNA repair genes will be found by comparison with model organisms and as common folds in three-dimensional protein structures are determined. Modulation of DNA repair should lead to clinical applications including improvement of radiotherapy and treatment with anticancer drugs and an advanced understanding of the cellular aging process. PMID:11181991

  1. Human DNA repair and recombination genes

    SciTech Connect

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs.

  2. Sources of DNA Double-Strand Breaks and Models of Recombinational DNA Repair

    PubMed Central

    Mehta, Anuja; Haber, James E.

    2014-01-01

    DNA is subject to many endogenous and exogenous insults that impair DNA replication and proper chromosome segregation. DNA double-strand breaks (DSBs) are one of the most toxic of these lesions and must be repaired to preserve chromosomal integrity. Eukaryotes are equipped with several different, but related, repair mechanisms involving homologous recombination, including single-strand annealing, gene conversion, and break-induced replication. In this review, we highlight the chief sources of DSBs and crucial requirements for each of these repair processes, as well as the methods to identify and study intermediate steps in DSB repair by homologous recombination. PMID:25104768

  3. Gene Therapy for Cartilage Repair

    PubMed Central

    Madry, Henning; Orth, Patrick; Cucchiarini, Magali

    2011-01-01

    The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists. PMID:26069580

  4. Assays for DNA double-strand break repair by microhomology-based end-joining repair mechanisms.

    PubMed

    Kostyrko, Kaja; Mermod, Nicolas

    2016-04-01

    DNA double stranded breaks (DSBs) are one of the most deleterious types of DNA lesions. The main pathways responsible for repairing these breaks in eukaryotic cells are homologous recombination (HR) and non-homologous end-joining (NHEJ). However, a third group of still poorly characterized DSB repair pathways, collectively termed microhomology-mediated end-joining (MMEJ), relies on short homologies for the end-joining process. Here, we constructed GFP reporter assays to characterize and distinguish MMEJ variant pathways, namely the simple MMEJ and the DNA synthesis-dependent (SD)-MMEJ mechanisms. Transfection of these assay vectors in Chinese hamster ovary (CHO) cells and characterization of the repaired DNA sequences indicated that while simple MMEJ is able to mediate relatively efficient DSB repair if longer microhomologies are present, the majority of DSBs were repaired using the highly error-prone SD-MMEJ pathway. To validate the involvement of DNA synthesis in the repair process, siRNA knock-down of different genes proposed to play a role in MMEJ were performed, revealing that the knock-down of DNA polymerase θ inhibited DNA end resection and repair through simple MMEJ, thus favoring the other repair pathway. Overall, we conclude that this approach provides a convenient assay to study MMEJ-related DNA repair pathways.

  5. RNA-directed repair of DNA double-strand breaks.

    PubMed

    Yang, Yun-Gui; Qi, Yijun

    2015-08-01

    DNA double-strand breaks (DSBs) are among the most deleterious DNA lesions, which if unrepaired or repaired incorrectly can cause cell death or genome instability that may lead to cancer. To counteract these adverse consequences, eukaryotes have evolved a highly orchestrated mechanism to repair DSBs, namely DNA-damage-response (DDR). DDR, as defined specifically in relation to DSBs, consists of multi-layered regulatory modes including DNA damage sensors, transducers and effectors, through which DSBs are sensed and then repaired via DNAprotein interactions. Unexpectedly, recent studies have revealed a direct role of RNA in the repair of DSBs, including DSB-induced small RNA (diRNA)-directed and RNA-templated DNA repair. Here, we summarize the recent discoveries of RNA-mediated regulation of DSB repair and discuss the potential impact of these novel RNA components of the DSB repair pathway on genomic stability and plasticity.

  6. RNA-directed repair of DNA double-strand breaks.

    PubMed

    Yang, Yun-Gui; Qi, Yijun

    2015-08-01

    DNA double-strand breaks (DSBs) are among the most deleterious DNA lesions, which if unrepaired or repaired incorrectly can cause cell death or genome instability that may lead to cancer. To counteract these adverse consequences, eukaryotes have evolved a highly orchestrated mechanism to repair DSBs, namely DNA-damage-response (DDR). DDR, as defined specifically in relation to DSBs, consists of multi-layered regulatory modes including DNA damage sensors, transducers and effectors, through which DSBs are sensed and then repaired via DNAprotein interactions. Unexpectedly, recent studies have revealed a direct role of RNA in the repair of DSBs, including DSB-induced small RNA (diRNA)-directed and RNA-templated DNA repair. Here, we summarize the recent discoveries of RNA-mediated regulation of DSB repair and discuss the potential impact of these novel RNA components of the DSB repair pathway on genomic stability and plasticity. PMID:25960340

  7. [Nonhomologous mechanisms of repair of chromosomal breaks]. Progress report

    SciTech Connect

    Haber, J.E.

    1993-09-01

    Broken chromosomes must either be repaired or lost. The break separates part of the chromosome, containing a telomere, from the rest, containing a centromere. While the centromerecontaining fragment can properly segregate, the broken end will be progressively degraded. The acentric fragment cannot segregate and will also be degraded. We have centered our attention on two alternative non-homologous mechanisms of repair: (1) the acquisition of a new telomere, and (2) repair of broken chromosomes by non-homologous joining of broken chromosome ends. In both cases, we create a double-strand break at a defined chromosomal location in yeast cells. The break is created by the site-specific HO endonuclease in cells that carry the rad52 mutation to prevent repair of a double-strand break by homologous recombination. In diploid cells, we can recover cells that contain a terminally deleted, healed chromosome that has acquired a new telomere. In haploid cells, we can recover cells in which the double-strand break has been repaired by rejoining the broken ends, usually accompanied by a deletion.

  8. Error-Prone Repair of DNA Double-Strand Breaks.

    PubMed

    Rodgers, Kasey; McVey, Mitch

    2016-01-01

    Preserving the integrity of the DNA double helix is crucial for the maintenance of genomic stability. Therefore, DNA double-strand breaks represent a serious threat to cells. In this review, we describe the two major strategies used to repair double strand breaks: non-homologous end joining and homologous recombination, emphasizing the mutagenic aspects of each. We focus on emerging evidence that homologous recombination, long thought to be an error-free repair process, can in fact be highly mutagenic, particularly in contexts requiring large amounts of DNA synthesis. Recent investigations have begun to illuminate the molecular mechanisms by which error-prone double-strand break repair can create major genomic changes, such as translocations and complex chromosome rearrangements. We highlight these studies and discuss proposed models that may explain some of the more extreme genetic changes observed in human cancers and congenital disorders.

  9. Repair of DNA double strand breaks: in vivo biochemistry.

    PubMed

    Sugawara, Neal; Haber, James E

    2006-01-01

    Double strand breaks (DSBs) can cause damage to the genomic integrity of a cell as well as initiate genetic recombination processes. The HO and I-SceI endonucleases from budding yeast have provided a way to study these events by inducing a unique DSB in vivo under the control of a galactose-inducible promoter. The GAL::HO construct has been used extensively to study processes such as nonhomologous end joining, intra- and interchromosomal gene conversion, single strand annealing and break-induced recombination. Synchronously induced DSBs have also been important in the study of the DNA damage checkpoint, adaptation, and recovery pathways of yeast. This chapter describes methods of using GAL::HO to physically monitor the progression of events following a DSB, specifically the events leading to the switching of mating type by gene conversion of MAT using the silent donors at HML and HMR. Southern blot analysis can be used to follow the overall events in this process such as the formation of the DSB and product. Denaturing alkaline gels and slot blot techniques can be employed to follow the 5' to 3' resection of DNA starting at the DSB. After resection, the 3' tail initiates a homology search and then strand invades its homologous sequence at the donor cassette. Polymerase chain reaction is an important means to assay strand invasion and the priming of new DNA synthesis as well as the completion of gene conversion. Methods such as chromatin immunoprecipitation have provided a means to study many proteins that associate with a DSB, including not only recombination proteins, but also proteins involved in nonhomologous end joining, cell cycle arrest, chromatin remodeling, cohesin function, and mismatch repair.

  10. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes

    PubMed Central

    Morales, Maria E.; Derbes, Rebecca S.; Ade, Catherine M.; Ortego, Jonathan C.; Stark, Jeremy; Deininger, Prescott L.; Roy-Engel, Astrid M.

    2016-01-01

    Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs) as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR) and single strand annealing (SSA), which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the “error prone” non-homologous end joining (alt-NHEJ) while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair. PMID:26966913

  11. DNA double-strand break repair pathway choice and cancer

    PubMed Central

    Aparicio, Tomas; Baer, Richard

    2014-01-01

    Summary Since DNA double-strand breaks (DSBs) contribute to the genomic instability that drives cancer development, DSB repair pathways serve as important mechanisms for tumor suppression. Thus, genetic lesions, such as BRCA1 and BRCA2 mutations, that disrupt DSB repair are often associated with cancer susceptibility. In addition, recent evidence suggests that DSB “mis-repair”, in which DSBs are resolved by an inappropriate repair pathway, can also promote genomic instability and presumably tumorigenesis. This notion has gained currency from recent cancer genome sequencing studies which have uncovered numerous chromosomal rearrangements harboring pathological DNA repair signatures. In this perspective, we discuss the factors that regulate DSB repair pathway choice and their consequences for genome stability and cancer. PMID:24746645

  12. Chromatin modifications and DNA repair: beyond double-strand breaks

    PubMed Central

    House, Nealia C. M.; Koch, Melissa R.; Freudenreich, Catherine H.

    2014-01-01

    DNA repair must take place in the context of chromatin, and chromatin modifications and DNA repair are intimately linked. The study of double-strand break repair has revealed numerous histone modifications that occur after induction of a DSB, and modification of the repair factors themselves can also occur. In some cases the function of the modification is at least partially understood, but in many cases it is not yet clear. Although DSB repair is a crucial activity for cell survival, DSBs account for only a small percentage of the DNA lesions that occur over the lifetime of a cell. Repair of single-strand gaps, nicks, stalled forks, alternative DNA structures, and base lesions must also occur in a chromatin context. There is increasing evidence that these repair pathways are also regulated by histone modifications and chromatin remodeling. In this review, we will summarize the current state of knowledge of chromatin modifications that occur during non-DSB repair, highlighting similarities and differences to DSB repair as well as remaining questions. PMID:25250043

  13. Drosophila ATR in double-strand break repair.

    PubMed

    LaRocque, Jeannine R; Jaklevic, Burnley; Su, Tin Tin; Sekelsky, Jeff

    2007-03-01

    The ability of a cell to sense and respond to DNA damage is essential for genome stability. An important aspect of the response is arrest of the cell cycle, presumably to allow time for repair. Ataxia telangiectasia mutated (ATM) and ATR are essential for such cell-cycle control, but some observations suggest that they also play a direct role in DNA repair. The Drosophila ortholog of ATR, MEI-41, mediates the DNA damage-dependent G2-M checkpoint. We examined the role of MEI-41 in repair of double-strand breaks (DSBs) induced by P-element excision. We found that mei-41 mutants are defective in completing the later steps of homologous recombination repair, but have no defects in end-joining repair. We hypothesized that these repair defects are the result of loss of checkpoint control. To test this, we genetically reduced mitotic cyclin levels and also examined repair in grp (DmChk1) and lok (DmChk2) mutants. Our results suggest that a significant component of the repair defects is due to loss of MEI-41-dependent cell cycle regulation. However, this does not account for all of the defects we observed. We propose a novel role for MEI-41 in DSB repair, independent of the Chk1/Chk2-mediated checkpoint response.

  14. Cell transcriptional state alters genomic patterns of DNA double-strand break repair in human astrocytes.

    PubMed

    Yong, Raymund L; Yang, Chunzhang; Lu, Jie; Wang, Huaien; Schlaff, Cody D; Tandle, Anita; Graves, Christian A; Elkahloun, Abdel G; Chen, Xiaoyuan; Zhuang, Zhengping; Lonser, Russell R

    2014-01-01

    The misrepair of DNA double-strand breaks in close spatial proximity within the nucleus can result in chromosomal rearrangements that are important in the pathogenesis of haematopoietic and solid malignancies. It is unknown why certain epigenetic states, such as those found in stem or progenitor cells, appear to facilitate neoplastic transformation. Here we show that altering the transcriptional state of human astrocytes alters patterns of DNA damage repair from ionizing radiation at a gene locus-specific and genome-wide level. Astrocytes induced into a reactive state exhibit increased DNA repair, compared with non-reactive cells, in actively transcribed chromatin after irradiation. In mapping these repair sites, we identify misrepair events and repair hotspots that are unique to each state. The precise characterization of genomic regions susceptible to mutation in specific transcriptional states provides new opportunities for addressing clonal evolution in solid cancers, in particular those where double-strand break induction is a cornerstone of clinical intervention. PMID:25517576

  15. Double strand break (DSB) repair in heterochromatin and heterochromatin proteins in DSB repair.

    PubMed

    Lemaître, Charlène; Soutoglou, Evi

    2014-07-01

    Chromosomal translocations are a hallmark of cancer cells and they represent a major cause of tumorigenesis. To avoid chromosomal translocations, faithful repair of DNA double strand breaks (DSBs) has to be ensured in the context of high ordered chromatin structure. However, chromatin compaction is proposed to represent a barrier for DSB repair. Here we review the different mechanisms cells use to alleviate the heterochromatic barrier for DNA repair. At the same time, we discuss the activating role of heterochromatin-associated proteins in this process, therefore proposing that chromatin structure, more than being a simple barrier, is a key modulator of DNA repair.

  16. DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks.

    PubMed

    van Overbeek, Megan; Capurso, Daniel; Carter, Matthew M; Thompson, Matthew S; Frias, Elizabeth; Russ, Carsten; Reece-Hoyes, John S; Nye, Christopher; Gradia, Scott; Vidal, Bastien; Zheng, Jiashun; Hoffman, Gregory R; Fuller, Christopher K; May, Andrew P

    2016-08-18

    The repair outcomes at site-specific DNA double-strand breaks (DSBs) generated by the RNA-guided DNA endonuclease Cas9 determine how gene function is altered. Despite the widespread adoption of CRISPR-Cas9 technology to induce DSBs for genome engineering, the resulting repair products have not been examined in depth. Here, the DNA repair profiles of 223 sites in the human genome demonstrate that the pattern of DNA repair following Cas9 cutting at each site is nonrandom and consistent across experimental replicates, cell lines, and reagent delivery methods. Furthermore, the repair outcomes are determined by the protospacer sequence rather than genomic context, indicating that DNA repair profiling in cell lines can be used to anticipate repair outcomes in primary cells. Chemical inhibition of DNA-PK enabled dissection of the DNA repair profiles into contributions from c-NHEJ and MMEJ. Finally, this work elucidates a strategy for using "error-prone" DNA-repair machinery to generate precise edits. PMID:27499295

  17. Single-nucleotide polymorphisms in base excision repair, nucleotide excision repair, and double strand break genes as markers for response to radiotherapy in patients with Stage I to II head-and-neck cancer

    SciTech Connect

    Carles, Joan . E-mail: jcarles@imas.imim.es; Monzo, Mariano; Amat, Marta; Jansa, Sonia; Artells, Rosa; Navarro, Alfons; Foro, Palmira; Alameda, Francesc; Gayete, Angel; Gel, Bernat; Miguel, Maribel; Albanell, Joan; Fabregat, Xavier

    2006-11-15

    Purpose: Polymorphisms in DNA repair genes can influence response to radiotherapy. We analyzed single-nucleotide polymorphisms (SNP) in nine DNA repair genes in 108 patients with head-and-neck cancer (HNSCC) who had received radiotherapy only. Methods and Materials: From May 1993 to December 2004, patients with Stage I and II histopathologically confirmed HNSCC underwent radiotherapy. DNA was obtained from paraffin-embedded tissue, and SNP analysis was performed using a real-time polymerase chain reaction allelic discrimination TaqMan assay with minor modifications. Results: Patients were 101 men (93.5%) and 7 (6.5%) women, with a median age of 64 years (range, 40 to 89 years). Of the patients, 76 (70.4%) patients were Stage I and 32 (29.6%) were Stage II. The XPF/ERCC1 SNP at codon 259 and XPG/ERCC5 at codon 46 emerged as significant predictors of progression (p 0.00005 and 0.049, respectively) and survival (p = 0.0089 and 0.0066, respectively). Similarly, when variant alleles of XPF/ERCC1, XPG/ERCC5 and XPA were examined in combination, a greater number of variant alleles was associated with shorter time to progression (p = 0.0003) and survival (p 0.0002). Conclusions: Genetic polymorphisms in XPF/ERCC1, XPG/ERCC5, and XPA may significantly influence response to radiotherapy; large studies are warranted to confirm their role in HNSCC.

  18. Double-strand break repair-adox: Restoration of suppressed double-strand break repair during mitosis induces genomic instability.

    PubMed

    Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki

    2014-12-01

    Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability.

  19. DNA double strand break repair pathway choice: a chromatin based decision?

    PubMed

    Clouaire, T; Legube, G

    2015-01-01

    DNA double-strand breaks (DSBs) are highly toxic lesions that can be rapidly repaired by 2 main pathways, namely Homologous Recombination (HR) and Non Homologous End Joining (NHEJ). The choice between these pathways is a critical, yet not completely understood, aspect of DSB repair. We recently found that distinct DSBs induced across the genome are not repaired by the same pathway. Indeed, DSBs induced in active genes, naturally enriched in the trimethyl form of histone H3 lysine 36 (H3K36me3), are channeled to repair by HR, in a manner depending on SETD2, the major H3K36 trimethyltransferase. Here, we propose that these findings may be generalized to other types of histone modifications and repair machineries thus defining a "DSB repair choice histone code". This "decision making" function of preexisting chromatin structure in DSB repair could connect the repair pathway used to the type and function of the damaged region, not only contributing to genome stability but also to its diversity. PMID:25675367

  20. Atypical Role for PhoU in Mutagenic Break Repair under Stress in Escherichia coli

    PubMed Central

    Aponyi, Ildiko; Vera Cruz, Diana; Ray, Mellanie P.; Rosenberg, Susan M.

    2015-01-01

    Mechanisms of mutagenesis activated by stress responses drive pathogen/host adaptation, antibiotic and anti-fungal-drug resistance, and perhaps much of evolution generally. In Escherichia coli, repair of double-strand breaks (DSBs) by homologous recombination is high fidelity in unstressed cells, but switches to a mutagenic mode using error-prone DNA polymerases when the both the SOS and general (σS) stress responses are activated. Additionally, the σE response promotes spontaneous DNA breakage that leads to mutagenic break repair (MBR). We identified the regulatory protein PhoU in a genetic screen for functions required for MBR. PhoU negatively regulates the phosphate-transport and utilization (Pho) regulon when phosphate is in excess, including the PstB and PstC subunits of the phosphate-specific ABC transporter PstSCAB. Here, we characterize the PhoU mutation-promoting role. First, some mutations that affect phosphate transport and Pho transcriptional regulation decrease mutagenesis. Second, the mutagenesis and regulon-expression phenotypes do not correspond, revealing an apparent new function(s) for PhoU. Third, the PhoU mutagenic role is not via activation of the σS, SOS or σE responses, because mutations (or DSBs) that restore mutagenesis to cells defective in these stress responses do not restore mutagenesis to phoU cells. Fourth, the mutagenesis defect in phoU-mutant cells is partially restored by deletion of arcA, a gene normally repressed by PhoU, implying that a gene(s) repressed by ArcA promotes mutagenic break repair. The data show a new role for PhoU in regulation, and a new regulatory branch of the stress-response signaling web that activates mutagenic break repair in E. coli. PMID:25961709

  1. Atypical Role for PhoU in Mutagenic Break Repair under Stress in Escherichia coli.

    PubMed

    Gibson, Janet L; Lombardo, Mary-Jane; Aponyi, Ildiko; Vera Cruz, Diana; Ray, Mellanie P; Rosenberg, Susan M

    2015-01-01

    Mechanisms of mutagenesis activated by stress responses drive pathogen/host adaptation, antibiotic and anti-fungal-drug resistance, and perhaps much of evolution generally. In Escherichia coli, repair of double-strand breaks (DSBs) by homologous recombination is high fidelity in unstressed cells, but switches to a mutagenic mode using error-prone DNA polymerases when the both the SOS and general (σS) stress responses are activated. Additionally, the σE response promotes spontaneous DNA breakage that leads to mutagenic break repair (MBR). We identified the regulatory protein PhoU in a genetic screen for functions required for MBR. PhoU negatively regulates the phosphate-transport and utilization (Pho) regulon when phosphate is in excess, including the PstB and PstC subunits of the phosphate-specific ABC transporter PstSCAB. Here, we characterize the PhoU mutation-promoting role. First, some mutations that affect phosphate transport and Pho transcriptional regulation decrease mutagenesis. Second, the mutagenesis and regulon-expression phenotypes do not correspond, revealing an apparent new function(s) for PhoU. Third, the PhoU mutagenic role is not via activation of the σS, SOS or σE responses, because mutations (or DSBs) that restore mutagenesis to cells defective in these stress responses do not restore mutagenesis to phoU cells. Fourth, the mutagenesis defect in phoU-mutant cells is partially restored by deletion of arcA, a gene normally repressed by PhoU, implying that a gene(s) repressed by ArcA promotes mutagenic break repair. The data show a new role for PhoU in regulation, and a new regulatory branch of the stress-response signaling web that activates mutagenic break repair in E. coli.

  2. BRCA1-CtIP interaction in the repair of DNA double-strand breaks.

    PubMed

    Aparicio, Tomas; Gautier, Jean

    2016-07-01

    DNA termini at double-strand breaks are often chemically heterogeneous and require processing before initiation of repair. In a recent report, we demonstrated that CtIP and the MRE11-RAD50-NBS1 (MRN) nuclease complex cooperate with BRCA1 to specifically repair topoisomerase II-DNA adducted breaks. In contrast, BRCA1 is dispensable for repair of restriction endonuclease-generated double-strand breaks. PMID:27652321

  3. BRCA1-CtIP interaction in the repair of DNA double-strand breaks.

    PubMed

    Aparicio, Tomas; Gautier, Jean

    2016-07-01

    DNA termini at double-strand breaks are often chemically heterogeneous and require processing before initiation of repair. In a recent report, we demonstrated that CtIP and the MRE11-RAD50-NBS1 (MRN) nuclease complex cooperate with BRCA1 to specifically repair topoisomerase II-DNA adducted breaks. In contrast, BRCA1 is dispensable for repair of restriction endonuclease-generated double-strand breaks.

  4. DNA polymerase θ (POLQ), double-strand break repair, and cancer.

    PubMed

    Wood, Richard D; Doublié, Sylvie

    2016-08-01

    DNA polymerase theta (pol θ) is encoded in the genomes of many eukaryotes, though not in fungi. Pol θ is encoded by the POLQ gene in mammalian cells. The C-terminal third of the protein is a family A DNA polymerase with additional insertion elements relative to prokaryotic homologs. The N-terminal third is a helicase-like domain with DNA-dependent ATPase activity. Pol θ is important in the repair of genomic double-strand breaks (DSBs) from many sources. These include breaks formed by ionizing radiation and topoisomerase inhibitors, breaks arising at stalled DNA replication forks, breaks introduced during diversification steps of the mammalian immune system, and DSB induced by CRISPR-Cas9. Pol θ participates in a route of DSB repair termed "alternative end-joining" (altEJ). AltEJ is independent of the DNA binding Ku protein complex and requires DNA end resection. Pol θ is able to mediate joining of two resected 3' ends harboring DNA sequence microhomology. "Signatures" of Pol θ action during altEJ are the frequent utilization of longer microhomologies, and the insertion of additional sequences at joining sites. The mechanism of end-joining employs the ability of Pol θ to tightly grasp a 3' terminus through unique contacts in the active site, allowing extension from minimally paired primers. Pol θ is involved in controlling the frequency of chromosome translocations and preserves genome integrity by limiting large deletions. It may also play a backup role in DNA base excision repair. POLQ is a member of a cluster of similarly upregulated genes that are strongly correlated with poor clinical outcome for breast cancer, ovarian cancer and other cancer types. Inhibition of pol θ is a compelling approach for combination therapy of radiosensitization. PMID:27264557

  5. Repairing a double-strand chromosome break by homologous recombination: revisiting Robin Holliday's model.

    PubMed Central

    Haber, James E; Ira, Gregorz; Malkova, Anna; Sugawara, Neal

    2004-01-01

    Since the pioneering model for homologous recombination proposed by Robin Holliday in 1964, there has been great progress in understanding how recombination occurs at a molecular level. In the budding yeast Saccharomyces cerevisiae, one can follow recombination by physically monitoring DNA after the synchronous induction of a double-strand break (DSB) in both wild-type and mutant cells. A particularly well-studied system has been the switching of yeast mating-type (MAT) genes, where a DSB can be induced synchronously by expression of the site-specific HO endonuclease. Similar studies can be performed in meiotic cells, where DSBs are created by the Spo11 nuclease. There appear to be at least two competing mechanisms of homologous recombination: a synthesis-dependent strand annealing pathway leading to noncrossovers and a two-end strand invasion mechanism leading to formation and resolution of Holliday junctions (HJs), leading to crossovers. The establishment of a modified replication fork during DSB repair links gene conversion to another important repair process, break-induced replication. Despite recent revelations, almost 40 years after Holliday's model was published, the essential ideas he proposed of strand invasion and heteroduplex DNA formation, the formation and resolution of HJs, and mismatch repair, remain the basis of our thinking. PMID:15065659

  6. Repairing a double-strand chromosome break by homologous recombination: revisiting Robin Holliday's model.

    PubMed

    Haber, James E; Ira, Gregorz; Malkova, Anna; Sugawara, Neal

    2004-01-29

    Since the pioneering model for homologous recombination proposed by Robin Holliday in 1964, there has been great progress in understanding how recombination occurs at a molecular level. In the budding yeast Saccharomyces cerevisiae, one can follow recombination by physically monitoring DNA after the synchronous induction of a double-strand break (DSB) in both wild-type and mutant cells. A particularly well-studied system has been the switching of yeast mating-type (MAT) genes, where a DSB can be induced synchronously by expression of the site-specific HO endonuclease. Similar studies can be performed in meiotic cells, where DSBs are created by the Spo11 nuclease. There appear to be at least two competing mechanisms of homologous recombination: a synthesis-dependent strand annealing pathway leading to noncrossovers and a two-end strand invasion mechanism leading to formation and resolution of Holliday junctions (HJs), leading to crossovers. The establishment of a modified replication fork during DSB repair links gene conversion to another important repair process, break-induced replication. Despite recent revelations, almost 40 years after Holliday's model was published, the essential ideas he proposed of strand invasion and heteroduplex DNA formation, the formation and resolution of HJs, and mismatch repair, remain the basis of our thinking.

  7. Evidence for independent mismatch repair processing on opposite sides of a double-strand break in Saccharomyces cerevisiae.

    PubMed Central

    Weng, Y S; Nickoloff, J A

    1998-01-01

    Double-strand break (DSB) induced gene conversion in Saccharomyces cerevisiae during meiosis and MAT switching is mediated primarily by mismatch repair of heteroduplex DNA (hDNA). We used nontandem ura3 duplications containing palindromic frameshift insertion mutations near an HO nuclease recognition site to test whether mismatch repair also mediates DSB-induced mitotic gene conversion at a non-MAT locus. Palindromic insertions included in hDNA are expected to produce a stem-loop mismatch, escape repair, and segregate to produce a sectored (Ura+/-) colony. If conversion occurs by gap repair, the insertion should be removed on both strands, and converted colonies will not be sectored. For both a 14-bp palindrome, and a 37-bp near-palindrome, approximately 75% of recombinant colonies were sectored, indicating that most DSB-induced mitotic gene conversion involves mismatch repair of hDNA. We also investigated mismatch repair of well-repaired markers flanking an unrepaired palindrome. As seen in previous studies, these additional markers increased loop repair (likely reflecting corepair). Among sectored products, few had additional segregating markers, indicating that the lack of repair at one marker is not associated with inefficient repair at nearby markers. Clear evidence was obtained for low levels of short tract mismatch repair. As seen with full gene conversions, donor alleles in sectored products were not altered. Markers on the same side of the DSB as the palindrome were involved in hDNA less often among sectored products than nonsectored products, but markers on the opposite side of the DSB showed similar hDNA involvement among both product classes. These results can be explained in terms of corepair, and they suggest that mismatch repair on opposite sides of a DSB involves distinct repair tracts. PMID:9475721

  8. SMCHD1 accumulates at DNA damage sites and facilitates the repair of DNA double-strand breaks

    PubMed Central

    Coker, Heather; Brockdorff, Neil

    2014-01-01

    ABSTRACT SMCHD1 is a structural maintenance of chromosomes (SMC) family protein involved in epigenetic gene silencing and chromosome organisation on the female inactive X chromosome and at a limited number of autosomal loci. Here, we demonstrate that SMCHD1 also has a role in DNA repair of double-strand breaks; SMCHD1 is recruited to sites of laser micro-irradiated damage along with other DNA repair factors, including Ku80 (also known as XRCC5 in mammals) and RAD51. Cells deficient in SMCHD1 show evidence of decreased efficiency of repair and cell viability after DNA damage. We suggest that SMCHD1 responds to DNA double-strand breaks in a manner that is likely to involve its ability to alter chromatin states to facilitate DNA repair. PMID:24790221

  9. Genetics of x-ray induced double strand break repair in saccharomyces cerevisiae

    SciTech Connect

    Budd, M.E.

    1982-07-01

    The possible fates of x-ray-induced double-strand breaks in Saccharomyces cerevisiae were examined. One possible pathway which breaks can follow, the repair pathway, was studied by assaying strains with mutations in the RAD51, RAD54, and RAD57 loci for double-strand break repair. In order of increasing radiation sensitivity one finds: rad57-1(23/sup 0/)> rad51-1(30/sup 0/)> rad54-3(36/sup 0/). At 36/sup 0/, rad54-3 cells cannot repair double-strand breaks, while 23/sup 0/, they can. Strains with the rad57-1 mutation can rejoin broken chromosomes at both temperatures. However, the low survival at 36/sup 0/ shows that the assay is not distinguishing large DNA fragments which allow cell survival from those which cause cell death. A rad51-1 strain could also rejoin broken chromosomes, and was thus capable of incomplete repair. The data can be explained with the hypothesis that rad54-3 cells are blocked in an early step of repair, while rad51-1 and rad57-1 strains are blocked in a later step of repair. The fate of double-strand breaks when they are left unrepaired was investigated with the rad54-3 mutation. If breaks are prevented from entering the RAD54 repair pathway they become uncommitted lesions. These lesions are repaired slower than the original breaks. One possible fate for an uncommitted lesion is conversion into a fixed lesion, which is likely to be an unrepairable or misrepaired double-strand break. The presence of protein synthesis after irradiation increases the probability that a break will enter the repair pathway. Evidence shows that increased probability of repair results from enhanced synthesis of repair proteins shortly after radiation. (ERB)

  10. Lack of dependence on p53 for DNA double strand break repair of episomal vectors in human lymphoblasts

    NASA Technical Reports Server (NTRS)

    Kohli, M.; Jorgensen, T. J.

    1999-01-01

    The p53 tumor suppressor gene has been shown to be involved in a variety of repair processes, and recent findings have suggested that p53 may be involved in DNA double strand break repair in irradiated cells. The role of p53 in DNA double strand break repair, however, has not been fully investigated. In this study, we have constructed a novel Epstein-Barr virus (EBV)-based shuttle vector, designated as pZEBNA, to explore the influence of p53 on DNA strand break repair in human lymphoblasts, since EBV-based vectors do not inactivate the p53 pathway. We have compared plasmid survival of irradiated, restriction enzyme linearized, and calf intestinal alkaline phosphatase (CIP)-treated pZEBNA with a Simian virus 40 (SV40)-based shuttle vector, pZ189, in TK6 (wild-type p53) and WTK1 (mutant p53) lymphoblasts and determined that p53 does not modulate DNA double strand break repair in these cell lines. Copyright 1999 Academic Press.

  11. Genetic and Physical Analysis of Double-Strand Break Repair and Recombination in Saccharomyces Cerevisiae

    PubMed Central

    Rudin, N.; Sugarman, E.; Haber, J. E.

    1989-01-01

    We have investigated HO endonuclease-induced double-strand break (DSB) recombination and repair in a LACZ duplication plasmid in yeast. A 117-bp MATa fragment, embedded in one copy of LACZ, served as a site for initiation of a DSB when HO endonuclease was expressed. The DSB could be repaired using wild-type sequences located on a second, promoterless, copy of LACZ on the same plasmid. In contrast to normal mating-type switching, crossing-over associated with gene conversion occurred at least 50% of the time. The proportion of conversion events accompanied by exchange was greater when the two copies of LACZ were in direct orientation (80%), than when inverted (50%). In addition, the fraction of plasmids lost was significantly greater in the inverted orientation. The kinetics of appearance of intermediates and final products were also monitored. The repair of the DSB is slow, requiring at least an hour from the detection of the HO-cut fragments to completion of repair. Surprisingly, the appearance of the two reciprocal products of crossing over did not occur with the same kinetics. For example, when the two LACZ sequences were in the direct orientation, the HO-induced formation of a large circular deletion product was not accompanied by the appearance of a small circular reciprocal product. We suggest that these differences may reflect two kinetically separable processes, one involving only one cut end and the other resulting from the concerted participation of both ends of the DSB. PMID:2668114

  12. Non-functional genes repaired at the RNA level.

    PubMed

    Burger, Gertraud

    2016-01-01

    Genomes and genes continuously evolve. Gene sequences undergo substitutions, deletions or nucleotide insertions; mobile genetic elements invade genomes and interleave in genes; chromosomes break, even within genes, and pieces reseal in reshuffled order. To maintain functional gene products and assure an organism's survival, two principal strategies are used - either repair of the gene itself or of its product. I will introduce common types of gene aberrations and how gene function is restored secondarily, and then focus on systematically fragmented genes found in a poorly studied protist group, the diplonemids. Expression of their broken genes involves restitching of pieces at the RNA-level, and substantial RNA editing, to compensate for point mutations. I will conclude with thoughts on how such a grotesquely unorthodox system may have evolved, and why this group of organisms persists and thrives since tens of millions of years.

  13. Real-time analysis of double-strand DNA break repair by homologous recombination

    PubMed Central

    Hicks, Wade M.; Yamaguchi, Miyuki; Haber, James E.

    2011-01-01

    The ability to induce synchronously a single site-specific double-strand break (DSB) in a budding yeast chromosome has made it possible to monitor the kinetics and genetic requirements of many molecular steps during DSB repair. Special attention has been paid to the switching of mating-type genes in Saccharomyces cerevisiae, a process initiated by the HO endonuclease by cleaving the MAT locus. A DSB in MATa is repaired by homologous recombination—specifically, by gene conversion—using a heterochromatic donor, HMLα. Repair results in the replacement of the a-specific sequences (Ya) by Yα and switching from MATa to MATα. We report that MAT switching requires the DNA replication factor Dpb11, although it does not require the Cdc7-Dbf4 kinase or the Mcm and Cdc45 helicase components. Using Southern blot, PCR, and ChIP analysis of samples collected every 10 min, we extend previous studies of this process to identify the times for the loading of Rad51 recombinase protein onto the DSB ends at MAT, the subsequent strand invasion by the Rad51 nucleoprotein filament into the donor sequences, the initiation of new DNA synthesis, and the removal of the nonhomologous Y sequences. In addition we report evidence for the transient displacement of well-positioned nucleosomes in the HML donor locus during strand invasion. PMID:21292986

  14. Real-time analysis of double-strand DNA break repair by homologous recombination.

    PubMed

    Hicks, Wade M; Yamaguchi, Miyuki; Haber, James E

    2011-02-22

    The ability to induce synchronously a single site-specific double-strand break (DSB) in a budding yeast chromosome has made it possible to monitor the kinetics and genetic requirements of many molecular steps during DSB repair. Special attention has been paid to the switching of mating-type genes in Saccharomyces cerevisiae, a process initiated by the HO endonuclease by cleaving the MAT locus. A DSB in MATa is repaired by homologous recombination--specifically, by gene conversion--using a heterochromatic donor, HMLα. Repair results in the replacement of the a-specific sequences (Ya) by Yα and switching from MATa to MATα. We report that MAT switching requires the DNA replication factor Dpb11, although it does not require the Cdc7-Dbf4 kinase or the Mcm and Cdc45 helicase components. Using Southern blot, PCR, and ChIP analysis of samples collected every 10 min, we extend previous studies of this process to identify the times for the loading of Rad51 recombinase protein onto the DSB ends at MAT, the subsequent strand invasion by the Rad51 nucleoprotein filament into the donor sequences, the initiation of new DNA synthesis, and the removal of the nonhomologous Y sequences. In addition we report evidence for the transient displacement of well-positioned nucleosomes in the HML donor locus during strand invasion.

  15. The RSC and INO80 chromatin-remodeling complexes in DNA double-strand break repair.

    PubMed

    Chambers, Anna L; Downs, Jessica A

    2012-01-01

    In eukaryotes, DNA is packaged into chromatin and is therefore relatively inaccessible to DNA repair enzymes. In order to perform efficient DNA repair, ATP-dependent chromatin-remodeling enzymes are required to alter the chromatin structure near the site of damage to facilitate processing and allow access to repair enzymes. Two of the best-studied remodeling complexes involved in repair are RSC (Remodels the Structure of Chromatin) and INO80 from Saccharomyces cerevisiae, which are both conserved in higher eukaryotes. RSC is very rapidly recruited to breaks and mobilizes nucleosomes to promote phosphorylation of H2A S129 and resection. INO80 enrichment at a break occurs later and is dependent on phospho-S129 H2A. INO80 activity at the break site also facilitates resection. Consequently, both homologous recombination and nonhomologous end-joining are defective in rsc mutants, while subsets of these repair pathways are affected in ino80 mutants.

  16. A link between double-strand break-related repair and V(D)J recombination: the scid mutation

    SciTech Connect

    Hendrickson, E.A.; Qin, X.Q.; Bump, E.A.; Schatz, D.G.; Oettinger, M.; Weaver, D.T. )

    1991-05-15

    We show here that mammalian site-specific recombination and DNA-repair pathways share a common factor. The effects of DNA-damaging agents on cell lines derived from mice homozygous for the scid (severe combined immune deficiency) mutation were studied. Surprisingly, all scid cell lines exhibited a profound hypersensitivity to DNA-damaging agents that caused double-strand breaks (x-irradiation and bleomycin) but not to other chemicals that caused single-strand breaks or cross-links. Neutral filter elution assays demonstrated that the x-irradiation hypersensitivity could be correlated with a deficiency in repairing double-strand breaks. These data suggest that the scid gene product is involved in two pathways: DNA repair of random double-strand breaks and the site-specific and lymphoid-restricted variable-(diversity)-joining (V(D)J) DNA rearrangement process. We propose that the scid gene product performs a similar function in both pathways and may be a ubiquitous protein.

  17. Analysis of BRCA1 Variants in Double-Strand Break Repair by Homologous Recombination and Single-Strand Annealing

    PubMed Central

    Towler, William I.; Zhang, Jie; Ransburgh, Derek J. R.; Toland, Amanda E.; Ishioka, Chikashi; Chiba, Natsuko; Parvin, Jeffrey D.

    2014-01-01

    Missense substitutions of uncertain clinical significance in the BRCA1 gene are a vexing problem in genetic counseling for women who have a family history of breast cancer. In this study, we evaluated the functions of 29 missense substitutions of BRCA1 in two DNA repair pathways. Repair of double-strand breaks by homology-directed recombination (HDR) had been previously analyzed for 16 of these BRCA1 variants, and 13 more variants were analyzed in this study. All 29 variants were also analyzed for function in double-strand break repair by the single-strand annealing (SSA) pathway. We found that among the pathogenic mutations in BRCA1, all were defective for DNA repair by either pathway. The HDR assay was accurate because all pathogenic mutants were defective for HDR, and all nonpathogenic variants were fully functional for HDR. Repair by SSA accurately identified pathogenic mutants, but several nonpathogenic variants were scored as defective or partially defective. These results indicated that specific amino acid residues of the BRCA1 protein have different effects in the two related DNA repair pathways, and these results validate the HDR assay as highly correlative with BRCA1-associated breast cancer. PMID:23161852

  18. Hodgkin Lymphoma Risk: Role of Genetic Polymorphisms and Gene-Gene Interactions in DNA repair pathways

    PubMed Central

    Monroy, Claudia M.; Cortes, Andrea C.; Lopez, Mirtha; Rourke, Elizabeth; Etzel, Carol J.; Younes, Anas; Strom, Sara S.; El-Zein, Randa

    2011-01-01

    DNA repair variants may play a potentially important role in an individual’s susceptibility to developing cancer. Numerous studies have reported the association between genetic single nucleotide polymorphisms (SNPs) in DNA repair genes and different types of hematologic cancers. However, to date, the effects of such SNPs on modulating Hodgkin Lymphoma (HL) risk have not yet been investigated. We hypothesized that gene-gene interaction between candidate genes in Direct Reversal, Nucleotide excision repair (NER), Base excision repair (BER) and Double strand break (DSB) pathways may contribute to susceptibility to HL. To test this hypothesis, we conducted a study on 200 HL cases and 220 controls to assess associations between HL risk and 21 functional SNPs in DNA repair genes. We evaluated potential gene-gene interactions and the association of multiple polymorphisms in a chromosome region using a multi-analytic strategy combining logistic regression, multi-factor dimensionality reduction and classification and regression tree approaches. We observed that, in combination, allelic variants in the XPC Ala499Val, NBN Glu185Gln, XRCC3 Thr241Me, XRCC1 Arg194Trp and XRCC1 399Gln polymorphisms modify the risk for developing HL. Moreover, the cumulative genetic risk score revealed a significant trend where the risk for developing HL increases as the number of adverse alleles in BER and DSB genes increase. These findings suggest that DNA repair variants in BER and DSB pathways may play an important role in the development of HL. PMID:21374732

  19. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks.

    PubMed

    Van Meter, Michael; Simon, Matthew; Tombline, Gregory; May, Alfred; Morello, Timothy D; Hubbard, Basil P; Bredbenner, Katie; Park, Rosa; Sinclair, David A; Bohr, Vilhelm A; Gorbunova, Vera; Seluanov, Andrei

    2016-09-01

    The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6), promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB) repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK), phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose) polymerase 1 (PARP1) to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance.

  20. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks.

    PubMed

    Van Meter, Michael; Simon, Matthew; Tombline, Gregory; May, Alfred; Morello, Timothy D; Hubbard, Basil P; Bredbenner, Katie; Park, Rosa; Sinclair, David A; Bohr, Vilhelm A; Gorbunova, Vera; Seluanov, Andrei

    2016-09-01

    The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6), promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB) repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK), phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose) polymerase 1 (PARP1) to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance. PMID:27568560

  1. Role of Double-Strand Break End-Tethering during Gene Conversion in Saccharomyces cerevisiae

    PubMed Central

    Haber, James E.

    2016-01-01

    Correct repair of DNA double-strand breaks (DSBs) is critical for maintaining genome stability. Whereas gene conversion (GC)-mediated repair is mostly error-free, repair by break-induced replication (BIR) is associated with non-reciprocal translocations and loss of heterozygosity. We have previously shown that a Recombination Execution Checkpoint (REC) mediates this competition by preventing the BIR pathway from acting on DSBs that can be repaired by GC. Here, we asked if the REC can also determine whether the ends that are engaged in a GC-compatible configuration belong to the same break, since repair involving ends from different breaks will produce potentially deleterious translocations. We report that the kinetics of repair are markedly delayed when the two DSB ends that participate in GC belong to different DSBs (termed Trans) compared to the case when both DSB ends come from the same break (Cis). However, repair in Trans still occurs by GC rather than BIR, and the overall efficiency of repair is comparable. Hence, the REC is not sensitive to the “origin” of the DSB ends. When the homologous ends for GC are in Trans, the delay in repair appears to reflect their tethering to sequences on the other side of the DSB that themselves recombine with other genomic locations with which they share sequence homology. These data support previous observations that the two ends of a DSB are usually tethered to each other and that this tethering facilitates both ends encountering the same donor sequence. We also found that the presence of homeologous/repetitive sequences in the vicinity of a DSB can distract the DSB end from finding its bona fide homologous donor, and that inhibition of GC by such homeologous sequences is markedly increased upon deleting Sgs1 but not Msh6. PMID:27074148

  2. Repair of Radiation-Induced Damage in Escherichia coli II. Effect of rec and uvr Mutations on Radiosensitivity, and Repair of X-Ray-Induced Single-Strand Breaks in Deoxyribonucleic Acid1

    PubMed Central

    Kapp, Daniel S.; Smith, Kendric C.

    1970-01-01

    Strains of Escherichia coli K-12 mutant in the genes controlling excision repair (uvr) and genetic recombination (rec) have been studied with reference to their radiosensitivity and their ability to repair X-ray-induced single-strand breaks in deoxyribonucleic acid (DNA). Mutations in the rec genes appreciably increase the radiosensitivity of E. coli K-12, whereas uvr mutations produce little if any increase in radiosensitivity. For a given dose of X-rays, the yield of single-strand breaks has been shown by alkaline sucrose gradient studies to be largely independent of the presence of rec or uvr mutations. The rec+ cells (including those carrying the uvrB5 mutation) could efficiently rejoin X-ray-induced single-strand breaks in DNA, whereas recA56 mutants could not repair these breaks to any great extent. The recB21 and recC22 mutants showed some indication of repair capacity. From these studies, it is concluded that a correlation exists between the inability to repair single-strand breaks and the radiosensitivity of the rec mutants of E. coli K-12. This suggests that unrepaired single-strand breaks may be lethal lesions in E. coli. PMID:4912530

  3. Histone modifications and DNA double-strand break repair after exposure to ionizing radiations.

    PubMed

    Hunt, Clayton R; Ramnarain, Deepti; Horikoshi, Nobuo; Iyengar, Puneeth; Pandita, Raj K; Shay, Jerry W; Pandita, Tej K

    2013-04-01

    Ionizing radiation exposure induces highly lethal DNA double-strand breaks (DSBs) in all phases of the cell cycle. After DSBs are detected by the cellular machinery, these breaks are repaired by either of two mechanisms: (1) nonhomologous end joining (NHEJ), which re-ligates the broken ends of the DNA and (2) homologous recombination (HR), that makes use of an undamaged identical DNA sequence as a template to maintain the fidelity of DNA repair. DNA DSB repair must occur within the context of the natural cellular DNA structure. Among the major factors influencing DNA organization are specific histone and nonhistone proteins that form chromatin. The overall chromatin structure regulates DNA damage responses since chromatin status can impede DNA damage site access by repair proteins. During the process of DNA DSB repair, several chromatin alterations are required to sense damage and facilitate accessibility of the repair machinery. The DNA DSB response is also facilitated by hierarchical signaling networks that orchestrate chromatin structural changes that may coordinate cell-cycle checkpoints involving multiple enzymatic activities to repair broken DNA ends. During DNA damage sensing and repair, histones undergo posttranslational modifications (PTMs) including phosphorylation, acetylation, methylation and ubiquitylation. Such histone modifications represent a histone code that directs the recruitment of proteins involved in DNA damage sensing and repair processes. In this review, we summarize histone modifications that occur during DNA DSB repair processes.

  4. DNA repair genes in the Megavirales pangenome.

    PubMed

    Blanc-Mathieu, Romain; Ogata, Hiroyuki

    2016-06-01

    The order 'Megavirales' represents a group of eukaryotic viruses with a large genome encoding a few hundred up to two thousand five hundred genes. Several members of Megavirales possess genes involved in major DNA repair pathways. Some of these genes were likely inherited from an ancient virus world and some others were derived from the genomes of their hosts. Here we examine molecular phylogenies of key DNA repair enzymes in light of recent hypotheses on the origin of Megavirales, and propose that the last common ancestors of the individual families of the order Megavirales already possessed DNA repair functions to achieve and maintain a moderately large genome and that this repair capacity gradually increased, in a family-dependent manner, during their recent evolution.

  5. Mechanistic Modelling and Bayesian Inference Elucidates the Variable Dynamics of Double-Strand Break Repair

    PubMed Central

    2016-01-01

    DNA double-strand breaks are lesions that form during metabolism, DNA replication and exposure to mutagens. When a double-strand break occurs one of a number of repair mechanisms is recruited, all of which have differing propensities for mutational events. Despite DNA repair being of crucial importance, the relative contribution of these mechanisms and their regulatory interactions remain to be fully elucidated. Understanding these mutational processes will have a profound impact on our knowledge of genomic instability, with implications across health, disease and evolution. Here we present a new method to model the combined activation of non-homologous end joining, single strand annealing and alternative end joining, following exposure to ionising radiation. We use Bayesian statistics to integrate eight biological data sets of double-strand break repair curves under varying genetic knockouts and confirm that our model is predictive by re-simulating and comparing to additional data. Analysis of the model suggests that there are at least three disjoint modes of repair, which we assign as fast, slow and intermediate. Our results show that when multiple data sets are combined, the rate for intermediate repair is variable amongst genetic knockouts. Further analysis suggests that the ratio between slow and intermediate repair depends on the presence or absence of DNA-PKcs and Ku70, which implies that non-homologous end joining and alternative end joining are not independent. Finally, we consider the proportion of double-strand breaks within each mechanism as a time series and predict activity as a function of repair rate. We outline how our insights can be directly tested using imaging and sequencing techniques and conclude that there is evidence of variable dynamics in alternative repair pathways. Our approach is an important step towards providing a unifying theoretical framework for the dynamics of DNA repair processes. PMID:27741226

  6. Breaking bad: The mutagenic effect of DNA repair.

    PubMed

    Chen, Jia; Furano, Anthony V

    2015-08-01

    Species survival depends on the faithful replication of genetic information, which is continually monitored and maintained by DNA repair pathways that correct replication errors and the thousands of lesions that arise daily from the inherent chemical lability of DNA and the effects of genotoxic agents. Nonetheless, neutrally evolving DNA (not under purifying selection) accumulates base substitutions with time (the neutral mutation rate). Thus, repair processes are not 100% efficient. The neutral mutation rate varies both between and within chromosomes. For example it is 10-50 fold higher at CpGs than at non-CpG positions. Interestingly, the neutral mutation rate at non-CpG sites is positively correlated with CpG content. Although the basis of this correlation was not immediately apparent, some bioinformatic results were consistent with the induction of non-CpG mutations by DNA repair at flanking CpG sites. Recent studies with a model system showed that in vivo repair of preformed lesions (mismatches, abasic sites, single stranded nicks) can in fact induce mutations in flanking DNA. Mismatch repair (MMR) is an essential component for repair-induced mutations, which can occur as distant as 5 kb from the introduced lesions. Most, but not all, mutations involved the C of TpCpN (G of NpGpA) which is the target sequence of the C-preferring single-stranded DNA specific APOBEC deaminases. APOBEC-mediated mutations are not limited to our model system: Recent studies by others showed that some tumors harbor mutations with the same signature, as can intermediates in RNA-guided endonuclease-mediated genome editing. APOBEC deaminases participate in normal physiological functions such as generating mutations that inactivate viruses or endogenous retrotransposons, or that enhance immunoglobulin diversity in B cells. The recruitment of normally physiological error-prone processes during DNA repair would have important implications for disease, aging and evolution. This perspective

  7. Breaking bad: The mutagenic effect of DNA repair.

    PubMed

    Chen, Jia; Furano, Anthony V

    2015-08-01

    Species survival depends on the faithful replication of genetic information, which is continually monitored and maintained by DNA repair pathways that correct replication errors and the thousands of lesions that arise daily from the inherent chemical lability of DNA and the effects of genotoxic agents. Nonetheless, neutrally evolving DNA (not under purifying selection) accumulates base substitutions with time (the neutral mutation rate). Thus, repair processes are not 100% efficient. The neutral mutation rate varies both between and within chromosomes. For example it is 10-50 fold higher at CpGs than at non-CpG positions. Interestingly, the neutral mutation rate at non-CpG sites is positively correlated with CpG content. Although the basis of this correlation was not immediately apparent, some bioinformatic results were consistent with the induction of non-CpG mutations by DNA repair at flanking CpG sites. Recent studies with a model system showed that in vivo repair of preformed lesions (mismatches, abasic sites, single stranded nicks) can in fact induce mutations in flanking DNA. Mismatch repair (MMR) is an essential component for repair-induced mutations, which can occur as distant as 5 kb from the introduced lesions. Most, but not all, mutations involved the C of TpCpN (G of NpGpA) which is the target sequence of the C-preferring single-stranded DNA specific APOBEC deaminases. APOBEC-mediated mutations are not limited to our model system: Recent studies by others showed that some tumors harbor mutations with the same signature, as can intermediates in RNA-guided endonuclease-mediated genome editing. APOBEC deaminases participate in normal physiological functions such as generating mutations that inactivate viruses or endogenous retrotransposons, or that enhance immunoglobulin diversity in B cells. The recruitment of normally physiological error-prone processes during DNA repair would have important implications for disease, aging and evolution. This perspective

  8. BRC-1 acts in the inter-sister pathway of meiotic double-strand break repair.

    PubMed

    Adamo, Adele; Montemauri, Paolo; Silva, Nicola; Ward, Jordan D; Boulton, Simon J; La Volpe, Adriana

    2008-03-01

    The breast and ovarian cancer susceptibility protein BRCA1 is evolutionarily conserved and functions in DNA double-strand break (DSB) repair through homologous recombination, but its role in meiosis is poorly understood. By using genetic analysis, we investigated the role of the Caenorhabditis elegans BRCA1 orthologue (brc-1) during meiotic prophase. The null mutant in the brc-1 gene is viable, fertile and shows the wild-type complement of six bivalents in most diakinetic nuclei, which is indicative of successful crossover recombination. However, brc-1 mutants show an abnormal increase in apoptosis and RAD-51 foci at pachytene that are abolished by loss of spo-11 function, suggesting a defect in meiosis rather than during premeiotic DNA replication. In genetic backgrounds in which chiasma formation is abrogated, such as him-14/MSH4 and syp-2, loss of brc-1 leads to chromosome fragmentation suggesting that brc-1 is dispensable for crossing over but essential for DSB repair through inter-sister recombination.

  9. Breaking bad: The mutagenic effect of DNA repair

    PubMed Central

    2015-01-01

    Species survival depends on the faithful replication of genetic information, which is continually monitored and maintained by DNA repair pathways thatcorrect replication errors and the thousands of lesions that arise daily from the inherent chemical lability of DNA and the effects of genotoxic agents. Nonetheless,neutrally evolving DNA (not under purifying selection) accumulates base substitutions with time (the neutral mutation rate). Thus, repair processes are not 100% efficient. The neutral mutation rate varies both between and within chromosomes. For example it is 10 – 50 fold higher at CpGsthan at non-CpG positions. Interestingly, the neutral mutation rate at non-CpG sites is positively correlated with CpG content. Althoughthe basis of this correlation was not immediately apparent,some bioinformatic results were consistent with the induction of non-CpGmutations byDNA repairat flanking CpG sites. Recent studies with a model system showed that in vivo repair of preformed lesions (mismatches, abasic sites, single stranded nicks) can in factinduce mutations in flanking DNA. Mismatch repair (MMR) is an essential component for repair-induced mutations, which can occur as distant as 5 kb from the introduced lesions. Most, but not all, mutations involved the C of TpCpN (G of NpGpA) which is the target sequence of the C-preferringsingle-stranded DNA specific APOBEC deaminases. APOBEC-mediated mutations are not limited to our model system: Recent studies by others showed that some tumors harbor mutations with the same signature, as can intermediates in RNA-guided endonuclease-mediated genome editing. APOBEC deaminases participate in normal physiological functions such as generating mutations that inactivate viruses or endogenous retrotransposons, or that enhance immunoglobulin diversity in B cells. The recruitment of normally physiological errorprone processes during DNA repairwould have important implications for disease, aging and evolution. This perspective briefly

  10. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair

    SciTech Connect

    Biedermann, K.A.; Sun, J.R.; Giaccia, A.J.; Tosto, L.M.; Brown, J.M. )

    1991-02-15

    C.B-17 severe combined immunodeficient (scid) mice carry the scid mutation and are severely deficient in both T cell- and B cell-mediated immunity, apparently as a result of defective V(D)J joining of the immunoglobulin and T-cell receptor gene elements. In the present studies, we have defined the tissue, cellular, and molecular basis of another characteristic of these mice: their hypersensitivity to ionizing radiation. Bone marrow stem cells, intestinal crypt cells, and epithelial skin cells from scid mice are 2- to 3-fold more sensitive when irradiated in situ than are congenic BALB/c or C.B-17 controls. Two independently isolated embryo fibroblastic scid mouse cell lines display similar hypersensitivities to gamma-rays. In addition, these cell lines are sensitive to cell killing by bleomycin, which also produces DNA strand breaks, but not by the DNA crosslinking agent mitomycin C or UV irradiation. Measurement of the rejoining of gamma-ray-induced DNA double-strand breaks by pulsed-field gel electrophoresis indicates that these animals are defective in this repair system. This suggests that the gamma-ray sensitivity of the scid mouse fibroblasts could be the result of reduced repair of DNA double-strand breaks. Therefore, a common factor may participate in both the repair of DNA double-strand breaks as well as V(D)J rejoining during lymphocyte development. This murine autosomal recessive mutation should prove extremely useful in fundamental studies of radiation-induced DNA damage and repair.

  11. RAD59 is Required for Efficient Repair of Simultaneous Double-Strand Breaks Resulting in Translocations in Saccharomyces cerevisiae

    PubMed Central

    Pannunzio, Nicholas R.; Manthey, Glenn M.; Bailis, Adam M.

    2008-01-01

    Exposure to ionizing radiation results in a variety of genome rearrangements that have been linked to tumor formation. Many of these rearrangements are thought to arise from the repair of double-strand breaks (DSBs) by several mechanisms, including homologous recombination (HR) between repetitive sequences dispersed throughout the genome. Doses of radiation sufficient to create DSBs in or near multiple repetitive elements simultaneously could initiate single-strand annealing (SSA), a highly-efficient, though mutagenic, mode of DSB repair. We have investigated the genetic control of the formation of translocations that occur spontaneously and those that form after the generation of DSBs adjacent to homologous sequences on two, non-homologous chromosomes in Saccharomyces cerevisiae. We found that mutations in a variety of DNA repair genes have distinct effects on break-stimulated translocation. Furthermore, the genetic requirements for repair using 300 bp and 60 bp recombination substrates were different, suggesting that the SSA apparatus may be altered in response to changing substrate lengths. Notably, RAD59 was found to play a particularly significant role in recombination between the short substrates that was partially independent of that of RAD52. The high frequency of these events suggests that SSA may be an important mechanism of genome rearrangement following acute radiation exposure. PMID:18373960

  12. FEN1 participates in repair of the 5'-phosphotyrosyl terminus of DNA single-strand breaks.

    PubMed

    Kametani, Yukiko; Takahata, Chiaki; Narita, Takashi; Tanaka, Kiyoji; Iwai, Shigenori; Kuraoka, Isao

    2016-01-01

    Etoposide is a widely used anticancer drug and a DNA topoisomerase II (Top2) inhibitor. Etoposide produces Top2-attached single-strand breaks (Top2-SSB complex) and double-strand breaks (Top2-DSB complex) that are thought to induce cell death in tumor cells. The Top2-SSB complex is more abundant than the Top2-DSB complex. Human tyrosyl-DNA phosphodiesterase 2 (TDP2) is required for efficient repair of Top2-DSB complexes. However, the identities of the proteins involved in the repair of Top2-SSB complexes are unknown, although yeast genetic data indicate that 5' to 3' structure-specific DNA endonuclease activity is required for alternative repair of Top2 DNA damage. In this study, we purified a flap endonuclease 1 (FEN1) and xeroderma pigmentosum group G protein (XPG) in the 5' to 3' structure-specific DNA endonuclease family and synthesized single-strand break DNA substrates containing a 5'-phoshotyrosyl bond, mimicking the Top2-SSB complex. We found that FEN1 and XPG did not remove the 5'-phoshotyrosyl bond-containing DSB substrates but removed the 5'-phoshotyrosyl bond-containing SSB substrates. Under DNA repair conditions, FEN1 efficiently repaired the 5'-phoshotyrosyl bond-containing SSB substrates in the presence of DNA ligase and DNA polymerase. Therefore, FEN1 may play an important role in the repair of Top2-SSB complexes in etoposide-treated cells.

  13. Splicing controls the ubiquitin response during DNA double-strand break repair

    PubMed Central

    Pederiva, C; Böhm, S; Julner, A; Farnebo, M

    2016-01-01

    Although evidence that splicing regulates DNA repair is accumulating, the underlying mechanism(s) remain unclear. Here, we report that short-term inhibition of pre-mRNA splicing by spliceosomal inhibitors impairs cellular repair of DNA double-strand breaks. Indeed, interference with splicing as little as 1 h prior to irradiation reduced ubiquitylation of damaged chromatin and impaired recruitment of the repair factors WRAP53β, RNF168, 53BP1, BRCA1 and RAD51 to sites of DNA damage. Consequently, splicing-deficient cells exhibited significant numbers of residual γH2AX foci, as would be expected if DNA repair is defective. Furthermore, we show that this is due to downregulation of the E3 ubiquitin ligase RNF8 and that re-introduction of this protein into splicing-deficient cells restores ubiquitylation at sites of DNA damage, accumulation of downstream factors and subsequent repair. Moreover, downregulation of RNF8 explains the defective repair associated with knockdown of various splicing factors in recent genome-wide siRNA screens and, significantly, overexpression of RNF8 counteracts this defect. These discoveries reveal a mechanism that may not only explain how splicing regulates repair of double-strand breaks, but also may underlie various diseases caused by deregulation of splicing factors, including cancer. PMID:27315300

  14. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways

    PubMed Central

    Wang, Minli; Wu, Weizhong; Wu, Wenqi; Rosidi, Bustanur; Zhang, Lihua; Wang, Huichen; Iliakis, George

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer. PMID:17088286

  15. A single double-strand break system reveals repair dynamics and mechanisms in heterochromatin and euchromatin.

    PubMed

    Janssen, Aniek; Breuer, Gregory A; Brinkman, Eva K; van der Meulen, Annelot I; Borden, Sean V; van Steensel, Bas; Bindra, Ranjit S; LaRocque, Jeannine R; Karpen, Gary H

    2016-07-15

    Repair of DNA double-strand breaks (DSBs) must be properly orchestrated in diverse chromatin regions to maintain genome stability. The choice between two main DSB repair pathways, nonhomologous end-joining (NHEJ) and homologous recombination (HR), is regulated by the cell cycle as well as chromatin context.Pericentromeric heterochromatin forms a distinct nuclear domain that is enriched for repetitive DNA sequences that pose significant challenges for genome stability. Heterochromatic DSBs display specialized temporal and spatial dynamics that differ from euchromatic DSBs. Although HR is thought to be the main pathway used to repair heterochromatic DSBs, direct tests of this hypothesis are lacking. Here, we developed an in vivo single DSB system for both heterochromatic and euchromatic loci in Drosophila melanogaster Live imaging of single DSBs in larval imaginal discs recapitulates the spatio-temporal dynamics observed for irradiation (IR)-induced breaks in cell culture. Importantly, live imaging and sequence analysis of repair products reveal that DSBs in euchromatin and heterochromatin are repaired with similar kinetics, employ both NHEJ and HR, and can use homologous chromosomes as an HR template. This direct analysis reveals important insights into heterochromatin DSB repair in animal tissues and provides a foundation for further explorations of repair mechanisms in different chromatin domains. PMID:27474442

  16. Molecular recombination and the repair of DNA double-strand breaks in CHO cells.

    PubMed Central

    Resnick, M A; Moore, P D

    1979-01-01

    Molecular recombination and the repair of DNA double-strand breaks (DSB) have been examined in the G-0 and S phase of the cell cycle using a temperature-sensitive CHO cell line to test i) if there are cell cycle restrictions on the repair of DSB's' ii) the extent to which molecular recombination can be induced between either sister chromatids or homologous chromosomes and iii) whether repair of DSB's involves recombination (3). Mitomycin C (1-2 micrograms/ml) or ionizing radiation (50 krad) followed by incubation resulted in molecular recombination (hybrid DNA) in S phase cells. Approximately 0.03 to 0.10% of the molecules (number average molecular weight: 5.6 x 10(6) Daltons after shearing) had hybrid regions for more than 75% of their length. However, no recombination was detected in G-0 cells. Since the repair of DSB was observed in both stages with more than 50% of the breaks repaired in 5 hours, it appears that DSB repair in G-0 cells does not involve recombination between homologous chromosomes. The possibility is not excluded that repair in G-0 cells involves only small regions (less than 4 x 10(6) Daltons). PMID:493136

  17. Repair Pathway Choices and Consequences at the Double-Strand Break.

    PubMed

    Ceccaldi, Raphael; Rondinelli, Beatrice; D'Andrea, Alan D

    2016-01-01

    DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genomic integrity. Failure to repair a DSB has deleterious consequences, including genomic instability and cell death. Indeed, misrepair of DSBs can lead to inappropriate end-joining events, which commonly underlie oncogenic transformation due to chromosomal translocations. Typically, cells employ two main mechanisms to repair DSBs: homologous recombination (HR) and classical nonhomologous end joining (C-NHEJ). In addition, alternative error-prone DSB repair pathways, namely alternative end joining (alt-EJ) and single-strand annealing (SSA), have been recently shown to operate in many different conditions and to contribute to genome rearrangements and oncogenic transformation. Here, we review the mechanisms regulating DSB repair pathway choice, together with the potential interconnections between HR and the annealing-dependent error-prone DSB repair pathways.

  18. Cdc14A and Cdc14B Redundantly Regulate DNA Double-Strand Break Repair

    PubMed Central

    Lin, Han; Ha, Kyungsoo; Lu, Guojun; Fang, Xiao; Cheng, Ranran; Zuo, Qiuhong

    2015-01-01

    Cdc14 is a phosphatase that controls mitotic exit and cytokinesis in budding yeast. In mammals, the two Cdc14 homologues, Cdc14A and Cdc14B, have been proposed to regulate DNA damage repair, whereas the mitotic exit and cytokinesis rely on another phosphatase, PP2A-B55α. It is unclear if the two Cdc14s work redundantly in DNA repair and which repair pathways they participate in. More importantly, their target(s) in DNA repair remains elusive. Here we report that Cdc14B knockout (Cdc14B−/−) mouse embryonic fibroblasts (MEFs) showed defects in repairing ionizing radiation (IR)-induced DNA double-strand breaks (DSBs), which occurred only at late passages when Cdc14A levels were low. This repair defect could occur at early passages if Cdc14A levels were also compromised. These results indicate redundancy between Cdc14B and Cdc14A in DSB repair. Further, we found that Cdc14B deficiency impaired both homologous recombination (HR) and nonhomologous end joining (NHEJ), the two major DSB repair pathways. We also provide evidence that Cdh1 is a downstream target of Cdc14B in DSB repair. PMID:26283732

  19. Mismatch-mediated error prone repair at the immunoglobulin genes.

    PubMed

    Chahwan, Richard; Edelmann, Winfried; Scharff, Matthew D; Roa, Sergio

    2011-12-01

    The generation of effective antibodies depends upon somatic hypermutation (SHM) and class-switch recombination (CSR) of antibody genes by activation induced cytidine deaminase (AID) and the subsequent recruitment of error prone base excision and mismatch repair. While AID initiates and is required for SHM, more than half of the base changes that accumulate in V regions are not due to the direct deamination of dC to dU by AID, but rather arise through the recruitment of the mismatch repair complex (MMR) to the U:G mismatch created by AID and the subsequent perversion of mismatch repair from a high fidelity process to one that is very error prone. In addition, the generation of double-strand breaks (DSBs) is essential during CSR, and the resolution of AID-generated mismatches by MMR to promote such DSBs is critical for the efficiency of the process. While a great deal has been learned about how AID and MMR cause hypermutations and DSBs, it is still unclear how the error prone aspect of these processes is largely restricted to antibody genes. The use of knockout models and mice expressing mismatch repair proteins with separation-of-function point mutations have been decisive in gaining a better understanding of the roles of each of the major MMR proteins and providing further insight into how mutation and repair are coordinated. Here, we review the cascade of MMR factors and repair signals that are diverted from their canonical error free role and hijacked by B cells to promote genetic diversification of the Ig locus. This error prone process involves AID as the inducer of enzymatically-mediated DNA mismatches, and a plethora of downstream MMR factors acting as sensors, adaptors and effectors of a complex and tightly regulated process from much of which is not yet well understood.

  20. Pre-Exposure to Ionizing Radiation Stimulates DNA Double Strand Break End Resection, Promoting the Use of Homologous Recombination Repair

    PubMed Central

    Oike, Takahiro; Okayasu, Ryuichi; Murakami, Takeshi; Nakano, Takashi; Shibata, Atsushi

    2015-01-01

    The choice of DNA double strand break (DSB) repair pathway is determined at the stage of DSB end resection. Resection was proposed to control the balance between the two major DSB repair pathways, homologous recombination (HR) and non-homologous end joining (NHEJ). Here, we examined the regulation of DSB repair pathway choice at two-ended DSBs following ionizing radiation (IR) in G2 phase of the cell cycle. We found that cells pre-exposed to low-dose IR preferred to undergo HR following challenge IR in G2, whereas NHEJ repair kinetics in G1 were not affected by pre-IR treatment. Consistent with the increase in HR usage, the challenge IR induced Replication protein A (RPA) foci formation and RPA phosphorylation, a marker of resection, were enhanced by pre-IR. However, neither major DNA damage signals nor the status of core NHEJ proteins, which influence the choice of repair pathway, was significantly altered in pre-IR treated cells. Moreover, the increase in usage of HR due to pre-IR exposure was prevented by treatment with ATM inhibitor during the incubation period between pre-IR and challenge IR. Taken together, the results of our study suggest that the ATM-dependent damage response after pre-IR changes the cellular environment, possibly by regulating gene expression or post-transcriptional modifications in a manner that promotes resection. PMID:25826455

  1. Conservative Inheritance of Newly Synthesized DNA in Double-Strand Break-Induced Gene Conversion▿

    PubMed Central

    Ira, Grzegorz; Satory, Dominik; Haber, James E.

    2006-01-01

    To distinguish among possible mechanisms of repair of a double-strand break (DSB) by gene conversion in budding yeast, Saccharomyces cerevisiae, we employed isotope density transfer to analyze budding yeast mating type (MAT) gene switching in G2/M-arrested cells. Both of the newly synthesized DNA strands created during gene conversion are found at the repaired locus, leaving the donor unchanged. These results support suggestions that mitotic DSBs are primarily repaired by a synthesis-dependent strand-annealing mechanism. We also show that the proportion of crossing-over associated with DSB-induced ectopic recombination is not affected by the presence of nonhomologous sequences at one or both ends of the DSB or the presence of additional sequences that must be copied from the donor. PMID:17030630

  2. Induction and repair of DNA strand breaks in bovine lens epithelial cells after high LET irradiation

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, C.; Heilmann, J.; Rink, H.

    The lens epithelium is the initiation site for the development of radiation induced cataracts. Radiation in the cortex and nucleus interacts with proteins, while in the epithelium, experimental results reveal mutagenic and cytotoxic effects. It is suggested that incorrectly repaired DNA damage may be lethal in terms of cellular reproduction and also may initiate the development of mutations or transformations in surviving cells. The occurrence of such genetically modified cells may lead to lens opacification. For a quantitative risk estimation for astronauts and space travelers it is necessary to know the relative biological effectiveness (RBE), because the spacial and temporal distribution of initial physical damage induced by cosmic radiation differ significantly from that of X-rays. RBEs for the induction of DNA strand breaks and the efficiency of repair of these breaks were measured in cultured diploid bovine lens epithelial cells exposed to different LET irradiation to either 300 kV X-rays or to heavy ions at the UNILAC accelerator at GSI. Accelerated ions from Z=8 (O) to Z=92 (U) were used. Strand breaks were measured by hydroxyapatite chromatography of alkaline unwound DNA (overall strand breaks). Results showed that DNA damage occurs as a function of dose, of kinetic energy and of LET. For particles having the same LET the severity of the DNA damage increases with dose. For a given particle dose, as the LET rises, the numbers of DNA strand breaks increase to a maximum and then reach a plateau or decrease. Repair kinetics depend on the fluence (irradiation dose). At any LET value, repair is much slower after heavy ion exposure than after X-irradiation. For ions with an LET of less than 10,000 keV μ -1 more than 90 percent of the strand breaks induced are repaired within 24 hours. At higher particle fluences, especially for low energetic particles with a very high local density of energy deposition within the particle track, a higher proportion of non

  3. Induction and repair of DNA strand breaks in bovine lens epithelial cells after high LET irradiation.

    PubMed

    Baumstark-Khan, C; Heilmann, J; Rink, H

    2003-01-01

    The lens epithelium is the initiation site for the development of radiation induced cataracts. Radiation in the cortex and nucleus interacts with proteins, while in the epithelium, experimental results reveal mutagenic and cytotoxic effects. It is suggested that incorrectly repaired DNA damage may be lethal in terms of cellular reproduction and also may initiate the development of mutations or transformations in surviving cells. The occurrence of such genetically modified cells may lead to lens opacification. For a quantitative risk estimation for astronauts and space travelers it is necessary to know the relative biological effectiveness (RBE), because the spacial and temporal distribution of initial physical damage induced by cosmic radiation differ significantly from that of X-rays. RBEs for the induction of DNA strand breaks and the efficiency of repair of these breaks were measured in cultured diploid bovine lens epithelial cells exposed to different LET irradiation to either 300 kV X-rays or to heavy ions at the UNILAC accelerator at GSI. Accelerated ions from Z=8 (O) to Z=92 (U) were used. Strand breaks were measured by hydroxyapatite chromatography of alkaline unwound DNA (overall strand breaks). Results showed that DNA damage occurs as a function of dose, of kinetic energy and of LET. For particles having the same LET the severity of the DNA damage increases with dose. For a given particle dose, as the LET rises, the numbers of DNA strand breaks increase to a maximum and then reach a plateau or decrease. Repair kinetics depend on the fluence (irradiation dose). At any LET value, repair is much slower after heavy ion exposure than after X-irradiation. For ions with an LET of less than 10,000 keV micrometers-1 more than 90 percent of the strand breaks induced are repaired within 24 hours. At higher particle fluences, especially for low energetic particles with a very high local density of energy deposition within the particle track, a higher proportion of

  4. Mek1 Kinase Is Regulated To Suppress Double-Strand Break Repair between Sister Chromatids during Budding Yeast Meiosis▿

    PubMed Central

    Niu, Hengyao; Li, Xue; Job, Emily; Park, Caroline; Moazed, Danesh; Gygi, Steven P.; Hollingsworth, Nancy M.

    2007-01-01

    Mek1 is a meiosis-specific kinase in budding yeast which promotes recombination between homologous chromosomes by suppressing double-strand break (DSB) repair between sister chromatids. Previous work has shown that in the absence of the meiosis-specific recombinase gene, DMC1, cells arrest in prophase due to unrepaired DSBs and that Mek1 kinase activity is required in this situation to prevent repair of the breaks using sister chromatids. This work demonstrates that Mek1 is activated in response to DSBs by autophosphorylation of two conserved threonines, T327 and T331, in the Mek1 activation loop. Using a version of Mek1 that can be conditionally dimerized during meiosis, Mek1 function was shown to be promoted by dimerization, perhaps as a way of enabling autophosphorylation of the activation loop in trans. A putative HOP1-dependent dimerization domain within the C terminus of Mek1 has been identified. Dimerization alone, however, is insufficient for activation, as DSBs and Mek1 recruitment to the meiosis-specific chromosomal core protein Red1 are also necessary. Phosphorylation of S320 in the activation loop inhibits sister chromatid repair specifically in dmc1Δ-arrested cells. Ectopic dimerization of Mek1 bypasses the requirement for S320 phosphorylation, suggesting this phosphorylation is necessary for maintenance of Mek1 dimers during checkpoint-induced arrest. PMID:17526735

  5. Repairing DNA double-strand breaks by the prokaryotic non-homologous end-joining pathway.

    PubMed

    Brissett, Nigel C; Doherty, Aidan J

    2009-06-01

    The NHEJ (non-homologous end-joining) pathway is one of the major mechanisms for repairing DSBs (double-strand breaks) that occur in genomic DNA. In common with eukaryotic organisms, many prokaryotes possess a conserved NHEJ apparatus that is essential for the repair of DSBs arising in the stationary phase of the cell cycle. Although the bacterial NHEJ complex is much more minimal than its eukaryotic counterpart, both pathways share a number of common mechanistic features. The relative simplicity of the prokaryotic NHEJ complex makes it a tractable model system for investigating the cellular and molecular mechanisms of DSB repair. The present review describes recent advances in our understanding of prokaryotic end-joining, focusing primarily on biochemical, structural and cellular aspects of the mycobacterial NHEJ repair pathway.

  6. Double-strand break repair on sex chromosomes: challenges during male meiotic prophase

    PubMed Central

    Lu, Lin-Yu; Yu, Xiaochun

    2015-01-01

    During meiotic prophase, DNA double-strand break (DSB) repair-mediated homologous recombination (HR) occurs for exchange of genetic information between homologous chromosomes. Unlike autosomes or female sex chromosomes, human male sex chromosomes X and Y share little homology. Although DSBs are generated throughout male sex chromosomes, homologous recombination does not occur for most regions and DSB repair process is significantly prolonged. As a result, male sex chromosomes are coated with many DNA damage response proteins and form a unique chromatin structure known as the XY body. Interestingly, associated with the prolonged DSB repair, transcription is repressed in the XY body but not in autosomes, a phenomenon known as meiotic sex chromosome inactivation (MSCI), which is critical for male meiosis. Here using mice as model organisms, we briefly summarize recent progress on DSB repair in meiotic prophase and focus on the mechanism and function of DNA damage response in the XY body. PMID:25565522

  7. Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes

    PubMed Central

    Shaposhnikov, Mikhail; Proshkina, Ekaterina; Shilova, Lyubov; Zhavoronkov, Alex; Moskalev, Alexey

    2015-01-01

    DNA repair declines with age and correlates with longevity in many animal species. In this study, we investigated the effects of GAL4-induced overexpression of genes implicated in DNA repair on lifespan and resistance to stress factors in Drosophila melanogaster. Stress factors included hyperthermia, oxidative stress, and starvation. Overexpression was either constitutive or conditional and either ubiquitous or tissue-specific (nervous system). Overexpressed genes included those involved in recognition of DNA damage (homologs of HUS1, CHK2), nucleotide and base excision repair (homologs of XPF, XPC and AP-endonuclease-1), and repair of double-stranded DNA breaks (homologs of BRCA2, XRCC3, KU80 and WRNexo). The overexpression of different DNA repair genes led to both positive and negative effects on lifespan and stress resistance. Effects were dependent on GAL4 driver, stage of induction, sex, and role of the gene in the DNA repair process. While the constitutive/neuron-specific and conditional/ubiquitous overexpression of DNA repair genes negatively impacted lifespan and stress resistance, the constitutive/ubiquitous and conditional/neuron-specific overexpression of Hus1, mnk, mei-9, mus210, and WRNexo had beneficial effects. This study demonstrates for the first time the effects of overexpression of these DNA repair genes on both lifespan and stress resistance in D. melanogaster. PMID:26477511

  8. Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes.

    PubMed

    Shaposhnikov, Mikhail; Proshkina, Ekaterina; Shilova, Lyubov; Zhavoronkov, Alex; Moskalev, Alexey

    2015-01-01

    DNA repair declines with age and correlates with longevity in many animal species. In this study, we investigated the effects of GAL4-induced overexpression of genes implicated in DNA repair on lifespan and resistance to stress factors in Drosophila melanogaster. Stress factors included hyperthermia, oxidative stress, and starvation. Overexpression was either constitutive or conditional and either ubiquitous or tissue-specific (nervous system). Overexpressed genes included those involved in recognition of DNA damage (homologs of HUS1, CHK2), nucleotide and base excision repair (homologs of XPF, XPC and AP-endonuclease-1), and repair of double-stranded DNA breaks (homologs of BRCA2, XRCC3, KU80 and WRNexo). The overexpression of different DNA repair genes led to both positive and negative effects on lifespan and stress resistance. Effects were dependent on GAL4 driver, stage of induction, sex, and role of the gene in the DNA repair process. While the constitutive/neuron-specific and conditional/ubiquitous overexpression of DNA repair genes negatively impacted lifespan and stress resistance, the constitutive/ubiquitous and conditional/neuron-specific overexpression of Hus1, mnk, mei-9, mus210, and WRNexo had beneficial effects. This study demonstrates for the first time the effects of overexpression of these DNA repair genes on both lifespan and stress resistance in D. melanogaster. PMID:26477511

  9. The effect of acute dose charge particle radiation on expression of DNA repair genes in mice.

    PubMed

    Tariq, Muhammad Akram; Soedipe, Ayodotun; Ramesh, Govindarajan; Wu, Honglu; Zhang, Ye; Shishodia, Shishir; Gridley, Daila S; Pourmand, Nader; Jejelowo, Olufisayo

    2011-03-01

    The space radiation environment consists of trapped particle radiation, solar particle radiation, and galactic cosmic radiation (GCR), in which protons are the most abundant particle type. During missions to the moon or to Mars, the constant exposure to GCR and occasional exposure to particles emitted from solar particle events (SPE) are major health concerns for astronauts. Therefore, in order to determine health risks during space missions, an understanding of cellular responses to proton exposure is of primary importance. The expression of DNA repair genes in response to ionizing radiation (X-rays and gamma rays) has been studied, but data on DNA repair in response to protons is lacking. Using qPCR analysis, we investigated changes in gene expression induced by positively charged particles (protons) in four categories (0, 0.1, 1.0, and 2.0 Gy) in nine different DNA repair genes isolated from the testes of irradiated mice. DNA repair genes were selected on the basis of their known functions. These genes include ERCC1 (5' incision subunit, DNA strand break repair), ERCC2/NER (opening DNA around the damage, Nucleotide Excision Repair), XRCC1 (5' incision subunit, DNA strand break repair), XRCC3 (DNA break and cross-link repair), XPA (binds damaged DNA in preincision complex), XPC (damage recognition), ATA or ATM (activates checkpoint signaling upon double strand breaks), MLH1 (post-replicative DNA mismatch repair), and PARP1 (base excision repair). Our results demonstrate that ERCC1, PARP1, and XPA genes showed no change at 0.1 Gy radiation, up-regulation at 1.0 Gy radiation (1.09 fold, 7.32 fold, 0.75 fold, respectively), and a remarkable increase in gene expression at 2.0 Gy radiation (4.83 fold, 57.58 fold and 87.58 fold, respectively). Expression of other genes, including ATM and XRCC3, was unchanged at 0.1 and 1.0 Gy radiation but showed up-regulation at 2.0 Gy radiation (2.64 fold and 2.86 fold, respectively). We were unable to detect gene expression for the

  10. Asf1 facilitates dephosphorylation of Rad53 after DNA double-strand break repair.

    PubMed

    Tsabar, Michael; Waterman, David P; Aguilar, Fiona; Katsnelson, Lizabeth; Eapen, Vinay V; Memisoglu, Gonen; Haber, James E

    2016-05-15

    To allow for sufficient time to repair DNA double-stranded breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint. In budding yeast, Rad53 (mammalian Chk2) phosphorylation parallels the persistence of the unrepaired DSB and is extinguished when repair is complete in a process termed recovery or when the cells adapt to the DNA damage checkpoint. A strain containing a slowly repaired DSB does not require the histone chaperone Asf1 to resume cell cycle progression after DSB repair. When a second, rapidly repairable DSB is added to this strain, Asf1 becomes required for recovery. Recovery from two repairable DSBs also depends on the histone acetyltransferase Rtt109 and the cullin subunit Rtt101, both of which modify histone H3 that is associated with Asf1. We show that dissociation of histone H3 from Asf1 is required for efficient recovery and that Asf1 is required for complete dephosphorylation of Rad53 when the upstream DNA damage checkpoint signaling is turned off. Our data suggest that the requirements for recovery from the DNA damage checkpoint become more stringent with increased levels of damage and that Asf1 plays a histone chaperone-independent role in facilitating complete Rad53 dephosphorylation following repair.

  11. Asf1 facilitates dephosphorylation of Rad53 after DNA double-strand break repair.

    PubMed

    Tsabar, Michael; Waterman, David P; Aguilar, Fiona; Katsnelson, Lizabeth; Eapen, Vinay V; Memisoglu, Gonen; Haber, James E

    2016-05-15

    To allow for sufficient time to repair DNA double-stranded breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint. In budding yeast, Rad53 (mammalian Chk2) phosphorylation parallels the persistence of the unrepaired DSB and is extinguished when repair is complete in a process termed recovery or when the cells adapt to the DNA damage checkpoint. A strain containing a slowly repaired DSB does not require the histone chaperone Asf1 to resume cell cycle progression after DSB repair. When a second, rapidly repairable DSB is added to this strain, Asf1 becomes required for recovery. Recovery from two repairable DSBs also depends on the histone acetyltransferase Rtt109 and the cullin subunit Rtt101, both of which modify histone H3 that is associated with Asf1. We show that dissociation of histone H3 from Asf1 is required for efficient recovery and that Asf1 is required for complete dephosphorylation of Rad53 when the upstream DNA damage checkpoint signaling is turned off. Our data suggest that the requirements for recovery from the DNA damage checkpoint become more stringent with increased levels of damage and that Asf1 plays a histone chaperone-independent role in facilitating complete Rad53 dephosphorylation following repair. PMID:27222517

  12. Writers, Readers, and Erasers of Histone Ubiquitylation in DNA Double-Strand Break Repair

    PubMed Central

    Smeenk, Godelieve; Mailand, Niels

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions, whose faulty repair may alter the content and organization of cellular genomes. To counteract this threat, numerous signaling and repair proteins are recruited hierarchically to the chromatin areas surrounding DSBs to facilitate accurate lesion repair and restoration of genome integrity. In vertebrate cells, ubiquitin-dependent modifications of histones adjacent to DSBs by RNF8, RNF168, and other ubiquitin ligases have a key role in promoting the assembly of repair protein complexes, serving as direct recruitment platforms for a range of genome caretaker proteins and their associated factors. These DNA damage-induced chromatin ubiquitylation marks provide an essential component of a histone code for DSB repair that is controlled by multifaceted regulatory circuits, underscoring its importance for genome stability maintenance. In this review, we provide a comprehensive account of how DSB-induced histone ubiquitylation is sensed, decoded and modulated by an elaborate array of repair factors and regulators. We discuss how these mechanisms impact DSB repair pathway choice and functionality for optimal protection of genome integrity, as well as cell and organismal fitness. PMID:27446204

  13. Single-cell microarray enables high-throughput evaluation of DNA double-strand breaks and DNA repair inhibitors

    PubMed Central

    Weingeist, David M.; Ge, Jing; Wood, David K.; Mutamba, James T.; Huang, Qiuying; Rowland, Elizabeth A.; Yaffe, Michael B.; Floyd, Scott; Engelward, Bevin P.

    2013-01-01

    A key modality of non-surgical cancer management is DNA damaging therapy that causes DNA double-strand breaks that are preferentially toxic to rapidly dividing cancer cells. Double-strand break repair capacity is recognized as an important mechanism in drug resistance and is therefore a potential target for adjuvant chemotherapy. Additionally, spontaneous and environmentally induced DSBs are known to promote cancer, making DSB evaluation important as a tool in epidemiology, clinical evaluation and in the development of novel pharmaceuticals. Currently available assays to detect double-strand breaks are limited in throughput and specificity and offer minimal information concerning the kinetics of repair. Here, we present the CometChip, a 96-well platform that enables assessment of double-strand break levels and repair capacity of multiple cell types and conditions in parallel and integrates with standard high-throughput screening and analysis technologies. We demonstrate the ability to detect multiple genetic deficiencies in double-strand break repair and evaluate a set of clinically relevant chemical inhibitors of one of the major double-strand break repair pathways, non-homologous end-joining. While other high-throughput repair assays measure residual damage or indirect markers of damage, the CometChip detects physical double-strand breaks, providing direct measurement of damage induction and repair capacity, which may be useful in developing and implementing treatment strategies with reduced side effects. PMID:23422001

  14. Genes and Junk in Plant Mitochondria—Repair Mechanisms and Selection

    PubMed Central

    Christensen, Alan C.

    2014-01-01

    Plant mitochondrial genomes have very low mutation rates. In contrast, they also rearrange and expand frequently. This is easily understood if DNA repair in genes is accomplished by accurate mechanisms, whereas less accurate mechanisms including nonhomologous end joining or break-induced replication are used in nongenes. An important question is how different mechanisms of repair predominate in coding and noncoding DNA, although one possible mechanism is transcription-coupled repair (TCR). This work tests the predictions of TCR and finds no support for it. Examination of the mutation spectra and rates in genes and junk reveals what DNA repair mechanisms are available to plant mitochondria, and what selective forces act on the repair products. A model is proposed that mismatches and other DNA damages are repaired by converting them into double-strand breaks (DSBs). These can then be repaired by any of the DSB repair mechanisms, both accurate and inaccurate. Natural selection will eliminate coding regions repaired by inaccurate mechanisms, accounting for the low mutation rates in genes, whereas mutations, rearrangements, and expansions generated by inaccurate repair in noncoding regions will persist. Support for this model includes the structure of the mitochondrial mutS homolog in plants, which is fused to a double-strand endonuclease. The model proposes that plant mitochondria do not distinguish a damaged or mismatched DNA strand from the undamaged strand, they simply cut both strands and perform homology-based DSB repair. This plant-specific strategy for protecting future generations from mitochondrial DNA damage has the side effect of genome expansions and rearrangements. PMID:24904012

  15. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways

    PubMed Central

    Gupta, Richa; Barkan, Daniel; Redelman-Sidi, Gil; Shuman, Stewart; Glickman, Michael S.

    2013-01-01

    Bacterial pathogens rely on their DNA repair pathways to resist genomic damage inflicted by the host. DNA double-strand breaks (DSBs) are especially threatening to bacterial viability. DSB repair by homologous recombination (HR) requires nucleases that resect DSB ends and a strand exchange protein that facilitates homology search. RecBCD and RecA perform these functions in E. coli and constitute the major pathway of error free DSB repair. Mycobacteria, including the human pathogen M. tuberculosis, elaborate an additional error-prone pathway of DSB repair via nonhomologous end-joining (NHEJ) catalyzed by Ku and DNA ligase D (LigD). Little is known about the relative contributions of HR and NHEJ to mycobacterial chromosome repair, the factors that dictate pathway choice, or the existence of additional DSB repair pathways. Here we demonstrate that Mycobacterium smegmatis has three DSB repair pathway options: HR, NHEJ, and a novel mechanism of single-strand annealing (SSA). Inactivation of NHEJ or SSA is compensated by elevated HR. We find that mycobacterial RecBCD does not participate in HR or confer resistance to ionizing radiation (IR), but is required for the RecA-independent SSA pathway. In contrast, the mycobacterial helicase-nuclease AdnAB participates in the RecA-dependent HR pathway, and is a major determinant of resistance to IR and oxidative DNA damage. These findings reveal distinctive features of mycobacterial DSB repair, most notably the dedication of the RecBCD and AdnAB helicase-nuclease machines to distinct repair pathways. PMID:21219454

  16. DNA Double Strand Break Repair Pathway Choice Is Directed by Distinct MRE11 Nuclease Activities

    PubMed Central

    Shibata, Atsushi; Moiani, Davide; Arvai, Andrew S.; Perry, J. Jefferson P.; Harding, Shane M.; Genois, Marie-Michelle; Maity, Ranjan; van Rossum-Fikkert, Sari; Kertokalio, Aryandi; Romoli, Filippo; Ismail, Amani; Ismalaj, Ermal; Petricci, Elena; Matthew, J Neale; Bristow, Robert G; Masson, Jean-Yves; Wyman, Claire; Jeggo, Penny; Tainer, John A.

    2014-01-01

    SUMMARY MRE11 within the MRE11-RAD50-NBS1 (MRN) complex acts in DNA double-strand break repair (DSBR), detection and signaling; yet, how its endo- and exonuclease activities regulate DSB repair by non-homologous end-joining (NHEJ) versus homologous recombination (HR) remains enigmatic. Here we employed structure-based design with a focused chemical library to discover specific MRE11 endo- or exonuclease inhibitors. With these inhibitors we examined repair pathway choice at DSBs generated in G2 following radiation exposure. Whilst endo- or exonuclease inhibition impairs radiation-induced RPA chromatin binding, suggesting diminished resection, the inhibitors surprisingly direct different repair outcomes. Endonuclease inhibition promotes NHEJ in lieu of HR, whilst exonuclease inhibition confers a repair defect. Collectively, the results describe nuclease-specific MRE11 inhibitors, define distinct nuclease roles in DSB repair, and support a mechanism whereby MRE11 endonuclease initiates resection, thereby licensing HR followed by MRE11 exo and EXO1/BLM bidirectional resection towards and away from the DNA end, which commits to HR. PMID:24316220

  17. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End Joining Pathway

    PubMed Central

    Lieber, Michael R.

    2011-01-01

    Double-strand DNA breaks are common events in eukaryotic cells, and there are two major pathways for repairing them: homologous recombination and nonhomologous DNA end joining (NHEJ). The diverse causes of DSBs result in a diverse chemistry of DNA ends that must be repaired. Across NHEJ evolution, the enzymes of the NHEJ pathway exhibit a remarkable degree of structural tolerance in the range of DNA end substrate configurations upon which they can act. In vertebrate cells, the nuclease, polymerases and ligase of NHEJ are the most mechanistically flexible and multifunctional enzymes in each of their classes. Unlike repair pathways for more defined lesions, NHEJ repair enzymes act iteratively, act in any order, and can function independently of one another at each of the two DNA ends being joined. NHEJ is critical not only for the repair of pathologic DSBs as in chromosomal translocations, but also for the repair of physiologic DSBs created during V(D)J recombination and class switch recombination. Therefore, patients lacking normal NHEJ are not only sensitive to ionizing radiation, but also severely immunodeficient. PMID:20192759

  18. RNF20-SNF2H Pathway of Chromatin Relaxation in DNA Double-Strand Break Repair

    PubMed Central

    Kato, Akihiro; Komatsu, Kenshi

    2015-01-01

    Rapid progress in the study on the association of histone modifications with chromatin remodeling factors has broadened our understanding of chromatin dynamics in DNA transactions. In DNA double-strand break (DSB) repair, the well-known mark of histones is the phosphorylation of the H2A variant, H2AX, which has been used as a surrogate marker of DSBs. The ubiquitylation of histone H2B by RNF20 E3 ligase was recently found to be a DNA damage-induced histone modification. This modification is required for DSB repair and regulated by a distinctive pathway from that of histone H2AX phosphorylation. Moreover, the connection between H2B ubiquitylation and the chromatin remodeling activity of SNF2H has been elucidated. In this review, we summarize the current knowledge of RNF20-mediated processes and the molecular link to H2AX-mediated processes during DSB repair. PMID:26184323

  19. SUMO modification of the neuroprotective protein TDP1 facilitates chromosomal single-strand break repair

    PubMed Central

    Hudson, Jessica J.R.; Chiang, Shih-Chieh; Wells, Owen S.; Rookyard, Chris; El-Khamisy, Sherif F.

    2012-01-01

    Breaking and sealing one strand of DNA is an inherent feature of chromosome metabolism to overcome torsional barriers. Failure to reseal broken DNA strands results in protein-linked DNA breaks, causing neurodegeneration in humans. This is typified by defects in tyrosyl DNA phosphodiesterase 1 (TDP1), which removes stalled topoisomerase 1 peptides from DNA termini. Here we show that TDP1 is a substrate for modification by the small ubiquitin-like modifier SUMO. We purify SUMOylated TDP1 from mammalian cells and identify the SUMOylation site as lysine 111. While SUMOylation exhibits no impact on TDP1 catalytic activity, it promotes its accumulation at sites of DNA damage. A TDP1 SUMOylation-deficient mutant displays a reduced rate of repair of chromosomal single-strand breaks arising from transcription-associated topoisomerase 1 activity or oxidative stress. These data identify a role for SUMO during single-strand break repair, and suggest a mechanism for protecting the nervous system from genotoxic stress. PMID:22415824

  20. DNA ligase III acts as a DNA strand break sensor in the cellular orchestration of DNA strand break repair

    PubMed Central

    Abdou, Ismail; Poirier, Guy G.; Hendzel, Michael J.; Weinfeld, Michael

    2015-01-01

    In the current model of DNA SSBR, PARP1 is regarded as the sensor of single-strand breaks (SSBs). However, biochemical studies have implicated LIG3 as another possible SSB sensor. Using a laser micro-irradiation protocol that predominantly generates SSBs, we were able to demonstrate that PARP1 is dispensable for the accumulation of different single-strand break repair (SSBR) proteins at sites of DNA damage in live cells. Furthermore, we show in live cells for the first time that LIG3 plays a role in mediating the accumulation of the SSBR proteins XRCC1 and PNKP at sites of DNA damage. Importantly, the accumulation of LIG3 at sites of DNA damage did not require the BRCT domain-mediated interaction with XRCC1. We were able to show that the N-terminal ZnF domain of LIG3 plays a key role in the enzyme's SSB sensing function. Finally, we provide cellular evidence that LIG3 and not PARP1 acts as the sensor for DNA damage caused by the topoisomerase I inhibitor, irinotecan. Our results support the existence of a second damage-sensing mechanism in SSBR involving the detection of nicks in the genome by LIG3. PMID:25539916

  1. PCR analysis of chloroplast double-strand break (DSB) repair products induced by I-CreII in Chlamydomonas and Arabidopsis.

    PubMed

    Kwon, Taegun; Odom, Obed W; Qiu, Weihua; Herrin, David L

    2014-01-01

    Homing endonuclease I-CreII has been used to study the consequences and repair of a double-strand break (DSB) in the chloroplast genome of Chlamydomonas and Arabidopsis. Since I-CreII is from a mobile psbA intron of Chlamydomonas, it cleaves the psbA gene of an intronless-psbA strain of Chlamydomonas. And it cleaves specifically in the psbA gene of Arabidopsis, which is naturally intronless. We have shown further that most of the repair products of an I-CreII-induced break in chloroplast DNA can be defined by PCR analysis with total nucleic acids and the appropriate primers. Here, we provide protocols for small-scale preparation of nucleic acids from Chlamydomonas and Arabidopsis, as well as guidelines for the subsequent PCR analysis.

  2. Subdiffusion Supports Joining Of Correct Ends During Repair Of DNA Double-Strand Breaks

    NASA Astrophysics Data System (ADS)

    Girst, S.; Hable, V.; Drexler, G. A.; Greubel, C.; Siebenwirth, C.; Haum, M.; Friedl, A. A.; Dollinger, G.

    2013-08-01

    The mobility of damaged chromatin regions in the nucleus may affect the probability of mis-repair. In this work, live-cell observation and distance tracking of GFP-tagged DNA damage response protein MDC1 was used to study the random-walk behaviour of chromatin domains containing radiation-induced DNA double-strand breaks (DSB). Our measurements indicate a subdiffusion-type random walk process with similar time dependence for isolated and clustered DSBs that were induced by 20 MeV proton or 43 MeV carbon ion micro-irradiation. As compared to normal diffusion, subdiffusion enhances the probability that both ends of a DSB meet, thus promoting high efficiency DNA repair. It also limits their probability of long-range movements and thus lowers the probability of mis-rejoining and chromosome aberrations.

  3. Visualization of DNA Double-Strand Break Repair at the Single-Molecule Level

    SciTech Connect

    Dynan, William S.; Li, Shuyi; Mernaugh, Raymond; Wragg, Stephanie; Takeda, Yoshihiko

    2003-03-27

    Exposure to low doses of ionizing radiation is universal. The signature injury from ionizing radiation exposure is induction of DNA double-strand breaks (DSBs). The first line of defense against DSBs is direct ligation of broken DNA ends via the nonhomologous end-joining pathway. Because even a relatively high environmental exposure induces only a few DSBs per cell, our current understanding of the response to this exposure is limited by the ability to measure DSB repair events reliably in situ at a single-molecule level. To address this need, we have taken advantage of biological amplification, measuring relocalization of proteins and detection of protein phosphorylation as a surrogate for detection of broken ends themselves. We describe the use of specific antibodies to investigate the kinetics and mechanism of repair of very small numbers of DSBs in human cells by the nonhomologous end-joining pathway.

  4. The COP9 signalosome is vital for timely repair of DNA double-strand breaks

    PubMed Central

    Meir, Michal; Galanty, Yaron; Kashani, Lior; Blank, Michael; Khosravi, Rami; Fernández-Ávila, María Jesús; Cruz-García, Andrés; Star, Ayelet; Shochot, Lea; Thomas, Yann; Garrett, Lisa J.; Chamovitz, Daniel A.; Bodine, David M.; Kurz, Thimo; Huertas, Pablo; Ziv, Yael; Shiloh, Yosef

    2015-01-01

    The DNA damage response is vigorously activated by DNA double-strand breaks (DSBs). The chief mobilizer of the DSB response is the ATM protein kinase. We discovered that the COP9 signalosome (CSN) is a crucial player in the DSB response and an ATM target. CSN is a protein complex that regulates the activity of cullin ring ubiquitin ligase (CRL) complexes by removing the ubiquitin-like protein, NEDD8, from their cullin scaffold. We find that the CSN is physically recruited to DSB sites in a neddylation-dependent manner, and is required for timely repair of DSBs, affecting the balance between the two major DSB repair pathways—nonhomologous end-joining and homologous recombination repair (HRR). The CSN is essential for the processivity of deep end-resection—the initial step in HRR. Cullin 4a (CUL4A) is recruited to DSB sites in a CSN- and neddylation-dependent manner, suggesting that CSN partners with CRL4 in this pathway. Furthermore, we found that ATM-mediated phosphorylation of CSN subunit 3 on S410 is critical for proper DSB repair, and that loss of this phosphorylation site alone is sufficient to cause a DDR deficiency phenotype in the mouse. This novel branch of the DSB response thus significantly affects genome stability. PMID:25855810

  5. Chromatin dynamics during repair of chromosomal DNA double-strand breaks

    PubMed Central

    Sinha, Manisha; Peterson, Craig L

    2010-01-01

    The integrity of a eukaryotic genome is often challenged by DNA double-strand breaks (DSBs). Even a single, unrepaired DSB can be a lethal event, or such unrepaired damage can result in chromosomal instability and loss of genetic information. Furthermore, defects in the pathways that respond to and repair DSBs can lead to the onset of several human pathologic disorders with pleiotropic clinical features, including age-related diseases and cancer. For decades, studies have focused on elucidating the enzymatic mechanisms involved in recognizing, signaling and repairing DSBs within eukaryotic cells. The majority of biochemical and genetic studies have used simple, DNA substrates, whereas only recently efforts have been geared towards understanding how the repair machinery deals with DSBs within chromatin fibers, the nucleoprotein complex that packages DNA within the eukaryotic nucleus. The aim of this review is to discuss our recent understanding of the relationship between chromatin structure and the repair of DSBs by homologous recombination. In particular, we discuss recent studies implicating specialized roles for several, distinct ATP-dependent chromatin remodeling enzymes in facilitating multiple steps within the homologous recombination process. PMID:20495614

  6. RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion.

    PubMed

    Malkova, Anna; Naylor, Maria L; Yamaguchi, Miyuki; Ira, Grzegorz; Haber, James E

    2005-02-01

    Diploid Saccharomyces cells experiencing a double-strand break (DSB) on one homologous chromosome repair the break by RAD51-mediated gene conversion >98% of the time. However, when extensive homologous sequences are restricted to one side of the DSB, repair can occur by both RAD51-dependent and RAD51-independent break-induced replication (BIR) mechanisms. Here we characterize the kinetics and checkpoint dependence of RAD51-dependent BIR when the DSB is created within a chromosome. Gene conversion products appear within 2 h, and there is little, if any, induction of the DNA damage checkpoint; however, RAD51-dependent BIR occurs with a further delay of 2 to 4 h and cells arrest in response to the G(2)/M DNA damage checkpoint. RAD51-dependent BIR does not require special facilitating sequences that are required for a less efficient RAD51-independent process. RAD51-dependent BIR occurs efficiently in G(2)-arrested cells. Once repair is initiated, the rate of repair replication during BIR is comparable to that of normal DNA replication, as copying of >100 kb is completed less than 30 min after repair DNA synthesis is detected close to the DSB.

  7. The tight linkage between DNA replication and double-strand break repair in bacteriophage T4

    PubMed Central

    George, James W.; Stohr, Bradley A.; Tomso, Daniel J.; Kreuzer, Kenneth N.

    2001-01-01

    Double-strand break (DSB) repair and DNA replication are tightly linked in the life cycle of bacteriophage T4. Indeed, the major mode of phage DNA replication depends on recombination proteins and can be stimulated by DSBs. DSB-stimulated DNA replication is dramatically demonstrated when T4 infects cells carrying two plasmids that share homology. A DSB on one plasmid triggered extensive replication of the second plasmid, providing a useful model for T4 recombination-dependent replication (RDR). This system also provides a view of DSB repair in T4-infected cells and revealed that the DSB repair products had been replicated in their entirety by the T4 replication machinery. We analyzed the detailed structure of these products, which do not fit the simple predictions of any of three models for DSB repair. We also present evidence that the T4 RDR system functions to restart stalled or inactivated replication forks. First, we review experiments involving antitumor drug-stabilized topoisomerase cleavage complexes. The results suggest that forks blocked at cleavage complexes are resolved by recombinational repair, likely involving RDR. Second, we show here that the presence of a T4 replication origin on one plasmid substantially stimulated recombination events between it and a homologous second plasmid that did not contain a T4 origin. Furthermore, replication of the second plasmid was increased when the first plasmid contained the T4 origin. Our interpretation is that origin-initiated forks become inactivated at some frequency during replication of the first plasmid and are then restarted via RDR on the second plasmid. PMID:11459966

  8. Hematopoietic Stem Cells from Ts65Dn Mice Are Deficient in the Repair of DNA Double-Strand Breaks.

    PubMed

    Wang, Yingying; Chang, Jianhui; Shao, Lijian; Feng, Wei; Luo, Yi; Chow, Marie; Du, Wei; Meng, Aimin; Zhou, Daohong

    2016-06-01

    Down syndrome (DS) is a genetic disorder caused by the presence of an extra partial or whole copy of chromosome 21. In addition to musculoskeletal and neurodevelopmental abnormalities, children with DS exhibit various hematologic disorders and have an increased risk of developing acute lymphoblastic leukemia and acute megakaryocytic leukemia. Using the Ts65Dn mouse model, we investigated bone marrow defects caused by trisomy for 132 orthologs of the genes on human chromosome 21. The results showed that, although the total bone marrow cellularity as well as the frequency of hematopoietic progenitor cells (HPCs) was comparable between Ts65Dn mice and their age-matched euploid wild-type (WT) control littermates, human chromosome 21 trisomy led to a significant reduction in hematopoietic stem cell (HSC) numbers and clonogenic function in Ts65Dn mice. We also found that spontaneous DNA double-strand breaks (DSBs) were significantly increased in HSCs from the Ts65Dn mice, which was correlated with the significant reduction in HSC clonogenic activity compared to those from WT controls. Moreover, analysis of the repair kinetics of radiation-induced DSBs revealed that HSCs from Ts65Dn mice were less proficient in DSB repair than the cells from WT controls. This deficiency was associated with a higher sensitivity of Ts65Dn HSCs to radiation-induced suppression of HSC clonogenic activity than that of euploid HSCs. These findings suggest that an additional copy of genes on human chromosome 21 may selectively impair the ability of HSCs to repair DSBs, which may contribute to DS-associated hematological abnormalities and malignancies. PMID:27243896

  9. Role of DNA damage and repair in the function of eukaryotic genes: radiation-induced single-strand breaks and their rejoining in chromosomal and extrachromosomal ribosomal DNA of Tetrahymena

    SciTech Connect

    Chiu, S.M.; Oleinick, N.L.

    1980-04-01

    The production and rejoining of single-strand breaks (SSB) in chromosomal DNA and extrachromosomal ribosomal DNA (rDNA) were investigated after sublethal doses of ..gamma.. radiation to exponentially growing Tetrahymena. Hydrogen-3-labeled total nuclear DNA isolated from either control or irradiated cells was heat denatured and electrophoresed in agarose gels containing formaldehyde. Ribosomal DNA was identified by hybridization to (/sup 32/P)rRNA after transferring the DNA from the gels to nitrocellulose strips. It was found that (a) approximately 0.68 SSB is produced in each strand of rDNA exposed to 40 krad; (b) greater than 80% of SSB were rejoined within the first 20 min after irradiation in both chromosomal and rDNA; and (c) the rejoining process in both chromosomal and rDNA proceeded in the presence of inhibitors of protein synthesis, RNA synthesis, or oxidative metabolism. While the majority of SSB induced by 40 krad is rejoined within 20 min after irradiation, the resumption of rRNA synthesis does not occur until 30 min thereafter; it is concluded that the restoration of the normal size of the rDNA template is probably necessary but not sufficient for the resumption of rRNA synthesis.

  10. Telomere Dysfunction Triggers Palindrome Formation Independently of Double-Strand Break Repair Mechanisms

    PubMed Central

    Raykov, Vasil; Marvin, Marcus E.; Louis, Edward J.; Maringele, Laura

    2016-01-01

    Inverted chromosome duplications or palindromes are linked with genetic disorders and malignant transformation. They are considered by-products of DNA double-strand break (DSB) repair: the homologous recombination (HR) and the nonhomologous end joining (NHEJ). Palindromes near chromosome ends are often triggered by telomere losses. An important question is to what extent their formation depends upon DSB repair mechanisms. Here we addressed this question using yeast genetics and comparative genomic hybridization. We induced palindrome formation by passaging cells lacking any form of telomere maintenance (telomerase and telomere recombination). Surprisingly, we found that DNA ligase 4, essential for NHEJ, did not make a significant contribution to palindrome formation induced by telomere losses. Moreover RAD51, important for certain HR-derived mechanisms, had little effect. Furthermore RAD52, which is essential for HR in yeast, appeared to decrease the number of palindromes in cells proliferating without telomeres. This study also uncovered an important role for Rev3 and Rev7 (but not for Pol32) subunits of polymerase ζ in the survival of cells undergoing telomere losses and forming palindromes. We propose a model called short-inverted repeat-induced synthesis in which DNA synthesis, rather than DSB repair, drives the inverted duplication triggered by telomere dysfunction. PMID:27334270

  11. Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair.

    PubMed

    Ward, Jordan D; Muzzini, Diego M; Petalcorin, Mark I R; Martinez-Perez, Enrique; Martin, Julie S; Plevani, Paolo; Cassata, Giuseppe; Marini, Federica; Boulton, Simon J

    2010-01-29

    Homologous recombination (HR) is essential for repair of meiotic DNA double-strand breaks (DSBs). Although the mechanisms of RAD-51-DNA filament assembly and strand exchange are well characterized, the subsequent steps of HR are less well defined. Here, we describe a synthetic lethal interaction between the C. elegans helicase helq-1 and RAD-51 paralog rfs-1, which results in a block to meiotic DSB repair after strand invasion. Whereas RAD-51-ssDNA filaments assemble at meiotic DSBs with normal kinetics in helq-1, rfs-1 double mutants, persistence of RAD-51 foci and genetic interactions with rtel-1 suggest a failure to disassemble RAD-51 from strand invasion intermediates. Indeed, purified HELQ-1 and RFS-1 independently bind to and promote the disassembly of RAD-51 from double-stranded, but not single-stranded, DNA filaments via distinct mechanisms in vitro. These results indicate that two compensating activities are required to promote postsynaptic RAD-51 filament disassembly, which are collectively essential for completion of meiotic DSB repair.

  12. Tetrameric Ctp1 coordinates DNA binding and bridging in DNA double strand break repair

    PubMed Central

    Andres, Sara N.; Appel, C. Denise; Westmoreland, Jim; Williams, Jessica S.; Nguyen, Yvonne; Robertson, Patrick D.; Resnick, Michael A.; Williams, R. Scott

    2014-01-01

    Ctp1 (aka CtIP or Sae2) collaborates with Mre11–Rad50–Nbs1 to initiate repair of DNA double strand breaks (DSBs), but its function(s) remain enigmatic. We report that tetrameric Schizosaccharomyces pombe Ctp1 harbors multivalent DNA-binding and bridging activities. Through structural and biophysical analyses of the Ctp1 tetramer we define the salient features of Ctp1 architecture: an N-terminal interlocking tetrameric helical dimer-of-dimers (THDD) domain and a central intrinsically disordered region (IDR) linked to C-terminal “RHR” DNA interaction motifs. The THDD, IDR and RHR are required for Ctp1 DNA bridging activity in vitro and both the THDD and RHR are required for efficient DSB repair in S. pombe. Our results establish non-nucleolytic roles for Ctp1 in binding and coordination of DSB repair intermediates and suggest that ablation of human CtIP DNA binding by truncating mutations underlie the CTIP-linked Seckel and Jawad syndromes. PMID:25580577

  13. Association Between Functional Polymorphisms of DNA Double-Strand Breaks in Repair Genes XRCC5, XRCC6 and XRCC7 with the Risk of Systemic Lupus Erythematosus in South East Iran.

    PubMed

    Jahantigh, Danial; Salimi, Saeedeh; Mousavi, Mahdieh; Moossavi, Maryam; Mohammadoo-Khorasani, Milad; Narooei-nejad, Mehrnaz; Sandoughi, Mahnaz

    2015-05-01

    DNA repair is reduced in patients suffering from systemic lupus erythematosus (SLE), and it can induce the production of autoreactive antibodies due to the accumulation of DNA damage and nucleoprotein that produce immunogenic antigens. The accumulations of anti-Ku and DNA-PKcs antibodies, which are involved in nonhomologous DNA end joining pathway, have been detected in SLE patients. The present study was designed to evaluate the association of XRCC5, XRCC6, and XRCC7 polymorphisms with SLE susceptibility. Polymerase chain reaction (PCR) was performed to genotype 163 SLE patients and 180 healthy controls for the XRCC5 variable number of tandem repeat (VNTR) polymorphism. The genotype analysis of XRCC6-61C>G and XRCC7 6721G>T polymorphisms was performed using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. There was a significant association between XRCC5 VNTR, XRCC7 6721G>T polymorphisms and risk of SLE development. Notably, the frequency of XRCC5 VNTR 0R allele and genotypes with 2R allele was greatly enhanced in SLE patients with Malar rash (p=0.032 and p=0.024, respectively). Moreover, a higher frequency of genotypes with the XRCC5 VNTR 2R allele was observed in SLE patients with a positive antinuclear antibody (ANA) test (p=0.03). The present study shows an association between the XRCC5 VNTR, XRCC7 6721G>T polymorphisms and SLE. These polymorphisms might be genetic risk factors for SLE susceptibility and some SLE manifestations in the population southeast of Iran.

  14. Isolating human DNA repair genes using rodent-cell mutants

    SciTech Connect

    Thompson, L.H.; Weber, C.A.; Brookman, K.W.; Salazar, E.P.; Stewart, S.A.; Mitchell, D.L.

    1987-03-23

    The DNA repair systems of rodent and human cells appear to be at least as complex genetically as those in lower eukaryotes and bacteria. The use of mutant lines of rodent cells as a means of identifying human repair genes by functional complementation offers a new approach toward studying the role of repair in mutagenesis and carcinogenesis. In each of six cases examined using hybrid cells, specific human chromosomes have been identified that correct CHO cell mutations affecting repair of damage from uv or ionizing radiations. This finding suggests that both the repair genes and proteins may be virtually interchangeable between rodent and human cells. Using cosmid vectors, human repair genes that map to chromosome 19 have cloned as functional sequences: ERCC2 and XRCC1. ERCC1 was found to have homology with the yeast excision repair gene RAD10. Transformants of repair-deficient cell lines carrying the corresponding human gene show efficient correction of repair capacity by all criteria examined. 39 refs., 1 fig., 1 tab.

  15. Roles of Nucleoid-Associated Proteins in Stress-Induced Mutagenic Break Repair in Starving Escherichia coli.

    PubMed

    Moore, Jessica M; Magnan, David; Mojica, Ana K; Núñez, María Angélica Bravo; Bates, David; Rosenberg, Susan M; Hastings, P J

    2015-12-01

    The mutagenicity of DNA double-strand break repair in Escherichia coli is controlled by DNA-damage (SOS) and general (RpoS) stress responses, which let error-prone DNA polymerases participate, potentially accelerating evolution during stress. Either base substitutions and indels or genome rearrangements result. Here we discovered that most small basic proteins that compact the genome, nucleoid-associated proteins (NAPs), promote or inhibit mutagenic break repair (MBR) via different routes. Of 15 NAPs, H-NS, Fis, CspE, and CbpA were required for MBR; Dps inhibited MBR; StpA and Hha did neither; and five others were characterized previously. Three essential genes were not tested. Using multiple tests, we found the following: First, Dps, which reduces reactive oxygen species (ROS), inhibited MBR, implicating ROS in MBR. Second, CbpA promoted F' plasmid maintenance, allowing MBR to be measured in an F'-based assay. Third, Fis was required for activation of the SOS DNA-damage response and could be substituted in MBR by SOS-induced levels of DinB error-prone DNA polymerase. Thus, Fis promoted MBR by allowing SOS activation. Fourth, H-NS represses ROS detoxifier sodB and was substituted in MBR by deletion of sodB, which was not otherwise mutagenic. We conclude that normal ROS levels promote MBR and that H-NS promotes MBR by maintaining ROS. CspE positively regulates RpoS, which is required for MBR. Four of five previously characterized NAPs promoted stress responses that enhance MBR. Hence, most NAPs affect MBR, the majority via regulatory functions. The data show that a total of six NAPs promote MBR by regulating stress responses, indicating the importance of nucleoid structure and function to the regulation of MBR and of coupling mutagenesis to stress, creating genetic diversity responsively. PMID:26500258

  16. The chromosome bias of misincorporations during double-strand break repair is not altered in mismatch repair-defective strains of Saccharomyces cerevisiae.

    PubMed Central

    McGill, C B; Holbeck, S L; Strathern, J N

    1998-01-01

    Recombinational repair of a site-specific, double-strand DNA break (DSB) results in increased reversion frequency for nearby mutations. Although some models for DSB repair predict that newly synthesized DNA will be inherited equally by both the originally broken chromosome and the chromosome that served as a template, the DNA synthesis errors are almost exclusively found on the chromosome that had the original DSB (introduced by the HO endonuclease). To determine whether mismatch repair acts on the template chromosome in a directed fashion to restore mismatches to the initial sequence, these experiments were repeated in mismatch repair-defective (pms1, mlh1, and msh2) backgrounds. The results suggest that mismatch repair is not responsible for the observed bias. PMID:9560371

  17. FISH comets show that the salvage enzyme TK1 contributes to gene-specific DNA repair

    PubMed Central

    McAllister, Katherine A.; Yasseen, Akeel A.; McKerr, George; Downes, C. S.; McKelvey-Martin, Valerie J.

    2014-01-01

    Thymidine kinase 1 (TK1) is a salvage enzyme that phosphorylates thymidine, imported from surrounding fluids, to create dTMP, which is further phosphorylated to the DNA precursor dTTP. TK1 deficiency has for a long time been known to cause increased cellular sensitivity to DNA damage. We have examined preferential strand break repair of DNA domains in TK1+ and TK1- clones of the Raji cell line, by the Comet-FISH technique, in bulk DNA and in the actively transcribed tumor suppressor (TP53) and human telomerase reverse transcriptase (hTERT) gene regions, over 1 h after 5Gy γ-irradiation. Results showed that repair of the TP53 and hTERT gene regions was more efficient in TK1+ compared to TK1- cells, a trend also reflected to a lesser degree in genomic DNA repair between the cell-lines. The targeted gene-specific repair in TK+ cells occurred rapidly, mainly over the first 15 min repair-period. Therefore, TK1 is needed for preferential repair of actively transcribed regions, through a previously unsuspected mechanism. In principle, TK1 could exert its protective effects through supply of a supplementary dTTP pool for accurate repair of damaged genes; but Raji TK1+ cells in thymidine free media still show preferential repair of transcribed regions. TK1 therefore does not exert its protective effects through dTTP pools, but through another unidentified mechanism, which affects sensitivity to and mutagenicity by DNA damaging agents. PMID:25152750

  18. FISH comets show that the salvage enzyme TK1 contributes to gene-specific DNA repair.

    PubMed

    McAllister, Katherine A; Yasseen, Akeel A; McKerr, George; Downes, C S; McKelvey-Martin, Valerie J

    2014-01-01

    Thymidine kinase 1 (TK1) is a salvage enzyme that phosphorylates thymidine, imported from surrounding fluids, to create dTMP, which is further phosphorylated to the DNA precursor dTTP. TK1 deficiency has for a long time been known to cause increased cellular sensitivity to DNA damage. We have examined preferential strand break repair of DNA domains in TK1(+) and TK1(-) clones of the Raji cell line, by the Comet-FISH technique, in bulk DNA and in the actively transcribed tumor suppressor (TP53) and human telomerase reverse transcriptase (hTERT) gene regions, over 1 h after 5Gy γ-irradiation. Results showed that repair of the TP53 and hTERT gene regions was more efficient in TK1(+) compared to TK1(-) cells, a trend also reflected to a lesser degree in genomic DNA repair between the cell-lines. The targeted gene-specific repair in TK(+) cells occurred rapidly, mainly over the first 15 min repair-period. Therefore, TK1 is needed for preferential repair of actively transcribed regions, through a previously unsuspected mechanism. In principle, TK1 could exert its protective effects through supply of a supplementary dTTP pool for accurate repair of damaged genes; but Raji TK1(+) cells in thymidine free media still show preferential repair of transcribed regions. TK1 therefore does not exert its protective effects through dTTP pools, but through another unidentified mechanism, which affects sensitivity to and mutagenicity by DNA damaging agents. PMID:25152750

  19. Double-strand break repair based on short-homology regions is suppressed under terminal deoxynucleotidyltransferase expression, as revealed by a novel vector system for analysing DNA repair by nonhomologous end joining.

    PubMed

    Maezawa, So; Nakano, Saori; Kuniya, Takaaki; Koiwai, Osamu; Koiwai, Kotaro

    2016-01-01

    We have constructed a novel, nonhomologous end-joining (NHEJ) assay vector (NAV), containing mKate2, Venus and ccdB genes. Cotransfection of NAV with a construct expressing the restriction enzyme I-SceI generated a double-strand break (DSB) in NAV that excised mKate2 and ccdB. Repair of this DSB produced an intact vector that expressed Venus, a green fluorescent protein. Because cells bearing the repaired NAV lacked the ccdB gene which slows cell proliferation, the cultures were enriched in cells containing repaired DSBs. DNA sequence analysis of the DSB junctions indicated that the repair was carried out mainly by using the closest homology sequence. Use of the NAV yielded rapid results within 3 days after transfection. We then used the NAV to analyse NHEJ in cells overexpressing terminal deoxynucleotidyltransferase (TdT). The results indicated that TdT suppresses DNA repair that is based on short (one- or two-base) homology regions, to efficiently add deoxynucleotides during VDJ recombination in lymphoid cells. PMID:27047738

  20. DNA double-strand break formation and repair in Tetrahymena meiosis.

    PubMed

    Loidl, Josef; Lorenz, Alexander

    2016-06-01

    The molecular details of meiotic recombination have been determined for a small number of model organisms. From these studies, a general picture has emerged that shows that most, if not all, recombination is initiated by a DNA double-strand break (DSB) that is repaired in a recombinogenic process using a homologous DNA strand as a template. However, the details of recombination vary between organisms, and it is unknown which variant is representative of evolutionarily primordial meiosis or most prevalent among eukaryotes. To answer these questions and to obtain a better understanding of the range of recombination processes among eukaryotes, it is important to study a variety of different organisms. Here, the ciliate Tetrahymena thermophila is introduced as a versatile meiotic model system, which has the additional bonus of having the largest phylogenetic distance to all of the eukaryotes studied to date. Studying this organism can contribute to our understanding of the conservation and diversification of meiotic recombination processes.

  1. Long noncoding RNA LINP1 regulates double strand DNA break repair in triple negative breast cancer

    PubMed Central

    Zhang, Youyou; He, Qun; Hu, Zhongyi; Feng, Yi; Fan, Lingling; Tang, Zhaoqing; Yuan, Jiao; Shan, Weiwei; Li, Chunsheng; Hu, Xiaowen; Tanyi, Janos L; Fan, Yi; Huang, Qihong; Montone, Kathleen; Dang, Chi V; Zhang, Lin

    2016-01-01

    Long noncoding RNAs (lncRNAs), which are transcripts that are larger than 200 nucleotides but do not appear to have protein-coding potential, play critical roles during tumorigenesis by functioning as scaffolds to regulate protein-protein, protein-DNA or protein-RNA interactions. Using a clinically guided genetic screening approach, we identified (lncRNA in Non-homologous end joining [NHEJ] pathway 1) as a lncRNA that is overexpressed in human triple-negative breast cancer. We found that LINP1 enhances double-strand DNA break repair by serving as a scaffold that links Ku80 and DNA-PKcs, thereby coordinating the NHEJ pathway. Importantly, blocking LINP1, which is regulated by the p53 and epidermal growth factor receptor (EGFR) signaling, increases sensitivity of tumor cell response to radiotherapy in breast cancer. PMID:27111890

  2. Multiple heterologies increase mitotic double-strand break-induced allelic gene conversion tract lengths in yeast.

    PubMed Central

    Nickoloff, J A; Sweetser, D B; Clikeman, J A; Khalsa, G J; Wheeler, S L

    1999-01-01

    Spontaneous and double-strand break (DSB)-induced allelic recombination in yeast was investigated in crosses between ura3 heteroalleles inactivated by an HO site and a +1 frameshift mutation, with flanking markers defining a 3.4-kbp interval. In some crosses, nine additional phenotypically silent RFLP mutations were present at approximately 100-bp intervals. Increasing heterology from 0.2 to 1% in this interval reduced spontaneous, but not DSB-induced, recombination. For DSB-induced events, 75% were continuous tract gene conversions without a crossover in this interval; discontinuous tracts and conversions associated with a crossover each comprised approximately 7% of events, and 10% also converted markers in unbroken alleles. Loss of heterozygosity was seen for all markers centromere distal to the HO site in 50% of products; such loss could reflect gene conversion, break-induced replication, chromosome loss, or G2 crossovers. Using telomere-marked strains we determined that nearly all allelic DSB repair occurs by gene conversion. We further show that most allelic conversion results from mismatch repair of heteroduplex DNA. Interestingly, markers shared between the sparsely and densely marked interval converted at higher rates in the densely marked interval. Thus, the extra markers increased gene conversion tract lengths, which may reflect mismatch repair-induced recombination, or a shift from restoration- to conversion-type repair. PMID:10511547

  3. RecG Directs DNA Synthesis during Double-Strand Break Repair.

    PubMed

    Azeroglu, Benura; Mawer, Julia S P; Cockram, Charlotte A; White, Martin A; Hasan, A M Mahedi; Filatenkova, Milana; Leach, David R F

    2016-02-01

    Homologous recombination provides a mechanism of DNA double-strand break repair (DSBR) that requires an intact, homologous template for DNA synthesis. When DNA synthesis associated with DSBR is convergent, the broken DNA strands are replaced and repair is accurate. However, if divergent DNA synthesis is established, over-replication of flanking DNA may occur with deleterious consequences. The RecG protein of Escherichia coli is a helicase and translocase that can re-model 3-way and 4-way DNA structures such as replication forks and Holliday junctions. However, the primary role of RecG in live cells has remained elusive. Here we show that, in the absence of RecG, attempted DSBR is accompanied by divergent DNA replication at the site of an induced chromosomal DNA double-strand break. Furthermore, DNA double-stand ends are generated in a recG mutant at sites known to block replication forks. These double-strand ends, also trigger DSBR and the divergent DNA replication characteristic of this mutant, which can explain over-replication of the terminus region of the chromosome. The loss of DNA associated with unwinding joint molecules previously observed in the absence of RuvAB and RecG, is suppressed by a helicase deficient PriA mutation (priA300), arguing that the action of RecG ensures that PriA is bound correctly on D-loops to direct DNA replication rather than to unwind joint molecules. This has led us to put forward a revised model of homologous recombination in which the re-modelling of branched intermediates by RecG plays a fundamental role in directing DNA synthesis and thus maintaining genomic stability.

  4. Cohesin Protects Genes against γH2AX Induced by DNA Double-Strand Breaks

    PubMed Central

    Caron, Pierre; Aymard, Francois; Iacovoni, Jason S.; Briois, Sébastien; Canitrot, Yvan; Bugler, Beatrix; Massip, Laurent; Losada, Ana; Legube, Gaëlle

    2012-01-01

    Chromatin undergoes major remodeling around DNA double-strand breaks (DSB) to promote repair and DNA damage response (DDR) activation. We recently reported a high-resolution map of γH2AX around multiple breaks on the human genome, using a new cell-based DSB inducible system. In an attempt to further characterize the chromatin landscape induced around DSBs, we now report the profile of SMC3, a subunit of the cohesin complex, previously characterized as required for repair by homologous recombination. We found that recruitment of cohesin is moderate and restricted to the immediate vicinity of DSBs in human cells. In addition, we show that cohesin controls γH2AX distribution within domains. Indeed, as we reported previously for transcription, cohesin binding antagonizes γH2AX spreading. Remarkably, depletion of cohesin leads to an increase of γH2AX at cohesin-bound genes, associated with a decrease in their expression level after DSB induction. We propose that, in agreement with their function in chromosome architecture, cohesin could also help to isolate active genes from some chromatin remodelling and modifications such as the ones that occur when a DSB is detected on the genome. PMID:22275873

  5. Transcriptomic analysis provides insights on hexavalent chromium induced DNA double strand breaks and their possible repair in midgut cells of Drosophila melanogaster larvae.

    PubMed

    Mishra, Manish; Sharma, A; Shukla, A K; Pragya, P; Murthy, R C; de Pomerai, David; Dwivedi, U N; Chowdhuri, D Kar

    2013-01-01

    Hexavalent chromium [Cr(VI)] is a well known mutagen and carcinogen. Since genomic instability due to generation of double strand breaks (DSBs) is causally linked to carcinogenesis, we tested a hypothesis that Cr(VI) causes in vivo generation of DSBs and elicits DNA damage response. We fed repair proficient Drosophila melanogaster (Oregon R(+)) larvae Cr(VI) (20.0μg/ml) mixed food for 24 and 48h and observed a significant (p<0.05) induction of DSBs in their midgut cells after 48h using neutral Comet assay. Global gene expression profiling in Cr(VI)-exposed Oregon R(+) larvae unveiled mis-regulation of DSBs responsive repair genes both after 24 and 48h. In vivo generation of DSBs in exposed Drosophila was confirmed by an increased pH2Av immunostaining along with the activation of cell cycle regulation genes. Analysis of mis-regulated genes grouped under DSB response by GOEAST indicated the participation of non-homologous end joining (NHEJ) DSB repair pathway. We selected two strains, one mutant (ligIV) and another ku80-RNAi (knockdown of ku80), whose functions are essentially linked to NHEJ-DSB repair pathway. As a proof of principle, we compared the DSBs generation in larvae of these two strains with that of repair proficient Oregon R(+). Along with this, DSBs generation in spn-A and okr [essential genes in homologous recombination repair (HR) pathway] mutants was also tested for the possible involvement of HR-DSB repair. A significantly increased DSBs generation in the exposed ku80-RNAi and ligIV (mutant) larvae because of impaired repair, concomitant with an insignificant DSBs generation in okr and spn-A mutant larvae indicates an active participation of NHEJ repair pathway. The study, first of its kind to our knowledge, while providing evidences for in vivo generation of DSBs in Cr(VI) exposed Drosophila larvae, assumes significance for its relevance to higher organisms due to causal link between DSB generation and Cr(VI)-induced carcinogenesis.

  6. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9.

    PubMed

    Yoder, Kristine E; Bundschuh, Ralf

    2016-01-01

    CRISPR/Cas9 genome editing has been proposed as a therapeutic treatment for HIV-1 infection. CRISPR/Cas9 induced double strand breaks (DSBs) targeted to the integrated viral genome have been shown to decrease production of progeny virus. Unfortunately HIV-1 evolves rapidly and may readily produce CRISPR/Cas9 resistant strains. Here we used next-generation sequencing to characterize HIV-1 strains that developed resistance to six different CRISPR/Cas9 guide RNAs (gRNAs). Reverse transcriptase (RT) derived base substitution mutations were commonly found at sites encoding unpaired bases of RNA stem-loop structures. In addition to RT mutations, insertion and/or deletion (indel) mutations were common. Indels localized to the CRISPR/Cas9 cleavage site were major contributors to CRISPR gRNA resistance. While most indels at non-coding regions were a single base pair, 3 base pair indels were observed when a coding region of HIV-1 was targeted. The DSB repair event may preserve the HIV-1 reading frame, while destroying CRISPR gRNA homology. HIV-1 may be successfully edited by CRISPR/Cas9, but the virus remains competent for replication and resistant to further CRISPR/Cas9 targeting at that site. These observations strongly suggest that host DSB repair at CRISPR/Cas9 cleavage sites is a novel and important pathway that may contribute to HIV-1 therapeutic resistance. PMID:27404981

  7. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks

    PubMed Central

    Federico, María Belén; Vallerga, María Belén; Radl, Analía; Paviolo, Natalia Soledad; Bocco, José Luis; Di Giorgio, Marina; Soria, Gastón; Gottifredi, Vanesa

    2016-01-01

    Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress. PMID:26765540

  8. RECQL4 Promotes DNA End Resection in Repair of DNA Double-Strand Breaks.

    PubMed

    Lu, Huiming; Shamanna, Raghavendra A; Keijzers, Guido; Anand, Roopesh; Rasmussen, Lene Juel; Cejka, Petr; Croteau, Deborah L; Bohr, Vilhelm A

    2016-06-28

    The RecQ helicase RECQL4, mutated in Rothmund-Thomson syndrome, regulates genome stability, aging, and cancer. Here, we identify a crucial role for RECQL4 in DNA end resection, which is the initial and an essential step of homologous recombination (HR)-dependent DNA double-strand break repair (DSBR). Depletion of RECQL4 severely reduces HR-mediated repair and 5' end resection in vivo. RECQL4 physically interacts with MRE11-RAD50-NBS1 (MRN), which senses DSBs and initiates DNA end resection with CtIP. The MRE11 exonuclease regulates the retention of RECQL4 at laser-induced DSBs. RECQL4 also directly interacts with CtIP via its N-terminal domain and promotes CtIP recruitment to the MRN complex at DSBs. Moreover, inactivation of RECQL4's helicase activity impairs DNA end processing and HR-dependent DSBR without affecting its interaction with MRE11 and CtIP, suggesting an important role for RECQL4's unwinding activity in the process. Thus, we report that RECQL4 is an important participant in HR-dependent DSBR.

  9. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9

    PubMed Central

    Yoder, Kristine E.; Bundschuh, Ralf

    2016-01-01

    CRISPR/Cas9 genome editing has been proposed as a therapeutic treatment for HIV-1 infection. CRISPR/Cas9 induced double strand breaks (DSBs) targeted to the integrated viral genome have been shown to decrease production of progeny virus. Unfortunately HIV-1 evolves rapidly and may readily produce CRISPR/Cas9 resistant strains. Here we used next-generation sequencing to characterize HIV-1 strains that developed resistance to six different CRISPR/Cas9 guide RNAs (gRNAs). Reverse transcriptase (RT) derived base substitution mutations were commonly found at sites encoding unpaired bases of RNA stem-loop structures. In addition to RT mutations, insertion and/or deletion (indel) mutations were common. Indels localized to the CRISPR/Cas9 cleavage site were major contributors to CRISPR gRNA resistance. While most indels at non-coding regions were a single base pair, 3 base pair indels were observed when a coding region of HIV-1 was targeted. The DSB repair event may preserve the HIV-1 reading frame, while destroying CRISPR gRNA homology. HIV-1 may be successfully edited by CRISPR/Cas9, but the virus remains competent for replication and resistant to further CRISPR/Cas9 targeting at that site. These observations strongly suggest that host DSB repair at CRISPR/Cas9 cleavage sites is a novel and important pathway that may contribute to HIV-1 therapeutic resistance. PMID:27404981

  10. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks.

    PubMed

    Federico, María Belén; Vallerga, María Belén; Radl, Analía; Paviolo, Natalia Soledad; Bocco, José Luis; Di Giorgio, Marina; Soria, Gastón; Gottifredi, Vanesa

    2016-01-01

    Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.

  11. Effects of double-strand break repair proteins on vertebrate telomere structure

    PubMed Central

    Wei, Chao; Skopp, Rose; Takata, Minoru; Takeda, Shunichi; Price, Carolyn M.

    2002-01-01

    Although telomeres are not recognized as double-strand breaks (DSBs), some DSB repair proteins are present at telomeres and are required for telomere maintenance. To learn more about the telomeric function of proteins from the homologous recombination (HR) and non-homologous end joining pathways (NHEJ), we have screened a panel of chicken DT40 knockout cell lines for changes in telomere structure. In contrast to what has been observed in Ku-deficient mice, we found that Ku70 disruption did not result in telomere–telomere fusions and had no effect on telomere length or the structure of the telomeric G-strand overhang. G-overhang length was increased by Rad51 disruption but unchanged by disruption of DNA-PKcs, Mre11, Rad52, Rad54, XRCC2 or XRCC3. The effect of Rad51 depletion was unexpected because gross alterations in telomere structure have not been detected in yeast HR mutants. Thus, our results indicate that Rad51 has a previously undiscovered function at vertebrate telomeres. They also indicate that Mre11 is not required to generate G-overhangs. Although Mre11 has been implicated in overhang generation, overhang structure had not previously been examined in Mre11-deficient cells. Overall our findings indicate that there are significant species-specific differences in the telomeric function of DSB repair proteins. PMID:12087170

  12. RNF4 regulates DNA double-strand break repair in a cell cycle-dependent manner

    PubMed Central

    Kuo, Ching-Ying; Li, Xu; Stark, Jeremy M.; Shih, Hsiu-Ming; Ann, David K.

    2016-01-01

    Abstract Both RNF4 and KAP1 play critical roles in the response to DNA double-strand breaks (DSBs), but the functional interplay of RNF4 and KAP1 in regulating DNA damage response remains unclear. We have previously demonstrated the recruitment and degradation of KAP1 by RNF4 require the phosphorylation of Ser824 (pS824) and SUMOylation of KAP1. In this report, we show the retention of DSB-induced pS824-KAP1 foci and RNF4 abundance are inversely correlated as cell cycle progresses. Following irradiation, pS824-KAP1 foci predominantly appear in the cyclin A (-) cells, whereas RNF4 level is suppressed in the G0-/G1-phases and then accumulates during S-/G2-phases. Notably, 53BP1 foci, but not BRCA1 foci, co-exist with pS824-KAP1 foci. Depletion of KAP1 yields opposite effect on the dynamics of 53BP1 and BRCA1 loading, favoring homologous recombination repair. In addition, we identify p97 is present in the RNF4-KAP1 interacting complex and the inhibition of p97 renders MCF7 breast cancer cells relatively more sensitive to DNA damage. Collectively, these findings suggest that combined effect of dynamic recruitment of RNF4 to KAP1 regulates the relative occupancy of 53BP1 and BRCA1 at DSB sites to direct DSB repair in a cell cycle-dependent manner. PMID:26766492

  13. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9.

    PubMed

    Yoder, Kristine E; Bundschuh, Ralf

    2016-07-12

    CRISPR/Cas9 genome editing has been proposed as a therapeutic treatment for HIV-1 infection. CRISPR/Cas9 induced double strand breaks (DSBs) targeted to the integrated viral genome have been shown to decrease production of progeny virus. Unfortunately HIV-1 evolves rapidly and may readily produce CRISPR/Cas9 resistant strains. Here we used next-generation sequencing to characterize HIV-1 strains that developed resistance to six different CRISPR/Cas9 guide RNAs (gRNAs). Reverse transcriptase (RT) derived base substitution mutations were commonly found at sites encoding unpaired bases of RNA stem-loop structures. In addition to RT mutations, insertion and/or deletion (indel) mutations were common. Indels localized to the CRISPR/Cas9 cleavage site were major contributors to CRISPR gRNA resistance. While most indels at non-coding regions were a single base pair, 3 base pair indels were observed when a coding region of HIV-1 was targeted. The DSB repair event may preserve the HIV-1 reading frame, while destroying CRISPR gRNA homology. HIV-1 may be successfully edited by CRISPR/Cas9, but the virus remains competent for replication and resistant to further CRISPR/Cas9 targeting at that site. These observations strongly suggest that host DSB repair at CRISPR/Cas9 cleavage sites is a novel and important pathway that may contribute to HIV-1 therapeutic resistance.

  14. Targeting abnormal DNA double strand break repair in tyrosine kinase inhibitor-resistant chronic myeloid leukemias

    PubMed Central

    Tobin, Lisa A.; Robert, Carine; Rapoport, Aaron P.; Gojo, Ivana; Baer, Maria R.; Tomkinson, Alan E.; Rassool, Feyruz V.

    2013-01-01

    Resistance to imatinib (IM) and other BCR-ABL1 tyrosine kinase inhibitors (TKI)s is an increasing problem in leukemias caused by expression of BCR-ABL1. Since chronic myeloid leukemia (CML) cell lines expressing BCR-ABL1 utilize an alternative non-homologous end-joining pathway (ALT NHEJ) to repair DNA double strand breaks (DSB)s, we asked whether this repair pathway is a novel therapeutic target in TKI-resistant disease. Notably, the steady state levels of two ALT NHEJ proteins, poly-(ADP-ribose) polymerase 1 (PARP1) and DNA ligase IIIα were increased in the BCR-ABL1-positive CML cell line K562 and, to a greater extent, in its imatinib resistant (IMR) derivative. Incubation of these cell lines with a combination of DNA ligase and PARP inhibitors inhibited ALT NHEJ and selectively decreased survival with the effect being greater in the IMR derivative. Similar results were obtained with TKI-resistant derivatives of two hematopoietic cell lines that had been engineered to stably express BCR-ABL1. Together our results show that the sensitivity of cell lines expressing BCR-ABL1 to the combination of DNA ligase and PARP inhibitors correlates with the steady state levels of PARP1 and DNA ligase IIIα, and ALT NHEJ activity. Importantly, analysis of clinical samples from CML patients confirmed that the expression levels of PARP1 and DNA ligase IIIα correlated with sensitivity to the DNA repair inhibitor combination. Thus, the expression levels of PARP1 and DNA ligase IIIα serve as biomarkers to identify a subgroup of CML patients who may be candidates for therapies that target the ALT NHEJ pathway when treatment with TKIs has failed. PMID:22641215

  15. Polymorphisms in DNA repair genes, recreational physical activity and breast cancer risk.

    PubMed

    McCullough, Lauren E; Santella, Regina M; Cleveland, Rebecca J; Millikan, Robert C; Olshan, Andrew F; North, Kari E; Bradshaw, Patrick T; Eng, Sybil M; Terry, Mary Beth; Shen, Jing; Crew, Katherine D; Rossner, Pavel; Teitelbaum, Susan L; Neugut, Alfred I; Gammon, Marilie D

    2014-02-01

    The mechanisms driving the inverse association between recreational physical activity (RPA) and breast cancer risk are complex. While exercise is associated with increased reactive oxygen species production it may also improve damage repair systems, particularly those that operate on single-strand breaks including base excision repair (BER), nucleotide excision repair (NER) and mismatch repair (MMR). Of these repair pathways, the role of MMR in breast carcinogenesis is least investigated. Polymorphisms in MMR or other DNA repair gene variants may modify the association between RPA and breast cancer incidence. We investigated the individual and joint effects of variants in three MMR pathway genes (MSH3, MLH1 and MSH2) on breast cancer occurrence using resources from the Long Island Breast Cancer Study Project. We additionally characterized interactions between RPA and genetic polymorphisms in MMR, BER and NER pathways. We found statistically significant multiplicative interactions (p < 0.05) between MSH2 and MLH1, as well as between postmenopausal RPA and four variants in DNA repair (XPC-Ala499Val, XPF-Arg415Gln, XPG-Asp1104His and MLH1-lle219Val). Significant risk reductions were observed among highly active women with the common genotype for XPC (OR = 0.54; 95% CI, 0.36-0.81) and XPF (OR = 0.62; 95% CI, 0.44-0.87), as well as among active women who carried at least one variant allele in XPG (OR = 0.46; 95% CI, 0.29-0.77) and MLH1 (OR = 0.46; 95% CI, 0.30-0.71). Our data show that women with minor alleles in both MSH2 and MLH1 could be at increased breast cancer risk. RPA may be modified by genes in the DNA repair pathway, and merit further investigation.

  16. Polymorphisms in DNA Repair Genes, Recreational Physical Activity and Breast Cancer Risk

    PubMed Central

    McCullough, Lauren E.; Santella, Regina M.; Cleveland, Rebecca J.; Millikan, Robert C.; Olshan, Andrew F.; North, Kari E.; Bradshaw, Patrick T.; Eng, Sybil M.; Terry, Mary Beth; Shen, Jing; Crew, Katherine D.; Rossner, Pavel; Teitelbaum, Susan L.; Neugut, Alfred I.; Gammon, Marilie D.

    2013-01-01

    The mechanisms driving the inverse association between recreational physical activity (RPA) and breast cancer risk are complex. While exercise is associated with increased reactive oxygen species production it may also improve damage repair systems, particularly those that operate on single-strand breaks including base excision repair (BER), nucleotide excision repair (NER) and mismatch repair (MMR). Of these repair pathways, the role of MMR in breast carcinogenesis is least investigated. Polymorphisms in MMR or other DNA repair gene variants may modify the association between RPA and breast cancer incidence. We investigated the individual and joint effects of variants in three MMR pathway genes (MSH3, MLH1 and MSH2) on breast cancer occurrence using resources from the Long Island Breast Cancer Study Project. We additionally characterized interactions between RPA and genetic polymorphisms in MMR, BER and NER pathways. We found statistically significant multiplicative interactions (p<0.05) between MSH2 and MLH1, as well as between postmenopausal RPA and four variants in DNA repair (XPC-Ala499Val, XPF-Arg415Gln, XPG-Asp1104His and MLH1-lle219Val). Significant risk reductions were observed among highly active women with the common genotype for XPC (OR=0.54; 95% CI, 0.36–0.81) and XPF (OR=0.62; 95% CI, 0.44–0.87), as well as among active women who carried at least one variant allele in XPG (OR=0.46; 95% CI, 0.29–0.77) and MLH1 (OR=0.46; 95% CI, 0.30–0.71). Our data show that women with minor alleles in both MSH2 and MLH1 could be at increased breast cancer risk. RPA may be modified by genes in the DNA repair pathway, and merit further investigation. PMID:23852586

  17. A fine-scale dissection of the DNA double-strand break repair machinery and its implications for breast cancer therapy

    PubMed Central

    Liu, Chao; Srihari, Sriganesh; Cao, Kim-Anh Lê; Chenevix-Trench, Georgia; Simpson, Peter T.; Ragan, Mark A.; Khanna, Kum Kum

    2014-01-01

    DNA-damage response machinery is crucial to maintain the genomic integrity of cells, by enabling effective repair of even highly lethal lesions such as DNA double-strand breaks (DSBs). Defects in specific genes acquired through mutations, copy-number alterations or epigenetic changes can alter the balance of these pathways, triggering cancerous potential in cells. Selective killing of cancer cells by sensitizing them to further DNA damage, especially by induction of DSBs, therefore requires careful modulation of DSB-repair pathways. Here, we review the latest knowledge on the two DSB-repair pathways, homologous recombination and non-homologous end joining in human, describing in detail the functions of their components and the key mechanisms contributing to the repair. Such an in-depth characterization of these pathways enables a more mechanistic understanding of how cells respond to therapies, and suggests molecules and processes that can be explored as potential therapeutic targets. One such avenue that has shown immense promise is via the exploitation of synthetic lethal relationships, for which the BRCA1–PARP1 relationship is particularly notable. Here, we describe how this relationship functions and the manner in which cancer cells acquire therapy resistance by restoring their DSB repair potential. PMID:24792170

  18. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR

  19. The Contribution of Alu Elements to Mutagenic DNA Double-Strand Break Repair

    PubMed Central

    Streva, Vincent A.; DeFreece, Cecily B.; Hedges, Dale J.; Deininger, Prescott L.

    2015-01-01

    Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ) deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB) repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%), we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences). Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence divergence on both

  20. Creation and repair of specific DNA double-strand breaks in vivo following infection with adenovirus vectors expressing Saccharomyces cerevisiae HO endonuclease.

    PubMed

    Nicolás, A L; Munz, P L; Falck-Pedersen, E; Young, C S

    2000-01-01

    To study DNA double-strand break (DSB) repair in mammalian cells, the Saccharomyces cerevisiae HO endonuclease gene, or its recognition site, was cloned into the adenovirus E3 or E1 regions. Analysis of DNA from human A549 cells coinfected with the E3::HO gene and site viruses showed that HO endonuclease was active and that broken viral genomes were detectable 12 h postinfection, increasing with time up to approximately 30% of the available HO site genomes. Leftward fragments of approximately 30 kbp, which contain the packaging signal, but not rightward fragments of approximately 6 kbp, were incorporated into virions, suggesting that broken genomes were not held together tightly after cleavage. There was no evidence for DSB repair in E3::HO virus coinfections. In contrast, such evidence was obtained in E1::HO virus coinfections of nonpermissive cells, suggesting that adenovirus proteins expressed in the permissive E3::HO coinfection can inhibit mammalian DSB repair. To test the inhibitory role of E4 proteins, known to suppress genome concatemer formation late in infection (Weiden and Ginsberg, 1994), A549 cells were coinfected with E3::HO viruses lacking the E4 region. The results strongly suggest that the E4 protein(s) inhibits DSB repair.

  1. Chemotherapeutic Compounds Targeting the DNA Double-Strand Break Repair Pathways: The Good, the Bad, and the Promising

    PubMed Central

    Jekimovs, Christian; Bolderson, Emma; Suraweera, Amila; Adams, Mark; O’Byrne, Kenneth J.; Richard, Derek J.

    2014-01-01

    The repair of DNA double-strand breaks (DSBs) is a critical cellular mechanism that exists to ensure genomic stability. DNA DSBs are the most deleterious type of insult to a cell’s genetic material and can lead to genomic instability, apoptosis, or senescence. Incorrectly repaired DNA DSBs have the potential to produce chromosomal translocations and genomic instability, potentially leading to cancer. The prevalence of DNA DSBs in cancer due to unregulated growth and errors in repair opens up a potential therapeutic window in the treatment of cancers. The cellular response to DNA DSBs is comprised of two pathways to ensure DNA breaks are repaired: homologous recombination and non-homologous end joining. Identifying chemotherapeutic compounds targeting proteins involved in these DNA repair pathways has shown promise as a cancer therapy for patients, either as a monotherapy or in combination with genotoxic drugs. From the beginning, there have been a number of chemotherapeutic compounds that have yielded successful responses in the clinic, a number that have failed (CGK-733 and iniparib), and a number of promising targets for future studies identified. This review looks in detail at how the cell responds to these DNA DSBs and investigates the chemotherapeutic avenues that have been and are currently being explored to target this repair process. PMID:24795863

  2. Recombinational repair of radiation-induced double-strand breaks occurs in the absence of extensive resection

    PubMed Central

    Westmoreland, James W.; Resnick, Michael A.

    2016-01-01

    Recombinational repair provides accurate chromosomal restitution after double-strand break (DSB) induction. While all DSB recombination repair models include 5′-3′ resection, there are no studies that directly assess the resection needed for repair between sister chromatids in G-2 arrested cells of random, radiation-induced ‘dirty’ DSBs. Using our Pulse Field Gel Electrophoresis-shift approach, we determined resection at IR-DSBs in WT and mutants lacking exonuclease1 or Sgs1 helicase. Lack of either reduced resection length by half, without decreased DSB repair or survival. In the exo1Δ sgs1Δ double mutant, resection was barely detectable, yet it only took an additional hour to achieve a level of repair comparable to WT and there was only a 2-fold dose-modifying effect on survival. Results with a Dnl4 deletion strain showed that remaining repair was not due to endjoining. Thus, similar to what has been shown for a single, clean HO-induced DSB, a severe reduction in resection tract length has only a modest effect on repair of multiple, dirty DSBs in G2-arrested cells. Significantly, this study provides the first opportunity to directly relate resection length at DSBs to the capability for global recombination repair between sister chromatids. PMID:26503252

  3. BRG1 promotes the repair of DNA double-strand breaks by facilitating the replacement of RPA with RAD51

    PubMed Central

    Qi, Wenjing; Wang, Ruoxi; Chen, Hongyu; Wang, Xiaolin; Xiao, Ting; Boldogh, Istvan; Ba, Xueqing; Han, Liping; Zeng, Xianlu

    2015-01-01

    ABSTRACT DNA double-strand breaks (DSBs) are a type of lethal DNA damage. The repair of DSBs requires tight coordination between the factors modulating chromatin structure and the DNA repair machinery. BRG1, the ATPase subunit of the chromatin remodelling complex Switch/Sucrose non-fermentable (SWI/SNF), is often linked to tumorigenesis and genome instability, and its role in DSB repair remains largely unclear. In the present study, we show that BRG1 is recruited to DSB sites and enhances DSB repair. Using DR-GFP and EJ5-GFP reporter systems, we demonstrate that BRG1 facilitates homologous recombination repair rather than nonhomologous end-joining (NHEJ) repair. Moreover, the BRG1–RAD52 complex mediates the replacement of RPA with RAD51 on single-stranded DNA (ssDNA) to initiate DNA strand invasion. Loss of BRG1 results in a failure of RAD51 loading onto ssDNA, abnormal homologous recombination repair and enhanced DSB-induced lethality. Our present study provides a mechanistic insight into how BRG1, which is known to be involved in chromatin remodelling, plays a substantial role in the homologous recombination repair pathway in mammalian cells. PMID:25395584

  4. Recombinational repair of radiation-induced double-strand breaks occurs in the absence of extensive resection.

    PubMed

    Westmoreland, James W; Resnick, Michael A

    2016-01-29

    Recombinational repair provides accurate chromosomal restitution after double-strand break (DSB) induction. While all DSB recombination repair models include 5'-3' resection, there are no studies that directly assess the resection needed for repair between sister chromatids in G-2 arrested cells of random, radiation-induced 'dirty' DSBs. Using our Pulse Field Gel Electrophoresis-shift approach, we determined resection at IR-DSBs in WT and mutants lacking exonuclease1 or Sgs1 helicase. Lack of either reduced resection length by half, without decreased DSB repair or survival. In the exo1Δ sgs1Δ double mutant, resection was barely detectable, yet it only took an additional hour to achieve a level of repair comparable to WT and there was only a 2-fold dose-modifying effect on survival. Results with a Dnl4 deletion strain showed that remaining repair was not due to endjoining. Thus, similar to what has been shown for a single, clean HO-induced DSB, a severe reduction in resection tract length has only a modest effect on repair of multiple, dirty DSBs in G2-arrested cells. Significantly, this study provides the first opportunity to directly relate resection length at DSBs to the capability for global recombination repair between sister chromatids. PMID:26503252

  5. Gamma-irradiated quiescent cells repair directly induced double-strand breaks but accumulate persistent double-strand breaks during subsequent DNA replication.

    PubMed

    Minakawa, Yusuke; Atsumi, Yuko; Shinohara, Akira; Murakami, Yasufumi; Yoshioka, Ken-Ichi

    2016-07-01

    H2AX is expressed at very low levels in quiescent normal cells in vivo and in vitro. Such cells repair DNA double-strand breaks (DSBs) induced by γ-irradiation through a transient stabilization of H2AX. However, the resultant cells accumulate small numbers of irreparable (or persistent) DSBs via an unknown mechanism. We found that quiescent cells that had repaired DSBs directly induced by γ-rays were prone to accumulate DSBs during the subsequent DNA replication. Unlike directly induced DSBs, secondary DSBs were not efficiently repaired, although Rad51 and 53BP1 were recruited to these sites. H2AX was dramatically stabilized in response to DSBs directly caused by γ-rays, enabling γH2AX foci formation and DSB repair, whereas H2AX was barely stabilized in response to secondary DSBs, in which γH2AX foci were small and DSBs were not efficiently repaired. Our results show a pathway that leads to the persistent DSB formation after γ-irradiation. PMID:27251002

  6. Gamma-irradiated quiescent cells repair directly induced double-strand breaks but accumulate persistent double-strand breaks during subsequent DNA replication.

    PubMed

    Minakawa, Yusuke; Atsumi, Yuko; Shinohara, Akira; Murakami, Yasufumi; Yoshioka, Ken-Ichi

    2016-07-01

    H2AX is expressed at very low levels in quiescent normal cells in vivo and in vitro. Such cells repair DNA double-strand breaks (DSBs) induced by γ-irradiation through a transient stabilization of H2AX. However, the resultant cells accumulate small numbers of irreparable (or persistent) DSBs via an unknown mechanism. We found that quiescent cells that had repaired DSBs directly induced by γ-rays were prone to accumulate DSBs during the subsequent DNA replication. Unlike directly induced DSBs, secondary DSBs were not efficiently repaired, although Rad51 and 53BP1 were recruited to these sites. H2AX was dramatically stabilized in response to DSBs directly caused by γ-rays, enabling γH2AX foci formation and DSB repair, whereas H2AX was barely stabilized in response to secondary DSBs, in which γH2AX foci were small and DSBs were not efficiently repaired. Our results show a pathway that leads to the persistent DSB formation after γ-irradiation.

  7. Hyper-Acetylation of Histone H3K56 Limits Break-Induced Replication by Inhibiting Extensive Repair Synthesis

    PubMed Central

    Che, Jun; Smith, Stephanie; Kim, Yoo Jung; Shim, Eun Yong; Myung, Kyungjae; Lee, Sang Eun

    2015-01-01

    Break-induced replication (BIR) has been implicated in restoring eroded telomeres and collapsed replication forks via single-ended invasion and extensive DNA synthesis on the recipient chromosome. Unlike other recombination subtypes, DNA synthesis in BIR likely relies heavily on mechanisms enabling efficient fork progression such as chromatin modification. Herein we report that deletion of HST3 and HST4, two redundant de-acetylases of histone H3 Lysine 56 (H3K56), inhibits BIR, sensitizes checkpoint deficient cells to deoxyribonucleotide triphosphate pool depletion, and elevates translocation-type gross chromosomal rearrangements (GCR). The basis for deficiency in BIR and gene conversion with long gap synthesis in hst3Δ hst4Δ cells can be traced to a defect in extensive DNA synthesis. Distinct from other cellular defects associated with deletion of HST3 and HST4 including thermo-sensitivity and elevated spontaneous mutagenesis, the BIR defect in hst3Δ hst4Δ cannot be offset by the deletion of RAD17 or MMS22, but rather by the loss of RTT109 or ASF1, or in combination with the H3K56R mutation, which also restores tolerance to replication stress in mrc1 mutants. Our studies suggest that acetylation of H3K56 limits extensive repair synthesis and interferes with efficient fork progression in BIR. PMID:25705897

  8. MEIOTIC F-BOX Is Essential for Male Meiotic DNA Double-Strand Break Repair in Rice[OPEN

    PubMed Central

    Wang, Chong; Yu, Junping; Zong, Jie; Lu, Pingli

    2016-01-01

    F-box proteins constitute a large superfamily in plants and play important roles in controlling many biological processes, but the roles of F-box proteins in male meiosis in plants remain unclear. Here, we identify the rice (Oryza sativa) F-box gene MEIOTIC F-BOX (MOF), which is essential for male meiotic progression. MOF belongs to the FBX subfamily and is predominantly active during leptotene to pachytene of prophase I. mof meiocytes display disrupted telomere bouquet formation, impaired pairing and synapsis of homologous chromosomes, and arrested meiocytes at late prophase I, followed by apoptosis. Although normal, programmed double-stranded DNA breaks (DSBs) form in mof mutants, foci of the phosphorylated histone variant γH2AX, a marker for DSBs, persist in the mutant, indicating that many of the DSBs remained unrepaired. The recruitment of Completion of meiosis I (COM1) and Radiation sensitive51C (RAD51C) to DSBs is severely compromised in mutant meiocytes, indicating that MOF is crucial for DSB end-processing and repair. Further analyses showed that MOF could physically interact with the rice SKP1-like Protein1 (OSK1), indicating that MOF functions as a component of the SCF E3 ligase to regulate meiotic progression in rice. Thus, this study reveals the essential role of an F-box protein in plant meiosis and provides helpful information for elucidating the roles of the ubiquitin proteasome system in plant meiotic progression. PMID:27436711

  9. MEIOTIC F-BOX Is Essential for Male Meiotic DNA Double-Strand Break Repair in Rice.

    PubMed

    He, Yi; Wang, Chong; Higgins, James D; Yu, Junping; Zong, Jie; Lu, Pingli; Zhang, Dabing; Liang, Wanqi

    2016-08-01

    F-box proteins constitute a large superfamily in plants and play important roles in controlling many biological processes, but the roles of F-box proteins in male meiosis in plants remain unclear. Here, we identify the rice (Oryza sativa) F-box gene MEIOTIC F-BOX (MOF), which is essential for male meiotic progression. MOF belongs to the FBX subfamily and is predominantly active during leptotene to pachytene of prophase I. mof meiocytes display disrupted telomere bouquet formation, impaired pairing and synapsis of homologous chromosomes, and arrested meiocytes at late prophase I, followed by apoptosis. Although normal, programmed double-stranded DNA breaks (DSBs) form in mof mutants, foci of the phosphorylated histone variant γH2AX, a marker for DSBs, persist in the mutant, indicating that many of the DSBs remained unrepaired. The recruitment of Completion of meiosis I (COM1) and Radiation sensitive51C (RAD51C) to DSBs is severely compromised in mutant meiocytes, indicating that MOF is crucial for DSB end-processing and repair. Further analyses showed that MOF could physically interact with the rice SKP1-like Protein1 (OSK1), indicating that MOF functions as a component of the SCF E3 ligase to regulate meiotic progression in rice. Thus, this study reveals the essential role of an F-box protein in plant meiosis and provides helpful information for elucidating the roles of the ubiquitin proteasome system in plant meiotic progression. PMID:27436711

  10. Loss of the catalytic subunit of the DNA-dependent protein kinase in DNA double-strand-break-repair mutant mammalian cells.

    PubMed

    Peterson, S R; Kurimasa, A; Oshimura, M; Dynan, W S; Bradbury, E M; Chen, D J

    1995-04-11

    The DNA-dependent protein kinase (DNA-PK) consists of three polypeptide components: Ku-70, Ku-80, and an approximately 350-kDa catalytic subunit (p350). The gene encoding the Ku-80 subunit is identical to the x-ray-sensitive group 5 complementing gene XRCC5. Expression of the Ku-80 cDNA rescues both DNA double-strand break (DSB) repair and V(D)J recombination in group 5 mutant cells. The involvement of Ku-80 in these processes suggests that the underlying defect in these mutant cells may be disruption of the DNA-PK holoenzyme. In this report we show that the p350 kinase subunit is deleted in cells derived from the severe combined immunodeficiency mouse and in the Chinese hamster ovary cell line V-3, both of which are defective in DSB repair and V(D)J recombination. A centromeric fragment of human chromosome 8 that complements the scid defect also restores p350 protein expression and rescues in vitro DNA-PK activity. These data suggest the scid gene may encode the p350 protein or regulate its expression and are consistent with a model whereby DNA-PK is a critical component of the DSB-repair pathway.

  11. Loss of the catalytic subunit of the DNA-dependent protein kinase in DNA double-strand-break-repair mutant mammalian cells

    SciTech Connect

    Peterson, S.R. |; Kurimasa, Akihiro; Oshimura, Mitsuo; Dynan, W.S.; Bradbury, E.M. |; Chen, D.J.

    1995-04-11

    The DNA-dependent protein kinase (DNA-PK) consists of three polypeptide components: Ku-70, Ku-80, and an {approx}350-kDa catalytic subunit (p350). The gene encoding the Ku-80 subunit is identical to the x-ray-sensitive group 5 complementing gene XRCC5. Expression of the Ku-80 cDNA rescues both DNA double-strand break (DSB) repair and V(D)J recombination in group 5 mutant cells. The involvement of Ku-80 in these processes suggests that the underlying defect in these mutant cells may be disruption of the DNA-PK holoenzyme. In this report we show that the p350 kinase subunit is deleted in cells derived from the severe combined immunodeficiency mouse and in the Chinese hamster ovary cell line V-3, both of which are defective in DSB repair and V(D)J recombination. A centromeric fragment of human chromosome 8 that complements the scid defect also restores p350 protein expression and rescues in vitro DNA-PK activity. These data suggest the scid gene may encode the p350 protein or regulate its expression and are consistent with a model whereby DNA-PK is a critical component of the DSB-repair pathway. 38 refs., 3 figs.

  12. Double-strand break repair and genetic recombination in topoisomerase and primase mutants of bacteriophage T4.

    PubMed

    Shcherbakov, Victor P; Kudryashova, Elena

    2014-09-01

    The effects of primase and topoisomerase II deficiency on the double-strand break (DSB) repair and genetic recombination in bacteriophage T4 were studied in vivo using focused recombination. Site-specific DSBs were induced by SegC endonuclease in the rIIB gene of one of the parents. The frequency/distance relationship was determined in crosses of the wild-type phage, topoisomerase II mutant amN116 (gene 39), and primase mutant E219 (gene 61). Ordinary two-factor (i×j) and three-factor (i k×j) crosses between point rII mutations were also performed. These data provide information about the frequency and distance distribution of the single-exchange (splice) and double-exchange (patch) events. In two-factor crosses ets1×i, the topoisomerase and primase mutants had similar recombinant frequencies in crosses at ets1-i distances longer than 1000 bp, comprising about 80% of the corresponding wild-type values. They, however, differ remarkably in crosses at shorter distances. In the primase mutant, the recombinant frequencies are similar to those in the wild-type crosses at distances less than 100 bp, being a bit diminished at longer distances. In two-factor crosses ets1×i of the topoisomerase mutant, the recombinant frequencies were reduced ten-fold at the shortest distances. In three-factor crosses a6 ets1×i, where we measure patch-related recombination, the primase mutant was quite proficient across the entire range of distances. The topoisomerase mutant crosses demonstrated virtually complete absence of rII(+) recombinants at distances up to 33 bp, with the frequencies increasing steadily at longer distances. The data were interpreted as follows. The primase mutant is fully recombination-proficient. An obvious difference from the wild-type state is some shortage of EndoVII function leading to prolonged existence of HJs and thus stretched out ds-branch migration. This is also true for the topoisomerase mutant. However, the latter is deficient in the ss

  13. Complex Oncogenic Translocations with Gene Amplification are Initiated by Specific DNA Breaks in Lymphocytes

    PubMed Central

    Wright, Sarah M.; Woo, Yong H.; Alley, Travis L.; Shirley, Bobbi-Jo; Akeson, Ellen C.; Snow, Kathy J.; Maas, Sarah A.; Elwell, Rachel L.; Foreman, Oded; Mills, Kevin D.

    2009-01-01

    Chromosomal instability is a hallmark of many tumor types. Complex chromosomal rearrangements with associated gene amplification, known as complicons, characterize many hematologic and solid cancers. While chromosomal aberrations, including complicons, are useful diagnostic and prognostic cancer markers, their molecular origins are not known. Although accumulating evidence has implicated DNA double strand break repair in suppression of oncogenic genome instability, the genomic elements required for chromosome rearrangements, especially complex lesions, have not been elucidated. Using a mouse model of B-lineage lymphoma, characterized by complicon formation involving the immunoglobulin heavy chain (Igh) locus and the c-myc oncogene, we have now investigated the requirement for specific genomic segments as donors for complex rearrangements. We now demonstrate that specific DNA double strand breaks, occurring within a narrow segment of Igh are necessary to initiate complicon formation. By contrast, neither specific DNA breaks nor the powerful intronic enhancer Eμ are required for complicon-independent oncogenesis. This study is the first to delineate mechanisms of complex versus simple instability, and the first to identify specific chromosomal elements required for complex chromosomal aberrations. These findings will illuminate genomic cancer susceptibility and risk factors. PMID:19435904

  14. Complex oncogenic translocations with gene amplification are initiated by specific DNA breaks in lymphocytes.

    PubMed

    Wright, Sarah M; Woo, Yong H; Alley, Travis L; Shirley, Bobbi-Jo; Akeson, Ellen C; Snow, Kathy J; Maas, Sarah A; Elwell, Rachel L; Foreman, Oded; Mills, Kevin D

    2009-05-15

    Chromosomal instability is a hallmark of many tumor types. Complex chromosomal rearrangements with associated gene amplification, known as complicons, characterize many hematologic and solid cancers. Whereas chromosomal aberrations, including complicons, are useful diagnostic and prognostic cancer markers, their molecular origins are not known. Although accumulating evidence has implicated DNA double-strand break repair in suppression of oncogenic genome instability, the genomic elements required for chromosome rearrangements, especially complex lesions, have not been elucidated. Using a mouse model of B-lineage lymphoma, characterized by complicon formation involving the immunoglobulin heavy chain (Igh) locus and the c-myc oncogene, we have now investigated the requirement for specific genomic segments as donors for complex rearrangements. We now show that specific DNA double-strand breaks, occurring within a narrow segment of Igh, are necessary to initiate complicon formation. By contrast, neither specific DNA breaks nor the powerful intronic enhancer Emu are required for complicon-independent oncogenesis. This study is the first to delineate mechanisms of complex versus simple instability and the first to identify specific chromosomal elements required for complex chromosomal aberrations. These findings will illuminate genomic cancer susceptibility and risk factors.

  15. Cockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation

    PubMed Central

    Batenburg, Nicole L; Thompson, Elizabeth L; Hendrickson, Eric A; Zhu, Xu-Dong

    2015-01-01

    Mutations of CSB account for the majority of Cockayne syndrome (CS), a devastating hereditary disorder characterized by physical impairment, neurological degeneration and segmental premature aging. Here we report the generation of a human CSB-knockout cell line. We find that CSB facilitates HR and represses NHEJ. Loss of CSB or a CS-associated CSB mutation abrogating its ATPase activity impairs the recruitment of BRCA1, RPA and Rad51 proteins to damaged chromatin but promotes the formation of 53BP1-Rif1 damage foci in S and G2 cells. Depletion of 53BP1 rescues the formation of BRCA1 damage foci in CSB-knockout cells. In addition, knockout of CSB impairs the ATM- and Chk2-mediated DNA damage responses, promoting a premature entry into mitosis. Furthermore, we show that CSB accumulates at sites of DNA double-strand breaks (DSBs) in a transcription-dependent manner. The kinetics of DSB-induced chromatin association of CSB is distinct from that of its UV-induced chromatin association. These results reveal novel, important functions of CSB in regulating the DNA DSB repair pathway choice as well as G2/M checkpoint activation. PMID:25820262

  16. PML nuclear body disruption impairs DNA double-strand break sensing and repair in APL

    PubMed Central

    di Masi, A; Cilli, D; Berardinelli, F; Talarico, A; Pallavicini, I; Pennisi, R; Leone, S; Antoccia, A; Noguera, N I; Lo-Coco, F; Ascenzi, P; Minucci, S; Nervi, C

    2016-01-01

    Proteins involved in DNA double-strand break (DSB) repair localize within the promyelocytic leukemia nuclear bodies (PML-NBs), whose disruption is at the root of the acute promyelocytic leukemia (APL) pathogenesis. All-trans-retinoic acid (RA) treatment induces PML-RARα degradation, restores PML-NB functions, and causes terminal cell differentiation of APL blasts. However, the precise role of the APL-associated PML-RARα oncoprotein and PML-NB integrity in the DSB response in APL leukemogenesis and tumor suppression is still lacking. Primary leukemia blasts isolated from APL patients showed high phosphorylation levels of H2AX (γ-H2AX), an initial DSBs sensor. By addressing the consequences of ionizing radiation (IR)-induced DSB response in primary APL blasts and RA-responsive and -resistant myeloid cell lines carrying endogenous or ectopically expressed PML-RARα, before and after treatment with RA, we found that the disruption of PML-NBs is associated with delayed DSB response, as revealed by the impaired kinetic of disappearance of γ-H2AX and 53BP1 foci and activation of ATM and of its substrates H2AX, NBN, and CHK2. The disruption of PML-NB integrity by PML-RARα also affects the IR-induced DSB response in a preleukemic mouse model of APL in vivo. We propose the oncoprotein-dependent PML-NB disruption and DDR impairment as relevant early events in APL tumorigenesis. PMID:27468685

  17. Sulforaphane induces DNA double strand breaks predominantly repaired by homologous recombination pathway in human cancer cells

    SciTech Connect

    Sekine-Suzuki, Emiko; Yu, Dong; Kubota, Nobuo; Okayasu, Ryuichi; Anzai, Kazunori

    2008-12-12

    Cytotoxicity and DNA double strand breaks (DSBs) were studied in HeLa cells treated with sulforaphane (SFN), a well-known chemo-preventive agent. Cell survival was impaired by SFN in a concentration and treatment time-dependent manner. Both constant field gel electrophoresis (CFGE) and {gamma}-H2AX assay unambiguously indicated formation of DSBs by SFN, reflecting the cell survival data. These DSBs were predominantly processed by homologous recombination repair (HRR), judging from the SFN concentration-dependent manner of Rad51 foci formation. On the other hand, the phosphorylation of DNA-PKcs, a key non-homologous end joining (NHEJ) protein, was not observed by SFN treatment, suggesting that NHEJ may not be involved in DSBs induced by this chemical. G2/M arrest by SFN, a typical response for cells exposed to ionizing radiation was also observed. Our new data indicate the clear induction of DSBs by SFN and a useful anti-tumor aspect of SFN through the induction of DNA DSBs.

  18. The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair.

    PubMed

    Leem, S H; Ropp, P A; Sugino, A

    1994-08-11

    We identified and purified a new DNA polymerase (DNA polymerase IV), which is similar to mammalian DNA polymerase beta, from Saccharomyces cerevisiae and suggested that it is encoded by YCR14C (POLX) on chromosome III. Here, we provided a direct evidence that the purified DNA polymerase IV is indeed encoded by POLX. Strains harboring a pol4 deletion mutation exhibit neither mitotic growth defect nor a meiosis defect, suggesting that DNA polymerase IV participates in nonessential functions in DNA metabolism. The deletion strains did not exhibit UV-sensitivity. However, they did show weak sensitivity to MMS-treatment and exhibited a hyper-recombination phenotype when intragenic recombination was measured during meiosis. Furthermore, MAT alpha pol4 delta segregants had a higher frequency of illegitimate mating with a MAT alpha tester strain than that of wild-type cells. These results suggest that DNA polymerase IV participates in a double-strand break repair pathway. A 3.2kb of the POL4 transcript was weakly expressed in mitotically growing cells. During meiosis, a 2.2 kb POL4 transcript was greatly induced, while the 3.2 kb transcript stayed at constant levels. This induction was delayed in a swi4 delta strain during meiosis, while no effect was observed in a swi6 delta strain.

  19. PML nuclear body disruption impairs DNA double-strand break sensing and repair in APL.

    PubMed

    di Masi, A; Cilli, D; Berardinelli, F; Talarico, A; Pallavicini, I; Pennisi, R; Leone, S; Antoccia, A; Noguera, N I; Lo-Coco, F; Ascenzi, P; Minucci, S; Nervi, C

    2016-01-01

    Proteins involved in DNA double-strand break (DSB) repair localize within the promyelocytic leukemia nuclear bodies (PML-NBs), whose disruption is at the root of the acute promyelocytic leukemia (APL) pathogenesis. All-trans-retinoic acid (RA) treatment induces PML-RARα degradation, restores PML-NB functions, and causes terminal cell differentiation of APL blasts. However, the precise role of the APL-associated PML-RARα oncoprotein and PML-NB integrity in the DSB response in APL leukemogenesis and tumor suppression is still lacking. Primary leukemia blasts isolated from APL patients showed high phosphorylation levels of H2AX (γ-H2AX), an initial DSBs sensor. By addressing the consequences of ionizing radiation (IR)-induced DSB response in primary APL blasts and RA-responsive and -resistant myeloid cell lines carrying endogenous or ectopically expressed PML-RARα, before and after treatment with RA, we found that the disruption of PML-NBs is associated with delayed DSB response, as revealed by the impaired kinetic of disappearance of γ-H2AX and 53BP1 foci and activation of ATM and of its substrates H2AX, NBN, and CHK2. The disruption of PML-NB integrity by PML-RARα also affects the IR-induced DSB response in a preleukemic mouse model of APL in vivo. We propose the oncoprotein-dependent PML-NB disruption and DDR impairment as relevant early events in APL tumorigenesis. PMID:27468685

  20. Detection and Repair of Ionizing Radiation-Induced DNA Double Strand Breaks: New Developments in Nonhomologous End Joining

    SciTech Connect

    Wang, Chen; Lees-Miller, Susan P.

    2013-07-01

    DNA damage can occur as a result of endogenous metabolic reactions and replication stress or from exogenous sources such as radiation therapy and chemotherapy. DNA double strand breaks are the most cytotoxic form of DNA damage, and defects in their repair can result in genome instability, a hallmark of cancer. The major pathway for the repair of ionizing radiation-induced DSBs in human cells is nonhomologous end joining. Here we review recent advances on the mechanism of nonhomologous end joining, as well as new findings on its component proteins and regulation.

  1. Study of gene-specific DNA repair in the comet assay with padlock probes and rolling circle amplification.

    PubMed

    Henriksson, Sara; Shaposhnikov, Sergey; Nilsson, Mats; Collins, Andrew

    2011-04-25

    We used padlock probes to study the rate of gene specific repair of three genes, OGG1 (8-oxoguanine-DNA glycosylase-1), XPD (xeroderma pigmentosum group D), and HPRT (hypoxanthine-guanine phosphoribosyltransferase) in human lymphocytes, in relation to the repair rate of Alu repeats and total genomic DNA. Padlock probes offer highly specific detection of short target sequences by combining detection by ligation and signal amplification. In this approach only genes in sequences containing strand breaks, which become single-stranded in the tail, are available for hybridisation. Thus the total number of signals from the padlock probes per comet gives a direct measure of the amount of damage (strand-breaks) present and allows the repair process to be monitored. This method could provide insights on the organisation of genomic DNA in the comet tail. Alu repeat containing DNA was repaired rapidly in comparison with total genomic DNA, and the studied genes were generally repaired more rapidly than the Alu repeats.

  2. Additive Effects of SbcCD and PolX Deficiencies in the In Vivo Repair of DNA Double-Strand Breaks in Deinococcus radiodurans▿ †

    PubMed Central

    Bentchikou, Esma; Servant, Pascale; Coste, Geneviève; Sommer, Suzanne

    2007-01-01

    Orthologs of proteins SbcD (Mre11) and SbcC (Rad50) exist in all kingdoms of life and are involved in a wide variety of DNA repair and maintenance functions, including homologous recombination and nonhomologous end joining. Here, we have inactivated the sbcC and/or sbcD genes of Deinococcus radiodurans, a highly radioresistant bacterium able to mend hundreds of radiation-induced DNA double-strand breaks (DSB). Mutants devoid of the SbcC and/or SbcD proteins displayed reduced survival and presented a delay in kinetics of DSB repair and cell division following γ-irradiation. It has been recently reported that D. radiodurans DNA polymerase X (PolX) possesses a structure-modulated 3′-to-5′ exonuclease activity reminiscent of specific nuclease activities displayed by the SbcCD complex from Escherichia coli. We constructed a double mutant devoid of SbcCD and PolX proteins. The double-mutant ΔsbcCD ΔpolXDr (where Dr indicates D. radiodurans) bacteria are much more sensitive to γ-irradiation than the single mutants, suggesting that the deinococcal SbcCD and PolX proteins may play important complementary roles in processing damaged DNA ends. We propose that they are part of a backup repair system acting to rescue cells containing DNA lesions that are excessively numerous or difficult to repair. PMID:17483232

  3. The Vitamin A Derivative All-Trans Retinoic Acid Repairs Amyloid-β-Induced Double-Strand Breaks in Neural Cells and in the Murine Neocortex

    PubMed Central

    Gruz-Gibelli, Emmanuelle; Chessel, Natacha; Allioux, Clélia; Marin, Pascale; Piotton, Françoise; Leuba, Geneviève; Herrmann, François R.; Savioz, Armand

    2016-01-01

    The amyloid-β peptide or Aβ is the key player in the amyloid-cascade hypothesis of Alzheimer's disease. Aβ appears to trigger cell death but also production of double-strand breaks (DSBs) in aging and Alzheimer's disease. All-trans retinoic acid (RA), a derivative of vitamin A, was already known for its neuroprotective effects against the amyloid cascade. It diminishes, for instance, the production of Aβ peptides and their oligomerisation. In the present work we investigated the possible implication of RA receptor (RAR) in repair of Aβ-induced DSBs. We demonstrated that RA, as well as RAR agonist Am80, but not AGN 193109 antagonist, repair Aβ-induced DSBs in SH-SY5Y cells and an astrocytic cell line as well as in the murine cortical tissue of young and aged mice. The nonhomologous end joining pathway and the Ataxia Telangiectasia Mutated kinase were shown to be involved in RA-mediated DSBs repair in the SH-SY5Y cells. Our data suggest that RA, besides increasing cell viability in the cortex of young and even of aged mice, might also result in targeted DNA repair of genes important for cell or synaptic maintenance. This phenomenon would remain functional up to a point when Aβ increase and RA decrease probably lead to a pathological state. PMID:26881107

  4. Melatonin enhances DNA repair capacity possibly by affecting genes involved in DNA damage responsive pathways

    PubMed Central

    2013-01-01

    Background Melatonin, a hormone-like substance involved in the regulation of the circadian rhythm, has been demonstrated to protect cells against oxidative DNA damage and to inhibit tumorigenesis. Results In the current study, we investigated the effect of melatonin on DNA strand breaks using the alkaline DNA comet assay in breast cancer (MCF-7) and colon cancer (HCT-15) cell lines. Our results demonstrated that cells pretreated with melatonin had significantly shorter Olive tail moments compared to non-melatonin treated cells upon mutagen (methyl methanesulfonate, MMS) exposure, indicating an increased DNA repair capacity after melatonin treatment. We further examined the genome-wide gene expression in melatonin pretreated MCF-7 cells upon carcinogen exposure and detected altered expression of many genes involved in multiple DNA damage responsive pathways. Genes exhibiting altered expression were further analyzed for functional interrelatedness using network- and pathway-based bioinformatics analysis. The top functional network was defined as having relevance for “DNA Replication, Recombination, and Repair, Gene Expression, [and] Cancer”. Conclusions These findings suggest that melatonin may enhance DNA repair capacity by affecting several key genes involved in DNA damage responsive pathways. PMID:23294620

  5. Double-strand gap repair in a mammalian gene targeting reaction.

    PubMed Central

    Valancius, V; Smithies, O

    1991-01-01

    To better understand the mechanism of homologous recombination in mammalian cells that facilitates gene targeting, we have analyzed the recombination reaction that inserts a plasmid into a homologous chromosomal locus in mouse embryonic stem cells. A partially deleted HPRT gene was targeted with various plasmids capable of correcting the mutation at this locus, and HPRT+ recombinants were directly selected in HAT medium. The structures of the recombinant loci were then determined by genomic Southern blot hybridizations. We demonstrate that plasmid gaps of 200, 600, and 2,500 bp are efficiently repaired during the integrative recombination reaction. Targeting plasmids that carry a double-strand break or gap in the region of DNA homologous to the target locus produce 33- to 140-fold more hypoxanthine-aminopterin-thymidine-resistant recombinants than did these same plasmids introduced in their uncut (supercoiled) forms. Our data suggest that double-strand gaps and breaks may be enlarged prior to the repair reaction since sequence heterologies carried by the incoming plasmids located close to them are often lost. These results extend the known similarities between mammalian and yeast recombination mechanisms and suggest several features of the insertional (O-type) gene targeting reaction that should be considered when one is designing mammalian gene targeting experiments. Images PMID:1875928

  6. Identification of defective illegitimate recombinational repair of oxidatively-induced DNA double-strand breaks in ataxia-telangiectasia cells

    NASA Technical Reports Server (NTRS)

    Dar, M. E.; Winters, T. A.; Jorgensen, T. J.

    1997-01-01

    Ataxia-telangiectasia (A-T) is an autosomal-recessive lethal human disease. Homozygotes suffer from a number of neurological disorders, as well as very high cancer incidence. Heterozygotes may also have a higher than normal risk of cancer, particularly for the breast. The gene responsible for the disease (ATM) has been cloned, but its role in mechanisms of the disease remain unknown. Cellular A-T phenotypes, such as radiosensitivity and genomic instability, suggest that a deficiency in the repair of DNA double-strand breaks (DSBs) may be the primary defect; however, overall levels of DSB rejoining appear normal. We used the shuttle vector, pZ189, containing an oxidatively-induced DSB, to compare the integrity of DSB rejoining in one normal and two A-T fibroblast cells lines. Mutation frequencies were two-fold higher in A-T cells, and the mutational spectrum was different. The majority of the mutations found in all three cell lines were deletions (44-63%). The DNA sequence analysis indicated that 17 of the 17 plasmids with deletion mutations in normal cells occurred between short direct-repeat sequences (removing one of the repeats plus the intervening sequences), implicating illegitimate recombination in DSB rejoining. The combined data from both A-T cell lines showed that 21 of 24 deletions did not involve direct-repeats sequences, implicating a defect in the illegitimate recombination pathway. These findings suggest that the A-T gene product may either directly participate in illegitimate recombination or modulate the pathway. Regardless, this defect is likely to be important to a mechanistic understanding of this lethal disease.

  7. DNA double-strand break repair: a theoretical framework and its application.

    PubMed

    Murray, Philip J; Cornelissen, Bart; Vallis, Katherine A; Chapman, S Jon

    2016-01-01

    DNA double-strand breaks (DSBs) are formed as a result of genotoxic insults, such as exogenous ionizing radiation, and are among the most serious types of DNA damage. One of the earliest molecular responses following DSB formation is the phosphorylation of the histone H2AX, giving rise to γH2AX. Many copies of γH2AX are generated at DSBs and can be detected in vitro as foci using well-established immuno-histochemical methods. It has previously been shown that anti-γH2AX antibodies, modified by the addition of the cell-penetrating peptide TAT and a fluorescent or radionuclide label, can be used to visualize and quantify DSBs in vivo. Moreover, when labelled with a high amount of the short-range, Auger electron-emitting radioisotope, (111)In, the amount of DNA damage within a cell can be increased, leading to cell death. In this report, we develop a mathematical model that describes how molecular processes at individual sites of DNA damage give rise to quantifiable foci. Equations that describe stochastic mean behaviours at individual DSB sites are derived and parametrized using population-scale, time-series measurements from two different cancer cell lines. The model is used to examine two case studies in which the introduction of an antibody (anti-γH2AX-TAT) that targets a key component in the DSB repair pathway influences system behaviour. We investigate: (i) how the interaction between anti-γH2AX-TAT and γH2AX effects the kinetics of H2AX phosphorylation and DSB repair and (ii) model behaviour when the anti-γH2AX antibody is labelled with Auger electron-emitting (111)In and can thus instigate additional DNA damage. This work supports the conclusion that DSB kinetics are largely unaffected by the introduction of the anti-γH2AX antibody, a result that has been validated experimentally, and hence the hypothesis that the use of anti-γH2AX antibody to quantify DSBs does not violate the image tracer principle. Moreover, it provides a novel model of DNA damage

  8. DNA double-strand break repair: a theoretical framework and its application

    PubMed Central

    Cornelissen, Bart; Vallis, Katherine A.; Chapman, S. Jon

    2016-01-01

    DNA double-strand breaks (DSBs) are formed as a result of genotoxic insults, such as exogenous ionizing radiation, and are among the most serious types of DNA damage. One of the earliest molecular responses following DSB formation is the phosphorylation of the histone H2AX, giving rise to γH2AX. Many copies of γH2AX are generated at DSBs and can be detected in vitro as foci using well-established immuno-histochemical methods. It has previously been shown that anti-γH2AX antibodies, modified by the addition of the cell-penetrating peptide TAT and a fluorescent or radionuclide label, can be used to visualize and quantify DSBs in vivo. Moreover, when labelled with a high amount of the short-range, Auger electron-emitting radioisotope, 111In, the amount of DNA damage within a cell can be increased, leading to cell death. In this report, we develop a mathematical model that describes how molecular processes at individual sites of DNA damage give rise to quantifiable foci. Equations that describe stochastic mean behaviours at individual DSB sites are derived and parametrized using population-scale, time-series measurements from two different cancer cell lines. The model is used to examine two case studies in which the introduction of an antibody (anti-γH2AX-TAT) that targets a key component in the DSB repair pathway influences system behaviour. We investigate: (i) how the interaction between anti-γH2AX-TAT and γH2AX effects the kinetics of H2AX phosphorylation and DSB repair and (ii) model behaviour when the anti-γH2AX antibody is labelled with Auger electron-emitting 111In and can thus instigate additional DNA damage. This work supports the conclusion that DSB kinetics are largely unaffected by the introduction of the anti-γH2AX antibody, a result that has been validated experimentally, and hence the hypothesis that the use of anti-γH2AX antibody to quantify DSBs does not violate the image tracer principle. Moreover, it provides a novel model of DNA damage

  9. A New Powerful Method for Site-Specific Transgene Stabilization Based on Chromosomal Double-Strand Break Repair

    PubMed Central

    Kravchuk, Oksana; Savitsky, Mikhail

    2011-01-01

    Transgenic insects are a promising tool in sterile insect techniques and population replacement strategies. Such transgenic insects can be created using nonautonomous transposons, which cannot be transferred without a transposase source. In biocontrol procedures where large numbers of insects are released, there is increased risk of transgene remobilization caused by external transposase sources that can alter the characteristics of the transgenic organisms lead horizontal transgene transfer to other species. Here we describe a novel, effective method for transgene stabilization based on the introduction of directed double-strand breaks (DSB) into a genome-integrated sequence and their subsequent repair by the single-strand annealing (SSA) pathway. Due to the construct's organization, the repair pathway is predictable, such that all transposon and marker sequences can be deleted, while preserving integration of exogenous DNA in the genome. The exceptional conservation of DNA repair pathways makes this method suitable for a broad range of organisms. PMID:22022613

  10. Activation induced deaminase C-terminal domain links DNA breaks to end protection and repair during class switch recombination.

    PubMed

    Zahn, Astrid; Eranki, Anil K; Patenaude, Anne-Marie; Methot, Stephen P; Fifield, Heather; Cortizas, Elena M; Foster, Paul; Imai, Kohsuke; Durandy, Anne; Larijani, Mani; Verdun, Ramiro E; Di Noia, Javier M

    2014-03-18

    Activation-induced deaminase (AID) triggers antibody class switch recombination (CSR) in B cells by initiating DNA double strand breaks that are repaired by nonhomologous end-joining pathways. A role for AID at the repair step is unclear. We show that specific inactivation of the C-terminal AID domain encoded by exon 5 (E5) allows very efficient deamination of the AID target regions but greatly impacts the efficiency and quality of subsequent DNA repair. Specifically eliminating E5 not only precludes CSR but also, causes an atypical, enzymatic activity-dependent dominant-negative effect on CSR. Moreover, the E5 domain is required for the formation of AID-dependent Igh-cMyc chromosomal translocations. DNA breaks at the Igh switch regions induced by AID lacking E5 display defective end joining, failing to recruit DNA damage response factors and undergoing extensive end resection. These defects lead to nonproductive resolutions, such as rearrangements and homologous recombination that can antagonize CSR. Our results can explain the autosomal dominant inheritance of AID variants with truncated E5 in patients with hyper-IgM syndrome 2 and establish that AID, through the E5 domain, provides a link between DNA damage and repair during CSR.

  11. Genomic landscape of DNA repair genes in cancer.

    PubMed

    Chae, Young Kwang; Anker, Jonathan F; Carneiro, Benedito A; Chandra, Sunandana; Kaplan, Jason; Kalyan, Aparna; Santa-Maria, Cesar A; Platanias, Leonidas C; Giles, Francis J

    2016-04-26

    DNA repair genes are frequently mutated in cancer, yet limited data exist regarding the overall genomic landscape and functional implications of these alterations in their entirety. We created comprehensive lists of DNA repair genes and indirect caretakers. Mutation, copy number variation (CNV), and expression frequencies of these genes were analyzed in COSMIC. Mutation co-occurrence, clinical outcomes, and mutation burden were analyzed in TCGA. We report the 20 genes most frequently with mutations (n > 19,689 tumor samples for each gene), CNVs (n > 1,556), or up- or down-regulated (n = 7,998). Mutual exclusivity was observed as no genes displayed both high CNV gain and loss or high up- and down-regulation, and CNV gain and loss positively correlated with up- and down-regulation, respectively. Co-occurrence of mutations differed between cancers, and mutations in many DNA repair genes were associated with higher total mutation burden. Mutation and CNV frequencies offer insights into which genes may play tumor suppressive or oncogenic roles, such as NEIL2 and RRM2B, respectively. Mutual exclusivities within CNV and expression frequencies, and correlations between CNV and expression, support the functionality of these genomic alterations. This study provides comprehensive lists of candidate genes as potential biomarkers for genomic instability, novel therapeutic targets, or predictors of immunotherapy efficacy.

  12. Genomic landscape of DNA repair genes in cancer

    PubMed Central

    Carneiro, Benedito A.; Chandra, Sunandana; Kaplan, Jason; Kalyan, Aparna; Santa-Maria, Cesar A.; Platanias, Leonidas C.; Giles, Francis J.

    2016-01-01

    DNA repair genes are frequently mutated in cancer, yet limited data exist regarding the overall genomic landscape and functional implications of these alterations in their entirety.  We created comprehensive lists of DNA repair genes and indirect caretakers.  Mutation, copy number variation (CNV), and expression frequencies of these genes were analyzed in COSMIC. Mutation co-occurrence, clinical outcomes, and mutation burden were analyzed in TCGA. We report the 20 genes most frequently with mutations (n > 19,689 tumor samples for each gene), CNVs (n > 1,556), or up- or down-regulated (n = 7,998).  Mutual exclusivity was observed as no genes displayed both high CNV gain and loss or high up- and down-regulation, and CNV gain and loss positively correlated with up- and down-regulation, respectively. Co-occurrence of mutations differed between cancers, and mutations in many DNA repair genes were associated with higher total mutation burden. Mutation and CNV frequencies offer insights into which genes may play tumor suppressive or oncogenic roles, such as NEIL2 and RRM2B, respectively.  Mutual exclusivities within CNV and expression frequencies, and correlations between CNV and expression, support the functionality of these genomic alterations. This study provides comprehensive lists of candidate genes as potential biomarkers for genomic instability, novel therapeutic targets, or predictors of immunotherapy efficacy. PMID:27004405

  13. Nonhomologous end joining of complex DNA double-strand breaks with proximal thymine glycol and interplay with base excision repair.

    PubMed

    Almohaini, Mohammed; Chalasani, Sri Lakshmi; Bafail, Duaa; Akopiants, Konstantin; Zhou, Tong; Yannone, Steven M; Ramsden, Dale A; Hartman, Matthew C T; Povirk, Lawrence F

    2016-05-01

    DNA double-strand breaks induced by ionizing radiation are often accompanied by ancillary oxidative base damage that may prevent or delay their repair. In order to better define the features that make some DSBs repair-resistant, XLF-dependent nonhomologous end joining of blunt-ended DSB substrates having the oxidatively modified nonplanar base thymine glycol at the first (Tg1), second (Tg2), third (Tg3) or fifth (Tg5) positions from one 3' terminus, was examined in human whole-cell extracts. Tg at the third position had little effect on end-joining even when present on both ends of the break. However, Tg as the terminal or penultimate base was a major barrier to end joining (>10-fold reduction in ligated products) and an absolute barrier when present at both ends. Dideoxy trapping of base excision repair intermediates indicated that Tg was excised from Tg1, Tg2 and Tg3 largely if not exclusively after DSB ligation. However, Tg was rapidly excised from the Tg5 substrate, resulting in a reduced level of DSB ligation, as well as slow concomitant resection of the opposite strand. Ligase reactions containing only purified Ku, XRCC4, ligase IV and XLF showed that ligation of Tg3 and Tg5 was efficient and only partially XLF-dependent, whereas ligation of Tg1 and Tg2 was inefficient and only detectable in the presence of XLF. Overall, the results suggest that promoting ligation of DSBs with proximal base damage may be an important function of XLF, but that Tg can still be a major impediment to repair, being relatively resistant to both trimming and ligation. Moreover, it appears that base excision repair of Tg can sometimes interfere with repair of DSBs that would otherwise be readily rejoined. PMID:27049455

  14. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins.

    PubMed Central

    Hays, S L; Firmenich, A A; Berg, P

    1995-01-01

    The repair of DNA double-strand breaks in Saccharomyces cerevisiae requires genes of the RAD52 epistasis group, of which RAD55 and RAD57 are members. Here, we show that the x-ray sensitivity of rad55 and rad57 mutant strains is suppressible by overexpression of RAD51 or RAD52. Virtually complete suppression is provided by the simultaneous overexpression of RAD51 and RAD52. This suppression occurs at 23 degrees C, where these mutants are more sensitive to x-rays, as well as at 30 degrees C and 36 degrees C. In addition, a recombination defect of rad55 and rad57 mutants is similarly suppressed. Direct in vivo interactions between the Rad51 and Rad55 proteins, and between Rad55 and Rad57, have also been identified by using the two-hybrid system. These results indicate that these four proteins constitute part of a complex, a "recombinosome," to effect the recombinational repair of double-strand breaks. PMID:7624345

  15. Common and unique genetic interactions of the poly(ADP-ribose) polymerases PARP1 and PARP2 with DNA double-strand break repair pathways.

    PubMed

    Ghosh, Rajib; Roy, Sanchita; Kamyab, Johan; Dantzer, Francoise; Franco, Sonia

    2016-09-01

    In mammalian cells, chromatin poly(ADP-ribos)ylation (PARylation) at sites of DNA Double-Strand Breaks (DSBs) is mediated by two highly related enzymes, PARP1 and PARP2. However, enzyme-specific genetic interactions with other DSB repair factors remain largely undefined. In this context, it was previously shown that mice lacking PARP1 and H2AX, a histone variant that promotes DSB repair throughout the cell cycle, or the core nonhomologous end-joining (NHEJ) factor Ku80 are not viable, while mice lacking PARP1 and the noncore NHEJ factor DNA-PKcs are severely growth retarded and markedly lymphoma-prone. Here, we have examined the requirement for PARP2 in these backgrounds. We find that, like PARP1, PARP2 is essential for viability in mice lacking H2AX. Moreover, treatment of H2AX-deficient primary fibroblasts or B lymphocytes with PARP inhibitors leads to activation of the G2/M checkpoint and accumulation of chromatid-type breaks in a lineage- and gene-dose dependent manner. In marked contrast to PARP1, loss of PARP2 does not result in additional phenotypes in growth, development or tumorigenesis in mice lacking either Ku80 or DNA-PKcs. Altogether these findings highlight specific nonoverlapping functions of PARP1 and PARP2 at H2AX-deficient chromatin during replicative phases of the cell cycle and uncover a unique requirement for PARP1 in NHEJ-deficient cells. PMID:27373144

  16. Double Strand Breaks Can Initiate Gene Silencing and SIRT1-Dependent Onset of DNA Methylation in an Exogenous Promoter CpG Island

    PubMed Central

    O'Hagan, Heather M.; Mohammad, Helai P.; Baylin, Stephen B.

    2008-01-01

    Chronic exposure to inducers of DNA base oxidation and single and double strand breaks contribute to tumorigenesis. In addition to the genetic changes caused by this DNA damage, such tumors often contain epigenetically silenced genes with aberrant promoter region CpG island DNA hypermethylation. We herein explore the relationships between such DNA damage and epigenetic gene silencing using an experimental model in which we induce a defined double strand break in an exogenous promoter construct of the E-cadherin CpG island, which is frequently aberrantly DNA hypermethylated in epithelial cancers. Following the onset of repair of the break, we observe recruitment to the site of damage of key proteins involved in establishing and maintaining transcriptional repression, namely SIRT1, EZH2, DNMT1, and DNMT3B, and the appearance of the silencing histone modifications, hypoacetyl H4K16, H3K9me2 and me3, and H3K27me3. Although in most cells selected after the break, DNA repair occurs faithfully with preservation of activity of the promoter, a small percentage of the plated cells demonstrate induction of heritable silencing. The chromatin around the break site in such a silent clone is enriched for most of the above silent chromatin proteins and histone marks, and the region harbors the appearance of increasing DNA methylation in the CpG island of the promoter. During the acute break, SIRT1 appears to be required for the transient recruitment of DNMT3B and subsequent methylation of the promoter in the silent clones. Taken together, our data suggest that normal repair of a DNA break can occasionally cause heritable silencing of a CpG island–containing promoter by recruitment of proteins involved in silencing. Furthermore, with contribution of the stress-related protein SIRT1, the break can lead to the onset of aberrant CpG island DNA methylation, which is frequently associated with tight gene silencing in cancer. PMID:18704159

  17. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  18. Repair of adjacent single-strand breaks is often accompanied by the formation of tandem sequence duplications in plant genomes.

    PubMed

    Schiml, Simon; Fauser, Friedrich; Puchta, Holger

    2016-06-28

    Duplication of existing sequences is a major mechanism of genome evolution. It has been previously shown that duplications can occur by replication slippage, unequal sister chromatid exchange, homologous recombination, and aberrant double-strand break-induced synthesis-dependent strand annealing reactions. In a recent study, the abundant presence of short direct repeats was documented by comparative bioinformatics analysis of different rice genomes, and the hypothesis was put forward that such duplications might arise due to the concerted repair of adjacent single-strand breaks (SSBs). Applying the CRISPR/Cas9 technology, we were able to test this hypothesis experimentally in the model plant Arabidopsis thaliana Using a Cas9 nickase to induce adjacent genomic SSBs in different regions of the genome (genic, intergenic, and heterochromatic) and at different distances (∼20, 50, and 100 bps), we analyzed the repair outcomes by deep sequencing. In addition to deletions, we regularly detected the formation of direct repeats close to the break sites, independent of the genomic context. The formation of these duplications as well as deletions may be associated with the presence of microhomologies. Most interestingly, we found that even the induction of two SSBs on the same DNA strand can cause genome alterations, albeit at a much lower level. Because such a scenario reflects a natural step during nucleotide excision repair, and given that the germline is set aside only late during development in plants, the repair of adjacent SSBs indeed seems to have an important influence on the shaping of plant genomes during evolution. PMID:27307441

  19. Impact of Charged Particle Exposure on Homologous DNA Double-Strand Break Repair in Human Blood-Derived Cells

    PubMed Central

    Rall, Melanie; Kraft, Daniela; Volcic, Meta; Cucu, Aljona; Nasonova, Elena; Taucher-Scholz, Gisela; Bönig, Halvard; Wiesmüller, Lisa; Fournier, Claudia

    2015-01-01

    Ionizing radiation generates DNA double-strand breaks (DSB) which, unless faithfully repaired, can generate chromosomal rearrangements in hematopoietic stem and/or progenitor cells (HSPC), potentially priming the cells towards a leukemic phenotype. Using an enhanced green fluorescent protein (EGFP)-based reporter system, we recently identified differences in the removal of enzyme-mediated DSB in human HSPC versus mature peripheral blood lymphocytes (PBL), particularly regarding homologous DSB repair (HR). Assessment of chromosomal breaks via premature chromosome condensation or γH2AX foci indicated similar efficiency and kinetics of radiation-induced DSB formation and rejoining in PBL and HSPC. Prolonged persistence of chromosomal breaks was observed for higher LET charged particles which are known to induce more complex DNA damage compared to X-rays. Consistent with HR deficiency in HSPC observed in our previous study, we noticed here pronounced focal accumulation of 53BP1 after X-ray and carbon ion exposure (intermediate LET) in HSPC versus PBL. For higher LET, 53BP1 foci kinetics was similarly delayed in PBL and HSPC suggesting similar failure to repair complex DNA damage. Data obtained with plasmid reporter systems revealed a dose- and LET-dependent HR increase after X-ray, carbon ion and higher LET exposure, particularly in HR-proficient immortalized and primary lymphocytes, confirming preferential use of conservative HR in PBL for intermediate LET damage repair. HR measured adjacent to the leukemia-associated MLL breakpoint cluster sequence in reporter lines revealed dose dependency of potentially leukemogenic rearrangements underscoring the risk of leukemia-induction by radiation treatment. PMID:26618143

  20. SIRT6 stabilizes DNA-dependent Protein Kinase at chromatin for DNA double-strand break repair

    PubMed Central

    McCord, Ronald A.; Michishita, Eriko; Hong, Tao; Berber, Elisabeth; Boxer, Lisa D.; Kusumoto, Rika; Guan, Shenheng; Shi, Xiaobing; Gozani, Or; Burlingame, Alma L.; Bohr, Vilhelm A.; Chua, Katrin F.

    2009-01-01

    The Sir2 chromatin regulatory factor links maintenance of genomic stability to life span extension in yeast. The mammalian Sir2 family member SIRT6 has been proposed to have analogous functions, because SIRT6-deficiency leads to shortened life span and an aging-like degenerative phenotype in mice, and SIRT6 knockout cells exhibit genomic instability and DNA damage hypersensitivity. However, the molecular mechanisms underlying these defects are not fully understood. Here, we show that SIRT6 forms a macromolecular complex with the DNA double-strand break (DSB) repair factor DNA-PK (DNA-dependent protein kinase) and promotes DNA DSB repair. In response to DSBs, SIRT6 associates dynamically with chromatin and is necessary for an acute decrease in global cellular acetylation levels on histone H3 Lysine 9. Moreover, SIRT6 is required for mobilization of the DNA-PK catalytic subunit (DNA-PKcs) to chromatin in response to DNA damage and stabilizes DNA-PKcs at chromatin adjacent to an induced site-specific DSB. Abrogation of these SIRT6 activities leads to impaired resolution of DSBs. Together, these findings elucidate a mechanism whereby regulation of dynamic interaction of a DNA repair factor with chromatin impacts on the efficiency of repair, and establish a link between chromatin regulation, DNA repair, and a mammalian Sir2 factor. PMID:20157594

  1. CK2 phosphorylation of XRCC1 facilitates dissociation from DNA and single-strand break formation during base excision repair.

    PubMed

    Ström, Cecilia E; Mortusewicz, Oliver; Finch, David; Parsons, Jason L; Lagerqvist, Anne; Johansson, Fredrik; Schultz, Niklas; Erixon, Klaus; Dianov, Grigory L; Helleday, Thomas

    2011-09-01

    CK2 phosphorylates the scaffold protein XRCC1, which is required for efficient DNA single-strand break (SSB) repair. Here, we express an XRCC1 protein (XRCC1(ckm)) that cannot be phosphorylated by CK2 in XRCC1 mutated EM9 cells and show that the role of this post-translational modification gives distinct phenotypes in SSB repair and base excision repair (BER). Interestingly, we find that fewer SSBs are formed during BER after treatment with the alkylating agent dimethyl sulfate (DMS) in EM9 cells expressing XRCC1(ckm) (CKM cells) or following inhibition with the CK2 inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT). We also show that XRCC1(ckm) protein has a higher affinity for DNA than wild type XRCC1 protein and resides in an immobile fraction on DNA, in particular after damage. We propose a model whereby the increased affinity for DNA sequesters XRCC1(ckm) and the repair enzymes associated with it, at the repair site, which retards kinetics of BER. In conclusion, our results indicate that phosphorylation of XRCC1 by CK2 facilitates the BER incision step, likely by promoting dissociation from DNA.

  2. Role for Artemis nuclease in the repair of radiation-induced DNA double strand breaks by alternative end joining.

    PubMed

    Moscariello, Mario; Wieloch, Radi; Kurosawa, Aya; Li, Fanghua; Adachi, Noritaka; Mladenov, Emil; Iliakis, George

    2015-07-01

    Exposure of cells to ionizing radiation or radiomimetic drugs generates DNA double-strand breaks that are processed either by homologous recombination repair (HRR), or by canonical, DNA-PKcs-dependent non-homologous end-joining (C-NHEJ). Chemical or genetic inactivation of factors involved in C-NHEJ or HRR, but also their local failure in repair proficient cells, promotes an alternative, error-prone end-joining pathway that serves as backup (A-EJ). There is evidence for the involvement of Artemis endonuclease, a protein deficient in a human radiosensitivity syndrome associated with severe immunodeficiency (RS-SCID), in the processing of subsets of DSBs by HRR or C-NHEJ. It is thought that within HRR or C-NHEJ Artemis processes DNA termini at complex DSBs. Whether Artemis has a role in A-EJ remains unknown. Here, we analyze using pulsed-field gel electrophoresis (PFGE) and specialized reporter assays, DSB repair in wild-type pre-B NALM-6 lymphocytes, as well as in their Artemis(-/-), DNA ligase 4(-/-) (LIG4(-/-)), and LIG4(-/-)/Artemis(-/-) double mutant counterparts, under conditions allowing evaluation of A-EJ. Our results substantiate the suggested roles of Artemis in C-NHEJ and HRR, but also demonstrate a role for the protein in A-EJ that is confirmed in Artemis deficient normal human fibroblasts. We conclude that Artemis is a nuclease participating in DSB repair by all major repair pathways.

  3. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease.

    PubMed

    Dupuy, Aurélie; Sarasin, Alain

    2015-06-01

    Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients. PMID:26255934

  4. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease.

    PubMed

    Dupuy, Aurélie; Sarasin, Alain

    2015-06-01

    Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.

  5. DNA-PK is involved in repairing a transient surge of DNA breaks induced by deceleration of DNA replication

    PubMed Central

    Shimura, Tsutomu; Martin, Melvenia; Torres, Michael J.; Gu, Cory; Pluth, Janice M; DeBernardi, Maria; McDonald, Jeoffrey S.; Aladjem, Mirit I.

    2007-01-01

    Summary Cells that suffer substantial inhibition of DNA replication halt their cell cycle via a checkpoint response mediated by the PI3 kinases ATM and ATR. It is unclear how cells cope with milder replication insults, which are under the threshold for ATM and ATR activation. A third PI3 kinase, DNA-dependent protein kinase (DNA-PK), is also activated following replication inhibition, but the role DNA-PK might play in response to perturbed replication is unclear since this kinase does not activate the signaling cascades involved in the S-phase checkpoint. Here we report that mild, transient drug-induced perturbation of DNA replication rapidly induced DNA breaks that promptly disappeared in cells that contained a functional DNA-PK whereas such breaks persisted in cells that were deficient in DNA-PK activity. After the initial transient burst of DNA breaks, cells with a functional DNA-PK did not halt replication and continued to synthesize DNA at a slow pace in the presence of replication inhibitors. In contrast, DNA-PK deficient cells subject to low levels of replication inhibition halted cell cycle progression via an ATR-mediated S-phase checkpoint. The ATM kinase was dispensable for the induction of the initial DNA breaks. These observations suggest that DNA-PK is involved in setting a high threshold for the ATR-Chk1-mediated S-phase checkpoint by promptly repairing DNA breaks that appear immediately following inhibition of DNA replication. PMID:17280685

  6. Superresolution light microscopy shows nanostructure of carbon ion radiation-induced DNA double-strand break repair foci.

    PubMed

    Lopez Perez, Ramon; Best, Gerrit; Nicolay, Nils H; Greubel, Christoph; Rossberger, Sabrina; Reindl, Judith; Dollinger, Günther; Weber, Klaus-Josef; Cremer, Christoph; Huber, Peter E

    2016-08-01

    Carbon ion radiation is a promising new form of radiotherapy for cancer, but the central question about the biologic effects of charged particle radiation is yet incompletely understood. Key to this question is the understanding of the interaction of ions with DNA in the cell's nucleus. Induction and repair of DNA lesions including double-strand breaks (DSBs) are decisive for the cell. Several DSB repair markers have been used to investigate these processes microscopically, but the limited resolution of conventional microscopy is insufficient to provide structural insights. We have applied superresolution microscopy to overcome these limitations and analyze the fine structure of DSB repair foci. We found that the conventionally detected foci of the widely used DSB marker γH2AX (Ø 700-1000 nm) were composed of elongated subfoci with a size of ∼100 nm consisting of even smaller subfocus elements (Ø 40-60 nm). The structural organization of the subfoci suggests that they could represent the local chromatin structure of elementary DSB repair units at the DSB damage sites. Subfocus clusters may indicate induction of densely spaced DSBs, which are thought to be associated with the high biologic effectiveness of carbon ions. Superresolution microscopy might emerge as a powerful tool to improve our knowledge of interactions of ionizing radiation with cells.-Lopez Perez, R., Best, G., Nicolay, N. H., Greubel, C., Rossberger, S., Reindl, J., Dollinger, G., Weber, K.-J., Cremer, C., Huber, P. E. Superresolution light microscopy shows nanostructure of carbon ion radiation-induced DNA double-strand break repair foci. PMID:27166088

  7. An inverse switch in DNA base excision and strand break repair contributes to melphalan resistance in multiple myeloma cells.

    PubMed

    Sousa, Mirta M L; Zub, Kamila Anna; Aas, Per Arne; Hanssen-Bauer, Audun; Demirovic, Aida; Sarno, Antonio; Tian, Erming; Liabakk, Nina B; Slupphaug, Geir

    2013-01-01

    Alterations in checkpoint and DNA repair pathways may provide adaptive mechanisms contributing to acquired drug resistance. Here, we investigated the levels of proteins mediating DNA damage signaling and -repair in RPMI8226 multiple myeloma cells and its Melphalan-resistant derivative 8226-LR5. We observed markedly reduced steady-state levels of DNA glycosylases UNG2, NEIL1 and MPG in the resistant cells and cross-resistance to agents inducing their respective DNA base lesions. Conversely, repair of alkali-labile sites was apparently enhanced in the resistant cells, as substantiated by alkaline comet assay, autoribosylation of PARP-1, and increased sensitivity to PARP-1 inhibition by 4-AN or KU58684. Reduced base-excision and enhanced single-strand break repair would both contribute to the observed reduction in genomic alkali-labile sites, which could jeopardize productive processing of the more cytotoxic Melphalan-induced interstrand DNA crosslinks (ICLs). Furthermore, we found a marked upregulation of proteins in the non-homologous end-joining (NHEJ) pathway of double-strand break (DSB) repair, likely contributing to the observed increase in DSB repair kinetics in the resistant cells. Finally, we observed apparent upregulation of ATR-signaling and downregulation of ATM-signaling in the resistant cells. This was accompanied by markedly increased sensitivity towards Melphalan in the presence of ATR-, DNA-PK, or CHK1/2 inhibitors whereas no sensitizing effect was observed subsequent to ATM inhibition, suggesting that replication blocking lesions are primary triggers of the DNA damage response in the Melphalan resistant cells. In conclusion, Melphalan resistance is apparently contributed by modulation of the DNA damage response at multiple levels, including downregulation of specific repair pathways to avoid repair intermediates that could impair efficient processing of cytotoxic ICLs and ICL-induced DSBs. This study has revealed several novel candidate biomarkers

  8. Targeting Aberrant DNA double strand break repair in triple negative breast cancer with alpha particle emitter radiolabeled anti-EGFR antibody

    PubMed Central

    Song, Hong; Hedayati, Mohammad; Hobbs, Robert F.; Shao, Chunbo; Bruchertseifer, Frank; Morgenstern, Alfred; DeWeese, Theodore L.; Sgouros, George

    2013-01-01

    The higher potential efficacy of alpha-particle radiopharmaceutical therapy lies in the 3 to 8-fold greater biological effectiveness (RBE) of alpha particles relative to photon or beta-particle radiation. This greater RBE, however, also applies to normal tissue, thereby reducing the potential advantage of high RBE. Since alpha particles typically cause DNA double strand breaks (DSBs), targeting tumors that are defective in DSB repair effectively increases the RBE, yielding a secondary, RBE-based differentiation between tumor and normal tissue that is complementary to conventional, receptor-mediated tumor targeting. In some triple negative breast cancers (TNBC, ER−/PR−/HER-2−), germline mutation in BRCA-1, a key gene in homologous recombination (HR) DSB repair, predisposes patients to early onset of breast cancer. These patients have few treatment options once the cancer has metastasized. In this study, we investigated the efficacy of alpha particle emitter, 213Bi labeled anti-EGFR antibody, Cetuximab, in BRCA-1 defective TNBC. 213Bi-Cetuximab was found to be significantly more effective in the BRCA-1 mutated TNBC cell line HCC1937 than BRCA-1 competent TNBC cell MDA-MB-231. siRNA knockdown of BRCA-1 or DNA-PKcs, a key gene in non-homologous end joining (NHEJ) DSB repair pathway, also sensitized TNBC cells to 213Bi-Cetuximab. Furthermore, the small molecule inhibitor of DNA-PKcs, NU7441, sensitized BRCA-1 competent TNBC cells to alpha particle radiation. Immunofluorescent staining of γH2AX foci and comet assay confirmed that enhanced RBE is caused by impaired DSB repair. These data offer a novel strategy for enhancing conventional receptor-mediated targeting with an additional, potentially synergistic radiobiological targeting that could be applied to TNBC. PMID:23873849

  9. The Transcriptional Histone Acetyltransferase Cofactor TRRAP Associates with the MRN Repair Complex and Plays a Role in DNA Double-Strand Break Repair†

    PubMed Central

    Robert, Flavie; Hardy, Sara; Nagy, Zita; Baldeyron, Céline; Murr, Rabih; Déry, Ugo; Masson, Jean-Yves; Papadopoulo, Dora; Herceg, Zdenko; Tora, Làszlò

    2006-01-01

    Transactivation-transformation domain-associated protein (TRRAP) is a component of several multiprotein histone acetyltransferase (HAT) complexes implicated in transcriptional regulation. TRRAP was shown to be required for the mitotic checkpoint and normal cell cycle progression. MRE11, RAD50, and NBS1 (product of the Nijmegan breakage syndrome gene) form the MRN complex that is involved in the detection, signaling, and repair of DNA double-strand breaks (DSBs). By using double immunopurification, mass spectrometry, and gel filtration, we describe the stable association of TRRAP with the MRN complex. The TRRAP-MRN complex is not associated with any detectable HAT activity, while the isolated other TRRAP complexes, containing either GCN5 or TIP60, are. TRRAP-depleted extracts show a reduced nonhomologous DNA end-joining activity in vitro. Importantly, small interfering RNA knockdown of TRRAP in HeLa cells or TRRAP knockout in mouse embryonic stem cells inhibit the DSB end-joining efficiency and the precise nonhomologous end-joining process, further suggesting a functional involvement of TRRAP in the DSB repair processes. Thus, TRRAP may function as a molecular link between DSB signaling, repair, and chromatin remodeling. PMID:16382133

  10. XRCC4 and XLF form long helical protein filaments suitable for DNA end protection and alignment to facilitate DNA double strand break repair

    PubMed Central

    Mahaney, Brandi L.; Hammel, Michal; Meek, Katheryn; Tainer, John A.; Lees-Miller, Susan P.

    2013-01-01

    DNA double strand breaks (DSBs), induced by ionizing radiation (IR) and endogenous stress including replication failure, are the most cytotoxic form of DNA damage. In human cells, most IR-induced DSBs are repaired by the non-homologous end joining (NHEJ) pathway. One of the most critical steps in NHEJ is ligation of DNA ends by DNA ligase IV (LIG4), which interacts with, and is stabilized by, the scaffolding protein X-ray cross-complementing gene 4 (XRCC4). XRCC4 also interacts with XRCC4-like factor (XLF, also called Cernunnos); yet, XLF has been one of the least mechanistically understood proteins and precisely how XLF functions in NHEJ has been enigmatic. Here, we examine current combined structural and mutational findings that uncover integrated functions of XRCC4 and XLF and reveal their interactions to form long, helical protein filaments suitable to protect and align DSB ends. XLF-XRCC4 provides a global structural scaffold for ligating DSBs without requiring long complementary DNA ends, thus ensuring accurate and efficient ligation and repair. The assembly of these XRCC4-XLF filaments, providing both DNA end protection and alignment, may commit cells to NHEJ with general biological implications for NHEJ and DSB repair processes and their links to cancer predispositions and interventions. PMID:23442139

  11. [Studies of the repair of radiation-induced genetic damage in Drosophila]. Annual progress report, September 1, 1990--July 1, 1991

    SciTech Connect

    1991-12-31

    Research is focused on the following areas: characterization of DNA double-strand break repair; using injected oligonucleotides as templates to repair double-strand DNA breaks; analysis of a gene required for postreplication repair; cloning of a gene required for resistance to DNA cross-linking agents; cloning of a gene required for excision repair; cloning of a gene required for X-ray resistance; and transposon tagging DNA repair genes.

  12. QUANTITATION OF INTRACELLULAR NAD(P)H IN LIVING CELLS CAN MONITOR AN IMBALANCE OF DNA SINGLE STRAND BREAK REPAIR IN REAL TIME

    EPA Science Inventory

    Quantitation of intracellular NAD(P)H in living cells can monitor an imbalance of DNA single strand break repair in real time.

    ABSTRACT

    DNA single strand breaks (SSBs) are one of the most frequent DNA lesions in genomic DNA generated either by oxidative stress or du...

  13. Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. coli.

    PubMed

    Handa, Naofumi; Morimatsu, Katsumi; Lovett, Susan T; Kowalczykowski, Stephen C

    2009-05-15

    The RecF pathway of Escherichia coli is important for recombinational repair of DNA breaks and gaps. Here ;we reconstitute in vitro a seven-protein reaction that recapitulates early steps of dsDNA break repair using purified RecA, RecF, RecO, RecR, RecQ, RecJ, and SSB proteins, components of the RecF system. Their combined action results in processing of linear dsDNA and its homologous pairing with supercoiled DNA. RecA, RecO, RecR, and RecJ are essential for joint molecule formation, whereas SSB and RecF are stimulatory. This reconstituted system reveals an unexpected essential function for RecJ exonuclease: the capability to resect duplex DNA. RecQ helicase stimulates this processing, but also disrupts joint molecules. RecO and RecR have two indispensable functions: They mediate exchange of RecA for SSB to form the RecA nucleoprotein filament, and act with RecF to load RecA onto the SSB-ssDNA complex at processed ssDNA-dsDNA junctions. The RecF pathway has many parallels with recombinational repair in eukaryotes. PMID:19451222

  14. DNA Repair Gene Expression and Risk of Locoregional Relapse in Breast Cancer Patients

    SciTech Connect

    Le Scodan, Romuald; Cizeron-Clairac, Geraldine

    2010-10-01

    Purpose: Radiation therapy appears to kill cells mainly by inducing DNA double-strand breaks. We investigated whether the DNA repair gene expression status might influence the risk of locoregional recurrence (LRR) in breast cancer patients. Methods and Materials: We used a quantitative reverse transcriptase PCR-based approach to measure messenger RNA levels of 20 selected DNA repair genes in tumor samples from 97 breast cancer patients enrolled in a phase III trial (Centre Rene Huguenin cohort). Normalized mRNA levels were tested for an association with LRR-free survival (LRR-FS) and overall survival (OS). The findings were validated in comparison with those of an independent cohort (Netherlands Cancer Institute (NKI) cohort). Multivariate analysis encompassing known prognostic factors was used to assess the association between DNA repair gene expression and patient outcome. Results: RAD51 was the only gene associated with LRR in both cohorts. With a median follow-up of 126 months in the CRH cohort, the 5-year LRR-FS and OS rates were 100% and 95% in the 61 patients with low RAD51 expression, compared with 70% and 69% in the 36 patients with high RAD51 expression, respectively (p < 0.001). RAD51 overexpression was associated with a higher risk of LRR (hazard ratio [HR], 12.83; 95% confidence interval [CI], 3.6-45.6) and death (HR, 4.10; 95% CI, 1.7-9.7). RAD51 overexpression was also significantly associated with shorter LRR-FS and OS in the NKI cohort. Conclusions: Overexpression of RAD51, a key component of the homologous DNA repair pathway, is associated with poor breast cancer outcome. This finding warrants prospective studies of RAD51 as a prognosticator and therapeutic target.

  15. Regulation of targeted gene repair by intrinsic cellular processes.

    PubMed

    Engstrom, Julia U; Suzuki, Takayuki; Kmiec, Eric B

    2009-02-01

    Targeted gene alteration (TGA) is a strategy for correcting single base mutations in the DNA of human cells that cause inherited disorders. TGA aims to reverse a phenotype by repairing the mutant base within the chromosome itself, avoiding the introduction of exogenous genes. The process of how to accurately repair a genetic mutation is elucidated through the use of single-stranded DNA oligonucleotides (ODNs) that can enter the cell and migrate to the nucleus. These specifically designed ODNs hybridize to the target sequence and act as a beacon for nucleotide exchange. The key to this reaction is the frequency with which the base is corrected; this will determine whether the approach becomes clinically relevant or not. Over the course of the last five years, workers have been uncovering the role played by the cells in regulating the gene repair process. In this essay, we discuss how the impact of the cell on TGA has evolved through the years and illustrate ways that inherent cellular pathways could be used to enhance TGA activity. We also describe the cost to cell metabolism and survival when certain processes are altered to achieve a higher frequency of repair.

  16. Bone tissue engineering and repair by gene therapy.

    PubMed

    Betz, Volker M; Betz, Oliver B; Harris, Mitchel B; Vrahas, Mark S; Evans, Christopher H

    2008-01-01

    Many clinical conditions require the stimulation of bone growth. The use of recombinant bone morphogenetic proteins does not provide a satisfying solution to these conditions due to delivery problems and high cost. Gene therapy has emerged as a very promising approach for bone repair that overcomes limitations of protein-based therapy. Several preclinical studies have shown that gene transfer technology has the ability to deliver osteogenic molecules to precise anatomical locations at therapeutic levels for sustained periods of time. Both in-vivo and ex-vivo transduction of cells can induce bone formation at ectopic and orthotopic sites. Genetic engineering of adult stem cells from various sources with osteogenic genes has led to enhanced fracture repair, spinal fusion and rapid healing of bone defects in animal models. This review describes current viral and non-viral gene therapy strategies for bone tissue engineering and repair including recent work from the author's laboratory. In addition, the article discusses the potential of gene-enhanced tissue engineering to enter widespread clinical use.

  17. uv excision-repair gene transfer in Chinese hamster ovary (CHO) cells

    SciTech Connect

    MacInnes, M.A.; Bingham, J.M.; Strniste, G.F.; Thompson, L.H.

    1983-01-01

    uvc-sensitive mutants of CHO cells provide a model system for molecular studies of DNA repair. We present our recent results which show that these mutants are competent recipients for plasmid marker gene transfer and incorporation of a putative CHO repair gene. The applicability and advantages of this system for interspecies human repair gene identification are discussed.

  18. Effects of chemopreventive natural products on non-homologous end-joining DNA double-strand break repair.

    PubMed

    Charles, Catherine; Nachtergael, Amandine; Ouedraogo, Moustapha; Belayew, Alexandra; Duez, Pierre

    2014-07-01

    Double-strand breaks (DSBs) may result from endogenous (e.g., reactive oxygen species, variable (diversity) joining, meiotic exchanges, collapsed replication forks, nucleases) or exogenous (e.g., ionizing radiation, chemotherapeutic agents, radiomimetic compounds) events. DSBs disrupt the integrity of DNA and failed or improper DSBs repair may lead to genomic instability and, eventually, mutations, cancer, or cell death. Non-homologous end-joining (NHEJ) is the major pathway used by higher eukaryotic cells to repair these lesions. Given the complexity of NHEJ and the number of proteins and cofactors involved, secondary metabolites from medicinal or food plants might interfere with the process, activating or inhibiting repair. Twelve natural products, arbutin, curcumin, indole-3-carbinol, and nine flavonoids (apigenin, baicalein, chalcone, epicatechin, genistein, myricetin, naringenin, quercetin, sakuranetin) were chosen for their postulated roles in cancer chemoprevention and/or treatment. The effects of these compounds on NHEJ were investigated with an in vitro protocol based on plasmid substrates. Plasmids were linearized by a restriction enzyme, generating cohesive ends, or by a combination of enzymes, generating incompatible ends; plasmids were then incubated with a nuclear extract prepared from normal human small-intestinal cells (FHS 74 Int), either treated with these natural products or untreated (controls). The NHEJ repair complex from nuclear extracts ligates linearized plasmids, resulting in plasmid oligomers that can be separated and quantified by on-chip microelectrophoresis. Some compounds (chalcone, epicatechin, myricetin, sakuranetin and arbutin) clearly activated NHEJ, whereas others (apigenin, baicalein and curcumin) significantly reduced the repair rate of both types of plasmid substrates. Although this in vitro protocol is only partly representative of the in vivo situation, the natural products appear to interfere with NHEJ repair and warrant

  19. Modification of radiation-induced DNA double strand break repair pathways by chemicals extracted from Podophyllum hexandrum: an in vitro study in human blood leukocytes.

    PubMed

    Srivastava, Nitya N; Shukla, Sandeep K; Yashavarddhan, M H; Devi, Memita; Tripathi, Rajendra P; Gupta, Manju L

    2014-06-01

    Radiation exposure is a serious threat to biomolecules, particularly DNA, proteins and lipids. Various exogenous substances have been reported to protect these biomolecules. In this study we explored the effect of pre-treatment with G-002M, a mixture of three active derivatives isolated from the rhizomes of Podophyllum hexandrum, on DNA damage response in irradiated human blood leukocytes. Blood was collected from healthy male volunteers, preincubated with G-002M and then irradiated with various doses of radiation. Samples were analyzed using flow cytometry to quantify DNA double strand break (DSB) biomarkers including γ-H2AX, P53BP1 and levels of ligase IV. Blood samples were irradiated in vitro and processed to determine time and dose-dependent kinetics. Semiquantitative RT-PCR was performed at various time points to measure gene expression of DNA-PKcs, Ku80, ATM, and 53BP1; each of these genes is involved in DNA repair signaling. Pre-treatment of blood with G-002M resulted in reduction of γ-H2AX and P53BP1 biomarkers levels and elevated ligase IV levels relative to non-G-002M-treated irradiated cells. These results confirm suppression in radiation-induced DNA DSBs. Samples pre-treated with G-002M and then irradiated also showed significant up-regulation of DNA-PKcs and Ku80 and downregulation of ATM and 53BP1 gene expressions, suggesting that G-002M plays a protective role against DNA damage. The protective effect of G-002M may be due to its ability to scavange radiation-induced free radicals or assist in DNA repair. Further studies are needed to decipher the role of G-002M on signaling molecules involved in radiation-induced DNA damage repair pathways.

  20. Heterozygous PALB2 c.1592delT mutation channels DNA double-strand break repair into error-prone pathways in breast cancer patients

    PubMed Central

    Obermeier, K; Sachsenweger, J; Friedl, T W P; Pospiech, H; Winqvist, R; Wiesmüller, L

    2016-01-01

    Hereditary heterozygous mutations in a variety of DNA double-strand break (DSB) repair genes have been associated with increased breast cancer risk. In the Finnish population, PALB2 (partner and localizer of BRCA2) represents a major susceptibility gene for female breast cancer, and so far, only one mutation has been described, c.1592delT, which leads to a sixfold increased disease risk. PALB2 is thought to participate in homologous recombination (HR). However, the effect of the Finnish founder mutation on DSB repair has not been investigated. In the current study, we used a panel of lymphoblastoid cell lines (LCLs) derived from seven heterozygous female PALB2 c.1592delT mutation carriers with variable health status and six wild-type matched controls. The results of our DSB repair analysis showed that the PALB2 mutation causes specific changes in pathway usage, namely increases in error-prone single-strand annealing (SSA) and microhomology-mediated end-joining (MMEJ) compared with wild-type LCLs. These data indicated haploinsufficiency regarding the suppression of error-prone DSB repair in PALB2 mutation carriers. To the contrary, neither reduced HR activities, nor impaired RAD51 filament assembly, nor sensitization to PARP inhibition were consistently observed. Expression of truncated mutant versus wild-type PALB2 verified a causal role of PALB2 c.1592delT in the shift to error-prone repair. Discrimination between healthy and malignancy-presenting PALB2 mutation carriers revealed a pathway shift particularly in the breast cancer patients, suggesting interaction of PALB2 c.1592delT with additional genomic lesions. Interestingly, the studied PALB2 mutation was associated with 53BP1 accumulation in the healthy mutation carriers but not the patients, and 53BP1 was limiting for error-prone MMEJ in patients but not in healthy carriers. Our study identified a rise in error-prone DSB repair as a potential threat to genomic integrity in heterozygous PALB2 mutation carriers

  1. Heterozygous PALB2 c.1592delT mutation channels DNA double-strand break repair into error-prone pathways in breast cancer patients.

    PubMed

    Obermeier, K; Sachsenweger, J; Friedl, T W P; Pospiech, H; Winqvist, R; Wiesmüller, L

    2016-07-21

    Hereditary heterozygous mutations in a variety of DNA double-strand break (DSB) repair genes have been associated with increased breast cancer risk. In the Finnish population, PALB2 (partner and localizer of BRCA2) represents a major susceptibility gene for female breast cancer, and so far, only one mutation has been described, c.1592delT, which leads to a sixfold increased disease risk. PALB2 is thought to participate in homologous recombination (HR). However, the effect of the Finnish founder mutation on DSB repair has not been investigated. In the current study, we used a panel of lymphoblastoid cell lines (LCLs) derived from seven heterozygous female PALB2 c.1592delT mutation carriers with variable health status and six wild-type matched controls. The results of our DSB repair analysis showed that the PALB2 mutation causes specific changes in pathway usage, namely increases in error-prone single-strand annealing (SSA) and microhomology-mediated end-joining (MMEJ) compared with wild-type LCLs. These data indicated haploinsufficiency regarding the suppression of error-prone DSB repair in PALB2 mutation carriers. To the contrary, neither reduced HR activities, nor impaired RAD51 filament assembly, nor sensitization to PARP inhibition were consistently observed. Expression of truncated mutant versus wild-type PALB2 verified a causal role of PALB2 c.1592delT in the shift to error-prone repair. Discrimination between healthy and malignancy-presenting PALB2 mutation carriers revealed a pathway shift particularly in the breast cancer patients, suggesting interaction of PALB2 c.1592delT with additional genomic lesions. Interestingly, the studied PALB2 mutation was associated with 53BP1 accumulation in the healthy mutation carriers but not the patients, and 53BP1 was limiting for error-prone MMEJ in patients but not in healthy carriers. Our study identified a rise in error-prone DSB repair as a potential threat to genomic integrity in heterozygous PALB2 mutation carriers

  2. Preventing Damage Limitation: Targeting DNA-PKcs and DNA Double-Strand Break Repair Pathways for Ovarian Cancer Therapy

    PubMed Central

    Dungl, Daniela A.; Maginn, Elaina N.; Stronach, Euan A.

    2015-01-01

    Platinum-based chemotherapy is the cornerstone of ovarian cancer treatment, and its efficacy is dependent on the generation of DNA damage, with subsequent induction of apoptosis. Inappropriate or aberrant activation of the DNA damage response network is associated with resistance to platinum, and defects in DNA repair pathways play critical roles in determining patient response to chemotherapy. In ovarian cancer, tumor cell defects in homologous recombination – a repair pathway activated in response to double-strand DNA breaks (DSB) – are most commonly associated with platinum-sensitive disease. However, despite initial sensitivity, the emergence of resistance is frequent. Here, we review strategies for directly interfering with DNA repair pathways, with particular focus on direct inhibition of non-homologous end joining (NHEJ), another DSB repair pathway. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a core component of NHEJ and it has shown considerable promise as a chemosensitization target in numerous cancer types, including ovarian cancer where it functions to promote platinum-induced survival signaling, via AKT activation. The development of pharmacological inhibitors of DNA-PKcs is on-going, and clinic-ready agents offer real hope to patients with chemoresistant disease. PMID:26579492

  3. Mouse HORMAD1 is a meiosis i checkpoint protein that modulates DNA double- strand break repair during female meiosis.

    PubMed

    Shin, Yong-Hyun; McGuire, Megan M; Rajkovic, Aleksandar

    2013-08-01

    Oocytes in embryonic ovaries enter meiosis I and arrest in the diplonema stage. Perturbations in meiosis I, such as abnormal double-strand break (DSB) formation and repair, adversely affect oocyte survival. We previously discovered that HORMAD1 is a critical component of the synaptonemal complex but not essential for oocyte survival. No significant differences were observed in the number of primordial, primary, secondary, and developing follicles between wild-type and Hormad1(−/−)newborn, 8-day, and 80-day ovaries. Meiosis I progression in Hormad1(−/−) embryonic ovaries was normal through the zygotene stage and in oocytes arrested in diplonema; however, we did not visualize oocytes with completely synapsed chromosomes. We investigated effects of HORMAD1 deficiency on the kinetics of DNA DSB formation and repair in the mouse ovary. We irradiated Embryonic Day 16.5 wild-type and Hormad1(−/−) ovaries and monitored DSB repair using gammaH2AX, RAD51, and DMC1 immunofluorescence. Our results showed a significant drop in unrepaired DSBs in the irradiated Hormad1(−/−) zygotene oocytes as compared to the wild-type oocytes. Moreover, Hormad1 deficiency rescued Dmc1(−/−) oocytes. These results indicate that Hormad1 deficiency promotes DMC1-independent DSB repairs, which in turn helps asynaptic Hormad1(−/−) oocytes resist perinatal loss. PMID:23759310

  4. Nonrecurrent MECP2 duplications mediated by genomic architecture-driven DNA breaks and break-induced replication repair

    PubMed Central

    Bauters, Marijke; Van Esch, Hilde; Friez, Michael J.; Boespflug-Tanguy, Odile; Zenker, Martin; Vianna-Morgante, Angela M.; Rosenberg, Carla; Ignatius, Jaakko; Raynaud, Martine; Hollanders, Karen; Govaerts, Karen; Vandenreijt, Kris; Niel, Florence; Blanc, Pierre; Stevenson, Roger E.; Fryns, Jean-Pierre; Marynen, Peter; Schwartz, Charles E.; Froyen, Guy

    2008-01-01

    Recurrent submicroscopic genomic copy number changes are the result of nonallelic homologous recombination (NAHR). Nonrecurrent aberrations, however, can result from different nonexclusive recombination-repair mechanisms. We previously described small microduplications at Xq28 containing MECP2 in four male patients with a severe neurological phenotype. Here, we report on the fine-mapping and breakpoint analysis of 16 unique microduplications. The size of the overlapping copy number changes varies between 0.3 and 2.3 Mb, and FISH analysis on three patients demonstrated a tandem orientation. Although eight of the 32 breakpoint regions coincide with low-copy repeats, none of the duplications are the result of NAHR. Bioinformatics analysis of the breakpoint regions demonstrated a 2.5-fold higher frequency of Alu interspersed repeats as compared with control regions, as well as a very high GC content (53%). Unexpectedly, we obtained the junction in only one patient by long-range PCR, which revealed nonhomologous end joining as the mechanism. Breakpoint analysis in two other patients by inverse PCR and subsequent array comparative genomic hybridization analysis demonstrated the presence of a second duplicated region more telomeric at Xq28, of which one copy was inserted in between the duplicated MECP2 regions. These data suggest a two-step mechanism in which part of Xq28 is first inserted near the MECP2 locus, followed by breakage-induced replication with strand invasion of the normal sister chromatid. Our results indicate that the mechanism by which copy number changes occur in regions with a complex genomic architecture can yield complex rearrangements. PMID:18385275

  5. Nonrecurrent MECP2 duplications mediated by genomic architecture-driven DNA breaks and break-induced replication repair.

    PubMed

    Bauters, Marijke; Van Esch, Hilde; Friez, Michael J; Boespflug-Tanguy, Odile; Zenker, Martin; Vianna-Morgante, Angela M; Rosenberg, Carla; Ignatius, Jaakko; Raynaud, Martine; Hollanders, Karen; Govaerts, Karen; Vandenreijt, Kris; Niel, Florence; Blanc, Pierre; Stevenson, Roger E; Fryns, Jean-Pierre; Marynen, Peter; Schwartz, Charles E; Froyen, Guy

    2008-06-01

    Recurrent submicroscopic genomic copy number changes are the result of nonallelic homologous recombination (NAHR). Nonrecurrent aberrations, however, can result from different nonexclusive recombination-repair mechanisms. We previously described small microduplications at Xq28 containing MECP2 in four male patients with a severe neurological phenotype. Here, we report on the fine-mapping and breakpoint analysis of 16 unique microduplications. The size of the overlapping copy number changes varies between 0.3 and 2.3 Mb, and FISH analysis on three patients demonstrated a tandem orientation. Although eight of the 32 breakpoint regions coincide with low-copy repeats, none of the duplications are the result of NAHR. Bioinformatics analysis of the breakpoint regions demonstrated a 2.5-fold higher frequency of Alu interspersed repeats as compared with control regions, as well as a very high GC content (53%). Unexpectedly, we obtained the junction in only one patient by long-range PCR, which revealed nonhomologous end joining as the mechanism. Breakpoint analysis in two other patients by inverse PCR and subsequent array comparative genomic hybridization analysis demonstrated the presence of a second duplicated region more telomeric at Xq28, of which one copy was inserted in between the duplicated MECP2 regions. These data suggest a two-step mechanism in which part of Xq28 is first inserted near the MECP2 locus, followed by breakage-induced replication with strand invasion of the normal sister chromatid. Our results indicate that the mechanism by which copy number changes occur in regions with a complex genomic architecture can yield complex rearrangements.

  6. DNA Ligase IV and Artemis Act Cooperatively to Suppress Homologous Recombination in Human Cells: Implications for DNA Double-Strand Break Repair

    PubMed Central

    Kurosawa, Aya; Saito, Shinta; So, Sairei; Hashimoto, Mitsumasa; Iwabuchi, Kuniyoshi; Watabe, Haruka; Adachi, Noritaka

    2013-01-01

    Nonhomologous end-joining (NHEJ) and homologous recombination (HR) are two major pathways for repairing DNA double-strand breaks (DSBs); however, their respective roles in human somatic cells remain to be elucidated. Here we show using a series of human gene-knockout cell lines that NHEJ repairs nearly all of the topoisomerase II- and low-dose radiation-induced DNA damage, while it negatively affects survival of cells harbouring replication-associated DSBs. Intriguingly, we find that loss of DNA ligase IV, a critical NHEJ ligase, and Artemis, an NHEJ factor with endonuclease activity, independently contribute to increased resistance to replication-associated DSBs. We also show that loss of Artemis alleviates hypersensitivity of DNA ligase IV-null cells to low-dose radiation- and topoisomerase II-induced DSBs. Finally, we demonstrate that Artemis-null human cells display increased gene-targeting efficiencies, particularly in the absence of DNA ligase IV. Collectively, these data suggest that DNA ligase IV and Artemis act cooperatively to promote NHEJ, thereby suppressing HR. Our results point to the possibility that HR can only operate on accidental DSBs when NHEJ is missing or abortive, and Artemis may be involved in pathway switching from incomplete NHEJ to HR. PMID:23967291

  7. Genetic Recombination through Double-Strand Break Repair: Shift from Two-Progeny Mode to One-Progeny Mode by Heterologous Inserts

    PubMed Central

    Takahashi, N. K.; Sakagami, K.; Kusano, K.; Yamamoto, K.; Yoshikura, H.; Kobayashi, I.

    1997-01-01

    Double-strand break repair models of genetic recombination propose that a double-strand break is introduced into an otherwise intact DNA and that the break is then repaired by copying a homologous DNA segment. Evidence for these models has been found among lambdoid phages and during yeast meiosis. In an earlier report, we demonstrated such repair of a preformed double-strand break by the Escherichia coli RecE pathway. Here, our experiments with plasmids demonstrate that such reciprocal or conservative recombination (two parental DNAs resulting in two progeny DNAs) is frequent at a double-strand break even when there exists the alternative route of nonreciprocal or nonconservative recombination (two parental DNAs resulting in only one progeny DNA). The presence of a long heterologous DNA at the double-strand break, however, resulted in a shift from the conservative (two-progeny) mode to the nonconservative (one-progeny) mode. The product is a DNA free from the heterologous insert containing recombinant flanking sequences. The potential ability of the homology-dependent double-strand break repair reaction to detect and eliminate heterologous inserts may have contributed to the evolution of homologous recombination, meiosis and sexual reproduction. PMID:9135997

  8. Analysis of Repair Mechanisms following an Induced Double-Strand Break Uncovers Recessive Deleterious Alleles in the Candida albicans Diploid Genome

    PubMed Central

    Feri, Adeline; Loll-Krippleber, Raphaël; Commere, Pierre-Henri; Maufrais, Corinne; Sertour, Natacha; Schwartz, Katja; Sherlock, Gavin; Bougnoux, Marie-Elisabeth

    2016-01-01

    ABSTRACT The diploid genome of the yeast Candida albicans is highly plastic, exhibiting frequent loss-of-heterozygosity (LOH) events. To provide a deeper understanding of the mechanisms leading to LOH, we investigated the repair of a unique DNA double-strand break (DSB) in the laboratory C. albicans SC5314 strain using the I-SceI meganuclease. Upon I-SceI induction, we detected a strong increase in the frequency of LOH events at an I-SceI target locus positioned on chromosome 4 (Chr4), including events spreading from this locus to the proximal telomere. Characterization of the repair events by single nucleotide polymorphism (SNP) typing and whole-genome sequencing revealed a predominance of gene conversions, but we also observed mitotic crossover or break-induced replication events, as well as combinations of independent events. Importantly, progeny that had undergone homozygosis of part or all of Chr4 haplotype B (Chr4B) were inviable. Mining of genome sequencing data for 155 C. albicans isolates allowed the identification of a recessive lethal allele in the GPI16 gene on Chr4B unique to C. albicans strain SC5314 which is responsible for this inviability. Additional recessive lethal or deleterious alleles were identified in the genomes of strain SC5314 and two clinical isolates. Our results demonstrate that recessive lethal alleles in the genomes of C. albicans isolates prevent the occurrence of specific extended LOH events. While these and other recessive lethal and deleterious alleles are likely to accumulate in C. albicans due to clonal reproduction, their occurrence may in turn promote the maintenance of corresponding nondeleterious alleles and, consequently, heterozygosity in the C. albicans species. PMID:27729506

  9. DNA double strand break repair inhibition as a cause of heat radiosensitization: re-evaluation considering backup pathways of NHEJ.

    PubMed

    Iliakis, George; Wu, Wenqi; Wang, Minli

    2008-02-01

    Heat shock is one of the most effective radiosensitizers known. As a result, combination of heat with ionizing radiation (IR) is considered a promising strategy in the management of human cancer. The mechanism of heat radiosensitization has been the subject of extensive work but a unifying mechanistic model is presently lacking. To understand the cause of excessive death in irradiated cells after heat exposure, it is necessary to characterize the lesion(s) underlying the effect and to determine which of the pathways processing this lesion are affected by heat. Since DNA double strand breaks (DSBs) are the main cause for IR-induced cell death, inhibition of DSB processing has long been considered a major candidate for heat radiosensitization. However, effective radiosensitization of mutants with defects in homologous recombination repair (HRR), or in DNA-PK dependent non-homologous end joining (D-NHEJ), the two primary pathways of DSB repair, has led to the formulation of models excluding DSBs as a cause for this phenomenon and attributing heat radiosensitization to inhibition of base damage processing. Since direct evidence for a major role of base damage in heat radiosensitization, or in IR-induced killing for that matter, is scarce and new insights in DSB repair allow alternative interpretations of existing data with repair mutants, we attempt here a re-evaluation of the role of DSBs and their repair in heat radiosensitization. First, we reanalyse data obtained with various DSB repair mutants on first principles and in the light of the recent recognition that alternative pathways of NHEJ, operating as backup (B-NHEJ), substantially contribute to DSB repair and thus probably also to heat radiosensitization. Second, we review aspects of combined action of heat and radiation, such as modulation in the cell-cycle-dependent variation in radiosensitivity to killing, as well as heat radiosensitization as a function of LET, and examine whether the observed effects are

  10. Suppression of a DNA base excision repair gene, hOGG1, increases bleomycin sensitivity of human lung cancer cell line

    SciTech Connect

    Wu Mei; Zhang Zunzhen Che Wangjun

    2008-05-01

    Bleomycin (BLM) has been found to induce 8-oxoguanine and DNA strand breaks through producing oxidative free radicals, thereby leading to cell cycle arrest, apoptosis and cell death. Cellular DNA damage repair mechanisms such as single strand DNA break repair/base excision repair (BER) are responsible for removing bleomycin-induced DNA damage, therefore confer chemotherapeutic resistance to bleomycin. In this study, we have investigated if down-regulation of human 8-oxoguanine DNA glycosylase (hOGG1), an important BER enzyme, could alter cellular sensitivity to bleomycin, thereby reducing chemotherapeutic resistance in human tumor cell. A human lung cancer cell line with hOGG1 deficiency (A549-R) was created by ribozyme gene knockdown technique. Bleomycin cellular sensitivity and DNA/chromosomal damages were examined using MTT, colony forming assay, comet assay as well as micronucleus assay. We demonstrated that hOGG1 gene knockdown enhanced bleomycin cytotoxicity and reduced the ability of colony formation of the lung cancer cell lines. We further demonstrated that bleomycin-induced DNA strand breaks resulted in an increase of micronucleus rate. hOGG1 deficiency significantly reduced DNA damage repair capacity of the lung cancer cell lines. Our results indicated that hOGG1 deficiency allowed the accumulation of bleomycin-induced DNA damage and chromosomal breaks by compromising DNA damage repair capacity, thereby increasing cellular sensitivity to bleomycin.

  11. RecBCD is required to Complete Chromosomal Replication: Implications for Double-Strand Break Frequencies and Repair Mechanisms

    PubMed Central

    Courcelle, Justin; Wendel, Brian M.; Livingstone, Dena D.; Courcelle, Charmain T.

    2015-01-01

    Several aspects of the mechanism of homologous double strand break repair remain unclear. Although intensive efforts have focused on how recombination reactions initiate, far less is known about the molecular events that follow. Based upon biochemical studies, current models propose that RecBCD processes double strand ends and loads RecA to initiate recombinational repair. However, recent studies have shown that RecBCD plays a critical role in completing replication events on the chromosome through a mechanism that does not involve RecA or recombination. Here, we examine several studies, both early and recent, that suggest RecBCD also operates late in the recombination process- after initiation, strand invasion, and crossover resolution have occurred. Similar to its role in completing replication, we propose a model in which RecBCD is required to resect and resolve the DNA synthesis associated with homologous recombination at the point where the missing sequences on the broken molecule have been restored. We explain how the impaired ability to complete chromosome replication in recBC and recD mutants is likely to account for the loss of viability and genome instability in these mutants, and conclude that spontaneous double strand breaks and replication fork collapse occur far less frequently than previously speculated. PMID:26003632

  12. Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks.

    PubMed

    Vriend, Lianne E M; Prakash, Rohit; Chen, Chun-Chin; Vanoli, Fabio; Cavallo, Francesca; Zhang, Yu; Jasin, Maria; Krawczyk, Przemek M

    2016-06-20

    DNA double-strand breaks (DSBs) are known to be powerful inducers of homologous recombination (HR), but single-strand breaks (nicks) have also been shown to trigger HR. Both DSB- and nick-induced HR ((nick)HR) are exploited in advanced genome-engineering approaches based on the bacterial RNA-guided nuclease Cas9. However, the mechanisms of (nick)HR are largely unexplored. Here, we applied Cas9 nickases to study (nick)HR in mammalian cells. We find that (nick)HR is unaffected by inhibition of major damage signaling kinases and that it is not suppressed by nonhomologous end-joining (NHEJ) components, arguing that nick processing does not require a DSB intermediate to trigger HR. Relative to a single nick, nicking both strands enhances HR, consistent with a DSB intermediate, even when nicks are induced up to ∼1kb apart. Accordingly, HR and NHEJ compete for repair of these paired nicks, but, surprisingly, only when 5' overhangs or blunt ends can be generated. Our study advances the understanding of molecular mechanisms driving nick and paired-nick repair in mammalian cells and clarify phenomena associated with Cas9-mediated genome editing.

  13. Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks

    PubMed Central

    Vriend, Lianne E.M.; Prakash, Rohit; Chen, Chun-Chin; Vanoli, Fabio; Cavallo, Francesca; Zhang, Yu; Jasin, Maria; Krawczyk, Przemek M.

    2016-01-01

    DNA double-strand breaks (DSBs) are known to be powerful inducers of homologous recombination (HR), but single-strand breaks (nicks) have also been shown to trigger HR. Both DSB- and nick-induced HR (nickHR) are exploited in advanced genome-engineering approaches based on the bacterial RNA-guided nuclease Cas9. However, the mechanisms of nickHR are largely unexplored. Here, we applied Cas9 nickases to study nickHR in mammalian cells. We find that nickHR is unaffected by inhibition of major damage signaling kinases and that it is not suppressed by nonhomologous end-joining (NHEJ) components, arguing that nick processing does not require a DSB intermediate to trigger HR. Relative to a single nick, nicking both strands enhances HR, consistent with a DSB intermediate, even when nicks are induced up to ∼1kb apart. Accordingly, HR and NHEJ compete for repair of these paired nicks, but, surprisingly, only when 5' overhangs or blunt ends can be generated. Our study advances the understanding of molecular mechanisms driving nick and paired-nick repair in mammalian cells and clarify phenomena associated with Cas9-mediated genome editing. PMID:27001513

  14. Expression of the excision repair gene, ERCC3 (excision repair cross-complementing), during mouse development.

    PubMed

    Hubank, M; Mayne, L

    1994-08-12

    Expression of the human ERCC3 (excision repair cross-complementing) gene in cells from patients with xeroderma pigmentosum (XP) group B (XP-B) corrects the defect in repair of UV light-induced DNA damage. XP-B is one of three groups of XP which exhibit the clinical symptoms of both XP and Cockayne's Syndrome (CS). CS and XP-B/CS patients develop severe neurological dysfunction during development. In order to explore the link between the defective gene and the neurological deficits in XP/CS, we have studied the expression of ERCC3 mRNA in developing mice by in situ hybridisation. ERCC3 was found to be ubiquitously expressed in cells from all regions and all developmental stages, from 9 day post-coitum embryo, to 15 day post-natal brain. In post-natal brain, regional differences in expression correlated with cell density and there was no evidence of cell specific or developmental alterations in levels of expression. These results indicate that the constitutively expressed gene does not perform a discrete developmental function. The neurological defects apparent in XP-B are likely to arise pleiotypically from the participation of ERCC3 in interactions with other elements involved in particular aspects of neurodevelopmental control. These results emphasise the developmental importance of genes whose primary functions are apparently unconnected with development. PMID:7805288

  15. DNA Methyltransferase 1-associated Protein (DMAP1) Is a Co-repressor That Stimulates DNA Methylation Globally and Locally at Sites of Double Strand Break Repair*

    PubMed Central

    Lee, Gun E.; Kim, Joo Hee; Taylor, Michael; Muller, Mark T.

    2010-01-01

    Correction of double strand DNA breaks proceeds in an error-free pathway of homologous recombination (HR), which can result in gene silencing of half of the DNA molecules caused by action by DNA methyltransferase 1 (DNMT1) (Cuozzo, C., Porcellini, A., Angrisano, T., Morano, A., Lee, B., Di Pardo, A., Messina, S., Iuliano, R., Fusco, A., Santillo, M. R., Muller, M. T., Chiariotti, L., Gottesman, M. E., and Avvedimento, E. V. (2007) PLoS Genet. 3, e110). To explore the mechanism that leads to HR-induced silencing, a genetic screen was carried out based on the silencing of a GFP reporter to identify potential partners. DMAP1, a DNMT1 interacting protein, was identified as a mediator of this process. DMAP1 is a potent activator of DNMT1 methylation in vitro, suggesting that DMAP1 is a co-repressor that supports the maintenance and de novo action of DNMT1. To examine critical roles for DMAP1 in vivo, lentiviral shRNA was used to conditionally reduce cellular DMAP1 levels. The shRNA transduced cells grew poorly and eventually ceased their growth. Analysis of the tumor suppressor gene p16 methylation status revealed a clear reduction in methylated CpGs in the shRNA cells, suggesting that reactivation of a tumor suppressor gene pathway caused the slow growth phenotype. Analysis of HR, using a fluorescence-based reporter, revealed that knocking down DMAP1 also caused hypomethylation of the DNA repair products following gene conversion. DMAP1 was selectively enriched in recombinant GFP chromatin based on chromatin immunoprecipitation analysis. The picture that emerges is that DMAP1 activates DNMT1 preferentially at sites of HR repair. Because DMAP1 depleted cells display enhanced HR, we conclude that it has additional roles in genomic stability. PMID:20864525

  16. DNA methyltransferase 1-associated protein (DMAP1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair.

    PubMed

    Lee, Gun E; Kim, Joo Hee; Taylor, Michael; Muller, Mark T

    2010-11-26

    Correction of double strand DNA breaks proceeds in an error-free pathway of homologous recombination (HR), which can result in gene silencing of half of the DNA molecules caused by action by DNA methyltransferase 1 (DNMT1) (Cuozzo, C., Porcellini, A., Angrisano, T., Morano, A., Lee, B., Di Pardo, A., Messina, S., Iuliano, R., Fusco, A., Santillo, M. R., Muller, M. T., Chiariotti, L., Gottesman, M. E., and Avvedimento, E. V. (2007) PLoS Genet. 3, e110). To explore the mechanism that leads to HR-induced silencing, a genetic screen was carried out based on the silencing of a GFP reporter to identify potential partners. DMAP1, a DNMT1 interacting protein, was identified as a mediator of this process. DMAP1 is a potent activator of DNMT1 methylation in vitro, suggesting that DMAP1 is a co-repressor that supports the maintenance and de novo action of DNMT1. To examine critical roles for DMAP1 in vivo, lentiviral shRNA was used to conditionally reduce cellular DMAP1 levels. The shRNA transduced cells grew poorly and eventually ceased their growth. Analysis of the tumor suppressor gene p16 methylation status revealed a clear reduction in methylated CpGs in the shRNA cells, suggesting that reactivation of a tumor suppressor gene pathway caused the slow growth phenotype. Analysis of HR, using a fluorescence-based reporter, revealed that knocking down DMAP1 also caused hypomethylation of the DNA repair products following gene conversion. DMAP1 was selectively enriched in recombinant GFP chromatin based on chromatin immunoprecipitation analysis. The picture that emerges is that DMAP1 activates DNMT1 preferentially at sites of HR repair. Because DMAP1 depleted cells display enhanced HR, we conclude that it has additional roles in genomic stability. PMID:20864525

  17. DNA Double-Strand Break Repair as Determinant of Cellular Radiosensitivity to Killing and Target in Radiation Therapy

    PubMed Central

    Mladenov, Emil; Magin, Simon; Soni, Aashish; Iliakis, George

    2013-01-01

    Radiation therapy plays an important role in the management of a wide range of cancers. Besides innovations in the physical application of radiation dose, radiation therapy is likely to benefit from novel approaches exploiting differences in radiation response between normal and tumor cells. While ionizing radiation induces a variety of DNA lesions, including base damages and single-strand breaks, the DNA double-strand break (DSB) is widely considered as the lesion responsible not only for the aimed cell killing of tumor cells, but also for the general genomic instability that leads to the development of secondary cancers among normal cells. Homologous recombination repair (HRR), non-homologous end-joining (NHEJ), and alternative NHEJ, operating as a backup, are the major pathways utilized by cells for the processing of DSBs. Therefore, their function represents a major mechanism of radiation resistance in tumor cells. HRR is also required to overcome replication stress – a potent contributor to genomic instability that fuels cancer development. HRR and alternative NHEJ show strong cell-cycle dependency and are likely to benefit from radiation therapy mediated redistribution of tumor cells throughout the cell-cycle. Moreover, the synthetic lethality phenotype documented between HRR deficiency and PARP inhibition has opened new avenues for targeted therapies. These observations make HRR a particularly intriguing target for treatments aiming to improve the efficacy of radiation therapy. Here, we briefly describe the major pathways of DSB repair and review their possible contribution to cancer cell radioresistance. Finally, we discuss promising alternatives for targeting DSB repair to improve radiation therapy and cancer treatment. PMID:23675572

  18. 5-Fluorouracil sensitizes colorectal tumor cells towards double stranded DNA breaks by interfering with homologous recombination repair

    PubMed Central

    Srinivas, Upadhyayula Sai; Dyczkowski, Jerzy; Beißbarth, Tim; Gaedcke, Jochen; Mansour, Wael Y.; Borgmann, Kerstin; Dobbelstein, Matthias

    2015-01-01

    Malignant tumors of the rectum are treated by neoadjuvant radiochemotherapy. This involves a combination of 5-fluorouracil (5-FU) and double stranded DNA-break (DSB)-inducing radiotherapy. Here we explored how 5-FU cooperates with DSB-induction to achieve sustainable DNA damage in colorectal cancer (CRC) cells. After DSB induction by neocarzinostatin, phosphorylated histone 2AX (γ-H2AX) rapidly accumulated but then largely vanished within a few hours. In contrast, when CRC cells were pre-treated with 5-FU, gammaH2AX remained for at least 24 hours. GFP-reporter assays revealed that 5-FU decreases the efficiency of homologous recombination (HR) repair. However, 5-FU did not prevent the initial steps of HR repair, such as the accumulation of RPA and Rad51 at nuclear foci. Thus, we propose that 5-FU interferes with the continuation of HR repair, e. g. the synthesis of new DNA strands. Two key mediators of HR, Rad51 and BRCA2, were found upregulated in CRC biopsies as compared to normal mucosa. Inhibition of HR by targeting Rad51 enhanced DNA damage upon DSB-inducing treatment, outlining an alternative way of enhancing therapeutic efficacy. Taken together, our results strongly suggest that interfering with HR represents a key mechanism to enhance the efficacy when treating CRC with DNA-damaging therapy. PMID:25909291

  19. A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice

    PubMed Central

    Subramanian, Lakxmi; Gal, Csenge; Sarkar, Sovan; Blaikley, Elizabeth J.; Walker, Carol; Hulme, Lydia; Bernhard, Eric; Codlin, Sandra; Bähler, Jürg; Allshire, Robin; Whitehall, Simon; Humphrey, Timothy C.

    2015-01-01

    DNA double-strand break (DSB) repair is a highly regulated process performed predominantly by non-homologous end joining (NHEJ) or homologous recombination (HR) pathways. How these pathways are coordinated in the context of chromatin is unclear. Here we uncover a role for histone H3K36 modification in regulating DSB repair pathway choice in fission yeast. We find Set2-dependent H3K36 methylation reduces chromatin accessibility, reduces resection and promotes NHEJ, while antagonistic Gcn5-dependent H3K36 acetylation increases chromatin accessibility, increases resection and promotes HR. Accordingly, loss of Set2 increases H3K36Ac, chromatin accessibility and resection, while Gcn5 loss results in the opposite phenotypes following DSB induction. Further, H3K36 modification is cell cycle regulated with Set2-dependent H3K36 methylation peaking in G1 when NHEJ occurs, while Gcn5-dependent H3K36 acetylation peaks in S/G2 when HR prevails. These findings support an H3K36 chromatin switch in regulating DSB repair pathway choice. PMID:24909977

  20. A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice.

    PubMed

    Pai, Chen-Chun; Deegan, Rachel S; Subramanian, Lakxmi; Gal, Csenge; Sarkar, Sovan; Blaikley, Elizabeth J; Walker, Carol; Hulme, Lydia; Bernhard, Eric; Codlin, Sandra; Bähler, Jürg; Allshire, Robin; Whitehall, Simon; Humphrey, Timothy C

    2014-06-09

    DNA double-strand break (DSB) repair is a highly regulated process performed predominantly by non-homologous end joining (NHEJ) or homologous recombination (HR) pathways. How these pathways are coordinated in the context of chromatin is unclear. Here we uncover a role for histone H3K36 modification in regulating DSB repair pathway choice in fission yeast. We find Set2-dependent H3K36 methylation reduces chromatin accessibility, reduces resection and promotes NHEJ, while antagonistic Gcn5-dependent H3K36 acetylation increases chromatin accessibility, increases resection and promotes HR. Accordingly, loss of Set2 increases H3K36Ac, chromatin accessibility and resection, while Gcn5 loss results in the opposite phenotypes following DSB induction. Further, H3K36 modification is cell cycle regulated with Set2-dependent H3K36 methylation peaking in G1 when NHEJ occurs, while Gcn5-dependent H3K36 acetylation peaks in S/G2 when HR prevails. These findings support an H3K36 chromatin switch in regulating DSB repair pathway choice.

  1. A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice.

    PubMed

    Pai, Chen-Chun; Deegan, Rachel S; Subramanian, Lakxmi; Gal, Csenge; Sarkar, Sovan; Blaikley, Elizabeth J; Walker, Carol; Hulme, Lydia; Bernhard, Eric; Codlin, Sandra; Bähler, Jürg; Allshire, Robin; Whitehall, Simon; Humphrey, Timothy C

    2014-01-01

    DNA double-strand break (DSB) repair is a highly regulated process performed predominantly by non-homologous end joining (NHEJ) or homologous recombination (HR) pathways. How these pathways are coordinated in the context of chromatin is unclear. Here we uncover a role for histone H3K36 modification in regulating DSB repair pathway choice in fission yeast. We find Set2-dependent H3K36 methylation reduces chromatin accessibility, reduces resection and promotes NHEJ, while antagonistic Gcn5-dependent H3K36 acetylation increases chromatin accessibility, increases resection and promotes HR. Accordingly, loss of Set2 increases H3K36Ac, chromatin accessibility and resection, while Gcn5 loss results in the opposite phenotypes following DSB induction. Further, H3K36 modification is cell cycle regulated with Set2-dependent H3K36 methylation peaking in G1 when NHEJ occurs, while Gcn5-dependent H3K36 acetylation peaks in S/G2 when HR prevails. These findings support an H3K36 chromatin switch in regulating DSB repair pathway choice. PMID:24909977

  2. Repair rates of DNA double-strand breaks under different doses of proton and γ-ray irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Jingwen; Fu, Qibin; Quan, Yi; Wang, Weikang; Mei, Tao; Li, Jia; Yang, Gen; Ren, Xiaotang; Xue, Jianming; Wang, Yugang

    2012-04-01

    It is known that DNA double-strand breaks (DSBs), which can be induced by a variety of treatments including ionizing radiation (IR), can cause most deleterious consequences among all kinds of DNA lesions. However, it is still under debate about whether DSBs repair is equally efficient after low and high-LET radiation, especially the basic biological responses after exposure to high-LET particles. In present study, synchronous fibroblast normal Human lung fibroblast (NHLF) cells were irradiated with graded doses of proton and γ-ray. Then γ-H2AX foci assay was used to monitor DSBs induction and repair at 0.5, 1, 2, 4, and 18 h post irradiation. The results showed that the γ-ray irradiation could produce more γ-H2AX foci than proton irradiation at the same dose. However, compared to low LET radiation with γ-ray, the results also showed a much slower DSBs repair rate after high LET radiation with protons, suggesting that the cellular ability to eliminate DSBs after low and high-LET ionizing radiation is quite different.

  3. Mechanism of action studies of lomaiviticin A and the monomeric lomaiviticin aglycon. Selective and potent activity toward DNA double-strand break repair-deficient cell lines.

    PubMed

    Colis, Laureen C; Hegan, Denise C; Kaneko, Miho; Glazer, Peter M; Herzon, Seth B

    2015-05-01

    (-)-Lomaiviticin A (1) and the monomeric lomaiviticin aglycon [aka: (-)-MK7-206, (3)] are cytotoxic agents that induce double-strand breaks (DSBs) in DNA. Here we elucidate the cellular responses to these agents and identify synthetic lethal interactions with specific DNA repair factors. Toward this end, we first characterized the kinetics of DNA damage by 1 and 3 in human chronic myelogenous leukemia (K562) cells. DSBs are rapidly induced by 3, reaching a maximum at 15 min post addition and are resolved within 4 h. By comparison, DSB production by 1 requires 2-4 h to achieve maximal values and >8 h to achieve resolution. As evidenced by an alkaline comet unwinding assay, 3 induces extensive DNA damage, suggesting that the observed DSBs arise from closely spaced single-strand breaks (SSBs). Both 1 and 3 induce ataxia telangiectasia mutated- (ATM-) and DNA-dependent protein kinase- (DNA-PK-) dependent production of phospho-SER139-histone H2AX (γH2AX) and generation of p53 binding protein 1 (53BP1) foci in K562 cells within 1 h of exposure, which is indicative of activation of nonhomologous end joining (NHEJ) and homologous recombination (HR) repair. Both compounds also lead to ataxia telangiectasia and Rad3-related- (ATR-) dependent production of γH2AX at later time points (6 h post addition), which is indicative of replication stress. 3 is also shown to induce apoptosis. In accord with these data, 1 and 3 were found to be synthetic lethal with certain mutations in DNA DSB repair. 1 potently inhibits the growth of breast cancer type 2, early onset- (BRCA2-) deficient V79 Chinese hamster lung fibroblast cell line derivative (VC8), and phosphatase and tensin homologue deleted on chromosome ten- (PTEN-) deficient human glioblastoma (U251) cell lines, with LC50 values of 1.5 ± 0.5 and 2.0 ± 0.6 pM, respectively, and selectivities of >11.6 versus the isogenic cell lines transfected with and expressing functional BRCA2 and PTEN genes. 3 inhibits the growth of the same

  4. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  5. The mitotic DNA damage checkpoint proteins Rad17 and Rad24 are required for repair of double-strand breaks during meiosis in yeast.

    PubMed Central

    Shinohara, Miki; Sakai, Kazuko; Ogawa, Tomoko; Shinohara, Akira

    2003-01-01

    We show here that deletion of the DNA damage checkpoint genes RAD17 and RAD24 in Saccharomyces cerevisiae delays repair of meiotic double-strand breaks (DSBs) and results in an altered ratio of crossover-to-noncrossover products. These mutations also decrease the colocalization of immunostaining foci of the RecA homologs Rad51 and Dmc1 and cause a delay in the disappearance of Rad51 foci, but not of Dmc1. These observations imply that RAD17 and RAD24 promote efficient repair of meiotic DSBs by facilitating proper assembly of the meiotic recombination complex containing Rad51. Consistent with this proposal, extra copies of RAD51 and RAD54 substantially suppress not only the spore inviability of the rad24 mutant, but also the gamma-ray sensitivity of the mutant. Unexpectedly, the entry into meiosis I (metaphase I) is delayed in the checkpoint single mutants compared to wild type. The control of the cell cycle in response to meiotic DSBs is also discussed. PMID:12871899

  6. Isolation of mammalian cell mutants that are X-ray sensitive, impaired in DNA double-strand break repair and defective for V(D)J recombination.

    PubMed

    Lee, S E; Pulaski, C R; He, D M; Benjamin, D M; Voss, M; Um, J; Hendrickson, E A

    1995-05-01

    The Chinese hamster lung V79-4 cell line was infected with a Moloney murine leukemia retrovirus and the infected cells were subsequently screened for mutants that were sensitive to X-rays using a toothpicking/96-well replica plating technique. Four independent mutants that were sensitive to X-irradiation (sxi-1 to sxi-4) were isolated from 9000 retrovirally infected colonies. A pulse-field gel electrophoresis (PFGE) assay demonstrated that all of the sxi mutants were impaired in DNA double-strand break (DSB) repair, thus providing a molecular explanation for the observed X-ray sensitivity. Interestingly, additional PFGE experiments demonstrated that for any given X-ray dose all of the mutants incurred more DNA DSBs than the parental V79-4 cell line indicating there may be some inherent fragility to sxi chromosomes. Cross-sensitivity to other DNA-damaging agents including bleomycin, mitomycin C and methyl methanesulfonate indicated that sxi-2, sxi-3 and sxi-4 appear to be specifically hypersensitive to genotoxic agents that cause DNA DSBs, whereas sxi-1 appeared to be hypersensitive to multiple types of DNA lesions. Lastly, in preliminary experiments all of the sxi mutants demonstrated an inability to carry out V(D)J recombination, a somatic DNA rearrangement process required for the assembly of lymphoid antigen receptor genes. Thus, the sxi cell lines have interesting phenotypes which should make them valuable tools for unraveling the mechanism(s) of DNA DSB repair and recombination in mammalian cells. PMID:7537861

  7. DNA mismatch repair gene mutations in human cancer.

    PubMed Central

    Peltomäki, P

    1997-01-01

    A new pathogenetic mechanism leading to cancer has been delineated in the past 3 years when human homologues of DNA mismatch repair (MMR) genes have been identified and shown to be involved in various types of cancer. Germline mutations of MMR genes cause susceptibility to a hereditary form of colon cancer, hereditary nonpolyposis colon cancer (HNPCC), which represents one of the most common syndromes associated with cancer predisposition in man. Tumors from HNPCC patients are hypermutable and show length variation at short tandem repeat sequences, a phenomenon referred to as microsatellite instability or replication errors. A similar abnormality is found in a proportion of sporadic tumors of the colorectum as well as a variety of other organs; acquired mutations in MMR genes or other endogenous or exogenous causes may underlie these cases. Genetic and biochemical characterization of the functions of normal and mutated MMR genes elucidates mechanisms of cancer development and provides tools for diagnostic applications. PMID:9255561

  8. A Novel Way Of Repair Of Insulation Breaks During Pacemaker Generator Replacement

    PubMed Central

    Manzoor Ali, Syed; Iqbal, Khurshid; Tramboo, Nisar A; Lone, Aijaz A; Kaul, Suresh; Kaul, Neelam; Hafiz, Imran

    2009-01-01

    Minor abrasions can occur while mobilising old lead during pacemaker generator replacement necesittating placement of additional lead adding to the financial burden and junk in heart. We describe a novel way of repair of old pacemaker lead preventing additional lead placement. PMID:19763196

  9. Overexpression of the scaffold WD40 protein WRAP53β enhances the repair of and cell survival from DNA double-strand breaks.

    PubMed

    Rassoolzadeh, H; Böhm, S; Hedström, E; Gad, H; Helleday, T; Henriksson, S; Farnebo, M

    2016-01-01

    Altered expression of the multifunctional protein WRAP53β (WD40 encoding RNA Antisense to p53), which targets repair factors to DNA double-strand breaks and factors involved in telomere elongation to Cajal bodies, is linked to carcinogenesis. While loss of WRAP53β function has been shown to disrupt processes regulated by this protein, the consequences of its overexpression remain unclear. Here we demonstrate that overexpression of WRAP53β disrupts the formation of and impairs the localization of coilin to Cajal bodies. At the same time, the function of this protein in the repair of DNA double-strand breaks is enhanced. Following irradiation, cells overexpressing WRAP53β exhibit more rapid clearance of phospho-histone H2AX (γH2AX), and more efficient homologous recombination and non-homologous end-joining, in association with fewer DNA breaks. Moreover, in these cells the ubiquitylation of damaged chromatin, which is known to facilitate the recruitment of repair factors and subsequent repair, is elevated. Knockdown of the ubiquitin ligase involved, ring-finger protein 8 (RNF8), which is recruited to DNA breaks by WRAP53β, attenuated this effect, suggesting that overexpression of WRAP53β leads to more rapid repair, as well as improved cell survival, by enhancing RNF8-mediated ubiquitylation at DNA breaks. Our present findings indicate that WRAP53β and RNF8 are rate-limiting factors in the repair of DNA double-strand breaks and raise the possibility that upregulation of WRAP53β may contribute to genomic stability in and survival of cancer cells. PMID:27310875

  10. Overexpression of the scaffold WD40 protein WRAP53β enhances the repair of and cell survival from DNA double-strand breaks.

    PubMed

    Rassoolzadeh, H; Böhm, S; Hedström, E; Gad, H; Helleday, T; Henriksson, S; Farnebo, M

    2016-01-01

    Altered expression of the multifunctional protein WRAP53β (WD40 encoding RNA Antisense to p53), which targets repair factors to DNA double-strand breaks and factors involved in telomere elongation to Cajal bodies, is linked to carcinogenesis. While loss of WRAP53β function has been shown to disrupt processes regulated by this protein, the consequences of its overexpression remain unclear. Here we demonstrate that overexpression of WRAP53β disrupts the formation of and impairs the localization of coilin to Cajal bodies. At the same time, the function of this protein in the repair of DNA double-strand breaks is enhanced. Following irradiation, cells overexpressing WRAP53β exhibit more rapid clearance of phospho-histone H2AX (γH2AX), and more efficient homologous recombination and non-homologous end-joining, in association with fewer DNA breaks. Moreover, in these cells the ubiquitylation of damaged chromatin, which is known to facilitate the recruitment of repair factors and subsequent repair, is elevated. Knockdown of the ubiquitin ligase involved, ring-finger protein 8 (RNF8), which is recruited to DNA breaks by WRAP53β, attenuated this effect, suggesting that overexpression of WRAP53β leads to more rapid repair, as well as improved cell survival, by enhancing RNF8-mediated ubiquitylation at DNA breaks. Our present findings indicate that WRAP53β and RNF8 are rate-limiting factors in the repair of DNA double-strand breaks and raise the possibility that upregulation of WRAP53β may contribute to genomic stability in and survival of cancer cells.

  11. Protein phosphatases pph3, ptc2, and ptc3 play redundant roles in DNA double-strand break repair by homologous recombination.

    PubMed

    Kim, Jung-Ae; Hicks, Wade M; Li, Jin; Tay, Sue Yen; Haber, James E

    2011-02-01

    In response to a DNA double-strand break (DSB), cells undergo a transient cell cycle arrest prior to mitosis until the break is repaired. In budding yeast (Saccharomyces cerevisiae), the DNA damage checkpoint is regulated by a signaling cascade of protein kinases, including Mec1 and Rad53. When DSB repair is complete, cells resume cell cycle progression (a process called "recovery") by turning off the checkpoint. Recovery involves two members of the protein phosphatase 2C (PP2C) family, Ptc2 and Ptc3, as well as the protein phosphatase 4 (PP4) enzyme, Pph3. Here, we demonstrate a new function of these three phosphatases in DSB repair. Cells lacking all three phosphatases Pph3, Ptc2, and Ptc3 exhibit synergistic sensitivities to the DNA-damaging agents camptothecin and methyl methanesulfonate, as well as hydroxyurea but not to UV light. Moreover, the simultaneous absence of Pph3, Ptc2, and Ptc3 results in defects in completing DSB repair, whereas neither single nor double deletion of the phosphatases causes a repair defect. Specifically, cells lacking all three phosphatases are defective in the repair-mediated DNA synthesis. Interestingly, the repair defect caused by the triple deletion of Pph3, Ptc2, and Ptc3 is most prominent when a DSB is slowly repaired and the DNA damage checkpoint is fully activated.

  12. Genetic Polymorphisms in DNA Repair Genes as Modulators of Hodgkin Disease Risk

    PubMed Central

    El-Zein, Randa; Monroy, Claudia M.; Etzel, Carol J.; Cortes, Andrea C.; Xing, Yun; Collier, Amanda L.; Strom, Sara S.

    2009-01-01

    BACKGROUND Although the pathogenesis of Hodgkin disease (HD) remains unknown, the results of epidemiologic studies suggest that heritable factors are important in terms of susceptibility. Polymorphisms in DNA repair genes may contribute to individual susceptibility for development of different cancers. However, to the authors’ knowledge, few studies to date have investigated the role of such polymorphisms as risk factors for development of HD. METHODS The authors evaluated the relation between polymorphisms in 3 nucleotide excision repair pathway genes (XPD [Lys751Gln], XPC [Lys939Gln], and XPG [Asp1104His]), the base excision repair XRCC1 (Arg399Gln), and double-strand break repair XRCC3 (Thr241Met) in a population of 200 HD cases and 220 matched controls. Variants were investigated independently and in combination; odd ratios (OR) were calculated. RESULTS A positive association was found for XRCC1 gene polymorphism Arg399Gln (OR, 1.77; 95% confidence interval [95% CI], 1.16−2.71) and risk of HD. The combined analysis demonstrated that XRCC1/XRCC3 and XRCC1/XPC polymorphisms were associated with a significant increase in HD risk. XRCC1 Arg/Arg and XRCC3 Thr/Met genotypes combined were associated with an OR of 2.38 (95% CI, 1.24−4.55). The XRCC1 Arg/Gln and XRCC3 Thr/Thr, Thr/Met, and Met/Met genotypes had ORs of 1.88 (95% CI, 1.02−4.10), 1.97 (95% CI, 1.05−3.73), and 4.13 (95% CI, 1.50−11.33), respectively. XRCC1 Gln/Gln and XRCC3 Thr/Thr variant led to a significant increase in risk, with ORs of 3.00 (95% CI, 1.15−7.80). Similarly, XRCC1 Arg/Gln together with XPC Lys/Lys was found to significantly increase the risk of HD (OR, 2.14; 95% CI, 1.09−4.23). CONCLUSIONS These data suggest that genetic polymorphisms in DNA repair genes may modify the risk of HD, especially when interactions between the pathways are considered. PMID:19280628

  13. Radiation-Induced Upregulation of Gene Expression From Adenoviral Vectors Mediated by DNA Damage Repair and Regulation

    SciTech Connect

    Nokisalmi, Petri; Rajecki, Maria; Pesonen, Sari; Escutenaire, Sophie; Soliymani, Rabah; Tenhunen, Mikko; Ahtiainen, Laura; Hemminki, Akseli

    2012-05-01

    Purpose: In the present study, we evaluated the combination of replication-deficient adenoviruses and radiotherapy in vitro. The purpose of the present study was to analyze the mechanism of radiation-mediated upregulation of adenoviral transgene expression. Methods and Materials: Adenoviral transgene expression (luciferase or green fluorescent protein) was studied with and without radiation in three cell lines: breast cancer M4A4-LM3, prostate cancer PC-3MM2, and lung cancer LNM35/enhanced green fluorescent protein. The effect of the radiation dose, modification of the viral capsid, and five different transgene promoters were studied. The cellular responses were studied using mass spectrometry and immunofluorescence analysis. Double strand break repair was modulated by inhibitors of heat shock protein 90, topoisomerase-I, and DNA protein kinase, and transgene expression was measured. Results: We found that a wide range of radiation doses increased adenoviral transgene expression regardless of the cell line, transgene, promoter, or viral capsid modification. Treatment with adenovirus, radiation, and double strand break repair inhibitors resulted in persistence of double strand breaks and subsequent increases in adenovirus transgene expression. Conclusions: Radiation-induced enhancement of adenoviral transgene expression is linked to DNA damage recognition and repair. Radiation induces a global cellular response that results in increased production of RNA and proteins, including adenoviral transgene products. This study provides a mechanistic rationale for combining radiation with adenoviral gene delivery.

  14. A modified and automated version of the 'Fluorimetric Detection of Alkaline DNA Unwinding' method to quantify formation and repair of DNA strand breaks

    PubMed Central

    Moreno-Villanueva, María; Pfeiffer, Ragen; Sindlinger, Thilo; Leake, Alan; Müller, Marcus; Kirkwood, Thomas BL; Bürkle, Alexander

    2009-01-01

    Background Formation and repair of DNA single-strand breaks are important parameters in the assessment of DNA damage and repair occurring in live cells. The 'Fluorimetric Detection of Alkaline DNA Unwinding (FADU)' method [Birnboim HC, Jevcak JJ. Cancer Res (1981) 41:1889–1892] is a sensitive procedure to quantify DNA strand breaks, yet it is very tedious to perform. Results In order (i) to render the FADU assay more convenient and robust, (ii) to increase throughput, and (iii) to reduce the number of cells needed, we have established a modified assay version that is largely automated and is based on the use of a liquid handling device. The assay is operated in a 96-well format, thus greatly increasing throughput. The number of cells required has been reduced to less than 10,000 per data point. The threshold for detection of X-ray-induced DNA strand breaks is 0.13 Gy. The total assay time required for a typical experiment to assess DNA strand break repair is 4–5 hours. Conclusion We have established a robust and convenient method measuring of formation and repair of DNA single-strand breaks in live cells. While the sensitivity of our method is comparable to current assays, throughput is massively increased while operator time is decreased. PMID:19389244

  15. Temporal and Spatial Uncoupling of DNA Double Strand Break Repair Pathways within Mammalian Heterochromatin.

    PubMed

    Tsouroula, Katerina; Furst, Audrey; Rogier, Melanie; Heyer, Vincent; Maglott-Roth, Anne; Ferrand, Alexia; Reina-San-Martin, Bernardo; Soutoglou, Evi

    2016-07-21

    Repetitive DNA is packaged into heterochromatin to maintain its integrity. We use CRISPR/Cas9 to induce DSBs in different mammalian heterochromatin structures. We demonstrate that in pericentric heterochromatin, DSBs are positionally stable in G1 and recruit NHEJ factors. In S/G2, DSBs are resected and relocate to the periphery of heterochromatin, where they are retained by RAD51. This is independent of chromatin relaxation but requires end resection and RAD51 exclusion from the core. DSBs that fail to relocate are engaged by NHEJ or SSA proteins. We propose that the spatial disconnection between end resection and RAD51 binding prevents the activation of mutagenic pathways and illegitimate recombination. Interestingly, in centromeric heterochromatin, DSBs recruit both NHEJ and HR proteins throughout the cell cycle. Our results highlight striking differences in the recruitment of DNA repair factors between pericentric and centromeric heterochromatin and suggest a model in which the commitment to specific DNA repair pathways regulates DSB position.

  16. A moonlighting metabolic protein influences repair at DNA double-stranded breaks

    PubMed Central

    Torres-Machorro, Ana Lilia; Aris, John P.; Pillus, Lorraine

    2015-01-01

    Catalytically active proteins with divergent dual functions are often described as ‘moonlighting’. In this work we characterize a new, chromatin-based function of Lys20, a moonlighting protein that is well known for its role in metabolism. Lys20 was initially described as homocitrate synthase (HCS), the first enzyme in the lysine biosynthetic pathway in yeast. Its nuclear localization led to the discovery of a key role for Lys20 in DNA damage repair through its interaction with the MYST family histone acetyltransferase Esa1. Overexpression of Lys20 promotes suppression of DNA damage sensitivity of esa1 mutants. In this work, by taking advantage of LYS20 mutants that are active in repair but not in lysine biosynthesis, the mechanism of suppression of esa1 was characterized. First we analyzed the chromatin landscape of esa1 cells, finding impaired histone acetylation and eviction. Lys20 was recruited to sites of DNA damage, and its overexpression promoted enhanced recruitment of the INO80 remodeling complex to restore normal histone eviction at the damage sites. This study improves understanding of the evolutionary, structural and biological relevance of independent activities in a moonlighting protein and links metabolism to DNA damage repair. PMID:25628362

  17. Homologous recombination contributes to the repair of DNA double-strand breaks induced by high-energy iron ions

    SciTech Connect

    Zafar, Faria; Seidler, Sara B.; Kronenberg, Amy; Schild, David; Wiese, Claudia

    2010-06-29

    To test the contribution of homologous recombinational repair (HRR) in repairing DNA damaged sites induced by high-energy iron ions, we used: (1) HRR-deficient rodent cells carrying a deletion in the RAD51D gene and (2) syngeneic human cells impaired for HRR by RAD51D or RAD51 knockdown using RNA interference. We show that in response to iron ions, HRR contributes to cell survival in rodent cells, and that HRR-deficiency abrogates RAD51 foci formation. Complementation of the HRR defect by human RAD51D rescues both enhanced cytotoxicity and RAD51 foci formation. For human cells irradiated with iron ions, cell survival is decreased, and, in p53 mutant cells, the levels of mutagenesis are increased when HRR is impaired. Human cells synchronized in S phase exhibit more pronounced resistance to iron ions as compared with cells in G1 phase, and this increase in radioresistance is diminished by RAD51 knockdown. These results implicate a role for RAD51-mediated DNA repair (i.e. HRR) in removing a fraction of clustered lesions induced by charged particle irradiation. Our results are the first to directly show the requirement for an intact HRR pathway in human cells in ensuring DNA repair and cell survival in response to high-energy high LET radiation.

  18. Double-strand-break repair recombination in Escherichia coli: physical evidence for a DNA replication mechanism in vivo

    PubMed Central

    Motamedi, Mohammad R.; Szigety, Susan K.; Rosenberg, Susan M.

    1999-01-01

    DNA double-strand-break repair (DSBR) is, in many organisms, accomplished by homologous recombination. In Escherichia coli DSBR was thought to result from breakage and reunion of parental DNA molecules, assisted by known endonucleases, the Holliday junction resolvases. Under special circumstances, for example, SOS induction, recombination forks were proposed to initiate replication. We provide physical evidence that this is a major alternative mechanism in which replication copies information from one chromosome to another generating recombinant chromosomes in normal cells in vivo. This alternative mechanism can occur independently of known Holliday junction cleaving proteins, requires DNA polymerase III, and produces recombined DNA molecules that carry newly replicated DNA. The replicational mechanism underlies about half the recombination of linear DNA in E. coli; the other half occurs by breakage and reunion, which we show requires resolvases, and is replication-independent. The data also indicate that accumulation of recombination intermediates promotes replication dramatically. PMID:10557215

  19. Regulation of the Saccharomyces cerevisiae DNA repair gene RAD16.

    PubMed Central

    Bang, D D; Timmermans, V; Verhage, R; Zeeman, A M; van de Putte, P; Brouwer, J

    1995-01-01

    The RAD16 gene product has been shown to be essential for the repair of the silenced mating type loci [Bang et al. (1992) Nucleic Acids Res. 20, 3925-3931]. More recently we demonstrated that the RAD16 and RAD7 proteins are also required for repair of non-transcribed strands of active genes in Saccharomyces cerevisiae [Waters et al. (1993) Mol. Gen. Genet. 239, 28-32]. We have studied the regulation of the RAD16 gene and found that the RAD16 transcript levels increased up to 7-fold upon UV irradiation. Heat shock at 42 degrees C also results in elevated levels of RAD16 mRNA. In sporulating MAT alpha/MATa diploid cells RAD16 mRNA is also induced. The basal level of the RAD16 transcript is constant during the mitotic cell cycle. G1-arrested cells show normal induction of RAD16 mRNA upon UV irradiation demonstrating that the induction is not a secondary consequence of G2 cell cycle arrest following UV irradiation. However, in cells arrested in G1 the induction of RAD16 mRNA after UV irradiation is not followed by a rapid decline as occurs in normal growing cells suggesting that the down regulation of RAD16 transcription is dependent on progression into the cell cycle. Images PMID:7784171

  20. Regulation of the Saccharomyces cerevisiae DNA repair gene RAD16.

    PubMed

    Bang, D D; Timmermans, V; Verhage, R; Zeeman, A M; van de Putte, P; Brouwer, J

    1995-05-25

    The RAD16 gene product has been shown to be essential for the repair of the silenced mating type loci [Bang et al. (1992) Nucleic Acids Res. 20, 3925-3931]. More recently we demonstrated that the RAD16 and RAD7 proteins are also required for repair of non-transcribed strands of active genes in Saccharomyces cerevisiae [Waters et al. (1993) Mol. Gen. Genet. 239, 28-32]. We have studied the regulation of the RAD16 gene and found that the RAD16 transcript levels increased up to 7-fold upon UV irradiation. Heat shock at 42 degrees C also results in elevated levels of RAD16 mRNA. In sporulating MAT alpha/MATa diploid cells RAD16 mRNA is also induced. The basal level of the RAD16 transcript is constant during the mitotic cell cycle. G1-arrested cells show normal induction of RAD16 mRNA upon UV irradiation demonstrating that the induction is not a secondary consequence of G2 cell cycle arrest following UV irradiation. However, in cells arrested in G1 the induction of RAD16 mRNA after UV irradiation is not followed by a rapid decline as occurs in normal growing cells suggesting that the down regulation of RAD16 transcription is dependent on progression into the cell cycle.

  1. Melatonin sensitizes human breast cancer cells to ionizing radiation by downregulating proteins involved in double-strand DNA break repair.

    PubMed

    Alonso-González, Carolina; González, Alicia; Martínez-Campa, Carlos; Gómez-Arozamena, José; Cos, Samuel

    2015-03-01

    Radiation and adjuvant endocrine therapy are nowadays considered a standard treatment option after surgery in breast cancer. Melatonin exerts oncostatic actions on human breast cancer cells. In the current study, we investigated the effects of a combination of radiotherapy and melatonin on human breast cancer cells. Melatonin (1 mm, 10 μm and 1 nm) significantly inhibited the proliferation of MCF-7 cells. Radiation alone inhibited the MCF-7 cell proliferation in a dose-dependent manner. Pretreatment of breast cancer cells with melatonin 1 wk before radiation led to a significantly greater decrease of MCF-7 cell proliferation compared with radiation alone. Melatonin pretreatment before radiation also decreased G2 -M phase arrest compared with irradiation alone, with a higher percentage of cells in the G0 -G1 phase and a lower percentage of cells in S phase. Radiation alone diminished RAD51 and DNA-protein kinase (PKcs) mRNA expression, two main proteins involved in double-strand DNA break repair. Treatment with melatonin for 7 days before radiation led to a significantly greater decrease in RAD51 and DNA-PKcs mRNA expression compared with radiation alone. Our findings suggest that melatonin pretreatment before radiation sensitizes breast cancer cells to the ionizing effects of radiation by decreasing cell proliferation, inducing cell cycle arrest and downregulating proteins involved in double-strand DNA break repair. These findings may have implications for designing clinical trials using melatonin and radiotherapy. PMID:25623566

  2. Review: Clinical aspects of hereditary DNA Mismatch repair gene mutations.

    PubMed

    Sijmons, Rolf H; Hofstra, Robert M W

    2016-02-01

    Inherited mutations of the DNA Mismatch repair genes MLH1, MSH2, MSH6 and PMS2 can result in two hereditary tumor syndromes: the adult-onset autosomal dominant Lynch syndrome, previously referred to as Hereditary Non-Polyposis Colorectal Cancer (HNPCC) and the childhood-onset autosomal recessive Constitutional Mismatch Repair Deficiency syndrome. Both conditions are important to recognize clinically as their identification has direct consequences for clinical management and allows targeted preventive actions in mutation carriers. Lynch syndrome is one of the more common adult-onset hereditary tumor syndromes, with thousands of patients reported to date. Its tumor spectrum is well established and includes colorectal cancer, endometrial cancer and a range of other cancer types. However, surveillance for cancers other than colorectal cancer is still of uncertain value. Prophylactic surgery, especially for the uterus and its adnexa is an option in female mutation carriers. Chemoprevention of colorectal cancer with aspirin is actively being investigated in this syndrome and shows promising results. In contrast, the Constitutional Mismatch Repair Deficiency syndrome is rare, features a wide spectrum of childhood onset cancers, many of which are brain tumors with high mortality rates. Future studies are very much needed to improve the care for patients with this severe disorder. PMID:26746812

  3. ATM protein is indispensable to repair complex-type DNA double strand breaks induced by high LET heavy ion irradiation.

    NASA Astrophysics Data System (ADS)

    Sekine, Emiko; Yu, Dong; Fujimori, Akira; Anzai, Kazunori; Okayasu, Ryuichi

    ATM (ataxia telangiectasia-mutated) protein responsible for a rare genetic disease with hyperradiosensitivity, is the one of the earliest repair proteins sensing DNA double-strand breaks (DSB). ATM is known to phosphorylate DNA repair proteins such as MRN complex (Mre11, Rad50 and NBS1), 53BP1, Artemis, Brca1, gamma-H2AX, and MDC. We studied the interactions between ATM and DNA-PKcs, a crucial NHEJ repair protein, after cells exposure to high and low LET irradiation. Normal human (HFL III, MRC5VA) and AT homozygote (AT2KY, AT5BIVA, AT3BIVA) cells were irradiated with X-rays and high LET radiation (carbon ions: 290MeV/n initial energy at 70 keV/um, and iron ions: 500MeV/n initial energy at 200KeV/um), and several critical end points were examined. AT cells with high LET irradiation showed a significantly higher radiosensitivity when compared with normal cells. The behavior of DNA DSB repair was monitored by immuno-fluorescence techniques using DNA-PKcs (pThr2609, pSer2056) and ATM (pSer1981) antibodies. In normal cells, the phosphorylation of DNA-PKcs was clearly detected after high LET irradiation, though the peak of phosphorylation was delayed when compared to X-irradiation. In contrast, almost no DNA-PKcs phosphorylation foci were detected in AT cells irradiated with high LET radiation. A similar result was also observed in normal cells treated with 10 uM ATM kinase specific inhibitor (KU55933) one hour before irradiation. These data suggest that the phosphorylation of DNA-PKcs with low LET X-rays is mostly ATM-independent, and the phosphorylation of DNA-PKcs with high LET radiation seems to require ATM probably due to its complex nature of DSB induced. Our study indicates that high LET heavy ion irradiation which we can observe in the space environment would provide a useful tool to study the fundamental mechanism associated with DNA DSB repair.

  4. Mitosis, double strand break repair, and telomeres: a view from the end: how telomeres and the DNA damage response cooperate during mitosis to maintain genome stability.

    PubMed

    Cesare, Anthony J

    2014-11-01

    Double strand break (DSB) repair is suppressed during mitosis because RNF8 and downstream DNA damage response (DDR) factors, including 53BP1, do not localize to mitotic chromatin. Discovery of the mitotic kinase-dependent mechanism that inhibits DSB repair during cell division was recently reported. It was shown that restoring mitotic DSB repair was detrimental, resulting in repair dependent genome instability and covalent telomere fusions. The telomere DDR that occurs naturally during cellular aging and in cancer is known to be refractory to G2/M checkpoint activation. Such DDR-positive telomeres, and those that occur as part of the telomere-dependent prolonged mitotic arrest checkpoint, normally pass through mitosis without covalent ligation, but result in cell growth arrest in G1 phase. The discovery that suppressing DSB repair during mitosis may function primarily to protect DDR-positive telomeres from fusing during cell division reinforces the unique cooperation between telomeres and the DDR to mediate tumor suppression.

  5. Opposing roles of RNF8/RNF168 and deubiquitinating enzymes in ubiquitination-dependent DNA double-strand break response signaling and DNA-repair pathway choice

    PubMed Central

    Nakada, Shinichiro

    2016-01-01

    The E3 ubiquitin ligases ring finger protein (RNF) 8 and RNF168 transduce the DNA double-strand break (DSB) response (DDR) signal by ubiquitinating DSB sites. The depletion of RNF8 or RNF168 suppresses the accumulation of DNA-repair regulating factors such as 53BP1 and RAP80 at DSB sites, suggesting roles for RNF8- and RNF168-mediated ubiquitination in DSB repair. This mini-review provides a brief overview of the RNF8- and RNF168-dependent DDR-signaling and DNA-repair pathways. The choice of DNA-repair pathway when RNF8- and RNF168-mediated ubiquitination-dependent DDR signaling is negatively regulated by deubiquitinating enzymes (DUBs) is reviewed to clarify how the opposing roles of RNF8/RNF168 and DUBs regulate ubiquitination-dependent DDR signaling and the choice of DNA-repair pathway. PMID:26983989

  6. SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint

    PubMed Central

    Carvalho, Sílvia; Vítor, Alexandra C; Sridhara, Sreerama C; Martins, Filipa B; Raposo, Ana C; Desterro, Joana MP; Ferreira, João; de Almeida, Sérgio F

    2014-01-01

    Histone modifications establish the chromatin states that coordinate the DNA damage response. In this study, we show that SETD2, the enzyme that trimethylates histone H3 lysine 36 (H3K36me3), is required for ATM activation upon DNA double-strand breaks (DSBs). Moreover, we find that SETD2 is necessary for homologous recombination repair of DSBs by promoting the formation of RAD51 presynaptic filaments. In agreement, SETD2-mutant clear cell renal cell carcinoma (ccRCC) cells displayed impaired DNA damage signaling. However, despite the persistence of DNA lesions, SETD2-deficient cells failed to activate p53, a master guardian of the genome rarely mutated in ccRCC and showed decreased cell survival after DNA damage. We propose that this novel SETD2-dependent role provides a chromatin bookmarking instrument that facilitates signaling and repair of DSBs. In ccRCC, loss of SETD2 may afford an alternative mechanism for the inactivation of the p53-mediated checkpoint without the need for additional genetic mutations in TP53. DOI: http://dx.doi.org/10.7554/eLife.02482.001 PMID:24843002

  7. Bevacizumab radiosensitizes non-small cell lung cancer xenografts by inhibiting DNA double-strand break repair in endothelial cells.

    PubMed

    Gao, Hui; Xue, Jianxin; Zhou, Lin; Lan, Jie; He, Jiazhuo; Na, Feifei; Yang, Lifei; Deng, Lei; Lu, You

    2015-08-28

    The aims of this study were to evaluate the effects of biweekly bevacizumab administration on a tumor microenvironment and to investigate the mechanisms of radiosensitization that were induced by it. Briefly, bevacizumab was administered intravenously to Balb/c nude mice bearing non-small cell lung cancer (NSCLC) H1975 xenografts; in addition, bevacizumab was added to NSCLC or endothelial cells (ECs) in vitro, followed by irradiation (IR). The anti-tumor efficacy, anti-angiogenic efficacy and repair of DNA double-strand breaks (DSBs) were evaluated. The activation of signaling pathways was determined using immunoprecipitation (IP) and WB analyses. Finally, biweekly bevacizumab administration inhibited the growth of H1975 xenografts and induced vascular normalization periodically. Bevacizumab more significantly increased cellular DSB and EC apoptosis when administered 1 h prior to 12 Gy/1f IR than when administered 5 days prior to IR, thereby inhibiting tumor angiogenesis and growth. In vitro, bevacizumab more effectively increased DSBs and apoptosis prior to IR and inhibited the clonogenic survival of ECs but not NSCLC cells. Using IP and WB analyses, we confirmed that bevacizumab can directly inhibit the phosphorylation of components of the VEGR2/PI3K/Akt/DNA-PKcs signaling pathway that are induced by IR in ECs. In conclusion, bevacizumab radiosensitizes NSCLC xenografts mainly by inhibiting DSB repair in ECs rather than by inducing vascular normalization.

  8. Dynamic formation of RecA filaments at DNA double strand break repair centers in live cells.

    PubMed

    Kidane, Dawit; Graumann, Peter L

    2005-08-01

    We show that RecN protein is recruited to a defined DNA double strand break (DSB) in Bacillus subtilis cells at an early time point during repair. Because RecO and RecF are successively recruited to DSBs, it is now clear that dynamic DSB repair centers (RCs) exist in prokaryotes. RecA protein was also recruited to RCs and formed highly dynamic filamentous structures, which we term threads, across the nucleoids. Formation of RecA threads commenced approximately 30 min after the induction of DSBs, after RecN recruitment to RCs, and disassembled after 2 h. Time-lapse microscopy showed that the threads rapidly changed in length, shape, and orientation within minutes and can extend at 1.02 microm/min. The formation of RecA threads was abolished in recJ addAB mutant cells but not in each of the single mutants, suggesting that RecA filaments can be initiated via two pathways. Contrary to proteins forming RCs, DNA polymerase I did not form foci but was present throughout the nucleoids (even after induction of DSBs or after UV irradiation), suggesting that it continuously scans the chromosome for DNA lesions. PMID:16061691

  9. Topoisomerase 1 and single-strand break repair modulate transcription-induced CAG repeat contraction in human cells.

    PubMed

    Hubert, Leroy; Lin, Yunfu; Dion, Vincent; Wilson, John H

    2011-08-01

    Expanded trinucleotide repeats are responsible for a number of neurodegenerative diseases, such as Huntington disease and myotonic dystrophy type 1. The mechanisms that underlie repeat instability in the germ line and in the somatic tissues of human patients are undefined. Using a selection assay based on contraction of CAG repeat tracts in human cells, we screened the Prestwick chemical library in a moderately high-throughput assay and identified 18 novel inducers of repeat contraction. A subset of these compounds targeted pathways involved in the management of DNA supercoiling associated with transcription. Further analyses using both small molecule inhibitors and small interfering RNA (siRNA)-mediated knockdowns demonstrated the involvement of topoisomerase 1 (TOP1), tyrosyl-DNA phosphodiesterase 1 (TDP1), and single-strand break repair (SSBR) in modulating transcription-dependent CAG repeat contractions. The TOP1-TDP1-SSBR pathway normally functions to suppress repeat instability, since interfering with it stimulated repeat contractions. We further showed that the increase in repeat contractions when the TOP1-TDP1-SSBR pathway is compromised arises via transcription-coupled nucleotide excision repair, a previously identified contributor to transcription-induced repeat instability. These studies broaden the scope of pathways involved in transcription-induced CAG repeat instability and begin to define their interrelationships. PMID:21628532

  10. RRP6/EXOSC10 is required for the repair of DNA double-strand breaks by homologous recombination.

    PubMed

    Marin-Vicente, Consuelo; Domingo-Prim, Judit; Eberle, Andrea B; Visa, Neus

    2015-03-15

    The exosome acts on different RNA substrates and plays important roles in RNA metabolism. The fact that short non-coding RNAs are involved in the DNA damage response led us to investigate whether the exosome factor RRP6 of Drosophila melanogaster and its human ortholog EXOSC10 play a role in DNA repair. Here, we show that RRP6 and EXOSC10 are recruited to DNA double-strand breaks (DSBs) in S2 cells and HeLa cells, respectively. Depletion of RRP6/EXOSC10 does not interfere with the phosphorylation of the histone variant H2Av (Drosophila) or H2AX (humans), but impairs the recruitment of the homologous recombination factor RAD51 to the damaged sites, without affecting RAD51 levels. The recruitment of RAD51 to DSBs in S2 cells is also inhibited by overexpression of RRP6-Y361A-V5, a catalytically inactive RRP6 mutant. Furthermore, cells depleted of RRP6 or EXOSC10 are more sensitive to radiation, which is consistent with RRP6/EXOSC10 playing a role in DNA repair. RRP6/EXOSC10 can be co-immunoprecipitated with RAD51, which links RRP6/EXOSC10 to the homologous recombination pathway. Taken together, our results suggest that the ribonucleolytic activity of RRP6/EXOSC10 is required for the recruitment of RAD51 to DSBs.

  11. Simulated microgravity influenced the expression of DNA damage repair genes

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Jiawei, Liu; Wang, Ting

    2016-07-01

    Ionizing radiation and microgravity were considered to be the most important stress factors of space environmental the respective study of the biological effects of the radiation and microgravity carried out earlier, but the interaction of the effects of radiation with microgravity started later, and due to difference of the materials and methods the result of this experiment were not consistent. To further investigate the influence of microgravity on the expression of the radiation damage repair genes, the seed of Arabidopsis (Col) and its gravity-insensitive mutant (PIN2) were exposed to 0.1Gy of the dose of energetic carbon-ion beam radiation (LET = 30KeV / μm), and the germinated seed were than fixed in the 3D random positioning apparatus immediately for a 10-day simulated microgravity. By measuring the deflection angle of root tip and the changes of the expression of Ku70 and RAD51 protein, we investigated the impact of microgravity effect on radiation damage repair systems. The results shown that radiation, microgravity and microgravity with radiation could increase the angle of the root of the Col significantly, but no obvious effect on PIN2 type. The radiation could increase the expression of Ku70 significantly in both Col and PIN2, microgravity does not affect the expression, but the microgravity with radiation could decrease the expression of Ku70. This result shown that the microgravity could influence the radiation damage repair systems in molecular level. Moreover, our findings were important to understand the molecular mechanism of the impact of microgravity effect on radiation damage repair systems in vivo.

  12. Polymorphism of the DNA Base Excision Repair Genes in Keratoconus

    PubMed Central

    Wojcik, Katarzyna A.; Synowiec, Ewelina; Sobierajczyk, Katarzyna; Izdebska, Justyna; Blasiak, Janusz; Szaflik, Jerzy; Szaflik, Jacek P.

    2014-01-01

    Keratoconus (KC) is a degenerative corneal disorder for which the exact pathogenesis is not yet known. Oxidative stress is reported to be associated with this disease. The stress may damage corneal biomolecules, including DNA, and such damage is primarily removed by base excision repair (BER). Variation in genes encoding BER components may influence the effectiveness of corneal cells to cope with oxidative stress. In the present work we genotyped 5 polymorphisms of 4 BER genes in 284 patients and 353 controls. The A/A genotype of the c.–1370T>A polymorphism of the DNA polymerase γ (POLG) gene was associated with increased occurrence of KC, while the A/T genotype was associated with decreased occurrence of KC. The A/G genotype and the A allele of the c.1196A>G polymorphism of the X-ray repair cross-complementing group 1 (XRCC1) were associated with increased, and the G/G genotype and the G allele, with decreased KC occurrence. Also, the C/T and T as well as C/C genotypes and alleles of the c.580C>T polymorphism of the same gene displayed relationship with KC occurrence. Neither the g.46438521G>C polymorphism of the Nei endonuclease VIII-like 1 (NEIL1) nor the c.2285T>C polymorphism of the poly(ADP-ribose) polymerase-1 (PARP-1) was associated with KC. In conclusion, the variability of the XRCC1 and POLG genes may play a role in KC pathogenesis and determine the risk of this disease. PMID:25356504

  13. I-SceI-mediated double-strand DNA breaks stimulate efficient gene targeting in the industrial fungus Trichoderma reesei.

    PubMed

    Ouedraogo, Jean Paul; Arentshorst, Mark; Nikolaev, Igor; Barends, Sharief; Ram, Arthur F J

    2015-12-01

    Targeted integration of expression cassettes for enzyme production in industrial microorganisms is desirable especially when enzyme variants are screened for improved enzymatic properties. However, currently used methods for targeted integration are inefficient and result in low transformation frequencies. In this study, we expressed the Saccharomyces cerevisiae I-SceI meganuclease to generate double-strand breaks at a defined locus in the Trichoderma reesei genome. We showed that the double-strand DNA breaks mediated by I-SceI can be efficiently repaired when an exogenous DNA cassette flanked by regions homologous to the I-SceI landing locus was added during transformation. Transformation efficiencies increased approximately sixfold compared to control transformation. Analysis of the transformants obtained via I-SceI-mediated gene targeting showed that about two thirds of the transformants resulted from a homologous recombination event at the predetermined locus. Counter selection of the transformants for the loss of the pyrG marker upon integration of the DNA cassette showed that almost all of the clones contained the cassette at the predetermined locus. Analysis of independently obtained transformants using targeted integration of a glucoamylase expression cassette demonstrated that glucoamylase production among the transformants was high and showing limited variation. In conclusion, the gene targeting system developed in this study significantly increases transformation efficiency as well as homologous recombination efficiency and omits the use of Δku70 strains. It is also suitable for high-throughput screening of enzyme variants or gene libraries in T. reesei.

  14. NKX3.1 Suppresses TMPRSS2-ERG Gene Rearrangement and Mediates Repair of Androgen Receptor-Induced DNA Damage

    PubMed Central

    Bowen, Cai; Zheng, Tian; Gelmann, Edward P.

    2015-01-01

    TMPRSS2 gene rearrangements occur at DNA breaks formed during androgen receptor-mediated transcription and activate expression of ETS transcription factors at the early stages of more than half of prostate cancers. NKX3.1, a prostate tumor suppressor that accelerates the DNA repair response, binds to androgen receptor at the ERG gene breakpoint and inhibits both the juxtaposition of the TMPRSS2 and ERG gene loci and also their recombination. NKX3.1 acts by accelerating DNA repair after androgen-induced transcriptional activation. NKX3.1 influences the recruitment of proteins that promote homology-directed DNA repair. Loss of NKX3.1 favors recruitment to the ERG gene breakpoint of proteins that promote error-prone nonhomologous end-joining. Analysis of prostate cancer tissues showed that the presence of a TMPRSS2-ERG rearrangement was highly correlated with lower levels of NKX3.1 expression consistent with the role of NKX3.1 as a suppressor of the pathogenic gene rearrangement. PMID:25977336

  15. Role for the Mammalian Swi5-Sfr1 Complex in DNA Strand Break Repair through Homologous Recombination

    PubMed Central

    Akamatsu, Yufuko; Jasin, Maria

    2010-01-01

    In fission yeast, the Swi5-Sfr1 complex plays an important role in homologous recombination (HR), a pathway crucial for the maintenance of genomic integrity. Here we identify and characterize mammalian Swi5 and Sfr1 homologues. Mouse Swi5 and Sfr1 are nuclear proteins that form a complex in vivo and in vitro. Swi5 interacts in vitro with Rad51, the DNA strand-exchange protein which functions during HR. By generating Swi5−/− and Sfr1−/− embryonic stem cell lines, we found that both proteins are mutually interdependent for their stability. Importantly, the Swi5-Sfr1 complex plays a role in HR when Rad51 function is perturbed in vivo by expression of a BRC peptide from BRCA2. Swi5−/− and Sfr1−/− cells are selectively sensitive to agents that cause DNA strand breaks, in particular ionizing radiation, camptothecin, and the Parp inhibitor olaparib. Consistent with a role in HR, sister chromatid exchange induced by Parp inhibition is attenuated in Swi5−/− and Sfr1−/− cells, and chromosome aberrations are increased. Thus, Swi5-Sfr1 is a newly identified complex required for genomic integrity in mammalian cells with a specific role in the repair of DNA strand breaks. PMID:20976249

  16. Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells

    PubMed Central

    Nassour, Joe; Martien, Sébastien; Martin, Nathalie; Deruy, Emeric; Tomellini, Elisa; Malaquin, Nicolas; Bouali, Fatima; Sabatier, Laure; Wernert, Nicolas; Pinte, Sébastien; Gilson, Eric; Pourtier, Albin; Pluquet, Olivier; Abbadie, Corinne

    2016-01-01

    The main characteristic of senescence is its stability which relies on the persistence of DNA damage. We show that unlike fibroblasts, senescent epithelial cells do not activate an ATM-or ATR-dependent DNA damage response (DDR), but accumulate oxidative-stress-induced DNA single-strand breaks (SSBs). These breaks remain unrepaired because of a decrease in PARP1 expression and activity. This leads to the formation of abnormally large and persistent XRCC1 foci that engage a signalling cascade involving the p38MAPK and leading to p16 upregulation and cell cycle arrest. Importantly, the default in SSB repair also leads to the emergence of post-senescent transformed and mutated precancerous cells. In human-aged skin, XRCC1 foci accumulate in the epidermal cells in correlation with a decline of PARP1, whereas DDR foci accumulate mainly in dermal fibroblasts. These findings point SSBs as a DNA damage encountered by epithelial cells with aging which could fuel the very first steps of carcinogenesis. PMID:26822533

  17. The repair of environmentally relevant DNA double strand breaks caused by high linear energy transfer irradiation--no simple task.

    PubMed

    Moore, Shaun; Stanley, Fintan K T; Goodarzi, Aaron A

    2014-05-01

    High linear energy transfer (LET) ionising radiation (IR) such as radon-derived alpha particles and high mass, high energy (HZE) particles of cosmic radiation are the predominant forms of IR to which humanity is exposed throughout life. High-LET forms of IR are established carcinogens relevant to human cancer, and their potent mutagenicity is believed, in part, to be due to a greater incidence of clustered DNA double strand breaks (DSBs) and associated lesions, as ionization events occur within a more confined genomic space. The repair of such DNA damage is now well-documented to occur with slower kinetics relative to that induced by low-LET IR, and to be more reliant upon homology-directed repair pathways. Underlying these phenomena is the relative inability of non-homologous end-joining (NHEJ) to adequately resolve high-LET IR-induced DSBs. Current findings suggest that the functionality of the DNA-dependent protein kinase (DNA-PK), comprised of the Ku70-Ku80 heterodimer and the DNA-PK catalytic subunit (DNA-PKcs), is particularly perturbed by high-LET IR-induced clustered DSBs, rendering DNA-PK dependent NHEJ less relevant to resolving these lesions. By contrast, the NHEJ-associated DNA processing endonuclease Artemis shows a greater relevance to high-LET IR-induced DSB repair. Here, we will review the cellular response to high-LET irradiation, the implications of the chronic, low-dose modality of this exposure and molecular pathways that respond to high-LET irradiation induced DSBs, with particular emphasis on NHEJ factors. PMID:24565812

  18. Rad54B targeting to DNA double-strand break repair sites requires complex formation with S100A11.

    PubMed

    Murzik, Ulrike; Hemmerich, Peter; Weidtkamp-Peters, Stefanie; Ulbricht, Tobias; Bussen, Wendy; Hentschel, Julia; von Eggeling, Ferdinand; Melle, Christian

    2008-07-01

    S100A11 is involved in a variety of intracellular activities such as growth regulation and differentiation. To gain more insight into the physiological role of endogenously expressed S100A11, we used a proteomic approach to detect and identify interacting proteins in vivo. Hereby, we were able to detect a specific interaction between S100A11 and Rad54B, which could be confirmed under in vivo conditions. Rad54B, a DNA-dependent ATPase, is described to be involved in recombinational repair of DNA damage, including DNA double-strand breaks (DSBs). Treatment with bleomycin, which induces DSBs, revealed an increase in the degree of colocalization between S100A11 and Rad54B. Furthermore, S100A11/Rad54B foci are spatially associated with sites of DNA DSB repair. Furthermore, while the expression of p21(WAF1/CIP1) was increased in parallel with DNA damage, its protein level was drastically down-regulated in damaged cells after S100A11 knockdown. Down-regulation of S100A11 by RNA interference also abolished Rad54B targeting to DSBs. Additionally, S100A11 down-regulated HaCaT cells showed a restricted proliferation capacity and an increase of the apoptotic cell fraction. These observations suggest that S100A11 targets Rad54B to sites of DNA DSB repair sites and identify a novel function for S100A11 in p21-based regulation of cell cycle. PMID:18463164

  19. Rad54B Targeting to DNA Double-Strand Break Repair Sites Requires Complex Formation with S100A11

    PubMed Central

    Murzik, Ulrike; Hemmerich, Peter; Weidtkamp-Peters, Stefanie; Ulbricht, Tobias; Bussen, Wendy; Hentschel, Julia; von Eggeling, Ferdinand

    2008-01-01

    S100A11 is involved in a variety of intracellular activities such as growth regulation and differentiation. To gain more insight into the physiological role of endogenously expressed S100A11, we used a proteomic approach to detect and identify interacting proteins in vivo. Hereby, we were able to detect a specific interaction between S100A11 and Rad54B, which could be confirmed under in vivo conditions. Rad54B, a DNA-dependent ATPase, is described to be involved in recombinational repair of DNA damage, including DNA double-strand breaks (DSBs). Treatment with bleomycin, which induces DSBs, revealed an increase in the degree of colocalization between S100A11 and Rad54B. Furthermore, S100A11/Rad54B foci are spatially associated with sites of DNA DSB repair. Furthermore, while the expression of p21WAF1/CIP1 was increased in parallel with DNA damage, its protein level was drastically down-regulated in damaged cells after S100A11 knockdown. Down-regulation of S100A11 by RNA interference also abolished Rad54B targeting to DSBs. Additionally, S100A11 down-regulated HaCaT cells showed a restricted proliferation capacity and an increase of the apoptotic cell fraction. These observations suggest that S100A11 targets Rad54B to sites of DNA DSB repair sites and identify a novel function for S100A11 in p21-based regulation of cell cycle. PMID:18463164

  20. Gene conversion is strongly induced in human cells by double-strand breaks and is modulated by the expression of BCL-x(L)

    NASA Technical Reports Server (NTRS)

    Wiese, Claudia; Pierce, Andrew J.; Gauny, Stacey S.; Jasin, Maria; Kronenberg, Amy; Chatterjee, A. (Principal Investigator)

    2002-01-01

    Homology-directed repair (HDR) of DNA double-strand breaks (DSBs) contributes to the maintenance of genomic stability in rodent cells, and it has been assumed that HDR is of similar importance in DSB repair in human cells. However, some outcomes of homologous recombination can be deleterious, suggesting that factors exist to regulate HDR. We demonstrated previously that overexpression of BCL-2 or BCL-x(L) enhanced the frequency of X-ray-induced TK1 mutations, including loss of heterozygosity events presumed to arise by mitotic recombination. The present study was designed to test whether HDR is a prominent DSB repair pathway in human cells and to determine whether ectopic expression of BCL-x(L) affects HDR. Using TK6-neo cells, we find that a single DSB in an integrated HDR reporter stimulates gene conversion 40-50-fold, demonstrating efficient DSB repair by gene conversion in human cells. Significantly, DSB-induced gene conversion events are 3-4-fold more frequent in TK6 cells that stably overexpress the antiapoptotic protein BCL-X(L). Thus, HDR plays an important role in maintaining genomic integrity in human cells, and ectopic expression of BCL-x(L) enhances HDR of DSBs. This is the first study to highlight a function for BCL-x(L) in modulating DSB repair in human cells.

  1. DNA polymerases δ and λ cooperate in repairing double-strand breaks by microhomology-mediated end-joining in Saccharomyces cerevisiae.

    PubMed

    Meyer, Damon; Fu, Becky Xu Hua; Heyer, Wolf-Dietrich

    2015-12-15

    Maintenance of genome stability is carried out by a suite of DNA repair pathways that ensure the repair of damaged DNA and faithful replication of the genome. Of particular importance are the repair pathways, which respond to DNA double-strand breaks (DSBs), and how the efficiency of repair is influenced by sequence homology. In this study, we developed a genetic assay in diploid Saccharomyces cerevisiae cells to analyze DSBs requiring microhomologies for repair, known as microhomology-mediated end-joining (MMEJ). MMEJ repair efficiency increased concomitant with microhomology length and decreased upon introduction of mismatches. The central proteins in homologous recombination (HR), Rad52 and Rad51, suppressed MMEJ in this system, suggesting a competition between HR and MMEJ for the repair of a DSB. Importantly, we found that DNA polymerase delta (Pol δ) is critical for MMEJ, independent of microhomology length and base-pairing continuity. MMEJ recombinants showed evidence that Pol δ proofreading function is active during MMEJ-mediated DSB repair. Furthermore, mutations in Pol δ and DNA polymerase 4 (Pol λ), the DNA polymerase previously implicated in MMEJ, cause a synergistic decrease in MMEJ repair. Pol λ showed faster kinetics associating with MMEJ substrates following DSB induction than Pol δ. The association of Pol δ depended on RAD1, which encodes the flap endonuclease needed to cleave MMEJ intermediates before DNA synthesis. Moreover, Pol δ recruitment was diminished in cells lacking Pol λ. These data suggest cooperative involvement of both polymerases in MMEJ. PMID:26607450

  2. Chemical repair of base lesions, AP-sites, and strand breaks on plasmid DNA in dilute aqueous solution by ascorbic acid

    SciTech Connect

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Shikazono, Naoya; Yokoya, Akinari; Katsumura, Yosuke

    2013-05-03

    Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield of DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.

  3. Role of the yeast DNA repair protein Nej1 in end processing during the repair of DNA double strand breaks by non-homologous end joining

    PubMed Central

    Yang, Hui; Matsumoto, Yoshihiro; Trujillo, Kelly M.; Lees-Miller, Susan P.; Osley, Mary Ann; Tomkinson, Alan E.

    2016-01-01

    DNA double strand breaks (DSB)s often require end processing prior to joining during their repair by non-homologous end joining (NHEJ). Although the yeast proteins, Pol4, a Pol X family DNA polymerase, and Rad27, a nuclease, participate in the end processing reactions of NHEJ, the mechanisms underlying the recruitment of these factors to DSBs are not known. Here we demonstrate that Nej1, a NHEJ factor that interacts with and modulates the activity of the NHEJ DNA ligase complex (Dnl4/Lif1), physically and functionally interacts with both Pol4 and Rad27. Notably, Nej1 and Dnl4/Lif1, which also interacts with both Pol4 and Rad27, independently recruit the end processing factors to in vivo DSBs via mechanisms that are additive rather than redundant. As was observed with Dnl4/Lif1, the activities of both Pol4 and Rad27 were enhanced by the interaction with Nej1. Furthermore, Nej1 increased the joining of incompatible DNA ends in reconstituted reactions containing Pol4, Rad27 and Dnl4/Lif1, indicating that the stimulatory activities of Nej1 and Dnl4/Lif1 are also additive. Together our results reveal novel roles for Nej1 in the recruitment of Pol4 and Rad27 to in vivo DSBs and the coordination of the end processing and ligation reactions of NHEJ. PMID:25942368

  4. Members of the RAD52 Epistasis Group Contribute to Mitochondrial Homologous Recombination and Double-Strand Break Repair in Saccharomyces cerevisiae.

    PubMed

    Stein, Alexis; Kalifa, Lidza; Sia, Elaine A

    2015-11-01

    Mitochondria contain an independently maintained genome that encodes several proteins required for cellular respiration. Deletions in the mitochondrial genome have been identified that cause several maternally inherited diseases and are associated with certain cancers and neurological disorders. The majority of these deletions in human cells are flanked by short, repetitive sequences, suggesting that these deletions may result from recombination events. Our current understanding of the maintenance and repair of mtDNA is quite limited compared to our understanding of similar events in the nucleus. Many nuclear DNA repair proteins are now known to also localize to mitochondria, but their function and the mechanism of their action remain largely unknown. This study investigated the contribution of the nuclear double-strand break repair (DSBR) proteins Rad51p, Rad52p and Rad59p in mtDNA repair. We have determined that both Rad51p and Rad59p are localized to the matrix of the mitochondria and that Rad51p binds directly to mitochondrial DNA. In addition, a mitochondrially-targeted restriction endonuclease (mtLS-KpnI) was used to produce a unique double-strand break (DSB) in the mitochondrial genome, which allowed direct analysis of DSB repair in vivo in Saccharomyces cerevisiae. We find that loss of these three proteins significantly decreases the rate of spontaneous deletion events and the loss of Rad51p and Rad59p impairs the repair of induced mtDNA DSBs.

  5. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    PubMed

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A

    2013-09-01

    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity.

  6. Role of Human DNA Glycosylase Nei-like 2 (NEIL2) and Single Strand Break Repair Protein Polynucleotide Kinase 3′-Phosphatase in Maintenance of Mitochondrial Genome*

    PubMed Central

    Mandal, Santi M.; Hegde, Muralidhar L.; Chatterjee, Arpita; Hegde, Pavana M.; Szczesny, Bartosz; Banerjee, Dibyendu; Boldogh, Istvan; Gao, Rui; Falkenberg, Maria; Gustafsson, Claes M.; Sarkar, Partha S.; Hazra, Tapas K.

    2012-01-01

    The repair of reactive oxygen species-induced base lesions and single strand breaks (SSBs) in the nuclear genome via the base excision (BER) and SSB repair (SSBR) pathways, respectively, is well characterize, and important for maintaining genomic integrity. However, the role of mitochondrial (mt) BER and SSBR proteins in mt genome maintenance is not completely clear. Here we show the presence of the oxidized base-specific DNA glycosylase Nei-like 2 (NEIL2) and the DNA end-processing enzyme polynucleotide kinase 3′-phosphatase (PNKP) in purified human mitochondrial extracts (MEs). Confocal microscopy revealed co-localization of PNKP and NEIL2 with the mitochondrion-specific protein cytochrome c oxidase subunit 2 (MT-CO2). Further, chromatin immunoprecipitation analysis showed association of NEIL2 and PNKP with the mitochondrial genes MT-CO2 and MT-CO3 (cytochrome c oxidase subunit 3); importantly, both enzymes also associated with the mitochondrion-specific DNA polymerase γ. In cell association of NEIL2 and PNKP with polymerase γ was further confirmed by proximity ligation assays. PNKP-depleted ME showed a significant decrease in both BER and SSBR activities, and PNKP was found to be the major 3′-phosphatase in human ME. Furthermore, individual depletion of NEIL2 and PNKP in human HEK293 cells caused increased levels of oxidized bases and SSBs in the mt genome, respectively. Taken together, these studies demonstrate the critical role of NEIL2 and PNKP in maintenance of the mammalian mitochondrial genome. PMID:22130663

  7. NuMA promotes homologous recombination repair by regulating the accumulation of the ISWI ATPase SNF2h at DNA breaks

    PubMed Central

    Vidi, Pierre-Alexandre; Liu, Jing; Salles, Daniela; Jayaraman, Swaathi; Dorfman, George; Gray, Matthew; Abad, Patricia; Moghe, Prabhas V.; Irudayaraj, Joseph M.; Wiesmüller, Lisa; Lelièvre, Sophie A.

    2014-01-01

    Chromatin remodeling factors play an active role in the DNA damage response by shaping chromatin to facilitate the repair process. The spatiotemporal regulation of these factors is key to their function, yet poorly understood. We report that the structural nuclear protein NuMA accumulates at sites of DNA damage in a poly[ADP-ribose]ylation-dependent manner and functionally interacts with the ISWI ATPase SNF2h/SMARCA5, a chromatin remodeler that facilitates DNA repair. NuMA coimmunoprecipitates with SNF2h, regulates its diffusion in the nucleoplasm and controls its accumulation at DNA breaks. Consistent with NuMA enabling SNF2h function, cells with silenced NuMA exhibit reduced chromatin decompaction after DNA cleavage, lesser focal recruitment of homologous recombination repair factors, impaired DNA double-strand break repair in chromosomal (but not in episomal) contexts and increased sensitivity to DNA cross-linking agents. These findings reveal a structural basis for the orchestration of chromatin remodeling whereby a scaffold protein promotes genome maintenance by directing a remodeler to DNA breaks. PMID:24753406

  8. Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate

    NASA Technical Reports Server (NTRS)

    Winters, T. A.; Russell, P. S.; Kohli, M.; Dar, M. E.; Neumann, R. D.; Jorgensen, T. J.

    1999-01-01

    Human DNA polymerase and DNA ligase utilization for the repair of a major class of ionizing radiation-induced DNA lesion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, chemically defined vector substrate containing a single, site-specific 3'-PG single-strand break lesion. In addition, the major human AP endonuclease, HAP1 (also known as APE1, APEX, Ref-1), was tested to determine if it was involved in initiating repair of 3'-PG-containing single-strand break lesions. DNA polymerase beta was found to be the primary polymerase responsible for nucleotide incorporation at the lesion site following excision of the 3'-PG blocking group. However, DNA polymerase delta/straightepsilon was also capable of nucleotide incorporation at the lesion site following 3'-PG excision. In addition, repair reactions catalyzed by DNA polymerase beta were found to be most effective in the presence of DNA ligase III, while those catalyzed by DNA polymerase delta/straightepsilon appeared to be more effective in the presence of DNA ligase I. Also, it was demonstrated that the repair initiating 3'-PG excision reaction was not dependent upon HAP1 activity, as judged by inhibition of HAP1 with neutralizing HAP1-specific polyclonal antibody.

  9. Immortalized neural progenitor cells for CNS gene transfer and repair.

    PubMed

    Martínez-Serrano, A; Björklund, A

    1997-11-01

    Immortalized multipotent neural stem and progenitor cells have emerged as a highly convenient source of tissue for genetic manipulation and ex vivo gene transfer to the CNS. Recent studies show that these cells, which can be maintained and genetically transduced as cell lines in culture, can survive, integrate and differentiate into both neurons and glia after transplantation to the intact or damaged brain. Progenitors engineered to secrete trophic factors, or to produce neurotransmitter-related or metabolic enzymes can be made to repopulate diseased or injured brain areas, thus providing a new potential therapeutic tool for the blockade of neurodegenerative processes and reversal of behavioural deficits in animal models of neurodegenerative diseases. With further technical improvements, the use of immortalized neural progenitors may bring us closer to the challenging goal of targeted and effective CNS repair.

  10. Phylogeographic breaks in low-dispersal species: the emergence of concordance across gene trees.

    PubMed

    Kuo, Chih-Horng; Avise, John C

    2005-07-01

    Computer simulations were used to investigate population conditions under which phylogeographic breaks in gene genealogies can be interpreted with confidence to infer the existence and location of historical barriers to gene flow in continuously distributed, low-dispersal species. We generated collections of haplotypic gene trees under a variety of demographic scenarios and analyzed them with regard to salient genealogical breaks in their spatial patterns. In the first part of the analysis, we estimated the frequency in which the spatial location of the deepest phylogeographic break between successive pairs of populations along a linear habitat coincided with a spatial physical barrier to dispersal. Results confirm previous reports that individual gene trees can show 'haphazard' phylogeographic discontinuities even in the absence of historical barriers to gene flow. In the second part of the analysis, we assessed the probability that pairs of gene genealogies from a set of population samples agree upon the location of a geographical barrier. Our findings extend earlier reports by demonstrating that spatially concordant phylogeographic breaks across ;ndependent neutral loci normally emerge only in the presence of longstanding historical barriers to gene flow. Genealogical concordance across multiple loci thus becomes a deciding criterion by which to distinguish between stochastic and deterministic causation in accounting for phylogeographic discontinuities in continuously distributed species.

  11. High Prevalence and Clinical Relevance of Genes Affected by Chromosomal Breaks in Colorectal Cancer

    PubMed Central

    van den Broek, Evert; Dijkstra, Maurits J. J.; Krijgsman, Oscar; Sie, Daoud; Haan, Josien C.; Traets, Joleen J. H.; van de Wiel, Mark A.; Nagtegaal, Iris D.; Punt, Cornelis J. A.; Carvalho, Beatriz; Ylstra, Bauke; Abeln, Sanne; Meijer, Gerrit A.; Fijneman, Remond J. A.

    2015-01-01

    Background Cancer is caused by somatic DNA alterations such as gene point mutations, DNA copy number aberrations (CNA) and structural variants (SVs). Genome-wide analyses of SVs in large sample series with well-documented clinical information are still scarce. Consequently, the impact of SVs on carcinogenesis and patient outcome remains poorly understood. This study aimed to perform a systematic analysis of genes that are affected by CNA-associated chromosomal breaks in colorectal cancer (CRC) and to determine the clinical relevance of recurrent breakpoint genes. Methods Primary CRC samples of patients with metastatic disease from CAIRO and CAIRO2 clinical trials were previously characterized by array-comparative genomic hybridization. These data were now used to determine the prevalence of CNA-associated chromosomal breaks within genes across 352 CRC samples. In addition, mutation status of the commonly affected APC, TP53, KRAS, PIK3CA, FBXW7, SMAD4, BRAF and NRAS genes was determined for 204 CRC samples by targeted massive parallel sequencing. Clinical relevance was assessed upon stratification of patients based on gene mutations and gene breakpoints that were observed in >3% of CRC cases. Results In total, 748 genes were identified that were recurrently affected by chromosomal breaks (FDR <0.1). MACROD2 was affected in 41% of CRC samples and another 169 genes showed breakpoints in >3% of cases, indicating that prevalence of gene breakpoints is comparable to the prevalence of well-known gene point mutations. Patient stratification based on gene breakpoints and point mutations revealed one CRC subtype with very poor prognosis. Conclusions We conclude that CNA-associated chromosomal breaks within genes represent a highly prevalent and clinically relevant subset of SVs in CRC. PMID:26375816

  12. Breaking restricted taxonomic functionality by dual resistance genes.

    PubMed

    Narusaka, Mari; Kubo, Yasuyuki; Hatakeyama, Katsunori; Imamura, Jun; Ezura, Hiroshi; Nanasato, Yoshihiko; Tabei, Yutaka; Takano, Yoshitaka; Shirasu, Ken; Narusaka, Yoshihiro

    2013-06-01

    NB-LRR-type disease resistance (R) genes have been used in traditional breeding programs for crop protection. However, functional transfer of NB-LRR-type R genes to plants in taxonomically distinct families to establish pathogen resistance has not been successful. Here we demonstrate that a pair of Arabidopsis (Brassicaceae) NB-LRR-type R genes, RPS4 and RRS1, properly function in two other Brassicaceae, Brassica rapa and B. napus, but also in two Solanaceae, Nicotiana benthamiana and tomato (Solanum lycopersicum). The solanaceous plants transformed with RPS4/RRS1 confer bacterial effector-specific immunity responses. Furthermore, RPS4 and RRS1, which confer resistance to a fungal pathogen Colletotrichum higginsianum in Brassicaceae, also protect against Colletotrichum orbiculare in cucumber (Cucurbitaceae). Thus the successful transfer of two R genes at the family level overcomes restricted taxonomic functionality. This implies that the downstream components of R genes must be highly conserved and interfamily utilization of R genes can be a powerful strategy to combat pathogens.

  13. XRCC3 is essential for proper double-strand break repair and homologous recombination in rice meiosis.

    PubMed

    Zhang, Bingwei; Wang, Mo; Tang, Ding; Li, Yafei; Xu, Meng; Gu, Minghong; Cheng, Zhukuan; Yu, Hengxiu

    2015-09-01

    RAD51 paralogues play important roles in the assembly and stabilization of RAD51 nucleoprotein filaments, which promote homologous pairing and strand exchange reactions in organisms ranging from yeast to vertebrates. XRCC3, a RAD51 paralogue, has been characterized in budding yeast, mouse, and Arabidopsis. In the present study, XRCC3 in rice was identified and characterized. The rice xrcc3 mutant exhibited normal vegetative growth but complete male and female sterility. Cytological investigations revealed that homologous pairing and synapsis were severely disrupted in the mutant. Meiotic chromosomes were frequently entangled from diplotene to metaphase I, resulting in chromosome fragmentation at anaphase I. The immunostaining signals from γH2AX were regular, implying that double-strand break (DSB) formation was normal in xrcc3 meiocytes. However, COM1 was not detected on early prophase I chromosomes, suggesting that the DSB end-processing system was destroyed in the mutant. Moreover, abnormal chromosome localization of RAD51C, DMC1, ZEP1, ZIP4, and MER3 was observed in xrcc3. Taken together, the results suggest that XRCC3 plays critical roles in both DSB repair and homologous chromosome recombination during rice meiosis. PMID:26034131

  14. XRCC3 is essential for proper double-strand break repair and homologous recombination in rice meiosis.

    PubMed

    Zhang, Bingwei; Wang, Mo; Tang, Ding; Li, Yafei; Xu, Meng; Gu, Minghong; Cheng, Zhukuan; Yu, Hengxiu

    2015-09-01

    RAD51 paralogues play important roles in the assembly and stabilization of RAD51 nucleoprotein filaments, which promote homologous pairing and strand exchange reactions in organisms ranging from yeast to vertebrates. XRCC3, a RAD51 paralogue, has been characterized in budding yeast, mouse, and Arabidopsis. In the present study, XRCC3 in rice was identified and characterized. The rice xrcc3 mutant exhibited normal vegetative growth but complete male and female sterility. Cytological investigations revealed that homologous pairing and synapsis were severely disrupted in the mutant. Meiotic chromosomes were frequently entangled from diplotene to metaphase I, resulting in chromosome fragmentation at anaphase I. The immunostaining signals from γH2AX were regular, implying that double-strand break (DSB) formation was normal in xrcc3 meiocytes. However, COM1 was not detected on early prophase I chromosomes, suggesting that the DSB end-processing system was destroyed in the mutant. Moreover, abnormal chromosome localization of RAD51C, DMC1, ZEP1, ZIP4, and MER3 was observed in xrcc3. Taken together, the results suggest that XRCC3 plays critical roles in both DSB repair and homologous chromosome recombination during rice meiosis.

  15. Post-irradiation chemical processing of DNA damage generates double-strand breaks in cells already engaged in repair

    PubMed Central

    Singh, Satyendra K.; Wang, Minli; Staudt, Christian; Iliakis, George

    2011-01-01

    In cells exposed to ionizing radiation (IR), double-strand breaks (DSBs) form within clustered-damage sites from lesions disrupting the DNA sugar–phosphate backbone. It is commonly assumed that these DSBs form promptly and are immediately detected and processed by the cellular DNA damage response (DDR) apparatus. This assumption is questioned by the observation that after irradiation of naked DNA, a fraction of DSBs forms minutes to hours after exposure as a result of temperature dependent, chemical processing of labile sugar lesions. Excess DSBs also form when IR-exposed cells are processed at 50°C, but have been hitherto considered method-related artifact. Thus, it remains unknown whether DSBs actually develop in cells after IR exposure from chemically labile damage. Here, we show that irradiation of ‘naked’ or chromatin-organized mammalian DNA produces lesions, which evolve to DSBs and add to those promptly induced, after 8–24 h in vitro incubation at 37°C or 50°C. The conversion is more efficient in chromatin-associated DNA, completed within 1 h in cells and delayed in a reducing environment. We conclude that IR generates sugar lesions within clustered-damage sites contributing to DSB formation only after chemical processing, which occurs efficiently at 37°C. This subset of delayed DSBs may challenge DDR, may affect the perceived repair kinetics and requires further characterization. PMID:21745815

  16. Immunoglobulin genes undergo legitimate repair in human B cells not only after cis- but also frequent trans-class switch recombination.

    PubMed

    Laffleur, B; Bardet, S M; Garot, A; Brousse, M; Baylet, A; Cogné, M

    2014-01-01

    Immunoglobulin (Ig) genes specifically recruit activation-induced deaminase (AID) for 'on-target' DNA deamination, initiating either variable (V) region somatic hypermutation, or double-strand break intermediates of class switch recombination (CSR). Such breaks overwhelmingly undergo legitimate intra-Ig repair rather than rare illegitimate and potentially oncogenic junctions outside of Ig loci. We show that in human B cells, legitimate synapsis and repair efficiently join Ig genes whether physically linked on one chromosome or located apart on both alleles. This indicates mechanisms faithfully recognizing and/or pairing loci with homology in structure and accessibility, thus licensing interchromosomal trans-CSR junctions while usually preventing illegitimate interchromosomal recombination with AID off-target genes. Physical linkage of IgH genes in cis on the same allele just increases the likelihood of legitimate repair by another fourfold. The strongest force driving CSR might thus be recognition of legitimate target genes. Formation of IgH intra-allelic loops along this process would then constitute a consequence rather than a pre-requisite of this gene-pairing process.

  17. Adaptive response in mouse bone-marrow stromal cells exposed to 900-MHz radiofrequency fields: Gamma-radiation-induced DNA strand breaks and repair.

    PubMed

    Ji, Yongxin; He, Qina; Sun, Yulong; Tong, Jian; Cao, Yi

    2016-01-01

    The aim of this study was to examine whether radiofrequency field (RF) preexposure induced adaptive responses (AR) in mouse bone-marrow stromal cells (BMSC) and the mechanisms underlying the observed findings. Cells were preexposed to 900-MHz radiofrequency fields (RF) at 120 μW/cm(2) power intensity for 4 h/d for 5 d. Some cells were subjected to 1.5 Gy γ-radiation (GR) 4 h following the last RF exposure. The intensity of strand breaks in the DNA was assessed immediately at 4 h. Subsequently, some BMSC were examined at 30, 60, 90, or 120 min utilizing the alkaline comet assay and γ-H2AX foci technique. Data showed no significant differences in number and intensity of strand breaks in DNA between RF-exposed and control cells. A significant increase in number and intensity of DNA strand breaks was noted in cells exposed to GR exposure alone. RF followed by GR exposure significantly decreased number of strand breaks and resulted in faster kinetics of repair of DNA strand breaks compared to GR alone. Thus, data suggest that RF preexposure protected cells from damage induced by GR. Evidence indicates that in RF-mediated AR more rapid repair kinetics occurs under conditions of GR-induced damage, which may be attributed to diminished DNA strand breakage.

  18. Adaptive response in mouse bone-marrow stromal cells exposed to 900-MHz radiofrequency fields: Gamma-radiation-induced DNA strand breaks and repair.

    PubMed

    Ji, Yongxin; He, Qina; Sun, Yulong; Tong, Jian; Cao, Yi

    2016-01-01

    The aim of this study was to examine whether radiofrequency field (RF) preexposure induced adaptive responses (AR) in mouse bone-marrow stromal cells (BMSC) and the mechanisms underlying the observed findings. Cells were preexposed to 900-MHz radiofrequency fields (RF) at 120 μW/cm(2) power intensity for 4 h/d for 5 d. Some cells were subjected to 1.5 Gy γ-radiation (GR) 4 h following the last RF exposure. The intensity of strand breaks in the DNA was assessed immediately at 4 h. Subsequently, some BMSC were examined at 30, 60, 90, or 120 min utilizing the alkaline comet assay and γ-H2AX foci technique. Data showed no significant differences in number and intensity of strand breaks in DNA between RF-exposed and control cells. A significant increase in number and intensity of DNA strand breaks was noted in cells exposed to GR exposure alone. RF followed by GR exposure significantly decreased number of strand breaks and resulted in faster kinetics of repair of DNA strand breaks compared to GR alone. Thus, data suggest that RF preexposure protected cells from damage induced by GR. Evidence indicates that in RF-mediated AR more rapid repair kinetics occurs under conditions of GR-induced damage, which may be attributed to diminished DNA strand breakage. PMID:27267824

  19. Defects in the kinetics of the repair of DNA double-strand breaks and inhibition of DNA synthesis in the ataxia telangiectasia AT5Bl-VA cell line: Comparison to a corrected hybrid, atxbc

    SciTech Connect

    Kysela, B.P.; Lohrer, H.; Arrand, J.E.

    1995-12-01

    The nature of the primary biochemical defect in the human radiosensitive and cancer-prone syndrome, ataxia telangiectasia (AT), has remained obscure despite many efforts to elucidate it. In this study, AT complementation group D cells and a nearly isogenic corrected AT-hamster hybrid derivative have been analyzed for induction and repair of initial double-strand breaks (DSBs) after exposure to ionizing radiation, using a sensitive field-inversion electrophoresis technique. Results suggesting that initial levels of damage are the same in these two cell types, but indicating differences in the fast component of DNA repair, have been compared and correlated with those resulting from a study of the radioresistant DNA synthesis defect and its correction in the same cell lines. These measurements show that the radioresistant phenotype of the substantially corrected AT-hamster hybrid correlates with its higher level of fast-component DSB repair and higher level of inhibition of DNA synthesis, but that the initial damage induction does not contribute to the phenotype. We propose that the AT gene product(s) is likely to act early in a signaling pathway which controls both DNA repair and progression of cells through the phases of the cell cycle in response to ionizing radiation. 36 refs., 3 figs., 2 tabs.

  20. The proteomic investigation reveals interaction of mdig protein with the machinery of DNA double-strand break repair.

    PubMed

    Wang, Wei; Lu, Yongju; Stemmer, Paul M; Zhang, Xiangmin; Bi, Yongyi; Yi, Zhengping; Chen, Fei

    2015-09-29

    To investigate how mineral dust-induced gene (mdig, also named as mina53, MINA, or NO52) promotes carcinogenesis through inducing active chromatin, we performed proteomics analyses for the interacting proteins that were co-immunoprecipitated by anti-mdig antibody from either the lung cancer cell line A549 cells or the human bronchial epithelial cell line BEAS-2B cells. On SDS-PAGE gels, three to five unique protein bands were consistently observed in the complexes pulled-down by mdig antibody, but not the control IgG. In addition to the mdig protein, several DNA repair or chromatin binding proteins, including XRCC5, XRCC6, RBBP4, CBX8, PRMT5, and TDRD, were identified in the complexes by the proteomics analyses using both Orbitrap Fusion and Orbitrap XL nanoESI-MS/MS in four independent experiments. The interaction of mdig with some of these proteins was further validated by co-immunoprecipitation using antibodies against mdig and its partner proteins, respectively. These data, thus, provide evidence suggesting that mdig accomplishes its functions on chromatin, DNA repair and cell growth through interacting with the partner proteins. PMID:26293673

  1. The proteomic investigation reveals interaction of mdig protein with the machinery of DNA double-strand break repair.

    PubMed

    Wang, Wei; Lu, Yongju; Stemmer, Paul M; Zhang, Xiangmin; Bi, Yongyi; Yi, Zhengping; Chen, Fei

    2015-09-29

    To investigate how mineral dust-induced gene (mdig, also named as mina53, MINA, or NO52) promotes carcinogenesis through inducing active chromatin, we performed proteomics analyses for the interacting proteins that were co-immunoprecipitated by anti-mdig antibody from either the lung cancer cell line A549 cells or the human bronchial epithelial cell line BEAS-2B cells. On SDS-PAGE gels, three to five unique protein bands were consistently observed in the complexes pulled-down by mdig antibody, but not the control IgG. In addition to the mdig protein, several DNA repair or chromatin binding proteins, including XRCC5, XRCC6, RBBP4, CBX8, PRMT5, and TDRD, were identified in the complexes by the proteomics analyses using both Orbitrap Fusion and Orbitrap XL nanoESI-MS/MS in four independent experiments. The interaction of mdig with some of these proteins was further validated by co-immunoprecipitation using antibodies against mdig and its partner proteins, respectively. These data, thus, provide evidence suggesting that mdig accomplishes its functions on chromatin, DNA repair and cell growth through interacting with the partner proteins.

  2. DNA repair and radiation sensitivity in mammalian cells

    SciTech Connect

    Chen, D.J.C.; Stackhouse, M.; Chen, D.S.

    1993-02-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  3. DNA repair and radiation sensitivity in mammalian cells

    SciTech Connect

    Chen, D.J.C.; Stackhouse, M. ); Chen, D.S. . Dept. of Radiation Oncology)

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population.

  4. Influence of functional polymorphisms in DNA repair genes of myelodysplastic syndrome.

    PubMed

    Ribeiro, Howard Lopes; Soares Maia, Allan Rodrigo; Costa, Marília Braga; Farias, Izabelle Rocha; de Paula Borges, Daniela; de Oliveira, Roberta Taiane Germano; de Sousa, Juliana Cordeiro; Magalhães, Silvia Maria Meira; Pinheiro, Ronald Feitosa

    2016-09-01

    Myelodysplastic syndromes (MDS) are a heterogeneous group of hematopoietic stem cell (HSC) malignances characterized by peripheral cytopenias and predisposition to acute myeloid leukemia transformation. Several studies show that the MDS pathogenesis is a complex and heterogeneous process that involves multiple steps through a sequence of genetic lesions in the DNA which lead to functional changes in the cell and the emergence and subsequent evolution of pre-malignant clone. Double strand breaks (DSB) lesions are the most severe type of DNA damage in HSCs, which, if not properly repaired, might contribute to the development of chromosomal abnormalities, which in turn may lead to leukemia development. We assessed the mRNA expression levels of ATM, BRCA1, BRCA2, RAD51, XRCC5, XRCC6 and LIG4 genes in bone marrow samples of 47 MDS patients in order to evaluate the association with functional polymorphisms rs228593, rs4793191, rs9567623, rs1801320, rs3835, rs2267437 and rs1805388, respectively, and try to detect clinical associations. We found that the rs228593, rs2267437 and rs1805388 functional polymorphisms probably alter the level of expression of the ATM, XRCC6 and LIG4 genes, respectively, being important in the maintenance of genomic instability in MDS. PMID:27497341

  5. A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair

    PubMed Central

    Britton, Sébastien; Coates, Julia

    2013-01-01

    DNA double-strand breaks (DSBs) are the most toxic of all genomic insults, and pathways dealing with their signaling and repair are crucial to prevent cancer and for immune system development. Despite intense investigations, our knowledge of these pathways has been technically limited by our inability to detect the main repair factors at DSBs in cells. In this paper, we present an original method that involves a combination of ribonuclease- and detergent-based preextraction with high-resolution microscopy. This method allows direct visualization of previously hidden repair complexes, including the main DSB sensor Ku, at virtually any type of DSB, including those induced by anticancer agents. We demonstrate its broad range of applications by coupling it to laser microirradiation, super-resolution microscopy, and single-molecule counting to investigate the spatial organization and composition of repair factories. Furthermore, we use our method to monitor DNA repair and identify mechanisms of repair pathway choice, and we show its utility in defining cellular sensitivities and resistance mechanisms to anticancer agents. PMID:23897892

  6. A novel protein, Rsf1/Pxd1, is critical for the single-strand annealing pathway of double-strand break repair in Schizosaccharomyces pombe.

    PubMed

    Wang, Hanqian; Zhang, Zhanlu; Zhang, Lan; Zhang, Qiuxue; Zhang, Liang; Zhao, Yangmin; Wang, Weibu; Fan, Yunliu; Wang, Lei

    2015-06-01

    The process of single-strand annealing (SSA) repairs DNA double-strand breaks that are flanked by direct repeat sequences through the coordinated actions of a series of proteins implicated in recombination, mismatch repair and nucleotide excision repair (NER). Many of the molecular and mechanistic insights gained in SSA repair have principally come from studies in the budding yeast Saccharomyces cerevisiae. However, there is little molecular understanding of the SSA pathway in the fission yeast Schizosaccharomyces pombe. To further our understanding of this important process, we established a new chromosome-based SSA assay in fission yeast. Our genetic analyses showed that, although many homologous components participate in SSA repair in these species indicating that some evolutionary conservation, Saw1 and Slx4 are not principal agents in the SSA repair pathway in fission yeast. This is in marked contrast to the function of Saw1 and Slx4 in budding yeast. Additionally, a novel genus-specific protein, Rsf1/Pxd1, physically interacts with Rad16, Swi10 and Saw1 in vitro and in vivo. We find that Rsf1/Pxd1 is not required for NER and demonstrate that, in fission yeast, Rsf1/Pxd1, but not Saw1, plays a critical role in SSA recombination.

  7. Physiological Modifications in the Production and Repair of Methyl Methane Sulfonate-Induced Breaks in the Deoxyribonucleic Acid of Escherichia coli K-12

    PubMed Central

    Scudiero, Dominic A.; Friesen, Benjamin S.; Baptist, Jeremy E.

    1973-01-01

    The medium in which Rec+ strains of Escherichia coli K-12 are grown affected their sensitivity to treatment with methyl methane sulfonate (MMS). Rec+ cells grown to the stationary phase in glucose-enriched nutrient broth (GNB) were more resistant to MMS than cells grown in nutrient broth (NB). The repair of MMS-induced breaks (or alkali-labile bonds) in the deoxyribonucleic acid (DNA) from E. coli K-12 strains AB1157, AB1886 uvrA6, and SR111 recA13 recB21 grown in GNB and NB media was examined by means of alkaline sucrose gradient centrifugation. It appeared that essentially all of the repair of breaks that occurred, as evidenced by an increase in “molecular weight,” took place within 10 min after treatment with MMS under our conditions. Cell survival was highest in cells for which the size of the DNA after the post-treatment incubation was the largest. The largest DNA after post-treatment incubation was found in Rec+ cells grown in GNB medium. The results suggest that these cells may have an enhanced capacity for repairing breaks in DNA. PMID:4349030

  8. TODRA, a lncRNA at the RAD51 Locus, Is Oppositely Regulated to RAD51, and Enhances RAD51-Dependent DSB (Double Strand Break) Repair

    PubMed Central

    Renbaum, Paul; Zeligson, Sharon; Eini, Lital; Bashari, Dana; Smith, Yoav; Lahad, Amnon; Goldberg, Michal; Ginsberg, Doron; Levy-Lahad, Ephrat

    2015-01-01

    Expression of RAD51, a crucial player in homologous recombination (HR) and DNA double-strand break (DSB) repair, is dysregulated in human tumors, and can contribute to genomic instability and tumor progression. To further understand RAD51 regulation we functionally characterized a long non-coding (lnc) RNA, dubbed TODRA (Transcribed in the Opposite Direction of RAD51), transcribed 69bp upstream to RAD51, in the opposite direction. We demonstrate that TODRA is an expressed transcript and that the RAD51 promoter region is bidirectional, supporting TODRA expression (7-fold higher than RAD51 in this assay, p = 0.003). TODRA overexpression in HeLa cells induced expression of TPIP, a member of the TPTE family which includes PTEN. Similar to PTEN, we found that TPIP co-activates E2F1 induction of RAD51. Analysis of E2F1's effect on the bidirectional promoter showed that E2F1 binding to the same site that promotes RAD51 expression, results in downregulation of TODRA. Moreover, TODRA overexpression induces HR in a RAD51-dependent DSB repair assay, and increases formation of DNA damage-induced RAD51-positive foci. Importantly, gene expression in breast tumors supports our finding that E2F1 oppositely regulates RAD51 and TODRA: increased RAD51 expression, which is associated with an aggressive tumor phenotype (e.g. negative correlation with positive ER (r = -0.22, p = 0.02) and positive PR status (r = -0.27, p<0.001); positive correlation with ki67 status (r = 0.36, p = 0.005) and HER2 amplification (r = 0.41, p = 0.001)), correlates as expected with lower TODRA and higher E2F1 expression. However, although E2F1 induction resulted in TPIP downregulation in cell lines, we find that TPIP expression in tumors is not reduced despite higher E2F1 expression, perhaps contributing to increased RAD51 expression. Our results identify TPIP as a novel E2F1 co-activator, suggest a similar role for other TPTEs, and indicate that the TODRA lncRNA affects RAD51 dysregulation and RAD51

  9. Dynamics and Cell-Type Specificity of the DNA Double-Strand Break Repair Protein RecN in the Developmental Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Hu, Sheng; Wang, Jinglan; Wang, Li; Zhang, Cheng-Cai; Chen, Wen-Li

    2015-01-01

    DNA replication and repair are two fundamental processes required in life proliferation and cellular defense and some common proteins are involved in both processes. The filamentous cyanobacterium Anabaena sp. strain PCC 7120 is capable of forming heterocysts for N2 fixation in the absence of a combined-nitrogen source. This developmental process is intimately linked to cell cycle control. In this study, we investigated the localization of the DNA double-strand break repair protein RecN during key cellular events, such as chromosome damaging, cell division, and heterocyst differentiation. Treatment by a drug causing DNA double-strand breaks (DSBs) induced reorganization of the RecN focus preferentially towards the mid-cell position. RecN-GFP was absent in most mature heterocysts. Furthermore, our results showed that HetR, a central player in heterocyst development, was involved in the proper positioning and distribution of RecN-GFP. These results showed the dynamics of RecN in DSB repair and suggested a differential regulation of DNA DSB repair in vegetative cell and heterocysts. The absence of RecN in mature heterocysts is compatible with the terminal nature of these cells.

  10. Dynamics and Cell-Type Specificity of the DNA Double-Strand Break Repair Protein RecN in the Developmental Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Hu, Sheng; Wang, Jinglan; Wang, Li; Zhang, Cheng-Cai; Chen, Wen-Li

    2015-01-01

    DNA replication and repair are two fundamental processes required in life proliferation and cellular defense and some common proteins are involved in both processes. The filamentous cyanobacterium Anabaena sp. strain PCC 7120 is capable of forming heterocysts for N2 fixation in the absence of a combined-nitrogen source. This developmental process is intimately linked to cell cycle control. In this study, we investigated the localization of the DNA double-strand break repair protein RecN during key cellular events, such as chromosome damaging, cell division, and heterocyst differentiation. Treatment by a drug causing DNA double-strand breaks (DSBs) induced reorganization of the RecN focus preferentially towards the mid-cell position. RecN-GFP was absent in most mature heterocysts. Furthermore, our results showed that HetR, a central player in heterocyst development, was involved in the proper positioning and distribution of RecN-GFP. These results showed the dynamics of RecN in DSB repair and suggested a differential regulation of DNA DSB repair in vegetative cell and heterocysts. The absence of RecN in mature heterocysts is compatible with the terminal nature of these cells. PMID:26431054

  11. Dynamics and Cell-Type Specificity of the DNA Double-Strand Break Repair Protein RecN in the Developmental Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Hu, Sheng; Wang, Jinglan; Wang, Li; Zhang, Cheng-Cai; Chen, Wen-Li

    2015-01-01

    DNA replication and repair are two fundamental processes required in life proliferation and cellular defense and some common proteins are involved in both processes. The filamentous cyanobacterium Anabaena sp. strain PCC 7120 is capable of forming heterocysts for N2 fixation in the absence of a combined-nitrogen source. This developmental process is intimately linked to cell cycle control. In this study, we investigated the localization of the DNA double-strand break repair protein RecN during key cellular events, such as chromosome damaging, cell division, and heterocyst differentiation. Treatment by a drug causing DNA double-strand breaks (DSBs) induced reorganization of the RecN focus preferentially towards the mid-cell position. RecN-GFP was absent in most mature heterocysts. Furthermore, our results showed that HetR, a central player in heterocyst development, was involved in the proper positioning and distribution of RecN-GFP. These results showed the dynamics of RecN in DSB repair and suggested a differential regulation of DNA DSB repair in vegetative cell and heterocysts. The absence of RecN in mature heterocysts is compatible with the terminal nature of these cells. PMID:26431054

  12. Influence of Double-Strand Break Repair on Radiation Therapy-Induced Acute Skin Reactions in Breast Cancer Patients

    SciTech Connect

    Mumbrekar, Kamalesh Dattaram; Fernandes, Donald Jerard; Goutham, Hassan Venkatesh; Sharan, Krishna; Vadhiraja, Bejadi Manjunath; Satyamoorthy, Kapaettu; Bola Sadashiva, Satish Rao

    2014-03-01

    Purpose: Curative radiation therapy (RT)-induced toxicity poses strong limitations for efficient RT and worsens the quality of life. The parameter that explains when and to what extent normal tissue toxicity in RT evolves would be of clinical relevance because of its predictive value and may provide an opportunity for personalized treatment approach. Methods and Materials: DNA double-strand breaks and repair were analyzed by microscopic γ-H2AX foci analysis in peripheral lymphocytes from 38 healthy donors and 80 breast cancer patients before RT, a 2 Gy challenge dose of x-ray exposed in vitro. Results: The actual damage (AD) at 0.25, 3, and 6 hours and percentage residual damage (PRD) at 3 and 6 hours were used as parameters to measure cellular radiosensitivity and correlated with RT-induced acute skin reactions in patients stratified as non-overresponders (NOR) (Radiation Therapy Oncology Group [RTOG] grade <2) and overresponders (OR) (RTOG grade ≥2). The results indicated that the basal and induced (at 0.25 and 3 hours) γ-H2AX foci numbers were nonsignificant (P>.05) between healthy control donors and the NOR and OR groups, whereas it was significant between ORs and healthy donors at 6 hours (P<.001). There was a significantly higher PRD in OR versus NOR (P<.05), OR versus healthy donors (P<.001) and NOR versus healthy donors (P<.01), supported further by the trend analysis (r=.2392; P=.0326 at 6 hours). Conclusions: Our findings strongly suggest that the measurement of PRD by performing γ-H2AX foci analysis has the potential to be developed into a clinically useful predictive assay.

  13. Poly(ADP-Ribose) Polymerase-1 and DNA-Dependent Protein Kinase Have Equivalent Roles in Double Strand Break Repair Following Ionizing Radiation

    SciTech Connect

    Mitchell, Jody; Smith, Graeme; Curtin, Nicola J.

    2009-12-01

    Purpose: Radiation-induced DNA double strand breaks (DSBs) are predominantly repaired by nonhomologous end joining (NHEJ), involving DNA-dependent protein kinase (DNA-PK). Poly(ADP-ribose) polymerase-1 (PARP-1), well characterized for its role in single strand break repair, may also facilitate DSB repair. We investigated the activation of these enzymes by differing DNA ends and their interaction in the cellular response to ionizing radiation (IR). Methods and Materials: The effect of PARP and DNA-PK inhibitors (KU-0058684 and NU7441) on repair of IR-induced DSBs was investigated in DNA-PK and PARP-1 proficient and deficient cells by measuring gammaH2AX foci and neutral comets. Complementary in vitro enzyme kinetics assays demonstrated the affinities of DNA-PK and PARP-1 for DSBs with varying DNA termini. Results: DNA-PK and PARP-1 both promoted the fast phase of resolution of IR-induced DSBs in cells. Inactivation of both enzymes was not additive, suggesting that PARP-1 and DNA-PK cooperate within the same pathway to promote DSB repair. The affinities of the two enzymes for oligonucleotides with blunt, 3' GGG or 5' GGG overhanging termini were similar and overlapping (K{sub dapp} = 2.6-6.4nM for DNA-PK; 1.7-4.5nM for PARP-1). DNA-PK showed a slightly greater affinity for overhanging DNA and was significantly more efficient when activated by a 5' GGG overhang. PARP-1 had a preference for blunt-ended DNA and required a separate factor for efficient stimulation by a 5' GGG overhang. Conclusion: DNA-PK and PARP-1 are both required in a pathway facilitating the fast phase of DNA DSB repair.

  14. A new nucleotide-excision-repair gene associated with the disorder trichothiodystrophy

    SciTech Connect

    Stefanini, M.; Giliani, S. ); Vermuelen, W.; Weeda, G.; Hoeijmakers, H.J.; Mezzina, M.; Sarasin, A.; Harper, J.I.; Arlett, C.F.; Lehmann, A.R.

    1993-10-01

    The sun-sensitive, cancer-prone genetic disorder xeroderma pigmentosum (XP) is associated in most cases with a defect in the ability to carry out excision repair of UV damage. Seven genetically distinct complementation groups (i.e., A-G) have been identified. A large proportion of patients with the unrelated disorder trichothiodystrophy (TTD), which is characterized by hair-shaft abnormalities, as well as by physical and mental retardation, are also deficient in excision repair of UV damage. In most of these cases the repair deficiency is in the same complementation group as is XP group D. The authors report here on cells from a patient, TTD1BR, in which the repair defect complements all known XP groups (including XP-D). Furthermore, microinjection of various cloned human repair genes fails to correct the repair defect in this cell strain. The defect in TTD1BR cells is therefore in a new gene involved in excision repair in human cells. The finding of a second DNA repair gene that is associated with the clinical features of TTD argues strongly for an involvement of repair proteins in hair-shaft development. 20 refs., 2 figs., 1 tab.

  15. Triple Negative Breast Cancers Have a Reduced Expression of DNA Repair Genes

    PubMed Central

    Andreis, Daniele; Bertoni, Ramona; Giardini, Roberto; Fox, Stephen B.; Broggini, Massimo; Bottini, Alberto; Zanoni, Vanessa; Bazzola, Letizia; Foroni, Chiara; Generali, Daniele; Damia, Giovanna

    2013-01-01

    DNA repair is a key determinant in the cellular response to therapy and tumor repair status could play an important role in tailoring patient therapy. Our goal was to evaluate the mRNA of 13 genes involved in different DNA repair pathways (base excision, nucleotide excision, homologous recombination, and Fanconi anemia) in paraffin embedded samples of triple negative breast cancer (TNBC) compared to luminal A breast cancer (LABC). Most of the genes involved in nucleotide excision repair and Fanconi Anemia pathways, and CHK1 gene were significantly less expressed in TNBC than in LABC. PARP1 levels were higher in TNBC than in LABC. In univariate analysis high level of FANCA correlated with an increased overall survival and event free survival in TNBC; however multivariate analyses using Cox regression did not confirm FANCA as independent prognostic factor. These data support the evidence that TNBCs compared to LABCs harbour DNA repair defects. PMID:23825533

  16. Gene conversion is strongly induced in human cells by double-strand breaks and is modulated by the expression of BCL-XL

    SciTech Connect

    Wiese, Claudia; Pierce, Andrew J.; Gauny, Stacey S.; Jasin, Maria; Kronenberg, Amy

    2001-09-25

    Homology-directed repair (HDR) of DNA double-strand breaks (DSBs) is a well-established mechanism that contributes to the maintenance of genomic stability in rodent cells, and it has been assumed that HDR is of similar importance in the repair of DSBs in human cells. However, in addition to promoting genomic stability, some outcomes of homologous recombination can be deleterious, suggesting that factors exist to regulate HDR. We previously demonstrated that overexpression of BCL-2 or BCL-xL enhanced the frequency of x-ray-induced mutations involving the TK1 locus, including loss of heterozygosity (LOH) events presumed to arise by mitotic recombination. The present study was designed to test whether HDR is a prominent DSB repair pathway in human cells, and to directly determine whether ectopic expression of BCL-xL affects HDR. We used the B-lymphoblastoid cell line TK6, which expresses wild-type TP53 and resembles normal lymphocytes in undergoing apoptosis following! genotoxic stress. U sing isogenic derivatives of TK6 cells (TK6-neo, TK6-bcl-xL), we find that a DSB in an integrated HDR reporter stimulates gene conversion 40-50-fold in TK6-neo cells, demonstrating that a DSB can be efficiently repaired by gene conversion in human cells. Significantly, DSB-induced gene conversion events are 3- to 4-fold more frequent in BCL-xL overexpressing cells. The results demonstrate that HDR plays an important role in maintaining genomic integrity in human cells and that ectopic expression of BCL-xL enhances HDR of DSBs. To our knowledge, this is the first study to highlight a function for BCL-xL in modulating DSB repair in human cells.

  17. In Vitro Expansion of Bone Marrow Derived Mesenchymal Stem Cells Alters DNA Double Strand Break Repair of Etoposide Induced DNA Damage

    PubMed Central

    Hare, Ian; Gencheva, Marieta; Evans, Rebecca; Fortney, James; Piktel, Debbie; Vos, Jeffrey A.; Howell, David; Gibson, Laura F.

    2016-01-01

    Mesenchymal stem cells (MSCs) are of interest for use in diverse cellular therapies. Ex vivo expansion of MSCs intended for transplantation must result in generation of cells that maintain fidelity of critical functions. Previous investigations have identified genetic and phenotypic alterations of MSCs with in vitro passage, but little is known regarding how culturing influences the ability of MSCs to repair double strand DNA breaks (DSBs), the most severe of DNA lesions. To investigate the response to DSB stress with passage in vitro, primary human MSCs were exposed to etoposide (VP16) at various passages with subsequent evaluation of cellular damage responses and DNA repair. Passage number did not affect susceptibility to VP16 or the incidence and repair kinetics of DSBs. Nonhomologous end joining (NHEJ) transcripts showed little alteration with VP16 exposure or passage; however, homologous recombination (HR) transcripts were reduced following VP16 exposure with this decrease amplified as MSCs were passaged in vitro. Functional evaluations of NHEJ and HR showed that MSCs were unable to activate NHEJ repair following VP16 stress in cells after successive passage. These results indicate that ex vivo expansion of MSCs alters their ability to perform DSB repair, a necessary function for cells intended for transplantation. PMID:26880992

  18. DNA double strand break repair defect and sensitivity to poly ADP-ribose polymerase (PARP) inhibition in human papillomavirus 16-positive head and neck squamous cell carcinoma

    PubMed Central

    Weaver, Alice N.; Cooper, Tiffiny S.; Rodriguez, Marcela; Trummell, Hoa Q.; Bonner, James A.; Rosenthal, Eben L.; Yang, Eddy S.

    2015-01-01

    Patients with human papillomavirus-positive (HPV+) head and neck squamous cell carcinomas (HNSCCs) have increased response to radio- and chemotherapy and improved overall survival, possibly due to an impaired DNA damage response. Here, we investigated the correlation between HPV status and repair of DNA damage in HNSCC cell lines. We also assessed in vitro and in vivo sensitivity to the PARP inhibitor veliparib (ABT-888) in HNSCC cell lines and an HPV+ patient xenograft. Repair of DNA double strand breaks (DSBs) was significantly delayed in HPV+ compared to HPV− HNSCCs, resulting in persistence of γH2AX foci. Although DNA repair activators 53BP1 and BRCA1 were functional in all HNSCCs, HPV+ cells showed downstream defects in both non-homologous end joining and homologous recombination repair. Specifically, HPV+ cells were deficient in protein recruitment and protein expression of DNA-Pk and BRCA2, key factors for non-homologous end joining and homologous recombination respectively. Importantly, the apparent DNA repair defect in HPV+ HNSCCs was associated with increased sensitivity to the PARP inhibitor veliparib, resulting in decreased cell survival in vitro and a 10–14 day tumor growth delay in vivo. These results support the testing of PARP inhibition in combination with DNA damaging agents as a novel therapeutic strategy for HPV+ HNSCC. PMID:26336991

  19. Expression profiles of DNA repair-related genes in rat target organs under subchronic cadmium exposure.

    PubMed

    Lei, Y X; Lu, Q; Shao, C; He, C C; Lei, Z N; Lian, Y Y

    2015-01-01

    We aimed to evaluate the toxicity of long-term exposure to different cadmium (Cd) doses in rats and expression profiles of DNA repair-related genes. The model rats were exposed to different concentrations of CdCl2 for 3 months, and 5 DNA repair-related genes - hMSH2, MLH1, XRCC1, hOGG1, ERCC1 - were cloned in different tissues, including the liver, kidney, heart, and lung. Accumulated amounts of Cd were detected in the tissues. Gene and protein detections were conducted via fluorescence quantitative real-time polymerase chain reaction and Western blotting, respectively. Methylated sequences of the 5 DNA repair-related gene promoters were used to investigate whether the low expression levels of the genes were related to methylation of the promoter. In the Cd-exposed group, 3 DNA repair genes (i.e., XRCC1, hOGG1, and ERCC1) significantly decreased in the rat liver, kidney, heart, and lung according to the β-actin internal standard (P < 0.01). Western blotting indicated the same trend for the different tissues. Each of the DNA repair genes had special characteristics; for example, hOGG1 gene expression decreased by 75% in the kidney, and XRCC1 gene expression decreased by 5% in the liver and heart when compared to the control group (P < 0.01). A negative correlation between the DNA repair gene expression levels and the cumulative levels of Cd was also suggested by malignancy pathology. The expression levels of 3 DNA repair genes (i.e., ERCC1, XRCC1, and hOGG1) played an important role in the rat response to Cd exposure but not DNA methylated protection. PMID:25729986

  20. The Impact of Individual In Vivo Repair of DNA Double-Strand Breaks on Oral Mucositis in Adjuvant Radiotherapy of Head-and-Neck Cancer

    SciTech Connect

    Fleckenstein, Jochen; Kuehne, Martin; Seegmueller, Katharina; Derschang, Sarah; Melchior, Patrick; Graeber, Stefan; Fricke, Andreas; Ruebe, Claudia E.; Ruebe, Christian

    2011-12-01

    Purpose: To evaluate the impact of individual in vivo DNA double-strand break (DSB) repair capacity on the incidence of severe oral mucositis in patients with head-and-neck cancer undergoing adjuvant radiotherapy (RT) or radiochemotherapy (RCT). Patients and Methods: Thirty-one patients with resected head-and-neck cancer undergoing adjuvant RT or RCT were examined. Patients underwent RT of the primary tumor site and locoregional lymph nodes with a total dose of 60-66 Gy (single dose 2 Gy, five fractions per week). Chemotherapy consisted of two cycles of cisplatin and 5-fluorouracil. To assess DSB repair, {gamma}-H2AX foci in blood lymphocytes were quantified before and 0.5 h, 2.5 h, 5 h, and 24 h after in vivo radiation exposure (the first fraction of RT). World Health Organization scores for oral mucositis were documented weekly and correlated with DSB repair. Results: Sixteen patients received RT alone; 15 patients received RCT. In patients who developed Grade {>=} 3 mucositis (n = 18) the amount of unrepaired DSBs 24 h after radiation exposure and DSB repair half-times did not differ significantly from patients with Grade {<=}2 mucositis (n = 13). Patients with a proportion of unrepaired DSBs after 24 h higher than the mean value + one standard deviation had an increased incidence of severe oral mucositis. Conclusions: Evaluation of in vivo DSB repair by determination of {gamma}-H2AX foci loss is feasible in clinical practice and allows identification of patients with impaired DSB repair. The incidence of oral mucositis is not closely correlated with DSB repair under the evaluated conditions.

  1. Mutations of the Huntington's disease protein impact on the ATM-dependent signaling and repair pathways of the radiation-induced DNA double-strand breaks: corrective effect of statins and bisphosphonates.

    PubMed

    Ferlazzo, Mélanie L; Sonzogni, Laurène; Granzotto, Adeline; Bodgi, Larry; Lartin, Océane; Devic, Clément; Vogin, Guillaume; Pereira, Sandrine; Foray, Nicolas

    2014-06-01

    Huntington's disease (HD) is a neurodegenerative syndrome caused by mutations of the IT15 gene encoding for the huntingtin protein. Some research groups have previously shown that HD is associated with cellular radiosensitivity in quiescent cells. However, there is still no mechanistic model explaining such specific clinical feature. Here, we examined the ATM-dependent signaling and repair pathways of the DNA double-strand breaks (DSB), the key damage induced by ionizing radiation, in human HD skin fibroblasts. Early after irradiation, quiescent HD fibroblasts showed an abnormally low rate of recognized DSB managed by non-homologous end-joining reflected by a low yield of nuclear foci formed by phosphorylated H2AX histones and by 53BP1 protein. Furthermore, HD cells elicited a significant but moderate yield of unrepaired DSB 24 h after irradiation. Irradiated HD cells also presented a delayed nucleo-shuttling of phosphorylated forms of the ATM kinase, potentially due to a specific binding of ATM to mutated huntingtin in the cytoplasm. Our results suggest that HD belongs to the group of syndromes associated with a low but significant defect of DSB signaling and repair defect associated with radiosensitivity. A combination of biphosphonates and statins complements these impairments by facilitating the nucleo-shuttling of ATM, increasing the yield of recognized and repaired DSB. PMID:24277524

  2. Decreased DNA repair gene expression among individuals exposed to arsenic in United States drinking water.

    PubMed

    Andrew, Angeline S; Karagas, Margaret R; Hamilton, Joshua W

    2003-04-10

    Arsenic is well established as a human carcinogen, but its precise mechanism of action remains unknown. Arsenic does not directly damage DNA, but may act as a carcinogen through inhibition of DNA repair mechanisms, leading indirectly to increased mutations from other DNA damaging agents. The molecular mechanism underlying arsenic inhibition of nucleotide excision repair after UV irradiation (Hartwig et al., Carcinogenesis 1997;18:399-405) is unknown, but could be due to decreased expression of critical genes involved in nucleotide excision repair of damaged DNA. This hypothesis was tested by analyzing expression of repair genes and arsenic exposure in a subset of 16 individuals enrolled in a population based case-control study investigating arsenic exposure and cancer risk in New Hampshire. Toenail arsenic levels were inversely correlated with expression of critical members of the nucleotide excision repair complex, ERCC1 (r(2) = 0.82, p < 0.0001), XPF (r(2) = 0.56, p < 0.002), and XPB (r(2) = 0.75, p < 0.0001). The internal dose marker, toenail arsenic level, was more strongly associated with changes in expression of these genes than drinking water arsenic concentration. Our findings, based on human exposure to arsenic in a US population, show an association between biomarkers of arsenic exposure and expression of DNA repair genes. Although our findings need verification in a larger study group, they are consistent with the hypothesis that inhibition of DNA repair capacity is a potential mechanism for the co-carcinogenic activity of arsenic.

  3. IGF-1R inhibition enhances radiosensitivity and delays double-strand break repair by both non-homologous end-joining and homologous recombination

    PubMed Central

    Chitnis, Meenali M.; Lodhia, Kunal A.; Aleksic, Tamara; Gao, Shan; Protheroe, Andrew S.; Macaulay, Valentine M.

    2014-01-01

    Inhibition of type 1 insulin-like growth factor receptor (IGF-1R) enhances tumor cell sensitivity to ionizing radiation. It is not clear how this effect is mediated, nor whether this approach can be applied effectively in the clinic. We previously showed that IGF-1R depletion delays repair of radiation-induced DNA double-strand breaks (DSBs), unlikely to be explained entirely by reduction in homologous recombination (HR) repair. The current study tested the hypothesis that IGF-1R inhibition induces a repair defect that involves non-homologous end-joining (NHEJ). IGF-1R inhibitor AZ12253801 blocked cell survival and radiosensitized IGF-1R over-expressing murine fibroblasts but not isogenic IGF-1R null cells, supporting specificity for IGF-1R. IGF-1R inhibition enhanced radiosensitivity in DU145, PC3 and 22Rv1 prostate cancer cells, comparable to effects of ATM inhibition. AZ12253801-treated DU145 cells showed delayed resolution of γH2AX foci, apparent within 1hr of irradiation and persisting for 24hr. In contrast, IGF-1R inhibition did not influence radiosensitivity or γH2AX focus resolution in LNCaP-LN3 cells, suggesting that radiosensitization tracks with the ability of IGF-1R to influence DSB repair. To differentiate effects on repair from growth and cell survival responses, we tested AZ12253801 in DU145 cells at sub-SF50 concentrations that had no early (≤48hr) effects on cell cycle distribution or apoptosis induction. Irradiated cultures contained abnormal mitoses, and after 5 days IGF-1R inhibited cells showed enhanced radiation-induced polyploidy and nuclear fragmentation, consistent with the consequences of entry into mitosis with incompletely repaired DNA. AZ12253801 radiosensitized DNA-PK proficient but not DNA-PK deficient glioblastoma cells, and did not radiosensitize DNA-PK-inhibited DU145 cells, suggesting that in the context of DSB repair, IGF-1R functions in the same pathway as DNA-PK. Finally, IGF-1R inhibition attenuated repair by both NHEJ and

  4. Genomic survey and expression analysis of DNA repair genes in the genus Leptospira.

    PubMed

    Martins-Pinheiro, Marinalva; Schons-Fonseca, Luciane; da Silva, Josefa B; Domingos, Renan H; Momo, Leonardo Hiroyuki Santos; Simões, Ana Carolina Quirino; Ho, Paulo Lee; da Costa, Renata M A

    2016-04-01

    Leptospirosis is an emerging zoonosis with important economic and public health consequences and is caused by pathogenic leptospires. The genus Leptospira belongs to the order Spirochaetales and comprises saprophytic (L. biflexa), pathogenic (L. interrogans) and host-dependent (L. borgpetersenii) members. Here, we present an in silico search for DNA repair pathways in Leptospira spp. The relevance of such DNA repair pathways was assessed through the identification of mRNA levels of some genes during infection in animal model and after exposition to spleen cells. The search was performed by comparison of available Leptospira spp. genomes in public databases with known DNA repair-related genes. Leptospires exhibit some distinct and unexpected characteristics, for instance the existence of a redundant mechanism for repairing a chemically diverse spectrum of alkylated nucleobases, a new mutS-like gene and a new shorter version of uvrD. Leptospira spp. shares some characteristics from Gram-positive, as the presence of PcrA, two RecQ paralogs and two SSB proteins; the latter is considered a feature shared by naturally competent bacteria. We did not find a significant reduction in the number of DNA repair-related genes in both pathogenic and host-dependent species. Pathogenic leptospires were enriched for genes dedicated to base excision repair and non-homologous end joining. Their evolutionary history reveals a remarkable importance of lateral gene transfer events for the evolution of the genus. Up-regulation of specific DNA repair genes, including components of SOS regulon, during infection in animal model validates the critical role of DNA repair mechanisms for the complex interplay between host/pathogen.

  5. Ovarian steroids regulate gene expression related to DNA repair and neurodegenerative diseases in serotonin neurons of macaques

    PubMed Central

    Bethea, Cynthia L.; Reddy, Arubala P.

    2015-01-01

    Depression often accompanies the peri-menopausal transition and it often precedes overt symptomology in common neurodegenerative diseases (NDD; Alzheimer's, Parkinson's, Huntington, ALS). Serotonin dysfunction is frequently found in the different etiologies of depression. We have shown that ovariectomized (Ovx) monkeys treated with estradiol (E) for 28 days supplement with placebo or progesterone (P) on days 14-28 had reduced DNA fragmentation in serotonin neurons of the dorsal raphe nucleus; and long-term Ovx monkeys had fewer serotonin neurons than intact controls. We questioned the effect of E alone or E+P on gene expression related to DNA repair, protein folding (chaperones), the ubiquitin proteosome, axon transport, and NDD specific genes in serotonin neurons. Ovx macaques were treated with placebo, E or E+P (n=3/group) for 1 month. Serotonin neurons were laser captured and subjected to microarray analysis and qRT-PCR. Increases were confirmed with qRT-PCR in 5 genes that code for proteins involved in repair of strand breaks and nucleotide excision. NBN1, PCNA, GADD45A, RAD23A and GTF2H5 significantly increased with E or E+P treatment (all ANOVA p< 0.01). Chaperone genes HSP70, HSP60 and HSP27 significantly increased with E or E+P treatment (all ANOVA p<0.05). HSP90 showed a similar trend. Ubiquinase coding genes UBEA5, UBE2D3 and UBE3A (Parkin) increased with E or E+P (all ANOVA p<0.003). Transport related genes coding kinesin, dynein, and dynactin increased with E or E+P (all ANOVA p<0.03). SCNA (α synuclein) and ADAM10 (α secretase) increased (both ANOVA p<0.02), but PSEN1 (presenilin1) decreased (ANOVA p<0.02) with treatment. APP decreased 10-fold with E or E+P administration. Newman-Keuls posthoc comparisons indicated variation in the response to E alone versus E+P across the different genes. In summary, E or E+P increased gene expression for DNA repair mechanisms in serotonin neurons, thereby rendering them less vulnerable to stress-induced DNA

  6. Comet assay analysis of repair of DNA strand breaks in normal and deficient human cells exposed to radiations and chemicals. Evidence for a repair pathway specificity of DNA ligation

    SciTech Connect

    Nocentini, S.

    1995-11-01

    The induction and resealing of DNA strand breaks in a cell line with a proven defect in DNA ligase I, 46BR, and in two Bloom`s syndrome cell lines. YBL6 and GM 1492, were compared to those observed in normal human 1BR/3 fibroblasts after treatment with a variety of genotoxic agents whose lesions are processed by different repair pathways. This analysis was performed using the single-cell gel electrophoresis assay. The three types of cells were found to have similar capabilities to recognize and incise ultraviolet photoproducts and also demonstrated similar amounts of DNA breaks immediately after {gamma} irradiation. During post-treatment incubation, 46BR cells showed a marked DNA re-ligation defect after ultraviolet radiation damage, GM 1492 cells demonstrated a highly reduced DNA joining ability after relatively high doses of ultraviolet radiation, and YBL6 cells were particularly affected in DNA re-ligation after damage by 4-nitroquinoline-1-oxide. The two Bloom`s syndrome cell lines and 46BR cells had a nearly normal ability to reseal breaks resulting from {gamma} irradiation or treatment with xanthine plus xanthine oxidase. These findings suggest that different DNA ligases may be involved in different DNA repair pathways in human cells. 60 refs., 7 figs.

  7. Reduced DNA double-strand break repair capacity and risk of squamous cell carcinoma of the head and neck – A case-control study

    PubMed Central

    Liu, Zhensheng; Liu, Hongliang; Gao, Fengqin; Dahlstrom, Kristina R.; Sturgis, Erich M.; Wei, Qingyi

    2016-01-01

    Tobacco and alcohol use play important roles in the etiology of squamous cell carcinoma of the head and neck (SCCHN). Smoking causes DNA damage, including double-strand DNA breaks (DSBs), that leads to carcinogenesis. To test the hypothesis that suboptimal DSB repair capacity is associated with risk of SCCHN, we established a flow cytometry-based method to detect the DSB repair phenotype in four EBV-immortalized human lymphoblastoid cell lines and then in human peripheral blood T-lymphocytes (PBTLs). With this blood-based laboratory assay, we conducted a pilot case-control study of 100 patients with newly diagnosed, previously untreated SCCHN and 124 cancer-free controls of non-Hispanic whites. We found that the mean DSB repair capacity level (42.1) in cases was significantly lower than that in controls (54.4) (P < 0.001). When we used the median DSB repair capacity level in controls as the cutoff value for calculating the odds ratios (OR), after adjustment for age, sex, smoking and drinking status, the cases were more likely than the controls to have reduced DSB repair capacity (adjusted OR = 1.9; 95% confidence interval, CI = 1.0–3.6, P = 0.037), especially for cases who were ever drinkers (adjusted OR = 2.7; 95% CI = 1.2–6.4, P = 0.020) and had oropharyngeal tumors (adjusted OR = 2.2; 95% CI = 1.1–4.5, P = 0.035). In conclusion, these findings suggest that individuals with a reduced DSB repair capacity may be at an increased risk of developing SCCHN. Large studies are warranted to confirm these preliminary findings. PMID:26963119

  8. DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation.

    PubMed

    Derijck, Alwin; van der Heijden, Godfried; Giele, Maud; Philippens, Marielle; de Boer, Peter

    2008-07-01

    In the human, the contribution of the sexes to the genetic load is dissimilar. Especially for point mutations, expanded simple tandem repeats and structural chromosome mutations, the contribution of the male germline is dominant. Far less is known about the male germ cell stage(s) that are most vulnerable to mutation contraction. For the understanding of de novo mutation induction in the germline, mechanistic insight of DNA repair in the zygote is mandatory. At the onset of embryonic development, the parental chromatin sets occupy one pronucleus (PN) each and DNA repair can be regarded as a maternal trait, depending on proteins and mRNAs provided by the oocyte. Repair of DNA double-strand breaks (DSBs) is executed by non-homologous end joining (NHEJ) and homologous recombination (HR). Differentiated somatic cells often resolve DSBs by NHEJ, whereas embryonic stem cells preferably use HR. We show NHEJ and HR to be both functional during the zygotic cell cycle. NHEJ is already active during replacement of sperm protamines by nucleosomes. The kinetics of G1 repair is influenced by DNA-PK(cs) hypomorphic activity. Both HR and NHEJ are operative in S-phase, HR being more active in the male PN. DNA-PK(cs) deficiency upregulates the HR activity. Both after sperm remodeling and at first mitosis, spontaneous levels of gammaH2AX foci (marker for DSBs) are high. All immunoflurescent indices of DNA damage and DNA repair point at greater spontaneous damage and induced repair activity in paternal chromatin in the zygote. PMID:18353795

  9. Reduced DNA double-strand break repair capacity and risk of squamous cell carcinoma of the head and neck--A case-control study.

    PubMed

    Liu, Zhensheng; Liu, Hongliang; Gao, Fengqin; Dahlstrom, Kristina R; Sturgis, Erich M; Wei, Qingyi

    2016-04-01

    Tobacco smoke and alcohol use play important roles in the etiology of squamous cell carcinoma of the head and neck (SCCHN). Smoking causes DNA damage, including double-strand DNA breaks (DSBs), that leads to carcinogenesis. To test the hypothesis that suboptimal DSB repair capacity is associated with risk of SCCHN, we applied a flow cytometry-based method to detect the DSB repair phenotype first in four EBV-immortalized human lymphoblastoid cell lines and then in human peripheral blood T-lymphocytes (PBTLs). With this blood-based laboratory assay, we conducted a pilot case-control study of 100 patients with newly diagnosed, previously untreated SCCHN and 124 cancer-free controls of non-Hispanic whites. We found that the mean DSB repair capacity level was significantly lower in cases (42.1%) than that in controls (54.4%) (P<0.001). When we used the median DSB repair capacity level in the controls as the cutoff value for calculating the odds ratios (ORs) with adjustment for age, sex, smoking and drinking status, the cases were more likely than the controls to have a reduced DSB repair capacity (adjusted OR=1.93; 95% confidence interval, CI=1.04-3.56, P=0.037), especially for those subjects who were ever drinkers (adjusted OR=2.73; 95% CI=1.17-6.35, P=0.020) and had oropharyngeal tumors (adjusted OR=2.17; 95% CI=1.06-4.45, P=0.035). In conclusion, these findings suggest that individuals with a reduced DSB repair capacity may be at an increased risk of developing SCCHN. Larger studies are warranted to confirm these preliminary findings. PMID:26963119

  10. DNA breaks caused by monochromatic 365 nm ultraviolet-A radiation or hydrogen peroxide and their repair in human epithelioid and xeroderma pigmentosum cells.

    PubMed

    Peak, J G; Pilas, B; Dudek, E J; Peak, M J

    1991-08-01

    The induction and repair of DNA single-strand breaks (SSB) assayed by alkaline filter elution was compared in human epithelioid P3 and xeroderma pigmentosum (XP) cells exposed to monochromatic 365-nm UV-A radiation and H2O2. Initial yields of SSB were measured with the cells held at 0.5 degrees C during exposure. The yield from exposure to 365-nm radiation was slightly greater in XP than in P3 cells, whereas H2O2 produced more than three times as many SSB in P3 compared with XP cells. o-Phenanthroline (50 mM) markedly inhibited the yields of SSB induced in XP cells by H2O2, but had no effect on those produced by 365-nm UV-A. These results are consistent with the fact that P3 cells, unlike XP cells, have undetectable levels of catalase. The measured production of trace amounts of H2O2 by the actual 365-nm UV-A exposures was not sufficient to account for the numbers of breaks that were observed. Single-strand breaks produced by both agents were completely repaired after 50 min in P3 cells, as were H2O2-induced SSB in XP cells. However, 25% of the 365-nm UV-A-induced SSB in XP cells remained refractory to repair after 60 min. The results show that SSB produced by these two agents are different and that 365 nm radiation produces most SSB in cells by mechanisms other than by production of H2O2. PMID:1780357

  11. Histone deacetylase inhibitors decrease NHEJ both by acetylation of repair factors and trapping of PARP1 at DNA double-strand breaks in chromatin

    PubMed Central

    Robert, Carine; Nagaria, Pratik K.; Pawar, Nisha; Adewuyi, Adeoluwa; Gojo, Ivana; Meyers, David J.; Cole, Philip A.; Rassool, Feyruz V.

    2016-01-01

    Histone deacetylase inhibitors (HDACi) induce acetylation of histone and non-histone proteins, and modulate the acetylation of proteins involved in DNA double-strand break (DSB) repair. Non-homologous end-joining (NHEJ) is one of the main pathways for repairing DSBs. Decreased NHEJ activity has been reported with HDACi treatment. However, mechanisms through which these effects are regulated in the context of chromatin are unclear. We show that pan-HDACi, trichostatin A (TSA), causes differential acetylation of DNA repair factors Ku70/Ku80 and poly ADP-ribose polymerase-1 (PARP1), and impairs NHEJ. Repair effects are reversed by treatments with p300/CBP inhibitor C646, with significantly decreased acetylation of PARP1. In keeping with these findings, TSA treatment significantly increases PARP1 binding to DSBs in chromatin. Notably, AML patients treated with HDACi entinostat (MS275) in vivo also show increased formation of poly ADP-ribose (PAR) that co-localizes with DSBs. Further, we demonstrate that PARP1 bound to chromatin increases with duration of TSA exposure, resembling PARP “trapping”. Knockdown of PARP1 inhibits trapping and mitigates HDACi effects on NHEJ. Finally, combination of HDACi with potent PARP inhibitor talazoparib (BMN673) shows a dose-dependent increase in PARP “trapping”, which correlates with increased apoptosis. These results provide a mechanism through which HDACi inhibits deacetylation and increases binding of PARP1 to DSBs, leading to decreased NHEJ and cytotoxicity of leukemia cells. PMID:27064363

  12. The rate of X-ray-induced DNA double-strand break repair in the embryonic mouse brain is unaffected by exposure to 50 Hz magnetic fields

    PubMed Central

    Woodbine, Lisa; Haines, Jackie; Coster, Margaret; Barazzuol, Lara; Ainsbury, Elizabeth; Sienkiewicz, Zenon; Jeggo, Penny

    2015-01-01

    Abstract Purpose: Following in utero exposure to low dose radiation (10–200 mGy), we recently observed a linear induction of DNA double-strand breaks (DSB) and activation of apoptosis in the embryonic neuronal stem/progenitor cell compartment. No significant induction of DSB or apoptosis was observed following exposure to magnetic fields (MF). In the present study, we exploited this in vivo system to examine whether exposure to MF before and after exposure to 100 mGy X-rays impacts upon DSB repair rates. Materials and methods: 53BP1 foci were quantified following combined exposure to radiation and MF in the embryonic neuronal stem/progenitor cell compartment. Embryos were exposed in utero to 50 Hz MF at 300 μT for 3 h before and up to 9 h after exposure to 100 mGy X-rays. Controls included embryos exposed to MF or X-rays alone plus sham exposures. Results: Exposure to MF before and after 100 mGy X-rays did not impact upon the rate of DSB repair in the embryonic neuronal stem cell compartment compared to repair rates following radiation exposure alone. Conclusions: We conclude that in this sensitive system MF do not exert any significant level of DNA damage and do not impede the repair of X-ray induced damage. PMID:25786477

  13. Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells

    PubMed Central

    Truong, Lan N.; Li, Yongjiang; Shi, Linda Z.; Hwang, Patty Yi-Hwa; He, Jing; Wang, Hailong; Razavian, Niema; Berns, Michael W.; Wu, Xiaohua

    2013-01-01

    Microhomology-mediated end joining (MMEJ) is a major pathway for Ku-independent alternative nonhomologous end joining, which contributes to chromosomal translocations and telomere fusions, but the underlying mechanism of MMEJ in mammalian cells is not well understood. In this study, we demonstrated that, distinct from Ku-dependent classical nonhomologous end joining, MMEJ—even with very limited end resection—requires cyclin-dependent kinase activities and increases significantly when cells enter S phase. We also showed that MMEJ shares the initial end resection step with homologous recombination (HR) by requiring meiotic recombination 11 homolog A (Mre11) nuclease activity, which is needed for subsequent recruitment of Bloom syndrome protein (BLM) and exonuclease 1 (Exo1) to DNA double-strand breaks (DSBs) to promote extended end resection and HR. MMEJ does not require S139-phosphorylated histone H2AX (γ-H2AX), suggesting that initial end resection likely occurs at DSB ends. Using a MMEJ and HR competition repair substrate, we demonstrated that MMEJ with short end resection is used in mammalian cells at the level of 10–20% of HR when both HR and nonhomologous end joining are available. Furthermore, MMEJ is used to repair DSBs generated at collapsed replication forks. These studies suggest that MMEJ not only is a backup repair pathway in mammalian cells, but also has important physiological roles in repairing DSBs to maintain cell viability, especially under genomic stress. PMID:23610439

  14. Histone deacetylase inhibitors decrease NHEJ both by acetylation of repair factors and trapping of PARP1 at DNA double-strand breaks in chromatin.

    PubMed

    Robert, Carine; Nagaria, Pratik K; Pawar, Nisha; Adewuyi, Adeoluwa; Gojo, Ivana; Meyers, David J; Cole, Philip A; Rassool, Feyruz V

    2016-06-01

    Histone deacetylase inhibitors (HDACi) induce acetylation of histone and non-histone proteins, and modulate the acetylation of proteins involved in DNA double-strand break (DSB) repair. Non-homologous end-joining (NHEJ) is one of the main pathways for repairing DSBs. Decreased NHEJ activity has been reported with HDACi treatment. However, mechanisms through which these effects are regulated in the context of chromatin are unclear. We show that pan-HDACi, trichostatin A (TSA), causes differential acetylation of DNA repair factors Ku70/Ku80 and poly ADP-ribose polymerase-1 (PARP1), and impairs NHEJ. Repair effects are reversed by treatments with p300/CBP inhibitor C646, with significantly decreased acetylation of PARP1. In keeping with these findings, TSA treatment significantly increases PARP1 binding to DSBs in chromatin. Notably, AML patients treated with HDACi entinostat (MS275) in vivo also show increased formation of poly ADP-ribose (PAR) that co-localizes with DSBs. Further, we demonstrate that PARP1 bound to chromatin increases with duration of TSA exposure, resembling PARP "trapping". Knockdown of PARP1 inhibits trapping and mitigates HDACi effects on NHEJ. Finally, combination of HDACi with potent PARP inhibitor talazoparib (BMN673) shows a dose-dependent increase in PARP "trapping", which correlates with increased apoptosis. These results provide a mechanism through which HDACi inhibits deacetylation and increases binding of PARP1 to DSBs, leading to decreased NHEJ and cytotoxicity of leukemia cells.

  15. Ghrelin Prevents Cisplatin-Induced Testicular Damage by Facilitating Repair of DNA Double Strand Breaks Through Activation of p53 in Mice.

    PubMed

    Garcia, Jose M; Chen, Ji-an; Guillory, Bobby; Donehower, Lawrence A; Smith, Roy G; Lamb, Dolores J

    2015-07-01

    Cisplatin administration induces DNA damage resulting in germ cell apoptosis and subsequent testicular atrophy. Although 50 percent of male cancer patients receiving cisplatin-based chemotherapy develop long-term secondary infertility, medical treatment to prevent spermatogenic failure after chemotherapy is not available. Under normal conditions, testicular p53 promotes cell cycle arrest, which allows time for DNA repair and reshuffling during meiosis. However, its role in the setting of cisplatin-induced infertility has not been studied. Ghrelin administration ameliorates the spermatogenic failure that follows cisplatin administration in mice, but the mechanisms mediating these effects have not been well established. The aim of the current study was to characterize the mechanisms of ghrelin and p53 action in the testis after cisplatin-induced testicular damage. Here we show that cisplatin induces germ cell damage through inhibition of p53-dependent DNA repair mechanisms involving gamma-H2AX and ataxia telangiectasia mutated protein kinase. As a result, testicular weight and sperm count and motility were decreased with an associated increase in sperm DNA damage. Ghrelin administration prevented these sequelae by restoring the normal expression of gamma-H2AX, ataxia telangiectasia mutated, and p53, which in turn allows repair of DNA double stranded breaks. In conclusion, these findings indicate that ghrelin has the potential to prevent or diminish infertility caused by cisplatin and other chemotherapeutic agents by restoring p53-dependent DNA repair mechanisms. PMID:26019260

  16. The role of the Mre11-Rad50-Nbs1 complex in double-strand break repair-facts and myths.

    PubMed

    Takeda, Shunichi; Hoa, Nguyen Ngoc; Sasanuma, Hiroyuki

    2016-08-01

    Homologous recombination (HR) initiates double-strand break (DSB) repair by digesting 5'-termini at DSBs, the biochemical reaction called DSB resection, during which DSBs are processed by nucleases to generate 3' single-strand DNA. Rad51 recombinase polymerizes along resected DNA, and the resulting Rad51-DNA complex undergoes homology search. Although DSB resection by the Mre11 nuclease plays a critical role in HR in Saccharomyces cerevisiae, it remains elusive whether DSB resection by Mre11 significantly contributes to HR-dependent DSB repair in mammalian cells. Depletion of Mre11 decreases the efficiency of DSB resection only by 2- to 3-fold in mammalian cells. We show that although Mre11 is required for efficient HR-dependent repair of ionizing-radiation-induced DSBs, Mre11 is largely dispensable for DSB resection in both chicken DT40 and human TK6 B cell lines. Moreover, a 2- to 3-fold decrease in DSB resection has virtually no impact on the efficiency of HR. Thus, although a large number of researchers have reported the vital role of Mre11-mediated DSB resection in HR, the role may not explain the very severe defect in HR in Mre11-deficient cells, including their lethality. We here show experimental evidence for the additional roles of Mre11 in (i) elimination of chemical adducts from DSB ends for subsequent DSB repair, and (ii) maintaining HR intermediates for their proper resolution. PMID:27311583

  17. Histone deacetylase inhibitors decrease NHEJ both by acetylation of repair factors and trapping of PARP1 at DNA double-strand breaks in chromatin.

    PubMed

    Robert, Carine; Nagaria, Pratik K; Pawar, Nisha; Adewuyi, Adeoluwa; Gojo, Ivana; Meyers, David J; Cole, Philip A; Rassool, Feyruz V

    2016-06-01

    Histone deacetylase inhibitors (HDACi) induce acetylation of histone and non-histone proteins, and modulate the acetylation of proteins involved in DNA double-strand break (DSB) repair. Non-homologous end-joining (NHEJ) is one of the main pathways for repairing DSBs. Decreased NHEJ activity has been reported with HDACi treatment. However, mechanisms through which these effects are regulated in the context of chromatin are unclear. We show that pan-HDACi, trichostatin A (TSA), causes differential acetylation of DNA repair factors Ku70/Ku80 and poly ADP-ribose polymerase-1 (PARP1), and impairs NHEJ. Repair effects are reversed by treatments with p300/CBP inhibitor C646, with significantly decreased acetylation of PARP1. In keeping with these findings, TSA treatment significantly increases PARP1 binding to DSBs in chromatin. Notably, AML patients treated with HDACi entinostat (MS275) in vivo also show increased formation of poly ADP-ribose (PAR) that co-localizes with DSBs. Further, we demonstrate that PARP1 bound to chromatin increases with duration of TSA exposure, resembling PARP "trapping". Knockdown of PARP1 inhibits trapping and mitigates HDACi effects on NHEJ. Finally, combination of HDACi with potent PARP inhibitor talazoparib (BMN673) shows a dose-dependent increase in PARP "trapping", which correlates with increased apoptosis. These results provide a mechanism through which HDACi inhibits deacetylation and increases binding of PARP1 to DSBs, leading to decreased NHEJ and cytotoxicity of leukemia cells. PMID:27064363

  18. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions.

    PubMed

    Cristini, Agnese; Park, Joon-Hyung; Capranico, Giovanni; Legube, Gaëlle; Favre, Gilles; Sordet, Olivier

    2016-02-18

    Although defective repair of DNA double-strand breaks (DSBs) leads to neurodegenerative diseases, the processes underlying their production and signaling in non-replicating cells are largely unknown. Stabilized topoisomerase I cleavage complexes (Top1cc) by natural compounds or common DNA alterations are transcription-blocking lesions whose repair depends primarily on Top1 proteolysis and excision by tyrosyl-DNA phosphodiesterase-1 (TDP1). We previously reported that stabilized Top1cc produce transcription-dependent DSBs that activate ATM in neurons. Here, we use camptothecin (CPT)-treated serum-starved quiescent cells to induce transcription-blocking Top1cc and show that those DSBs are generated during Top1cc repair from Top1 peptide-linked DNA single-strand breaks generated after Top1 proteolysis and before excision by TDP1. Following DSB induction, ATM activates DNA-PK whose inhibition suppresses H2AX and H2A ubiquitination and the later assembly of activated ATM into nuclear foci. Inhibition of DNA-PK also reduces Top1 ubiquitination and proteolysis as well as resumption of RNA synthesis suggesting that DSB signaling further enhances Top1cc repair. Finally, we show that co-transcriptional DSBs kill quiescent cells. Together, these new findings reveal that DSB production and signaling by transcription-blocking Top1 lesions impact on non-replicating cell fate and provide insights on the molecular pathogenesis of neurodegenerative diseases such as SCAN1 and AT syndromes, which are caused by TDP1 and ATM deficiency, respectively.

  19. Alignment of Homologous Chromosomes and Effective Repair of Programmed DNA Double-Strand Breaks during Mouse Meiosis Require the Minichromosome Maintenance Domain Containing 2 (MCMDC2) Protein

    PubMed Central

    Ravindranathan, Ramya; Dereli, Ihsan; Stanzione, Marcello; Tóth, Attila

    2016-01-01

    Orderly chromosome segregation during the first meiotic division requires meiotic recombination to form crossovers between homologous chromosomes (homologues). Members of the minichromosome maintenance (MCM) helicase family have been implicated in meiotic recombination. In addition, they have roles in initiation of DNA replication, DNA mismatch repair and mitotic DNA double-strand break repair. Here, we addressed the function of MCMDC2, an atypical yet conserved MCM protein, whose function in vertebrates has not been reported. While we did not find an important role for MCMDC2 in mitotically dividing cells, our work revealed that MCMDC2 is essential for fertility in both sexes due to a crucial function in meiotic recombination. Meiotic recombination begins with the introduction of DNA double-strand breaks into the genome. DNA ends at break sites are resected. The resultant 3-prime single-stranded DNA overhangs recruit RAD51 and DMC1 recombinases that promote the invasion of homologous duplex DNAs by the resected DNA ends. Multiple strand invasions on each chromosome promote the alignment of homologous chromosomes, which is a prerequisite for inter-homologue crossover formation during meiosis. We found that although DNA ends at break sites were evidently resected, and they recruited RAD51 and DMC1 recombinases, these recombinases were ineffective in promoting alignment of homologous chromosomes in the absence of MCMDC2. Consequently, RAD51 and DMC1 foci, which are thought to mark early recombination intermediates, were abnormally persistent in Mcmdc2-/- meiocytes. Importantly, the strand invasion stabilizing MSH4 protein, which marks more advanced recombination intermediates, did not efficiently form foci in Mcmdc2-/- meiocytes. Thus, our work suggests that MCMDC2 plays an important role in either the formation, or the stabilization, of DNA strand invasion events that promote homologue alignment and provide the basis for inter-homologue crossover formation during

  20. Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity.

    PubMed Central

    Sweetser, D B; Hough, H; Whelden, J F; Arbuckle, M; Nickoloff, J A

    1994-01-01

    Spontaneous and double-strand break (DSB)-induced gene conversion was examined in alleles of the Saccharomyces cerevisiae ura3 gene containing nine phenotypically silent markers and an HO nuclease recognition site. Conversions of these alleles, carried on ARS1/CEN4 plasmids, involved interactions with heteroalleles on chromosome V and were stimulated by DSBs created at HO sites. Crossovers that integrate plasmids into chromosomes were not detected since the resultant dicentric chromosomes would be lethal. Converted alleles in shuttle plasmids were easily transferred to Escherichia coli and analyzed for marker conversion, facilitating the characterization of more than 400 independent products from five crosses. This analysis revealed several new features of gene conversions. The average length of DSB-induced conversion tracts was 200 to 300 bp, although about 20% were very short (less than 53 bp). About 20% of spontaneous tracts also were also less than 53 bp, but spontaneous tracts were on average about 40% longer than DSB-induced tracts. Most tracts were continuous, but 3% had discontinuous conversion patterns, indicating that extensive heteroduplex DNA is formed during at least this fraction of events. Mismatches in heteroduplex DNA were repaired in both directions, and repair tracts as short as 44 bp were observed. Surprisingly, most DSB-induced gene conversion tracts were unidirectional and exhibited a reversible polarity that depended on the locations of DSBs and frameshift mutations in recipient and donor alleles. Images PMID:8196629

  1. CYS3, a hotspot of meiotic recombination in Saccharomyces cerevisiae. Effects of heterozygosity and mismatch repair functions on gene conversion and recombination intermediates.

    PubMed Central

    Vedel, M; Nicolas, A

    1999-01-01

    We have examined meiotic recombination at the CYS3 locus. Genetic analysis indicates that CYS3 is a hotspot of meiotic gene conversion, with a putative 5'-3' polarity gradient of conversion frequencies. This gradient is relieved in the presence of msh2 and pms1 mutations, indicating an involvement of mismatch repair functions in meiotic recombination. To investigate the role of mismatch repair proteins in meiotic recombination, we performed a physical analysis of meiotic DNA in wild-type and msh2 pms1 strains in the presence or absence of allelic differences at CYS3. Neither the mutations in CYS3 nor the absence of mismatch repair functions affects the frequency and distribution of nearby recombination-initiating DNA double-strand breaks (DSBs). Processing of DSBs is also similar in msh2 pms1 and wild-type strains. We conclude that mismatch repair functions do not control the distribution of meiotic gene conversion events at the initiating steps. In the MSH2 PMS1 background, strains heteroallelic for frameshift mutations in CYS3 exhibit a frequency of gene conversion greater than that observed for either marker alone. Physical analysis revealed no modification in the formation of DSBs, suggesting that this marker effect results from subsequent processing events that are not yet understood. PMID:10101154

  2. Interaction of DNA repair gene polymorphisms and aflatoxin B1 in the risk of hepatocellular carcinoma

    PubMed Central

    Yao, Jin-Guang; Huang, Xiao-Ying; Long, Xi-Dai

    2014-01-01

    Aflatoxin B1 (AFB1) is an important environmental carcinogen and can induce DNA damage and involve in the carcinogenesis of hepatocellular carcinoma (HCC). The deficiency of DNA repair capacity related to the polymorphisms of DNA repair genes might play a central role in the process of HCC tumorigenesis. However, the interaction of DNA repair gene polymorphisms and AFB1 in the risk of hepatocellular carcinoma has not been elucidated. In this study, we investigated whether six polymorphisms (including rs25487, rs861539, rs7003908, rs28383151, rs13181, and rs2228001) in DNA repair genes (XPC, XRCC4, XRCC1, XRCC4, XPD, XRCC7, and XRCC3) interacted with AFB1, and the gene-environmental interactive role in the risk of HCC using hospital-based case-control study (including 1486 HCC cases and 1996 controls). Genotypes of DNA repair genes were tested using TaqMan-PCR technique. Higher AFB1 exposure was observed among HCC patients versus the control group [odds ratio (OR) = 2.08 for medium AFB1 exposure level and OR = 6.52 for high AFB1 exposure level]. Increasing risk of HCC was also observed in these with the mutants of DNA repair genes (risk values were from 1.57 to 5.86). Furthermore, these risk roles would be more noticeable under the conditions of two variables, and positive interactive effects were proved in the followed multiplicative interaction analysis. These results suggested that DNA repair risk genotypes might interact with AFB1 in the risk of HCC. PMID:25337275

  3. H2A.Z depletion impairs proliferation and viability but not DNA double-strand breaks repair in human immortalized and tumoral cell lines

    PubMed Central

    Taty-Taty, Gemael-Cedrick; Courilleau, Celine; Quaranta, Muriel; Carayon, Alexandre; Chailleux, Catherine; Aymard, François; Trouche, Didier; Canitrot, Yvan

    2014-01-01

    In mammalian cells, DNA double-strand breaks (DSB) can be repaired by 2 main pathways, homologous recombination (HR) and non-homologous end joining (NHEJ). To give access to DNA damage to the repair machinery the chromatin structure needs to be relaxed, and chromatin modifications play major roles in the control of these processes. Among the chromatin modifications, changes in nucleosome composition can influence DNA damage response as observed with the H2A.Z histone variant in yeast. In mammals, p400, an ATPase of the SWI/SNF family able to incorporate H2A.Z in chromatin, was found to be important for histone ubiquitination and BRCA1 recruitment around DSB or for HR in cooperation with Rad51. Recent data with 293T cells showed that mammalian H2A.Z is recruited to DSBs and is important to control DNA resection, therefore participating both in HR and NHEJ. Here we show that depletion of H2A.Z in the osteosarcoma U2OS cell line and in immortalized human fibroblasts does not change parameters of DNA DSB repair while affecting clonogenic ability and cell cycle distribution. In addition, no recruitment of H2A.Z around DSB can be detected in U2OS cells either after local laser irradiation or by chromatin immunoprecipitation. These data suggest that the role of H2A.Z in DSB repair is not ubiquitous in mammals. In addition, given that important cellular parameters, such as cell viability and cell cycle distribution, are more sensitive to H2A.Z depletion than DNA repair, our results underline the difficulty to investigate the role of versatile factors such as H2A.Z. PMID:24240188

  4. Kinetics of chromatid break repair in G2-human fibroblasts exposed to low- and high-LET radiations

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Durante, M.; George, K.; Furusawa, Y.; Gotoh, E.; Takai, N.; Wu, H.; Cucinotta, F. A.

    2001-01-01

    The purpose of this study is to determine the kinetics of chromatid break rejoining following exposure to radiations of different quality. Exponentially growing human fibroblast cells AG1522 were irradiated with gamma-rays, energetic carbon (290 MeV/u), silicon (490 MeV/u) and iron (200 MeV/u, 600 MeV/u). Chromosomes were prematurely condensed using calyculin A. Prematurely condensed chromosomes were collected after several post-irradiation incubation times, ranging from 5 to 600 minutes, and the number of chromatid breaks and exchanges in G2 cells were scored. The relative biological effectiveness (RBE) for initial chromatid breaks per unit dose showed LET dependency having a peak at 55 keV/micrometers silicon (2.4) or 80 keV/micrometers carbon particles (2.4) and then decreased with increasing LET. The kinetics of chromatid break rejoining following low- or high-LET irradiation consisted of two exponential components. Chromatid breaks decreased rapidly after exposure, and then continued to decrease at a slower rate. The rejoining kinetics was similar for exposure to each type of radiation, although the rate of unrejoined breaks was higher for high-LET radiation. Chromatid exchanges were also formed quickly.

  5. Genetic mapping of the rice resistance-breaking gene of the brown planthopper Nilaparvata lugens

    PubMed Central

    Kobayashi, Tetsuya; Yamamoto, Kimiko; Suetsugu, Yoshitaka; Kuwazaki, Seigo; Hattori, Makoto; Jairin, Jirapong; Sanada-Morimura, Sachiyo; Matsumura, Masaya

    2014-01-01

    Host plant resistance has been widely used for controlling the major rice pest brown planthopper (BPH, Nilaparvata lugens). However, adaptation of the wild BPH population to resistance limits the effective use of resistant rice varieties. Quantitative trait locus (QTL) analysis was conducted to identify resistance-breaking genes against the anti-feeding mechanism mediated by the rice resistance gene Bph1. QTL analysis in iso-female BPH lines with single-nucleotide polymorphism (SNP) markers detected a single region on the 10th linkage group responsible for the virulence. The QTL explained from 57 to 84% of the total phenotypic variation. Bulked segregant analysis with next-generation sequencing in F2 progenies identified five SNPs genetically linked to the virulence. These analyses showed that virulence to Bph1 was controlled by a single recessive gene. In contrast to previous studies, the gene-for-gene relationship between the major resistance gene Bph1 and virulence gene of BPH was confirmed. Identified markers are available for map-based cloning of the major gene controlling BPH virulence to rice resistance. PMID:24870048

  6. Either Non-Homologous Ends Joining or Homologous Recombination Is Required to Repair Double-Strand Breaks in the Genome of Macrophage-Internalized Mycobacterium tuberculosis

    PubMed Central

    Klink, Magdalena; Brzezinska, Marta; Sulowska, Zofia; Dziadek, Jaroslaw

    2014-01-01

    The intracellular pathogen Mycobacterium tuberculosis (Mtb) is constantly exposed to a multitude of hostile conditions and is confronted by a variety of potentially DNA-damaging assaults in vivo, primarily from host-generated antimicrobial toxic radicals. Exposure to reactive nitrogen species and/or reactive oxygen species causes different types of DNA damage, including oxidation, depurination, methylation and deamination, that can result in single- or double-strand breaks (DSBs). These breaks affect the integrity of the whole genome and, when left unrepaired, can lead to cell death. Here, we investigated the role of the DSB repair pathways, homologous recombination (HR) and non-homologous ends joining (NHEJ), in the survival of Mtb inside macrophages. To this end, we constructed Mtb strains defective for HR (ΔrecA), NHEJ [Δ(ku,ligD)], or both DSB repair systems [Δ(ku,ligD,recA)]. Experiments using these strains revealed that either HR or NHEJ is sufficient for the survival and propagation of tubercle bacilli inside macrophages. Inhibition of nitric oxide or superoxide anion production with L-NIL or apocynin, respectively, enabled the Δ(ku,ligD,recA) mutant strain lacking both systems to survive intracellularly. Complementation of the Δ(ku,ligD,recA) mutant with an intact recA or ku-ligD rescued the ability of Mtb to propagate inside macrophages. PMID:24658131

  7. The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by inducing mitochondrial damage and impairing DNA break repair.

    PubMed

    Liang, Diana H; Choi, Dong Soon; Ensor, Joe E; Kaipparettu, Benny A; Bass, Barbara L; Chang, Jenny C

    2016-07-01

    Triple negative breast cancer (TNBC), characterized by an abundance of treatment-resistant breast cancer stem cells (CSCs), has a poorer prognosis than other types of breast cancers. Despite its aggressiveness, no effective targeted therapy exists for TNBC. Here, we demonstrate that CQ effectively targets CSCs via autophagy inhibition, mitochondrial structural damage, and impairment of double-stranded DNA break repair. Electron microscopy demonstrates CQ-induced mitochondrial cristae damage, which leads to mitochondrial membrane depolarization with a significant reduction in the activity of cytochrome c oxidase and accumulation of superoxide and double-stranded DNA breaks. CQ effectively diminishes the TNBC cells' ability to metastasize in vitro and in a TNBC xenograft model. When administered in combination with carboplatin, CQ effectively inhibits carboplatin-induced autophagy. This combination treatment significantly diminishes the expression of DNA repair proteins in CSC subpopulations, resulting in tumor growth reduction in carboplatin-resistant BRCA1 wild-type TNBC orthotopic xenografts. As TNBC's high treatment failure rate has been attributed to enrichment of CSCs, CQ, an autophagy inhibitor with anti-CSC effects, may be an effective adjunct to current TNBC chemotherapy regimens with carboplatin. PMID:27060208

  8. The Intertwined Roles of Transcription and Repair Proteins

    PubMed Central

    Fong, Yick W.; Cattoglio, Claudia; Tjian, Robert

    2014-01-01

    Transcription is apparently risky business. Its intrinsic mutagenic potential must be kept in check by networks of DNA repair factors that monitor the transcription process to repair DNA lesions that could otherwise compromise transcriptional fidelity and genome integrity. Intriguingly, recent studies point to an even more direct function of DNA repair complexes as co-activators of transcription and the unexpected role of “scheduled” DNA damage/repair at gene promoters. Paradoxically, spontaneous DNA double-strand breaks also induce ectopic transcription that is essential for repair. Thus, transcription, DNA damage and repair may be more physically and functionally intertwined than previously appreciated. PMID:24207023

  9. A new approach to tissue repair: gene therapy.

    PubMed

    Wei, Kuanhai; Pei, Guoxian; Hu, Basheng

    2000-11-15

    The process of tissue repair involves a complex tissue response to injury in which growth factors, playing a major role in this process, trigger, control and terminate soakage of inflammatory cells, cells proliferation, secretion of matrix and scars formation by autocrine, paracrine or both. Thus, growth factors can be used to alter the microenvironment of the wounded tissues and to promote their repair. But, there are notable disadvantages in using purified recombination growth factors, 1) the source is so limited that their prices are expensive; 2) the ir half-lives are short and easy to be destroyed by wound proteases; 3) there is no perfect carrier; 4) high initial doses are required but easy to bring toxicity; 5) it is difficult to apply growth factors in deep wounded tissues again and again, their function cannot be played enough accordingly; 6) most of growth factors are the products of recombination. All above-mentioned disadvantages result in a low activity.

  10. Coordination and processing of DNA ends during double-strand break repair: the role of the bacteriophage T4 Mre11/Rad50 (MR) complex.

    PubMed

    Almond, Joshua R; Stohr, Bradley A; Panigrahi, Anil K; Albrecht, Dustin W; Nelson, Scott W; Kreuzer, Kenneth N

    2013-11-01

    The in vivo functions of the bacteriophage T4 Mre11/Rad50 (MR) complex (gp46/47) in double-strand-end processing, double-strand break repair, and recombination-dependent replication were investigated. The complex is essential for T4 growth, but we wanted to investigate the in vivo function during productive infections. We therefore generated a suppressed triple amber mutant in the Rad50 subunit to substantially reduce the level of complex and thereby reduce phage growth. Growth-limiting amounts of the complex caused a concordant decrease in phage genomic recombination-dependent replication. However, the efficiencies of double-strand break repair and of plasmid-based recombination-dependent replication remained relatively normal. Genetic analyses of linked markers indicated that double-strand ends were less protected from nuclease erosion in the depleted infection and also that end coordination during repair was compromised. We discuss models for why phage genomic recombination-dependent replication is more dependent on Mre11/Rad50 levels when compared to plasmid recombination-dependent replication. We also tested the importance of the conserved histidine residue in nuclease motif I of the T4 Mre11 protein. Substitution with multiple different amino acids (including serine) failed to support phage growth, completely blocked plasmid recombination-dependent replication, and led to the stabilization of double-strand ends. We also constructed and expressed an Mre11 mutant protein with the conserved histidine changed to serine. The mutant protein was found to be completely defective for nuclease activities, but retained the ability to bind the Rad50 subunit and double-stranded DNA. These results indicate that the nuclease activity of Mre11 is critical for phage growth and recombination-dependent replication during T4 infections.

  11. Stable gene replacement in barley by targeted double-strand break induction

    PubMed Central

    Watanabe, Koichi; Breier, Ulrike; Hensel, Götz; Kumlehn, Jochen; Schubert, Ingo; Reiss, Bernd

    2016-01-01

    Gene targeting is becoming an important tool for precision genome engineering in plants. During gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. We have analysed gene targeting in barley (Hordeum vulgare) using a model system based on double-strand break (DSB) induction by the meganuclease I-SceI and a transgenic, artificial target locus. In the plants we obtained, the donor construct was inserted at the target locus by homology-directed DNA integration in at least two transformants obtained in a single experiment and was stably inherited as a single Mendelian trait. Both events were produced by one-sided integration. Our data suggest that gene replacement can be achieved in barley with a frequency suitable for routine application. The use of a codon-optimized nuclease and co-transfer of the nuclease gene together with the donor construct are probably the components important for efficient gene targeting. Such an approach, employing the recently developed synthetic nucleases/nickases that allow DSB induction at almost any sequence of a genome of interest, sets the stage for precision genome engineering as a routine tool even for important crops such as barley. PMID:26712824

  12. The RSF1 Histone-Remodelling Factor Facilitates DNA Double-Strand Break Repair by Recruiting Centromeric and Fanconi Anaemia Proteins

    PubMed Central

    Pessina, Fabio; Lowndes, Noel F.

    2014-01-01

    ATM is a central regulator of the cellular responses to DNA double-strand breaks (DSBs). Here we identify a biochemical interaction between ATM and RSF1 and we characterise the role of RSF1 in this response. The ATM–RSF1 interaction is dependent upon both DSBs and ATM kinase activity. Together with SNF2H/SMARCA5, RSF1 forms the RSF chromatin-remodelling complex. Although RSF1 is specific to the RSF complex, SNF2H/SMARCA5 is a catalytic subunit of several other chromatin-remodelling complexes. Although not required for checkpoint signalling, RSF1 is required for efficient repair of DSBs via both end-joining and homology-directed repair. Specifically, the ATM-dependent recruitment to sites of DSBs of the histone fold proteins CENPS/MHF1 and CENPX/MHF2, previously identified at centromeres, is RSF1-dependent. In turn these proteins recruit and regulate the mono-ubiquitination of the Fanconi Anaemia proteins FANCD2 and FANCI. We propose that by depositing CENPS/MHF1 and CENPX/MHF2, the RSF complex either directly or indirectly contributes to the reorganisation of chromatin around DSBs that is required for efficient DNA repair. PMID:24800743

  13. Drosophila mus301/spindle-C Encodes a Helicase With an Essential Role in Double-Strand DNA Break Repair and Meiotic Progression

    PubMed Central

    McCaffrey, Ruth; St Johnston, Daniel; González-Reyes, Acaimo

    2006-01-01

    mus301 was identified independently in two genetic screens, one for mutants hypersensitive to chemical mutagens and another for maternal mutants with eggshell defects. mus301 is required for the proper specification of the oocyte and for progression through meiosis in the Drosophila ovary. We have cloned mus301 and show that it is a member of the Mus308 subfamily of ATP-dependent helicases and the closest homolog of human and mouse HEL308. Functional analyses demonstrate that Mus301 is involved in chromosome segregation in meiosis and in the repair of double-strand-DNA breaks in both meiotic and mitotic cells. Most of the oogenesis defects of mus301 mutants are suppressed by mutants in the checkpoint kinase Mei41 and in MeiW68, the Spo11 homolog that is thought to generate the dsDNA breaks that initiate recombination, indicating that these phenotypes are caused by activation of the DNA damage checkpoint in response to unrepaired Mei-W68-induced dsDNA breaks. However, neither mei-W68 nor mei-41 rescue the defects in oocyte specification of mus301 mutants, suggesting that this helicase has another function in oocyte selection that is independent from its role in meiotic recombination. PMID:16888338

  14. Gene Expression in Experimental Aortic Coarctation and Repair: Candidate Genes for Therapeutic Intervention?

    PubMed Central

    LaDisa, John F.; Bozdag, Serdar; Olson, Jessica; Ramchandran, Ramani; Kersten, Judy R.; Eddinger, Thomas J.

    2015-01-01

    Coarctation of the aorta (CoA) is a constriction of the proximal descending thoracic aorta and is one of the most common congenital cardiovascular defects. Treatments for CoA improve life expectancy, but morbidity persists, particularly due to the development of chronic hypertension (HTN). Identifying the mechanisms of morbidity is difficult in humans due to confounding variables such as age at repair, follow-up duration, coarctation severity and concurrent anomalies. We previously developed an experimental model that replicates aortic pathology in humans with CoA without these confounding variables, and mimics correction at various times using dissolvable suture. Here we present the most comprehensive description of differentially expressed genes (DEGs) to date from the pathology of CoA, which were obtained using this model. Aortic samples (n=4/group) from the ascending aorta that experiences elevated blood pressure (BP) from induction of CoA, and restoration of normal BP after its correction, were analyzed by gene expression microarray, and enriched genes were converted to human orthologues. 51 DEGs with >6 fold-change (FC) were used to determine enriched Gene Ontology terms, altered pathways, and association with National Library of Medicine Medical Subject Headers (MeSH) IDs for HTN, cardiovascular disease (CVD) and CoA. The results generated 18 pathways, 4 of which (cell cycle, immune system, hemostasis and metabolism) were shared with MeSH ID’s for HTN and CVD, and individual genes were associated with the CoA MeSH ID. A thorough literature search further uncovered association with contractile, cytoskeletal and regulatory proteins related to excitation-contraction coupling and metabolism that may explain the structural and functional changes observed in our experimental model, and ultimately help to unravel the mechanisms responsible for persistent morbidity after treatment for CoA. PMID:26207811

  15. Differential repair of radiation-induced DNA damage in cells of human squamous cell carcinoma and the effect of caffeine and cysteamine on induction and repair of DNA double-strand breaks

    SciTech Connect

    Smeets, M.F.M.A.; Mooren, E.H.M.; Abdel-Wahab, A.H.A.; Begg, A.C.

    1994-11-01

    The goal of these experiments was to investigate further the relationship between DNA double-strand breaks and cell killing in human tumor cells, first by comparing different cell lines, and second by radiomodification studies. Field-inversion gel electrophoresis was used to quantify double-strand breaks. Two subclones of the radioresistant human squamous cell carcinoma line SQ20B (SQD9 and SQG6) were compared. These subclones differed in DNA index by a factor of 1.7 but showed the same resistance to radiation as cells of the parental cell line. It was found that, although induction of DSBs was not significantly different in the two cell lines, the t{sub 1/2} of the fast component of repair was significantly shorter for SQD9 cells, leading to greater overall repair which was not reflected in increased survival. Caffeine and cysteamine were tested as modifiers of radiosensitivity, using the radioresistant SQ20B line and the radiosensitive SCC61 cell line. No effect of caffeine was seen when the drug was present only during irradiation. Postirradiation incubations with caffeine, however, resulted in a dose reduction factor greater than 2.0 in cell survival for both cell lines. In contrast, induction of DSBs was reduced by caffeine, and no effect on DSB repair was observed. Cysteamine led to a dose protection factor greater than 1.8 in cell survival in both cell lines. A reduction in induced DSBs was found at high doses corresponding approximately with the increase in cell survival. Over the same (low) dose range, however, the correlation between DSB induction and cell killing was poor. These data indicate that DSB induction does not correlate well with cell killing either for different cell lines, for radiochemical modification (cysteamine) or for some other types of modification (caffeine). 31 refs., 8 figs.

  16. The Convergence of Fracture Repair and Stem Cells: Interplay of Genes, Aging, Environmental Factors and Disease

    PubMed Central

    Hadjiargyrou, Michael; O’Keefe, Regis J

    2015-01-01

    The complexity of fracture repair makes it an ideal process for studying the interplay between the molecular, cellular, tissue, and organ level events involved in tissue regeneration. Additionally, as fracture repair recapitulates many of the processes that occur during embryonic development, investigations of fracture repair provide insights regarding skeletal embryogenesis. Specifically, inflammation, signaling, gene expression, cellular proliferation and differentiation, osteogenesis, chondrogenesis, angiogenesis, and remodeling represent the complex array of interdependent biological events that occur during fracture repair. Here we review studies of bone regeneration in genetically modified mouse models, during aging, following environmental exposure, and in the setting of disease that provide insights regarding the role of multipotent cells and their regulation during fracture repair. Complementary animal models and ongoing scientific discoveries define an increasing number of molecular and cellular targets to reduce the morbidity and complications associated with fracture repair. Last, some new and exciting areas of stem cell research such as the contribution of mitochondria function, limb regeneration signaling, and microRNA (miRNA) posttranscriptional regulation are all likely to further contribute to our understanding of fracture repair as an active branch of regenerative medicine. PMID:25264148

  17. Repair of UV damaged DNA, genes and proteins of yeast and human

    SciTech Connect

    Prakash, L.

    1991-04-01

    Our objectives are to determine the molecular mechanism of the incision step of excision repair of ultraviolet (UV) light damaged DNA in eukaryotic organisms, using the yeast Saccharomyces cerevisiae as a model system, as well as studying the human homologs of yeast excision repair and postreplication repair proteins. In addition to its single-stranded DNA-dependent A TPase and DNA helicase activities, we have found that RAD3 protein also possesses DNA-RNA helicase activity, and that like RAD3, the Schizosaccharomyces pombe RAD3 homolog, rhp3{sup +}, is an essential gene. We have overexpressed the human RAD3 homolog, ERCC2, in yeast to facilitate its purification. The RAD10 protein was purified to homogeneity and shown to bind DNA. ERCC3y, the yeast homolog of the human ERCC-3/XP-B gene, has been sequenced and shown to be essential for viability. The Drosophila and human homologs of RAD6, required for postreplication repair and UV induced mutagenesis, were shown to complement the rad6 {Delta} mutation of yeast. Since defective DNA repair and enhanced neoplasia characterize several human genetic diseases, and repair proteins are highly conserved between yeast and man, a thorough understanding of the molecular mechanisms of DNA repir in yeast should provide a better understanding of the causes of carcinogenesis.

  18. Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair.

    PubMed

    Gursoy-Yuzugullu, Ozge; Ayrapetov, Marina K; Price, Brendan D

    2015-06-16

    The repair of DNA double-strand breaks (DSBs) requires open, flexible chromatin domains. The NuA4-Tip60 complex creates these flexible chromatin structures by exchanging histone H2A.Z onto nucleosomes and promoting acetylation of histone H4. Here, we demonstrate that the accumulation of H2A.Z on nucleosomes at DSBs is transient, and that rapid eviction of H2A.Z is required for DSB repair. Anp32e, an H2A.Z chaperone that interacts with the C-terminal docking domain of H2A.Z, is rapidly recruited to DSBs. Anp32e functions to remove H2A.Z from nucleosomes, so that H2A.Z levels return to basal within 10 min of DNA damage. Further, H2A.Z removal by Anp32e disrupts inhibitory interactions between the histone H4 tail and the nucleosome surface, facilitating increased acetylation of histone H4 following DNA damage. When H2A.Z removal by Anp32e is blocked, nucleosomes at DSBs retain elevated levels of H2A.Z, and assume a more stable, hypoacetylated conformation. Further, loss of Anp32e leads to increased CtIP-dependent end resection, accumulation of single-stranded DNA, and an increase in repair by the alternative nonhomologous end joining pathway. Exchange of H2A.Z onto the chromatin and subsequent rapid removal by Anp32e are therefore critical for creating open, acetylated nucleosome structures and for controlling end resection by CtIP. Dynamic modulation of H2A.Z exchange and removal by Anp32e reveals the importance of the nucleosome surface and nucleosome dynamics in processing the damaged chromatin template during DSB repair.

  19. Increased DNA double-strand break was associated with downregulation of repair and upregulation of apoptotic factors in rat hippocampus after alcohol exposure.

    PubMed

    Suman, Shubhankar; Kumar, Santosh; N'Gouemo, Prosper; Datta, Kamal

    2016-08-01

    Binge drinking is known to cause damage in critical areas of the brain, including the hippocampus, which is important for relational memory and is reported to be sensitive to alcohol toxicity. However, the roles of DNA double-strand break (DSB) and its repair pathways, homologous recombination (HR), and non-homologous end joining (NHEJ) in alcohol-induced hippocampal injury remain to be elucidated. The purpose of this first study was to assess alcohol-induced DNA DSB and the mechanism by which alcohol affects DSB repair pathways in rat hippocampus. Male Sprague-Dawley rats (8-10 weeks old) were put on a 4-day binge ethanol treatment regimen. Control animals were maintained under similar conditions but were given the vehicle without ethanol. All animals were humanely euthanized 24 h after the last dose of ethanol administration and the hippocampi were dissected for immunoblot and immunohistochemistry analysis. Ethanol exposure caused increased 4-hydroxynonenal (4-HNE) staining as well as elevated γH2AX and 53BP1 foci in hippocampal cells. Immunoblot analysis showed decreased Mre11, Rad51, Rad50, and Ku86 as well as increased Bax and p21 in samples from ethanol-treated rats. Additionally, we also observed increased activated caspase3 staining in hippocampal cells 24 h after ethanol withdrawal. Taken together, our data demonstrated that ethanol concurrently induced DNA DSB, downregulated DSB repair pathway proteins, and increased apoptotic factors in hippocampal cells. We believe these findings will provide the impetus for further research on DNA DSB and its repair pathways in relation to alcohol toxicity in brain. PMID:27565756

  20. Dual Targeting of Akt and mTORC1 Impairs Repair of DNA Double-Strand Breaks and Increases Radiation Sensitivity of Human Tumor Cells

    PubMed Central

    Holler, Marina; Grottke, Astrid; Mueck, Katharina; Manes, Julia; Jücker, Manfred

    2016-01-01

    Inhibition of mammalian target of rapamycin-complex 1 (mTORC1) induces activation of Akt. Because Akt activity mediates the repair of ionizing radiation-induced DNA double-strand breaks (DNA-DSBs) and consequently the radioresistance of solid tumors, we investigated whether dual targeting of mTORC1 and Akt impairs DNA-DSB repair and induces radiosensitization. Combining mTORC1 inhibitor rapamycin with ionizing radiation in human non-small cell lung cancer (NSCLC) cells (H661, H460, SK-MES-1, HTB-182, A549) and in the breast cancer cell line MDA-MB-231 resulted in radiosensitization of H661 and H460 cells (responders), whereas only a very slight effect was observed in A549 cells, and no effect was observed in SK-MES-1, HTB-182 or MDA-MB-231 cells (non-responders). In responder cells, rapamycin treatment did not activate Akt1 phosphorylation, whereas in non-responders, rapamycin mediated PI3K-dependent Akt activity. Molecular targeting of Akt by Akt inhibitor MK2206 or knockdown of Akt1 led to a rapamycin-induced radiosensitization of non-responder cells. Compared to the single targeting of Akt, the dual targeting of mTORC1 and Akt1 markedly enhanced the frequency of residual DNA-DSBs by inhibiting the non-homologous end joining repair pathway and increased radiation sensitivity. Together, lack of radiosensitization induced by rapamycin was associated with rapamycin-mediated Akt1 activation. Thus, dual targeting of mTORC1 and Akt1 inhibits repair of DNA-DSB leading to radiosensitization of solid tumor cells. PMID:27137757

  1. Androgen receptor in Sertoli cells regulates DNA double-strand break repair and chromosomal synapsis of spermatocytes partially through intercellular EGF-EGFR signaling.

    PubMed

    Chen, Su-Ren; Hao, Xiao-Xia; Zhang, Yan; Deng, Shou-Long; Wang, Zhi-Peng; Wang, Yu-Qian; Wang, Xiu-Xia; Liu, Yi-Xun

    2016-04-01

    Spermatogenesis does not progress beyond the pachytene stages of meiosis in Sertoli cell-specific AR knockout (SCARKO) mice. However, further evidence of meiotic arrest and underlying paracrine signals in SCARKO testes is still lacking. We utilized co-immunostaining of meiotic surface spreads to examine the key events during meiotic prophase I. SCARKO spermatocytes exhibited a failure in chromosomal synapsis observed by SCP1/SCP3 double-staining and CREST foci quantification. In addition, DNA double-strand breaks (DSBs) were formed but were not repaired in the mutant spermatocytes, as revealed by γ-H2AX staining and DNA-dependent protein kinase (DNA-PK) activity examination. The later stages of DSB repair, such as the accumulation of the RAD51 strand exchange protein and the localization of mismatch repair protein MLH1, were correspondingly altered in SCARKO spermatocytes. Notably, the expression of factors that guide RAD51 loading onto sites of DSBs, including TEX15, BRCA1/2 and PALB2, was severely impaired when either AR was down-regulated or EGF was up-regulated. We observed that some ligands in the epidermal growth factor (EGF) family were over-expressed in SCARKO Sertoli cells and that some receptors in the EGF receptor (EGFR) family were ectopically activated in the mutant spermatocytes. When EGF-EGFR signaling was repressed to approximately normal by the specific inhibitor AG1478 in the cultured SCARKO testis tissues, the arrested meiosis was partially rescued, and functional haploid cells were generated. Based on these data, we propose that AR in Sertoli cells regulates DSB repair and chromosomal synapsis of spermatocytes partially through proper intercellular EGF-EGFR signaling.

  2. Inhibition of Homologous Recombination and Promotion of Mutagenic Repair of DNA Double-Strand Breaks Underpins Arabinoside-Nucleoside Analogue Radiosensitization.

    PubMed

    Magin, Simon; Papaioannou, Maria; Saha, Janapriya; Staudt, Christian; Iliakis, George

    2015-06-01

    In concurrent chemoradiotherapy, drugs are used to sensitize tumors to ionizing radiation. Although a spectrum of indications for simultaneous treatment with drugs and radiation has been defined, the molecular mechanisms underpinning tumor radiosensitization remain incompletely characterized for several such combinations. Here, we investigate the mechanisms of radiosensitization by the arabinoside nucleoside analogue 9-β-D-arabinofuranosyladenine (araA) placing particular emphasis on the repair of DNA double-strand breaks (DSB), and compare the results to those obtained with fludarabine (F-araA) and cytarabine (araC). Postirradiation treatment with araA strongly sensitizes cells to ionizing radiation, but leaves unchanged DSB repair by NHEJ in logarithmically growing cells, in sorted G1 or G2 phase populations, as well as in cells in the plateau phase of growth. Notably, araA strongly inhibits DSB repair by homologous recombination (HRR), as assessed by scoring ionizing radiation-induced RAD51 foci, and in functional assays using integrated reporter constructs. Cells compromised in HRR by RNAi-mediated transient knockdown of RAD51 show markedly reduced radiosensitization after treatment with araA. Remarkably, mutagenic DSB repair compensates for HRR inhibition in araA-treated cells. Compared with araA, F-araA and araC are only modestly radiosensitizing under the conditions examined. We propose that the radiosensitizing potential of nucleoside analogues is linked to their ability to inhibit HRR and concomitantly promote the error-prone processing of DSBs. Our observations pave the way to treatment strategies harnessing the selective inhibitory potential of nucleoside analogues and the development of novel compounds specifically utilizing HRR inhibition as a means of tumor cell radiosensitization. PMID:25840584

  3. Androgen receptor in Sertoli cells regulates DNA double-strand break repair and chromosomal synapsis of spermatocytes partially through intercellular EGF-EGFR signaling.

    PubMed

    Chen, Su-Ren; Hao, Xiao-Xia; Zhang, Yan; Deng, Shou-Long; Wang, Zhi-Peng; Wang, Yu-Qian; Wang, Xiu-Xia; Liu, Yi-Xun

    2016-04-01

    Spermatogenesis does not progress beyond the pachytene stages of meiosis in Sertoli cell-specific AR knockout (SCARKO) mice. However, further evidence of meiotic arrest and underlying paracrine signals in SCARKO testes is still lacking. We utilized co-immunostaining of meiotic surface spreads to examine the key events during meiotic prophase I. SCARKO spermatocytes exhibited a failure in chromosomal synapsis observed by SCP1/SCP3 double-staining and CREST foci quantification. In addition, DNA double-strand breaks (DSBs) were formed but were not repaired in the mutant spermatocytes, as revealed by γ-H2AX staining and DNA-dependent protein kinase (DNA-PK) activity examination. The later stages of DSB repair, such as the accumulation of the RAD51 strand exchange protein and the localization of mismatch repair protein MLH1, were correspondingly altered in SCARKO spermatocytes. Notably, the expression of factors that guide RAD51 loading onto sites of DSBs, including TEX15, BRCA1/2 and PALB2, was severely impaired when either AR was down-regulated or EGF was up-regulated. We observed that some ligands in the epidermal growth factor (EGF) family were over-expressed in SCARKO Sertoli cells and that some receptors in the EGF receptor (EGFR) family were ectopically activated in the mutant spermatocytes. When EGF-EGFR signaling was repressed to approximately normal by the specific inhibitor AG1478 in the cultured SCARKO testis tissues, the arrested meiosis was partially rescued, and functional haploid cells were generated. Based on these data, we propose that AR in Sertoli cells regulates DSB repair and chromosomal synapsis of spermatocytes partially through proper intercellular EGF-EGFR signaling. PMID:26959739

  4. Coordination of cell cycle, DNA repair and muscle gene expression in myoblasts exposed to genotoxic stress

    PubMed Central

    Minetti, Giulia Claudia

    2011-01-01

    Upon exposure to genotoxic stress, skeletal muscle progenitors coordinate DNA repair and the activation of the differentiation program through the DNA damage-activated differentiation checkpoint, which holds the transcription of differentiation genes while the DNA is repaired. A conceptual hurdle intrinsic to this process relates to the coordination of DNA repair and muscle-specific gene transcription within specific cell cycle boundaries (cell cycle checkpoints) activated by different types of genotoxins. Here, we show that, in proliferating myoblasts, the inhibition of muscle gene transcription occurs by either a G1- or G2-specific differentiation checkpoint. In response to genotoxins that induce G1 arrest, MyoD binds target genes but is functionally inactivated by a c-Abl-dependent phosphorylation. In contrast, DNA damage-activated G2 checkpoint relies on the inability of MyoD to bind the chromatin at the G2 phase of the cell cycle. These results indicate an intimate relationship between DNA damage-activated cell cycle checkpoints and the control of tissue-specific gene expression to allow DNA repair in myoblasts prior to the activation of the differentiation program. PMID:21685725

  5. Repair of rDNA in Saccharomyces cerevisiae: RAD4-independent strand-specific nucleotide excision repair of RNA polymerase I transcribed genes.

    PubMed Central

    Verhage, R A; Van de Putte, P; Brouwer, J

    1996-01-01

    Removal of UV-induced pyrimidine dimers from the individual strands of the rDNA locus in Saccharomyces cerevisiae was studied. Yeast rDNA, that is transcribed by RNA polymerase I(RNA pol I), is repaired efficiently, slightly strand-specific and independently of RAD26, which has been implicated in transcription-coupled repair of the RNA pol II transcribed RPB2 gene. No repair of rDNA is observed in rad1,2,3 and 14 mutants, demonstrating that dimer removal from this highly repetitive DNA is accomplished by nucleotide excision repair (NER). In rad7 and rad16 mutants, which are specifically deficient in repair of non-transcribed DNA, there is a clear preferential repair of the transcribed strand of rDNA, indicating that strand-specific and therefore probably transcription-coupled repair of RNA pol I transcribed genes does exist in yeast. Unexpectedly, the transcribed but not the non-transcribed strand of rDNA can be repaired in rad4 mutants, which seem otherwise completely NER-deficient. PMID:8604332

  6. RUBIC identifies driver genes by detecting recurrent DNA copy number breaks

    PubMed Central

    van Dyk, Ewald; Hoogstraat, Marlous; ten Hoeve, Jelle; Reinders, Marcel J. T.; Wessels, Lodewyk F. A.

    2016-01-01

    The frequent recurrence of copy number aberrations across tumour samples is a reliable hallmark of certain cancer driver genes. However, state-of-the-art algorithms for detecting recurrent aberrations fail to detect several known drivers. In this study, we propose RUBIC, an approach that detects recurrent copy number breaks, rather than recurrently amplified or deleted regions. This change of perspective allows for a simplified approach as recursive peak splitting procedures and repeated re-estimation of the background model are avoided. Furthermore, we control the false discovery rate on the level of called regions, rather than at the probe level, as in competing algorithms. We benchmark RUBIC against GISTIC2 (a state-of-the-art approach) and RAIG (a recently proposed approach) on simulated copy number data and on three SNP6 and NGS copy number data sets from TCGA. We show that RUBIC calls more focal recurrent regions and identifies a much larger fraction of known cancer genes. PMID:27396759

  7. LNA modification of single-stranded DNA oligonucleotides allows subtle gene modification in mismatch-repair-proficient cells

    PubMed Central

    van Ravesteyn, Thomas W.; Dekker, Marleen; Fish, Alexander; Sixma, Titia K.; Wolters, Astrid; Dekker, Rob J.; te Riele, Hein P. J.

    2016-01-01

    Synthetic single-stranded DNA oligonucleotides (ssODNs) can be used to generate subtle genetic modifications in eukaryotic and prokaryotic cells without the requirement for prior generation of DNA double-stranded breaks. However, DNA mismatch repair (MMR) suppresses the efficiency of gene modification by >100-fold. Here we present a commercially available ssODN design that evades MMR and enables subtle gene modification in MMR-proficient cells. The presence of locked nucleic acids (LNAs) in the ssODNs at mismatching bases, or also at directly adjacent bases, allowed 1-, 2-, or 3-bp substitutions in MMR-proficient mouse embryonic stem cells as effectively as in MMR-deficient cells. Additionally, in MMR-proficient Escherichia coli, LNA modification of the ssODNs enabled effective single-base-pair substitution. In vitro, LNA modification of mismatches precluded binding of purified E. coli MMR protein MutS. These findings make ssODN-directed gene modification particularly well suited for applications that require the evaluation of a large number of sequence variants with an easy selectable phenotype. PMID:26951689

  8. A major role of the RecFOR pathway in DNA double-strand-break repair through ESDSA in Deinococcus radiodurans.

    PubMed

    Bentchikou, Esma; Servant, Pascale; Coste, Geneviève; Sommer, Suzanne

    2010-01-01

    In Deinococcus radiodurans, the extreme resistance to DNA-shattering treatments such as ionizing radiation or desiccation is correlated with its ability to reconstruct a functional genome from hundreds of chromosomal fragments. The rapid reconstitution of an intact genome is thought to occur through an extended synthesis-dependent strand annealing process (ESDSA) followed by DNA recombination. Here, we investigated the role of key components of the RecF pathway in ESDSA in this organism naturally devoid of RecB and RecC proteins. We demonstrate that inactivation of RecJ exonuclease results in cell lethality, indicating that this protein plays a key role in genome maintenance. Cells devoid of RecF, RecO, or RecR proteins also display greatly impaired growth and an important lethal sectoring as bacteria devoid of RecA protein. Other aspects of the phenotype of recFOR knock-out mutants paralleled that of a DeltarecA mutant: DeltarecFOR mutants are extremely radiosensitive and show a slow assembly of radiation-induced chromosomal fragments, not accompanied by DNA synthesis, and reduced DNA degradation. Cells devoid of RecQ, the major helicase implicated in repair through the RecF pathway in E. coli, are resistant to gamma-irradiation and have a wild-type DNA repair capacity as also shown for cells devoid of the RecD helicase; in contrast, DeltauvrD mutants show a markedly decreased radioresistance, an increased latent period in the kinetics of DNA double-strand-break repair, and a slow rate of fragment assembly correlated with a slow rate of DNA synthesis. Combining RecQ or RecD deficiency with UvrD deficiency did not significantly accentuate the phenotype of DeltauvrD mutants. In conclusion, RecFOR proteins are essential for DNA double-strand-break repair through ESDSA whereas RecJ protein is essential for cell viability and UvrD helicase might be involved in the processing of double stranded DNA ends and/or in the DNA synthesis step of ESDSA. PMID:20090937

  9. Gene expression profiling of archival tongue squamous cell carcinomas provides sub-classification based on DNA repair genes.

    PubMed

    Rentoft, Matilda; Laurell, Göran; Coates, Philip John; Sjöström, Björn; Nylander, Karin

    2009-12-01

    A subgroup of patients with squamous cell carcinoma of the head and neck (SCCHN) comprise young persons under the age of 40, who have not been heavily exposed to the classical risk factors, smoking and alcohol. The number of SCCHN in young adults, particularly tongue tumours, is increasing in several parts of the world. Here we employed a novel gene expression array methodology specifically developed for analysis of degraded RNA and investigated the expression of 502 cancer-related genes in archival paraffin-embedded SCCHN of the tongue from young (< or =40) and elderly patients (> or =50). Genes detected as de-regulated in tumours compared to non-malignant controls were in concordance with results from earlier studies of fresh frozen material. No genes were detected as significantly differentially expressed between young and old patients suggesting that the overall pathobiology of SCCHN is similar in young and old. Unsupervised clustering divided tumours into three groups, irrespective of age, where several differentially expressed DNA repair genes were a prominent separation factor. High levels of DNA repair genes associated with impaired therapeutic response to radiation, suggesting that DNA repair genes play a role in clinical outcome after radiotherapy.

  10. Higher expression of somatic repair genes in long-lived ant queens than workers

    PubMed Central

    Lucas, Eric R.; Privman, Eyal; Keller, Laurent

    2016-01-01

    Understanding why organisms senesce is a fundamental question in biology. One common explanation is that senescence results from an increase in macromolecular damage with age. The tremendous variation in lifespan between genetically identical queen and worker ants, ranging over an order of magnitude, provides a unique system to study how investment into processes of somatic maintenance and macromolecular repair influence lifespan. Here we use RNAseq to compare patterns of expression of genes involved in DNA and protein repair of age-matched queens and workers. There was no difference between queens and workers in 1-day-old individuals, but the level of expression of these genes increased with age and this up-regulation was greater in queens than in workers, resulting in significantly queen-biased expression in 2-month-old individuals in both legs and brains. Overall, these differences are consistent with the hypothesis that higher longevity is associated with increased investment into somatic repair. PMID:27617474

  11. Expression of DNA repair and metabolic genes in response to a flavonoid-rich diet.

    PubMed

    Guarrera, Simonetta; Sacerdote, Carlotta; Fiorini, Laura; Marsala, Rosa; Polidoro, Silvia; Gamberini, Sara; Saletta, Federica; Malaveille, Christian; Talaska, Glenn; Vineis, Paolo; Matullo, Giuseppe

    2007-09-01

    A diet rich in fruit and vegetables can be effective in the reduction of oxidative stress, through the antioxidant effects of phytochemicals and other mechanisms. Protection against the carcinogenic effects of chemicals may also be exerted by an enhancement of detoxification and DNA damage repair mechanisms. To investigate a putative effect of flavonoids, a class of polyphenols, on the regulation of the gene expression of DNA repair and metabolic genes, a 1-month flavonoid-rich diet was administered to thirty healthy male smokers, nine of whom underwent gene expression analysis. We postulated that tobacco smoke is a powerful source of reactive oxygen species. The expression level of twelve genes (APEX, ERCC1, ERCC2, ERCC4, MGMT, OGG1, XPA, XPC, XRCC1, XRCC3, AHR, CYP1A1) was investigated. We found a significant increase (P < 0.001) in flavonoid intake. Urinary phenolic content and anti-mutagenicity did not significantly change after diet, nor was a correlation found between flavonoid intake and urinary phenolic levels or anti-mutagenicity. Phenolic levels showed a significant positive correlation with urinary anti-mutagenicity. AHR levels were significantly reduced after the diet (P = 0.038), whereas the other genes showed a generalized up regulation, significant for XRCC3 gene (P = 0.038). Also in the context of a generalized up regulation of DNA repair genes, we found a non-significant negative correlation between flavonoid intake and the expression of all the DNA repair genes. Larger studies are needed to clarify the possible effects of flavonoids in vivo; our preliminary results could help to better plan new studies on gene expression and diet.

  12. Semiconservative replication, genetic repair, and many-gened genomes: Extending the quasispecies paradigm to living systems

    NASA Astrophysics Data System (ADS)

    Tannenbaum, Emmanuel; Shakhnovich, Eugene I.

    2005-12-01

    Quasispecies theory has emerged as an important tool for modeling the evolutionary dynamics of biological systems. We review recent advances in the field, with an emphasis on the quasispecies dynamics of semiconservatively replicating genomes. Applications to cancer and adult stem cell growth are discussed. Additional topics, such as genetic repair and many-gene genomes, are covered as well.

  13. Rad52 promotes second-end DNA capture in double-stranded break repair to form complement-stabilized joint molecules.

    PubMed

    Nimonkar, Amitabh V; Sica, R Alejandro; Kowalczykowski, Stephen C

    2009-03-01

    Saccharomyces cerevisiae Rad52 performs multiple functions during the recombinational repair of double-stranded DNA (dsDNA) breaks (DSBs). It mediates assembly of Rad51 onto single-stranded DNA (ssDNA) that is complexed with replication protein A (RPA); the resulting nucleoprotein filament pairs with homologous dsDNA to form joint molecules. Rad52 also catalyzes the annealing of complementary strands of ssDNA, even when they are complexed with RPA. Both Rad51 and Rad52 can be envisioned to promote "second-end capture," a step that pairs the ssDNA generated by processing of the second end of a DSB to the joint molecule formed by invasion of the target dsDNA by the first processed end. Here, we show that Rad52 promotes annealing of complementary ssDNA that is complexed with RPA to the displaced strand of a joint molecule, to form a complement-stabilized joint molecule. RecO, a prokaryotic homolog of Rad52, cannot form complement-stabilized joint molecules with RPA-ssDNA complexes, nor can Rad52 promote second-end capture when the ssDNA is bound with either human RPA or the prokaryotic ssDNA-binding protein, SSB, indicating a species-specific process. We conclude that Rad52 participates in second-end capture by annealing a resected DNA break, complexed with RPA, to the joint molecule product of single-end invasion event. These studies support a role for Rad52-promoted annealing in the formation of Holliday junctions in DSB repair. PMID:19204284

  14. Cyclin D1 silencing suppresses tumorigenicity, impairs DNA double strand break repair and thus radiosensitizes androgen-independent prostate cancer cells to DNA damage

    PubMed Central

    Ju, Xiaoming; Vetuschi, Antonella; Sferra, Roberta; Casimiro, Mathew C.; Pompili, Simona; Festuccia, Claudio; Colapietro, Alessandro; Gaudio, Eugenio; Di Cesare, Ernesto; Tombolini, Vincenzo; Pestell, Richard G.

    2016-01-01

    Patients with hormone-resistant prostate cancer (PCa) have higher biochemical failure rates following radiation therapy (RT). Cyclin D1 deregulated expression in PCa is associated with a more aggressive disease: however its role in radioresistance has not been determined. Cyclin D1 levels in the androgen-independent PC3 and 22Rv1 PCa cells were stably inhibited by infecting with cyclin D1-shRNA. Tumorigenicity and radiosensitivity were investigated using in vitro and in vivo experimental assays. Cyclin D1 silencing interfered with PCa oncogenic phenotype by inducing growth arrest in the G1 phase of cell cycle and reducing soft agar colony formation, migration, invasion in vitro and tumor formation and neo-angiogenesis in vivo. Depletion of cyclin D1 significantly radiosensitizes PCa cells by increasing the RT-induced DNA damages by affecting the NHEJ and HR pathways responsible of the DNA double-strand break repair. Following treatment of cells with RT the abundance of a biomarker of DNA damage, γ-H2AX, was dramatically increased in sh-cyclin D1 treated cells compared to shRNA control. Concordant with these observations DNA-PKcs-activation and RAD51-accumulation, part of the DNA double-strand break repair machinery, were reduced in shRNA-cyclin D1 treated cells compared to shRNA control. We further demonstrate the physical interaction between CCND1 with activated-ATM, -DNA-PKcs and RAD51 is enhanced by RT. Finally, siRNA-mediated silencing experiments indicated DNA-PKcs and RAD51 are downstream targets of CCND1-mediated PCa cells radioresistance. In summary, these observations suggest that CCND1 is a key mediator of PCa radioresistance and could represent a potential target for radioresistant hormone-resistant PCa. PMID:26689991

  15. Polymorphisms in DNA Repair Genes and MDR1 and the Risk for Non-Hodgkin Lymphoma

    PubMed Central

    Kim, Hee Nam; Kim, Nan Young; Yu, Li; Kim, Yeo-Kyeoung; Lee, Il-Kwon; Yang, Deok-Hwan; Lee, Je-Jung; Shin, Min-Ho; Park, Kyeong-Soo; Choi, Jin-Su; Kim, Hyeoung-Joon

    2014-01-01

    The damage caused by oxidative stress and exposure to cigarette smoke and alcohol necessitate DNA damage repair and transport by multidrug resistance-1 (MDR1). To explore the association between polymorphisms in these genes and non-Hodgkin lymphoma risk, we analyzed 15 polymorphisms of 12 genes in a population-based study in Korea (694 cases and 1700 controls). Four genotypes of DNA repair pathway genes (XRCC1 399 GA, OGG1 326 GG, BRCA1 871 TT, and WRN 787 TT) were associated with a decreased risk for NHL [odds ratio (OR)XRCC1 GA = 0.80, p = 0.02; OROGG1 GG = 0.70, p = 0.008; ORBRCA1 TT = 0.71, p = 0.048; ORWRN TT = 0.68, p = 0.01]. Conversely, the MGMT 115 CT genotype was associated with an increased risk for NHL (OR = 1.25, p = 0.04). In the MDR1 gene, the 1236 CC genotype was associated with a decreased risk for NHL (OR = 0.74, p = 0.04), and the 3435 CT and TT genotypes were associated with an increased risk (OR3435CT = 1.50, p < 0.0001; OR3435TT = 1.43, p = 0.02). These results suggest that polymorphisms in the DNA repair genes XRCC1, OGG1, BRCA1, WRN1, and MGMT and in the MDR1 gene may affect the risk for NHL in Korean patients. PMID:24756092

  16. Polymorphisms in DNA repair genes and MDR1 and the risk for non-Hodgkin lymphoma.

    PubMed

    Kim, Hee Nam; Kim, Nan Young; Yu, Li; Kim, Yeo-Kyeoung; Lee, Il-Kwon; Yang, Deok-Hwan; Lee, Je-Jung; Shin, Min-Ho; Park, Kyeong-Soo; Choi, Jin-Su; Kim, Hyeoung-Joon

    2014-04-21

    The damage caused by oxidative stress and exposure to cigarette smoke and alcohol necessitate DNA damage repair and transport by multidrug resistance-1 (MDR1). To explore the association between polymorphisms in these genes and non-Hodgkin lymphoma risk, we analyzed 15 polymorphisms of 12 genes in a population-based study in Korea (694 cases and 1700 controls). Four genotypes of DNA repair pathway genes (XRCC1 399 GA, OGG1 326 GG, BRCA1 871 TT, and WRN 787 TT) were associated with a decreased risk for NHL [odds ratio (OR)XRCC1 GA=0.80, p=0.02; OROGG1 GG=0.70, p=0.008; ORBRCA1 TT=0.71, p=0.048; ORWRN TT=0.68, p=0.01]. Conversely, the MGMT 115 CT genotype was associated with an increased risk for NHL (OR=1.25, p=0.04). In the MDR1 gene, the 1236 CC genotype was associated with a decreased risk for NHL (OR=0.74, p=0.04), and the 3435 CT and TT genotypes were associated with an increased risk (OR3435CT=1.50, p<0.0001; OR3435TT=1.43, p=0.02). These results suggest that polymorphisms in the DNA repair genes XRCC1, OGG1, BRCA1, WRN1, and MGMT and in the MDR1 gene may affect the risk for NHL in Korean patients.

  17. Relationship of the pelargonium flower break carmovirus (PFBV) coat protein gene with that of other carmoviruses.

    PubMed

    Berthomé, R; Kusiak, C; Renou, J P; Albouy, J; Freire, M A; Dinant, S

    1998-01-01

    The 3'-terminal 1500 nucleotides of the genome of pelargonium flower break carmovirus (PFBV) were sequenced from RT-PCR amplification products. One large ORF was found, encoding a 345 amino acid protein of Mr 37 kDa, which corresponds to the coat protein, as confirmed by immunoprecipitation of products of in vitro transcription and translation. The sequence also included the putative promoter of the coat protein gene subgenomic RNA, as well as its 5' and 3' untranslated regions. The PFBV coat protein was more similar to that of saguaro cactus virus and carnation mottle virus than to that of other carmoviruses. Despite the lower level of similarity of CP gene sequences compared to the RNA dependent RNA polymerase (RdRp) gene sequences of small icosahedral viruses used in taxonomic studies, PFBV CP sequence comparisons and alignments confirmed that PFBV is related to carmoviruses, tombusviruses and a dianthovirus, as previously concluded from the analysis of a PFBV RdRp gene fragment. PMID:9787665

  18. The Exonuclease Homolog OsRAD1 Promotes Accurate Meiotic Double-Strand Break Repair by Suppressing Nonhomologous End Joining1[OPEN

    PubMed Central

    Tang, Ding; Shen, Yi; Chen, Xiaojun; Ji, Jianhui; Du, Guijie; Li, Yafei; Cheng, Zhukuan

    2016-01-01

    During meiosis, programmed double-strand breaks (DSBs) are generated to initiate homologous recombination, which is crucial for faithful chromosome segregation. In yeast, Radiation sensitive1 (RAD1) acts together with Radiation sensitive9 (RAD9) and Hydroxyurea sensitive1 (HUS1) to facilitate meiotic recombination via cell-cycle checkpoint control. However, little is known about the meiotic functions of these proteins in higher eukaryotes. Here, we characterized a RAD1 homolog in rice (Oryza sativa) and obtained evidence that O. sativa RAD1 (OsRAD1) is important for meiotic DSB repair. Loss of OsRAD1 led to abnormal chromosome association and fragmentation upon completion of homologous pairing and synapsis. These aberrant chromosome associations were independent of OsDMC1. We found that classical nonhomologous end-joining mediated by Ku70 accounted for most of the ectopic associations in Osrad1. In addition, OsRAD1 interacts directly with OsHUS1 and OsRAD9, suggesting that these proteins act as a complex to promote DSB repair during rice meiosis. Together, these findings suggest that the 9-1-1 complex facilitates accurate meiotic recombination by suppressing nonhomologous end-joining during meiosis in rice. PMID:27512017

  19. Collision of Trapped Topoisomerase 2 with Transcription and Replication: Generation and Repair of DNA Double-Strand Breaks with 5′ Adducts

    PubMed Central

    Yan, Hong; Tammaro, Margaret; Liao, Shuren

    2016-01-01

    Topoisomerase 2 (Top2) is an essential enzyme responsible for manipulating DNA topology during replication, transcription, chromosome organization and chromosome segregation. It acts by nicking both strands of DNA and then passes another DNA molecule through the break. The 5′ end of each nick is covalently linked to the tyrosine in the active center of each of the two subunits of Top2 (Top2cc). In this configuration, the two sides of the nicked DNA are held together by the strong protein-protein interactions between the two subunits of Top2, allowing the nicks to be faithfully resealed in situ. Top2ccs are normally transient, but can be trapped by cancer drugs, such as etoposide, and subsequently processed into DSBs in cells. If not properly repaired, these DSBs would lead to genome instability and cell death. Here, I review the current understanding of the mechanisms by which DSBs are induced by etoposide, the unique features of such DSBs and how they are repaired. Implications for the improvement of cancer therapy will be discussed. PMID:27376333

  20. Depletion of Histone Demethylase Jarid1A Resulting in Histone Hyperacetylation and Radiation Sensitivity Does Not Affect DNA Double-Strand Break Repair

    PubMed Central

    Penterling, Corina; Drexler, Guido A.; Böhland, Claudia; Stamp, Ramona; Wilke, Christina; Braselmann, Herbert; Caldwell, Randolph B.; Reindl, Judith; Girst, Stefanie; Greubel, Christoph; Siebenwirth, Christian; Mansour, Wael Y.; Borgmann, Kerstin; Dollinger, Günther; Unger, Kristian; Friedl, Anna A.

    2016-01-01

    Histone demethylases have recently gained interest as potential targets in cancer treatment and several histone demethylases have been implicated in the DNA damage response. We investigated the effects of siRNA-mediated depletion of histone demethylase Jarid1A (KDM5A, RBP2), which demethylates transcription activating tri- and dimethylated lysine 4 at histone H3 (H3K4me3/me2), on growth characteristics and cellular response to radiation in several cancer cell lines. In unirradiated cells Jarid1A depletion lead to histone hyperacetylation while not affecting cell growth. In irradiated cells, depletion of Jarid1A significantly increased cellular radiosensitivity. Unexpectedly, the hyperacetylation phenotype did not lead to disturbed accumulation of DNA damage response and repair factors 53BP1, BRCA1, or Rad51 at damage sites, nor did it influence resolution of radiation-induced foci or rejoining of reporter constructs. We conclude that the radiation sensitivity observed following depletion of Jarid1A is not caused by a deficiency in repair of DNA double-strand breaks. PMID:27253695

  1. Tests of the Double-Strand-Break Repair Model for Red-Mediated Recombination of Phage λ and Plasmid λdv

    PubMed Central

    Thaler, David S.; Stahl, Mary M.; Stahl, Franklin W.

    1987-01-01

    The double-strand-break repair (DSBR) model was formulated to account for various aspects of yeast mitotic and meiotic recombination. In this study three features of the DSBR model are tested for Red-mediated recombination between phage λ and λdv, a plasmid that is perfectly homologous to about 10% of λ. The results support the applicability of the DSBR model to λ's Red system: (1) Creating a double-strand-break (DSB) within the region of homology shared by phage and plasmid increases their genetic interaction by about 20-fold. A DSB outside the region of shared homology has no such effect. (2) Both patches, i.e., simple marker rescue, and splices, i.e., co-integration of the phage and plasmid, are stimulated by a DSB in the region of shared homology. (3) Co-integrants harbor a duplication of the region of shared homology. Among co-integrants that were formed by the creation of a DSB, there is a preferential loss of whichever allele was in cis to a utilized cut site. The DSBR model as originally formulated involves the isomerization and cleavage of Holliday junctions to resolve the canonical intermediate. We propose as an alternative mechanism that a topoisomerase can resolve the canonical DSBR intermediate. PMID:2957271

  2. C-terminal region of bacterial Ku controls DNA bridging, DNA threading and recruitment of DNA ligase D for double strand breaks repair

    PubMed Central

    McGovern, Stephen; Baconnais, Sonia; Roblin, Pierre; Nicolas, Pierre; Drevet, Pascal; Simonson, Héloïse; Piétrement, Olivier; Charbonnier, Jean-Baptiste; Le Cam, Eric; Noirot, Philippe; Lecointe, François

    2016-01-01

    Non-homologous end joining is a ligation process repairing DNA double strand breaks in eukaryotes and many prokaryotes. The ring structured eukaryotic Ku binds DNA ends and recruits other factors which can access DNA ends through the threading of Ku inward the DNA, making this protein a key ingredient for the scaffolding of the NHEJ machinery. However, this threading ability seems unevenly conserved among bacterial Ku. As bacterial Ku differ mainly by their C-terminus, we evaluate the role of this region in the loading and the threading abilities of Bacillus subtilis Ku and the stimulation of the DNA ligase LigD. We identify two distinct sub-regions: a ubiquitous minimal C-terminal region and a frequent basic C-terminal extension. We show that truncation of one or both of these sub-regions in Bacillus subtilis Ku impairs the stimulation of the LigD end joining activity in vitro. We further demonstrate that the minimal C-terminus is required for the Ku-LigD interaction, whereas the basic extension controls the threading and DNA bridging abilities of Ku. We propose that the Ku basic C-terminal extension increases the concentration of Ku near DNA ends, favoring the recruitment of LigD at the break, thanks to the minimal C-terminal sub-region. PMID:26961308

  3. Nontoxic concentration of DNA-PK inhibitor NU7441 radio-sensitizes lung tumor cells with little effect on double strand break repair.

    PubMed

    Sunada, Shigeaki; Kanai, Hideki; Lee, Younghyun; Yasuda, Takeshi; Hirakawa, Hirokazu; Liu, Cuihua; Fujimori, Akira; Uesaka, Mitsuru; Okayasu, Ryuichi

    2016-09-01

    High-linear energy transfer (LET) heavy ions have been increasingly employed as a useful alternative to conventional photon radiotherapy. As recent studies suggested that high LET radiation mainly affects the nonhomologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair, we further investigated this concept by evaluating the combined effect of an NHEJ inhibitor (NU7441) at a non-toxic concentration and carbon ions. NU7441-treated non-small cell lung cancer (NSCLC) A549 and H1299 cells were irradiated with X-rays and carbon ions (290 MeV/n, 50 keV/μm). Cell survival was measured by clonogenic assay. DNA DSB repair, cell cycle distribution, DNA fragmentation and cellular senescence induction were studied using a flow cytometer. Senescence-associated protein p21 was detected by western blotting. In the present study, 0.3 μM of NU7441, nontoxic to both normal and tumor cells, caused a significant radio-sensitization in tumor cells exposed to X-rays and carbon ions. This concentration did not seem to cause inhibition of DNA DSB repair but induced a significant G2/M arrest, which was particularly emphasized in p53-null H1299 cells treated with NU7441 and carbon ions. In addition, the combined treatment induced more DNA fragmentation and a higher degree of senescence in H1299 cells than in A549 cells, indicating that DNA-PK inhibitor contributes to various modes of cell death in a p53-dependent manner. In summary, NSCLC cells irradiated with carbon ions were radio-sensitized by a low concentration of DNA-PK inhibitor NU7441 through a strong G2/M cell cycle arrest. Our findings may contribute to further effective radiotherapy using heavy ions. PMID:27341700

  4. Transcription-coupled and global genome repair in the Saccharomyces cerevisiae RPB2 gene at nucleotide resolution.

    PubMed Central

    Tijsterman, M; Tasseron-de Jong, J G; van de Putte, P; Brouwer, J

    1996-01-01

    Repair of UV-induced cyclobutane pyrimidine dimers (CPDs) was examined at single nucleotide resolution in the yeast Saccharomyces cerevisiae, using an improved protocol for genomic end-labelling. To obtain the sensitivity required for adduct detection in yeast, an oligonucleotide-directed enrichment step was introduced into the current methodology developed for adduct detection in Escherichia coli. With this method, heterogeneous repair of CPDs within the RPB2 locus is observed. Individual CPDs positioned in the transcribed strand are removed very efficiently with identical kinetics. This fast repair starts within 23 bases downstream of the transcription initiation site. The non-transcribed strand of the active gene exhibits slow repair without detectable repair variations between individual lesions. In contrast, CPDs positioned in the promoter region show profound repair heterogeneity. Here, CPDs at specific sites are removed very quickly, with comparable rates to CPDs positioned in the transcribed strand, while at other positions lesions are not repaired at all during the period studied. Interestingly, the fast repair in the promoter region is dependent on the RAD7 and RAD16 genes, as are the slowly repaired CPDs in this region and in the non-transcribed strand. This indicates that the global genome repair pathway is not intrinsically slow and at specific positions can be as efficient as the transcription-coupled repair pathway. PMID:8836174

  5. Low-level infrared laser modulates muscle repair and chromosome stabilization genes in myoblasts.

    PubMed

    da Silva Neto Trajano, Larissa Alexsandra; Stumbo, Ana Carolina; da Silva, Camila Luna; Mencalha, Andre Luiz; Fonseca, Adenilson S

    2016-08-01

    Infrared laser therapy is used for skeletal muscle repair based on its biostimulative effect on satellite cells. However, shortening of telomere length limits regenerative potential in satellite cells, which occurs after each cell division cycle. Also, laser therapy could be more effective on non-physiologic tissues. This study evaluated low-level infrared laser exposure effects on mRNA expression from muscle injury repair and telomere stabilization genes in myoblasts in normal and stressful conditions. Laser fluences were those used in clinical protocols. C2C12 myoblast cultures were exposed to low-level infrared laser (10, 35, and 70 J/cm(2)) in standard or normal (10 %) and reduced (2 %) fetal bovine serum concentrations; total RNA was extracted for mRNA expression evaluation from muscle injury repair (MyoD and Pax7) and chromosome stabilization (TRF1 and TRF2) genes by real time quantitative polymerization chain reaction. Data show that low-level infrared laser increases the expression of MyoD and Pax7 in 10 J/cm(2) fluence, TRF1 expression in all fluences, and TRF2 expression in 70 J/cm(2) fluence in both 10 and 2 % fetal bovine serum. Low-level infrared laser increases mRNA expression from genes related to muscle repair and telomere stabilization in myoblasts in standard or normal and stressful conditions.

  6. Low-level infrared laser modulates muscle repair and chromosome stabilization genes in myoblasts.

    PubMed

    da Silva Neto Trajano, Larissa Alexsandra; Stumbo, Ana Carolina; da Silva, Camila Luna; Mencalha, Andre Luiz; Fonseca, Adenilson S

    2016-08-01

    Infrared laser therapy is used for skeletal muscle repair based on its biostimulative effect on satellite cells. However, shortening of telomere length limits regenerative potential in satellite cells, which occurs after each cell division cycle. Also, laser therapy could be more effective on non-physiologic tissues. This study evaluated low-level infrared laser exposure effects on mRNA expression from muscle injury repair and telomere stabilization genes in myoblasts in normal and stressful conditions. Laser fluences were those used in clinical protocols. C2C12 myoblast cultures were exposed to low-level infrared laser (10, 35, and 70 J/cm(2)) in standard or normal (10 %) and reduced (2 %) fetal bovine serum concentrations; total RNA was extracted for mRNA expression evaluation from muscle injury repair (MyoD and Pax7) and chromosome stabilization (TRF1 and TRF2) genes by real time quantitative polymerization chain reaction. Data show that low-level infrared laser increases the expression of MyoD and Pax7 in 10 J/cm(2) fluence, TRF1 expression in all fluences, and TRF2 expression in 70 J/cm(2) fluence in both 10 and 2 % fetal bovine serum. Low-level infrared laser increases mRNA expression from genes related to muscle repair and telomere stabilization in myoblasts in standard or normal and stressful conditions. PMID:27220530

  7. Irreversible UV inactivation of Cryptosporidium spp. despite the presence of UV repair genes.

    PubMed

    Rochelle, Paul A; Fallar, Daffodil; Marshall, Marilyn M; Montelone, Beth A; Upton, Steve J; Woods, Keith

    2004-01-01

    Ultraviolet light is being considered as a disinfectant by the water industry because it appears to be very effective for inactivating pathogens, including Cryptosporidium parvum. However, many organisms have mechanisms for repairing ultraviolet light-induced DNA damage, which may limit the utility of this disinfection technology. Inactivation of C. parvum was assessed by measuring infectivity in cells of the human ileocecal adenocarcinoma HCT-8 cell line, with an assay targeting a heat shock protein gene and using a reverse transcriptase polymerase chain reaction to detect infections. Oocysts of five different isolates displayed similar sensitivity to ultraviolet light. An average dosage of 7.6 mJ/cm2 resulted in 99.9% inactivation, providing the first evidence that multiple isolates of C. parvum are equally sensitive to ultraviolet disinfection. Irradiated oocysts were unable to regain pre-irradiation levels of infectivity, following exposure to a broad array of potential repair conditions, such as prolonged incubation, pre-infection excystation triggers, and post-ultraviolet holding periods. A combination of data-mining and sequencing was used to identify genes for all of the major components of a nucleotide excision repair complex in C. parvum and Cryptosporidium hominis. The average similarity between the two organisms for the various genes was 96.4% (range, 92-98%). Thus, while Cryptosporidum spp. may have the potential to repair ultraviolet light-induced damage, oocyst reactivation will not occur under the standard conditions used for storage and distribution of treated drinking water.

  8. Enhanced gene repair mediated by methyl-CpG-modified single-stranded oligonucleotides

    PubMed Central

    Bertoni, Carmen; Rustagi, Arjun; Rando, Thomas A.

    2009-01-01

    Gene editing mediated by oligonucleotides has been shown to induce stable single base alterations in genomic DNA in both prokaryotic and eukaryotic organisms. However, the low frequencies of gene repair have limited its applicability for both basic manipulation of genomic sequences and for the development of therapeutic approaches for genetic disorders. Here, we show that single-stranded oligodeoxynucleotides (ssODNs) containing a methyl-CpG modification and capable of binding to the methyl-CpG binding domain protein 4 (MBD4) are able to induce >10-fold higher levels of gene correction than ssODNs lacking the specific modification. Correction was stably inherited through cell division and was confirmed at the protein, transcript and genomic levels. Downregulation of MBD4 expression using RNAi prevented the enhancement of gene correction efficacy obtained using the methyl-CpG-modified ssODN, demonstrating the specificity of the repair mechanism being recruited. Our data demonstrate that efficient manipulation of genomic targets can be achieved and controlled by the type of ssODN used and by modulation of the repair mechanism involved in the correction process. This new generation of ssODNs represents an important technological advance that is likely to have an impact on multiple applications, especially for gene therapy where permanent correction of the genetic defect has clear advantages over viral and other nonviral approaches currently being tested. PMID:19854937

  9. Gene Delivery Strategies to Promote Spinal Cord Repair

    PubMed Central

    Walthers, Christopher M; Seidlits, Stephanie K

    2015-01-01

    Gene therapies hold great promise for the treatment of many neurodegenerative disorders and traumatic injuries in the central nervous system. However, development of effective methods to deliver such therapies in a controlled manner to the spinal cord is a necessity for their translation to the clinic. Although essential progress has been made to improve efficiency of transgene delivery and reduce the immunogenicity of genetic vectors, there is still much work to be done to achieve clinical strategies capable of reversing neurodegeneration and mediating tissue regeneration. In particular, strategies to achieve localized, robust expression of therapeutic transgenes by target cell types, at controlled levels over defined time periods, will be necessary to fully regenerate functional spinal cord tissues. This review summarizes the progress over the last decade toward the development of effective gene therapies in the spinal cord, including identification of appropriate target genes, improvements to design of genetic vectors, advances in delivery methods, and strategies for delivery of multiple transgenes with synergistic actions. The potential of biomaterials to mediate gene delivery while simultaneously providing inductive scaffolding to facilitate tissue regeneration is also discussed. PMID:25922572

  10. Involvement of EARLY BUD-BREAK, an AP2/ERF Transcription Factor Gene, in Bud Break in Japanese Pear (Pyrus pyrifolia Nakai) Lateral Flower Buds: Expression, Histone Modifications and Possible Target Genes.

    PubMed

    Anh Tuan, Pham; Bai, Songling; Saito, Takanori; Imai, Tsuyoshi; Ito, Akiko; Moriguchi, Takaya

    2016-05-01

    In the Japanese pear (Pyrus pyrifolia Nakai) 'Kosui', three developmental stages of lateral flower buds have been proposed to occur during ecodormancy to the flowering phase, i.e. rapid enlargement, sprouting and flowering. Here, we report an APETALA2/ethylene-responsive factor (AP2/ERF) transcription factor gene, named pear EARLY BUD-BREAK (PpEBB), which was highly expressed during the rapid enlargement stage occurring prior to the onset of bud break in flower buds. Gene expression analysis revealed that PpEBB expression was dramatically increased during the rapid enlargement stage in three successive growing seasons. PpEBB transcript levels peaked 1 week prior to onset of bud break in 'Kosui' potted plants treated with hydrogen cyanamide or water under forcing conditions. Chromatin immunoprecipitation-quantitative PCR showed that higher levels of active histone modifications (trimethylation of the histone H3 tail at Lys4) in the 5'-upstream and start codon regions of the PpEBB gene were associated with the induced expression level of PpEBB during the rapid enlargement stage. In addition, we provide evidence that PpEBB may interact with and regulate pear four D-type cyclin (PpCYCD3) genes during bud break in 'Kosui' lateral flower buds. PpEBB significantly increased the promoter activities of four PpCYCD3 genes in a dual-luciferase assay using tobacco leaves. Taken together, our findings uncovered aspects of the bud break regulatory mechanism in the Japanese pear and provided further evidence that the EBB family plays an important role in bud break in perennial plants. PMID:26940832

  11. Involvement of EARLY BUD-BREAK, an AP2/ERF Transcription Factor Gene, in Bud Break in Japanese Pear (Pyrus pyrifolia Nakai) Lateral Flower Buds: Expression, Histone Modifications and Possible Target Genes.

    PubMed

    Anh Tuan, Pham; Bai, Songling; Saito, Takanori; Imai, Tsuyoshi; Ito, Akiko; Moriguchi, Takaya

    2016-05-01

    In the Japanese pear (Pyrus pyrifolia Nakai) 'Kosui', three developmental stages of lateral flower buds have been proposed to occur during ecodormancy to the flowering phase, i.e. rapid enlargement, sprouting and flowering. Here, we report an APETALA2/ethylene-responsive factor (AP2/ERF) transcription factor gene, named pear EARLY BUD-BREAK (PpEBB), which was highly expressed during the rapid enlargement stage occurring prior to the onset of bud break in flower buds. Gene expression analysis revealed that PpEBB expression was dramatically increased during the rapid enlargement stage in three successive growing seasons. PpEBB transcript levels peaked 1 week prior to onset of bud break in 'Kosui' potted plants treated with hydrogen cyanamide or water under forcing conditions. Chromatin immunoprecipitation-quantitative PCR showed that higher levels of active histone modifications (trimethylation of the histone H3 tail at Lys4) in the 5'-upstream and start codon regions of the PpEBB gene were associated with the induced expression level of PpEBB during the rapid enlargement stage. In addition, we provide evidence that PpEBB may interact with and regulate pear four D-type cyclin (PpCYCD3) genes during bud break in 'Kosui' lateral flower buds. PpEBB significantly increased the promoter activities of four PpCYCD3 genes in a dual-luciferase assay using tobacco leaves. Taken together, our findings uncovered aspects of the bud break regulatory mechanism in the Japanese pear and provided further evidence that the EBB family plays an important role in bud break in perennial plants.

  12. Transcriptional and Post-Transcriptional Regulation of Nucleotide Excision Repair Genes in Human Cells

    PubMed Central

    Lefkofsky, Hailey B.; Veloso, Artur; Ljungman, Mats

    2014-01-01

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death. PMID:26255935

  13. Transcription profiling of the chilling requirement for bud break in apples: a putative role for FLC-like genes.

    PubMed

    Porto, Diogo Denardi; Bruneau, Maryline; Perini, Pâmela; Anzanello, Rafael; Renou, Jean-Pierre; dos Santos, Henrique Pessoa; Fialho, Flávio Bello; Revers, Luís Fernando

    2015-05-01

    Apple production depends on the fulfilment of a chilling requirement for bud dormancy release. Insufficient winter chilling results in irregular and suboptimal bud break in the spring, with negative impacts on apple yield. Trees from apple cultivars with contrasting chilling requirements for bud break were used to investigate the expression of the entire set of apple genes in response to chilling accumulation in the field and controlled conditions. Total RNA was analysed on the AryANE v.1.0 oligonucleotide microarray chip representing 57,000 apple genes. The data were tested for functional enrichment, and differential expression was confirmed by real-time PCR. The largest number of differentially expressed genes was found in samples treated with cold temperatures. Cold exposure mostly repressed expression of transcripts related to photosynthesis, and long-term cold exposure repressed flavonoid biosynthesis genes. Among the differentially expressed selected candidates, we identified genes whose annotations were related to the circadian clock, hormonal signalling, regulation of growth, and flower development. Two genes, annotated as FLOWERING LOCUS C-like and MADS AFFECTING FLOWERING, showed strong differential expression in several comparisons. One of these two genes was upregulated in most comparisons involving dormancy release, and this gene's chromosomal position co-localized with the confidence interval of a major quantitative trait locus for the timing of bud break. These results indicate that photosynthesis and auxin transport are major regulatory nodes of apple dormancy and unveil strong candidates for the control of bud dormancy.

  14. The barley EST DNA Replication and Repair Database (bEST-DRRD) as a tool for the identification of the genes involved in DNA replication and repair

    PubMed Central

    2012-01-01

    Background The high level of conservation of genes that regulate DNA replication and repair indicates that they may serve as a source of information on the origin and evolution of the species and makes them a reliable system for the identification of cross-species homologs. Studies that had been conducted to date shed light on the processes of DNA replication and repair in bacteria, yeast and mammals. However, there is still much to be learned about the process of DNA damage repair in plants. Description These studies, which were conducted mainly using bioinformatics tools, enabled the list of genes that participate in various pathways of DNA repair in Arabidopsis thaliana (L.) Heynh to be outlined; however, information regarding these mechanisms in crop plants is still very limited. A similar, functional approach is particularly difficult for a species whose complete genomic sequences are still unavailable. One of the solutions is to apply ESTs (Expressed Sequence Tags) as the basis for gene identification. For the construction of the barley EST DNA Replication and Repair Database (bEST-DRRD), presented here, the Arabidopsis nucleotide and protein sequences involved in DNA replication and repair were used to browse for and retrieve the deposited sequences, derived from four barley (Hordeum vulgare L.) sequence databases, including the “Barley Genome version 0.05” database (encompassing ca. 90% of barley coding sequences) and from two databases covering the complete genomes of two monocot models: Oryza sativa L. and Brachypodium distachyon L. in order to identify homologous genes. Sequences of the categorised Arabidopsis queries are used for browsing the repositories, which are located on the ViroBLAST platform. The bEST-DRRD is currently used in our project during the identification and validation of the barley genes involved in DNA repair. Conclusions The presented database provides information about the Arabidopsis genes involved in DNA replication and

  15. Low intensity infrared laser affects expression of oxidative DNA repair genes in mitochondria and nucleus

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Geller, M.; Paoli, F.

    2014-11-01

    Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA.

  16. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity

    PubMed Central

    Zhang, Jin; Ruhlman, Tracey A.; Sabir, Jamal S. M.; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K.

    2016-01-01

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear–plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. PMID:26893456

  17. Repair in ribosomal RNA genes is deficient in xeroderma pigmentosum group C and in Cockayne's syndrome cells.

    PubMed

    Christians, F C; Hanawalt, P C

    1994-04-01

    Previous studies have demonstrated transcription-coupled DNA repair in mammalian genes transcribed by RNA polymerase II but not in ribosomal RNA genes (rDNA), which are transcribed by RNA polymerase I. The removal of UV-induced cyclobutane pyrimidine dimers (CPD) from rDNA in repair-proficient human cells has been shown to be slow but detectable and apparently not coupled to transcription. We studied the induction and removal of CPD from rDNA in cultured cells from two repair-deficient human disorders. Primary xeroderma pigmentosum complementation group C (XP-C) cells, whether proliferating or nondividing, removed no CPD from either rDNA strand in 24 h post-UV, a result which supports earlier conclusions that XP-C cells lack the general, transcription-independent pathway of nucleotide excision repair. We also observed lower than normal repair of rDNA in Cockayne's syndrome (CS) cells from complementation groups A and B. In agreement with previous findings, the repair of both strands of the RNA polymerase II-transcribed dihydrofolate reductase gene was also deficient relative to that of normal cells. This strongly suggests that the defect in CS cells is not limited to a deficiency in a transcription-repair coupling factor. Rather, the defect may interfere with the ability of repair proteins to gain access to all expressed genes. PMID:7512688

  18. Caffeine impairs resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2.

    PubMed

    Tsabar, Michael; Eapen, Vinay V; Mason, Jennifer M; Memisoglu, Gonen; Waterman, David P; Long, Marcus J; Bishop, Douglas K; Haber, James E

    2015-08-18

    In response to chromosomal double-strand breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint, which is orchestrated by the PI3 kinase-like protein kinases ATR and ATM (Mec1 and Tel1 in budding yeast). Following DSB formation, Mec1 and Tel1 phosphorylate histone H2A on serine 129 (known as γ-H2AX). We used caffeine to inhibit the checkpoint kinases after DSB induction. We show that prolonged phosphorylation of H2A-S129 does not require continuous Mec1 and Tel1 activity. Unexpectedly, caffeine treatment impaired homologous recombination by inhibiting 5' to 3' end resection, independent of Mec1 and Tel1 inhibition. Caffeine treatment led to the rapid loss, by proteasomal degradation, of both Sae2, a nuclease that plays a role in early steps of resection, and Dna2, a nuclease that facilitates one of two extensive resection pathways. Sae2's instability is evident in the absence of DNA damage. A similar loss is seen when protein synthesis is inhibited by cycloheximide. Caffeine treatment had similar effects on irradiated HeLa cells, blocking the formation of RPA and Rad51 foci that depend on 5' to 3' resection of broken chromosome ends. Our findings provide insight toward the use of caffeine as a DNA damage-sensitizing agent in cancer cells.

  19. Thrombospondin-1 might be a therapeutic target to suppress RB cells by regulating the DNA double-strand breaks repair

    PubMed Central

    Zhang, Zhang; Zhang, Ping; Yang, Ying; Wu, Nandan; Xu, Lijun; Zhang, Jing; Ge, Jian; Yu, Keming; Zhuang, Jing

    2016-01-01

    Retinoblastoma (RB) arises from the retina, and its growth usually occurs under the retina and toward the vitreous. Ideal therapy should aim to inhibit the tumor and protect neural cells, increasing the patient's life span and quality of life. Previous studies have demonstrated that Thrombospondin-1 (TSP-1) is associated with neurogenesis, neovascularization and tumorigenesis. However, at present, the bioactivity of TSP-1 in retinoblastoma has not been defined. Herein, we demonstrated that TSP-1 was silenced in RB cell lines and clinical tumor samples. HDAC inhibitor, Trichostatin A (TSA), could notably transcriptionally up-regulate TSP-1 in RB cells, WERI-Rb1 cells and Y79 cells. Moreover, we found human recombinant TSP-1 (hTSP-1) could significantly inhibit the cell viability of RB cells both in vitro and in vivo. Interestingly, hTSP-1 could significantly induce the expression of γ-H2AX, a well-characterized in situ marker of DNA double-strand breaks (DSBs) in RB cells. The DNA NHEJ pathway in WERI-Rb1 cells could be significantly inhibited by hTSP-1. A mutation in Rb1 might be involved in the hTSP-1-medicated γ-H2AX increasing in WERI-Rb1 cells. Furthermore, hTSP-1 could inhibit RB cells while promoting retinal neurocyte survival in the neuronal and retinoblastoma cell co-culture system. As such, TSP-1 may become a therapeutic target for treatment of retinoblastoma. PMID:26756218

  20. Thrombospondin-1 might be a therapeutic target to suppress RB cells by regulating the DNA double-strand breaks repair.

    PubMed

    Chen, Pei; Yu, Na; Zhang, Zhang; Zhang, Ping; Yang, Ying; Wu, Nandan; Xu, Lijun; Zhang, Jing; Ge, Jian; Yu, Keming; Zhuang, Jing

    2016-02-01

    Retinoblastoma (RB) arises from the retina, and its growth usually occurs under the retina and toward the vitreous. Ideal therapy should aim to inhibit the tumor and protect neural cells, increasing the patient's life span and quality of life. Previous studies have demonstrated that Thrombospondin-1 (TSP-1) is associated with neurogenesis, neovascularization and tumorigenesis. However, at present, the bioactivity of TSP-1 in retinoblastoma has not been defined. Herein, we demonstrated that TSP-1 was silenced in RB cell lines and clinical tumor samples. HDAC inhibitor, Trichostatin A (TSA), could notably transcriptionally up-regulate TSP-1 in RB cells, WERI-Rb1 cells and Y79 cells. Moreover, we found human recombinant TSP-1 (hTSP-1) could significantly inhibit the cell viability of RB cells both in vitro and in vivo. Interestingly, hTSP-1 could significantly induce the expression of γ-H2AX, a well-characterized in situ marker of DNA double-strand breaks (DSBs) in RB cells. The DNA NHEJ pathway in WERI-Rb1 cells could be significantly inhibited by hTSP-1. A mutation in Rb1 might be involved in the hTSP-1-medicated γ-H2AX increasing in WERI-Rb1 cells. Furthermore, hTSP-1 could inhibit RB cells while promoting retinal neurocyte survival in the neuronal and retinoblastoma cell co-culture system. As such, TSP-1 may become a therapeutic target for treatment of retinoblastoma.

  1. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient ``wasted`` mice

    SciTech Connect

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M.; Libertin, C.R.

    1992-11-01

    Mice recessive for the autosomal gene ``wasted`` (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{sm_bullet} mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/{sm_bullet} and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  2. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient wasted'' mice

    SciTech Connect

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. ); Libertin, C.R. )

    1992-01-01

    Mice recessive for the autosomal gene wasted'' (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/[sm bullet] mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/[sm bullet] and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  3. PAXX and XLF DNA repair factors are functionally redundant in joining DNA breaks in a G1-arrested progenitor B-cell line.

    PubMed

    Kumar, Vipul; Alt, Frederick W; Frock, Richard L

    2016-09-20

    Classical nonhomologous end joining (C-NHEJ) is a major mammalian DNA double-strand break (DSB) repair pathway. Core C-NHEJ factors, such as XRCC4, are required for joining DSB intermediates of the G1 phase-specific V(D)J recombination reaction in progenitor lymphocytes. Core factors also contribute to joining DSBs in cycling mature B-lineage cells, including DSBs generated during antibody class switch recombination (CSR) and DSBs generated by ionizing radiation. The XRCC4-like-factor (XLF) C-NHEJ protein is dispensable for V(D)J recombination in normal cells, but because of functional redundancy, it is absolutely required for this process in cells deficient for the ataxia telangiectasia-mutated (ATM) DSB response factor. The recently identified paralogue of XRCC4 and XLF (PAXX) factor has homology to these two proteins and variably contributes to ionizing radiation-induced DSB repair in human and chicken cells. We now report that PAXX is dispensable for joining V(D)J recombination DSBs in G1-arrested mouse pro-B-cell lines, dispensable for joining CSR-associated DSBs in a cycling mouse B-cell line, and dispensable for normal ionizing radiation resistance in both G1-arrested and cycling pro-B lines. However, we find that combined deficiency for PAXX and XLF in G1-arrested pro-B lines abrogates DSB joining during V(D)J recombination and sensitizes the cells to ionizing radiation exposure. Thus, PAXX provides core C-NHEJ factor-associated functions in the absence of XLF and vice versa in G1-arrested pro-B-cell lines. Finally, we also find that PAXX deficiency has no impact on V(D)J recombination DSB joining in ATM-deficient pro-B lines. We discuss implications of these findings with respect to potential PAXX and XLF functions in C-NHEJ.

  4. Small RNAs Recruit Chromatin-Modifying Enzymes MMSET and Tip60 to Reconfigure Damaged DNA upon Double-Strand Break and Facilitate Repair.

    PubMed

    Wang, Qinhong; Goldstein, Michael

    2016-04-01

    Recent reports have demonstrated that DNA double-strand break (DSB)-induced small RNAs (diRNA) play an important role in the DNA damage response (DDR). However, the molecular mechanism by which diRNAs regulate the DDR remains unclear. Here, we report that Dicer- and Drosha-dependent diRNAs function as guiding molecules to promote the recruitment of the methyltransferase MMSET (WHSC1) and the acetyltransferase Tip60 (KAT5) to the DSB, where local levels of histone H4 di- and tri-methylation at lysine 20 (H4K20me2, 3) and H4 acetylation at lysine 16 (H4K16Ac) were enhanced. These histone modification events resulted in an open, flexible chromatin configuration, as indicated by the increased release of histones γH2AX, H2AX, and H3 from damaged chromatin. Furthermore, we found that diRNA-associated AGO2 interacted with MMSET and Tip60 and that the diRNA binding and catalytic activities of AGO2 were dispensable for the interaction but required for the recruitment of MMSET and Tip60 to DSBs. Consequently, diRNA-mediated chromatin remodeling promoted DSB repair by enhancing the recruitment of Rad51 and BRCA1 to the DSB site. Taken together, our findings reveal an unexpected direct role for diRNAs in regulating chromatin remodeling to facilitate DSB repair, revealing a new layer of DDR regulation involving specialized RNA molecules. Cancer Res; 76(7); 1904-15. ©2016 AACR. PMID:26822153

  5. Repair of x-ray-induced DNA double-strand breaks in specific Not I restriction fragments in human fibroblasts: joining of correct and incorrect ends

    NASA Technical Reports Server (NTRS)

    Lobrich, M.; Rydberg, B.; Cooper, P. K.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    An assay that allows measurement of absolute induction frequencies for DNA double-strand breaks (dsbs) in defined regions of the genome and that quantitates rejoining of correct DNA ends has been used to study repair of dsbs in normal human fibroblasts after x-irradiation. The approach involves hybridization of single-copy DNA probes to Not I restriction fragments separated according to size by pulsed-field gel electrophoresis. Induction of dsbs is quantitated from the decrease in the intensity of the hybridizing restriction fragment and an accumulation of a smear below the band. Rejoining of dsbs results in reconstitution of the intact restriction fragment only if correct DNA ends are joined. By comparing results from this technique with results from a conventional electrophoresis assay that detects all rejoining events, it is possible to quantitate the misrejoining frequency. Three Not I fragments on the long arm of chromosome 21 were investigated with regard to dsb induction, yielding an identical induction rate of 5.8 X 10(-3) break per megabase pair per Gy. Correct dsb rejoining was measured for two of these Not I fragments after initial doses of 80 and 160 Gy. The misrejoining frequency was about 25% for both fragments and was independent of dose. This result appears to be representative for the whole genome as shown by analysis of the entire Not I fragment distribution. The correct rejoining events primarily occurred within the first 2 h, while the misrejoining kinetics included a much slower component, with about half of the events occurring between 2 and 24 h. These misrejoining kinetics are similar to those previously reported for production of exchange aberrations in interphase chromosomes.

  6. DNA replication and the repair of DNA strand breaks in nuclei of Physarum polycephalum. Terminal report, August 1, 1978-March 31, 1980

    SciTech Connect

    Brewer, E.N.; Evans, T.E.

    1980-01-01

    Nuclei isolated from Physarum are able to replicate approximately 15% of the total genome in a manner which is qualitatively similar to the DNA replication process occurring in the intact organism. Such nuclei, however, are defective in the joining of Okazaki intermediates in vitro. Two DNA polymerase species, isolated from nuclei or intact plasmodia of this organism, can be separated by sucrose density gradient centrifugation. Total DNA polymerase activity is low in nuclei isolated during mitosis. A heat-stable glycoprotein material present in aqueous nuclear extracts stimulates DNA synthesis in well-washed nuclei. A sub-nuclear preparation active in DNA synthesis in vitro has been obtained from isolated nuclei of Physarum. Radiation-induced DNA double-strand breaks are rejoined in intact plasmodia and isolated nuclei of Physarum in a cell cycle-dependent manner. This phenomenon does not appear to be due to an intrinsic difference in nuclear DNA endonuclease activity at different times of the mitotic cycle. DNA strand breaks and repair induced by the carcinogen 4-nitroquinoline-1-oxide is similar in several respects to that resulting from exposure of the organism to ionizing radiation. Temperature sensitive strains of Physarum have been constructed and preliminary genetical and biochemical characterizations have been carried out. Two of the strains appear to be conditionally defective in DNA metabolism. An isogenic ploidal series of amoebae has been prepared and characterized as to uv and ionizing radiation sensitivity (in terms of cell survival). There is a direct relationship between ploidy and resistance to uv whereas ploidal change does not appear to affect the response to ionizing radiation.

  7. Incomplete complementation of the DNA repair defect in cockayne syndrome cells by the denV gene from bacteriophage T4 suggests a deficiency in base excision repair.

    PubMed

    Francis, M A; Bagga, P S; Athwal, R S; Rainbow, A J

    1997-10-01

    Endonuclease V (denV) from bacteriophage T4 has been examined for its ability to complement the repair defect in Cockayne syndrome (CS) cells of complementation groups A and B. CS is an autosomal recessive disorder characterized by hypersensitivity to UV light and a defect in the preferential repair of UV-induced lesions in transcriptionally active DNA by the nucleotide excision repair (NER) pathway. The denV gene was introduced into non-transformed normal and CS fibroblasts transiently via a recombinant adenovirus (Ad) vector and into SV40-transformed normal and CS cells via a retroviral vector. Expression of denV in CS-A cells resulted in partial correction of the UV-sensitive phenotype in assays of gene-specific repair and cell viability, while correction of CS-B cells by expression of denV in the same assays was minimal or non-existent. In contrast, denV expression led to enhanced host cell reactivation (HCR) of viral DNA synthesis in both CS complementation groups to near normal levels. DenV is a glycosylase which is specific for cyclobutane-pyrimidine dimers (CPDs) but does not recognize other UV-induced lesions. Previous work has indicated that CS cells can efficiently repair all non-CPD UV-induced transcription blocking lesions (S.F. Barrett et al.. Mutation Res. 255 (1991) 281-291 [1]) and that denV incised lesions are believed to be processed via the base excision repair (BER) pathway. The inability of denV to complement the NER defect in CS cells to normal levels implies an impaired ability to process denV incised lesions by the BER pathway, and suggests a role for the CS genes, particularly the CS-B gene, in BER. PMID:9372849

  8. Modulation of DNA repair capacity and mRNA expression levels of XRCC1, hOGG1 and XPC genes in styrene-exposed workers

    SciTech Connect

    Hanova, Monika; Stetina, Rudolf; Vodickova, Ludmila; Vaclavikova, Radka; Hlavac, Pavel; Smerhovsky, Zdenek; Naccarati, Alessio; Polakova, Veronika; Soucek, Pavel; Kuricova, Miroslava; Manini, Paola; Kumar, Rajiv; Hemminki, Kari; Vodicka, Pavel

    2010-11-01

    Decreased levels of single-strand breaks in DNA (SSBs), reflecting DNA damage, have previously been observed with increased styrene exposure in contrast to a dose-dependent increase in the base-excision repair capacity. To clarify further the above aspects, we have investigated the associations between SSBs, micronuclei, DNA repair capacity and mRNA expression in XRCC1, hOGG1 and XPC genes on 71 styrene-exposed and 51 control individuals. Styrene concentrations at workplace and in blood characterized occupational exposure. The workers were divided into low (below 50 mg/m{sup 3}) and high (above 50 mg/m{sup 3}) styrene exposure groups. DNA damage and DNA repair capacity were analyzed in peripheral blood lymphocytes by Comet assay. The mRNA expression levels were determined by qPCR. A significant negative correlation was observed between SSBs and styrene concentration at workplace (R = - 0.38, p = 0.001); SSBs were also significantly higher in men (p = 0.001). The capacity to repair irradiation-induced DNA damage was the highest in the low exposure group (1.34 {+-} 1.00 SSB/10{sup 9} Da), followed by high exposure group (0.72 {+-} 0.81 SSB/10{sup 9} Da) and controls (0.65 {+-} 0.82 SSB/10{sup 9} Da). The mRNA expression levels of XRCC1, hOGG1 and XPC negatively correlated with styrene concentrations in blood and at workplace (p < 0.001) and positively with SSBs (p < 0.001). Micronuclei were not affected by styrene exposure, but were higher in older persons and in women (p < 0.001). In this study, we did not confirm previous findings on an increased DNA repair response to styrene-induced genotoxicity. However, negative correlations of SSBs and mRNA expression levels of XRCC1, hOGG1 and XPC with styrene exposure warrant further highly-targeted study.

  9. Microsatellites in the Eukaryotic DNA Mismatch Repair Genes as Modulators of Evolutionary Mutation Rate

    NASA Technical Reports Server (NTRS)

    Chang, Dong Kyung; Metzgar, David; Wills, Christopher; Boland, C. Richard

    2003-01-01

    All "minor" components of the human DNA mismatch repair (MMR) system-MSH3, MSH6, PMS2, and the recently discovered MLH3-contain mononucleotide microsatellites in their coding sequences. This intriguing finding contrasts with the situation found in the major components of the DNA MMR system-MSH2 and MLH1-and, in fact, most human genes. Although eukaryotic genomes are rich in microsatellites, non-triplet microsatellites are rare in coding regions. The recurring presence of exonal mononucleotide repeat sequences within a single family of human genes would therefore be considered exceptional.

  10. A comparison of synthetic oligodeoxynucleotides, DNA fragments and AAV-1 for targeted episomal and chromosomal gene repair

    PubMed Central

    Leclerc, Xavier; Danos, Olivier; Scherman, Daniel; Kichler, Antoine

    2009-01-01

    Background Current strategies for gene therapy of inherited diseases consist in adding functional copies of the gene that is defective. An attractive alternative to these approaches would be to correct the endogenous mutated gene in the affected individual. This study presents a quantitative comparison of the repair efficiency using different forms of donor nucleic acids, including synthetic DNA oligonucleotides, double stranded DNA fragments with sizes ranging from 200 to 2200 bp and sequences carried by a recombinant adeno-associated virus (rAAV-1). Evaluation of each gene repair strategy was carried out using two different reporter systems, a mutated eGFP gene or a dual construct with a functional eGFP and an inactive luciferase gene, in several different cell systems. Gene targeting events were scored either following transient co-transfection of reporter plasmids and donor DNAs, or in a system where a reporter construct was stably integrated into the chromosome. Results In both episomal and chromosomal assays, DNA fragments were more efficient at gene repair than oligonucleotides or rAAV-1. Furthermore, the gene targeting frequency could be significantly increased by using DNA repair stimulating drugs such as doxorubicin and phleomycin. Conclusion Our results show that it is possible to obtain repair frequencies of 1% of the transfected cell population under optimized transfection protocols when cells were pretreated with phleomycin using rAAV-1 and dsDNA fragments. PMID:19379497

  11. The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair

    SciTech Connect

    Lehmann, A.R.; Walicka, M.; Griffiths, D.J.F.; Carr, A.M.

    1995-12-01

    This report describes the cloning and sequencing of the rad18 gene of Schizosaccharomyces pombe and its essential role in cell proliferation. It also describes the isolation and sequencing of its homolog from Saccharomyces cerevisiae, designated RHC18. Genetic radiation effects were explored and results indicate the gene product`s importance in a DNA repair pathway that is distinct from classical nucleotide excision repair. 57 refs., 20 figs., 1 tab.

  12. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes.

    PubMed Central

    Sia, E A; Kokoska, R J; Dominska, M; Greenwell, P; Petes, T D

    1997-01-01

    We examined the stability of microsatellites of different repeat unit lengths in Saccharomyces cerevisiae strains deficient in DNA mismatch repair. The msh2 and msh3 mutations destabilized microsatellites with repeat units of 1, 2, 4, 5, and 8 bp; a poly(G) tract of 18 bp was destabilized several thousand-fold by the msh2 mutation and about 100-fold by msh3. The msh6 mutations destabilized microsatellites with repeat units of 1 and 2 bp but had no effect on microsatellites with larger repeats. These results argue that coding sequences containing repetitive DNA tracts will be preferred target sites for mutations in human tumors with mismatch repair defects. We find that the DNA mismatch repair genes destabilize microsatellites with repeat units from 1 to 13 bp but have no effect on the stability of minisatellites with repeat units of 16 or 20 bp. Our data also suggest that displaced loops on the nascent strand, resulting from DNA polymerase slippage, are repaired differently than loops on the template strand. PMID:9111357

  13. Nucleotide excision repair of the 5 S ribosomal RNA gene assembled into a nucleosome.

    PubMed

    Liu, X; Smerdon, M J

    2000-08-01

    A-175-base pair fragment containing the Xenopus borealis somatic 5 S ribosomal RNA gene was used as a model system to determine the effect of nucleosome assembly on nucleotide excision repair (NER) of the major UV photoproduct (cyclobutane pyrimidine dimer (CPD)) in DNA. Xenopus oocyte nuclear extracts were used to carry out repair in vitro on reconstituted, positioned 5 S rDNA nucleosomes. Nucleosome structure strongly inhibits NER at many CPD sites in the 5 S rDNA fragment while having little effect at a few sites. The time course of CPD removal at 35 different sites indicates that >85% of the CPDs in the naked DNA fragment have t(12) values <2 h, whereas <26% of the t(12) values in nucleosomes are <2 h, and 15% are >8 h. Moreover, removal of histone tails from these mononucleosomes has little effect on the repair rates. Finally, nucleosome inhibition of repair shows no correlation with the rotational setting of a 14-nucleotide-long pyrimidine tract located 30 base pairs from the nucleosome dyad. These results suggest that inhibition of NER by mononucleosomes is not significantly influenced by the rotational orientation of CPDs on the histone surface, and histone tails play little (or no) role in this inhibition. PMID:10821833

  14. Non-homologous DNA increases gene disruption efficiency by altering DNA repair outcomes

    PubMed Central

    Richardson, C. D.; Ray, G. J.; Bray, N. L.; Corn, J. E.

    2016-01-01

    The Cas9 endonuclease can be targeted to genomic sequences by programming the sequence of an associated single guide RNA (sgRNA). For unknown reasons, the activity of these Cas9–sgRNA combinations varies widely at different genomic loci and in different cell types. Thus, disrupting genes in polyploid cell lines or when using poorly performing sgRNAs can require extensive downstream screening to identify homozygous clones. Here we find that non-homologous single-stranded DNA greatly stimulates Cas9-mediated gene disruption in the absence of homology-directed repair. This stimulation increases the frequency of clones with homozygous gene disruptions and rescues otherwise ineffective sgRNAs. The molecular outcome of enhanced gene disruption depends upon cellular context, stimulating deletion of genomic sequence or insertion of non-homologous DNA at the edited locus in a cell line specific manner. Non-homologous DNA appears to divert cells towards error-prone instead of error-free repair pathways, dramatically increasing the frequency of gene disruption. PMID:27530320

  15. Non-homologous DNA increases gene disruption efficiency by altering DNA repair outcomes.

    PubMed

    Richardson, C D; Ray, G J; Bray, N L; Corn, J E

    2016-01-01

    The Cas9 endonuclease can be targeted to genomic sequences by programming the sequence of an associated single guide RNA (sgRNA). For unknown reasons, the activity of these Cas9-sgRNA combinations varies widely at different genomic loci and in different cell types. Thus, disrupting genes in polyploid cell lines or when using poorly performing sgRNAs can require extensive downstream screening to identify homozygous clones. Here we find that non-homologous single-stranded DNA greatly stimulates Cas9-mediated gene disruption in the absence of homology-directed repair. This stimulation increases the frequency of clones with homozygous gene disruptions and rescues otherwise ineffective sgRNAs. The molecular outcome of enhanced gene disruption depends upon cellular context, stimulating deletion of genomic sequence or insertion of non-homologous DNA at the edited locus in a cell line specific manner. Non-homologous DNA appears to divert cells towards error-prone instead of error-free repair pathways, dramatically increasing the frequency of gene disruption. PMID:27530320

  16. Assessment by Southern blot analysis of UV-induced damage and repair in human immunoglobulin genes.

    PubMed

    Bianchi, M S; Bianchi, N O; de la Chapelle, A

    1990-09-01

    Irradiation of DNA with UV light induces pyrimidine dimers and (6-4) photoproducts. The presence of one of these photolesions in the restriction site of a given endonuclease inhibits DNA cleavage and induces the formation of fragments by incomplete DNA digestion which appear as additional, facultative bands in Southern hybridization autoradiograms. The number and size of these fragments show a positive correlation with the UV dose. The response to UV light of immunoglobulin light-chain constant kappa and heavy-chain constant mu genes was analyzed with 2 specific probes. Constant kappa and mu genes when irradiated as part of the chromatin of living lymphocytes showed a UV sensitivity similar to that of naked DNA. The same genes from granulocytes had 50-60 times lower UV sensitivity. When cells were allowed to repair photolesions for 24 h the facultative bands from granulocytes disappeared indicating that these cells were able to remove photolesions from constant kappa and mu genes. Facultative bands from lymphocytes showed a smaller decrease of density after 24 h repair. This suggests that lymphocytes are less efficient than granulocytes in removing UV damage from constant kappa and mu genes.

  17. Existence and expression of photoreactivation repair genes in various yeast species.

    PubMed

    Yasui, A; Eker, A P; Koken, M

    1989-01-01

    Photoreactivation repair (Phr) activities in cell extracts of 13 different yeast species were measured by the Haemophilus influenzae transformation assay. Five species including Schizosaccharomyces pombe showed no or low enzymatic activity. In contrast to the other species, chromosomal DNAs of these 5 species did not show detectable hybridization using a DNA fragment of the photolyase PHR1 gene of Saccharomyces cervisiae as a probe even at a low stringency condition. When the PHR1 gene was attached to the 5'-flanking sequence of the iso-1-cytochrome c (CYC-1) gene of S. cerevisiae and introduced into S. pombe cells, the transformants acquired a high Phr activity, indicating that the PHR1 gene alone can provide a Phr-negative species with this repair activity and the light-absorbing cofactor(s) must be present in S. pombe. Our results also demonstrated that the 5'-flanking sequence of the S. cerevisiae CYC-1 gene works in S. pombe as a regulatory element. PMID:2911265

  18. The Polycomb Group Protein EZH2 Impairs DNA Damage Repair Gene Expression in Human Uterine Fibroids.

    PubMed

    Yang, Qiwei; Nair, Sangeeta; Laknaur, Archana; Ismail, Nahed; Diamond, Michael P; Al-Hendy, Ayman

    2016-03-01

    Uterine fibroids are benign, smooth muscle tumors that occur in approximately 70%-80% of women by age 50 yr. The cellular and molecular mechanism(s) by which uterine fibroids (UFs) develop are not fully understood. Accumulating evidence demonstrates that several genetic abnormalities, including deletions, rearrangements, translocations, as well as mutations, have been found in UFs. These genetic anomalies suggest that low DNA damage repair capacity may be involved in UF formation. The objective of this study was to determine whether expression levels of DNA damage repair-related genes were altered, and how they were regulated in the pathogenesis of UFs. Expression levels of DNA repair-related genes RAD51 and BRCA1 were deregulated in fibroid tissues as compared to adjacent myometrial tissues. Expression levels of chromatin protein enhancer of zeste homolog 2 (EZH2) were higher in a subset of fibroids as compared to adjacent myometrial tissues by both immunohistochemistry and Western blot analysis. Treatment with an inhibitor of EZH2 markedly increased expression levels of RAD51 and BRCA1 in fibroid cells and inhibited cell proliferation paired with cell cycle arrest. Restoring the expression of RAD51 and BRCA1 by treatment with EZH2 inhibitor was dependent on reducing the enrichment of trimethylation of histone 3 lysine 27 epigenetic mark in their promoter regions. This study reveals the important role of EZH2-regulated DNA damage-repair genes via histone methylation in fibroid biology, and may provide novel therapeutic targets for the medical treatment of women with symptomatic UFs. PMID:26888970

  19. Hop2 and Sae3 Are Required for Dmc1-Mediated Double-Strand Break Repair via Homolog Bias during Meiosis

    PubMed Central

    Cho, Hong-Rae; Kong, Yoon-Ju; Hong, Soo-Gil; Kim, Keun Pil

    2016-01-01

    During meiosis, exchange of DNA segments occurs between paired homologous chromosomes in order to produce recombinant chromosomes, helping to increase genetic diversity within a species. This genetic exchange process is tightly controlled by the eukaryotic RecA homologs Rad51 and Dmc1, which are involved in strand exchange of meiotic recombination, with Rad51 participating specifically in mitotic recombination. Meiotic recombination requires an interaction between homologous chromosomes to repair programmed double-strand breaks (DSBs). In this study, we investigated the budding yeast meiosis-specific proteins Hop2 and Sae3, which function in the Dmc1-dependent pathway. This pathway mediates the homology searching and strand invasion processes. Mek1 kinase participates in switching meiotic recombination from sister bias to homolog bias after DSB formation. In the absence of Hop2 and Sae3, DSBs were produced normally, but showed defects in the DSB-to-single-end invasion transition mediated by Dmc1 and auxiliary factors, and mutant strains failed to complete proper chromosome segregation. However, in the absence of Mek1 kinase activity, Rad51-dependent recombination progressed via sister bias in the hop2Δ or sae3Δ mutants, even in the presence of Dmc1. Thus, Hop2 and Sae3 actively modulate Dmc1-dependent recombination, effectively progressing homolog bias, a process requiring Mek1 kinase activation. PMID:27329041

  20. Hop2 and Sae3 Are Required for Dmc1-Mediated Double-Strand Break Repair via Homolog Bias during Meiosis.

    PubMed

    Cho, Hong-Rae; Kong, Yoon-Ju; Hong, Soo-Gil; Kim, Keun Pil

    2016-07-01

    During meiosis, exchange of DNA segments occurs between paired homologous chromosomes in order to produce recombinant chromosomes, helping to increase genetic diversity within a species. This genetic exchange process is tightly controlled by the eukaryotic RecA homologs Rad51 and Dmc1, which are involved in strand exchange of meiotic recombination, with Rad51 participating specifically in mitotic recombination. Meiotic recombination requires an interaction between homologous chromosomes to repair programmed double-strand breaks (DSBs). In this study, we investigated the budding yeast meiosis-specific proteins Hop2 and Sae3, which function in the Dmc1-dependent pathway. This pathway mediates the homology searching and strand invasion processes. Mek1 kinase participates in switching meiotic recombination from sister bias to homolog bias after DSB formation. In the absence of Hop2 and Sae3, DSBs were produced normally, but showed defects in the DSB-to-single-end invasion transition mediated by Dmc1 and auxiliary factors, and mutant strains failed to complete proper chromosome segregation. However, in the absence of Mek1 kinase activity, Rad51-dependent recombination progressed via sister bias in the hop2Δ or sae3Δ mutants, even in the presence of Dmc1. Thus, Hop2 and Sae3 actively modulate Dmc1-dependent recombination, effectively progressing homolog bias, a process requiring Mek1 kinase activation.

  1. Effect of sodium benzoate preservative on micronucleus induction, chromosome break, and Ala40Thr superoxide dismutase gene mutation in lymphocytes.

    PubMed

    Pongsavee, Malinee

    2015-01-01

    Sodium benzoate is food preservative that inhibits microbial growth. The effects of sodium benzoate preservative on micronucleus induction, chromosome break, and Ala40Thr superoxide dismutase gene mutation in lymphocytes were studied. Sodium benzoate concentrations of 0.5, 1.0, 1.5, and 2.0 mg/mL were treated in lymphocyte cell line for 24 and 48 hrs, respectively. Micronucleus test, standard chromosome culture technique, PCR, and automated sequencing technique were done to detect micronucleus, chromosome break, and gene mutation. The results showed that, at 24- and 48-hour. incubation time, sodium benzoate concentrations of 1.0, 1.5, and 2.0 mg/mL increased micronucleus formation when comparing with the control group (P < 0.05). At 24- and 48-hour. incubation time, sodium benzoate concentrations of 2.0 mg/mL increased chromosome break when comparing with the control group (P < 0.05). Sodium benzoate did not cause Ala40Thr (GCG→ACG) in superoxide dismutase gene. Sodium benzoate had the mutagenic and cytotoxic toxicity in lymphocytes caused by micronucleus formation and chromosome break.

  2. Polymorphisms in DNA repair genes, traffic-related polycyclic aromatic hydrocarbon exposure and breast cancer incidence.

    PubMed

    Mordukhovich, Irina; Beyea, Jan; Herring, Amy H; Hatch, Maureen; Stellman, Steven D; Teitelbaum, Susan L; Richardson, David B; Millikan, Robert C; Engel, Lawrence S; Shantakumar, Sumitra; Steck, Susan E; Neugut, Alfred I; Rossner, Pavel; Santella, Regina M; Gammon, Marilie D

    2016-07-15

    Vehicular traffic polycyclic aromatic hydrocarbons (PAHs) have been associated with breast cancer incidence in epidemiologic studies, including our own. Because PAHs damage DNA by forming adducts and oxidative lesions, genetic polymorphisms that alter DNA repair capacity may modify associations between PAH-related exposures and breast cancer risk. Our goal was to examine the association between vehicular traffic exposure and breast cancer incidence within strata of a panel of nine biologically plausible nucleotide excision repair (NER) and base excision repair (BER) genotypes. Residential histories of 1,508 cases and 1,556 controls were assessed in the Long Island Breast Cancer Study Project between 1996 and 1997 and used to reconstruct residential traffic exposures to benzo[a]pyrene, as a proxy for traffic-related PAHs. Likelihood ratio tests from adjusted unconditional logistic regression models were used to assess multiplicative interactions. A gene-traffic interaction was evident (p = 0.04) for ERCC2 (Lys751); when comparing the upper and lower tertiles of 1995 traffic exposure estimates, the odds ratio (95% confidence interval) was 2.09 (1.13, 3.90) among women with homozygous variant alleles. Corresponding odds ratios for 1960-1990 traffic were also elevated nearly 2-3-fold for XRCC1(Arg194Trp), XRCC1(Arg399Gln) and OGG1(Ser326Cys), but formal multiplicative interaction was not evident. When DNA repair variants for ERCC2, XRCC1 and OGG1 were combined, among women with 4-6 variants, the odds ratios were 2.32 (1.22, 4.49) for 1995 traffic and 2.96 (1.06, 8.21) for 1960-1990 traffic. Our study is first to report positive associations between traffic-related PAH exposure and breast cancer incidence among women with select biologically plausible DNA repair genotypes.

  3. Homologous chromosomes make contact at the sites of double-strand breaks in genes in somatic G0/G1-phase human cells

    PubMed Central

    Gandhi, Manoj; Evdokimova, Viktoria N.; T.Cuenco, Karen; Nikiforova, Marina N.; Kelly, Lindsey M.; Stringer, James R.; Bakkenist, Christopher J.; Nikiforov, Yuri E.

    2012-01-01

    Double-strand DNA breaks (DSBs) are continuously induced in cells by endogenously generated free radicals and exogenous genotoxic agents such as ionizing radiation. DSBs activate the kinase activity in sensor proteins such as ATM and DNA-PK, initiating a complex DNA damage response that coordinates various DNA repair pathways to restore genomic integrity. In this study, we report the unexpected finding that homologous chromosomes contact each other at the sites of DSBs induced by either radiation or the endonuclease I-PpoI in human somatic cells. Contact involves short segments of homologous chromosomes and is centered on a DSB in active genes but does not occur at I-PpoI sites in intergenic DNA. I-PpoI-induced contact between homologous genes is abrogated by the transcriptional inhibitors actinomycin D and α-amanitin and requires the kinase activity of ATM but not DNA-PK. Our findings provide documentation of a common transcription-related and ATM kinase-dependent mechanism that induces contact between allelic regions of homologous chromosomes at sites of DSBs in human somatic cells. PMID:22645362

  4. Cloning and molecular characterization of the Chinese hamster ERCC2 nucleotide excision repair gene

    SciTech Connect

    Kirchner, J.M.; Salazar, E.P.; Lamerdin, J.E.

    1994-10-01

    The Chinese hamster ERCC2 nucleotide excision repair gene, encoding a presumed ATP-dependent DNA helicase, was cloned from the V79 cell line, and its nucleotide sequence was determined. The {approximately}15-kb gene comprises 23 exons with a 2283-base open reading frame. The predicted 760-amino-acid protein is 98% identical to the human ERCC2/EXP (760 amino acids), 51% identical to the Saccharomyces cerevisiae RAD3 (778 amino acids), and 54% identical to the Schizosaccharomyces pombe rad15 (772 amino acids) proteins. The promoter region of the hamster ERCC2 gene contains a pyrimidine-rich stretch (42 nucleotides, 88% C+T) similar to sequences found in the promoter regions of two other nucleotide excision repair genes, a GC box, a putative {alpha}-Pal transcription factor binding site, and two CAAT boxes. There is no apparent TAATA box. No consensus polyadenylation sequence (AATAAA or its variants) was found with 663 bases 3{prime} of the translation termination codon. 54 refs., 2 figs., 2 tabs.

  5. Tissue repair genes: the TiRe database and its implication for skin wound healing.

    PubMed

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E

    2016-04-19

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that were shown to directly affect skin wound healing. To date, TiRe contains 397 entries for four organisms: Mus musculus, Rattus norvegicus, Sus domesticus, and Homo sapiens. Analysis of the TiRe dataset of skin wound healing-associated genes showed that skin wound healing genes are (i) over-conserved among vertebrates, but are under-conserved in invertebrates; (ii) enriched in extracellular and immuno-inflammatory genes; and display (iii) high interconnectivity and connectivity to other proteins. The latter may provide potential therapeutic targets. In addition, a slower or faster skin wound healing is indicative of an aging or longevity phenotype only when assessed in advanced ages, but not in the young. In the long run, we aim for TiRe to be a one-station resource that provides researchers and clinicians with the essential data needed for a better understanding of the mechanisms of wound healing, designing new experiments, and the development of new therapeutic strategies. TiRe is freely available online at http://www.tiredb.org.

  6. A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy.

    PubMed

    Weeda, G; Eveno, E; Donker, I; Vermeulen, W; Chevallier-Lagente, O; Taïeb, A; Stary, A; Hoeijmakers, J H; Mezzina, M; Sarasin, A

    1997-02-01

    Trichothiodystrophy (TTD) is a rare, autosomal recessive disorder characterized by sulfur-deficient brittle hair and nails, mental retardation, impaired sexual development, and ichthyosis. Photosensitivity has been reported in approximately 50% of the cases, but no skin cancer is associated with TTD. Virtually all photosensitive TTD patients have a deficiency in the nucleotide excision repair (NER) of UV-induced DNA damage that is indistinguishable from that of xeroderma pigmentosum (XP) complementation group D (XP-D) patients. DNA repair defects in XP-D are associated with two additional, quite different diseases; XP, a sun-sensitive and cancer-prone repair disorder, and Cockayne syndrome (CS), a photosensitive condition characterized by physical and mental retardation and wizened facial appearance. One photosensitive TTD case constitutes a new repair-deficient complementation group, TTD-A. Remarkably, both TTD-A and XP-D defects are associated with subunits of TFIIH, a basal transcription factor with a second function in DNA repair. Thus, mutations in TFIIH components may, on top of a repair defect, also cause transcriptional insufficiency, which may explain part of the non-XP clinical features of TTD. Besides XPD and TTDA, the XPB gene product is also part of TFIIH. To date, three patients with the remarkable conjunction of XP and CS but not TTD have been assigned to XP complementation group B (XP-B). Here we present the characterization of the NER defect in two mild TTD patients (TTD6VI and TTD4VI) and confirm the assignment to X-PB. The causative mutation was found to be a single base substitution resulting in a missense mutation (T119P) in a region of the XPB protein completely conserved in yeast, Drosophila, mouse, and man. These findings define a third TTD complementation group, extend the clinical heterogeneity associated with XP-B, stress the exclusive relationship between TTD and mutations in subunits of repair/transcription factor TFIIH, and strongly

  7. Molecular genetic and biochemical analyses of a DNA repair gene from Serratia marcescens

    SciTech Connect

    Murphy, K.E.

    1989-01-01

    In Escherichia coli, the SOS response and two 3-methyladenine DNA glycosylases (TagI and TagII) are required for repair of DNA damaged by alkylating agents such as methyl methanesulfonate (MMS). Mutations of the recA gene eliminate the SOS response. TagI and TagII are encoded by the tag and alkA genes, respectively. A gene (rpr) encoding 3-methyladenine DNA glycosylase activity was isolated from the Gram-negative bacterium Serratia marcescens. The gene, localized to a 1.5-kilobase pair SmaI-HindIII restriction fragment, was cloned into plasmid pUC18. The clone complemented E. coli tag alkA and recA mutations for MMS resistance. The rpr gene did not, however, complement recA mutations for resistance to ultraviolet light or the ability to perform homologous recombination reactions, nor did it complement E. coli ada or alkB mutations. Two proteins of molecular weights 42,000 and 16,000 were produced from the rpr locus. Analysis of deletion and insertion mutants of rpr suggested that the 42kD molecule is the active protein. The 16kD protein may either be a breakdown product of the 42kD species or may be encoded by another gene overlapping the reading frame of the rpr gene. Biochemical assays showed that the rpr gene product (Rpr) possesses 3-methyladenine DNA glycosylase activity.

  8. The human CSB (ERCC6) gene corrects the transcription-coupled repair defect in the CHO cell mutant UV61.

    PubMed

    Orren, D K; Dianov, G L; Bohr, V A

    1996-09-01

    The human CSB gene, mutated in Cockayne's syndrome group B (partially defective in both repair and transcription) was previously cloned by virtue of its ability to correct the moderate UV sensitivity of the CHO mutant UV61. To determine whether the defect in UV61 is the hamster equivalent of Cockayne's syndrome, the RNA polymerase II transcription and DNA repair characteristics of a repair-proficient CHO cell line (AA8), UV61 and a CSB transfectant of UV61 were compared. In each cell line, formation and removal of UV-induced cyclobutane pyrimidine dimers (CPDs) were measured in the individual strands of the actively transcribed DHFR gene and in a transcriptionally inactive region downstream of DHFR. AA8 cells efficiently remove CPDs from the transcribed strand, but not from either the non-transcribed strand or the inactive region. There was no detectable repair of CPDs in any region of the genome in UV61. Transfection of the human CSB gene into UV61 restores the normal repair pattern (CPD removal in only the transcribed strand), demonstrating that the DNA repair defect in UV61 is homologous to that in Cockayne's syndrome (complementation group B) cells. However, we observe no significant deficiency in RNA polymerase II-mediated transcription in UV61, suggesting that the CSB protein has independent roles in DNA repair and RNA transcription pathways. PMID:8811084

  9. Divergent genes in potential inoculant Sinorhizobium strains are related to DNA replication, recombination, and repair.

    PubMed

    Penttinen, Petri; Greco, Dario; Muntyan, Victoria; Terefework, Zewdu; De Lajudie, Philippe; Roumiantseva, Marina; Becker, Anke; Auvinen, Petri; Lindström, Kristina

    2016-06-01

    To serve as inoculants of legumes, nitrogen-fixing rhizobium strains should be competitive and tolerant of diverse environments. We hybridized the genomes of symbiotically efficient and salt tolerant Sinorhizobium inoculant strains onto the Sinorhizobium meliloti Rm1021 microarray. The number of variable genes, that is, divergent or putatively multiplied genes, ranged from 503 to 1556 for S. meliloti AK23, S. meliloti STM 1064 and S. arboris HAMBI 1552. The numbers of divergent genes affiliated with the symbiosis plasmid pSymA and related to DNA replication, recombination and repair were significantly higher than expected. The variation was mainly in the accessory genome, implying that it was important in shaping the adaptability of the strains.

  10. The swi4+ gene of Schizosaccharomyces pombe encodes a homologue of mismatch repair enzymes.

    PubMed Central

    Fleck, O; Michael, H; Heim, L

    1992-01-01

    The swi4+ gene of Schizosaccharomyces pombe is involved in termination of copy-synthesis during mating-type switching. The gene was cloned by functional complementation of a swi4 mutant transformed with a genomic library. Determination of the nucleotide sequence revealed an open reading frame of 2979 nucleotides which is interrupted by a 68 bp long intron. The putative Swi4 protein shows homology to Duc-1 (human), Rep-3 (mouse), HexA (Streptococcus pneumoniae) and MutS (Salmonella typhimurium). The prokaryotic proteins are known as essential components involved in mismatch repair. A strain with a disrupted swi4+ gene was constructed and analysed with respect to the switching process. As in swi4 mutants duplications occur in the mating-type region of the swi4 (null) strain, reducing the efficiency of switching. Images PMID:1317550

  11. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    SciTech Connect

    Kang, Khong Bee; Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong

    2012-05-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, {gamma}-H{sub 2}AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, {gamma}-H{sub 2}AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G{sub 2}/M arrest and increased {gamma}-H{sub 2}AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased {gamma}-H{sub 2}AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are

  12. Rearrangement of RAG-1 recombinase gene in DNA-repair deficient ``wasted`` mice

    SciTech Connect

    Woloschak, G.E.; Libertin, C.R.; Weaver, P.; Churchill, M.; Chang-Liu, C.M.

    1993-11-01

    Mice recessive for the autosomal gene ``wasted`` wst display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-l/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/{center_dot}mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{center_dot}mice, a two-fold increase in RAG-1 mRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/{center_dot} and not from wst/wst or parental control BCF{sub 1} mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  13. Widespread transcriptional gene inactivation initiated by a repair intermediate of 8-oxoguanine

    PubMed Central

    Allgayer, Julia; Kitsera, Nataliya; Bartelt, Solveig; Epe, Bernd; Khobta, Andriy

    2016-01-01

    DNA damage can significantly modulate expression of the affected genes either by direct structural interference with transcription components or as a collateral outcome of cellular repair attempts. Thus, DNA glycosylases of the base excision repair (BER) pathway have been implicated in negative transcriptional response to several spontaneously generated DNA base modifications, including a common oxidative DNA base modification 8-oxoguanine (8-oxoG). Here, we report that single 8-oxoG situated in the non-transcribed DNA strand of a reporter gene has a pronounced negative effect on transcription, driven by promoters of various strength and with different structural properties, including viral, human, and artificial promoters. We further show that the magnitude of the negative effect on the gene expression correlates with excision of the modified base by OGG1 in all promoter constructs tested. Moreover, by using expression vectors with nuclease resistant backbone modifications, we demonstrate that OGG1 does not catalyse DNA strand cleavage in vivo. Rather, cleavage of the phosphate bond 5′ to 8-oxodG (catalysed by APE1) is essential and universally required for the onset of transcriptional silencing, regardless of the promoter structure. Hence, induction of transcriptional silencing emerges as a ubiquitous mode of biological response to 8-oxoG in DNA. PMID:27220469

  14. Are SNP-Smoking Association Studies Needed in Controls? DNA Repair Gene Polymorphisms and Smoking Intensity

    PubMed Central

    Verde, Zoraida; Reinoso, Luis; Chicharro, Luis Miguel; Resano, Pilar; Sánchez-Hernández, Ignacio; Rodríguez González-Moro, Jose Miguel; Bandrés, Fernando

    2015-01-01

    Variations in tobacco-related cancers, incidence and prevalence reflect differences in tobacco consumption in addition to genetic factors. Besides, genes related to lung cancer risk could be related to smoking behavior. Polymorphisms altering DNA repair capacity may lead to synergistic effects with tobacco carcinogen-induced lung cancer risk. Common problems in genetic association studies, such as presence of gene-by-environment (G x E) correlation in the population, may reduce the validity of these designs. The main purpose of this study was to evaluate the independence assumption for selected SNPs and smoking behaviour in a cohort of 320 healthy Spanish smokers. We found an association between the wild type alleles of XRCC3 Thr241Met or KLC3 Lys751Gln and greater smoking intensity (OR = 12.98, 95% CI = 2.86–58.82 and OR=16.90, 95% CI=2.09-142.8; respectively). Although preliminary, the results of our study provide evidence that genetic variations in DNA-repair genes may influence both smoking habits and the development of lung cancer. Population-specific G x E studies should be carried out when genetic and environmental factors interact to cause the disease. PMID:26017978

  15. Are SNP-Smoking Association Studies Needed in Controls? DNA Repair Gene Polymorphisms and Smoking Intensity.

    PubMed

    Verde, Zoraida; Reinoso, Luis; Chicharro, Luis Miguel; Resano, Pilar; Sánchez-Hernández, Ignacio; Rodríguez González-Moro, Jose Miguel; Bandrés, Fernando; Gómez-Gallego, Félix; Santiago, Catalina

    2015-01-01

    Variations in tobacco-related cancers, incidence and prevalence reflect differences in tobacco consumption in addition to genetic factors. Besides, genes related to lung cancer risk could be related to smoking behavior. Polymorphisms altering DNA repair capacity may lead to synergistic effects with tobacco carcinogen-induced lung cancer risk. Common problems in genetic association studies, such as presence of gene-by-environment (G x E) correlation in the population, may reduce the validity of these designs. The main purpose of this study was to evaluate the independence assumption for selected SNPs and smoking behaviour in a cohort of 320 healthy Spanish smokers. We found an association between the wild type alleles of XRCC3 Thr241Met or KLC3 Lys751Gln and greater smoking intensity (OR = 12.98, 95% CI = 2.86-58.82 and OR=16.90, 95% CI=2.09-142.8; respectively). Although preliminary, the results of our study provide evidence that genetic variations in DNA-repair genes may influence both smoking habits and the development of lung cancer. Population-specific G x E studies should be carried out when genetic and environmental factors interact to cause the disease.

  16. Expression of DNA repair genes in burned skin exposed to low-level red laser.

    PubMed

    Trajano, Eduardo Tavares Lima; Mencalha, Andre Luiz; Monte-Alto-Costa, Andréa; Pôrto, Luís Cristóvão; de Souza da Fonseca, Adenilson

    2014-11-01

    Although red laser lights lie in the region of non-ionizing radiations in the electromagnetic spectrum, there are doubts whether absorption of these radiations causes lesions in the DNA molecule. Our aim was to investigate the expression of the genes involved with base excision and nucleotide excision repair pathways in skin tissue submitted to burn injury and exposed to low-level red laser. Wistar rats were divided as follows: control group-rats burned and not irradiated, laser group-rats burned and irradiated 1 day after injury for five consecutive days, and later laser group-rats injured and treated 4 days after injury for five consecutive days. Irradiation was performed according to a clinical protocol (20 J/cm(2), 100 mW, continuous wave emission mode). The animals were sacrificed on day 10, and scarred tissue samples were withdrawn for total RNA extraction, complementary DNA (cDNA) synthesis, and evaluation of gene expression by quantitative polymerase chain reaction. Low-level red laser exposure (1) reduces the expression of APE1 messenger (mRNA), (2) increases the expression of OGG1 mRNA, (3) reduces the expression of XPC mRNA, and (4) increases the expression of XPA mRNA both in laser and later laser groups. Red laser exposure at therapeutic fluences alters the expression of genes related to base excision and nucleotide excision pathways of DNA repair during wound healing of burned skin.

  17. Increased expression of p53 enhances transcription-coupled repair and global genomic repair of a UVC-damaged reporter gene in human cells.

    PubMed

    Dregoesc, Diana; Rybak, Adrian P; Rainbow, Andrew J

    2007-05-01

    Ultraviolet (UV) light-induced DNA damage is repaired by nucleotide excision repair, which is divided into two sub-pathways: global genome repair (GGR) and transcription-coupled repair (TCR). While it is well established that the GGR pathway is dependent on the p53 tumour suppressor protein in human cells, both p53-dependent and p53-independent pathways have been reported for TCR. In the present work, we investigated the role of p53 in both GGR and TCR of a UVC-damaged reporter gene in human fibroblasts. We employed a non-replicating recombinant human adenovirus, AdCA17lacZ, that can efficiently infect human fibroblasts and express the beta-galactosidase (beta-gal) reporter gene under the control of the human cytomegalovirus promoter. We examined host cell reactivation (HCR) of beta-gal expression for the UVC-treated reporter construct in normal fibroblasts and in xeroderma pigmentosum (XP) and Cockayne syndrome (CS) fibroblasts deficient in GGR, TCR, or both. HCR was examined in fibroblasts that had been pre-infected with Ad5p53wt, which expresses wild-type p53, or a control adenovirus, AdCA18luc, which expresses the luciferase gene. We show that increased expression of p53 results in enhanced HCR of the UVC-damaged reporter gene in both untreated and UVC-treated cells for normal, CS-B (TCR-deficient), and XP-C (GGR-deficient), but not XP-A (TCR- and GGR-deficient) fibroblasts. These results indicate an involvement of p53 in both TCR and GGR of the UV-damaged reporter gene in human cells. PMID:17196445

  18. A systematic gene-gene and gene-environment interaction analysis of DNA repair genes XRCC1, XRCC2, XRCC3, XRCC4, and oral cancer risk.

    PubMed

    Yang, Cheng-Hong; Lin, Yu-Da; Yen, Ching-Yui; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2015-04-01

    Oral cancer is the sixth most common cancer worldwide with a high mortality rate. Biomarkers that anticipate susceptibility, prognosis, or response to treatments are much needed. Oral cancer is a polygenic disease involving complex interactions among genetic and environmental factors, which require multifaceted analyses. Here, we examined in a dataset of 103 oral cancer cases and 98 controls from Taiwan the association between oral cancer risk and the DNA repair genes X-ray repair cross-complementing group (XRCCs) 1-4, and the environmental factors of smoking, alcohol drinking, and betel quid (BQ) chewing. We employed logistic regression, multifactor dimensionality reduction (MDR), and hierarchical interaction graphs for analyzing gene-gene (G×G) and gene-environment (G×E) interactions. We identified a significantly elevated risk of the XRCC2 rs2040639 heterozygous variant among smokers [adjusted odds ratio (OR) 3.7, 95% confidence interval (CI)=1.1-12.1] and alcohol drinkers [adjusted OR=5.7, 95% CI=1.4-23.2]. The best two-factor based G×G interaction of oral cancer included the XRCC1 rs1799782 and XRCC2 rs2040639 [OR=3.13, 95% CI=1.66-6.13]. For the G×E interaction, the estimated OR of oral cancer for two (drinking-BQ chewing), three (XRCC1-XRCC2-BQ chewing), four (XRCC1-XRCC2-age-BQ chewing), and five factors (XRCC1-XRCC2-age-drinking-BQ chewing) were 32.9 [95% CI=14.1-76.9], 31.0 [95% CI=14.0-64.7], 49.8 [95% CI=21.0-117.7] and 82.9 [95% CI=31.0-221.5], respectively. Taken together, the genotypes of XRCC1 rs1799782 and XRCC2 rs2040639 DNA repair genes appear to be significantly associated with oral cancer. These were enhanced by exposure to certain environmental factors. The observations presented here warrant further research in larger study samples to examine their relevance for routine clinical care in oncology.

  19. Teacher-student relationships and adolescent behavioral engagement and rule-breaking behavior: The moderating role of dopaminergic genes.

    PubMed

    De Laet, Steven; Colpin, Hilde; Van Leeuwen, Karla; Van den Noortgate, Wim; Claes, Stephan; Janssens, Annelies; Goossens, Luc; Verschueren, Karine

    2016-06-01

    This study examined whether the dopamine transporter DAT1 and the dopamine receptor DRD4 genes moderate the effect of student-reported teacher-student relationship affiliation or dissatisfaction on parent-reported adolescent rule-breaking behavior and behavioral engagement. The sample included 1053 adolescents (51% boys, Mage=13.79) from grades 7 to 9. Regression analyses were conducted using Mplus while controlling for multiple testing and nested data. Adolescents who experienced stronger affiliation with their teachers were more engaged in school, whereas greater dissatisfaction predicted more rule-breaking behavior. In addition, a significant gene-environment interaction was found for both genes examined. The link between low teacher-student affiliation and low engagement was more pronounced for DAT1-10R homozygotes. The link between high teacher-student dissatisfaction and more rule-breaking was stronger for DRD4 non-long carriers. Implications for understanding the role of teacher-student relationships in adolescence and suggestions for future research are outlined.

  20. Transplantation of human telomerase reverse transcriptase gene-transfected Schwann cells for repairing spinal cord injury

    PubMed Central

    Zhang, Shu-quan; Wu, Min-fei; Liu, Jia-bei; Li, Ye; Zhu, Qing-san; Gu, Rui

    2015-01-01

    Transfection of the human telomerase reverse transcriptase (hTERT) gene has been shown to increase cell proliferation and enhance tissue repair. In the present study, hTERT was transfected into rat Schwann cells. A rat model of acute spinal cord injury was established by the modified free-falling method. Retrovirus PLXSN was injected at the site of spinal cord injury as a vector to mediate hTERT gene-transfected Schwann cells (1 × 1010/L; 10 μL) or Schwann cells (1 × 1010/L; 10 μL) without hTERT gene transfection. Between 1 and 4 weeks after model establishment, motor function of the lower limb improved in the hTERT-transfected group compared with the group with non-transfected Schwann cells. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and reverse transcription-polymerase chain reaction results revealed that the number of apoptotic cells, and gene expression of aquaporin 4/9 and matrix metalloproteinase 9/2 decreased at the site of injury in both groups; however, the effect improved in the hTERT-transfected group compared with the Schwann cells without hTERT transfection group. Hematoxylin and eosin staining, PKH26 fluorescent labeling, and electrophysiological testing demonstrated that compared with the non-transfected group, spinal cord cavity and motor and sensory evoked potential latencies were reduced, while the number of PKH26-positive cells and the motor and sensory evoked potential amplitude increased at the site of injury in the hTERT-transfected group. These findings suggest that transplantation of hTERT gene-transfected Schwann cells repairs the structure and function of the injured spinal cord. PMID:26889196

  1. Influence of DNA repair gene polymorphisms of hOGG1, XRCC1, XRCC3, ERCC2 and the folate metabolism gene MTHFR on chromosomal aberration frequencies.

    PubMed

    Skjelbred, Camilla Furu; Svendsen, Marit; Haugan, Vera; Eek, Anette Kildal; Clausen, Kjell Oskar; Svendsen, Martin Veel; Hansteen, Inger-Lise

    2006-12-01

    We have studied the effect of genetic polymorphisms in the DNA repair genes hOGG1, XRCC1, XRCC3, ERCC2 and the MTHFR gene in the folate metabolism on the frequencies of cells with chromosomal aberrations (CA), chromosome-type aberrations (CSA), chromatid-type aberrations (CTA), chromatid breaks (CTB) and chromatid gaps (CTG) scored in peripheral blood lymphocytes from 651 Norwegian subjects of Caucasian descendant. DNA was extracted from fixed cell suspensions. The log-linear Poisson regression model was used for the combined data which included age, smoking, occupational exposure and genotype for 449 subjects. Our results suggest that individuals carrying the hOGG1 326Cys or the XRCC1 399Gln allele have an increased risk of chromosomal damage, while individuals carrying the XRCC1 194Trp or the ERCC2 751Gln allele have a reduced risk regardless of smoking habits and age. Individuals carrying the XRCC1 280His allele had an increased risk of CSA which was only apparent in non-smokers. This was independent of age. A protective effect of the XRCC3 241Met allele was only found in the older age group in non-smokers for CA, CSA and CTA, and in smokers for CSA. In the youngest age group, the opposite effect was found, with an increased risk for CA, CTA and CTG in smokers. Carrying the MTHFR 222Val allele gave an increased risk for chromosome and chromatid-type aberrations for both non-smokers and smokers, especially for individuals in the older age group, and with variable results in the youngest age group. The variables included in the different regression models accounted, however, for only 4-10% of the variation. The frequency ratio for CTG was significantly higher than for CTA and CTB for only 7 of the 43 comparisons performed. Some of the gap frequencies diverge from the trend in the CA, CSA, CTA and CTB results.

  2. Global genome repair of 8-oxoG in hamster cells requires a functional CSB gene product.

    PubMed

    Sunesen, Morten; Stevnsner, Tinna; Brosh, Robert M; Dianov, Grigory L; Bohr, Vilhelm A

    2002-05-16

    Cockayne syndrome (CS) is an autosomal recessive human disease characterized by UV-sensitivity as well as neurological and developmental abnormalities. Two complementation groups have been established, designated CS-A and CS-B. Traditionally, CSA and CSB have been ascribed a function in the transcription-coupled repair (TCR) pathway of nucleotide excision repair (NER) that efficiently removes bulky lesions from the transcribed strand of RNA polymerase II transcribed genes. To assess the role of the CSB protein in the repair of the highly mutagenic base lesion 7,8-dihydro-8-oxoguanine (8-oxoG), we have investigated the removal of this lesion using an in vitro incision approach with cell extracts as well as an in vivo approach with a modified protocol of the gene-specific repair assay, which allows the measurement of base lesion repair in intragenomic sequences. Our results demonstrate that the integrity of the CSB protein is pivotal for processes leading to incision at the site of 8-oxoG and that the global genome repair (GGR) of this lesion requires a functional CSB gene product in vivo. PMID:12032859

  3. The Schizosaccharomyces pombe rhp3+ gene required for DNA repair and cell viability is functionally interchangeable with the RAD3 gene of Saccharomyces cerevisiae.

    PubMed Central

    Reynolds, P R; Biggar, S; Prakash, L; Prakash, S

    1992-01-01

    The RAD3 gene of Saccharomyces cerevisiae is required for excision repair and is essential for cell viability. RAD3 encoded protein possesses a single stranded DNA-dependent ATPase and DNA and DNA.RNA helicase activities. Mutational studies have indicated a requirement for the RAD3 helicase activities in excision repair. To examine the extent of conservation of structure and function of RAD3 during eukaryotic evolution, we have cloned the RAD3 homolog, rhp3+, from the distantly related yeast Schizosaccharomyces pombe. RAD3 and rhp3+ encoded proteins are highly similar, sharing 67% identical amino acids. We show that like RAD3, rhp3+ is indispensable for excision repair and cell viability, and our studies indicate a requirement of the putative rhp3+ DNA helicase activity in DNA repair. We find that the RAD3 and rhp3+ genes can functionally substitute for one another. The level of complementation provided by the rhp3+ gene in S.cerevisiae rad3 mutants or by the RAD3 gene in S.pombe rhp3 mutants is remarkable in that both the excision repair and viability defects in both yeasts are restored to wild type levels. These observations suggest a parallel evolutionary conservation of other protein components with which RAD3 interacts in mediating its DNA repair and viability functions. Images PMID:1534406

  4. Radio-adaptive response of base excision repair genes and proteins in human peripheral blood mononuclear cells exposed to gamma radiation.

    PubMed

    Toprani, Sneh M; Das, Birajalaxmi

    2015-09-01

    Radio-adaptive response is a mechanism whereby a low-dose exposure (priming dose) induces resistance to a higher dose (challenging dose) thus significantly reducing its detrimental effects. Radiation-induced DNA damage gets repaired through various DNA repair pathways in human cells depending upon the type of lesion. The base excision repair (BER) pathway repairs radiation-induced base damage, abasic sites and single-strand breaks in cellular DNA. In the present study, an attempt has been made to investigate the involvement of BER genes and proteins in the radio-adaptive response in human resting peripheral blood mononuclear cells (PBMC). Venous blood samples were collected from 20 randomly selected healthy male individuals with written informed consent. PBMC were isolated and irradiated at a priming dose of 0.1 Gy followed 4h later with a challenging dose of 2.0 Gy (primed cells). Quantitation of DNA damage was done using the alkaline comet assay immediately and expression profile of BER genes and proteins were studied 30 min after the challenging dose using real-time quantitative polymerase chain reaction and western blot, respectively. The overall result showed significant (P ≤ 0.05) reduction of DNA damage in terms of percentage of DNA in tail (%T) with a priming dose of 0.1 Gy followed by a challenging dose of 2.0 Gy after 4 h. Twelve individuals showed significant (P ≤ 0.05) reduction in %T whereas eight individuals showed marginal reduction in DNA damage that was not statistically significant. However, at the transcriptional level, BER genes such as APE1, FEN1 and LIGASE1 showed significant (P ≤ 0.05) up-regulation in both groups. Significant (P ≤ 0.05) up-regulation was also observed at the protein level for OGG1, APE1, MBD4, FEN1 and LIGASE1 in primed cells. Up-regulation of some BER genes and proteins such as APE1, FEN1 and LIGASE1 in primed cells of resting PBMC is suggestive of active involvement of the BER pathway in radio-adaptive response

  5. Repairing DNA damage in xeroderma pigmentosum: T4N5 lotion and gene therapy.

    PubMed

    Zahid, Sarwar; Brownell, Isaac

    2008-04-01

    Patients with xeroderma pigmentosum (XP) have defective DNA repair and are at a high risk for cutaneous malignancies. Standard treatments for XP are limited in scope and effectiveness. Understanding the molecular etiology of XP has led to the development of novel therapeutic approaches, including enzyme and gene therapies. One new topical treatment utilizing bacteriophage T4 endonuclease 5 (T4N5) in a liposomal lotion is currently in clinical trials and has received a Fast Track designation from the FDA. Gene therapy for XP, while making leaps in preclinical studies, has been slower to develop due to tactical hurdles, but seems to have much potential for future treatment. If these treatments prove effective in lowering the risk of cancer in patients with XP, they may also be found useful in reducing skin cancers in other at-risk patient populations.

  6. p63 and p73 Transcriptionally Regulate Genes Involved in DNA Repair

    PubMed Central

    Gurdziel, Katherine; Bell, George W.; Jacks, Tyler; Flores, Elsa R.

    2009-01-01

    The p53 family activates many of the same genes in response to DNA damage. Because p63 and p73 have structural differences from p53 and play distinct biological functions in development and metastasis, it is likely that they activate a unique transcriptional network. Therefore, we performed a genome-wide analysis using cells lacking the p53 family members after treatment with DNA damage. We identified over 100 genes involved in multiple pathways that were uniquely regulated by p63 or p73, and not p53. Further validation indicated that BRCA2, Rad51, and mre11 are direct transcriptional targets of p63 and p73. Additionally, cells deficient for p63 and p73 are impaired in DNA repair and p63+/−;p73+/− mice develop mammary tumors suggesting a novel mechanism whereby p63 and p73 suppress tumorigenesis. PMID:19816568

  7. RAD6/sup +/ gene of Saccharomyces cerevisiae codes for two mutationally separable deoxyribonucleic acid repair functions

    SciTech Connect

    Tuite, M.F.; Cox, B.S.

    1981-02-01

    The response of two mutant alleles of the RAD6/sup +/ gene of Saccharomyces cerevisiae to the ochre translational suppressor SUQ5 was determined. Both the ultraviolet sensitivity phenotype and the deficiency in ultraviolet-induced mutagenesis phenotype of the rad6-1 allelle were suppressed in a (psi/sup +/) background. For the rad6-3 allelle, only the ultraviolet-sensitivity phenotype was suppressible in a (psi/sup +/) background. An SUQ5 rad6-3 (psi/sup +/) strain that was examined showed the normal rad6-3 deficiency in ultraviolet-induced mutagenesis. The authors propose that the RAD6/sup +/ gene is divided into two cistrons, RAD6A and RAD6B. RAD6A codes for an activity responsible for the error-prone repair of ultraviolet-induced lesions in deoxyribonucleic acid but is not involved in a cell's resistance to the lethal effects of ultraviolet light. RAD6B codes for an activity essential for error-free repair of potentially lethal mutagenic damage.

  8. Tissue repair genes: the TiRe database and its implication for skin wound healing

    PubMed Central

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E.

    2016-01-01

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that were shown to directly affect skin wound healing. To date, TiRe contains 397 entries for four organisms: Mus musculus, Rattus norvegicus, Sus domesticus, and Homo sapiens. Analysis of the TiRe dataset of skin wound healing-associated genes showed that skin wound healing genes are (i) over-conserved among vertebrates, but are under-conserved in invertebrates; (ii) enriched in extracellular and immuno-inflammatory genes; and display (iii) high interconnectivity and connectivity to other proteins. The latter may provide potential therapeutic targets. In addition, a slower or faster skin wound healing is indicative of an aging or longevity phenotype only when assessed in advanced ages, but not in the young. In the long run, we aim for TiRe to be a one-station resource that provides researchers and clinicians with the essential data needed for a better understanding of the mechanisms of wound healing, designing new experiments, and the development of new therapeutic strategies. TiRe is freely available online at http://www.tiredb.org. PMID:27049721

  9. Tissue-engineering strategies to repair joint tissue in osteoarthritis: nonviral gene-transfer approaches.

    PubMed

    Madry, Henning; Cucchiarini, Magali

    2014-10-01

    Loss of articular cartilage is a common clinical consequence of osteoarthritis (OA). In the past decade, substantial progress in tissue engineering, nonviral gene transfer, and cell transplantation have provided the scientific foundation for generating cartilaginous constructs from genetically modified cells. Combining tissue engineering with overexpression of therapeutic genes enables immediate filling of a cartilage defect with an engineered construct that actively supports chondrogenesis. Several pioneering studies have proved that spatially defined nonviral overexpression of growth-factor genes in constructs of solid biomaterials or hydrogels is advantageous compared with gene transfer or scaffold alone, both in vitro and in vivo. Notably, these investigations were performed in models of focal cartilage defects, because advanced cartilage-repair strategies based on the principles of tissue engineering have not advanced sufficiently to enable resurfacing of extensively degraded cartilage as therapy for OA. These studies serve as prototypes for future technological developments, because they raise the possibility that cartilage constructs engineered from genetically modified chondrocytes providing autocrine and paracrine stimuli could similarly compensate for the loss of articular cartilage in OA. Because cartilage-tissue-engineering strategies are already used in the clinic, combining tissue engineering and nonviral gene transfer could prove a powerful approach to treat OA.

  10. Cell birth, cell death, cell diversity and DNA breaks: how do they all fit together?

    NASA Technical Reports Server (NTRS)

    Gilmore, E. C.; Nowakowski, R. S.; Caviness, V. S. Jr; Herrup, K.

    2000-01-01

    Substantial death of migrating and differentiating neurons occurs within the developing CNS of mice that are deficient in genes required for repair of double-stranded DNA breaks. These findings suggest that large-scale, yet previously unrecognized, double-stranded DNA breaks occur normally in early postmitotic and differentiating neurons. Moreover, they imply that cell death occurs if the breaks are not repaired. The cause and natural function of such breaks remains a mystery; however, their occurrence has significant implications. They might be detected by histological methods that are sensitive to DNA fragmentation and mistakenly interpreted to indicate cell death when no relationship exists. In a broader context, there is now renewed speculation that DNA recombination might be occurring during neuronal development, similar to DNA recombination in developing lymphocytes. If this is true, the target gene(s) of recombination and their significance remain to be determined.

  11. The study of the relation of DNA repair pathway genes SNPs and the sensitivity to radiotherapy and chemotherapy of NSCLC

    PubMed Central

    Wang, Chunbo; Nie, Huan; Li, Yiqun; Liu, Guiyou; Wang, Xu; Xing, Shijie; Zhang, Liping; Chen, Xin; Chen, Yue; Li, Yu

    2016-01-01

    To analyze the relation between SNPs in DNA repair pathway-related genes and sensitivity of tumor radio-chemotherapy, 26 SNPs in 20 DNA repair genes were genotyped on 176 patients of NSCLC undertaking radio-chemotherapy treatment. In squamous cell carcinoma (SCC), as the rs2228000, rs2228001 (XPC), rs2273953 (TP73), rs2279744 (MDM2), rs2299939 (PTEN) and rs8178085, rs12334811 (DNA-PKcs) affected the sensitivity to chemotherapy, so did the rs8178085, rs12334811 to radiotherapy. Moreover rs344781, rs2273953 and rs12334811 were related with the survival time of SCC. In general, the “good” genotype GG (rs12334811) showed greater efficacy of radio-chemotherapy and MSF (24 months) on SCC. In adenocarcinoma, as the rs2699887 (PIK3), rs12334811 (DNA-PKcs) influenced the sensitivity to chemotherapy, so did the rs2299939, rs2735343 (PTEN) to radiotherapy. And rs402710, rs80270, rs2279744 and rs2909430 impacted the survival time of the adenocarcinoma patients. Both GG (rs2279744) and AG (rs2909430) showed a shorter survival time (MFS = 6). Additionally, some SNPs such as rs2228000, rs2228001 and rs344781 were found to regulate the expression of DNA repair pathway genes through eQTLs dataset analysis. These results indicate that SNPs in DNA repair pathway genes might regulate the expression and affect the DNA damage repair, and thereby impact the efficacy of radio-chemotherapy and the survival time of NSCLC. PMID:27246533

  12. Cockayne syndrome exhibits dysregulation of p21 and other gene products that may be independent of transcription-coupled repair.

    PubMed

    Cleaver, J E; Hefner, E; Laposa, R R; Karentz, D; Marti, T

    2007-04-14

    Cockayne syndrome (CS) is a progressive childhood neurodegenerative disorder associated with a DNA repair defect caused by mutations in either of two genes, CSA and CSB. These genes are involved in nucleotide excision repair (NER) of DNA damage from ultraviolet (UV) light, other bulky chemical adducts and reactive oxygen in transcriptionally active genes (transcription-coupled repair, TCR). For a long period it has been assumed that the symptoms of CS patients are all due to reduced TCR of endogenous DNA damage in the brain, together with unexplained unique sensitivity of specific neural cells in the cerebellum. Not all the symptoms of CS patients are however easily related to repair deficiencies, so we hypothesize that there are additional pathways relevant to the disease, particularly those that are downstream consequences of a common defect in the E3 ubiquitin ligase associated with the CSA and CSB gene products. We have found that the CSB defect results in altered expression of anti-angiogenic and cell cycle genes and proteins at the level of both gene expression and protein lifetime. We find an over-abundance of p21 due to reduced protein turnover, possibly due to the loss of activity of the CSA/CSB E3 ubiquitylation pathway. Increased levels of p21 can result in growth inhibition, reduced repair from the p21-PCNA interaction, and increased generation of reactive oxygen. Consistent with increased reactive oxygen levels we find that CS-A and -B cells grown under ambient oxygen show increased DNA breakage, as compared with xeroderma pigmentosum cells. Thus the complex symptoms of CS may be due to multiple, independent downstream targets of the E3 ubiquitylation system that results in increased DNA damage, reduced transcription coupled repair, and inhibition of cell cycle progression and growth. PMID:17055654

  13. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.

    PubMed

    He, Xiangjun; Tan, Chunlai; Wang, Feng; Wang, Yaofeng; Zhou, Rui; Cui, Dexuan; You, Wenxing; Zhao, Hui; Ren, Jianwei; Feng, Bo

    2016-05-19

    CRISPR/Cas9-induced site-specific DNA double-strand breaks (DSBs) can be repaired by homology-directed repair (HDR) or non-homologous end joining (NHEJ) pathways. Extensive efforts have been made to knock-in exogenous DNA to a selected genomic locus in human cells; which, however, has focused on HDR-based strategies and was proven inefficient. Here, we report that NHEJ pathway mediates efficient rejoining of genome and plasmids following CRISPR/Cas9-induced DNA DSBs, and promotes high-efficiency DNA integration in various human cell types. With this homology-independent knock-in strategy, integration of a 4.6 kb promoterless ires-eGFP fragment into the GAPDH locus yielded up to 20% GFP+ cells in somatic LO2 cells, and 1.70% GFP+ cells in human embryonic stem cells (ESCs). Quantitative comparison further demonstrated that the NHEJ-based knock-in is more efficient than HDR-mediated gene targeting in all human cell types examined. These data support that CRISPR/Cas9-induced NHEJ provides a valuable new path for efficient genome editing in human ESCs and somatic cells. PMID:26850641

  14. DNA repair gene XPD and susceptibility to arsenic-induced hyperkeratosis.

    PubMed

    Ahsan, Habibul; Chen, Yu; Wang, Qiao; Slavkovich, Vesna; Graziano, Joseph H; Santella, Regina M

    2003-07-20

    Chronic exposure to inorganic arsenic is known to cause non-melanocytic skin and internal cancers in humans. An estimated 50-70 million people in Bangladesh have been chronically exposed to arsenic from drinking water and are at risk of skin and other cancers. We undertook the first study to examine whether genetic susceptibility, as determined by the codon 751 SNP (A-->C) of the DNA repair gene XPD, influences the risk of arsenic-induced hyperkeratotic skin lesions, precursors of skin cancer, in a case-control study of 29 hyperkeratosis cases and 105 healthy controls from the same community in an area of Bangladesh. As expected, there was a monotonic increase in risk of hyperkeratosis in relation to urinary arsenic measures but the XPD genotype was not independently associated with the risk. However, the increase in hyperkeratosis risk in relation to urinary arsenic measures genotype was borderline significant for urinary total arsenic (P for trend=0.06) and statistically significant for urinary creatinine adjusted arsenic (P for trend=0.01) among subjects with the XPD A allele (AA) but not among subjects with the other XPD genotypes. Among AA carriers, the risk for the highest arsenic exposed group compared with the lowest was more than 7-fold for urinary total arsenic and about 11-fold for urinary creatinine adjusted arsenic. In conclusion, our findings suggest that the DNA repair gene XPD may influence the risk of arsenic-induced premalignant hyperkeratotic skin lesions. Future larger studies are needed to confirm this novel finding and investigate how combinations of different candidate genes and/or other host and environmental factors may influence the risk of arsenic induced skin and other cancers.

  15. Dimethylarsinic acid in drinking water changed the morphology of urinary bladder but not the expression of DNA repair genes of bladder transitional epithelium in F344 rats.

    PubMed

    Wang, Amy; Wolf, Douglas C; Sen, Banalata; Knapp, Geremy W; Holladay, Steven D; Huckle, William R; Caceci, Thomas; Robertson, John L

    2009-06-01

    Inorganic arsenic increases urinary bladder transitional cell carcinoma in humans. In F344 rats, dimethylarsinic acid (DMA[V]) increases transitional cell carcinoma. Arsenic-induced inhibition of DNA repair has been reported in cultured cell lines and in lymphocytes of arsenic-exposed humans, but it has not been studied in urinary bladder. Should inhibition of DNA damage repair in transitional epithelium occur, it may contribute to carcinogenesis or cocarcinogenesis. We investigated morphology and expression of DNA repair genes in F344 rat transitional cells following up to 100 ppm DMA(V) in drinking water for four weeks. Mitochondria were very sensitive to DMA(V), and swollen mitochondria appeared to be the main source of vacuoles in the transitional epithelium. Real-time reverse transcriptase polymerase chain reaction (Real-Time RT PCR) showed the mRNA levels of tested DNA repair genes, ataxia telangectasia mutant (ATM), X-ray repair cross-complementing group 1 (XRCC1), excision repair cross-complementing group 3/xeroderma pigmentosum B (ERCC3/XPB), and DNA polymerase beta (Polbeta), were not altered by DMA(V). These data suggested that either DMA(V) does not affect DNA repair in the bladder or DMA(V) affects DNA repair without affecting baseline mRNA levels of repair genes. The possibility remains that DMA(V) may lower damage-induced increases in repair gene expression or cause post-translational modification of repair enzymes.

  16. Isolation of a human DNA repair gene by selection in Chinese hamster ovary cells

    SciTech Connect

    Ding, R.C.; Eastman, A.; Bresnick, E.

    1987-05-01

    Alkylation of DNA at the O/sup 6/-position of guanine represents a potent mutagenic and carcinogenic lesion. O/sup 6/-Methylguanine DNA methyltransferase is the repair system responsible for catalyzing the transfer of the methyl group to a cysteine of the protein in a suicide reaction. The gene controlling its expression in mammalian systems is designated mex. Resistance to chloroethylnitrosourea (CNU) is also mediated by this protein; this was used to select cells into which the max gene has been introduced. DNA purified from human liver has been transfected into mex/sup -/ CHO cells by the CaPO/sub 4/ method. pSV2gpt, containing a marker gene, gpt, was cotransfected. The transformed cells were initially selected for the expression of gpt (mycophenolic acid resistance) and reselected in CNU for mex/sup +/. Several clones were resistant to both demonstrating the linkage of these genes. A cosmid library was made from a mex/sup +/gpt/sup +/ clone and grown in a gpt/sup -/ strain of E. coli. gpt/sup +/ colonies were selected and the cosmid DNA rescued. One of the tested cosmid DNA's produced CNU resistance upon introduction into CHO cells. This cosmid was subcloned, restriction endonuclease-treated and a 5.3 kb fragment showed mex activity. This fragment is being further characterized and the DNA sequenced.

  17. Evidence for presence of mismatch repair gene expression positive Lynch syndrome cases in India.

    PubMed

    Bashyam, Murali D; Kotapalli, Viswakalyan; Raman, Ratheesh; Chaudhary, Ajay K; Yadav, Brijesh K; Gowrishankar, Swarnalata; Uppin, Shantveer G; Kongara, Ravikanth; Sastry, Regulagadda A; Vamsy, Mohana; Patnaik, Sujit; Rao, Satish; Dsouza, Shoba; Desai, Devendra; Tester, Ashavaid

    2015-12-01

    Lynch syndrome (LS), the most common form of familial CRC predisposition that causes tumor onset at a young age, is characterized by the presence of microsatellite instability (MSI) in tumors due to germline inactivation of mismatch repair (MMR) system. Two MMR genes namely MLH1 and MSH2 account for majority of LS cases while MSH6 and PMS2 may account for a minor proportion. In order to identify MMR genes causing LS in India, we analyzed MSI and determined expression status of the four MMR genes in forty eight suspected LS patient colorectal tumor samples. Though a majority exhibited MSI, only 58% exhibited loss of MMR expression, a significantly low proportion compared to reports from other populations. PCR-DNA sequencing and MLPA-based mutation and exonic deletion/duplication screening respectively, revealed genetic lesions in samples with and without MMR gene expression. Interestingly, tumor samples with and without MMR expression exhibited significant differences with respect to histological (mucin content) and molecular (instability exhibited by mononucleotide microsatellites) features. The study has revealed for the first time a significant proportion of LS tumors not exhibiting loss of MMR expression.

  18. Resveratrol improves bone repair by modulation of bone morphogenetic proteins and osteopontin gene expression in rats.

    PubMed

    Casarin, R C; Casati, M Z; Pimentel, S P; Cirano, F R; Algayer, M; Pires, P R; Ghiraldini, B; Duarte, P M; Ribeiro, F V

    2014-07-01

    This study investigated the effect of resveratrol on bone healing and its influence on the gene expression of osteogenic markers. Two calvarial defects were created and one screw-shaped titanium implant was inserted in the tibia of rats that were assigned to daily administration of placebo (control group, n=15) or 10mg/kg of resveratrol (RESV group, n=15) for 30 days. The animals were then sacrificed. One of the calvarial defects was processed for histomorphometric analysis and the tissue relative to the other was collected for mRNA quantification of bone morphogenetic protein (BMP)-2, BMP-7, osteopontin (OPN), bone sialoprotein (BSP), osteoprotegrin (OPG), and receptor activator of NF-κB ligand (RANKL). Implants were removed by applying a counter-torque force. Histomorphometric analysis revealed higher remaining defect in the calvarial defects of the control group than the RESV group (P=0.026). Resveratrol increased the counter-torque values of implant removal when compared to control therapy (P=0.031). Gene expression analysis showed a higher expression of BMP-2 (P=0.011), BMP-7 (P=0.049), and OPN (P=0.002) genes in the RESV group than in the control group. In conclusion, resveratrol improved the repair of critical-sized bone defects and the biomechanical retention of implants. Indeed, this natural agent may up-regulate the gene expression of important osteogenic markers. PMID:24530035

  19. Fibrin patch-based insulin-like growth factor-1 gene-modified stem cell transplantation repairs ischemic myocardium

    PubMed Central

    Li, Jun; Zhu, Kai; Yang, Shan; Wang, Yulin; Guo, Changfa; Yin, Kanhua; Wang, Chunsheng

    2015-01-01

    Bone marrow mesenchymal stem cells (BMSCs), tissue-engineered cardiac patch, and therapeutic gene have all been proposed as promising therapy strategies for cardiac repair after myocardial infarction. In our study, BMSCs were modified with insulin-like growth factor-1 (IGF-1) gene, loaded into a fibrin patch, and then transplanted into a porcine model of ischemia/reperfusion (I/R) myocardium injury. The results demonstrated that IGF-1 gene overexpression could promote proliferation of endothelial cells and cardiomyocyte-like differentiation of BMSCs in vitro. Four weeks after transplantation of fibrin patch loaded with gene-modified BMSCs, IGF-1 overexpression could successfully promote angiogenesis, inhibit remodeling, increase grafted cell survival and reduce apoptosis. In conclusion, the integrated strategy, which combined fibrin patch with IGF-1 gene modified BMSCs, could promote the histological cardiac repair for a clinically relevant porcine model of I/R myocardium injury. PMID:25767192

  20. Enzymatic repair of selected cross-linked homoduplex molecules enhances nuclear gene rescue from Pompeii and Herculaneum remains.

    PubMed

    Di Bernardo, Giovanni; Del Gaudio, Stefania; Cammarota, Marcella; Galderisi, Umberto; Cascino, Antonino; Cipollaro, Marilena

    2002-02-15

    Ancient DNA (aDNA) samples extracted from the bone remains of six equids buried by the Vesuvius eruption in 79 AD were investigated to test pre-amplification and enzymatic repair procedures designed to enhance the rescue of nuclear genes. The extracts, which proved all positive for Equidae mtDNA amplification, proved positive only four times out of 18 when tested for single-copy Equidae nuclear genes (epsilon globin, p53 and gamma interferon). Pre-amplification did not change the number of retrieved aDNA sequences but 10 times out of 14 enzymatic repair restored the amplifiability of the genes analysed, proving that repair increases the rate of successful rescue from 22 to alpha(lambda)mu(omicron)sigma(tau) 80%. These findings support the hypothesis that some of these cross-linked aDNA molecules, which are not completely separated when DNA is extracted under denaturing conditions, become homoduplex substrates for Pol I and/or T4 ligase action upon renaturation. aDNA authenticity is proved by the homology of the nucleotide sequences of loci tested to the corresponding modern Equidae sequences. Data also indicate that cross-linked homoduplex molecules selected by denaturation of the extract are repaired without any chimera formation. The general features of aDNA amplification with and without denaturation and enzymatic repair are discussed.

  1. Benzo(a)pyrene induces similar gene expression changes in testis of DNA repair proficient and deficient mice

    PubMed Central

    2010-01-01

    Background Benzo [a]pyrene (B[a]P) exposure induces DNA adducts at all stages of spermatogenesis and in testis, and removal of these lesions is less efficient in nucleotide excision repair deficient Xpc-/- mice than in wild type mice. In this study, we investigated by using microarray technology whether compromised DNA repair in Xpc-/- mice may lead to a transcriptional reaction of the testis to cope with increased levels of B[a]P induced DNA damage. Results Two-Way ANOVA revealed only 4 genes differentially expressed between wild type and Xpc-/- mice, and 984 genes between testes of B[a]P treated and untreated mice irrespective of the mouse genotype. However, the level in which these B[a]P regulated genes are expressed differs between Wt and Xpc-/- mice (p = 0.000000141), and were predominantly involved in the regulation of cell cycle, translation, chromatin structure and spermatogenesis, indicating a general stress response. In addition, analysis of cell cycle phase dependent gene expression revealed that expression of genes involved in G1-S and G2-M phase arrest was increased after B[a]P exposure in both genotypes. A slightly higher induction of average gene expression was observed at the G2-M checkpoint in Xpc-/- mice, but this did not reach statistical significance (P = 0.086). Other processes that were expected to have changed by exposure, like apoptosis and DNA repair, were not found to be modulated at the level of gene expression. Conclusion Gene expression in testis of untreated Xpc-/- and wild type mice were very similar, with only 4 genes differentially expressed. Exposure to benzo(a)pyrene affected the expression of genes that are involved in cell cycle regulation in both genotypes, indicating that the presence of unrepaired DNA damage in testis blocks cell proliferation to protect DNA integrity in both DNA repair proficient and deficient animals. PMID:20504355

  2. (Studies of the repair of radiation-induced genetic damage in Drosophila)

    SciTech Connect

    Not Available

    1991-01-01

    At this time last year, we had identified two genes in Drosophila that are required for repair of double strand breaks. These genes (mei-41 and mus302) have now been completely analyzed. We have developed an efficient system for site-directed mutagenesis using injected oligonucleotides as a template for the repair of double strand breaks. mus308, a gene responsible for resistance to DNA cross-linking, is being recovered through chromosome walking. It is believed this gene may be the Drosophila analog of the human Fanconi anemia A gene. A collaborative effort to clone the excision repair gene, mei-9, is under way. The X-ray resistance gene mus209 has been cloned. Finally, we are analyzing a group of mus mutations from other labs which we have tagged with a single transposon inserted randomly into one of the two major autosomes. 4 refs.

  3. Mismatch repair genes expression defects & association with clinicopathological characteristics in colorectal carcinoma

    PubMed Central

    Kaur, Gurjeet; Masoud, Abdelhafid; Raihan, N.; Radzi, M.; Khamizar, W.; Kam, Lee Suk

    2011-01-01

    Background & objectives: DNA mismatch repair gene (MMR) abnormalities are seen in 95 per cent of hereditary nonpolyposis colorectal cancer (HNPCC) and 10-15 per cent of sporadic colorectal cancers. There are no data on MMR abnormalities in Malaysian colorectal cancer patients. This study was aimed to determine the frequency of abnormal MMR gene protein expression in colorectal carcinoma in Northern Peninsular Malaysia using immunohistochemistry. Methods: Clinicopathological information was obtained from 148 patients’ records who underwent bowel resection for colorectal cancer (CRC) at the three hospitals in Malaysia. Immunohistochemistry for MLH1, MSH2, MSH6 and PMS2 proteins were performed on paraffin embedded tissue containing carcinoma. Results: A total of 148 subjects and 150 colorectal carcinomas of sporadic and hereditary types were assessed. Three patients had synchronous tumours. Twenty eight cancers (18.6%) from 26 subjects (17.6%) had absent immunohistochemical expression of any one of the MMR gene proteins. This comprised absent MLH1 only – 3 cancers, absent MSH2 only – 3, absent MSH6 only – 2, absent PMS2 only – 3, absent MLH1 and PMS2 – 14, absent MSH2 and MSH6 – 2 and absent MLH1, MSH6 and PMS2 – 1. There was significant association between abnormal MMR gene protein expression and proximal colon cancers, mucinous, signet ring and poorly differentiated morphology. Interpretation & conclusions: Cancers with abnormal MMR gene expression were associated with microsatellite instability-high (MSI-H) phenotype. About 15 per cent demonstrated absent MSH2, MSH6 and PMS2 protein expression in isolation or in combination with other MMR genes, which often predicts a germline mutation, synonymous with a diagnosis of HNPCC. This appears to be high frequency compared to reported data. PMID:21911971

  4. The Gene Targeting Approach of Small Fragment Homologous Replacement (SFHR) Alters the Expression Patterns of DNA Repair and Cell Cycle Control Genes

    PubMed Central

    Pierandrei, Silvia; Luchetti, Andrea; Sanchez, Massimo; Novelli, Giuseppe; Sangiuolo, Federica; Lucarelli, Marco

    2016-01-01

    Cellular responses and molecular mechanisms activated by exogenous DNA that invades cells are only partially understood. This limits the practical use of gene targeting strategies. Small fragment homologous replacement (SFHR) uses a small exogenous wild-type DNA fragment to restore the endogenous wild-type sequence; unfortunately, this mechanism has a low frequency of correction. In this study, we used a mouse embryonic fibroblast cell line with a stably integrated mutated gene for enhanced green fluorescence protein. The restoration of a wild-type sequence can be detected by flow cytometry analysis. We quantitatively analyzed the expression of 84 DNA repair genes and 84 cell cycle control genes. Peculiar temporal gene expression patterns were observed for both pathways. Different DNA repair pathways, not only homologous recombination, as well as the three main cell cycle checkpoints appeared to mediate the cellular response. Eighteen genes were selected as highly significant target/effectors of SFHR. We identified a wide interconnection between SFHR, DNA repair, and cell cycle control. Our results increase the knowledge of the molecular mechanisms involved in cell invasion by exogenous DNA and SFHR. Specific molecular targets of both the cell cycle and DNA repair machineries were selected for manipulation to enhance the practical application of SFHR. PMID:27045208

  5. A critical re-assessment of DNA repair gene promoter methylation in non-small cell lung carcinoma

    PubMed Central

    Do, Hongdo; Wong, Nicholas C.; Murone, Carmel; John, Thomas; Solomon, Benjamin; Mitchell, Paul L.; Dobrovic, Alexander

    2014-01-01

    DNA repair genes that have been inactivated by promoter methylation offer potential therapeutic targets either by targeting the specific repair deficiency, or by synthetic lethal approaches. This study evaluated promoter methylation status for eight selected DNA repair genes (ATM, BRCA1, ERCC1, MGMT, MLH1, NEIL1, RAD23B and XPC) in 56 non-small cell lung cancer (NSCLC) tumours and 11 lung cell lines using the methylation-sensitive high resolution melting (MS-HRM) methodology. Frequent methylation in NEIL1 (42%) and infrequent methylation in ERCC1 (2%) and RAD23B (2%) are reported for the first time in NSCLC. MGMT methylation was detected in 13% of the NSCLCs. Contrary to previous studies, methylation was not detected in ATM, BRCA1, MLH1 and XPC. Data from The Cancer Genome Atlas (TCGA) was consistent with these findings. The study emphasises the importance of using appropriate methodology for accurate assessment of promoter methylation. PMID:24569633

  6. Detoxification and repair process of ozone injury: from O3 uptake to gene expression adjustment.

    PubMed

    Castagna, A; Ranieri, A

    2009-05-01

    Plants react to O(3) threat by setting up a variety of defensive strategies involving the co-ordinated modulation of stress perception, signalling and metabolic responses. Although stomata largely controls O(3) uptake, differences in O(3) tolerance cannot always be ascribed to changes in stomatal conductance but cell protective and repair processes should be taken into account. O(3)-driven ROS production in the apoplast induces a secondary, active, self-propagating generation of ROS, whose levels must be finely tuned, by many enzymatic and non-enzymatic antioxidant systems, to induce gene activation without determining uncontrolled cell death. Additional signalling molecules, as ethylene, jasmonic and salicylic acid are also crucial to determine the spreading and the containment of leaf lesions. The main recent results obtained on O(3) sensing, signal transduction, ROS formation and detoxification mechanisms are here discussed.

  7. PP2A-B56ϵ complex is involved in dephosphorylation of γ-H2AX in the repair process of CPT-induced DNA double-strand breaks.

    PubMed

    Li, Xiuying; Nan, Anuo; Xiao, Ying; Chen, Yongzhong; Lai, Yandong

    2015-05-01

    Phosphorylation of histone H2AX (γ-H2AX) in response to DNA double-strand breaks (DSBs) should be eliminated from the sites of DNA damage to fulfill the DNA repair and release cells from the growth arrest. Previous study showed that protein phosphatase 2A (PP2A) interact with γ-H2AX that lead to the dephosphorylation of γ-H2AX. Here, we examined the effects of suppression of PP2A regulatory subunits on dephosphorylation of γ-H2AX in human embryonic kidney epithelial cells (HEK) treated by topoisomerase I inhibitor camptothecin (CPT). We found that cells with suppression of B55α or B56ϵ were more sensitive to DNA damage agents. Suppression of B56ϵ led to persistence of γ-H2AX, resulting in prolonged DSBs repair and increased chromatin instability measured by comet assay. In addition, the deficiency of B56ϵ impaired the cell cycle regulation and the DNA repair pathway of homologous recombination (HR). Notably, we detected that PP2A B56ϵ subunit was involved directly in dephosphorylation of γ-H2AX and translocated from cytoplasm to nucleus upon the treatment of CPT. Our findings demonstrate that PP2A holoenzyme containing B56ϵ is responsible for the dephosphorylation of γ-H2AX and regulation of DNA repair of DSBs induced by CPT.

  8. ABCB5 is a limbal stem cell gene required for corneal development and repair

    PubMed Central

    Ksander, Bruce R.; Kolovou, Paraskevi E.; Wilson, Brian J.; Saab, Karim R.; Guo, Qin; Ma, Jie; McGuire, Sean P.; Gregory, Meredith S.; Vincent, William J. B.; Perez, Victor L.; Cruz-Guilloty, Fernando; Kao, Winston W. Y.; Call, Mindy K.; Tucker, Budd A.; Zhan, Qian; Murphy, George F.; Lathrop, Kira L.; Alt, Clemens; Mortensen, Luke J.; Lin, Charles P.; Zieske, James D.; Frank, Markus H.; Frank, Natasha Y.

    2014-01-01

    Corneal epithelial homeostasis and regeneration are sustained by limbal stem cells (LSCs)1–3, and LSC deficiency is a major cause of blindness worldwide4. Transplantation is often the only therapeutic option available to patients with LSC deficiency. However, while transplant success depends foremost on LSC frequency within grafts5, a gene allowing for prospective LSC enrichment has not been identified so far5. Here we show that ATP-binding cassette, sub-family B, member 5 (ABCB5)6,7 marks LSCs and is required for LSC maintenance, corneal development and repair. Furthermore, we demonstrate that prospectively isolated human or murine ABCB5-positive LSCs possess the exclusive capacity to fully restore the cornea upon grafting to LSC-deficient mice in xenogeneic or syngeneic transplantation models. ABCB5 is preferentially expressed on label-retaining LSCs2 in mice and p63α-positive LSCs8 in humans. Consistent with these findings, ABCB5-positive LSC frequency is reduced in LSC-deficient patients. Abcb5 loss of function in Abcb5 knockout mice causes depletion of quiescent LSCs due to enhanced proliferation and apoptosis, and results in defective corneal differentiation and wound healing. Our results from gene knockout studies, LSC tracing and transplantation models, as well as phenotypic and functional analyses of human biopsy specimens, provide converging lines of evidence that ABCB5 identifies mammalian LSCs. Identification and prospective isolation of molecularly defined LSCs with essential functions in corneal development and repair has important implications for the treatment of corneal disease, particularly corneal blindness due to LSC deficiency. PMID:25030174

  9. Characterization of Chondrocyte Scaffold Carriers for Cell-based Gene Therapy in Articular Cartilage Repair

    PubMed Central

    Shui, Wei; Yin, Liangjun; Luo, Jeffrey; Li, Ruidong; Zhang, Wenwen; Zhang, Jiye; Huang, Wei; Hu, Ning; Liang, Xi; Deng, Zhong-Liang; Hu, Zhenming; Shi, Lewis; Luu, Hue H.; Haydon, Rex C.; He, Tong-Chuan; Ho, Sherwin

    2014-01-01

    Articular cartilage lesions in the knee are common injuries. Chondrocyte transplant represents a promising therapeutic modality for articular cartilage injuries. Here, we characterize the viability and transgene expression of articular chondrocytes cultured in 3-D scaffolds provided by four types of carriers. Articular chondrocytes are isolated from rabbit knees and cultured in four types of scaffolds: type I collagen sponge, fibrin glue, hyaluronan, and Open-cell PolyLactic Acid (OPLA). The cultured cells are transduced with adenovirus expressing green fluorescence protein (AdGFP) and luciferase (AdGL3-Luc). The viability and gene expression in the chondrocytes are determined with fluorescence microscopy and luciferase assay. Cartilage matrix production is assessed by Alcian blue staining. Rabbit articular chondrocytes are effectively infected by AdGFP and exhibited sustained GFP expression. All tested scaffolds support the survival and gene expression of the infected chondrocytes. However, the highest transgene expression is observed in the OPLA carrier. At four weeks, Alcian blue-positive matrix materials are readily detected in OPLA cultures. Thus, our results indicate that, while all tested carriers can support the survival of chondrocytes, OPLA supports the highest transgene expression and is the most conductive scaffold for matrix production, suggesting that OPLA may be a suitable scaffold for cell-based gene therapy of articular cartilage repairs. PMID:23629940